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Abstract

Machine learning on edge devices performs crucial identification or prediction tasks while limiting the
amount of data that needs to be transmitted to more centralized computing nodes. However, strict
area and energy requirements necessitate specialized hardware developed for the requirements of the
device and model. This thesis is concerned with developing an area and energy arithmetic unit as part
of the implementation of a stacked machine learning model in embedded automotive devices. The
model in question was previously designed to perform lifetime prediction with the goal of improving the
reliability of semiconductor devices used in various automotive applications.

This thesis aims to achieve area and energy efficiency by exploiting the commonalities in the arith-
metic operations of several of the internal learners of the stacked machine learning model. The use of
a weighted figure of merit, taking into account area, energy and delay, allow for simple comparisons of
designs at any operation frequency and easy insight into the changes in the merit of designs if device
requirements were to change. A sweep of the percentage of multiplications in the workload also gave
insight into how design choices may change due to future redesigns of the stacked machine learning
model.

It was found that the MAC, multiply, divide and accumulate operations of the internal learners can
best be supported by one arithmetic unit containing a ”Reduced Area” parallel multiplier (still taking up
most of the area), a small dedicated accumulator and invariant integer division using the multiplier. It
was also found that the ability to reconfigure the multiplier for different levels of bit-precision does not
yield performance improvement for the expected precision distribution.
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1
Introduction

1.1. Motive
All around us electronic devices are measuring increasingly unmanageable amounts of data on every-
thing from voice control to weather sensors. The traditional way of making use of these data is by
transmitting it to servers and data centers where it can be processed into useful information. However,
this leads to too much load on the networks between the measurement and processing device, risks
leaking sensitive data and prohibits real time responses in those measuring ”edge” devices. Therefore,
deployment of artificial intelligence on the edge has become a popular practice in recent years.

This same development of electronic devices appearing in every application imaginable also puts
pressure on the field of semiconductor reliability. Old methods of accelerated lifetime testing that could
only ensure a rated lifetime on the day of production are becoming more expensive as lifetime re-
quirements increase. Integrated circuits (IC) are used in unpredictable conditions and in life-critical
components, like in cars and medical devices. Ensuring reliability in these scenarios requires better
lifetime estimations and the ability to measure and predict remaining lifetime in the field. This is where
machine learning (ML) has proven to be a valuable tool [1], [2].

Machine learning models can also transform large quantities of data into a smaller amount of useful
information that is worth recording. However, these mathematical models often require lots of power
hungry arithmetic that devices on the edge can ill afford to spend their energy and chip area on. For
this reason, a whole field of research has sprung up around energy and area efficient implementation
of ML models. Most of this research is directed towards one model in particular, Neural networks. This
makes sense, as neural networks excel at finding patterns in large amounts of data, supporting great
progress in image recognition and natural language processing.

A bit less attention is given to situations when less measurement data is available. Here classical
ML models such as Linear Regression, Decision Trees, k-Nearest Neighbors and Support Vector Ma-
chines (SVMs) can regularly outperform neural networks in accuracy [3]. On top of this, classical ML
models usually require less hardware resources to be trained and implemented and they benefit from
a higher level of interpretability than neural networks. As such, these models still have a fair amount of
research dedicated to developing efficient hardware implementations [4], [5].

This thesis focuses on one particular case of classical machine learning, model stacking, which
has received very little attention from computer hardware engineers. Model stacking is a method of
combining the outputs (predictions) of multiple separate ML models (base-learners) by using these
base-predictions as inputs for yet another ML model (a meta-learner). By leveraging the qualities of
several different types of ML models, model stacking can perform particularly well with small training
data sets and do well to avoid over-fitting on the training data. The hardware benefits of the classi-
cal models that make up the stacked ML model are also maintained [6]. This means fewer resources
are needed for training and a higher degree of interpretability compared to neural networks. Yet, the
diversity in base-learner models does reflect in the complexity of the arithmetic and the data storage
of Stacked ML (SML) models, requiring well designed hardware to run efficiently. To make the imple-

1



1.2. Problem Statement 2

mentation of stacked machine learning models on edge applications feasible, research into hardware
implementation is crucial, yet absent in literature. That is why this thesis focuses on answering the
question: How do you create low energy and area efficient hardware for stacked machine learning
models?

1.2. Problem Statement
This thesis deals with a design problem concerning the hardware implementation of a Stacked ML
model as part of a project for interns at NXP Semiconductors, an international semiconductor manu-
facturer based in the Netherlands. The goal of the project is to explore the feasibility of performing
lifetime prediction inside embedded automotive devices. The eventual aim is cheap integration of such
a lifetime prediction model into a large selection of semiconductor devices within cars.

To achieve this, the efficient use of chip area is paramount for the hardware that runs the model. As
a result, the most important Key Performance Indicator (KPI) for the hardware design of the stacked ML
model is area efficiency. The other KPIs used to evaluate the design results of this thesis are energy
and delay. Of these, energy is more important than delay, as semiconductor lifetime prediction is not
a problem that requires high prediction speeds. Meanwhile vehicles do have limitations on their power
supply.

Prior research into lifetime prediction for embedded automotive devices [7] presents a stacked ML
model that will provide insight into the hardware requirements of SML models in general and serve as
the target model to optimize for in this thesis. The SML model predicts the lifetime of a new data point
consisting of 30 features. These 30 features are divided equally among 6 base learners specified to be
the following models: Ridge Regression, Radial Basis Function (RBF) Kernel Regression, Polynomial
Kernel Regression, Support Vector Regression (SVR), 3 Nearest Neighbors (3-NN) andRandomForest
(RF). The predictions of these base-learners is then used by another RFmodel meta-learner to generate
a final prediction.

The individual learners of the SML model each have literature which covers their hardware imple-
mentation, as discussed in section 2.1.4. However, fully independent implementation of the 7 machine
learning models based on these existing solutions cannot lead to an area efficient design. Efficient
hardware for the SML model described above will require the exploitation of similarities between the
learners to reduce resource usage. No such hardware has previously been made, nor has this topic
been discussed in literature. Therefore, such efficient SML model hardware forms the design problem
and the research gap this thesis aims to fill.

1.3. Research Questions
Exploration into the hardware requirements of these ML models, see background subsection 2.1.4,
shows common denominators in the multiply, accumulate, and divide operations of the 7 models. The
four regression models require multiply-and-accumulate (MAC) operations, the 3-NN and RF models
need accumulation and division and lastly the kernel regression models ask for a large quantity of
multiplication, accumulation and division. Allowing the 7 learners in the SML model to share one area
and energy optimized arithmetic unit is important. While workload optimized arithmetic units are not a
new concept, the unique characteristics of SML models should lead to novel findings.

One such model characteristic that needs mentioning is the unequal number of bits that individual
base-learners may need to perform at an adequate level of accuracy. Reducing the number of bits used
to describe the values in an ML model will save hardware resources. However, in Stacked ML models
this benefit may be lost due to a single base- or meta-learner requiring high bit-precision arithmetic.

As such, the contributions of this thesis will stem from the efforts of both efficiently combining multi-
ply, accumulate and divide operations into one arithmetic unit and maintaining the benefits of reduced
bit-precision ML models.

This thesis aims to answer the following two research questions and sub-questions:

1. How do you integrate the arithmetic operations of multiple classical ML models into one area and
energy efficient arithmetic unit?

1.1. How can multiple models efficiently share one unit for their basic MAC operations?
1.2. Can division be efficiently integrated with a MAC unit?
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1.3. Can kernel calculations be efficiently performed on a MAC unit?

2. How do you maintain the benefits of reduced bit-precision ML models in hardware that executes
models with various levels of bit-precision?

1.4. Contributions
The key contributions of this thesis and their significance are as follows:

• The design of an area and energy optimized arithmetic unit for the stacked machine learn-
ing model:
The discovery that a parallel multiplier, specifically a Reduced Area multiplier, a second dedicated
accumulator, and support for Invariant Integer Division using the existing multiplier are best per-
forming design choices for the workload of the SML model. This is a crucial step towards the
complete proof of concept of an on-chip lifetime prediction system for NXP.

• An example of the design of dedicated hardware for SMLmodel: Besides the design choices
made in this thesis the result also give insight into alternative scenarios when application require-
ments or workloads are different. This will be useful for future researchers as there is currently a
lack of literature on the subject.

• Performance figures of the ASIC implementation of Invariant Integer Division in 28nm
CMOS technology:
This is useful and previously lacked statistic for engineers considering this division method.

1.5. Thesis Structure
The next chapter, chapter 2, contains background on lifetime prediction, machine learning, the SML
model and hardware for classical ML models. It also discusses related works on computer arithmetic
hardware. The methodology of the experiments in this thesis and descriptions of hardware designs
are presented in chapter 3. Chapter 4 analyses the subsequent results and finally chapters 5 and 6
contain the discussion and the conclusion.



2
Background and Related Works

This chapter consists of a Background and a Related Works section. The Background section dis-
cusses the required background for this thesis. There are subsections on lifetime prediction, the
stackedMLmodel in question, machine learning, existing hardware for it, and an analysis of the stacked
ML model’s hardware requirements. The Related Works section compares the various existing partial
solutions to the design problem in several subsections. These were inspiration for the design choices
compared in the methodology and results of this thesis. The related works section ends with an existing
system best suited to compare the results of this thesis to.

2.1. Background
The background of this thesis’ research is sketched in several subsections. Subsection 2.1.1 explains
the problem of IC aging and importance of lifetime prediction in guaranteeing reliability. Then, subsec-
tion 2.1.2 introduces the stacked machine learning model that is central to this thesis in more detail.
Subsection 2.1.3 lays out a brief and basic overview of machine learning and the ML models that are
relevant for a proper understanding of the design problem. Subsection 2.1.4 describes existing hard-
ware solutions to the individual learners of the SML model, showing where ML hardware is already
well-developed. Finally, Subsection 2.1.5 shows how the research questions were defined based on
the hardware requirements for the SML model.

2.1.1. Lifetime Prediction
The never ending march of Moore’s law has made semiconductor devices more and more complex,
small, and versatile. As a result, there has been a continuous trend of Integrated Circuits (ICs) appear-
ing in an even wider range of applications. With these systems in phones, fridges, doorbells and cars,
the term Internet of Things (IoT) as sprung up to express how they all process and share information
at an unthinkable scale. As this trend continues, it keeps getting more important that IC can be relied
upon to last long and not fail unexpectedly, especially in life-critical applications like self-driving cars
and medical devices.

It has been long identified that electrical devices exhibit a distinct pattern of failure. The probability
distribution of device failure shows its highest peaks shortly after production (early failure) and near the
end of the expected lifetime (wear-out). Earlier failure of semiconductor devices is caused primarily by
manufacturing defects, while later failures are caused by degradation due to use and environmental
factors [1]. In the modern day, most semiconductor reliability is achieved through accelerated lifetime
tests. The reliability requirements of any particular IC is tested by running the device at higher temper-
atures, voltages or higher mechanical stress and watching when they fail. By doing this, it becomes
possible to say with reasonable certainty that most IC will survive for a certain minimal lifetime [1].

However, because every semiconductor device is different due to imperfect manufacturing and each
device is used differently in different environments, it is impossible to guarantee that some ICs will not
fail significantly sooner without more insight into what is happening inside the device. Thankfully, when
it comes to wear-out failure, there are several well understood processes that pre-stage failure and can
be detected. Examples of these are Electromigration, Stress Migration, Negative Bias Temperature

4



2.1. Background 5

Instability, Time-Dependent Dielectric Breakdown, and Hot Carrier Injection [8]. By monitoring these
processes, it becomes possible to predict imminent failure of ICs or even their longer term remaining
lifetime. However, this is not an easy task. The existence of one of these failure mechanisms rarely
means failure of the entire device. The extreme and increasing complexity of ICs makes it hard to set
up a model that can predict when too much aging has taken place. This is where Machine Learning has
great potential, and existing technology in this direction will be discussed at the end of this subsection.

The advantages of accurate models would be immense. Currently, a lot of over-engineering takes
place to guarantee lifetime, meanwhile, the possibility of unexpected early failure stays. Also, electronic
service providers need to spend lots of resources to respond quickly to deal with these unexpected
failures. With accurate models of IC failure, systems can be designed more accurately for their require-
ments and when failure is predicted in the field well ahead of time it is possible to apply fine-tuned
corrective measures like adjustment of operating conditions or replacing the IC at a convenient and
safe time [1].
Existing research towards this purpose shows that mainly Support vector machines and Neural Net-
works are being used to predict hardware faults. [9] used an SVM to predict failure in hardware com-
ponents. Around the same time, [10] created an Artificial Neural Network accelerated on an FPGA to
detect faults in Automotive systems. A few years later, [2] explored the accuracy of an SVM predictor at
different numbers of monitored flip-flops and time-sampling rates. Finally, [8] uses Fast Fourier Trans-
form (FFT) to obtain sufficient information from fault signals to train and use a Convolutional Neural
Network for the prediction of a wide range of faults caused by a wide range of aging mechanisms. The
last two being from 2019 and 2022 respectively shows that this is still an active field of research.

2.1.2. The Stacked Machine Learning Model
The Stacked Machine Learning model, from now on referred to as the SML model, was previously
designed by [7] for predicting future HTOL (High-TemperatureOperating Life) test measurements based
on earlier HTOL measurements. This was the first step in developing a lifetime prediction system for
embedded automotive devices. [7] found that stacked machine learning achieved significantly higher
prediction accuracy than individual models especially when performing view splitting before training.
Although this is partly attributed to the small dataset used to train the HTOL prediction models, the
SML model still shows to be a promising model for the lifetime prediction of embedded automotive
devices. Research on stacked ML models is hard to come by. As a result, there is a necessity to invest
in research on the hardware implementation of the SML model. In this thesis, hardware is designed for
the SML model. Therefore it is important to know the details of the model.

For the next subsection on machine learning, it is important to remember a couple of facts about the
SMLmodel that is central to this thesis. The SMLmodel is trained on a data set of 90 data points with 30
features. The 30 features are split into 6 sets of 5 features. This provides smaller data sets for 6 base-
learners which are each different types of ML models. The predictions of each of the 6 base-learners,
that work fully independently of each other, are used as the input data for a meta-learner that makes
a final prediction on lifetime. Some background on the different models (learners) that make up the
SML model is given in the next subsection. The 6 base-learners are Linear (Ridge) Regression, RBF
Kernel Regression, Polynomial Kernel Regression, Support Vector Regression, 3 Nearest Neighbors
and Random Forest Regression models. The meta-learner is another Random Forest regressor.

2.1.3. Machine Learning
Machine learning is a form of Artificial Intelligence that, instead of being explicitly programmed, uses a
computer algorithm to find relations within sets of data. Often these relations are in the form of a model
that describes how a dependent variable y relates to multiple independent variables x. For example,
how a person’s height (variable y) may relate to their age, sex and the height of each of their parents
(variables x). Finding such a model using a machine learning algorithm is called training, which is done
with a training data set.

A training data set is a collection of data points recording their independent variables x. Such a
data set can be called ”labeled” if these data points also include the correct values for the y variable.
This distinction defines the first categorization within Machine Learning: Supervised Learning and Un-
supervised Learning, which are done with labeled and unlabeled training data sets respectively. The
advantage of unsupervised learning is that unlabeled data are easier to obtain, allowing for more data
for the model to train on, which can improve the model performance. However, supervised learning
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learning allows for more control over the ML model and can perform more reliably on less complex
problems. Often unsupervised learning is used when it is not clear what kind of useful information
can be obtained from a large amount of data. On the other hand, supervised learning is used when a
specific value or characteristic of the data needs to be identified [11].

ML models concern themselves with predicting the dependent variable y. Whether this y variable
can take on a continuous range of values or discrete classes, marks the distinction between regression
models and classification models. For this thesis most relevant are regression models. These are
used in the SML model, because future lifetime, the SML model’s dependent variable y, is a continuous
variable, whether it is expressed in days, months or years.

Once a model is trained, it is capable of providing predictions about the y variables of new unlabeled
data points. This is called inference. To test the performance of the model, inference can be performed
on data points that are labeled, but not trained on. In the testing phase, it is important to use a sufficiently
large and realistic set of data that did not appear in training. Under that condition, a good accuracy
figure of the model can be obtained that will reflect its performance when deployed in the field.

The rest of this subsection will give short explanations about the concepts and equations behind
the internal ML models that appear in the SML model and ends with some details on model stacking.

Linear Regression
Linear regression is a very simpleMLmodel. It describes the relationship between independent variable
x and dependent variable y using Equation 2.1 [12]

y = x̂T ŵ + b (2.1)

Here independent variable x is represented by a vector of its features x̂ and ŵ contains weights for each
feature. b is the bias. The weights and biases are obtained during the training of the model. The SML
contains specifically a Ridge Regression model, but this ”Ridge” refers to a specific training method
that is not relevant for inference.

Kernel Regression
Kernel Regression is a regression model that adds a transformation of the input data. This allows
the model to not only find linear, but also non-linear relationships within the training data [13]. Kernel
Regression follows Equation 2.2 [12]

y = b+

n∑
i=1

αiK(x, ci) (2.2)

Here n is the number of training data points, ai are the weights that are obtained during the training of
the model and K(x, ci) is the kernel transformation of the new data point x in respect to the ith training
data point ci. There are many kernels, described by different equations, that are used for various
purposes. However, for this thesis the relevant ones are the Radial Basis Function (RBF) kernel (or
Gaussian kernel), the Polynomial kernel and the Linear kernel. Only these will be considered as they
are part of the SML model. The kernels are described by equations 2.3, 2.4 and 2.5.

K(x, ci) = e−
||x−ci||

2

2σ2 (2.3)
Here, σ is the variance of the training data and ||x − ci|| is the Euclidean distance between point

x and ci, which will later described by equation 2.6. The RBF kernel is an infinite dimensional kernel.
This allows for a regression line of any shape, thus being able to follow the most complex and high
dimensional patterns in the data [14]. The RBF kernel is also most easily interpreted as a similarity
kernel. When x and ci are close together in their original feature space the Euclidean distance ||x− ci||
becomes small, which means the kernel becomes big.

K(x, ci) = (x̂T ĉi + b)d) (2.4)
Here, b is a free parameter to be determined during model training and d is the degree of the

polynomial. A higher degree means higher-order non-linear relationships in the data can be described
by the ML model. Too high of a degree leads to overfitting. Notice that if d is 1, the polynomial kernel
becomes almost the same as the linear kernel [14].

K(x, ci) = x̂T ĉi (2.5)
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k-Nearest Neighbors
A k-NN regression algorithm is conceptually quite simple. The provided test data point is compared
with each data point in the training data by calculating the distance between the two points in the n
dimensional feature space. Where n is the number of features each data point has. This can either
be done as Euclidean distance or Manhattan distance, equations 2.6 and 2.7. The average of the
dependent variables y in the k training data points that are the nearest to the test data point is then the
predicted value of the y variable of the test data point.

d(a, b) =
√

(a1 − b1)2 + (a2 − b2)2 + ...+ (an − bn)2 (2.6)

d(a, b) = |a1 − b1|+ |a2 − b2|+ ...+ |an − bn| (2.7)

Random Forest
A Random Forest is a group of decision trees, which are ML models in their own right. Each decision
tree is trained to make predictions about the dependent variable y based on the features of a test
variable x. The function of the Random Forest, in case of regression, is to take as the final prediction
for y the average prediction of all the trees in the forest. In the case of classification, this final prediction
would be the most common prediction made by the trees. This makes a Random Forest a case of
ensemble learning called Bagging [15].

A decision tree makes predictions about the value of the dependent variable y by making a series
of often binary decisions that lead it along the branches of the decision tree. Each decision determines
which branch is followed next and therefore what the next decision node is. At each decision node, the
value of a feature of test variable x is compared to a threshold that is determined during the training of
the model. The maximum number of decisions needed to be taken before a prediction is obtained is
called the depth of the tree.

In an RF model, the trees of the forest are often trained on different random selections of features
of different random portions of the training data points. This is called view splitting. The depth of
the decision trees is also kept purposefully low. By doing this, each individual decision tree can only
make prediction based on simple observations made on different portions of the training data, but the
collection of hundreds of trees, depending on the problem size, provides high accuracy and robustness
to noise in the data. [15].

Model Stacking
Model stacking is a method within machine learning where multiple models are combined to obtain
better performance. To be specific, in model stacking, there are multiple independent models, called
base-learners, which are trained independently and give independent predictions about data points
provided to them. The predictions of the base learners about data points in the training data set are
then used to train yet another model, the meta learner. The meta-learner is the tool to combine all the
differing predictions of all the base-learners. Originally introduced by [6] as Stacked Generalization,
model stacking is known to improve accuracy and correct for the biases of the base learners [16]. On
top of that, ensemble learning, a category which includes all other forms of combining the results of
multiple models, is know to reduce variance [17].

2.1.4. Hardware for ML Models
From a hardware perspective the learners of the SMLmodel fit into 4 categories. This subsection briefly
discusses the existing solutions to these separately.

Basic Regression
The first category is basic regression. These are regression models that, ignoring the training methods,
merely require sufficiently fast MAC operations and enough memory bandwidth. In the SML model,
these are Linear Regression and SVR. MAC operation design can be split into two problems: multiplier
design and multiplier-accumulator integration. Multipliers are an important part of the State of the Art
for this thesis and are therefore discussed in 2.2.1. MAC operations are basic arithmetic that has
been relevant for many Digital Signal Processing (DSP) applications far into the 20th century. As such
there is a lot of research focusing on the integration of accumulation into multiplication. Recently, MAC
operations have gained even more importance due to its relevance of machine learning, including every
type of neural network.
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[18] seems to have been the first to make a MAC unit by integrating accumulation into a Baugh-
Wooley multiplier to save area and delay. Almost a decade later, [19] merged accumulate and multiply
operations by using a Modified Booth Algorithm, with an emphasis on delay reduction. [20] reduces
energy consumption with conditional evaluation in their CSAs. [21] made self-timed, pipelined versions
of both Modified Booth2 and Modified Baugh-Wooley multipliers in order to reduce area and delay. [22]
reduced area and delay using modified 4:2 compressors. [23] proposed that accumulation can be
performed in the final adder of the multiplier, reducing mostly energy and delay. Finally, the recent
trend of approximate arithmetic is also applied in MAC operations by [24] and [25]. The second of
these was specifically designed for Neural Networks.

Kernel Regression
The category kernel regression contains any model that utilizes kernels. Within the SML model, these
are RBF kernel regression and Polynomial kernel regression. Both kernels require a fairly large number
of arithmetic operations, mostly centered aroundmultiplication, especially when compared to their linear
counterparts. In particular, the RBF kernel needs support for an exponential. For this reason there has
been several research papers that discuss the subject of RBF kernels.

[26] use an RBF kernel for an SVM model classifying images. To provide hardware support for this
they use an FPGA and represent the exponential function of the RBF kernel as a summation of a hy-
perbolic sine and hyperbolic cosine, which is supported by the FPGA. [27] designed fully combinational
hardware for an RBF kernel neural network. They use the Taylor series expansion of the exponential
function and a look-up table to perform kernel calculations. Specifically concerning the exponential
functions, [28] optimized the hardware implementation using the Taylor expansion of the exponential
functions in general. Finally, [29] recently presented a stochastic architecture that can perform multiple
different types of kernel calculations for SVMmodels. Their design provides lower hardware complexity
and for the RBF kernel higher accuracy.

k-Nearest Neighbors
The k-NN algorithm consists of two parts: finding the nearest neighbors and computing the average
y value. The latter is relevant for this thesis research and the hardware solutions will be discussed in
subsection 2.2. Finding the nearest neighbors has a varied collection of hardware solutions presented
in the literature.

[30] presents a new method to perform approximate NN search by quantizing the feature space
to improve search quality and memory usage. [31] designed a set of very high throughput parallel
FPGA architectures usingManhattan distance calculation. [32] presents an accelerator that can change
its precision and they also compare the performance differences between Euclidean and Manhattan
distance calculations. Lastly, [33] combines in-memory computing SRAM and top-k sorting hardware
to accelerate a k-NN model.

Random Forest
The hardware implementation of random forest has a very wide range of solutions in literature ranging
from basic digital CMOS arithmetic to in-memory computing [4] to the use of special transistor tech-
nologies [34], [35]. As this thesis remains within the bounds of digital CMOS arithmetic, the following
solutions exist within the design space.

[36] tested the performance of reduced precision RF models on FPGA using stochastic rounding.
[37] designed hardware architectures for three different types of decision tree ensembles focusing on
area optimization. Their designs include a pipeline of a couple of decision nodes or a fully sequential
design with only a single comparison being done at a time. [38] implemented multi-valued decision
diagram based RFs on an FPGA for extra fast and energy-efficient inference and compared the re-
sult to GPU and CPU implementations. They also did experiments to see the relationship between
bit-precision and classification accuracy. [39] also looked at FPGA implementation, but they explored
the trade-offs of three levels of reconfigurability. Depending on the ML application there will be higher
or lower constraints on the time the architecture needs to switch from one forest to another. But faster
switching times mean higher usage of FPGA resources. Finally, [40] proposes an early stopping mech-
anism from random forests to save energy and time. The idea is simply to stop inference when suffi-
ciently many trees in the forest provide the same classification, leading to shorter classification times
for easier inputs.
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2.1.5. SML Requirements
This subsection gives an overview of all the required arithmetic operations and data storage necessary
to perform inference with the SML model and explains what common denominators were identified
within the SML model’s learners that allow for optimization.

Figure 2.1 shows the flow of data through a system that can perform inference with the SML model.
The system has one input and one output. The input is a set of 30 feature values of a data point of
which the lifetime is to be predicted, the independent variable x. These 30 features are measurements
of electrical or environmental parameters of the IC. The single output is a prediction of remaining lifetime,
dependent variable y.

Inside the Inference System are blocks that represent arithmetic operations or stored data. Between
these blocks are colored arrows that visualize how data from the system’s input and memory are used
for arithmetic operations and how the results of these operations are used in other operations or are
presented at the output of the system. For example, in Linear Regresssion (yellow), 5 of the 30 feature
values from the input and 5 weight values from memory are combined in the Dot Product block to
produce a prediction of lifetime. At the bottom of the figure, this lifetime prediction joins five others to
become the RF Meta-Learner’s (red) input.

Memory Blocks
For organization, all the memory blocks are placed together near the center of the system. Although
each block represents the storage of data with a certain function in the SML model, the figure is not
meant to say anything about how this memory is implemented. In an actual hardware design, this data
may well be stored at different addresses within the same memory unit that is shared with the entire
embedded system, or be stored in separate specialized memory units. The function of each block is
as follows:

• Data Memory: The Data Memory stores the training data points. These are used by the Nearest
Neighbors (blue), kernel regression (two light shades of green) and SVR (dark green) learners,
as previously shown in equations 2.6, 2.3, 2.4 and 2.5 respectively.

• Weight Memory: The Weight Memory contains the trained weight values for the Linear, Kernel
and SVR regression learners.

• Threshold memory: The Threshold Memory contains the thresholds for each of the three de-
cision nodes in each of the 100 decision trees in both the RF base-learner (purple) and the RF
meta-learner (red).

• Leaf Memory: The Leaf Memory contains the lifetime prediction values that belong to each of the
4 leaves of each of the 100 decision trees of both the RF base-learner and the RF meta-learner.

Arithmetic Blocks
The arithmetic blocks in the figure represent mathematical operations necessary for inference using
the SML model, but do not give any indication as to how they could be implemented in hardware. The
function of each block is as follows:

• Kernel Calculator: The Kernel Calculator block takes two inputs and gives one output. The
input should be two data points (containing 5 features each) and the output is the result of a
kernel between the two data points. RBF, Polynomial and Linear kernel calculations should be
supported.

• Nearest Neighbor Finder: The Nearest Neighbor Finder block calculates the Euclidean distance
between two data points (each containing 5 feature values). The y values of the three nearest
neighbors are sent to the Averager block.

• Dot Product: The Dot Product block produces a dot product with a five feature value x̂ and a
five value weight vector ŵ. This is the only operation within the Linear Regression base-learner.

• MAC operator: The MAC operator block multiplies and accumulates the K(x, ci) and α weights
for the kernel regression and SVR base-learners.

• Averager: The Averager block takes the average of either the y values from the Nearest Neighbor
Finder or the predictions from the trees in the RF learners.
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• Decision Tree Solver: The Decision Tree Solver block compares five feature values from the
input and compares it many times with different threshold values from memory. It outputs the leaf
nodes that the comparisons lead to such that the associated lifetime values can be retrieved from
memory. This is the main operation of the two RF learners.

Figure 2.1: Data flow diagram of the SML model. Each learner is colour-coded.

Common Denominators
Using figure 2.1, it becomes easier to identify common denominators in the hardware requirements of
the base- and meta-learners of the SML model. The Kernel Calculator, Dot Product, MAC operator
and Averager blocks were selected in this thesis to design an area and energy-optimized unit for. The
reason for this choice comes from a combination of their high arithmetic intensity and the similarities
among the workloads of these four blocks.

The Decision Tree Solver also has a relatively intensive workload, however, the comparison opera-
tions are quite different from all the other blocks and the more complex control makes integration with
other blocks more difficult. From subsection 2.1.4 it is also clear that there an many existing solutions
for RF models. These factors indicate little potential for innovation relevant to the SML model.

The Nearest Neighbor Finder does resemble the operations of the kernel calculator and the MAC
operator and could be integrated with them. However, optimal hardware design for this operation
would depend heavily on the types of searching algorithms and distance measures that are best for the
specific k-NN learner in the SML model, which is best left for separate research.
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The most mathematically intensive block in the inference system is the Kernel Calculator and it also
shares MAC, multiply, accumulate and division operations with the other three grey-shaded blocks.
Although there is considerable research into separate Kernel Calculation hardware, for an optimal area
implementation resources likely need to be shared with other blocks.

The Dot Product and MAC Operator blocks are mainly extremely similar to each other and to a
lesser extent to both the Kernel Calculator and Averager due to the high level of multiplication and
accumulation respectively. They are therefore central in any unified hardware design for the SML
model.

Lastly, the Averager shares division with the Kernel Calculator and accumulation with the MAC
operator. Crucially, the Averager also requires the implementation of a divider with a very light workload,
which indicates a high potential for area reduction if hardware resources can be shared with more
arithmetically intensive blocks.

Section 3.1 will go into more detail about the arithmetic unit workload that results from the combina-
tion of the Kernel Calculator, Dot Product, MAC operator and Averager blocks.

2.2. Related Works
There is no real state of the art hardware for stacked machine learning models. This forms the obvious
gap in research that this thesis addresses. For this reason, most of this section focuses on existing
solutions to some of the sub-problems of designing hardware for an SML model. The best solutions in
literature will also serve as inspiration during the design process covered in methodology chapter 3. To
provide some point of comparison for the SML arithmetic unit designed in this thesis, this section ends
by presenting a piece of literature about a general-purpose system that would be relatively well suited
for the SML workload.

Of course, this makes quantitative comparison with the result of this thesis difficult. However, more
general purpose plat Instead of existing hardware for SML models, this related works section only
discusses and compares existing solutions to some of the sub-problems of designing hardware for an
SML model. The best solutions in literature will also serve as inspiration during the design process
covered in methodology chapter 3.

Subsection 2.2.1 explains the state of Area Efficient Multipliers. Subsection 2.2.2 talks about mul-
tipliers that can operate at different levels of bit-precision. Lastly, subsection 2.2.3 covers the existing
ways to combine multiplication and division into one arithmetic unit.

2.2.1. Area Efficient Multipliers
The arithmetic unit design in this thesis is centered around multiplication. It is a combination of one
of the most common and resource-intensive operations that must be supported by the arithmetic unit.
With the embedded application’s stringent requirements on area, the state of the art on area efficient
multipliers is very important to discuss.

Sequential Multiplier
Multipliers come in two main categories that can each be optimized for Area efficiency in their own way.
In general, a reduction in area is traded off for increase in delay. Nothing represents this trade-off more
than sequential multipliers. Sequential multipliers are a class of multipliers that characterize themselves
with having registers that save intermediate results such that logic gates can be reused in the next clock
cycle when the multiplication continues. Every cycle only a part of the multiplier is multiplied with the
multiplicand, which requires fewer logic gates to perform. The results of these smaller multiplications
are accumulated until the full multiplication is completed. The radix of the multiplier indicates how many
of the multiplier bits are multiplied with the multiplicand per clock cycle. For instance, a radix-2 multiplier
only multiplies one bit per cycle, while a radix-16 multiplier multiplies 4 bits per cycle.

Sequential multipliers are generally smaller than parallel multipliers. Although at similar clock speeds
the delay is much larger, the shorter critical path allows for higher frequency operation. The main draw-
back of sequential multipliers is higher energy consumption, which is a result of the activity of the
registers that does not occur in parallel multipliers.

Sequential multipliers were more popular in the past when larger feature sizes made large amounts
of logic expensive and power dissipation caused less of a bottleneck. However, some relatively recent
papers propose energy improvements. Of particular interest is the radix-16 sequential multiplier by
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[41]. The preliminary calculation of 3X (three times the multiplicand) reduces CSA (carry save adder)
stages and as such reduces the the critical path length and energy consumption. [42] also proposed
in improvement on the power consumption of sequential multipliers by introducing a set of measures
aimed at reducing activity. This led to a 30% decrease in power consumption, however also a 34%
increase in area.

Parallel Multipliers
When the entire multiplication is performed in one clock cycle, we speak of parallel (or combinational)
multipliers. These multiplications happen in three steps: Partial Product Generation, Reduction Tree
and Final Addition. Multiplier designs often focus on optimizing one of these steps and can therefore
sometimes be combined. The simplest multiplier to implement is the array multiplier. In an NxN bit
multiplication the N2 partial products (PP) are generated with XOR gates and these PPs are then
combined by a set of half- and full-adders that form a perfect N by N array, which functions as both
the Reduction Tree and the Final adder [43].

Although it is very small, the array multiplier is not optimized for delay and also has a relatively
high energy consumption. More optimally designed reduction tree multipliers, like Wallace and Dadda
trees, significantly reduce delay, but trade this in for some extra area and much higher complexity.
Energy consumption can be both higher or lower depending on the specific design. A particularly small
reduction tree multiplier is the Reduced Area (RA) multiplier, which simultaneously maintains a similar
delay to Wallace trees [44].

Parallel multiplication can also be optimized by changing the generation of the partial products. The
most famous example of this is Booth Encoding which reduces the number of PPs by encoding them.
This significantly increases the complexity of the multiplier but can lead to better area, energy and delay
[43].

2.2.2. Precision-Scalable Multipliers
Quantization (reducing bit-precision) of MLmodel can often reduce area, energy and delay in exchange
for relatively little reduction in model performance [45]. This is no different in the SML model discussed
in this thesis. However, not all models can run on the same precision [7]. Hardware support for multiple
levels of bit-precision can therefore be a uniquely important consideration for the area and energy-
efficient hardware design for a Stacked ML model.

Conveniently, [46] benchmarked a large selection of MAC units for the specific application of Em-
bedded Neural Networks. However, for our purposes, it provides an invaluable comparison for the state
of the art. Figure 2.2 shows how Sub-Word Parallel (SWP) MACs perform energy and area efficiently
at both full precision and half precision. Meanwhile, Divide and Conquer (D&A) designs are slightly
better for half precision, especially area-wise, but at full precision, which is expected to be common the
the Stacked ML model, it performs significantly worse. In this thesis, SWP MACs, presented by [47]
and further developed by [48], will be regarded as the state of the art.

Figure 2.2: Performance comparison of a set of configurable precision MAC units [46, p.708]
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2.2.3. Combined Multiplier and Divider
Another relevant form of arithmetic unit for a stacked ML model is combined multiply and divide units.
These may offer an efficient way to provide the ability to perform division for the 3-NN and RF learners
despite the overall uncommon occurrence of the operation.

True Divider
There have been a few designs combining multiplication and division, often including square roots [49]–
[51]. The only recent one combines 32-bit multiplication and division through radix-216 multiplication
and radix-512 division. If this design was to be used for the SML model, it would have to be redesigned
to operate at a lower radix to perform 16-bit multiplications and division. All three of the designs are
also notably sequential designs, as this is the most practical way to perform true division. However, this
also limits multiplication to strictly sequential operation, which may not be optimal for the SML design.

Invariant Integer Division
Due to a unique trait of the SML model there is one more option that is arguably the most promising.
Invariant Integer Division (IID) is a method of division where only a multiplication, an addition and a
shift operation are used. It is only possible under the condition that the divisors of all the necessary
divisions are integers and known during the compilation of the program, i.e. invariant [52] [53]. For the
SML model this means that all dividers must be integers and when the model is loaded into memory,
the divisor must be known. As long as this is true, IID can provide division with very little hardware
overhead. This method of division appears to be the best suited for our area and energy-efficient
arithmetic unit, but due to the lack of literature discussing ASIC implementations of the method, there
is no indication of its performance.

RISC-V Core for IoT applications
Finding a hardware platform that can run the workload of the SML model is not a challenge. However,
the platform has to compare with the SMLmodel specific, low energy and area, arithmetic unit designed
in this thesis. Though there are many ML accelerators specifically designed for edge applications, they
are almost always model-specific. The most popular model, neural networks, does not often feature
division. If they do, their operations can not be freely programmed as required for the SML model.
Finally, there are the usual difficulties when comparing the performance of two hardware designs. They
have to match in aspects like technology node, supply voltage, bit width, in- or exclusion of memory
and/or control.

[54] presents a small and energy-efficient core with relatively general-purpose computing capabili-
ties. It supports division, multiplication, accumulation and MAC operations at various levels of bit pre-
cision. However, not all perfect for comparison with this thesis. Firstly, the RISC-V core was designed
in 65-nm CMOS technology, which is two generations older than the 28-nm used here. However, the
paper does provide estimated performance figures for a 28-nm process. The next issue is the missing
power and throughput data for a supply voltage of 0.9V . The power and throughput were presented
to be 1 − 68mW and 0.15 − 2.35GOPS at supply voltages of 0.46 − 1.1V . The best solution here is
to linearly extrapolate between the supply voltages to obtain the power and throughput at 0.9V . In
regards to the circuit area, 0.68mm2 was provided for the 65-nm technology node. Thankfully, with
the gate equivalent of 46.9kGE that is reported, it becomes possible to estimate the area at 28-nm
using a NAND gate area of 0.378µm2. Finally, there is the issue that the entire core is designed for a
maximum operand bit-width of 32 bits. This is double the size needed for the SML model. The only
way to compare to the 16-bit arithmetic unit in this thesis, is by a fairly blunt estimation of what would
happen to the area, power and throughput if this core would operate at 16-bit precision. The area and
power are assumed to reduce by 75% and the throughput is expected to grow by 100%. The area,
power and throughput figures of the RISC-V core at 0.9V supply and in 28-nm technology would then
be 4432µm2, 11.77mW and 3.325GOPS. In the discussion chapter, these values will be translated into
the area, energy and delay KPIs used in this thesis.



3
Methodology

This chapter lays out the design process of the arithmetic unit. It started with a basic template design,
shown in figure 3.1a, and ended with the final design, shown in figure 3.1b. This chapter starts with a
clear definition of the workload of the arithmetic unit to be designed, section 3.1. The rest of the chapter
contains a detailed description of the design process which is executed in three phases. Section 3.2
describes the architecture-level design phase in which three critical considerations about the arithmetic
unit were made. Next, section 3.3 introduces an experiment done to further validate the results of
the architecture-level design phase. Finally, section 3.4 covers a set of further improvements that
were considered to optimize the arithmetic unit design. These improvements were often inspired by
observations in earlier results.

(a) Arithmetic Unit Template (b) Final Arithmetic Unit design

Figure 3.1: The template design, with which the design process started, next to the final area and energy efficient design.

3.1. Workload
In the literature review section 2.1.5, SML Requirements, the Kernel Calculator, Dot Product, MAC
operator and Average blocks were introduced, and shown in figure 2.1. The area and energy efficient
arithmetic unit to be designed in this thesis must support the functions of all four of these blocks. To
perform useful design exploration, it is important to know in detail what the workload of all of those
blocks is.

This section splits the total workload into a Basic Workload and a Kernel Workload. The Basic
Workload originates from the Dot Product, MAC operator and Averager blocks. The Kernel Workload
originates from the Kernel Calculator. The metric for this split is based on how characteristic the opera-
tions are for SML models in general. The Basic Workload covers the more common operations in any
stacked machine learning model, including but not limited to the SML model central to this thesis. The

14
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composition of the Kernel workload depends greatly on the number and the types of kernels used in
the SML model. Besides this, the Basic Workload also serves an important role as a more manageably-
sized workload, while being similar in composition to the entire workload. This will be useful for setting
up the experiments performed in this thesis. The two workloads are laid out in table 3.1 and 3.2, and
explained in two subsections.

3.1.1. Basic Workload
Table 3.1 shows an overview of the workload. The Basic Workload consists mainly of MAC operations
from the Dot Product, and MAC Operator blocks, and accumulation from the Averager block.

Table 3.1: An overview of all the arithmetic operations required to perform the Basic Workload to the arithmetic unit to be
designed. The operations fall under four bold printed categories and each originate from one of three arithmetic blocks and one

of six ML models.

Arithmetic Blocks ML models MACs Multiplications Divisions Additions
Dot Product Ridge Regression 5 0 0 1

MAC operator
RBF Kernel Regression 90 0 0 1

Polynomial Kernel Regression 90 0 0 1
Support Vector Regression 5 0 0 1

Divider 3-Nearest Neighbors 0 0 1 3
Random Forest 0 0 2 200

Total 190 0 3 207

Dot Product Workload
The Dot Product block only supports the Ridge Regression base-learner. This is a linear regression
model with only a dot product between a 5 feature input vector x̂ and a 5-value weight vector ŵ. This
means a workload of 5 MAC operations.

MAC Operator Workload
The MAC Operator block supports the MAC operations of 3 base-learners between the Kernel K(x, ci)
values and the weights α. The RBF Kernel Regression model creates kernels between 90 input vectors
and 90 training data points. Each of these kernels is multiplied and accumulated with a weight α. This
is the same for the Polynomial kernel regressor, meaning together they require 180 MAC operations.
Finally, the SVR model only creates kernels for 5 support vectors, meaning 5 MAC operations instead
of 90. In total, the MAC Operator Workload is 185 MAC operations.

Averager Workload
The Averager block supports the averaging for the 3-NN and RF base-learners and the RFmeta-learner.
Averaging means the summation of a number of values, then division by that number of values. For the
3-NN model, this is 3 accumulations and one division by 3. The RF models have 100 predictions from
100 trees to take the average of. In total, the Average Workload is 203 accumulations and 3 divisions
(by 3, 100 and 100).

3.1.2. Kernel Workload
The overview of the Kernel Workload is shown in table 3.2. The Kernel Workload originates only from
the Kernel Calculator block. There are three different types of Kernel values K(x, ci) to be calculated:
RBF, Polynomial and Linear Kernels. In total, the Kernel Workload involves 1375 MAC operations, 450
Multiplications, 90 Divisions and 540 Additions. The makeup of this workload is covered per kernel
type in the next three paragraphs.

RBF Kernel Workload
The workload of the RBF kernel is based on equation 2.3 and the implementation of [27]. By keeping in
mind that in the SMLmodel there are 5 features per data point and 90 data points to calculate the kernel
for, it becomes possible to calculate the required arithmetic operations. ||x−xi||2

2σ2 requires 5 additions, 5
MAC operations and 1 division. The exponent of e is calculated with one addition, 4 multiplications and
5 MAC operations. Multiplying by 90 for the number of training data points, the RBF kernel workload
is: 450 Additions, 900 MAC operations, 360 multiplications and 90 divisions.
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Table 3.2: An overview of all the arithmetic operations required to perform the Kernel Workload to the arithmetic unit to be
designed. The operations fall under four bold printed categories and each originate from one of three arithmetic blocks and one

of six ML models.

Arithmetic Blocks ML models MACs Multiplications Divisions Additions

Kernel Calculator
RBF Kernel Regression 900 360 90 450

Polynomial Kernel Regression 450 90 0 90
Support Vector Regression 25 0 0 0

Total 1375 450 90 540

Polynomial Kernel Workload
The workload of the Polynomial kernel can easily be determined from kernel equation 2.4. The dot
product between x̂ and ĉi is performed in 5 MAC operations because both vectors contain 5 features.
The addition of b one addition and power of d means one multiplication, because b = 2 in the SML
model. Multiplying those operations by 90 for the number of training data points results in a Polynomial
kernel workload of 90 additions, 450 MAC operations and 90 multiplications.

Linear Kernel Workload
Lastly and most simply, the Linear kernel is expressed with equation 2.5 which performs the dot product
of two 5 feature vectors for each of the 5 support vectors. This mean 25 MAC operations.

3.2. Architecture-Level Design Phase
In the Architecture-level design phase three critical design aspects were considered. The focus is on
how multiplication and division is implemented and how the two operations should relate to each-other.

3.2.1. Arithmetic Unit Template and Design Aspects
During the architecture-level design, the focus is on the Basic Workload, because this is the most
characteristic workload for a stacked machine learning arithmetic unit and it simplifies the acquisition
and analysis of the results. The BasicWorkload also effectively requires support for the same arithmetic
operations as the Kernel workload. These are MAC operations, accumulation and division. This design
stage will make use of a template, shown in figure 3.1a, which will be used as a sort of base design
from which three critical design aspects will be explored. The Multiplier and Divider are presented
as black boxes, yet to be designed, and the structure of the accumulation is worked out in a simple
and somewhat area-efficient way such that can be used for both MAC operations and accumulations.
There will be little attention to this last part of the template during this design stage as the impact of the
accumulator design is minimal when compared to the multiplier and divider.

Three Critical Design Aspects
There are three critical design aspects that are expected to have a large impact on the area, energy
and delay performance and also the architectural structure of the arithmetic unit.

The first concerns the nature of the multiplier: Whether the multiplier is sequential to some level,
or fully parallel. This aspect is expected to have a large impact on the area, energy and delay of the
arithmetic unit because multiplication makes up a very significant part of both the Basic and the Kernel
workloads. Once a conclusion about this basic aspect of the multiplier is made, further exploration into
specific multiplier designs can be done.

The second design aspect is the choice between a separate divider, that is independent from the
multiplier, or some form of combined division, where division is integratedwith themultiplier. Specifically,
the separate divider will be True Division (TD), which can do division between any 16-bit number at
any time. The form of combined division that will be considered is Division by Invariant Integer (IID)
introduced in State of the Art subsection 2.2.3. IID is such a promising simplification of the division
problem, surely achieving a reduction of delay and likely also area, that it must be compared to an
area-efficient divider in an early stage of design.

The third design aspect is the option of precision configurability. It is important to explore to what
extent energy and/or delay can be reduced through this method and whether this can lead to a viable
trade-off compared to its drawback of increased area. To simplify the options, the focus of precision
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configurability will be on the multiplier. As mentioned, the multiplier has the largest impact on the energy
and delay, which configurability may be able to reduce.

To determine the best choice in each of these three critical design aspects, each will be evaluated
by their performance in the three Key Performance Indicators (KPI), area, energy and delay. The next
subsection will introduce three multiplier designs and two divider designs that will each represent one
of the options that arise from the three design aspects.

3.2.2. Design Aspect 1: Parallel or Sequential Multiplier
This subsection describes the two designs that represent the parallel and the sequential options for
multipliers. The parallel multiplier is an array multiplier, and the sequential multiplier is a radix-16
multiplier.

Sequential Radix-16 Multiplier

Figure 3.2: Radix-16 Sequential Multiplier schematic

The sequential multiplication option is based on
the Radix-16 sequential multiplier proposed by
[41]. The main change is the addition of preci-
sion configurability, which is the only considered
option in the domain of sequential multipliers in
this design phase. The reason for this is that no
change in the behavior of the multiplication is re-
quired to do lower precision multiplication. The
multiplier simply has to do fewer cycles to do
lower precision multiplication. The only addition
in terms of area is a mux that can decide how
much the output needs to be shifted to display
the correct multiplication result.

The entire multiplier is shown in figure 3.2.
The way this particular 16-bit sequential radix-16
multiplier works is as follows. The multiplication
is performed over the course of 4 cycles. Every
cycle four bits of the multiplier are multiplied with
the multiplicand. This 4- by 16-bit multiplication is
achieved through the addition of the result of the
previous cycle with two new values. These two
values are chosen based on the 4 multiplier bits
that are used in the current cycle. This particular
multiplier creates 4 options for each of the new
values to be added in this cycle by performing ad-
dition between the multiplicand and doubled ver-
sion of itself (The RCA in the Precomputing part
of figure 3.2). After the 4 multiplication cycles are
complete the remaining values in the sum and
carry registers are added together to become the
upper half of the multiplication result.

Precision configurability is achieved by de-
creasing the number of multiplication cycles and
shifting the result right according to the preci-
sion. Due to the multiplier being radix-16, the
supported levels of precision are 16-, 8- and 4-bit,
taking 4, 2 and 1 cycles to complete respectively.

Array Multiplier
The Array Multiplier represents the design option
of a non-configurable fully parallel multiplier and
was chosen for its low complexity and area. It



3.2. Architecture-Level Design Phase 18

Figure 3.3: 4-bit Array Multiplier

will also be most comparable to the chosen con-
figurable parallel multiplier.

Figure 3.3 shows an Array Multiplier for the multiplication of two 4-bit numbers. Scaled up to 16-bit
multiplication, the Array Multiplier requires 256 AND gates for PP generation and 15 Half Adders (HA)
and 225 Full Adders (FA) for reduction and final addition.

3.2.3. Design Aspect 2: Separate or Combined Division
This subsection describes the proposed designs both division implemented separately from the multi-
plier and combined with the multiplier. The separate design is a low-area non-restoring radix-2 divider.
The combined design is Invariant Integer Division, making use of the existing multiplier.

Sequential radix-2 divider
The True Divider option is represented by a radix-2 non-restoring sequential divider. The schematic
of this divider is shown in figure 3.4. This divider was chosen because it is close to the smallest way
a dedicated divider can be implemented in terms of area. As the number of divisions in the workload
is low, a divider with less delay or higher energy efficiency will have little impact on the KPIs of the
arithmetic unit. A non-restoring radix-2 divider is also quite simple to understand and implement.

The divider has two non-control-related inputs: The divider and the dividend. The goal of the division
is to obtain the quotient. In radix-2 division, this is achieved over the course of 16 clock cycles, where in
every cycle one bit of the quotient is obtained. At the start of division the dividend is put into the Quotient
Register and the divider into the Divider Register. Each cycle of the division goes as follows. First, the
most significant bit of the Quotient Register is moved from the Quotient Register to the Remainder
Register. Then, the sign of the Remainder Register is checked. If it is positive, the divisor must be
subtracted from the remainder, thus the value in the Divisor Register is inverted and added to the
values in the Remainder Register, together with a least significant bit ’1’ to correctly change the sign
through 2’s compliment notation. These two 16-bit values and a single ’1’ bit are added together within
the same 16-bit RCA, visible in green in figure 3.4. If instead the sign bit indicates that the Remainder
Register contains a negative value, the positive version of the divisor is added to the remainder.

Every cycle, one correct quotient digit is obtained from the new remainder and is saved in the least
significant bit location of the Quotient Register. After 16 clock cycles all bits of the dividend have been
shifted out of the Quotient Register and all 16 bits of the correct quotient have been saved. At that point
the Quotient Register contains the results of the division and presents it at the single 16-bit output of
the division module.

3.2.4. Invariant Integer Division
Invariant Integer Division is achieved using equation 3.1 to 3.4 [55]. Here, x is the bit-precision of the
division, D is the divider and N is the dividend. If D is an invariant integer, division using these four
equations is possible. What makes IID valuable for the SML arithmetic unit, is that equations 3.1 and
3.2 can be performed by the processor used for training the SML model. As soon as the number of
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Figure 3.4: Radix-2 Non-restoring Sequential Divider Schematic

trees in the RF models and the k in the k-NN model are known D and x of equations 3.1 and 3.2 are
also known.

k = x+ ⌈log2D⌉ (3.1)

a =

⌈
2k

D

⌉
− 2x (3.2)

b =

⌊
Na

2x

⌋
(3.3)

⌊
N

D

⌋
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2 ⌋+ b

2k−x−1

⌋
(3.4)

On the SML inference hardware, which includes the arithmetic unit, the following two things happen.
One, k and a are stored in memory and provided to the arithmetic unit. Two, during division, the arith-
metic unit performs equation 3.3 and 3.4. This only requires the arithmetic unit to support multiplication,
addition and a variable shifting of the output. This is visualized in figure 3.5.

For the implementation of IID into the SML hardware it was possible to simplify the equation de-
scribing the operation. This simplification is shown on the right side of equation 3.5. ⌊Na

2 ⌋ is calculated
by the multiplier followed by a bit shift to the right. Here, a comes from memory and N from the result
register (N is the result from the previous accumulation operations performed for averaging). The addi-
tion of N2x−1 is done by the accumulator, after the obvious x− 1 bit shift to the right. Finally, the newly
implemented Variable Shifter performs the final shifting by k. Where k is also provided by the memory.⌊
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3.2.5. Design Aspect 3: Precision Configurability
This subsection describes in detail the design of the Sub-word Parallel Array Multiplier, which is the
proposed application of hardware configurability to support different levels of bit precision inside the
parallel multiplier option.
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Figure 3.5: Invariant Integer Division

Sub-word Parallel Array Multiplier
For the precision configurable parallel multiplier a Sub-Word Parallel Array Multiplier was designed
based on the work of [48]. As mentioned in State of the Art section 2.2.2, the precision-scalable mul-
tiplier performs best at full precision compared to the other options and is easily compared to the non-
precision-scalable array multiplier.

For the architecture-level design phase, the Sub-Word Parallel Array Multiplier is implemented en-
tirely by changing the generation of the Partial Products and performing a shifting operation after the
multiplication. Besides the usual full 16-bit precision, 8-bit and 4-bit precision are also supported in
the configurable design. During 8-bit precision multiplication, the four operands of the two 8-bit multi-
plications are expected to be presented to the arithmetic unit’s two input operands in accordance with
equations 3.6. For the eight operands of 4-bit precision multiplication, this should be done according
to equations 3.7. In these equations, a is to be multiplied with b, c with d, e with f and g with h.

operand1 = {a7−0, c7−0}, operand2 = {d7−0, b7−0} (3.6)

operand1 = {a3−0, c3−0, e3−0, g3−0}, operand2 = {h3−0, f3−0, d3−0, b3−0} (3.7)

Inside the confarray multiplier module, there are muxes that can force to zero the Partial Product
bits of pairs of operands that are not to be multiplied. For example, the Partial Product between bit
b1 and bit c0 should be forced to ’0’ because b and c are not to be multiplied by each other. This is
visualized with table 3.3 for a smaller multiplier that supports 8, 4 and 2-bit multiplication.

Table 3.3: A visualization of how undesired Partial Products are forced to zero during reduced precision multiplication

(a) 4-bit precision

a3 a2 a1 a0 c3 c2 c1 c0
b0 PP70 PP60 PP50 PP40 0 0 0 0
b1 PP71 PP61 PP51 PP41 0 0 0 0
b2 PP72 PP62 PP52 PP42 0 0 0 0
b3 PP73 PP63 PP53 PP43 0 0 0 0
d0 0 0 0 0 PP34 PP24 PP14 PP04

d1 0 0 0 0 PP35 PP25 PP15 PP05

d2 0 0 0 0 PP36 PP26 PP16 PP06

d3 0 0 0 0 PP37 PP27 PP17 PP07

(b) 2-bit precision

a1 a0 c1 c0 e1 e0 g1 g0
b0 PP70 PP60 0 0 0 0 0 0
b1 PP71 PP61 0 0 0 0 0 0
d0 0 0 PP52 PP42 0 0 0 0
d1 0 0 PP53 PP43 0 0 0 0
f0 0 0 0 0 PP34 PP24 0 0
f1 0 0 0 0 PP35 PP25 0 0
h0 0 0 0 0 0 0 PP16 PP06

h1 0 0 0 0 0 0 PP17 PP07

Finally, the result of the multiplication has to be shifted to the right depending on the precision of
the multiplication that is occurring. During full precision, there is no shift. During half/8-bit precision,
the result is shifted right by 8 bits. Finally, during quarter/4-bit precision, the result is shifted right by 12
bits.
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Table 3.4: Percentage by which each type of operations occurs within the total number of operations of the Basic, Kernel and
combined workloads.

Workload Multiplication + MAC Division Accumulation + MAC Total number of operations
Basic 0% + 47.5% = 47.5% 0.75% 51.75% + 47.5% = 99.25% 100%
Kernel 21.25% + 64.92% = 86.17% 4.25% 9.58% + 64.92% = 74.50% 100%

Basic + Kernel 17.87% + 62.15% = 80.02% 3.69% 16.28% + 62.15% = 78.44% 100%

3.3. Workload Variation Experiment
As discussed in section 3.1, the arithmetic unit’s workload is split into a Basic and a Kernel Workload.
Only the Basic Workload is used during the architecture-level design phase to provide a less complex
workload that contains the operations most typical for a Stacked Machine learning model. However,
without considering the kernel workload it is not possible to claim that the arithmetic unit is well suited
to perform the kernel operations of the SML model. As such, this section introduces the experiment
used to verify whether the optimal architecture-level design is also best suited for the Kernel Workload.

This experiment does not involve setting up a very complex program that can measure the perfor-
mance of each architecture-level design on exactly the workload expected from the particular kernels
in the SML model. Instead, it relies on the fact that the most significant difference between the Basic
and Kernel Workloads is a different number of ”multiplication involving operations”, referring to multipli-
cations as well as MAC operations. Table 3.4 shows how much percent of each workload each type
of operation occurs. Here, MAC operations are counted for both multiplications and accumulations,
because during a MAC operation, both a multiplication and an accumulation occur.

The most important numbers to compare in table 3.4 are the percentages of multiplication, division
and accumulation in the Basic + Kernel Workload versus just the Basic Workload. The percentage of
multiplications increases by 32.5%. This is the most important difference between the Basic workload
and the total SML workload. Firstly, because it is the largest absolute increase. But also because
multiplication has a particularly large impact on KPIs.

The 20.8% decrease in accumulations is not nearly as important, as additions are far less expensive
in terms of the area, energy and delay to perform, they have much less impact on the performance of
the arithmetic unit as a whole. Although the number of divisions does increase with the biggest factor
factor, the divisions still make up such a small part of the workload that their impact on the KPIs of the
arithmetic unit is minimal.

For this reason, the experiment proposed in this section will involve only testing the changes in the
KPIs of the 6 architecture-level designs under different percentages of multiplication in the workload.
Specifically, this will be done by altering the number of accumulation operations in the Basic Workload.
Increasing the number of accumulations in the workload decreases the multiplication percentage, and
vice versa. By obtaining KPI figures for the architecture-level design at a wide range of multiplication
percentages, it will become possible to conclude which design is best for which workload and whether
or not that is the same design for both the Basic and the combined Workloads.

3.4. Further Design Improvement Phase
This section aims to optimize the best-performing architecture-level design from the previous section by
proposing changes that either improve performance or add necessary functionality. The four improve-
ments that will be discussed in the next four subsections are Signed Multiplier, Configurable Signed
Multiplier, Dedicated Accumulator and Reduced Area Multiplier.

3.4.1. Signed Multiplication
Signed multiplication is a trait that was always going to be necessary for the real workload of the
SML model. However, designing signed versions of the three different multipliers would require an
investment of time and effort that was not expected to return interesting results. The impact of signed
multiplication is expected to be similar for all multiplier designs.

Signed multiplication was implemented in the array multiplier using the Baugh-Wooley algorithm
[56]. This algorithm achieves signed multiplication by inverting any partial product that is produced
from the sign bit of one of the two input operands. Besides this, a single ’1’ bit is added to the result at
significance n/2 where n is the number of bits in the input operands. Finally, the sign bit of the result
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is also inverted. These alterations are visualized for a 4-bit multiplier in figure 3.6. Here, the partial
products that are inverted are printed in red, and the ’1’ bit is fed to the carry input of the final RCA.

Figure 3.6: Invariant Integer Division

3.4.2. Configurable Signed Multiplier
The results of the implementation of signed multiplication (results section 4.3.2) show that the energy
consumption of signed multiplication is much higher than that of unsigned multiplication. This is cause
to consider reconfigurability in the signed multiplier.

Although little energy reduction was achieved by the Sub-Word Parallel Array Multiplier in the
architecture-level design phase, this can be explained by the fact that unsigned low-precision multi-
plications do not cause switching activity on the left side of the array multiplier. For example, when
multiplying two 8-bit numbers in a 16-bit multiplier, PP12,8 from bits a12 and b8 will remain ’0’ and
cause not switching activity. Unsigned low-precision multiplications happen relatively efficiently on an
unsigned non-configurable array multiplier.

In a signed array multiplier, negative values insert a large number of ’1’ bits into the higher sig-
nificance left side of the array. Returning to the same example, PP12,8 can still be ’1’ if a and b are
negative values. Reconfigurability may be able to solve this. However, unlike the Sub-Word Parallel
Array Multiplier, it is not possible to simply block inputs to large sections of the array. The inversion of
partial products of the Baugh-Wooley algorithm, earlier visualized in figure 3.6, needs to be moved to
different locations in the array as well [56][57].

The best-performing way to achieve the configurable signed multiplier found in this design phase
was to only support 16- and 8-bit precision. The reconfiguration between the two levels of precision
happens in two stages. Firstly, if the precision is 8-bit, the upper half of the input operands are forced
to 0 to prevent switching activity in the upper end of the multiplier. Secondly, the partial products that
must be inverted to achieve signed multiplication at the two levels of precision have an extra gate that
switches between inverting or not inverting its input depending on the precision. These two steps are
shown for an 8-bit multiplier in figure 3.5. There were also designs tested that supported 4-bit precision
and designs where only the PPs were gated instead of the inputs. However, they performed slightly
worse. Their performance will also be shown in the Results chapter.

3.4.3. Dedicated Accumulator
The dedicated accumulator is the simplest of the further design improvement attempts. In sections 3.1
and 3.3 about the workload of the arithmetic unit it became clear that a significant part of the operations
in the workload only involve accumulation. These accumulations are performed by taking the average
of a set of values that originate from the 3-NN and RF models. So far, these 16-bit values are being
accumulated in a large post-multiplication accumulator and occupying valuable clock cycles of the
arithmetic unit. This is inefficient. As such, in this subsection, a dedicated accumulator is proposed.

The dedicated accumulator is added to the arithmetic unit with the idea that it allows the arithmetic
unit to spend fewer cycles on accumulation. Therefore, a dedicated accumulator also needs dedicated
connections to memory. This means an extra arithmetic unit input is added, called ”operand3”, which is
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Table 3.5: A visualization of how in 4-bit versus 8-bit precision both the inputs and the Partial Product are changed. In 4-bit
precision, the more significant half of the input operands are forces to ’0’ and the inverted PPs are moved.

(a) 8-bit precision

a7 a6 a5 a4 a3 a2 a1 a0
b0 PP70 PP60 PP50 PP40 PP30 PP20 PP10 PP00

b1 PP71 PP61 PP51 PP41 PP31 PP21 PP11 PP01

b2 PP72 PP62 PP52 PP42 PP32 PP22 PP12 PP02

b3 PP73 PP63 PP53 PP43 PP33 PP23 PP13 PP03

b4 PP74 PP64 PP54 PP44 PP34 PP24 PP14 PP04

b5 PP75 PP65 PP55 PP45 PP35 PP25 PP15 PP05

b6 PP76 PP66 PP56 PP46 PP36 PP26 PP16 PP06

b7 PP77 PP67 PP57 PP47 PP37 PP27 PP17 PP07

(b) 42-bit precision

0 0 0 0 a3 a2 a1 a0
b0 0 0 0 0 PP30 PP20 PP10 PP00

b1 0 0 0 0 PP31 PP21 PP11 PP01

b2 0 0 0 0 PP32 PP22 PP12 PP02

b3 0 0 0 0 PP33 PP23 PP13 PP03

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

fed directly to the dedicated accumulator. The accumulator does not have to be as large as the existing
one. 16 bits is all that is needed. If the result of the accumulator exceeds 16 bits, it cannot enter the
multiplier for the IID operation.

This does introduce a constraint to the precision of the 3-NN and RF models. However, this is
inherent to the size of the multiplier and if the 3-NN or the RF model cannot adhere to it, it would not
be impossible to increase the size of the multiplier. On top of this, there are arguments for why the two
models will not need higher precision. The constraint on the 3-NN model is relatively minor. The size
of the outputs of the Nearest Neighbor finder needs to be decreased from 16 to 14 bits. For the RF
model, experiments have shown that it can like perform quite well at 4-bit precision [7]. Accumulating
100 4-bit values stays nicely below a 16-bit result. That is why the current setup with a 16-bit dedicated
accumulator and a 16-bit multiplier is expected to be sufficient for the SML model.

3.4.4. Reduced Area Multiplier
The final design improvement attempt revisits the multiplier. Although the current array multiplier is
small, the delay and energy consumption are sub-optimal. The most worthwhile multiplier to consider
in this short optimization section is the RA multiplier previously mentioned in State of the Art section
2.2.1. Introduced by [44], the RA multiplier follows a simple concept. The RA multiplier design is only a
description of its reduction tree. At every level of the reduction tree, any set of 3 Partial Product bits is
added together using a Full Adder (FA). This reduces the number of PPs quickly and will eventually lead
to some of the least significant bits of the result being obtained before the final RCA stage. However,
in the RA multiplier, extra Half Adders are employed on the least significant bit that still contains PPs
to increase the speed at which result bits are obtained. This reduces the width of the final RCA and
therefore saves area.

As a result of this reduction tree, the RA multiplier achieves less delay and energy for approximately
the same area as the array multiplier. Working out the number of Full- and Half adders leads to an area
of 222 FAs and 16 HAs. This is slightly less than the 225 FAs and 15 HAs of the array multiplier. The
critical path of the RA multiplier is significantly less than the array multiplier at only 8 FA delays and 22
HA delays, while the array multiplier takes 16 FA delays and 14 HA delays.



4
Results

This chapter shows and analyses the results of the architecture-level design phase, the workload ex-
periment and the further design improvement phase. These three phases are covered in separate
sections. Each section starts with the experimental setup, then discusses the results, and finishes by
presenting the conclusion of the design phases.

4.1. Architecture-Level Design
4.1.1. Experimental Setup
All the experimental results in this thesis were obtained through simulation and synthesis using Ca-
dence Xcelium and Genus. First, the hardware designs were worked out in Verilog and tested for their
functionality using a testing testbench. Then a Basic Workload testbench was written for each design.
Lastly, a bash script was written that aided in running Xcelium and Genus on a range of frequencies
for each design.

To visualize and analyze the results, a different bash script was used to extract the slack, area and
power numbers from the results. These frequency, slack, area and power numbers were combined
into Figure of Merit values using excel and plotted using Matlab. Details about specific steps in this
process now follow.

Workload Testbench
TheWorkload testbenches are different for each design taking into account the different ways that each
design needs to be controlled and have data supplied to it. However, each testbench has the same
goal: Realistically representing the execution of the Basic Workload on each of the designs. However,
the testbenches are still synthetic, meaning it does not perform the arithmetic operations with the exact
values and in the exact order that the SML model would. The reason for representing the workload in
this manner is the fact that the internal values of the base- and meta-learners were not readily available
with the sklearn library used to design the models. The order in which each operation of the workload
should be executed is also unknown, as the details of this would depend on the speed and behavior
of surrounding hardware like the Decision Tree Solver and the memories, which have not yet been
designed.

Each testbench performs the 190 MAC operations, the 207 additions and the 3 divisions of the Basic
Workload. First, the MAC operations are performed in 3 loops that each do 5 MAC operations, then
reset the arithmetic unit. The first loop runs 15 times at a precision of 16 bits. The second loop also
runs 15 times but at a precision of 8 bits. The third loop only runs 8 times and at a precision of 4 bits.
This precision distribution was chosen based on the reduced precision performance of the SML model
[7].

Then the accumulations and divisions are combined such that they perform the three averaging
operations that they are supposed to. First 100 accumulations are performed with random values that
are small enough to not cause an overflow, then a division by 100. This is repeated one more time for
100 values and then for 3 values.

24
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Results generation
Three bash scripts were used in the generation of the results. The first, generate_vcd, is supplied a
design name, a range of frequencies and a precision distribution. The script then runs Xcelium for that
design at the desired frequencies and precision distribution (precision distribution refers to the number
of MAC loop cycles at 16-,8-, and 4-bit precision). The vcd activity files are saved in a folder for the
next script to use.

The next script, frequency_sweep, must be supplied with a design name and a range of frequencies.
It runs genus for that design at each of those frequencies and uses the vcd activity files previously
obtained.

Finally, the last script, frequencies_sweep_data, collects the slack, area and power data from all of
the result files and saves it in a text file that can be exported to excel.

Figure of Merit
To aid in comparing the results of the 7 different architecture-level designs and the various further design
improvement attempts, a Figure of Merit was defined. This FoM takes into account the three important
KPIs of area, energy and delay and their relative importance. Equation 4.1 shows the formula by which
the FoM is calculated for any design at any frequency.

FoM =
108

Area3Energy2Delay1
for Slack ≥ 0 (4.1)

In this FoM equation, area, energy and delay are located inside the denominator because larger
values in each of these three KPIs means that the design performs worse. Area is raised to a factor
of 3 to represent its status as the most important KPI. Similarly, Energy has less impact with a factor
of 2 and delay is the least important with a factor of 1. In the numerator of the fraction 108 is added.
This is done to shift the results of the FoM equation back to the range of integers to aid in the reading
of plots. Finally, the FoM equation is only used if the slack of the design is positive. Slack refers to
the time difference between the longest signal path and the clock period. If the slack of a design is
negative, it means that the synthesis tool could not find an architecture that could adhere to the clock
frequency. Therefore, if the slack is negative, the FoM is set to 0 because the design is not functional
at that frequency.

4.1.2. Results
Figure 4.1 and 4.2 show the performance of the designs with parallel and sequential multipliers respec-
tively. The quality of each design is expressed on the y-axis in the Figure of Merit defined in equation
4.1. The synthesis results were collected for clock frequencies from 20 to 600 MHz in steps of 20 MHz.
The designs are labeled in the legend with a naming convention that first states the multiplier of the
design, then the divider, separated by an & symbol.
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Figure 4.1: Performance comparison of the architecture-level designs containing parallel multipliers at different clock
frequencies. Performance is expressed with a Figure of Merit that is based on area, energy and delay measurements.
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Figure 4.2: Performance comparison of the architecture-level designs containing sequential multipliers at different clock
frequencies. Performance is expressed with a Figure of Merit that is based on area, energy and delay measurements.

Initial Observations
The first thing to spot about these results is the difference in the scale of the axes between figures 4.1
and 4.2. The x-axis of the sequential design results goes up to 2 GHz compared to 600 MHz on the
parallel designs. This is of course a choice made in the collection of the results, but it is caused by the
entirely expected observation that the sequential designs perform best, and maintain positive slack, at
far higher frequencies.

The y-axis reveals a more interesting observation. The FoM of all the sequential designs is much
lower than almost all the parallel designs. This is entirely a result of the energy consumption of the
sequential designs being much higher. It was expected that the energy consumption of the sequential
designs would be higher due to the extra activity of storing intermediate results. However, the higher
energy consumption has more impact than expected. The lowest energy consumption that any sequen-
tial design can achieve is 1.64 to 2 times higher than the lowest energy consumptions of the parallel
designs. Comparing the lowest energy consumptions makes sense as the optimal operation frequency
of each design (highest FoM) is mostly determined by its energy consumption.
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(a) Architecture-level designs with parallel multipliers
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(b) Architecture-level designs with sequential multipliers

Figure 4.3: The energy consumption of each architecture-level design to run the Basic Workload

Continuing to the lines inside plots 4.1 and 4.2, all 7 designs display a common pattern. The FoM
is lowest at the highest and the lowest frequencies and peaks somewhere in the middle frequencies.
This hill shape is a very normal phenomenon. When moving towards the lowest frequencies, the area
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decreases but approaches a minimal non-zero area. Meanwhile, the delay increases continuously
towards infinity and the energy increases too, due to the increasing run time and the static power of
the hardware which does not depend on frequency.

On the high frequency side, the hardware resources needed to achieve shorter clock periods make
the area grow exponentially. The delay decreases only linearly and the energy consumption follows
the growth of the area as more and larger transistors increase the static and dynamic power. When
the clock frequency becomes too high the synthesis tool can no longer find a way to shorten the critical
delay path to adhere to the short clock periods and the resulting negative slack means the hardware
will not function. This negative slack sets the FoM to zero, which is clearly visible on the right side of
figure 4.2.

Although the sequential designs display a very natural hill shape, leading to a couple of good-FoM
frequencies for each design, the parallel designs instead show a large spike in FoM at very specific
frequencies. When looking at the area plot of the parallel designs in figure 4.4, it becomes possible to
formulate some explanation for these very specific optimal frequencies. What seems to happen is that
there is a certain minimal area implementation of the parallel designs which causes the area to plateau
at lower frequencies. With the area fixed, and presumably, also the exact synthesized design fixed, the
energy consumption and delay become solely dependent on the frequency. This leads to the smooth
exponential increase of FoM with frequency that occurs on the left side of the FoM peaks of the parallel
designs.
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(a) Architecture-level designs with parallel multipliers
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(b) Architecture-level designs with sequential multipliers

Figure 4.4: The Area of each architecture-level design

On the right side of the peaks, the sharp drops in the figure of merit are the result of the sudden
jumps in area that occur between 200 and 300 MHz. Clearly, the genus synthesizer determines that a
lot of hardware has to be added to adhere to the shorter clock periods. However, it is not clear why so
much of this additional hardware has to be added between these specific frequencies. For example,
why does Array&IID not need any additional hardware between 20 and 260MHz, a very large amount
between 260 and 300MHz, and then less again between 300 and 400MHz? The best explanation is
that a lot of the signal paths in the low-frequency designs had the same propagation delay. Once clock
periods finally became shorter than this collection of critical paths, a lot of restructuring and increasing
of transistor sizes was necessary.

Important Design Observations
Looking at the differences between individual lines in the FoM figures (4.1 and 4.2), it becomes possible
to make the observations that are most important for this design stage. Firstly, designs with Invariant
Integer Division (IID) universally reach higher FoM than designs with True Division (radix2). This is the
result of lower energy and area at lower frequencies. In the parallel designs, the longer critical path of
the IID designs led to an earlier jump in area, after which the IID designs stop out-competing the TD
designs. However, at their FoM peak, the IID designs clearly win in terms of area and energy, and have
only a slightly longer delay.
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The second observation is that the type of multiplier has the largest impact on performance and the
non-configurable parallel multiplier (array) delivers the best KPIs. As mentioned before, the sequential
multiplier leads to such a significant increase in energy consumption that it cannot compete with the
parallel multipliers. While comparing the configurable and non-configurable multipliers, it is interesting
to observe that the two multipliers have almost the same FoM and the same energy consumption. The
added area on the configurable array trades off perfectly with decreased delay within the FoM formula.
However, the longer critical path on the configurable multiplier designs means that more area is needed
to achieve higher frequencies when compared to non-configurable multiplier designs.

Different KPI Weights
Before concluding this architecture-level results section, it is interesting to look at the impact of the FoM
formula. Doing this could be useful for future reference when changes in the context of the application
domain of this SML model’s arithmetic unit lead to different levels of importance of the 3 KPIs. The
FoM equation 4.1 gives the highest importance to the area by raising the variable to the power of 3.
This means that area is given a weight of 3. As such, energy is given a weight of 2 and delay a weight
of 1. Figure 4.5 shows the FoM plots at different distributions of the weights given to the three KPIs.
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(a) Parallel designs with area, energy and delay weights: 1, 2, 3
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(b) Sequential designs with area, energy and delay weights: 1, 2, 3
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(c) Parallel designs with area, energy and delay weights: 2, 3, 1
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(d) Sequential designs with area, energy and delay weights: 2, 3, 1

Figure 4.5: The FoM of the architecture-level designs with different weights assigned to the three KPIs. The area, energy and
delay weight are 3,2 and 1 respectively in equation 4.1

The first new distribution of weights is area, energy, delay: 1, 2, 3. One could imagine that a distri-
bution like this would apply to something like a supercomputer, not constrained by area, and focused
on the highest performance. In this context, there are two interesting observations. Firstly, Sequential
multiplier designs, in particular the radix-16 multiplier, start greatly out-competing the parallel designs.
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Secondly, True Division becomes more valuable than IID. Both of these phenomena have the same
cause. Both sequential multiplication and True Division have shorter critical paths, resulting in less
heavy area and energy trade-offs at the higher clock frequencies that help drop the delay as low as
possible.

The second new distribution of weights is area, energy, delay: 2, 3, 1. This represents energy critical
edge applications; scenarios like Internet of Things applications or medical devices like pacemakers.
Here, the similarity to this thesis’ automotive lifetime prediction application becomes apparent in that no
different observations can be made. Sequential multipliers still perform worse than parallel multipliers,
albeit even worse, and array multipliers and IID outperform their alternatives.

4.1.3. Architecture-Level Conclusions
Having analyzed the results of the architecture-level design phase, a couple of conclusions had a
steering effect on the rest of the design process. Firstly, sequential multipliers cannot compete with
parallel multipliers in an area and energy-critical application and therefore, the arithmetic unit should
contain a parallel multiplier. Secondly, Invariant Integer Division is a more energy and area efficient
way to perform division and therefore is the superior choice for an SML model’s arithmetic unit. Thirdly,
precision configurability does not provide energy improvement and does not decrease delay if the clock
frequency is a variable that can be chosen freely. Therefore, it is not a viable option for the arithmetic
unit. There are two limited scenarios where precision configurability could provide better performance.
This is if the precision distribution of the workload is greatly skewed to lower precisions. Or if the
clock frequency is fixed at a relatively low value and the importance of area is decrease relative to the
importance of delay.

4.2. Workload Variation Experiment
4.2.1. Experimental Setup
For the workload variation experiment, the same RTL design files are used as in the architecture-level
design phase. The collection of the results is performed differently. A new variable inside the basic
workload testbench allows for the variation of the number of additions performed. By increasing the
number of additions, the percentage of multiplication involving operations (MAC operations and multipli-
cation) decreases. A new bash script runs the Xcelium simulation and the genus synthesis for various
levels of multiplication percentage in the workload. The script requires as input the design name, a
clock frequency, and a range of multiplication percentages. Inside the loop of the script, the multiplica-
tion percentages are translated to numbers of additions, which are then changed within the workload
testbench. The results in the following subsection were obtained by setting the clock frequency of each
design to exactly the frequency at which the FoMwas highest in the previous experiment, and the range
of multiplication percentages was set to be from 5% to 95% in steps of 5%.

4.2.2. Results
Figure 4.6 shows the results of the workload variation experiment. The x-axis is labeled to be the
percentage of multiplication involving operations within the workload. The y-axis shows the Figure of
Merit. There are 7 lines, one for each architecture-level design, synthesized at each of their optimal
clock frequencies. From this figure already some observations can be made about the performance of
each design depending on the percentage of multiplication of the workload. However, by making use
of a simple transformation of the data, the behaviors become more apparent. This was done to create
the next figure. Figure 4.7 shows a normalized version of the same data. The y-axis shows by how
much % each design deviates from the mean FoM at that multiplication fraction. This makes it much
easier to compare the designs with each other, especially at lower multiplication fractions, where the
absolute FoM nears 0.

A couple of observations can be made from figure 4.7 about the FoM behavior of the architecture-
level designs when the fraction of multiplications in the workload changes. The most notable feature is
that all parallel multiplier designs show a rising trend across the entire range, while all sequential mul-
tiplier designs have a falling trend. This is entirely expected, as the sequential designs have less hard-
ware dedicated to multiplications. Meanwhile, accumulation, the other large fraction of the workload,
has one RCA and one register dedicated to it across all 7 designs. Therefore, at very low multiplica-
tion fractions, the sequential design benefits from having less hardware dedicated to an operation that
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Figure 4.6: The Figure of Merit of each architecture-level design at different fractions of the workload involving multiplication
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Figure 4.7: Each architecture-level design at different fractions of the workload involving multiplication. The y-axis shows the
percentage by which each design’s FoM is better or worse than the average of all 7 designs at that particular multiplication

fraction

barely occurs. Between 5 and 50% multiplications, this trend between parallel and sequential designs
is the cause of the largest relative shift that occurs between designs.

On the right half of the plot, a different trend appears. The sequential and array multiplier designs
remain mostly at the same FoM percentage, while the configurable precision designs rise. The config-
urable precision and IID design even overtakes the non-configurable and radix-2 design. This shows
that the viability of precision configurable designs also increases when the fraction of multiplications in
de workload increases (besides the reasons mentioned in conclusion subsection 4.1.3). This makes
sense, yet again this has to do with the amount of hardware resources dedicated to multiplication. The
Sub-Word Parallel array multiplier adds area in the form of muxes that control what signals enter the ar-
ray. This additional area provides lower delay, especially when a large portion of the workload contains
multiplications.

Finally, and most relevant for the conclusion, the array multiplier and IID design obtains the highest
FoM among the designs anywhere above 20% multiplication in the workload. In fact, between 47.5%
multiplications, the Basic Workload, and 80.02% multiplications, the total Workload, the Array&IID de-
sign has a particularly large margin over the other designs.
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4.2.3. Workload Variation Conclusions
The goal of the workload variation experiment was to verify whether the non-precision-configurable
parallel multiplier with IID is the best architecture-level design for the Basic workload as well as the
Kernel workload. The results clearly show that this is indeed the case. The non-configurable parallel
multiplier and IID design even obtains its largest margin over the other designs within the relevant
range of multiplication fractions. Therefore, it can be concluded that a design with a non-precision-
configurable parallel multiplier and IID is the best architecture-level design for an area and energy-
efficient arithmetic unit for an SML model.

4.3. Futher Design Improvement Results
4.3.1. Setup
For this design phase the setup is the same as for the architecture-level design phase. The designs
are worked out in Verilog and tested in Cadence Xcelium, then their activity when performing the Basic
Workload is extracted from Xcelium and used in Genus to obtain the area, energy, delay and slack data.
This is once again done over a range of clock frequencies.

4.3.2. Signed Multiplication
Figure 4.8 shows the results of implementing signed multiplication in the architecture-level design, ar-
ray&IID. As expected, the impact of signed multiplication on the performance lies entirely in the energy
consumption. The delay is the same and the area shows an insignificant difference. Only the energy
consumption changes for the worse. At the optimal clock frequency, the energy consumption of the
unsigned design is 683 pJ. In comparison, the signed design consumes 1127 pJ. That is a 1.65 times
increase in energy consumption, which can entirely account for the FoM difference, as the FoM formula
factors energy twice.
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(a) A Figure of Merit comparison between the best architecture-level
design and its signed version
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(b) The energy consumption of the signed multiplier design compared
to the best architecture-level design

Figure 4.8: The results of the signed multiplier design

As explained in methodology subsection on the configurable signed multiplier 3.4.2, the increase
in energy consumption within the signed multiplier is caused by the sign extension of otherwise small
values that in an unsigned notation would contain many zeros, which would not cause any activity in
the higher significance ends of the multiplier array. This hypothesis is supported by the observation in
the energy plot of figure 4.8 that the difference in energy consumption is much smaller at lower clock
frequencies. This means that the different in energy consumption is a result of higher dynamic power
in the signed multiplier and not a result of higher static power as well.

In conclusion, signed multiplication costs a lot of extra energy, and hurts the FoM as a result. With
such higher energy consumption is reasonable to consider special ways of decreasing this energy
consumption. For this reason, as mentioned in the methodology section, the next design optimization
explores the possibility of employing configurability in the signed multiplier.
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4.3.3. Configurable Signed Multiplication
The results of the configurable signed multiplier design are displayed in figures 4.9 and 4.10. The three
lines shown in each of the figures are labeled Signed, Confsigned2 and Confsigned1. Signed refers to
the signed multiplier of the previous subsection, Confsigned2 refers to the most optimal configurable
signed multiplier achieved and Confsigned1 is one of the previous attempts.
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Figure 4.9: A Figure of Merit comparison between the non-configurable signed multiplier and two different implementations of
configurable signed multipliers
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Figure 4.10: The area and energy figures of the configurable signed multplier compared to their non-configurable counterpart

From the FoM plot, it quickly becomes apparent that the configurable signed multiplier does not
provide the improved performance expected. The FoMs of all three designs are almost identical. Figure
4.10 provides some insight. The energy consumption of the configurable designs is lower, despite the
larger circuit area. However, the importance of the area negates this benefit. The delay is the same for
all three design, as the number of cycles to complete the workload, nor the optimal clock frequency is
different among the designs.

It must be concluded that the configurable signed array multiplier does not provide the benefit to the
SML model’s arithmetic unit. However, the unexpectedly small changes in area and energy indicate
that the configurable signed array multiplier is likely not implemented as intended and more time should
be invested into it to achieve a stronger conclusion.

4.3.4. Dedicated Accumulator
Figure 4.11 shows the results of the dedicated accumulator design. Figure 4.11a compares the FoM
of the new dedicated accumulator design, named 2Accumulators, with the signed multiplier design. To
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the right, figure 4.11b shows the area and energy consumption of the dedicated accumulator design
compared to that of the signed multiplier design.
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Figure 4.11: The results from a signed version of the dedicated accumulator design, labeled with 2Accumulators. The results
are compared with the signed array&IID design

From these results, the following observations can be made. Firstly, the FoM of the dedicated accu-
mulator design is higher than that of the signed multiplier design across the entire frequency spectrum.
It is also interesting to point out that the optimal frequency of the dedicated accumulator design remains
the same at 260MHz. Despite the not-insignificant redesign of the way accumulation and division oc-
cur, this is to be expected. The extra dedicated accumulator is not likely to increase the length of the
longest critical path. Data from the new accumulation register can be sent to the multiplier for IID, but
this datapath is very similar to how division is performed in the signed multiplier design. Meanwhile,
the delay of the accumulation that occurs in the new 16-bit accumulator is easily less than that of the
35-bit accumulator.

A lot of the FoM improvement comes from the decrease in the amount of clock cycles it takes
to complete the workload. Instead of 483 cycles, the workload now takes 282 cycles. This was the
target of the design and accounts for most of the FoM improvement. However, figure 4.11b also shows
that the dedicated accumulator design saves energy. Although energy reduction was expected, the
limited increase in power consumption by the dedicated accumulator helped the FoM reach unexpected
heights.

In conclusion, a dedicated accumulator is a very worthwhile addition to any area and energy efficient
arithmetic unit. Although the advantages in energy and delay are very dependent on the fraction of
accumulation operations in the workload, the area trade-off is very small.

4.3.5. Reduced Area Multiplier
The results of the Reduced Area (RA)multiplier design are plotted in figure 4.12. Figure 4.12a compares
the FoM of the RA multiplier design with that of the till thus far best-performing dedicated accumulator
design. The RA multiplier was integrated into the dedicated accumulator design, meaning the RA
multiplier design also contains two accumulators. This means that the FoM difference between the two
lines is entirely the result of replacing the signed array multiplier with a signed RA multiplier. Figure
4.12b shows the area and energy performances of the two designs. The delay of the two designs at
any particular frequency is the same, as replacing the array multiplier with an RA multiplier has not
changed the number of cycles it takes to complete the basic workload.

The first observation to make about these results is that the RA multiplier provides a surprisingly
large performance improvement. The largest advantage of the RA multiplier over the array multiplier
was expected to be the much shorter critical path of in the RA multiplier. As mentioned in subsection
3.4.4, the longest path through the RA multiplier is only 8 FA delays and 22 HA delays, while the path
through the array multiplier is 16 FA delays and 14 HA delays. Quantitatively, the expected reduction
in delay would be around 20%. With a frequency increase from 260 to 300 MHz (the x-axis indices of
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Figure 4.12: The results from a signed version of the RA multiplier design. The results are compared with the dedicated
accumulator design, labeled 2Accumulators. The RA multiplier design also contains the dedicated accumulator.

the FoM peaks), that reduction in delay has revealed itself to be true. However, the reduction in energy
consumption has had a much larger impact. The inefficiency of the array multiplier regarding energy
was known, but with a 35% energy decrease, the RA multiplier is mostly better than the array multiplier
because of energy.

Another unexpected feature of the RA multiplier is that there is much less of an abrupt jump in area
and energy at a particular frequency step. Until now, all the parallel multiplier designs have had a very
specific optimal frequency caused by a several hundred µm2 increase in the area once the longest
critical path of the low-frequency ”base design” becomes the long of the clock period for the first time.
In figure 4.12b this occurs to the 2Accumulators design between 260 and 300 MHz. With these new
results, it becomes clear that this phenomenon was for the most part feature of the array multiplier. The
RAmultiplier design still shows a small jump in area just above 300MHz, its optimal frequency, but much
less than the array multiplier. The effect of this is that the RA multiplier design does relatively well at
frequencies above 300MHz. This means that if the importance of low delay increases due to changes
in the applications domain, the RA multiplier design can easily be synthesised at higher frequencies
and compete with the sequential designs, unlike the array multiplier designs.

To conclude, the RAmultiplier has proven to be a much better parallel multiplier for the SML model’s
arithmetic unit, achieving figures of Merit three times higher than the array multiplier. This is caused
primarily by an improved energy efficiency, but also a decrease in delay. Finally, the RA multiplier is
also more versatile in terms of its clock frequency, being able to efficiently use additional area to operate
at higher clock frequencies.



5
Discussion

This chapter starts by summarising all the findings that are relevant to the research questions, and then
compares them as best as possible to any state of the art or related works. The next section considers
the implications of the findings. Finally, the chapter ends with a critical review of the limitations of the
study from a perspective of the solutions explored and the robustness of the experimental setup, as
well as giving recommendations both related and unrelated to these limitations.

5.1. Findings
The architecture-level design, workload variation experiment and further design improvements in this
thesis were performed to design an area and energy-efficient arithmetic unit for an SML model. The
results of these design efforts lead to the following findings.

• Parallel multipliers are better suited for the multiplication heavy workloads of the SML model due
to lower energy consumption than sequential multipliers.

• Invariant Integer Division, when feasible to implement, is a more area and energy-efficient way
to perform division than sequential dividers.

• Precision configurable multipliers do not provide sufficient reduction in power and delay to warrant
the additional area and path length.

• Sequential multipliers are feasible if delay is a more important KPI than energy consumption.
• Signed multiplication is much more energy-consuming than unsigned multiplication and this con-
sumption is not easily reduced through configurability.

• The basic workload of the SML model is greatly and efficiently accelerated through the inclusion
of an extra dedicated accumulator.

• RA multipliers are much more energy efficient than array multipliers.
• RA multipliers are more easily synthesised for higher clock frequencies leading to reduced delay.

5.2. State of the Art Comparison
A true state of the art for stacked ML model hardware does not exist. So, a simple comparison between
designs is not possible. Instead, in this section, the performance of the area and energy efficient
arithmetic unit designed will be evaluated in two steps. First, this thesis’ findings in regards to the
configurable multipliers, the RA multiplier and Invariant Integer are compared to those in literature.
Second, the final area, energy and delay figures of the arithmetic unit are compared to those of the
RISC-V core, a more generate purpose platform that was introduced in related works section 2.2.3.

5.2.1. Quantitative Comparions
Judging whether or not these findings correspond to those found in literature is hard to do quantita-
tively. This is because all of the arithmetic architectures used are inspired by older literature using
older technology nodes.
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The closest to a quantitative comparison is possible for the sub-word parallel array multiplier. Figure
2.2 in the related works section shows it compared to an arraymultiplier with data gating. It is possible to
combine the energy and throughput-per-area figures from the three plots into one in an 8:15:15 ratio to
account for the precision distribution used for the experimental setup of this thesis. This way, it is fairly
accurate to say that according to [46] the sub-word parallel array multiplier should achieve 0.446pJ per
operation versus 0.45pJ for the normal array multiplier. The throughput for its part is 6.47GOPS/mm2

versus 6.447GOPS/mm2. Those are all very similar numbers, indicating that the literature says the con-
figurable array multiplier in this thesis should perform similarly to the non-configurable array multiplier.
This is not observed. Throughput per area was especially worse at all frequencies for the configurable
array multiplier. The difference in the KPIs observed could be due to some imperfection in the Verilog
implementation of the array multiplier that causes the strange jump in area and energy past a certain
clock frequency. Another factor causing worse results in this thesis could be due to the setup of the
Figure of Merit. This Figure of Merit more heavily penalizes area compared to delay. This is not done
for the throughput-per-area metric in figure 2.2.

5.2.2. Qualitative Comparisons
Qualitatively, literature has shown before that sequential multipliers are not as energy efficient as par-
allel multipliers, agreeing with the findings of this thesis.

Literature shows really good performance for configurable signed multipliers [57], disagreeing with
our findings. This could be caused by inefficient implementation on the side of this thesis, but the
difference in technology node between [57] and this thesis (180nm and 28nm respectively) is likely also
a factor. 28nm CMOS technology experiences more leakage power compared to active power than
180nm technology [58]. This reduces the benefit of preventing activity in the signed array multiplier
using configurability. Another factor that makes it hard to accurately compare results is the precision
distribution, which is a metric that is not clearly stated by [57].

The last qualitatively comparable finding is about the RA multiplier. Here literature claimed better
area, energy and delay [44]. Although our results don’t agree with this area claim, this was already
expected by counting the number of full and half adders required for the multiplier. Significant improve-
ment in energy and delay was indeed observed as seen in literature.

5.2.3. No Comparable Literature
Very Hard to compare are the following two findings. Firstly, there was no Application Specific Integrated
Circuit (ASIC) implementation of IID found in literature. This makes the IID results presented in this
thesis unique. However, the results do adhere to what would be expected based on the description of
the IID architecture, less area and probably less energy as well.

A similar situation is true for the dedicated accumulator. This circuit addition is conceptually so
simple that it is not the subject of any literature. However, based on the description of the component
and the workload it is supposed to run, it is naturally expected that the delay should decrease drastically
and energy reduction can also be expected. All in exchange for minor increase in area.

5.2.4. Comparison to the RISC-V core
The energy-efficient RISC-V core for IoT applications presented by [54] provides the best comparable
hardware platform to compare with the arithmetic unit designed in this thesis. With some estimation,
covered in section 2.2.3 of related works, the core has an area of 4432µm2, a power of 11.77mW
and a throughput of 3.325GOPS. Using these figures the energy and delay of the RISC-V core when
performing the Basic Workload can be calculated. Table 5.1 shows the resulting comparison.

It is important to take this as merely a 0th order comparison. The figures of the RISC-V core are the
result of two estimations, first for the correct technology node, and then for the correct bit-width. On top
of that, the area and energy figures of the RISC-V core would be slightly lower if they did not include
the control circuitry, like the arithmetic unit of this thesis. However, the comparison does indicate the
merits of arithmetic unit designed in this thesis. The arithmetic unit is indeed more area and energy
efficient than this existing solution in the form of a RISC-V Core.
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Table 5.1: Performance comparison of the RISC-V Core and this thesis’ arithmetic unit in executing the Basic Workload

RISC-V Core [54] This Work
Area 4432 µm2 1609 µm2

Energy 1179 pJ 569 pJ
Delay 100 ns 940 ns

5.3. Implications
The combined findings of this thesis indicate what types of arithmetic to consider or not to consider
during hardware design for an SML model. A well-optimised area and energy efficient arithmetic unit is
provided for area-constrained edge applications for which a similar SML model is designed. However,
the impact of changes, in the application domain and in the workload of the SML model, are considered
regularly to show how this thesis’ findings can provide insight into different design scenarios.

This thesis also reveals a situation in which Invariant Integer Division is an invaluable solution to
the problem of division and shows how to implement it into an ASIC containing a MAC unit.

Finally, it serves as a clear example of why array multipliers are rarely the best multiplier design,
and a more optimized multiplier should always eventually be chosen. The RA multiplier was the final
improvement proposal of the further design improvement phase, which means that a shorter design
phase could have resulted in this multiplier improvement never being implemented. This is so notable,
because it caused the largest single increase in Figure of Merit observed in the results.

5.4. Limitations and recommendations
Although this thesis provides an in-depth comparison of the performance of a set of sufficiently well-
selected hardware solutions to support a well-defined ML workload, there are still some solutions to
explore, experiments to improve and problems to solve.

5.4.1. More Solutions to Explore
The first limitation of this thesis lies in the severely limited assortment of multipliers considered within the
design phases. The multiplication heavy workload of the SMLmodel means multipliers have the largest
impact on the Figure of Merit. This thesis could not perform a comparison between many multipliers as
much of the focus was also directed toward the divisions and accumulations of the workload. However,
what is provided is some clear findings about the choice of multipliers, in the better performance of
parallel multipliers. It is also reasonable to argue that the RA multiplier is very well suited for the task.
However, multiplier design is where future research can still provide energy and delay improvement.
As mentioned in related works, Booth Encoding is a very promising technology to look into.

5.4.2. Experiments to Improve
Another opportunity of this thesis research is the simplification of the SML model’s workload. This has
two aspects. First, in the definition of the basic and kernel workloads, the order and timing of the oper-
ations regarding the larger, yet to be designed, SML hardware was disregarded. This was reasonable
due to the SML model’s potential to require redesign when new training data becomes available and
the fact that some characteristics were not yet well defined. The other aspects of simplification con-
cerns the further design improvement phase. This design phase was solely performed with the basic
workload, not taking into account how relative performance between designs may shift when the kernel
workload is included. Especially the FoM of the dedicated accumulator design will change with more
multiplication centred workloads. Due to these two aspects of simplification, it is recommended to rerun
the relevant experiments with more specific workloads once the specifics of the SML model are more
defined in the future.

5.4.3. More SML Hardware Problems to Solve
Lastly, there is one more recommendation that is less of a product of a limitation. This thesis targets
the area and energy efficient design of an arithmetic unit. It was defined in the hardware requirements
section 2.1.5 that this thesis would only concern itself with the kernel calculations, MAC operations and
averaging that occurs in the SML model. However, it is possible to integrate the Nearest Neighbors
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calculator into the arithmetic unit. This was only not chosen because specialised hardware already
exists for it. Whether these hardware solutions are better than integration with the arithmetic unit was
not proven in this thesis. Also, the decision tree solver will be a large part of any SML model hardware
system and there are many solutions for decision tree solving that all have their merits. Thirdly, there is
also a necessity for optimised data storage for the SML model. Extensive research is still required into
these parts of the SML model before a proof of concept for an embedded automotive lifetime prediction
unit can fully take shape.



6
Conclusion

This chapter starts by restating the research aims and questions. Then, based on the analysis in the
previous results and discussion chapters, answer the research questions. Finally, the key contributions
of this study are summarised and the study is briefly reflected upon.

6.1. Research Aims
This thesis’ research aimed to design part of a hardware platform for a specific stackedmachine learning
model and to gather knowledge about the process of hardware design for SML models such that the
findings in this thesis can be generalised. Through identification of common denominators in the SML
model’s hardware requirements, the most interesting aspect of the hardware was identified within the
MAC, multiply, divide and accumulate operations of the model. As a result the aim was placed on an
area and energy efficient arithmetic unit for these operations and around it the research questions were
defined.

6.2. Research Questions
This thesis attempted to answer the following two research questions and sub-questions:

1. How do you integrate the arithmetic operations of multiple classical ML models into one area and
energy efficient arithmetic unit?

1.1. How can multiple models efficiently share one unit for their basic MAC operations?
1.2. Can division be efficiently integrated with a MAC unit?
1.3. Can kernel calculations be efficiently performed on a MAC unit?

2. How do you maintain the benefits of reduced bit-precision ML models in hardware that executes
models with various levels of bit-precision?

The answers found to these questions are as follows:

1. Identify shared arithmetic operations among the ML models. Dedicate most of the hardware area
to an area and energy efficient parallel multiplier, like an RA multiplier. Support the likely small
quantity of divisions through IID, if possible, because it benefits from the good multiplier already
implemented. Lastly, provide a dedicated accumulator if there are many accumulations in the
workload to prevent low multiplier utilization.

1.1. Select a parallel multiplier that is known for low area and energy, like an RA multiplier.
1.2. Yes, in the SML model, Invariant Integer Division provides support for division with very little

area overhead and with more energy efficiency than true division implemented separately
from the multiplier.

1.3. Yes, the multiplication heavy workload of kernel calculations benefits from the same em-
phasis on energy efficient ,and relatively speedy, multiplication by parallel multipliers as the
MAC operations.
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2. Under the expected precision distribution of the SML model multiple bit precisions are best sup-
ported by not dedicating any additional resources on configurable hardware.

6.3. Contributions
By compiling the findings from the results and the subsequently answered research questions it is
possible to present themost important contribution of this thesis. Figure 6.1 shows a high-level overview
of the area and energy efficient arithmetic unit for SML models designed for this thesis. It contains the
parallel multiplier, specifically the RA multiplier, the dedicated accumulator and the support for invariant
integer division. Each of these parts also feature in the answers to the research questions. They were
the best performing hardware solutions in terms of area and energy efficiency found for the arithmetic
requirements of the SML model. This schematic forms the groundwork for the realisation of a proof of
concept for automotive lifetime prediction in hardware.

Figure 6.1: A schematic of the SML model’s area and energy efficient arithmetic unit.

The next contribution is to the field of hardware design for machine learning models. There is a
complete lack of research into hardware specifically for stacked ML models. Therefore, this thesis
can function as a start to a body of knowledge about design problems specific to SML models. These
are issues like identifying common denominators in the hardware requirement of the base- and meta
learners of stacked ML models and in combining the MAC heavy workloads of most machine learning
models with support for accumulation and division necessary for other base- and meta learners that
may appear in a stacked ML model.

Finally, the results of this study contain area and energy figures of the ASIC implementation of
various computer arithmetic designs, notably Invariant Integer Division, in the relatively up to date 28nm
CMOS technology node. Especially the IID figures can be a useful contribution to any researcher
considering the merits of IID as the literature found for this thesis only discusses the mathematical
possibility and implementation using standard processor instruction sets.

6.4. Reflection
This thesis aimed to create hardware for an embedded automotive lifetime prediction system bases on
a stacked machine learning model. An exploration of the hardware requirement of the model identified
the need of an area and energy efficient arithmetic unit that could support MAC, multiply, divide and
accumulate operations.

The design of this arithmetic unit was performed in three phases. The architecture-level design
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phase compared solutions to three critical design aspects, the workload variation experiment verified
the previous results for an expanded workload, and the further design improvement phase found two
more improvements on the results of the architecture-level design.

As a result, this thesis produced well supported answers to its research questions, a first of a kind
example of hardware design for stacked ML models and a design for an area and energy efficient
arithmetic unit.
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