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Abstract

An algal bloom is defined as a rapid increase in
common algae (phytoplankton) abundance in wa-
ter bodies and it can occur when a group of cer-
tain environmental factors is combined. If the al-
gae populations grow out of control, such algal
blooms become problematic and cause damage to
the ecosystem, such phenomena are called harm-
ful algal blooms. For this reason, it is important to
detect and forecast these phenomena to be able to
take action beforehand. Remote sensing is measur-
ing and monitoring the characteristics of an area at
a distance and it is typically done by satellites. Re-
mote sensed data containing various environmen-
tal measurements can be used as the input for a
machine learning system to estimate chlorophyll-
a concentrations which is the main indicator used
for detecting algal blooms. The main question this
research aims to answer is: Which input modality
is the most predictive for estimating chlorophyll-a
concentrations for water bodies in Uruguay? This
research presents the step-by-step construction of a
system to pre-process the environmental data col-
lected through remote sensing and use this data to
train and test a machine learning system to assess
and compare 11 different environmental factors or
so-called data modalities individually against each
other to find out the most predictive one. Carrying
out the machine learning experiments brings the re-
sults into the open that radiation mean and turbidity
of water are the two most predictive data modalities
for algal bloom forecasting with accuracy scores of
approximately 34%, while radiation mean is per-
forming slightly better.

1 Introduction
An algal bloom is defined as a rapid increase in common al-
gae (phytoplankton) abundance in water bodies and it can oc-
cur when a group of certain environmental factors is com-
bined, such as but not limited to increased nutrients, warmer
temperature, abundant light, and stable wind conditions [1].
Algal blooms are identified as problematic when the algae
populations grow out of control. As a result of this growth,
water bodies become contaminated and intoxicated, thus,
damaging the whole ecosystem, together with all the crea-
tures which depend on it to exist, including humans [2]. To
this end, the reliability of detecting and forecasting these algal
blooms has been crucial for researchers, graduate students,
and professional engineers who are engaged in monitoring
and modeling water quality [3].

Even though the most straightforward method of detecting
algal blooms is direct water sampling followed by a biolog-
ical analysis of the sample, it can be quite cumbersome and
limited by spatial and temporal factors [4]. Remote sensing
on the other hand, which is measuring and monitoring the
characteristics of an area at a distance and is typically done
by satellites [5], can hold an advantage over direct water sam-

pling as vast areas can be covered with this method, although
results could not be as precise as laboratory measurements.

Algal bloom monitoring and forecasting using remotely
sensed data was initially proposed by Steidiner and Haddad
in 1981 [6]. Since then, there have been lots of optimizations
and various methods to forecast algal blooms. Furthermore,
one of the most important data sources to detect algal blooms
has been chlorophyll-a concentration for many investigations,
as it directly refers to the algae abundance [7], which is also
used and referred to as the “ground truth” in this research.

“Modality refers to the way in which something happens
or is experienced and a research problem is characterized
as multimodal when it includes multiple such modalities.”
[8]. As the nature of algal bloom forecasting is a multi-
modal problem since multiple environmental factors need to
be considered while attempting to detect such events [9],
this research aims to analyze each one of these modalities
and make comparisons between them to answer the question
of which input modality is the most predictive for estimat-
ing chlorophyll-a concentrations in water bodies located in
Uruguay by:

1. Constructing a simple machine learning model,
2. Processing the sampled biological, water temperature,

and meteorological data to enable a computer system to
derive meaningful information from it,

3. Training and testing the machine learning model to ana-
lyze and compare the information derived from the data.

Comparing the results shows that radiation mean and tur-
bidity of water are the most predictive data modalities among
all the 11 that are assessed, however, per-class accuracy
scores show that individual data modalities fail to predict cer-
tain intervals alone and make more meaningful predictions
when they are combined.

This research paper is organized as follows. Section 2
gives example works conducted in this area which could ide-
ally help answer the research question. Section 3 describes
the methods used to answer the research question. Section
4 gives details of how the experimental setup has been con-
structed and presents the results that are obtained from the
experiments. Section 5 dives into the ethical aspects of the re-
search and is followed by Section 6 which makes a discussion
and conclusion over the presented results. Finally, the limita-
tions and recommendations for future work are presented in
Section 7.

2 Related Work
This section focuses on example works that cover similar
topics that are tackled in this research as well. The deci-
sions taken for the methods are also compared to the existing
strategies in algal bloom forecasting and they are presented
together with the motivation choices.

2.1 Multi-dimensional Data Structure
Using multi-dimensional data sources for harmful algal
bloom (HAB) detection is one of the most effective ways
of characterizing HAB events in terms of how they are de-
fined within the time and the space variables [10]. The two-
dimensional data structure is commonly referred to as a table,



when these two-dimensional tables are extended with more
dimensions and they are stacked on top of each other, the data
structure becomes a data cube [11]. Data cubes are especially
important in Earth sciences as they contribute greatly to the
challenge of working with big data since organizing all data
sources into a single data cube makes it possible to access
both multi-temporal and multi-spacial information in a sim-
ple and logical manner [12, 13]. Similar to the way how data
cubes have been constructed in these papers, methods pre-
sented in this paper combine various different data sources
and organize this data according to its temporal information
to create multiple batches which form the data cubes to be
used as the main source of data for the presented system.

2.2 Machine Learning Techniques
Due to the challenges of applying machine learning tech-
niques on satellite data images, numerous different machine
learning techniques have been utilized to overcome the is-
sue of having to deal with big data and make accurate pre-
dictions [14]. CNN (Convolutional Neural Network) [15] is
particularly important for image recognition [16] and can re-
solve the problem of the non-linear relationship between the
spectrum of algal blooms [17], thus, the technique has been
widely used by the experts working in this area. Moreover,
there are more complicated machine learning techniques that
build upon CNNs, to better process the high dimensionality of
spatiotemporal data cubes for the outcome predictions, in that
regard, a proposed solution makes use of ConvLSTM which
is, in essence, “the deep learning model long short-term mem-
ory powered by convolutional structures for the transitions to
tackle the now-casting problem.” [18].

Validating the results obtained by machine learning algo-
rithms requires analytically logical and indicative methods.
ROC (receiver operating characteristic) curve is one of the
widely known and used methods for assessing the perfor-
mance of predictions obtained through classification, also for
HAB forecasting [19, 20], which exploits the chosen sys-
tem’s strengths and weaknesses. In addition to that, accuracy
score, Kappa coefficient and F-Score are also used as indica-
tive evaluation metrics [9].

Much like the given research papers, this paper too utilizes
the power of machine learning algorithms to train and test the
model with high dimensional data, however, unlike the ex-
amples, the machine learning model has been constructed in
a simple manner, taking into consideration that this research
has been conducted in a limited amount of time and the cho-
sen model is somewhat irrelevant for comparing the different
environmental factors but is important for accurate HAB pre-
dictions. Furthermore, for evaluating the results, the total ac-
curacy score and accuracy per class have been calculated and
presented together with loss graphs of the training phases to
judge the performance of the machine learning model.

2.3 Classification vs. Regression
The common practice for the presented previous works is
making use of classification algorithms for the machine learn-
ing model to decide whether the situations indicate the pres-
ence of HABs or not, even though using classification intro-
duces bias in the predictions because of the dependence on

manually set values [21]. Using regression algorithms, on the
other hand, allows for precise predictions on chlorophyll-a
levels, and can even be further improved with using multi-
ple linear regression (MLR) when “multicollinearity of the
independent variables is removed” [22]. Nonetheless, using
both methods is applicable for the detection of HAB events
and seems to achieve satisfactory results with the help of ac-
curate pre-processing of the data and properly done hyperpa-
rameter tuning [23]. This paper carries out the experiment
with a classification-based machine learning model using the
pre-determined class separator values defined by the domain
experts.

3 Discovering the Most Predictive Data
Modalities

This section describes the main concepts and presents the
methods to answer the research question.

To assess different environmental factors of algal blooms,
there needs to be a machine learning system constructed for
predicting chlorophyll-a levels using a single data modality.
Furthermore, appropriate data needs to be processed and used
as this system’s input, which consists of different types of
meteorological, water temperature, and biological measure-
ments that are sampled from one of the water reservoirs of
the river Rio Negro in Uruguay. From the water reservoirs
Palmar, Baygorria, and Bonete, Palmar reservoir has been se-
lected as the water body under analysis and its data is used
for the machine learning system because there are more sam-
ples belonging to the reservoir and using more data to train
the model would ideally benefit input diversity, thus, the pre-
diction accuracy [24].

Identifying the data modalities. In the case of algal
bloom forecasting, each environmental measurement refers
to a different data modality, and the final prediction is ob-
tained by using a multimodal machine learning system that
makes use of each data modality to learn and predict. The
relevant data to forecast algal blooms are mainly retrieved
from various satellites including but not limited to Sentinel 2,
NOAA-GFS, and MODIS. The raw data of the Palmar reser-
voir which was collected by the satellites have been converted
into operable formats and further organized concerning their
timestamps by the domain experts. The modalities that are in-
dividually assessed and relevant to the research question are
demonstrated in Table 1.

Biological Measurements Water Temperature Measurements Meteorological Measurements
Chlorophyll-a Water temperature Mean air temperature

Turbidity of the water Mean cloud coverage
CDOM (Colored dissolved organic matter) Precipitation sum

Radiation mean
Relative humidity mean

U wind mean (Eastward wind vector)
V wind mean (Northward wind vector)

Table 1: Data modalities categorized by their measurement types.

Using data cube as the data structure. The training data
is organized as data cubes where each data cube contains the
measurement values for each one of the data modalities cor-
responding to pixel locations in a 224 × 224 cropped square
images that together compose the complete water reservoir
image. To produce the data cubes, image samples for data



modalities are stacked on top of each other to create multi-
layered data structures. Depending on their batch size, which
is the number of image samples taken from the complete wa-
ter reservoir image, and the window size, which is the number
of days of measurements to be used for the prediction, multi-
layered structures are once again stacked to form the final data
cubes. A visual representation of how the data is structured is
presented in Figure 1. This structure of the input data allows
for easy access to each layer simply by using indices.

Figure 1: Upmost, each different data modality image is categorized
under its measurement types, and below that the construction of the
data cube with the multi-layered data modality measurements, batch
size, and window size is demonstrated.

Test data is also organized similarly, however, as for the
ground truth, there is merely one data modality which is the
chlorophyll-a measurements of the day to predict. Further-
more, there is no window size since in the training data, mul-
tiple samples taken from different days could be used to pre-
dict the outcome but not vice versa.

Pre-processing of the data. Pre-processing is performed
on both train and test data. For the train data, data modal-
ity images are first clipped between 10−6 and 150 to avoid
extreme chlorophyll-a measurements while also allowing mi-
nor negative values since some of the data modalities such as
water temperature, negative measurements are possible and
valid. Clipping is followed by replacing the NaN (not a num-
ber) values with pre-calculated mean values for each modal-
ity to handle missing values without causing a skew in the
data set. NaN values occur because of impossibility in sam-
pling for some data modalities such as water temperature not
being able to be sampled on land or CDOM (colored dis-
solved organic matter) not being able to be detected when
there is a cloud band blocking the sensors of the satellite. Af-
ter the NaN values are handled, the Yeo-Johnson transform
is applied to reduce the skew in the raw variables [25]. Fol-
lowing that, the data is normalized with pre-calculated mean
and standard deviation values using the Z-score normaliza-
tion technique [26] to transform the features to be on the same
scale. The last step applied to the training data is that a data
modality is chosen from the data cube to be assessed, and as
a result of this, one dimension in the data cube is collapsed.

Finally, the dimensions of the pre-processed data cube are ar-
ranged correctly to distinguish the features of the machine
learning model, which are the window size and measurement
values of the chosen data modality.

For test data, values are first clipped between 0 and 150
to eliminate extreme or negative samples in the chlorophyll-
a measurements. This time, NaN values are replaced with
-1 as they are, later in the process, ignored and not used for
training the machine learning model. In the last step of pre-
processing, all ground truth data is binned to pre-defined in-
tervals of 0-10 ug/L, 10-30 ug/L, 30-75 ug/L, and 75+ ug/L
chlorophyll-a concentrations which are the ideal threshold
values for chlorophyll-a classification and they have been
again provided by the domain experts.

Linear classifier as the machine learning model. To be
able to compare the effectiveness of various data modalities
relative to each other, the chosen machine learning model is
constructed in a simple manner using a linear classifier. The
model has an input dimension of 1 for each measurement in
the input image of each data modality and an output dimen-
sion of 5 referring to each class of intervals in binned ground
truth measurements indicating the class label. The visual rep-
resentation of chosen classes is demonstrated in Figure 2.
NaN values that are converted to -1 in pre-processing step
are assigned to the class representing the values lower than 0,
which is also the class to be ignored while training the model.
Moreover, for the sake of simplicity, the linear classifier is
trained with samples of the data modalities taken one day be-
fore the day to predict, thus, the model always predicts one
day ahead.

Figure 2: Pre-determined intervals of the ground truth data for the
chlorophyll-a classification task, interval values are represented in
ug/L units.

Evaluation of the machine learning model. In order
to analyze the results, two common evaluation metrics for
classification tasks are used. Cross-entropy values are cal-
culated for the model’s predictions with −

∑M
c=1 yc log(pc)

where M denotes the number of classes, pc denotes the pre-
diction for the class c and yc denotes the actual ground truth
value of the class c [27]. Cross-entropy loss indicates the
performance of the linear classifier and the loss values are
plotted for each data modality over the cycles to observe
an expected decrease in the gradual loss for training pre-
dictions. Furthermore, accuracy scores are calculated with
Accuracy = Number of correct predictions of the class

Number of occurrences of the class for all classes and
total accuracy score of each data modality is calculated with
Total Accuracy = Number of correct predictions

Number of non-ignored data . The results are
later compared against each other to demonstrate how accu-
rate each data modality with the outcome predictions is.



Accuracy score (%) of class 1 (0-10 ug/L) Accuracy score (%) of class 2 (10-30 ug/L) Accuracy score (%) of class 3 (30-75 ug/L) Accuracy score (%) of class 4 (75+ ug/L) Total Accuracy (%)
Chlorophyll-a 25.19 53.18 0 0 27.47

Turbidity of the water 59.38 42.14 0 0 34.33
CDOM (Colored dissolved organic matter) 38.68 0 82 0 25.87

Water temperature 43.93 0 0 56.77 22.56
Mean air temperature 0 31.81 27.85 9.62 17.67
Mean cloud coverage 64.07 11.12 0 21.01 27.66

Precipitation sum 96.33 0 0 0 30.71
Radiation mean 17.87 70.78 0 0 34.86

Relative humidity mean 0 46.6 0 42.12 23.38
U wind mean (Eastward wind vector) 0 77.97 20.89 0 31.95

V wind mean (Northward wind vector) 95.92 0 3.38 0 31.14

Table 2: Results of the experiment that are carried out with single data modalities, presenting the accuracy scores of each data modality for
chlorophyll-a concentration prediction of the next day in Palmar reservoir. Calculated accuracy scores are rounded to the nearest 2 decimal
places for the sake of legibility.

4 Experimental Setup and Results
This section is dedicated to explanations of how the experi-
mental setup has been constructed with the presented meth-
ods by diving into some implementation details and it further
presents the results and their explanations.

Machine learning experiment is independently performed
on each data modality as well as when all of them are com-
bined. The presented linear model is trained using the Adam
optimizer [28] to calculate the gradients over 25 epochs with
a learning rate of 0.0001 and a batch size of 16. The criterion
torch.nn.CrossEntropyLoss for calculating loss [29] is
initialized with 2 optional arguments. The first optional ar-
gument is ignore_index=0 to exclude class 0 (see Figure
2) from contributing to the learning process. The second op-
tional argument is weight to give a manual rescaling to each
class due to the ground truth chlorophyll-a measurements are
being skewed towards low values which are discovered by
Bayraktar by performing data analysis on the Palmar reser-
voir data [30]. The distribution of the classes is given in Table
3. Following the training process, the model is tested using
unseen data with a batch size of 1, and the per-class accuracy
scores together with total accuracy scores are calculated to be
used as the evaluation metric.

Interval values for chlorophyll-a measurements (ug/L) Occurrence in the dataset (%)
0-10 63.57

10-30 23.19
30-75 7.96
75+ 5.27

Table 3: Distribution of chlorophyll-a measurements in the dataset
of Palmar reservoir (NaN values excluded from the calculation) [30].

4.1 Predictions based on Single Data Modalities
This experiment aims to exploit the correlation between each
data modality measurement and their respective chlorophyll-a
concentration measurements belonging to the next day which
are algal bloom forecasting predictions. The results in Ta-
ble 2 show the accuracy scores retrieved after the testing pro-
cess for each data modality. Overall, the total accuracy scores
for all data modalities are between 15-35%. Radiation mean
and turbidity of water have been the most predictive methods
when the total accuracy scores are taken into account. For
some modalities, predictions are heavily skewed on one class
such as precipitation sum where the accuracy score of class
1 is 96.33% and the accuracy scores of the other classes are

all 0%, which means that the model fails to predict any val-
ues outside the class 1. Mean air temperature and mean cloud
coverage are the only two data modalities to predict values in
3 distinct classes, while the total accuracy score of mean air
temperature is the lowest among all data modalities.

The plot showing the decrease in the loss for each epoch
for the data modality chlorophyll-a is presented in Figure 3
and the loss plots for other data modalities can be found in
Appendix A through Appendix J.

Figure 3: Plot showing the decrease in loss, thus difference from
the desired target with each epoch when training the system with
chlorophyll-a measurements.

4.2 Predictions based on Multiple Modalities

This experiment aims to combine all discussed data modali-
ties to ideally obtain results with higher accuracy scores and
more even distribution over the classes for the outcome pre-
dictions than the results of the experiments presented in Ta-
ble 2. The results in Table 4 show the accuracy scores of the
outcome predictions for each one of the classes as well as the
total accuracy. The first notable matter is that there are predic-
tions for each class which was not the case in the first experi-
ment, although the total accuracy score is not any higher than
the total accuracy scores of individual data modalities. Fur-
thermore, the predictions are skewed towards class 1, where
there is a significant decrease in accuracy scores from class 1
through class 4.

The plot showing the decrease in the loss for each epoch
for all data modalities combined is presented in Figure 4.



Accuracy score (%)
Class 1 (0-10 ug/L) 54.19

Class 2 (10-30 ug/L) 18.45
Class 3 (30-75 ug/L) 18.58
Class 4 (75+ ug/L) 3.61

Total Accuracy 27.63

Table 4: Results of the experiment that is carried out when all data
modalities are used together as the input for the linear classifier for
predicting the chlorophyll-a measurements which belong to the next
day. Calculated accuracy scores are rounded to the nearest 2 decimal
places for the sake of legibility.

Figure 4: Plot showing the decrease in loss, thus difference from
the desired target with each epoch when training the system with all
data modalities.

5 Responsible Research
One of the most important aspects of conducting responsible
research is that throughout the experiments, using data that
is not subject to abuse or violence against privacy. In that
regard, the data used to perform the experiments presented
in the paper are collected by the domain experts and have
been transmitted to the research group, thus there has been
no data collection throughout the research. The raw data
has been provided to TU Delft by various parties. Biologi-
cal data has been provided by the Ministry of Environment
of Uruguay. Data regarding meteorology has been collected
by NOAA Global Forecast System and is publicly available
online [31]. Moreover, all data that is relevant for the sur-
face water temperature has been collected by the satellites
“AQUA” and “TERRA” which are owned and operated by
NASA [32].

Another important aspect of presenting responsible re-
search is the reproducibility of the introduced experimental
setup. What it means to the other researchers or interested
parties who would like to carry out the same experiments
and verify the results of this research is, they are able to do
it with the knowledge and methods conveyed in the paper.
Throughout the research, it has been made sure that all in-
troduced methods are reproducible. Especially, extra atten-
tion has been paid to the random sampling when loading the
dataset and with the help of torch.manual_seed method, a

manual seed has been set for generating random numbers. All
the code that has been used for carrying out the experiments is
also publicly accessible and is kept in TU Delft’s servers. In
that regard, the repository is also well documented and each
important operation has a comment describing its purpose.

6 Discussion and Conclusion
The main aim of this research is to compare different envi-
ronmental factors as data modalities and discover how pre-
dictive each one of them is for estimating chlorophyll-a
concentrations. The results of this research have provided
different correlations between the assessed data modalities
and chlorophyll-a concentrations. When only total accuracy
scores are taken into account, it can be concluded that turbid-
ity of water and radiation mean are the most predictive data
modalities among all the 11 with accuracy scores both higher
than 34%. However, it is important to highlight that these
modalities failed to produce any instances of two classes,
Moreover, none of the data modalities managed to predict
chlorophyll-a concentrations with high and reliable accuracy
scores. On the other hand, the results which are presented
in Table 4 show that data modalities are more meaningful in
terms of predicting different outcomes when they are used
together to train a machine learning system, although the ac-
curacy scores are still not indicative precise predictions.

The results are not quite comparable to similar studies
since a group of different data modalities and domain values
are used, however, data modalities such as chlorophyll-a and
photosynthetically available radiation also play an important
role in much more advanced HAB detection systems [10].
Another important aspect to highlight is the performance con-
structed system, as it is extremely limited in accurately pre-
dicting HABs even when the presented data modalities are
combined. Nonetheless, this research provides methods and
results to satisfy the contributions described in Section 1.

1 Radiation mean
2 Turbidity of the water
3 U wind mean (Eastward wind vector)
4 V wind mean (Northward wind vector)
5 Precipitation sum
6 Mean cloud coverage
7 Chlorophyll-a
8 CDOM (Colored dissolved organic matter)
9 Relative humidity mean
10 Water temperature
11 Mean air temperature

Table 5: The rank list of data modalities concerning their total accu-
racy scores.

To compare and assess different data modalities used for al-
gal bloom forecasting, a piece of necessary knowledge is pro-
vided throughout this research together with a reproducible
methodology. The research explains how a multi-dimensional
data structure named a data cube is utilized to organize the
data provided by various sources and how this data is further
modified to be meaningful for a computer system. Finally,



it builds a system that is able to produce comparable and in-
terpretable results which use the data cubes as its input to do
so.

This research is concluded by presenting a rank list of
all 11 different modalities to predict chlorophyll-a concen-
trations for algal bloom forecasting in Table 5, created with
regard to their total accuracy scores, thus, revealing how pre-
dictive each one of them is in comparison to each other.

7 Limitations and Future Work
The machine learning system presented and constructed in
this research is limited by what a linear classifier is capable
of, which is not extremely efficient in terms of both operating
speed and prediction accuracy. A very useful way to over-
come this limitation is to utilize a more powerful machine
learning model for the scenario presented in this paper, as dis-
cussed in Section 2 with the related works, such as a CNN or
ConvLSTM [18] which would perform better with an image
dataset [17].

The dataset of Palmar water reservoir which is used to cre-
ate data cubes in this research is not evenly distributed over
the given classes as also mentioned in Section 4 [30]. A so-
lution is already applied in the current system to prevent bias
for the prediction outcome, more accurate predictions can be
obtained by further extending the dataset or using a differ-
ent domain with the presented system as a method of sanity
check.

The selected evaluation metrics already form a good ba-
sis for comparing the results, however, class accuracy is not
indicative enough in terms of what is classified incorrectly
and can sometimes be misleading. For more feasible compar-
isons, different evaluation metrics such as confusion matrices
can be calculated for each data modality and incorrect classi-
fications can be exploited [33].



References
[1] M. of Environment and C. C. Strategy, What causes

an algae bloom? - Province of British Columbia, Jun.
2022. [Online]. Available: https: / /www2.gov.bc.ca/
gov/content/environment/air-land-water/water/water-
quality/algae- watch/what- are- algae/causes- of- an-
algae-bloom.

[2] R. . Santoleri, “Year-to-year variability of the phy-
toplankton bloom in the southern Adriatic Sea
(1998–2000): Sea-viewing Wide Field-of-view Sen-
sor observations and modeling study,” Journal of Geo-
physical Research, vol. 108, no. C9, 2003. DOI: 10 .
1029 / 2002jc001636. [Online]. Available: http : / / dx .
doi.org/10.1029/2002jc001636.

[3] W. Zhang and I. Lou, “Monitoring and modeling algal
blooms,” in Advances in Monitoring and Modelling Al-
gal Blooms in Freshwater Reservoirs: General Princi-
ples and a Case study of Macau, I. Lou, B. Han, and W.
Zhang, Eds. Dordrecht: Springer Netherlands, 2017,
pp. 1–14, ISBN: 978-94-024-0933-8. DOI: 10 . 1007 /
978 - 94 - 024 - 0933 - 8 1. [Online]. Available: https :
//doi.org/10.1007/978-94-024-0933-8 1.

[4] S. E. Craig et al., “Use of hyperspectral remote sensing
reflectance for detection and assessment of the harmful
alga, Karenia brevis,” Applied Optics, vol. 45, no. 21,
p. 5414, Jul. 2006. DOI: 10.1364/ao.45.005414. [On-
line]. Available: http : / / dx .doi . org /10 .1364 / ao .45 .
005414.

[5] What is remote sensing and what is it used for? —
U.S. Geological Survey, Jan. 2022. [Online]. Avail-
able: https : / / www . usgs . gov / faqs / what - remote -
sensing-and-what-it-used.

[6] K. A. Steidinger and K. . Haddad, “Biologic and Hy-
drographic Aspects of Red Tides,” BioScience, vol. 31,
no. 11, pp. 814–819, Dec. 1981. DOI: 10 . 2307 /
1308678. [Online]. Available: http : / /dx .doi .org /10 .
2307/1308678.

[7] D. . Blondeau-Patissier, J. F. Gower, A. G. Dekker, S.
R. Phinn, and V. E. Brando, “A review of ocean color
remote sensing methods and statistical techniques for
the detection, mapping and analysis of phytoplank-
ton blooms in coastal and open oceans,” Progress in
Oceanography, vol. 123, pp. 123–144, Apr. 2014. DOI:
10.1016/j.pocean.2013.12.008. [Online]. Available:
http://dx.doi.org/10.1016/j.pocean.2013.12.008.
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A Loss graph of Turbidity of Water

Figure 5: Plot showing the decrease in loss, thus difference from
the desired target with each epoch when training the system with
turbidity of water measurements.

B Loss graph of CDOM

Figure 6: Plot showing the decrease in loss, thus difference from
the desired target with each epoch when training the system with
CDOM measurements.

C Loss graph of Water Temperature

Figure 7: Plot showing the decrease in loss, thus difference from the
desired target with each epoch when training the system with water
temperature measurements.

D Loss graph of Mean Air Temperature

Figure 8: Plot showing the decrease in loss, thus difference from the
desired target with each epoch when training the system with mean
air temperature measurements.



E Loss graph of Mean Cloud Coverage

Figure 9: Plot showing the decrease in loss, thus difference from the
desired target with each epoch when training the system with mean
cloud coverage measurements.

F Loss graph of Precipitation Sum

Figure 10: Plot showing the decrease in loss, thus difference from
the desired target with each epoch when training the system with
precipitation sum measurements.

G Loss graph of Radiation Mean

Figure 11: Plot showing the decrease in loss, thus difference from
the desired target with each epoch when training the system with
radiation mean measurements.

H Loss graph of Relative Humidity Mean

Figure 12: Plot showing the decrease in loss, thus difference from
the desired target with each epoch when training the system with
relative humidity mean measurements.



I Loss graph of U Wind Mean

Figure 13: Plot showing the decrease in loss, thus difference from
the desired target with each epoch when training the system with U
wind mean measurements.

J Loss graph of V Wind Mean

Figure 14: Plot showing the decrease in loss, thus difference from
the desired target with each epoch when training the system with V
wind mean measurements.


	Introduction
	Related Work
	Multi-dimensional Data Structure
	Machine Learning Techniques
	Classification vs. Regression

	Discovering the Most Predictive Data Modalities
	Experimental Setup and Results
	Predictions based on Single Data Modalities
	Predictions based on Multiple Modalities

	Responsible Research
	Discussion and Conclusion
	Limitations and Future Work
	Loss graph of Turbidity of Water
	Loss graph of CDOM
	Loss graph of Water Temperature
	Loss graph of Mean Air Temperature
	Loss graph of Mean Cloud Coverage
	Loss graph of Precipitation Sum
	Loss graph of Radiation Mean
	Loss graph of Relative Humidity Mean
	Loss graph of U Wind Mean
	Loss graph of V Wind Mean

