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Abstract

This document aims to explore charge balancing methods, with error correction capabilities
for q-ary sequences, and to develop new techniques or to extend previous ones. The problem
is approached by using analytical, as well as simulation tools.
Block codes over q-ary alphabets can be balanced under various perspectives, namely Symbol-
Balanced (SB), Charge-Balanced (CB), and Polarity-Balanced (PB) Codes. A q-ary Code
is CB if the sum of its symbols equals zero, for the alphabet forms {−(q − 1)/2, ...,−2,−1,
0,+1,+2, ...,+(q−1)/2} if q is odd, or {−(q−1), ...,−3,−1, +1,+3, ...,+(q−1)} if q is even.
The alphabet can also be expressed as {0, 1, 2, ..., q − 1} for practical purposes, but the sum
of CB Code symbols is not longer zero in this case. For instance, a binary CB sequence has
the same number of zeros and ones.
Knuth presented an efficient method to design binary CB Codes, derived by mapping any
binary sequence of even length, via a reversible algorithm. Knuth’s method inverts the first
z sequence bits until achieving balance, then such index z is communicated to the decoder,
through a short balanced prefix.
The binary Knuth-like balancing scheme with error-correcting capabilities, exhibited by We-
ber, Immink and Ferreira, is extended to q-ary Codes. This proposal is very broad, since
any Error Correcting Codes (ECC) can be applied to the payload. Different error-correction
levels over the prefix and the payload are allowed. A method to reduce the iterations, when
searching balancing indices is newly presented, as an improvement of the previous algorithm.
q-ary Knuth-based Codes are suitable for applications with large codewords, due to their low
memory resources use and complexity. However, their redundancy doubles that of the full
balanced set of codewords. Therefore, three previous approaches to improve performance are
analyzed for q-ary Codes.
Another q-ary CB Codes with error-correcting capabilities are introduced, namely Concate-
nated Codes. They are extensions from the binary scheme by van Tilborg and Blaum, in
which balanced blocks are considered as symbols over an alphabet, to build ECC over that
alphabet. Concatenated Codes restrict the runlength of a bit, and the Digital Sum Varia-
tion (DSV) to reasonable bounds (desirable features).
The comparison between binary Concatenated and Knuth-based Codes, with double error
correction capabilities is carried on, evaluating their DSV’s and Code Rates.
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Preface

This dissertation is the final requirement, for the accomplishment of the Msc. in Telecom-
munications & Sensing Systems. I always had particular interest in communications, back in
my bachelor at the University of Costa Rica. My motivation led me to apply to TU Delft,
due to its remarkable reputation, as well as that of the Netherlands, in regards to the high
involvement in technology and research.
After being gladly admitted as student, I realized about the existence of ECC, during the first
classes of the program. I had special fascination for the courses instructed by dr.ir. Jos H.
Weber. I stopped by his office one day, and asked for a related topic to research. He kindly
accepted to be my thesis supervisor, and introduced Knuth balancing method to me, subject
matter which I did not hesitate to accept.
Besides the potential applicability of q-ary CB Codes, studies about them are relatively re-
cent. Thus, exploring this topic brings high expectations, to contribute with useful findings
for future implementations...
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Chapter 1

Introduction

Due to exponential growth in technology that our era continuously experiences, new devices
give birth to more rigorous requirements. There is a constant fight between performance
and energy efficiency. Both concepts are continuously evolving and being optimized over
previous techniques. When it comes to communications, the goal is to transmit using the
least energy possible, with correctable errors or none at all. Consequently, the lower the
energy in transmission, the greater the number of errors that take place along the medium.
Since power-saving features aim to turn energy resources, into values close to the channel
noise floor. This fact is reflected on the overwhelming market competition, among the leading
technology companies, when offering their innovations. Consumers develop new needs, and
have higher expectations of products every day. For instance, it is common to complain when
a smartphone battery lasts only one day, even though one has made plenty use of the phone
features, such as GPS and wireless connectivity.
Error control to improve the system performance is required, as solution of the problem
above. Error Correcting Codes (ECC) play a fundamental role, pursuing the balance in the
coexistence between performance and energy efficiency.
We start by explaining the typical communication taxonomy, in order to provide an overview
of ECC. The basic communication block diagram from [1] is shown in the Figure 1-1. The
cycle is bidirectional, lasts until the end of transmission, and is initiated by the Source, which
originates the information, e.g. a person (information: voice), computer server, data base.
The Input Device is the first interface, encharged of entering the data into the system, e.g.
mobile phone. The Data Reduction, as the term implies, discards all negligible information
for the receiver. The data is converted to another format and/or compressed, within the
Source Coding. Protection is added to the information via secured algorithms, during the
Encryption stage, the outcome is meant to be decoded only at the chosen destination. Error
control is applied over the data, by Channel Coding techniques. The scope of this research is
precisely related to this step. The aim of Error Correcting Codes is to reinforce information,
with protection against random errors, that occur through the medium.

The analog signal that goes throughout the medium, is generated at the Modulation stage.
Every output from the encoder is transformed into an analog waveform. There are several
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Source Sink
Input Device Output Device
Data Reduction Data Reconstruction
Source Codding Source Decoding
Encryption Decryption
Channel Coding Channel Decoding
Modulation Demodulation

Channel

Figure 1-1: Typical Communication Block Diagram.

modulation methods, based on different principles such as signal frequency, amplitude or
phase shifts, e.g. BPSK, QPSK, QAM, ASK, FSK, PSK. The modulation technique can be
also chosen, according to the number of symbols, required to fully express the message. For
instance, the quantization of a signal modulated using PAM, is shown in the Figure 1-2, this
process is carried on by Pulse Code Modulation, to encode voice for VoIP calls [2].
Finally, the path taken by the data, during transmission or storage is named Channel or
Medium. The channel can be physical such as cable, telephone lines and optic-fiber, or it can
be the free space. Wireless connectivity takes place through the free space, such as mobile
cellular telephony, radio frequency, telemetry, microwave and satellite links. The medium
can also be digital storage media, such as core and semiconductor memories, DVD/CD’s,
hard-disk files, optical memory units [3].
The reverse operations are conducted at the destination side, right side of the Figure 1-1.

1-1 General Definitions and Terminology

Two types of errors can be found: random and burst. The former errors occur randomly and
independently. On the contrary, the latter errors are codependent, caused by the memory of
the medium, e.g. the scratches on a CD’s surface. A well-known technique to combat burst
of errors is called interleaving, which will not be explained further since from here on only
reference to random errors will be made.
Every single Error Correcting Code is based on the same basic principle: Redundancy, which
is the additional data added to the raw information [4], denoted by the letter r. The redun-
dant elements are not necessarily correlated to the information directly. The outcome from
the encoder is named codeword, denoted as x, and it is unique for every input message u.
The redundancy causes direct impact over the code rate R, decreasing the code efficiency in
exchange for robustness (more symbols are encoded).
There are two types of codes, classified by the way that the information is processed (encod-
ed/decoded). The first kind is Convolutional Codes, in which the information is seen as a
continuous stream of elements. The data is encoded element-by-element, using shift registers.
The current set of elements dependents on the previous input. The most popular decoding
algorithm is called Viterbi.
The second kind is Block Codes, in which the information is independently encoded, in blocks
of n elements (codewords), and processed on a block-by-block basis.
The elements or symbols of sequences, either messages or codewords, can take values from the
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1-1 General Definitions and Terminology 3

Figure 1-2: An analog signal conversion to an equivalent digital representation, via Pulse Code
Modulation.

set {0, 1, 2, ..., q−1}, established by their alphabet Aq, e.g. q = 2 for binary, thus {0, 1} ∈ A2,
these symbols are broadly known as bits. The symbols are real representations of physical
voltage levels, with different polarity.
Let the Hamming distance between two sequences x0,x1 ∈ Aq of length n, d(x0,x1), be the
number of unitary coordinates in which x0 and x1 differ. This interpretation takes into ac-
count the symbol positions and magnitudes, from alphabets larger than binary. For instance,
the sequences x0 = 01222 and x1 = 01100 ∈ A3, differ in the three last positions by 1, 2 and
2 respectively. Thus, the distance between them is calculated as d = 1 + 2 + 2 = 5. The
hamming distance is directly correlated to the number of errors t, that the block code can
correct, such that d ≥ 2t+ 1.
The code rate is defined by R = logq(M)/n, whose values are in the range [0, 1], where M
is the number of valid codewords. The redundancy can be expressed as r = n(1 − R). The
standard notation for q-ary block codes is (n, k, d)q. Where d, n and k are the minimum
hamming distance of the code, the codeword and the message lengths respectively. The full
set or total number of messages ∈ Fkq is M = qk, as well as the number of codewords from the
block code, thus R = k/n = k/(k + r) and r = n− k. Shortening techniques can be applied
over the block code, if a shorter codeword length is wanted, such that (n−a, k−a, d)q, where
1 ≤ a ≤ k − 1 ∀ a ∈ Z+.
Codes can operate under two modes: Forward Error Correction (FEC) and Automatic Repeat
Request (ARQ). None error is allowed in the ARQ mode, retransmission of the codeword is
requested when it happens. This mode requires less complexity, but it is very vulnerable to
noisy channels, thus it takes longer to transmit. On the other hand, ARQ is very reliable,
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4 Introduction

which makes it suitable for applications with high standards of accuracy, e.g. internet bank-
ing. The FEC mode is based on ECC, thus it requires higher encoding/decoding complexity.
However, its transmission time frame is predictable, and it is used in many applications.
There are different types of block codes, nevertheless linear codes are mostly used, given the
simplicity of their algebraic structure, description, encoding and decoding. Encoders can be
easily built using D flip-flops, exclusive-OR, and AND gates in digital circuitry [5].

1-2 Literature Review

Many applications from the digital world could upgrade their current deployments, if there was
a way to balance the information sequences being in use. Those sequences can be of different
nature, go through distinct channels, and their balancing can achieve diverse goals related
to the challenges that face. These information vectors are modeled by q-ary block codes,
independently of the purpose, then balanced according to particular interests. Concretely
speaking, three classes of balanced codes and one combination of them, have been theoreti-
cally identified in [6]: Symbol-Balanced (SB), Charge-Balanced (CB), Polarity-Balanced (PB)
and Charged and Polarity-Balanced (CPB) Codes.
In order to illustrate definitions with examples, assume some series of codes with variable
length, to belong to an alphabet {−3,−2,−1, 0, 1, 2, 3} ∈ A7. A code is SB if all its alphabet
symbols have the same incidence, e.g. sequence (3,−1, 0, 2,−2,−3, 1). When the summation
of the symbols from every codeword results zero, the code is said to be CB, e.g. sequence
(2,−3, 0, 1, 2,−2). If a code has as many positive symbols as those negative in each codeword,
it is said to be PB. This type lacks of practical applicability, in q-ary codes at this moment,
e.g. sequence (−1,−2, 0,−3, 2, 2, 2). By CPB is meant those codes which are both PB and
CB, e.g. sequence (−1, 1,−1, 1). In general, balanced codes are found in optical and magnetic
storage, wired transmissions, asymmetric/unidirectional error detection/correction and noise
reduction in VLSI Systems [7].
In 1986, D. Knuth published an article implementing a binary coding scheme, in which the
incidence of zeros and ones within codewords is equal, for efficient encoding and decoding
purposes [8]. Knuth only focuses on binary CB codes, nonetheless his assumptions can also
be extended to q-ary CB codes. He proves that any sequence can be balanced, by comple-
menting z number of its elements consecutively, where 0 ≤ z < n, regardless the sequence’s
side from where their inversion starts (right or left). The scheme associates p parity elements,
to depict the values of z, forming a balanced codeword. The assignment of the entries of z
is carried on by look-up tables, and it can be customized. Such length p should be insignifi-
cant in comparison with the length n, to cause minimal impact over the code’s efficiency i.e.
p << n. The index z is extracted from the p-parity elements at the decoder’s side. Then it
is used to complement the symbols back, leading to the original sequence.
This article has inspired this dissertation and originated some other research works, such
as [9], [10] and [11], presenting a balancing scheme with error-correcting capabilities, and
several encoding approaches, to optimize the efficiency of Knuth-like codes.
Knuth’s method also settled down the foundations for q-ary coding schemes, from some state
of the art research works. For instance, balancing techniques with parallel decoding [7], or
prefixless balanced codes with ECC [12]. In general, Knuth-based codes are characterized
by their simple decoding, low complexity and memory resources usage, ideal for applications
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with long codewords. Nevertheless, their redundancy is twice greater than that of the full
balanced set, unless additional implementations are combined. Such downside is overcome by
other methods, in exchange for complexity, e.g. efficient q-ary immutable codes [13].
An alternative binary code construction is proposed by van Tilborg and Blaum in [14], with
prefix-less balanced codewords, composed by the concatenation of balanced blocks, called
Concatenated Codes within this text. They introduced two precious properties: the restric-
tion of the runlength of a bit, and the Digital Sum Variation (DSV), to reasonable thresholds.

1-3 Problem Statement

Studies about non-binary charge balancing methods are relatively recent. Therefore, q-ary
CB Codes with error correction capabilities are still scarce in literature. Additionally, these
codes have potential engineering applicability in the future. For instance, CB Codes are
suitable for DC-free applications and PAM-related implementations.
This document aims to explore charge balancing methods, with error correction capabilities
for q-ary sequences, and to develop new techniques or to extend previous ones. The topic
problem is approached using analytical as well as simulation tools. The data generated from
the software calculations are carefully examined. The main goal is to find out tendencies or
correlations, by observing the data behavior.

1-4 Scope

Useful contributions in literature for q-ary CB Codes are highly expected, due to the recent
studies in this area. This aspect mainly constitutes the motivation of this dissertation.
This research work involves the study of ECC, the Knuth’s balancing method over q-ary
codes, as well as the redundancy, and binary balanced coding schemes in existence.
The theory of block codes, with focus on q-ary Hamming and binary BCH codes, is firstly
consulted. Then, the basics of Knuth’s method applied to q-ary are covered. The binary
error correction scheme from [7] is studied, and adapted to q-ary codes. Matlab calculations
are performed, to find the maximum number of vectors in the balanced set that allows er-
ror correction, to depict prefixes (non-optimal). Thus, balanced block codes are built using
Hamming encoder, for some prime numbers of q. The entropy expressions in [9] and [10] are
adjusted to q-ary codes, from the Transmitted Index, Auxiliary Information Encoding and A
Better Variable-Length-Prefix Construction.
The binary Concatenated code constructions from [14] are reviewed. After that, the feasibil-
ity of four configurations is examined for several values of q. Code constructions with double
error correction capabilities are proposed for each configuration, added by q-ary Hamming
encoder. Some tables with typical parameters are generated using Matlab tools.
BCH Codes are employed in binary Knuth-based Codes, to increase correction capabilities
over the data up to two errors. Then, they are compared with the Concatenated binary codes.
Characteristics such as code rates and DSV from both codes are evaluated. Conclusions are
drawn based on the results, derived from the data inputs in some critical cases.
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1-5 Limitations

Various limitations are encountered, when performing Matlab calculations. The biggest ob-
stacle of this tool, is the long execution when handling large numbers. Entropies and other
computations are only conducted for small values of q, and short sequence lengths. Thus,
practical outcomes for real applications are inconclusive or infeasible. For instance, some
combinatorial expressions are evidently required, to depict variables such as the transmitted
index, and the balancing positions in a full set. The identification of some attributes from
q-ary codes is outlined for future research.
Sources with the bounds for q-ary constant weight codes are inexistent, thus Matlab routines
are implemented to build the prefix, in q-ary Knuth-based Codes. A reductive technique for
the number of iterations when searching the balancing index is presented, as an improvement
of the existing algorithm.
Matlab toolboxes only offer block codes over binary finite fields. Block code routines over
higher values of q are needed, but their development is out of this thesis scope. Nevertheless,
q-ary Hamming encoder/decoder is implemented due to its simple algorithm. Consequently,
the comparison between Concatenated and Knuth-based Codes is constrained to binary, and
double error correction capabilities.

1-6 Dissertation Outline and Contributions

The content overview of this document is broken down as follows:

• Chapter 2, Fundamentals of Block Codes: Basic concepts for the construction
of block codes over finite fields are presented, as well as extension fields. The back-
ground information for the implementation of q-ary Hamming Codes, and a general
understanding of binary BCH Codes is given.

• Chapter 3, Knuth-based Codes: The fundamentals of Knuth’s balancing method
applied to q-ary codes are introduced. A previous binary error correction scheme is
extended to q-ary codes. A new method to reduce the iterations when searching bal-
ancing indices is proposed. The redundancy of q-ary Knuth-based codes is analyzed for
the Transmitted Index, Auxiliary Information Encoding and A Better Variable-Length-
Prefix Construction, approaches previously conducted for binary codes.

• Chapter 4, Concatenated Codes: The previous binary Concatenated Code con-
struction is extended to q-ary codes. Four similar code constructions are exhibited.

• Chapter 5, Binary Codes Comparison: The comparison between Knuth-based and
Concatenated Binary codes is carried on. Evaluating characteristics from both codes,
such as code rates and DSV.

• Chapter 6, Conclusions and Recommendations for Future Research: The
summary of the results is drawn, and potential future research is suggested.

The contributions of this research are listed as follows:
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• The Matlab implementation of Hamming Code encoder and decoder for prime numbers
of q.

• The extension of a q-ary Knuth-based coding scheme with error correction capabilities.

• The introduction of a new method to reduce the iterations when searching balancing
indices.

• The identification of characteristics from q-ary Codes useful for the approaches: Trans-
mitted Index, Auxiliary Information Encoding and A Better Variable-Length-Prefix
Construction. Such properties are used to extend entropy expressions to q-ary codes.

• The adaptation of four Concatenated Code constructions to q-ary Codes.

• The comparison of the Code Rates and the DSV between Knuth-based and Concate-
nated Binary Codes.
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Chapter 2

Fundamentals of Block Codes

Block codes can be implemented over different alphabets Aq. However, operations such as
multiplication and addition have convenient properties when q is a prime power. These
features are useful for the development of practical encoding and decoding algorithms. Con-
sequently, some block code constructions are analyzed in these cases, to be used in the next
chapters.
Several linear codes are well-known in literature, among the most popular of them are found:
Hamming Codes, and Cyclic Codes such as Bose, Ray-Chaudhuri and Hocquenghem (BCH),
both defined over GF(q)1. The former codes are reviewed along this section for prime num-
bers of q, given their easy implementation as in [15]. The latter codes are studied for binary
alphabet, due to their multiple error correction capabilities. The knowledge needed for an
understanding of them is briefly examined as well.

2-1 Basics of Error Correcting Codes (ECC)

Roughly speaking for matrix representation, messages are encoded by the Generator Matrix
G of the Linear Code C. Then errors are corrected via the Parity-Check Matrix H. The
construction of these matrices depends on the particular block code chosen. The codeword
x ∈ C is the product from the matrix multiplication:

x = u ∗G (2-1)

Where G of C has dimensions k-by-n. At the decoder side, the Parity-Check Matrix H of C⊥
whose size is r-by-n must meet:

C = {x ∈ Fnq |H ∗ xT = 0} (2-2)

1Galois Field (GF): in honor of the French mathematician Pierre Galois.
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10 Fundamentals of Block Codes

The product from the operation H ∗ xT is not zero if any error occurs, and it is called
syndrome. Its formal definition is: “the syndrome is the linear transformation of the error
vector introduced in the channel" [4]. Expressing these words in algebraic terms, let e and
y be the error vector and the received codeword, such that y = x + e. Replacing x with y
in the Expression 2-2, then solving as H ∗ yT = H ∗ (x + e)T = 0 + H ∗ eT = H ∗ eT , the
syndrome s is specified by:

s = H ∗ eT (2-3)

In some codes, y is compared with the elements from the codebook of C, whose distances
differ by d or less. Then y is replaced by the closest of them, which turns out impractical for
large values of qn. For this reason, techniques with look-up tables of qn−k entries are more
attractive, such as syndrome decoding.
Block codes can be also expressed as polynomials. Let u(x) and g(x) be the information
and the generator polynomial of the code (n, k, d) over GF (q), such that u(x) = u0 + u1x+
... + uk−1x

k−1 and g(x) = g0 + g1x + ... + gn−kx
n−k with ui, gi ∈ GF (q). Hence, the code

polynomial is obtained as:

c(x) = u(x) ∗ g(x) = c0 + c1x+ ...+ cn−1x
n−1 ∀ ci ∈ GF (q) (2-4)

The term GF(q) is further explained, messages and codewords have forms u = u0u1u2...uk−1
∈ Fkq and x = c0c1c2...cn−1 ∈ Fnq . Similar definitions as those from matrix representation
are derived for the parity-check, syndrome, error and received codeword polynomial, i.e.
h(x), s(x), e(x) and y(x).

2-2 Block Code Construction over GF(q) with q prime

Some basic concepts and definitions from [16] are first recalled. Two modulo operations can
be applied over the elements from a set: multiplication and addition. Assume a, b, c to belong
to the set G′ for simplicity, the most common conditions that these operations can meet are:

1. Commutativity under multiplication: a ∗ b = b ∗ a

2. Commutativity under addition: a+ b = b+ a.

3. Identity: a ∗ ι = a, where ι is the identity.

4. Inverse: a ∗ a−1 = ι ∃ a−1 ∈ G′.

5. Associativity under multiplication: (a ∗ b) ∗ c = a ∗ (b ∗ c).

6. Distributivity: a ∗ (b+ c) = (a ∗ b) + (a ∗ c).

Let the group G be a set defined by multiplication, whose elements are either finite or infi-
nite, which meets the properties 3, 4 and 5 (Identity, Inverse and Associativity). A group is
called “Abelian", if it also fulfills the condition 1 (Commutativity under multiplication). The
multiplication of any two elements generates another element of the group, feature named
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2-2 Block Code Construction over GF(q) with q prime 11

closure. The Table 2-1 c) shows the products in GF (5), illustrating such characteristic.
Let the finite field GF (q) or Fq be a group of elements which meets the conditions 1, 2, 3, 4
and 6 (Commutativity under non-null multiplication and addition, Identity, Inverse and Dis-
tributivity) over the ring Zq (modulo q). A finite field has finite number of elements, where
q > 1 is a prime number or a power of a prime, i.e. q = pmr ∀m ≥ 1. All the elements from the
finite field have an order, which indicates how many times an element is multiplied by itself,
to lead 1 in modulo q. The element α with the order equal to q−1 is named primitive. Every
single non-zero element from a finite field, can be expressed as powers of primitive elements.
E.g. given the non-zero alphabet symbols {1, 2, 3, 4, 5, 6} ∈ A7. The order 3 of the element
2 ∈ A7, is calculated as 2 ∗ 2 ∗ 2 = (8)mod7 = 1. Likewise, the other orders of the elements
∈ A7 are displayed in the Table 2-1 a). The elements 3 and 5 are primitives in GF (7), since
they have orders of q − 1 = 7− 1 = 6. Thus, if α = 3 all the alphabet symbols ∈ A7 can be
expressed as powers of 3, i.e. {36, 32, 31, 34, 35, 33} ∈ GF (7).

Element in GF(7) Order

1 1
2 3
3 6
4 3
5 6
6 2

+ 0 1 2 3 4

0 0 1 2 3 4

1 1 2 3 4 0

2 2 3 4 0 1

3 3 4 0 1 2

4 4 0 1 2 3

* 0 1 2 3 4

0 0 0 0 0 0

1 0 1 2 3 4

2 0 2 4 1 3

3 0 3 1 4 2

4 0 4 3 2 1

Table 2-1: a) Element orders in GF (7), b) Addition over GF (5) and c) Multiplication over
GF (5).

Block Codes over GF (q) with q = pr are built straight-forward, by performing operations in
modulo-q, using the symbols {0, 1, 2..., q − 1}. However if q = pmr ∀ m > 1, the construction
of codes over GF (q) is more complex, such fields are referred to as extensions.

2-2-1 q-ary Hamming Codes

As stated before, Hamming Codes are defined over finite fields GF (q). A common notation
for these Codes is Ham(r, q), their codewords and data lengths n & k must meet the following
requirements:

n ≤ (qr − 1)/(q − 1)
r = n− k ≥ 2
d = 3

(2-5)

Where r is the code redundancy, d is the hamming distance and q is a prime number.
Some codeword lengths n’s for different values of q and r are listed on the Table 2-2. Moreover,
the binary code lengths are modified, to apply balance. Thus, shortening over these codes is
applied to achieve this purpose, i.e. (n− 1, k − 1, d).

In general, a block code is built by adding elements besides the information. Such additional
elements pretend to set up the minimum distance d, to secure error correction capabilities.
This redundancy is related to the data via algebraic operations.
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12 Fundamentals of Block Codes

r q
2 3 5 7 11 13 17 19 23 29 31 37 41 43 47 53 59 61

2 4 6 8 12 14 18 20 24 30 32 38 42 44 48 54 60 62

3 6 13 31 57 133 183 307 381 553 871 993 1407 1723 1893 2257 2863 3541 3783

4 14 40 156 400 1464 2380

5 30 121 781 2801

6 62 364 3906

7 126 1093

8 254

Table 2-2: Maximum Hamming codeword length n, for different values of r and q.

The mathematical operations involved in the Hamming Codes are defined by the Parity-Check
Equations. Such operations establish the correlation between information and redundancy,
and they are constrained by the linear independence among themselves. Recalling the same
encoding principle as in the Equation 2-1. The Systematic Generator Matrix Gr,q = [Ik|P] : k
x n is composed by two parts: the Identity Matrix of size k, Ik, and the Parity Matrix of size
k-by-r, P. The latter matrix contains r parity-check equations, one per parity/redundant
element.
For instance, codewords have the form x = x0x1x2x3x4x5 in case Ham(2, 5), for the lengths
n = (52 − 1)/(5 − 1) = 6 and k = 6 − 2 = 4. Two possible parity-check equations are:
x4 = 4x0 ⊕5 4x1 ⊕5 4x2 ⊕5 4x3 and x5 = 4x0 ⊕5 3x1 ⊕5 2x2 ⊕5 x3. Hence, the vectors derived
from the equation coefficients: [4, 4, 4, 4]T and [4, 3, 2, 1]T , constitute the columns of P.
Analogously, decoding is carried on as in the Equation 2-2. The Parity-Check Matrix H,
has dimensions r-by-n with n l.i.2 vectors ∈ Frq, regardless their order. Preferably, ones are
placed in the first non-zero row entries. This matrix is formed by the transpose of the negated
Parity Matrix −PT , with k vectors ∈ Frq as columns, and the Identity Matrix of size r, Ir,
such that Hr,q = [−PT |Ir]. Single error correction is guaranteed, due to fact that any two
columns are l.i., thus d = 3 at least. The product of the matrix multiplication GHT = 0k,r,
is the all-zeros matrix.
E.g. the construction example of Ham(2, 3) is observed in the Figure 2-1, where n = (32 −
1)/(3− 1) = 4 and k = 4− 2 = 2. Thus the parity-check equations are x2 = 2x0 ⊕3 2x1 and
x3 = 2x0 ⊕3 x1 (both l.i.), whose coefficients are reflected on the sub-matrix P from G2,3.
The rectangle in the Figure 2-1 encloses all the parity elements, generated by the full set of
messages ∈ F2

3.

The all-zeros syndrome s = 0r, when applying the Equation 2-3, represents a codeword
without any error. Otherwise the syndrome is factored, and its vectorial multiple is compared
with every column of H. The column corresponding to the match determines the error position
in the codeword, and the remaining scalar multiple is the error magnitude.
For instance, if the message u = 0120120120 is encoded by Ham(3, 3). Then, an error
takes place in the seventh position from the codeword, such that x = 0120122120211 (see
underlined). The syndrome obtained by the Parity-Check Matrix H3,3 from Table 2-1 is
s = [2, 0, 2]T , factored as s = 2 ∗ [1, 0, 1]T . This vectorial multiple equals the seventh column
of H3,3, enclosed by a rectangle. Thus the original codeword is recovered through the following
operation: x̂ = y − e = 0120122120211 − 0000002000000 = 0120120120211. The message u,
coincides with the first 10 elements from the codeword x̂.

2l.i. is the abbreviation for linearly independent.
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G2,3 = [Ik|P] =
(

1 0 2 2
0 1 2 1

)
00 00
01 21
02 12
10 22
11 10
12 01
20 11
21 02
22 20

H2,3 = [−PT |Ir] =
(

1 1 1 0
1 2 0 1

)

H3,3 =

 1 1 1 1 1 1 1 1 0 0 1 0 0
1 1 1 2 2 2 0 0 1 1 0 1 0
1 2 0 1 2 0 1 2 1 2 0 0 1



Figure 2-1: Generator Matrix for Ham(2, 3), Parity-Check Matrices for Ham(2, 3) and
Ham(3, 3). Codewords of the full set of messagess ∈ F2

3.

An alternative decoder for short codeword lengths, increasing error correction capabilities,
can be implemented by the coset leader technique. Let C be a complete set of codewords,
such that its coset is defined as: C + s = {x + s | x ∈ C}, where s, x are any syndrome and
codeword respectively. Every non-null syndrome from those qr − 1 in total is linked to qk
different coset members. The coset leader of a particular syndrome has the minimum weight,
but it is not unique. Moreover, the coset leader equals the most likely error e = {x + s, |
σ(x + s) = min{σ(C + s)} ≥ 1}. Clearly, the use of computer resources turns more arduous
when increasing qk, until reaching unpractical levels.
The q-ary Hamming encoder/decoder can be found in the Appendix A-1. These routines
are newly implemented, since Matlab does not offer any packet with Non-Binary Hamming
Codes.

2-3 Block Code Construction over Extension Fields

The information symbols experience transformations, when building block codes over exten-
sion fields by the usual schemes, i.e. Aq → Apr ∀ q = pmr . Keeping the original alphabet
invariable is crucial, due to the fact that its symbols could have real and physical meaning.
Nevertheless, alternative block code constructions, which indirectly employ extension fields
and with the input alphabet equal to the output, can be implemented.
Extension fields contain symbols as {0, 1, α, α2, ..., αp

m
r −2} ∈ GF (pmr ), where α is the primi-

tive element of order pmr − 1. The elements from GF (pmr ) are expressed as m-tuple vectors
with elements in GF (pr). Their construction is explained along the following lines.
Lets start by reviewing the four basic operations, for the two polynomials f(x) = 3x+ 2 and
g(x) = 3x2 + x+ 1, both ∈ A4:

• Subtraction:
f(x)− g(x) = 3x+ 2− (3x2 + x+ 1) = x2 + 2x+ 1

• Summation:
f(x) + g(x) = 3x2 + 3x+ x+ 2 + 1 = 3x2 + 0x+ 3 = 3x2 + 3
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14 Fundamentals of Block Codes

• Multiplication:
f(x) ∗ g(x) = (3x+ 2) ∗ (3x2 + x+ 1) = (3 ∗ 3)x3 + (3 ∗ 1 + 2 ∗ 3)x2 + (3 + 2)x+ 2 =
x3 + x2 + x+ 2

• Division: g(x)/f(x) =

3x2 + x+ 1 3x+ 2
3x2 + 2x(−) x+ 1

3x+ 1
3x+ 2(−)

3

g(x) = f(x) ∗ q(x) + r(x) = (3x+ 2) ∗ (x+ 1) + 3

Where q(x) = x + 1, r(x) = 3 are the quotient and the remainder respectively, thus
g(x) is not divisible by f(x) (otherwise r(x) = 0).

An important concept is introduced in [1], regarding to the division: irreducibility. A polyno-
mial f(x) is irreducible over GF (pmr ), if it is indivisible by any polynomial of degree between
0 and pmr − 1, similarly to prime numbers. In other words, irreducible polynomials cannot be
factored, and do not have roots in GF (pmr ). e.g. the polynomial 3x2 + x + 2 is the product
of (3x+ 2)(x+ 1), thus it is not irreducible over GF (4). However, an irreducible polynomial
in one finite field can be factored over other finite field.
Let ϕ(x) be the minimal polynomial (smallest degree) over GF (pr), such that ϕ(θ) = 0, where
θ is also an element ∈ GF (pmr ). Therefore ϕ(x) can be expressed as:

ϕ(x) =
m−1∏
i=0

x− (θ pi
r )mod(pm

r −1) (2-6)

Where sum and multiplication are conducted by adding term powers in modulo (pr) and
(pmr − 1) respectively. For instance, the minimal polynomial ϕ(x) ∈ GF (3), with the root
θ = 1 ∈ GF (9), is calculated as: ϕ(x) =

∏1
i=0 x− (13i)mod8 = (x− 11)(x− 13) = x2− 2x+ 1.

The concept that encloses the requirements of extension fields is named primitiveness. “An
irreducible polynomial f(x) of degree m ∈ GF (pr) is primitive, if the smallest positive integer
n, for which f(x) divides xn − 1 is n = pmr − 1" [16]. The polynomial f(x) has the primitive
α as root, if f(α) = 0. In other words, α is a mathematical trick to find solutions, as well as
complex numbers are used if roots are not longer depicted by real numbers.
The elements of GF (pmr ) are expressed as b0 +b1α+b2α

2 +...+bm−1α
m−1, where b0b1b2...bm−1

is the m-tuple vector ∈ GF (pr). Primitive polynomials of degree m over GF (pmr ) are not
unique.
The steps to build the extension field GF (9) in the Table 2-3 are summarized:

1. Express the extension field as GF (pmr ): GF (32) = GF (9).

2. Choose a primitive polynomial of degree m = 2 ∈ GF (3): f(x) = x2 − 2x− 1.

3. Solve f(α) = 0 for the primitive α: α2 = 2α+ 1.

4. Express the elements {0, 1, α, α2, ..., α7} ∈ GF (9), in terms of b0 + b1α.
Products are calculated by adding powers in mod(pm

r −1), i.e. α2 ∗α3 = α(2+3)mod8 = α5.
Sums are calculated by adding powers in mod(pr), i.e. α+ α2 = α(1+2)mod3 = α0 = 1,
or (10) + (21) = 01.

Alexander Barrantes Muñoz Master of Science Thesis



2-3 Block Code Construction over Extension Fields 15

5. Form the 2-tuple vectors ∈ GF (3), using the coefficients b0b1.

Elements Elements expressed as the sum of α1 and α0 2-tuple vector
∈ GF (9) ∈ GF (3)

0 0 00
1 1 01
α α 10
α2 2α+ 1 21
α3 2α2 + α = 2(2α+ 1) + α = 4α+ 2 + α = 5α+ 2 = 2α+ 2 22
α4 2α2 + 2α = 2(2α+ 1) + 2α = 4α+ 2 + 2α = 6α+ 2 = 2 02
α5 2α 20
α6 2α2 = 2(2α+ 1) = 4α+ 2 = α+ 2 12
α7 α2 + 2α = 2α+ 1 + 2α = 4α+ 1 = α+ 1 11

Table 2-3: Extension field construction GF (9), via the primitive polynomial x2 − 2x− 1 [16].

Finally, the original alphabet symbols change from {0, 1, 2, 3, 4, 5, 6, 7, 8} ∈ GF (9) to {00, 01, 10,
21, 22, 02, 20, 12, 11} with elements ∈ GF (3), in this case.

2-3-1 Binary BCH Codes

The binary BCH Codes of length n and design distance d′ are Cyclic Codes, generated by the
multiplication of distinct minimal polynomials of the primitive elements α, α2, α3, ..., αd

′−1

∈ GF (2m) [15]. The design distance d′ is the minimum distance expected, before building
the BCH codes. It is guaranteed to be the same or lower than the distance of the block
codes d, after their construction. The design distance, codeword and information lengths are
user-defined, by adjusting the parameters m and t such that:

n = 2m − 1 ∀ m ≥ 2
k ≥ n−mt ∀ 1 < t < n/m
d ≥ d′ = 2t+ 1

(2-7)

The construction of BCH Codes is carried on by polynomial models. The binary BCH codes:
(7, 4, 3) and (7, 1, 7) are built step-by-step to illustrate this theory.

1. Choose the parameters m = 3, t = 1 & 3, such that the code length and the design
distances are n = 23 − 1 = 7, d′0 = 2 ∗ 1 + 1 = 3 & d′1 = 2 ∗ 3 + 1 = 7 respectively.

2. Build the extension field GF (8) as {000, 100, 010, 001, 110, 011, 111, 101}, via the prim-
itive polynomial f(x) = x3 + x+ 1.

3. Calculate the minimal polynomials of d′1− 1 = 6 primitive elements ∈ GF (8), using the
Equation 2-6, as shown in the Table 2-4.

4. Build the generator polynomial, as the product of distinct minimal polynomials of d′0−
1 = 2 primitive elements, α, α2: g0(x) = x3 + x + 1. The minimum distance d0 = 3
equals the weight of g0(x). Thus t = 1 & k = 7− 3 ∗ 1 = 4 for the BCH Code (7, 4, 3).
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16 Fundamentals of Block Codes

5. Build the generator polynomial, as the product of distinct minimal polynomials of d′1−
1 = 6 primitive elements, α, α2, α3, α4, α5, α6: g1(x) = (x3 + x + 1)(x3 + x2 + 1) =
1+x+x2 +x3 +x4 +x5 +x6. The minimum distance d1 = 7 equals the weight of g1(x).
Thus t = 3 & k = 7− 3 ∗ 3 = 1 for the BCH Code (7, 1, 7).

Elements ∈ GF (8) Minimal Polynomial ϕ(x)
1 x+ 1

α, α2, α4 x3 + x+ 1
α3, α5, α6 x3 + x2 + 1

Table 2-4: Minimal polynomials ϕ(x) of the primitive elements ∈ GF (8).

Finally, the messages in polynomial representation can be encoded using the Equation 2-4.
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Chapter 3

Knuth-based Codes

The current chapter introduces the fundamentals of Knuth’s balancing method applied to
q-ary codes. It also adapts the binary error correction scheme, proposed by Weber, Immink
and Ferreira in [11] to q-ary codes, supported by the findings about q-ary sequences from [7].
A new optimization method is presented, to reduce the number of iterations in the search of
balancing indices. Redundancy is analyzed under three distinct concepts: Transmitted Index,
Auxiliary Information Encoding (derived by the balancing position selection) and A Better
Variable-Length-Prefix Construction. The procedures from [10] and [9] are first recalled, then
they are applied over q-ary codewords.

3-1 q-ary Knuth-based Coding Scheme with Error Correction Ca-
pabilities

This section refers to Charge-Balanced Codes hereafter, whose alphabet can have one of
three possible forms, as in a), b) or c) below. Subscripts are assigned to q and n to quickly
reference their even or odd values. Swart and Weber define the “balancing value" β in [7], of
the balanced sequence x = x0x1...xn−1 of length n, with symbols from an alphabet Aq, such
that:

β =
n−1∑
i=0

xi = n(q − 1)
2 (3-1)

An exception is applied for qeven with nodd.

a) β > 0 for Aq of the form: {0, 1, ..., q − 1} ∀ q.

Or β = 0 for Aq of the forms:

b) {−(q − 1)/2, ...,−2,−1, 0,+1,+2, ...,+(q − 1)/2} ∀ qodd.

c) {−(q − 1), ...,−3,−1,+1,+3, ...,+(q − 1)} ∀ qeven.
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18 Knuth-based Codes

This section makes reference only to the first form, since the alphabet mapping from the
format “a)" to “b)" or “c)" is done straightforward, using the transformation proposed by
Weber, Immink, Siegel and Swart. Let i be a symbol from an alphabet Aq of any form, thus i
can be mapped to any other form, such that i→ ai+ b, where a 6= 0 and b ∈ R. For instance,
alphabet conversion from {0, 1, 2, 3}, of form a), to {−3,−1, 1, 3}, of form c), both ∈ A4, is
done by choosing a = 2 and b = −3, thus {2∗0−3, 2∗1−3, 2∗2−3, 2∗3−3} = {−3,−1, 1, 3}.
Similar steps for q-ary codes are adapted, from the scheme with error correction capabilities,
for the binary Knuth-based codes proposed in [11]. They are broken down as follows:

1. Encode the message u ∈ Fkq , using a Block Code C1 : (n, k, d1) over GF (qm) ∀ m ≥ 1.
Then obtain the codeword x ∈ Fnq , such that x = φ(u) = u ∗ G1, where G1 is the
Generator Matrix from Equation 2-1, and φ is the encoding function.

2. Calculate the balancing index β from Equation 3-1. Compare β with the weight σ(yi),
in every attempt to find a balanced codeword, by running an iterative procedure qn
times. Store the balancing indexes if both parameters are equal, i.e. σ(y) = β. Follow
the next operations to find out the balancing variables:

a. Let s and e be indices whose values shift from 0 to q− 1, and 0 to n− 1 respectively.
b. Denote a balancing sequence b(s, e), with arguments s and e, of the form b0b1...bn−1

and length n. Calculate every element of b(s, e), using the following formula:

bi =
{
s, ∀ i ≥ e,
s+ 1, ∀ i < e.

(3-2)

In such a way that b(s, e) =
e︷ ︸︸ ︷

(s+ 1)(s+ 1)...(s+ 1)
n−e︷ ︸︸ ︷
ss...s, is decomposed as

sss...s︸ ︷︷ ︸
n

⊕q 1...1︸︷︷︸
e

0...0︸︷︷︸
n−e

, where ⊕q is a sum in modulo q.

c. Obtain the weight σ(y), of the sum y = x⊕q b(s, e), where σ(y) =
∑n−1
i=0 yi.

3. Merge the balancing parameters s & e into one index z = sn+ e, where 0 ≤ z < qn, as
shown in the Table 3-1 a).

4. Perform an inversion1 over the codeword x, such that y = x⊕q b(z)2.

5. Encode the index z into a unique balanced codeword ρ, called prefix, via the block code
C2

3. Where ψ is the encoding function, such that ρ = ψ(z).

Aiming to clarify the steps from 2 to 4, the Table 3-1 b) shows all balancing and balanced
sequences of the randomly chosen vector 2132041314 ∈ A5. These six possible balanced
sequences have weight 20 = β (from the Equation 3-1). For instance, the first balanced
sequence is determined as 2132041314 ⊕5 2222111111 = 4304102420, with weight calculated
as 4 + 3 + 0 + 4 + 1 + 0 + 2 + 4 + 2 + 0 = 20. Finally, its balancing index is estimated as
z = sn+ e = 1 ∗ 10 + 4 = 14, the parameters s & e are easily figured out from the balancing
sequence. A Matlab routine for these operations is found in the Appendix A-2.

1The term inversion or complementation refers to binary symbol conversion, 0 → 1 or 1 → 0. This reference
is kept to indicate the sum of balancing sequences ∀ q > 2, for simplicity.

2Several balancing sequences could be obtained.
3The prefix’s length p, necessary to represent z must be p > logq(qn).
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3-1 q-ary Knuth-based Coding Scheme with Error Correction Capabilities 19

Table 3-1: a) Balancing parameters s and e merged into z. b) Table of all the balancing and
the balanced sequences of 2132041314 ∈ A5.

s/e 0 1 2 · · · n-1

0 0 1 2 · · · n-1

1 n n+1 n+2 · · · 2n-1

2 2n 2n+1 2n+2 · · · 3n-1
...

...
...

...
. . .

...

q-1 (q-1)n (q-1)n+1 (q-1)n+2 · · · qn-1

z s e b(z) y

14 1 4 2222111111 4304102420

19 1 9 2222222221 4304213030

29 2 9 3333333332 0410324141

34 3 4 4444333333 1021324142

44 4 4 5555444444 2132430203

49 4 9 5555555554 2132041313

As displayed in the Figure 3-1 a), the encoder’s output is the link between the prefix ρ and
the balanced codeword y, the latter is named bulk or payload.
Similarly as at the source’s side, the inverse operations are performed for decoding at the
destination. Thus the next steps proceed:

1. Separate the prefix from the bulk, then compare the former with the codebook entries
from C2. Choose the closest vector, denoted as ρ̂4.

2. Extract the index ẑ from ρ̂, ẑ = ψ−1(ρ̂), then calculate the balancing parameters to
build b(ẑ) as: ê = mod(ẑ, n) and ŝ = bẑ/nc.

3. Recover the sequence x̂, by subtracting the balancing sequence b(ẑ) from ŷ:
x̂ = ŷ	q b(ẑ).

4. Decode the codeword x̂, according to the block code C1, û = φ−1(x̂).

Retaking the example previously described, let the sequence ŷ and the index z be 4304102420
and 14 respectively, after the decoding step 2. The balancing parameters are calculated as:
ê = mod(14, 10) = 4 and ŝ = b14/10c = 1. Thereafter, the following subtraction is performed:
x̂ = 4304102420	5 2222111111 = 2132041314 (the original vector).
A diagram of this process is depicted in the Figure 3-1 b), and the Matlab routine of steps 2
and 3 is shown in the Appendix A-3.

The hamming distances of C1 and C2 from the Figure 3-1 a) are chosen to be d1 = 2t + 1
and d2 = 2t+ 2 respectively in [7], for correcting up to t errors. This statement is still valid
for q-ary codes. For instance, let two messages be u1 = 10 and u5 = 21, both ∈ F2

3. Single
error correction is guaranteed (t = 1), by applying the Hamming Code C1 : (4, 2, 3)3 to u1
and u5. The codewords ∈ F4

3: x1 = 2210 and x5 = 0221 are obtained. Then balancing
sequences with indices z1 = 5 and z5 = 2 are added to x1 and x5, which leads to the same
vector y1 = y5 = 1021, as shown in the Table 3-2. Consequently, the minimum distance of
the codeword only resides in the prefix in such cases, i.e. d2(ρ1, ρ5).
Let Aq(p, d, w) be the maximum size of q-ary codes of length p, minimum distance d, and
constant weight w. The lower bound of a balanced code under the fixed-length-prefix scheme

4The notationˆ is used to differentiate from the original values at the encoder, both terms are the same if
no error occurs.
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20 Knuth-based Codes

Figure 3-1: a) q-ary Encoding Procedure Diagram. b) q-ary Decoding Procedure Diagram [11].

must be Aq(p, d2,
p(q−1)

2 ) ≥ qn ∀ q > 2 (n if q = 2). The mapping of the balancing index
to the prefix ρ = ψ(z) is carried on by look-up tables. Some experimental cardinalities of
balanced codes for different values of p and q, and hamming distance d2 ≥ 4, are listed in the
Table 3-3 a). These numbers were determined by the Matlab routine from the Appendix A-4,
which attempts to find the maximum interception of vectors with d2 ≥ 4 in the balanced set5.
Several binary results are placed together with those from [7], showing high proximity.
Using the values from Table 3-3 a) in the previous case, C2 : A3(5, 4, 5) = 12 = 3 ∗ 4 meets
the requirements, i.e. d2(11021, 02012) = 4 for u1 and u5.
On the other hand, minimum distances of codewords with the same prefix depend on the
bulk’s segment, for example d1(y2,y3,y7) = d1(1120, 2101, 0112) = 4 from the Table 3-2.
The code rate is calculated as R = k/(p+ n) = 2/(5 + 4) = 0.222.

u ρ y

00 10211 1111
10 11021 1021
20 00122 1120
01 00122 2101
11 01220 2011
21 02012 1021
02 02012 2002
12 00122 0112
22 01220 0022

Table 3-2: q-ary Knuth-based Codes with single error correction capabilities: Full set of messages
∈ F2

3 under fixed-length-prefix scheme.

Additionally, the determination of t is vital, since lacking of sufficient error protection over the
prefix would lead to devastating results, due to the fact that a wrong complementation creates
a completely different codeword. Furthermore, this technique is meant for values of n much

5These outcomes are not proven optimal.
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3-1 q-ary Knuth-based Coding Scheme with Error Correction Capabilities 21

greater than those of p, n >> p. Thus the probability of a random error hitting the prefix
is significantly lower, in comparison with one hitting the bulk, i.e. Pr(p) = p/(p + n) <<
Pr(n) = n/(p+ n), considering this fact d1 >> d2 in reality.
Block code constructions for some prime numbers of q are shown in the Table 3-3 b), using the
experimental outcomes from a), with single error correction capabilities added by Hamming
Codes (to both: prefix & bulk).

q p Aq(p, d2,
p(q−1)

2 )
Max Exp.

2 4 2 2

2 6 4 4

2 8 14 14

2 10 36 31

2 12 132 132

2 14 325 257

3 2 2

3 3 3

3 4 7

3 5 12

3 6 31

3 7 59

3 8 183

5 2 3

5 3 7

5 4 25

5 5 73

5 6 253

7 2 4

7 3 12

7 4 63

7 5 250

11 2 6

11 3 29

11 4 231

13 2 7

13 3 40

13 4 377

17 2 9

17 3 66

17 4 833

19 2 10

19 3 79

q n p R

2 4 6 0.1

2 6 8 0.214

2 8 8 0.25

2 10 8 0.333

2 16 10 0.423

2 20 10 0.5

2 24 10 0.559

2 30 10 0.625

2 32 12 0.591

3 4 5 0.222

3 6 6 0.25

3 7 6 0.308

3 8 6 0.357

3 10 6 0.438

3 16 7 0.522

3 20 8 0.571

3 24 8 0.625

3 30 8 0.684

3 32 8 0.7

5 4 4 0.25

5 6 5 0.364

5 7 5 0.333

5 8 5 0.385

5 10 5 0.467

5 16 6 0.591

5 20 6 0.654

5 24 6 0.7

5 30 6 0.75

5 32 6 0.737

7 4 4 0.25

7 6 4 0.4

7 7 4 0.455

7 8 4 0.5

7 10 5 0.467

7 16 5 0.619

7 20 5 0.68

7 24 5 0.724

7 30 5 0.771

7 32 5 0.784

11 4 4 0.25

11 6 4 0.4

11 7 4 0.455

11 8 4 0.5

11 10 4 0.571

11 16 4 0.65

11 20 4 0.708

13 4 4 0.25

13 6 4 0.4

13 7 4 0.455

13 8 4 0.5

13 10 4 0.571

13 16 4 0.65

13 20 4 0.708

13 24 4 0.75

17 4 4 0.25

17 6 4 0.4

17 7 4 0.455

17 8 4 0.5

17 10 4 0.571

17 16 4 0.7

17 20 4 0.708

17 24 4 0.75

17 30 4 0.794

17 32 4 0.806

19 4 3 0.286

Table 3-3: a) Cardinalities of balanced codes of length p ≤ 12, and hamming distance d2 ≥ 4,
for q = 2, 3, 5, 7, 11, 13, 17, 19. b) q-ary Knuth-based codes with single error correction, using
fixed-length-prefix scheme, for q = 2 to 19 and n = 4, 6, 7, 8, 10, 16, 20, 24, 30, 32.
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22 Knuth-based Codes

3-1-1 Iteration reduction over the balancing index search

Recalling the step 2 from the encoding procedure, the index z is stored if the sequence’s
weight is σ(y) = β, tested qn times by an iterative procedure. Such practice becomes very
inefficient when dealing with large values of n. For instance, a cycle must be executed qn =
32 ∗ 1024 = 32768 times for every codeword ∈ A32 of length n = 1024, to find out all the
balancing sequences. This process demands a very high cost in terms of computer resources.
For this reason, a need of finding optimization methods to reduce the number of laps arises.
Initial information for the construction of a precise loop-reduction model is scarce: σ(x) and
β. Moreover, distinct values of z for the same x are indistinguishable. Thus, only lower
bounds can be established with those. Consequently, the next definition is made:
“Let β − σ(x) be the balance disparity, for any sequence x, before searching any balancing
index z". This term indicates how far the weight of x is from the state of balance.
The main goal of this proposal is to set up a higher start point for the search of z, since it
always begins from zero regardless any balance disparity. Hence, this section mainly attempts
to find the correlation between β − σ(x) and z for any sequence. The first found index z is
enough to achieve balance and to end the loop. Nevertheless, one might also want to find all
the balancing sequences, thus step incrementation among the values of z is analyzed.
A 2-D plane containing all the sequence’s weights from the full set ∈ Aq of length n is traced
out in the Figures 3-2 & 3-3 a) to c). The balancing indices z’s6, associated to those qn
sequences, are drawn on the Y -axis. The balance disparity lies on the X-axis, and it is either
positive or negative. The 2-D plane has its origin in the coordinates (β − σ(x), z) = (0, 0),
point related to vectors with weight σ(x) = β. A point is located in the I-Quadrant if
σ(x) < β. On the other hand, every point located in the II-Quadrant meets σ(x) > β. E.g.
the plotting is made from the sequence 0000000000 to 2222222222 for q = 3 and n = 10.
Some examples to clarify this procedure are shown in the Appendix B-2.
The points from equal-weighted sequences are either overlapped or vertically aligned. The
term β − σ(x) lower approximates z in the I-Quadrant, thus the abscissas are matched with
the lowest ordinates. The initial values of z require an extra adjustment in the II-Quadrant.
Every point is aligned on a straight-line, located at least q units apart from any other parallel
set of points. Hence, such adjustment is z ≥ β − σ(x) + q ∗ j, where j is the straight-line
number. The straight-lines are numbered starting from the origin as j = 0. The estimation
of the parameter j is safely made by j = dβ−σ(x)

1−q e. Summarizing all the previous statements
into an expression, for any value of q and n is said:

z ≥ β − σ(x) + q ∗ j
{
j = 0 ∀ σ(x) ≤ β,
j ≥ 1 ∀ σ(x) > β.

(3-3)

Blue lines shaping the lower border in the 2-D plane are shown in the Figures 3-2 & 3-3 a)-c),
when applying this method. This technique is always precise for binary case as observed in
the Figure 3-2 a). None accuracy, but a good adjustment is achieved for some values of q and
n, as shown in the Figure 3-2 b) & d).
Swart and Weber demonstrate in [7] a property of σ(yi) or σ(z) named random walk, char-
acteristic from the weight of sequences ∈ Aq of length n, to increase and to decrease by steps
of one and q − 1 respectively. At least one of the them achieves balance σ(z) = β, state-
ment based on Knuth’s principles. Recalling the example of the sequence 2132041314, this

6All the balancing sequences of x are considered.
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3-1 q-ary Knuth-based Coding Scheme with Error Correction Capabilities 23

phenomenon is observed in the weight behavior from the Figure 3-3 d) (red dashed-line). As
shown before, six sequences achieve balance in this case, located over the blue dashed-line
that draws β. A collateral feature of the random walk is useful to speed up the search of z:
balancing indices are spaced among themselves by steps of q units, i.e. z, ..., z + qj ∀ j ≥ 1.
However, this statement does not affirm that balancing indices are necessarily consecutive.
Such property is seen in the vertical green straight-line, that connects the points from all the
balancing indices z’s, of randomly chosen vectors x in the Figures 3-2 & 3-3 a) to c), denoted
as σ(z)’s.
This technique fully guarantees to place all the balancing indices in phase (qj units away).
Although, the search of z might not start from lowest point, in the straight-line of the first
assertive index, but other qj units below. This method aims to be applicable for any value
of q or n. Further improvements for real applications can be made once such variables are
defined.

Figure 3-2: 2-D Plane of z versus β − σ(x) for: a) q = 2 & n = 18, b) q = 3 & n = 13, c)
q = 4 & n = 10 and d) q = 5 & n = 9.

Estimating the operational performance of this technique is difficult, due to the random
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24 Knuth-based Codes

Figure 3-3: 2-D Plane of z versus β − σ(x) for n = 4 & q = a) 16, b) 31 and c) 49. d) Weight
σ(z) vrs index z of the sequence “2132041314".

occurrence of the information. Nevertheless, an analytical way to measure performance can
be carried on, by comparing the average number of cycles of a full set of vectors ∈ Aq of
length n required to find the balancing indices z’s, with and without this implementation.
However, some sequences are more probable to occur than others in reality, in fact some of
them might never come out.
Several values of q and n are listed on the Figure 3-4 a), chosen small due to the computer
limitation handling large numbers (i.e. qn). Some numbers are not integers, but averaged
float values, after the division by the total number of sequences qn. The total number of
cycles per sequence before implementing this algorithm is listed on the third column (qn).
The minimum averaged iterations for each q and n are displayed in the forth column, if all
the balancing sequences were found in their first search attempt (calculations shown in the
Appendix B-1). The fifth column contains the number of iterations performed by this method,
for all the balancing sequences. Similarly, the sixth and seventh columns have the number of
iterations when only looking for the first balancing sequence, before and after applying this
technique respectively.
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3-2 Redundancy of q-ary Knuth-based Codes 25

The iterations of this method approach n when searching all the balancing sequences, as
shown in the fifth column, leading to a loop reduction of a factor of q, as well as the search
step. The number of laps slightly changes when increasing q if only the first z is needed.
However, an increment is expected for larger lengths n than those studied. The Figure 3-4 b)
displays a graph for different values of q and fixed n. The red curve describes the cases when
all balancing sequences are searched. Likewise, the blue curve is traced from calculations that
only contemplate the first balancing sequence. One or two iterations are required to find the
first z in average.
The number of balancing sequences, or balancing positions, is denoted by the letter v in [10],
where 1 ≤ v ≤ n/2 ∀ q = 2, and modified for q > 2 as 1 ≤ v ≤ n, due to the Matlab
calculations from Table B-1. Unlike binary case the occurrence distribution of balancing
positions ∀ q > 2 is not well-known7, some curves are shown in the Figure 3-5 b).
The establishment of a relevant upper bound is impossible, since the value v for a particular
vector ∈ Aq of length n is unpredictable. For instance, there are more balancing positions v’s
for sequences of weight close to β, than for those of weight near to 0 or 2β, for q = 3 and n = 10
in the Figure 3-5 a). Several attempts of finding an upper bound were performed, shown in
the upper blue curve in the Figures 3-2 & 3-3 a)-c), leading to negligible improvements in the
order of a hundred of an iteration.
This implementation is incorporated in the Matlab routine from the Appendix A-2.

Number of Iterations
q n All z's Found First z Found

Total (q*n) Minimum Reduced Average Reduced

2 10 20 4.92 9.52 3.50 1.63

2 14 28 5.87 13.32 4.50 2.02

3 6 18 3.48 5.78 3.96 1.47

3 10 30 4.55 9.60 5.62 1.90

4 8 32 3.95 7.70 6.47 1.77

5 6 30 3.36 5.79 6.62 1.58

7 6 42 3.33 5.81 9.22 1.62

8 4 32 2.69 3.90 7.88 1.35

9 4 36 2.68 3.90 8.85 1.36

10 4 40 2.68 3.90 9.80 1.36

11 4 44 2.68 3.90 11.05 1.37

12 4 48 2.68 3.90 11.16 1.37

13 4 52 2.67 3.90 10.54 1.37

14 4 56 2.67 3.91 10.60 1.37

15 4 60 2.67 3.91 12.18 1.38

16 4 64 2.67 3.91 14.63 1.38

31 3 93 2.25 2.95 29.47 1.31

Figure 3-4: a) Number of iterations per sequence ∈ Aq of length n in the full set, when searching
the balancing index z. b) Graph of q-Factor loop reduction for different q’s & fixed length n = 6.

3-2 Redundancy of q-ary Knuth-based Codes

In general, this method’s redundancy r and code rate R are calculated as r = n+ p− k and
R = k/(n + p) respectively, but redundancy can be examined in more detail. An important

7An expression to describe its behavior has not been found.
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26 Knuth-based Codes

Figure 3-5: a) Graph of Balance disparity versus Balancing positions (v’s) for q = 3 and
n = 10. b) Plot of Normalized balancing positions (v/n) versus Occurrence probability
[Pr(v)=Occurrences/qn] for q = 2, 3, 12 & n = 14, 10, 4.

definition is made in [13] & [7]: The number of sequences ∈ Aq of length n and weight equal
to β in the full set is denoted as Snq and named cardinality, where it is given by:

Snq = qn
√

6
πn(q2 − 1)

(
1 +O

( 1
n

))
(3-4)

This expression is fundamental because only balanced sequences are transmitted or stored.
An acceptable approximation is accomplished for large values of n, by making the term
O
(

1
n

)
≈ 0. The prefix p should be balanced, so the Equation 3-4 can be applied to it

too (Spq ). Additionally, the prefix length p must equal dlogq (qn)e at least, to be capable
to represent all the values of z. Both conditions are met when the cardinality is Spq ≥ qn.
Several code constructions have been proposed, decreasing redundancy almost by half, i.e. [13].
However, the Knuth’s method has easy decoding, less complexity and low memory resources
usage (short look-up tables), suitable for applications with long codewords. Therefore, the
normalized redundancy for this scheme is:

1
n logq(n) ∀ n >> 1. (3-5)

This is two times greater than that of the full balanced set, which is a trade-off for simplicity.
For this reason, reducing redundancy without loosing features is always under evaluation.
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Aiming to do that in the following sections, redundancy of q-ary codewords is reviewed by
the approaches: Transmitted Index, Auxiliary Information Encoding and A Better Variable-
Length-Prefix Construction. Additionally, computations are addressed under the assumption
that all codewords are independent and equiprobable. On the other hand, the prefix is as-
sumed of the length 1+logq(n), but not balanced. Moreover, the one from the term is required
to represent the symbol index s (not needed in binary).
Only conclusions based on small values are drawn, due to the Matlab limitations when han-
dling large numbers and their long execution, i.e. q = 3, 4, 5 & n ≈ 10.
Calculation logs of the entropies can be found in the Appendix B-3.

3-2-1 Transmitted Index Analysis

Low position indices are more prone to occur, because the encoder begins the inversion from
them prioritizing their selection to achieve balance. Additionally, balanced sequences x’s from
the studied q & n in the Table B-1 (e = 0) have the highest occurrence of them all. Recalling
the same premise examined in [10], implementing the variable-length-prefix scheme is an
improvement gap. Conveniently, shorter prefix lengths are required to depict low indices.
Thus, the prefix’s average length must be lower than logq(qn), due to the unequal index
distribution. The prefix is also considered user data dependent.
Only the first balancing position index found e is taken into account for this analysis. The
balancing symbol index s is irrelevant for the probability estimation. The transmitted index
is equal to e within the range 0 ≤ e < n, thus no distinction is made from now. Its maximum
value is n− 1, since the encoder never inverts the whole sequence. Some distributions of the
first balancing position index for different values of q & n can be seen in the Figure 3-6.

The format modification over e is made as 1 ≤ e ≤ n ∀ q = 2 in [10], for practical purposes.
Such change does not influence the results significantly. Binary sequences fall into the cate-
gory of Dyck words of length neven, given their symmetrical and bipolar nature. Thus, the
combinatorial behavior of their index distribution is described by the n-th Catalan Number.
Therefore, the following equation is applied in this particular case:

Pr1(2j) = Pr1(2j − 1) = n− 2j + 1
n2n−2

(
2(j − 1)
j − 1

)(
2(n/2− j)
n/2− j

)
∀ 1 ≤ j ≤ n/2. (3-6)

Where Pr1(2j) is the probability for the transmitted index e to equal 2j.
Unfortunately q-ary codewords follow other combinatorial rules. Nevertheless, some pecu-
liarities about the index distribution remain constant ∀ q ≥ 2, and they can be observed in
the Matlab calculations from the Table B-1. Sets of q indices have the same probability for
codeword lengths of the form n = qm ∀ m ≥ 1, denoted by Pr1(qj − i), where 1 ≤ j ≤ n/q
and 0 ≤ i ≤ q − 1 if adopting the format 1 ≤ e ≤ n. Notice that binary sequences also meet
this condition. The entropy of the transmitted index for q-ary sequences is computed as:

He(n) = −
n−1∑
e=0

Pr1(e) ∗ logq(Pr1(e)) (3-7)

Where Pr1(e) = N(e)
qn , and N(e) is the number of occurrences of e.

Figures 3-7, 3-8 and 3-9 a) show the entropy He(n) for different values of q. The entropy
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Figure 3-6: Distribution of the first balancing position index: Pr1(e) vrs e/n for different values
of q & n, where 0 ≤ e < n (based on the data from Table B-1).

He(n) is marginally one unit lower than logq(qn) for any q. But He(n) does not consider
the unit necessary to express the balancing symbol s. Thus, the reduction of redundancy is
negligible in this scheme for the cases under evaluation.

3-2-2 Review of Auxiliary Information Encoding

This section reviews whether or not the selection of balancing positions is used, to depict
additional information to reduce redundancy. As known, more than one balancing position
per sequence can achieve balance. The prefix ρ carries on the balancing position by default.
The number of balancing positions is variable among codewords, which are defined by the
user data. The maximum number of balancing positions is n ∀ q > 2, which doubles that
of binary codes (n/2), as shown by the Matlab calculations from Table B-1. The average
amount of information handed over by the selection of v is expressed as:

Ha(n) =
n∑
v=1

Pr2(v) logq(v) (3-8)
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Figure 3-7: Entropy of a) Transmitted Index He(n), b) Auxiliary Data Ha(n), and c) Average
Prefix Hu(n), versus log3(n) + 1 for q = 3 (nmax = 13).

Where Pr2(v) = N(v)/qn is the occurrence probability of the balancing position v.
The approximation Ha(n) ≈ 1

2 log2(n)−0.916 is made in binary, but codewords obey different
distributions ∀ q > 2. The Figures 3-7, 3-8 and 3-9 b) show the entropy Ha(n) for different
values of q. The entropy Ha(n) is lower than half logq(qn) for the studied cases. Thus,
the auxiliary data obtained from the balancing position selection compensates the excess of
Knuth-based code’s redundancy, in comparison with that of the full set of balanced codewords.

3-2-3 A Better Variable-Length-Prefix Construction

This section retakes the strategy explored in [9] and extend it to q-ary sequences, aiming
to rectify the previous attempt of implementing a variable-length-prefix scheme to reduce
redundancy. Encoding and decoding are addressed more efficiently this time. Recalling some
definitions: “The total number of sequences associated to the same balanced codeword in a
full set is denoted as d(y)". For instance, the balanced codeword 102 ∈ A3 is related to any
of the sequences {002, 022, 102}, thus d(102) = 3.
In general, the minimum value dmin(y) = q ∀ q ≥ 2. The upper bound is variable for q > 2,
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Figure 3-8: Entropy of a) Transmitted Index He(n), b) Auxiliary Data Ha(n), and c) Average
Prefix Hu(n), versus log4(n) + 1 for q = 4 (nmax = 10).

thus its maximum value is dmax(y) = qn. Both bounds can be seen in the Matlab calculations
from Table B-3.
Extending the definition in [9] to q-ary codes: “P (u, n) is the number of balanced codewords
y of length n with d(y) = u, such that

∑qn
u=q P (u, n) = Snq ". Consequently, the amount of

information necessary to represent the prefix is given by:

Hu(n) = q−n
qn∑
u=q

uP (u, n)logq(u) (3-9)

The Figures 3-7, 3-8 and 3-9 c) show the expression above for different values of q. The
redundancy of the full set of balanced codes ∈ Aq of length n, H0(n) = n − logq(Snq ), is
also plotted, where Snq is calculated using the Equation 3-4 with O

(
1
n

)
= 0. Finally, Hu(n)

is slightly greater than H0(n) for any value of q. Thereupon for the cases considered, this
scheme almost fully compensates the loss of redundancy, in comparison with that of the full
set of balanced codewords.
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Figure 3-9: Entropy of a) Transmitted Index He(n), b) Auxiliary Data Ha(n), and c) Average
Prefix Hu(n), versus log5(n) + 1 for q = 5 (nmax = 9).
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Chapter 4

Concatenated Codes

This chapter aims to apply the principles from [14] and extend them to larger alphabets than
binary.
Initially, the balanced block length 2l equals the summation of l-number of ones and zeros per
block, due to the symmetry of balanced binary vectors (β = l). However, this parameter lacks
of meaning for larger values of q. Besides, balanced sequence lengths over an odd alphabet
(qodd) are not necessarily even. Thus the block length is denoted as n hereafter, according to
the terminology previously used within this text.
The main idea extracted from the proposal by van Tilborg and Blaum in [14] is the construc-
tion of prefix-less balanced codewords, conformed by the concatenation of a fixed number N
of balanced blocks of length n. Extending the definition to any q & n with cardinality Snq :
“Snq blocks are taken as symbols in an alphabet. An error correcting code of length N is built,
securing a minimum distance of t + 1 over that alphabet. Additionally, the distance among
those Snq blocks is at least 2 (balanced set feature by default). Hence, the balanced codewords
created have a minimum distance of 2t+ 2, which is enough to correct up to t errors".
Five different codeword constructions are exhibited in [14], involving similar procedures and
principles, i.e. 2.1− 2.5. However, only Constructions from 2.2 to 2.5 are referred in the next
sections, since construction 2.2 is an improvement over 2.1.
The expression for the balanced set distribution U from [14] is extended to q-ary sequences
such that:

x’(i+ L) = (q − 1) ∗ 1	q x’(i) ∀ 0 ≤ i < L = bSnq /2c (4-1)

An adjustment over L is necessary because the cardinality Snq is always odd for odd values of
q. Thus, the remaining vector not included in the first 2L codewords is moved at the end of
U , as shown in the position 6 from Figure 4-1 a). The same principle prevails: two groups of
L members, in which any two vectors with the maximum achievable distance are separated
L positions from each other. The last element of U is only considered by Construction 2.3 in
the event of Snq being a prime power. All other constructions implicitly discard this element
by partially using the balanced set.

Two of the valuable features introduced by binary concatenated codes of length 2l are:
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U P

012 0
021 1
102 2

210 3
201 4
120 5

111 6

GF (9) GF (3) U

0 00 08
1 10 17
2 01 26
3 12 35
4 22 80
5 20 71
6 02 62
7 21 53
8 11 44

GF (4) GF (2)
0 00
1 10
2 01
3 11

Figure 4-1: a) Balanced Set U , for q = 3, n = 3 and L = 3. b) Extension field over GF (32),
through the primitive polynomial x2 + x+ 2, balanced set U for q = 9 and n = 2. c) Extension
field over GF (22), through the primitive polynomial x2 + x+ 1.

• Restrict the Runlength of a bit to 2l at most, term defined in [17] as “the length of time
usually expressed in channel bits between consecutive transitions", i.e. the runlengths
in the sequence 100111000011111 are 1, 2, 3, 4 and 5.

• Constraint the maximum Digital Sum Variation (DSV) to l, measure of the DC compo-
nent in a code. Where the DSV denoted as zi of a bipolar sequence {xi} = {x1, ..., xi, ..., xn},
with xi ∈ {−1, 1}, is defined by:

zi =
n∑
i=1

xi = zi−1 + xi (4-2)

Where z0 = 0 and the DSV should be kept under reasonable bounds. e.g. after replacing
the logic low & high values {0, 1} with {−1,+1}, the vector x = 011000111100 is
depicted as x = −1,+1,+1,−1,−1,−1,+1,+1,+1,+1,−1,−1, thus its accumulated
charge (DSV) is z = −1, 0, 1, 0,−1, −2,−1, 0, 1, 2, 1, 0.

Constructions from 2.2 to 2.5 in [14] are briefly explained and extended for q ≥ 2, some Tables
are shown in Appendix C (n ≥ 4 for binary to ensure dmin = 2).

4-1 Construction 2.2

This configuration only contemplates the first 2L elements from the balanced set U , after
performing the distribution from 4-1. N elements from U : {0, 1, ..., 2L− 1} are selected into
the subset I : {i0, i1, ...iN−1}, such that the sum of its symbols results zero over the ring ZL,
i.e. I : {i0 ⊕L i1 ⊕L ... ⊕L iN−1 = 0}. The first N − 1 elements of I are chosen the same as
the information ∈ A2L. The N th element is a check symbol over ZL to guarantee a minimum
distance of t + 1 in the set. The symbols from I are the positions of the vectors in U of
which the final codeword is composed. The overall hamming distance of the code is fixed
d = 2 ∗ 2 = 4, and it is given by the minimum distance of U and the selection of I. Thus, this
configuration is capable to correct a single error.
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The code rate is calculated as R ≈ logq((2L)N−1)/(nN). The numerator blogq((2L)N−1)c is
the number of elements from the input u ∈ Aq, required to represent an information vector
u ∈ A2L of length N − 1. The denominator nN is the total length of the codeword.
We review a simple example for q = 3, n = 3, and N = 4. The cardinality for this case is
S3

3 = 7, thus L = bS3
3/2c = b7/2c = 3. For instance, if the message is 2222 the alphabet

conversion is carried on as u = 2222 ∈ A3 → 80 → u = 212 ∈ A6 (80 is the decimal value),
leading to the first N−1 = 4−1 = 3 elements of I : {2, 1, 2}. The forth symbol is i3 = 1, since
2+1+2+1 = (6)mod3 = 0. This configuration grants the freedom of selecting i3 equal to 1 or
1 + L = 1 + 3 = 4, i.e. I = {2, 1, 2, 1} or I = {2, 1, 2, 4}. Choosing i3 = 1, then swapping the
elements of I for those of U as displayed in the Figure 4-1 a), the vector x = 102 021 102 021
is formed. If an error takes place in the second position, y = 112 021 102 021, the decoder will
detect an unbalance in the first triplet of elements and correct the error by performing inverse
operations. There is a pair of possible solutions, i.e. I : {1⊕32⊕31⊕32 = 1⊕32⊕31⊕35 = 0},
but 112 is closer to 102 than to 120 (positions 2 & 5 in U), thus the decision is made in favor
of 102.
The resulting code rate is R = blog3((2 ∗ 3)4−1)c/(3 ∗ 4) = 0.333.

4-1-1 Further Improvements

Van Tilborg and Blaum also present a potential improvement to increase error correction ca-
pabilities. The balanced set is arranged in groups with variable number of codewords named
classes, and maximum distance achievable among the members of each class. The variable
L is redefined as the number of classes in U . The parity check operation is applied over the
classes to lead zero in ZL. In other words, a codeword is integrated by vectors, in such a way
that the sum of the classes to which they belong results zero over ZL.

4-2 Construction 2.3

In this configuration N vectors from U are chosen as symbols from an alphabet {0, 1, ...Q−1},
where Q = pmr is the largest prime power such that Snq ≥ Q. Any block code C′ of the form
(mN, k, t + 1) over GF (pr) can be used. Finally, the elements of C are the positions of the
vectors from U . Their mapping is carried on as C′ → C ∈ FNQ by extension fields if m > 1.
The overall minimum distance of the code is dmin = 2(t + 1), derived from the combination
of C′ with the minimum distance in U . The code rate is determined as R ≈ logq(Qk)/(nN).
Similarly, the numerator is the number of data elements ∈ Aq, representing k symbols ∈ AQ.
We take a look at the case q = 9, n = 2, N = 4 and cardinality S2

9 = Q = 9. For instance, if
a message is u = 46 ∈ A9 → 42 → u = 1120 ∈ A3, a 2-tuple vector over GF (3) is necessary
for the extension field GF (9) = GF (32), thus a block code twice the size of N is build. The
vector C′ = 22201120 ∈ F8

3 is created by applying the Hamming Code (8, 4, 3) over GF (3).
The use of the extension fields from Figure 4-1 b) to express C′ as symbols of Q leads to a final
output of C = 4585 ∈ F4

9. The vector x = 80714471 is generated by replacing the elements of
C for those of U , as displayed in the Figure 4-1 b).
This code C′ guarantees a minimum distance of 3 by default. The overall minimum distance
of the code is d = 2 ∗ 3 = 6, correcting up to t = (6 − 2)/2 = 2 errors. The code rate is
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calculated as R = log9(34)/(2 ∗ 4) = 0.25.
Notice that this construction does not depend on the distribution of the balanced set U .

4-3 Construction 2.4

This construction is intended for cardinalities which can be expanded as factors of prime
powers, such that Snq = Q0 x Q1 x Q2 x ... x Qj−1, where Qj = p

mj
rj is a prime power, and j is

the number of factors. Therefore, j ∗N codewords from U are chosen, building j block codes
of length N over GF (Q0), GF (Q1), GF (Q2), ..., GF (Qj−1) respectively, likewise Construc-
tion 2.3. Originally in Constructions 2.3− 2.5 van Tilborg and Blaum proposed the mapping
from bits to any other alphabet. This technique is valid for any q, such that logq(Q

kj

j ) ≥ 1,
requirement usually defined by the parameter N .
Minimum distances are set up independently by every block code, d0, d1, d2, ..., dj−1, but the
reference is based on the smallest of them all for simplicity. The overall distance of the code
is calculated as d = 2 ∗min{d0, d1, d2, ..., dj−1}, where the factor 2 comes from the minimum
distance of U . The code rate is specified by R ≈ logq(

∏j−1
i=0 Q

ki
i )/(nN), analogously to Con-

struction 2.3.
For instance, the cardinality in case q = 2 and n = 10 is expanded as S10

2 = 252 = 4
x 7 x 9. Blocks of length N = 4 are made via extension fields, by applying the Ham-
ming Codes: (8, 4, 3) over GF (2), (8, 4, 3) over GF (3) and (4, 2, 3) over GF (7). If the
message is u = 111011111100001 the following codes are generated: C′0 = 10011110 ∈ F8

2,
C′1 = 00022100 ∈ F8

3 and C2 = 6501 ∈ F4
7. Applying transformations over C′0 and C′1 by the

extension fields from Figures 4-1 b) & c), we obtain C0 = 1231 ∈ F4
4 and C1 = 0670 ∈ F4

9.
Finally, the code C of which the elements indicate the positions of the vectors in U is formed
as C = C0, C1, C2 = 123106706501.
The code rate and minimum distance are R = blog2(42 ∗ 72 ∗ 92)c/(10 ∗ 4) = 0.375, and
d = 2 ∗min{3, 3, 3} = 6 respectively. Thus, t = (6− 2)/2 = 2 errors can be corrected.
Sorting out U to increase minimum distance is irrelevant for this configuration, unlessmax{Qj}
codewords with greater distance among them are arranged.

4-4 Construction 2.5

This configuration was initially contemplated for binary alphabet and its even cardinalities,
however it can be extended to even values of q. This construction equals 2.4 in essence with
an additional implementation.
Once the cardinality is expanded as Snq = Q0 x Q1 x Q2 x ... x Qj−1, where Q0 = 2m0 , if:

• m0 = 1, a parity check code of the form (N,N − 1, 2) is build.

• m0 > 1, two binary codes of the form (N,N, 1) are build.

The distance of the binary codes is optimal, since only two vectors from U are required. Thus,
any pair of codewords x’(i+L) and x’(i) with maximum distance d = n(q−1) is chosen. The
overall distance of the code is calculated as d = min{n(q − 1) ∗ d0, 2 ∗ d1, 2 ∗ d2, ..., 2 ∗ dj−1},
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where d0 is either 2 if m0 = 1, or 1 otherwise.
For instance, the cardinality is expanded as S4

2 = 6 = 2 x 3 in case q = 2, n = 4. If
blocks of length N = 5 are set up, the following codes are built: binary parity check (5, 4, 2)
and Ham(3, 3) : (5, 2, 3). If message is u = 1011101 the codes: C′0 = 10111 ∈ F5

2 and
C1 = 00112 ∈ F5

3 are created. The binary code C′0 is modified as C0 = L∗C′0 = 30333 to ensure
the selection of the vectors x’(0 + 3) and x’(0) in U (L = 3).
The code rate and distance are R = logq(

∏
Qk)/(nN) = log2(24 ∗ 32)/(4 ∗ 5) = 0.35 and

d = min{2 ∗ 4, 2 ∗ 3} = 6 respectively. Thus, t = (6− 2)/2 = 2 errors can be corrected.
Another example is for q = 4 & n = 4, with cardinality expressed as S4

4 = 44 = 4 x 11. If
blocks of length N = 6 are assembled the following codes are built: 2 x binary (6, 6, 1) and
Ham(11, 2) : (6, 4, 3). The message is u = 132210332211 ∈ A4 and its first six elements are
converted to binary, creating the codes: C′0 = 011110 and C′1 = 100100, both ∈ F6

2. The codes
C′0 and C′1 are modified since L = 44/2 = 22, such that C0 = 22 ∗ C′0 = (0, 22, 22, 22, 22, 0) and
C1 = 22∗C′1 = (22, 0, 0, 22, 0, 0) respectively. Thus, the selection of the vectors x’(22) and x’(0)
in U is settled. The last code is applied over the last six elements of u, i.e. C2 = 613011 ∈ F6

11
(332211 ∈ A4 → 4005→ 3011 ∈ A11).
The code rate is R = 12/(4∗6) = 0.5. The distance between x’(22) and x’(0) is d = n(q−1) =
4 ∗ (4− 1) = 12 or d(x’(22),x’(0)) = d(0033, 3300) = 12. The minimum distance of the code
is determined as d = min{12, 2 ∗ 3} = 6. Thus, t = (6− 2)/2 = 2 errors can be corrected.
The Table 4-1 shows the feasibility of Constructions from 2.2 to 2.5 for different values of q
and n. The selection criteria is outlined as follows:

• Cardinalities below 105 to ensure low use of memory resources for Construction 2.2.

• Prime powers below 103 to secure smooth block code constructions over GF (Qj).

• Block lengths n’s less or equal to 10 to keep a good ratio between t and R.

• Alphabet values q’s below 20 to fulfill all of the above.

• Cardinalities expanded by more than one factor for Constructions 2.4 and 2.5.

• Values of N that allow logq(Q
kj

j ) ≥ 1 for Constructions 2.4− 2.5.

• Even alphabets qeven for Construction 2.5.
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q n Cardinality Greatest PP. Factors 2.2 2.3 2.4 2.5

2 4 6 5 2,3 x x x x

2 6 20 19 4,5 x x x x

2 8 70 67 2,5,7 x x x x

2 10 252 251 4,9,7 x x x x

3 2 3 3 3 x x

3 3 7 7 7 x x

3 4 19 19 19 x x

3 5 51 49 3,17 x x x

3 6 141 139 3,47 x x x

3 7 393 389 3,131 x x x

3 8 1107 1103 27,41 x x

3 9 3139 3137 43,73 x x

4 2 4 4 4 x x x

4 4 44 43 4,11 x x x x

4 6 580 577 4,5,29 x x x x

4 8 8092 8089 4,7,289 x x x

5 2 5 5 5 x x

5 3 19 19 19 x x

5 4 85 83 5,17 x x x

5 5 381 379 3,127 x x x

5 6 1751 1747 17,103 x x

6 2 6 5 2,3 x x x x

6 4 146 139 2,73 x x x x

6 6 4332 4327 4,3,361 x x x

7 2 7 7 7 x x

7 3 37 37 37 x x

7 4 231 229 3,7,11 x x x

8 2 8 8 8 x x x

8 4 344 343 8,43 x x x x

9 2 9 9 9 x x

9 3 61 61 61 x x

9 4 489 487 3,163 x x x

9 5 3951 3947 9,439 x x

9 6 32661 32653 9,19,191 x x

10 2 10 9 2,5 x x x x

10 4 670 661 2,5,67 x x x x

10 6 55252 55249 4,19,727 x x x

11 2 11 11 11 x x

11 3 91 89 7,13 x x x

11 4 891 887 81,11 x x x

11 5 8801 8783 13,677 x x

11 6 88913 88903 11,59,137 x x

12 2 12 11 4,3 x x x x

12 4 1156 1153 4,289 x x x

13 2 13 13 13 x x

13 3 127 127 127 x x

13 4 1469 1459 13,113 x x

14 2 14 13 2,7 x x x x

14 4 1834 1831 2,7,131 x x x

15 2 15 13 3,5 x x x

15 3 169 169 169 x x

15 4 2255 2251 5,11,41 x x

15 5 30381 30367 3,13,19,41 x x

16 2 16 16 16 x x x

16 4 2736 2731 16,9,19 x x x

17 2 17 17 17 x x

17 3 217 211 7,31 x x x

17 4 3281 3271 17,193 x x

18 2 18 17 2,9 x x x x

18 4 3894 3889 2,3,11,59 x x x

19 2 19 19 19 x x

19 3 271 271 271 x x

19 4 4579 4567 19,241 x x

20 2 20 19 4,5 x x x x

20 4 5340 5333 4,3,5,89 x x x

Table 4-1: Construction feasibility of Concatenated Codes for q ≤ 20 and n ≤ 10.
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Chapter 5

Binary Codes Comparison

The aim of this section is the comparison between Knuth-based and Concatenated binary
codes. The characteristics: Code Rate R and Digital Sum Variation (DSV) are evaluated.
The analysis is based on the code constructions from the Tables 5-1 and 5-2, which are briefly
explained along the following lines.
BCH Codes are selected to increase correction capabilities up to 2 errors in Knuth-based
binary codes. Shortening over the codes: (15, 7, 5), (31, 21, 5), (63, 51, 5), (127, 113, 5) and
(255, 239, 5) is required to obtain even values of n to apply balancing. E.g. the code (12, 4, 5)
from the first line in Table 5-1 is determined by subtracting 3 units from n and k, i.e.
(15− 3, 7− 3, 5).
Prefix constructions are derived from the look-up tables based on the cardinalities of balanced
codes with distance d2 ≥ 4 in Table 3-3 a). Therefore, only single error over the prefix can be
corrected. Equal error correction capabilities for the prefix and the bulk segments (d2 = 5)
involved much longer calculation cycles by computer, leading to negligible changes over the
DSV and the Code Rate for n >> p.
For instance, if the binary message is u = 1101, the balanced vector x = 110100101010 ∈ C1
is generated (z = 0) when applying the previous BCH code. Thus, the bulk has correction
capabilities up to t = (5−1)/2 = 4 errors. The prefix ρ = 00001111 ∈ C2 represents the index
z = 0, since C2 : A2(8, 4, 4) = 14 ≥ n = 12 from the Table 3-3 a) for single error correction
t = b(4 − 1)/2c = 1. The code rate for this example is R = k/(p + n) = 4/(8 + 12) = 0.2.
The binary Knuth-based encoder is shown in the Appendix A-4.
The construction 2.3 is chosen due to its highest rates among all the Concatenated Code
configurations. The hamming distance of Construction 2.3 is d = 6, given the multiplication
of the distance from the Hamming codes by the minimum distance of the balanced set U .
Correction up to 2 errors is always possible, however Matlab limitations occur if increasing
error correction capabilities. Such software tool only offers block codes over binary finite
fields GF (2m). The development of block code routines over greater prime powers, needed
for t > 2, is out the scope of this dissertation.
We revise the construction for l = 5 and N = 3 in Table 5-2 as calculation sample. The pa-
rameter l has the related cardinality of S10

2 = 252. Thus, the greatest prime power admissible
is Q = 251 < S10

2 . The Hamming Code (3, 1, 3) over GF (251) is applied for only one data
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symbol. If the binary message is the all-ones vector u = 1 of length n = 7 its decimal value
u = 127 ∈ A251 represents an unitary symbol, since k = blog2(2511)c = 7 bits. Finally, the
code rate is calculated as R = 7/(2 ∗ 5 ∗ 3) = 0.233 ≈ log2(Qk)/(2lN). The remaining cases
in the Table 5-2 are calculated in the same manner. The parameter N varies, thus diverse
data lengths k are derived.

k n p R

4 12 8 0.2

6 14 8 0.273

8 18 10 0.286

14 24 10 0.412

18 28 10 0.474

20 30 10 0.5

30 42 12 0.556

38 50 12 0.613

44 56 12 0.647

48 60 12 0.667

50 62 12 0.676

56 70 12 0.683

70 84 12 0.729

82 96 12 0.759

92 106 12 0.78

k n p R

100 114 12 0.794

106 120 12 0.803

110 124 12 0.809

112 126 12 0.812

128 144 14 0.81

148 164 14 0.831

166 182 14 0.847

182 198 14 0.858

196 212 14 0.867

208 224 14 0.874

218 234 14 0.879

226 242 14 0.883

232 248 14 0.885

236 252 14 0.887

238 254 14 0.888

Table 5-1: Binary Knuth-based Code constructions, with correction capabilities up to 2 errors.

5-1 Code Rate Comparison

Binary Concatenated Codes (Construction 2.3) with double error correction capabilities for
l = 2, 3, 4 & 5 are shown in the Table 5-2. The larger the size of l, the greater the code
rate R. The rates of Knuth-based Codes are higher than those from Concatenated Codes
for l = 2 and k ≥ 9, as shown in the Figure 5-1 a). Nevertheless, a fair comparison starts
approximately from k ≥ 18, because only single error in the prefix is contemplated. The
influence of prefix length over the code rate is minimal at that point, i.e. R = k/(p + n) =
18/(14 + 28) = 0.429 ≈ 0.474 rather than with p = 10 as in Table 5-1, since p = 14 according
to A2(14, 6, 7) = 42 > n = 28 in [7] for correction up to t = b(6 − 1)/2c = 2 errors. Similar
assumption can be safely made for l = 3 in the Figure 5-1 b), where Knuth-based Codes have
better performance for k ≥ 38, R = 38/(16 + 50) = 0.576 ≈ 0.613, instead of k = 20.
The rates of Knuth-based Codes are higher than those from Concatenated Codes at any time
for l = 4, 5 in the Figures 5-2 a) & b). However, the comparison is fair for k ≥ 30 in both
cases, since R = 30/(14 + 42) = 0.536 ≈ 0.556 (the prefix influence over R is marginal).
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k l N R

4 2 4 0.25

6 2 5 0.3

9 2 6 0.375

16 2 10 0.4

18 2 11 0.409

20 2 12 0.417

30 2 16 0.469

39 2 20 0.488

44 2 22 0.5

48 2 24 0.5

51 2 25 0.51

58 2 28 0.518

71 2 35 0.507

83 2 40 0.519

92 2 44 0.523

102 2 48 0.531

106 2 50 0.53

111 2 52 0.534

113 2 53 0.533

130 2 60 0.542

148 2 68 0.544

167 2 76 0.549

183 2 83 0.551

197 2 89 0.553

208 2 94 0.553

218 2 98 0.556

227 2 102 0.556

232 2 104 0.558

236 2 106 0.557

239 2 107 0.558

k l N R

4 3 3 0.222

8 3 4 0.333

16 3 6 0.444

21 3 7 0.5

33 3 10 0.55

38 3 11 0.576

46 3 13 0.59

50 3 14 0.595

59 3 16 0.615

72 3 19 0.632

84 3 23 0.609

93 3 25 0.62

101 3 27 0.623

106 3 28 0.631

110 3 29 0.632

114 3 30 0.633

131 3 34 0.642

148 3 38 0.649

169 3 43 0.655

182 3 46 0.659

199 3 50 0.663

208 3 52 0.667

220 3 55 0.667

229 3 57 0.67

233 3 58 0.67

237 3 59 0.669

k l N R

6 4 3 0.25

18 4 5 0.45

30 4 7 0.536

48 4 10 0.6

72 4 14 0.643

84 4 16 0.656

103 4 19 0.678

109 4 20 0.681

115 4 21 0.685

151 4 27 0.699

169 4 30 0.704

218 4 38 0.717

236 4 41 0.72

k l N R

7 5 3 0.233

15 5 4 0.375

23 5 5 0.46

31 5 6 0.517

39 5 7 0.557

47 5 8 0.588

71 5 11 0.645

95 5 14 0.679

103 5 15 0.687

111 5 16 0.694

151 5 21 0.719

167 5 23 0.726

183 5 25 0.732

199 5 27 0.737

239 5 32 0.747

Table 5-2: Binary Concatenated Code Construction 2.3 for l = 2, 3, 4 & 5, with correction
capabilities up to 2 errors.

5-2 Digital Sum Variation Comparison

This section is intended for the analysis of the accumulated charge from Knuth-based and
Concatenated binary codes.
The message lengths of both codes k are restricted to differ by only 3 units between them in
all the graphs. This tolerance is necessary given the distinct nature of their constructions.
Moreover, the DSV is data dependable, so there are 2k possible outcomes to plot out. However,
this comparison is mostly narrowed down to critical cases with the highest disparity.
Some comparisons of the DSV between Knuth-based and Concatenated binary codes are
shown in the Figures 5-3 and 5-4, for the message u = 1 (all-ones vector) of different lengths
k. As expected, the DSV of Concatenated Codes always resides between the bounds ±l for
l = 2, 5, 3 & 4 regardless the codeword length (2lN).
Furthermore, the DSV of the prefix’s segment from the Knuth-based Codes can be easily
distinguished in the beginning of each plot. Its impact over the overall DSV of codeword
is minimal if p << n. The minimum disparity in each case approaches −n/2 if p << n,
characteristic related to the way the balancing is applied over the bulk’s segment.
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The DSV comparisons between both codes for the message u = 0 (all-zeros vector) of distinct
lengths k are plotted out in Figures 5-5 and 5-6. Once more, the DSV of Concatenated
Codes always fluctuates within the bounds ±l (l = 5, 3, 4 & 2) for any the codeword length.
The influence of the prefix over the whole DSV from the Knuth-based Codeword decreases if
p << n. The maximum disparity of each case equals n/2, because of the balancing applied
to the payload.

The Figures 5-7 and 5-8 display several comparisons of the DSV between both codes for
randomly chosen messages of different length. The DSV of Concatenated Codes remains in
the bounds ±l (l = 4, 2, 5 & 3) in all the cases. The minimum and maximum disparities
of Knuth-based Codes are less harsh than those of previous inputs (all-ones/zeros vectors).
However, the variation of the disparities is uncontrolled.

The DSV of binary Knuth-based Codes oscillates within the range (−n/2, n/2] for the studied
information inputs. On the other hand, the DSV of binary Concatenated codes varies within
the range [−l, l] for all the reviewed messages, where l << n/2 for large values of n.
The price to pay for keeping the DSV between reasonable bounds is the decrease of code
rates, as in Concatenated Codes. The Knuth-based Codes have indeed higher rates, but also
have large disparities in some cases.
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Figure 5-1: Rate of Binary Codes: a) Knuth-based & Concatenated (Construction 2.3 with
l = 2), b) Knuth-based & Concatenated (Construction 2.3 with l = 3). For correction up to
t = 2 errors, their parameters are listed on Tables 5-1 & 5-2.
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Figure 5-2: Rate of Binary Codes: a) Knuth-based & Concatenated (Construction 2.3 with
l = 4), b) Knuth-based & Concatenated (Construction 2.3 with l = 5). For correction up to
t = 2 errors, their parameters are listed on Tables 5-1 & 5-2.
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Figure 5-3: DSV of Binary Codes: a) Knuth-based k = 6, p = 8 & n = 14 and Concatenated
k = 6, N = 5 & l = 2, b) Knuth-based k = 30, p = 12 & n = 42 and Concatenated k = 31,
N = 6 & l = 5, for all-ones message.
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Figure 5-4: DSV of Binary Codes: a) Knuth-based k = 110, p = 12 & n = 124 and Concatenated
k = 110, N = 29 & l = 3, b) Knuth-based k = 236, p = 14 & n = 252 and Concatenated
k = 236, N = 41 & l = 4, for all-ones message.
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Figure 5-5: DSV of Binary Codes: a) Knuth-based k = 14, p = 10 & n = 24 and Concatenated
k = 15, N = 4 & l = 5, b) Knuth-based k = 38, p = 12 & n = 50 and Concatenated k = 38,
N = 11 & l = 3, for all-zeros message.
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Figure 5-6: DSV of Binary Codes: a) Knuth-based k = 82, p = 12 & n = 96 and Concatenated
k = 84, N = 16 & l = 4, b) Knuth-based k = 196, p = 14 & n = 212 and Concatenated
k = 197, N = 89 & l = 2, for all-zeros message.
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Figure 5-7: DSV of Binary Codes: a) Knuth-based k = 18, p = 10 & n = 28 and Concatenated
k = 18, N = 5 & l = 4, b) Knuth-based k = 44, p = 12 & n = 56 and Concatenated k = 44,
N = 22 & l = 2, for random messages.
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Figure 5-8: DSV of Binary Codes: a) Knuth-based k = 148, p = 14 & n = 164 and Concatenated
k = 151, N = 21 & l = 5, b) Knuth-based k = 236, p = 14 & n = 252 and Concatenated
k = 237, N = 59 & l = 3, for random messages.
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Chapter 6

Conclusions and Recommendations for
Future Research

This project was undertaken to explore charge balancing methods with error correction ca-
pabilities, and to develop or extend techniques for q-ary codes. After studying the literature
of block codes, Hamming encoder and decoder routines for prime numbers of q were imple-
mented via Matlab tools.
This document went over the fundamentals of Knuth’s balancing method for q-ary sequences.
The Knuth-like coding scheme with error correction capabilities has been extended from bi-
nary to q-ary codes. Some prefixes were calculated using Matlab tools, due to the current
lack of sources for the bounds from q-ary constant weight codes. The ECC from q-ary Knuth-
based Codes were added through Hamming Encoder.
One of the more significant findings to emerge from this study is a technique to reduce iter-
ations to find the balancing indices z’s. A higher start point for the search of z’s is set up
by this algorithm, since it begins from zero in the previous one. An analytical performance
measure was carried on, by calculating the average iterations of this method needed to find
z’s in a full set. Additionally, the number of loops per sequence executed by the existent
algorithm is qn. The search of all balancing indices is accelerated by a factor of q, as well as
the separation between indices. The necessary cycles if only looking for the first z were only
determined for some sequence lengths n shorter than 14.
Most of the computations which involve practical values of q and n were either inconclusive
or infeasible via Matlab, due to the long execution when handling large numbers (qk). Thus,
general conclusions were not confirmed in order to reduce the redundancy of q-ary codes, i.e.
Transmitted Index, Auxiliary Information Encoding and A Better Variable-Length-Prefix
Construction. Nevertheless, some attributes from q-ary codes were identified and the entropy
expressions were extended based on them.
This work contributes to existing knowledge of Concatenated Codes, by examining the feasi-
bility of four constructions for values of q ≤ 20 using Hamming encoding. Several restrictions
were mostly traced to ensure low use of memory resources, and to secure smooth block code
constructions over finite fields. Moreover, the current findings add substantially to future
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understanding of q-ary Concatenated Codes.
The comparison of the code rates and the digital sum variation between Knuth-based and
Concatenated binary codes has been presented. However, the generalisability for q-ary codes
is subject to certain limitations, such as block codes over binary finite fields are only found
in Matlab libraries. Consequently, the comparison between Concatenated and Knuth-based
Codes has been restricted to binary and double error correction capabilities. The results of
this study suggest that the price to pay for keeping the DSV between reasonable bounds is a
decrease of code rates, as in Concatenated codes. Since Knuth-based codes have higher rates,
but also large disparities in some cases.

Some recommendations are listed as follows:

• Further investigations is needed to estimate combinatorial expressions for q-ary codes,
to describe distributions such as the transmitted index and the balancing positions in
a full set, required to carry out the evaluation of redundancy-reductive techniques.

• Further research might explore an optimal algorithm for q-ary constant weight codes,
to find the maximum number of sequences in the balanced set with distances that allow
error correction, in order to build prefixes for q-ary Knuth-based Codes.

• More broadly, work is also necessary for further comparison between q-ary Knuth-based
and Concatenated codes. Thus, block codes over GF (q) with multiple error correction
capabilities have to be implemented using software tools.

• It would be interesting to examine techniques for the mapping from extension fields
to original alphabet symbols. The latter elements must remain invariable within code-
words, since they can have real and physical meaning. Then, Knuth-based Codes can
be feasible for any q.
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Appendix A

Matlab Routines

A-1 q-ary Hamming Encoder/Decoder

1 function [ x ]=eHam (u , n , q )
2 % Hamming Encoder for prime numbers of q
3 [ u , k , r , P ]=deal ( mod (u , q ) , length (u ) ,n−length (u ) , [ ] ) ;
4 if ~isprime (q ) | | r<2, % Only for prime numbers
5 x =[ ] ;
6 return
7 end
8 r0=ceil ( log10 ( ( q−1)∗n+1)/log10 (q ) ) ;
9 r (r<r0 )=r0 ;

10 if q==2,
11 r (r<3)=3;
12 [ ~ , G ]=hammgen (r ) ;
13 G ( : , 1 : r−n+k ) = [ ] ;
14 x=mod (u∗G ( 1 : k , 1 : n ) ,q ) ;
15 return
16 end
17 %*********************Parity Check Equations*********************
18 for i=1:power (q , r )−1,
19 p0=dec2vect ( power (q , r )−i , q , r ) ;
20 for m=1:q−1,
21 if any ( ismember ( mod (m ∗ [ eye (r ) ; P ] , q ) ,p0 , ’rows’ ) ) ,
22 break
23 elseif m==q−1,
24 P ( end+1 ,1:r )=p0 ;
25 end
26 end
27 if size (P , 1 )>=k ,
28 break
29 end
30 end
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31 %****************************************************************
32 G=[P , eye (k ) ] ;
33 x=mod (u∗G , q ) ;
34 end

1 function [ u ]=dHam (x , k , q , CL )
2 % Hamming Decoder for prime numbers of q
3 [ n , r , P ]=deal ( length (x ) , length (x )−k , [ ] ) ;
4 if r<=1,
5 u=mod (x ( 1 : k ) ,q ) ;
6 return
7 elseif n>floor ( ( power (q , r )−1)/(q−1) ) ,
8 u =[ ] ;
9 return

10 end
11 %*********************Parity Check Equations*********************
12 if q>2,
13 for i=1:power (q , r )−1,
14 p0=dec2vect ( power (q , r )−i , q , r ) ;
15 for m=1:q−1,
16 if any ( ismember ( mod (m ∗ [ eye (r ) ; P ] , q ) ,p0 , ’rows’ ) ) ,
17 break
18 elseif m==q−1,
19 P ( end+1 ,1:r )=p0 ;
20 end
21 end
22 if size (P , 1 )>=k ,
23 break
24 end
25 end
26 H=[eye (r ) , mod(−P ’ , q ) ] ;
27 %****************************************************************
28 elseif q==2,
29 r (r<3)=3;
30 H=hammgen (r ) ;
31 H ( 1 : r−n+k , : ) = [ ] ;
32 H=H ( : , end+1−n : end ) ;
33 end
34 [ s , e ]=deal ( mod (x∗H ’ , q ) , zeros (1 , n ) ) ;
35 if any (s ) ,
36 %********* Decoding by Coset Leader for Low Values of k *********
37 if any (CL ) ,
38 G=[P , eye (k ) ] ;
39 for i=0:power (q , k )−1,
40 u0=dec2base (i , q , k ) ;
41 u0=base2dec (u0 ( : ) ,q ) ’ ;
42 e=mod (u0∗G+[zeros (1 , k ) ,s ] , q ) ;
43 if sum (e )==1, % Minimum Weight Achievable
44 break
45 end
46 coset (i+1 ,1:n )=e ;
47 end
48 if sum (e ) >1,
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49 ind=find ( sum ( coset , 2 )==min ( sum ( coset , 2 ) ) ) ;
50 e=coset ( ind (1 ) , : ) ;
51 end
52 %****************************************************************
53 else
54 for i=1:q−1,
55 e=i∗ismember ( mod (i∗H ’ , q ) ,s , ’rows’ ) ’ ;
56 if any (e ) ,
57 break
58 end
59 end
60 end
61 x=mod (x−e , q ) ;
62 end
63 u=mod (x (end−k+1:end ) ,q ) ;
64 end

A-2 This function finds Balancing Sequences and Indices of q-ary
Codes

1 function [ BS ] = b (x , q )
2 % Balancing of q-ary Sequences
3 % This routine finds all the Balancing Sequences and their Indexes
4 n=length (x ) ;
5 if not ( mod (q , 2 ) )&&mod (n , 2 ) , % q even and n odd
6 BS =[ ] ;
7 return
8 end
9 B=n∗(q−1) /2 ;

10 z=B−sum (x )+q∗ceil ( ( B−sum (x ) ) /(1−q ) ) ∗(B<sum (x ) ) ;
11 i=1;
12 while z<q∗n ,
13 e=mod (z , n ) ;
14 s=floor (z/n ) ;
15 bs=[repmat (s+1 ,1 ,e ) , repmat (s , 1 , n−e ) ] ;
16 y=mod (x+bs , q ) ;
17 if ( sum (y )==B ) ,
18 BS (i , 1 : n+1)=[s∗n+e , bs ] ;
19 %break % Only gets the first Sequence & index
20 i=i+1;
21 end
22 z=z+q ;
23 end
24 end

A-3 This function performs the inversion of the sequence y

1 function [ x ]=Inversion (y , z , q )
2 % Performs the inversion of a sequence y, returning x
3 n=length (y ) ;
4 e=mod (z , n ) ;
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5 s=floor (z/n ) ;
6 bs=[repmat (s+1 ,1 ,e ) , repmat (s , 1 , n−e ) ] ;
7 x=mod (y−bs , q ) ;
8 end

A-4 q-ary & Binary Knuth-based Encoder

1 function [ U , dh ]=dMax (q , n , d0 )
2 % This function tries to find the maximum number of vectors
3 % with distance greater than d0 in a full balanced set
4 [ U , dh ]=deal ( [ ] ) ;
5 if ~mod (q , 2 )&&mod (n , 2 ) ,
6 return
7 else
8 i ( any ( mod (n , 2 ) ) )=sum ( [ power (q , floor (n/2) ) , ( q−1)∗power (q , 0 : ( n−3)/2) ] ) ;
9 i (~any ( mod (n , 2 ) ) )=(q−1)∗sum ( power (q , 0 : n/2−1) ) ;

10 while i<power (q , n ) ,
11 x=dec2vect (i , q , n ) ;
12 if sum (x )==n/2∗(q−1) ,
13 [ U ( end+1 ,1:n ) ,i ]=deal (x , i+q−2) ;
14 end
15 i=i+1;
16 end
17 end
18 S=size (U , 1 ) ;
19 [ d ( 1 : S , 1 : S ) ,u ]=deal ( 0 , [ ] ) ;
20 for i=1:S ,
21 [ j , k ]=deal (i , 2 ) ;
22 while 0<length (j ) ,
23 j=j (1 ) ;
24 if ~any (d (j , : ) ) ,
25 d1=sum ( abs ( bsxfun ( @minus , U , U (j , : ) ) ) , 2 ) ’ ;
26 [ d1 (d1<d0 ) , d1 (d1>=d0 ) , dh ( 1 : S , j ) ]=deal (0 , 1 , d1 ) ;
27 [ d1 , d1 (j ) ]=deal (d1 . ∗ ( 1 : S ) ,j ) ;
28 d (j , 1 : S )=d1 ;
29 end
30 u0=d (i , d (i , : ) >0) ;
31 j=u0 (~any (d (u0 , : ) , 2 ) ) ;
32 end
33 while k<=length (u0 ) ,
34 [ u0 , k ]=deal ( intersect (u0 , d (u0 (k ) , : ) ) ,k+1) ;
35 if length (u0 )<=size (u , 2 ) ,
36 u0 =[ ] ;
37 break
38 end
39 end
40 [ d (i , u0 (u0~=i ) ) ,d (u0 (u0~=i ) ,i ) ]=deal (0 ) ;
41 u ( end+~isempty (u0 ) , 1 : length (u0 ) )=u0 ;
42 end
43 u0=sortrows ( [ sum (u~=0 ,2) ,u ] ,−1) ;
44 u=u0 ( 1 , 2 : end ) ;
45 dh=reshape (dh (u , u ) , 1 , [ ] ) ;
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46 dh=min (dh (dh~=0) , [ ] , 2 ) ;
47 U=U (u , : ) ;
48 end

1 function [ y , R , t , n , p ]=eKnuth (u , n , q )
2 % Knuth -based q-ary Encoder
3 if ~isprime (q ) ,
4 [ y , R , t , n , p ]=deal ( [ ] ) ;
5 end
6 Knuth=matfile (’Knuth.mat’ ,’Writable’ , false ) ;
7 [ pq , k ]=deal ( Knuth . pq , length (u ) ) ;
8 if any (n ) , % for Hamming Codes (whether or not n is fixed)
9 if ~mod (q , 2 )&&mod (n , 2 ) ,

10 [ y , R , t , n , p ]=deal ( [ ] ) ;
11 return
12 end
13 r=ceil ( log10 ( ( q−1)∗n+1)/log10 (q ) ) ;
14 k=n−r ;
15 u=u ( 1 : k ) ;
16 else
17 r=2;
18 while k>(power (q , r )−1)/(q−1)−r ,
19 r=r+1;
20 end
21 r (~mod (q , 2 )&&mod (k+r , 2 ) )=r+1;
22 n=k+r ;
23 end
24 C=eHam (u , n , q ) ;
25 bs=b (C , q ) ;
26 [ z , z0 , x1 ]=deal (bs ( 1 , 1 ) ,n , mod (C+bs ( 1 , 2 : end ) ,q ) ) ;
27 z0 (q>2)=q∗z0 ;
28 i=min ( find ( and ( and (pq ( : , 1 )==q , pq ( : , 3 )>=3) , pq ( : , 4 )>=z0 ) ) ) ; % q p d z U
29 p=pq (i , 2 ) ;
30 if isempty (p ) ,
31 [ y , R , t , n , p ]=deal ( [ ] ) ;
32 return
33 end
34 x2=dec2vect (pq (i ,5+z ) ,q , p ) ;
35 [ y , R , t ]=deal ( [ x2 , x1 ] , round (k/(n+p ) ∗1e3 ) /1e3 , 1 ) ;
36 R ( sum (y )~=length (y ) ∗(q−1)/2) = [ ] ;
37 end

1 function [ y , R , n , p ]=e2Knuth (u , n , t0 )
2 % Knuth -based binary Encoder
3 [ u , k , Knuth ]=deal ( mod (u , 2 ) , length (u ) , matfile (’Knuth.mat’ ,’Writable’ , false

) ) ;
4 m=ceil ( log2 (n+2) ) ;
5 t=(n−k ) /m ;
6 if mod (n , 2 ) | | t~=t0 ,
7 [ y , R , n , p ]=deal ( [ ] ) ;
8 return
9 end

10 fprintf ( [ ’m=’ , num2str (m ) , ’, n=’ , num2str (n ) , ’, k=’ , num2str (k ) , ’\n’ ] ) ;
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11 C0=comm . BCHEncoder (’CodewordLength’ ,n , ’MessageLength’ ,k ) ;
12 [ C , pq ]=deal ( step (C0 , u ’ ) ’ , Knuth . pq ) ;
13 bs=b (C , 2 ) ;
14 [ z , x1 ]=deal (bs ( 1 , 1 ) , mod (C+bs ( 1 , 2 : end ) , 2 ) ) ;
15 i=min ( find ( and ( and (pq ( : , 1 ) ==2,pq ( : , 3 )>=3) , pq ( : , 4 )>=n ) ) ) ; % q p d z U
16 p=pq (i , 2 ) ;
17 if isempty (p ) ,
18 [ y , R , n , p ]=deal ( [ ] ) ;
19 return
20 end
21 x2=dec2vect (pq (i ,5+z ) ,2 , p ) ;
22 [ y , R ]=deal ( [ x2 , x1 ] , round (k/(n+p ) ∗1e3 ) /1e3 ) ;
23 R ( sum (y )~=length (y ) /2) = [ ] ;
24 end

A-5 q-ary Concatenated Codes Encoder

1 function [ S , U , T ]=cardinality (Q , N0 )
2 % This functions finds the exact cardinality
3 % of Q=q0,q1,q2,... and lengths N=n0,n1,n2,...
4 % It also determines the construction feasibility of Concatenated Codes
5 folder=’/media/alex/Datos/TU Delft/Thesis/Text/STYLESTUFF/’ ;
6 Knuth=matfile (’Knuth.mat’ ,’Writable’ , true ) ;
7 Knuth . Sqn ( 1 , 1 : 3 )=zeros ( 1 , 3 ) ;
8 Sqn=Knuth . Sqn ;
9 T={’q&n&Cardinality&Greatest PP.&Factors&2.2&2.3&2.4&2.5\\\hline’ } ;

10 for i=1:length (Q ) ,
11 q=Q (i ) ;
12 nOld=max ( Sqn ( Sqn ( : , 1 )==q , 2 ) ) ;
13 nOld ( isempty ( nOld ) )=0;
14 if all (N0 ) ,
15 N=N0 ;
16 else
17 N=2:nOld ;
18 end
19 for j=1:length (N ) ,
20 n=N (j ) ;
21 if mod (q , 2 ) | | ~ mod (n , 2 ) ,
22 if n>nOld ,
23 fprintf ( [ ’q=’ , num2str (q ) , ’, n=’ , num2str (n ) ] ) ;
24 U =[ ] ;
25 h ( any ( mod (n , 2 ) ) )=sum ( [ power (q , floor (n/2) ) , ( q−1)∗power (q

, 0 : ( n−3)/2) ] ) ;
26 h (~any ( mod (n , 2 ) ) )=(q−1)∗sum ( power (q , 0 : n/2−1) ) ;
27 while h<power (q , n ) ,
28 x=dec2vect (h , q , n ) ;
29 if sum (x )==n/2∗(q−1) ,
30 [ U ( end+1 ,1:n ) ,h ]=deal (x , h+q−2) ;
31 end
32 h=h+1;
33 end
34 clc ;
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35 S=size (U , 1 ) ; % Cardinality
36 Knuth . Sqn=sortrows ( [ Knuth . Sqn ; q , n , S ] ) ;
37 else
38 U =[ ] ;
39 end
40 Sqn=Knuth . Sqn ;
41 S=Sqn ( and ( Sqn ( : , 1 )==q , Sqn ( : , 2 )==n ) , 3 ) ;
42 [ Q0 , Q1 ]=deal ( primes (S ) , factor (S ) ) ;
43 m=floor ( log10 (S ) . / log10 (Q0 ) ) ;
44 P=S−power (Q0 , m ) ;
45 P=find (P==min (P ) ) ;
46 Q0=power (Q0 (P ) ,m (P ) ) ;
47 Q1=power ( unique (Q1 ) , histc (Q1 , unique (Q1 ) ) ) ;
48 if max (Q1 )>1e3 | | S>1e5 ,
49 break
50 else
51 C=[S<1e5 , Q0<1e3 , max (Q1 )<1e3&&length (Q1 ) >1,~mod (q , 2 )&&max (

Q1 )<1e3 ] ;
52 t0=any (C ) ;
53 C=regexprep ( num2str (C ) , ’\s*’ ,’&’ ) ;
54 C=regexprep (C , ’1’ ,’x’ ) ;
55 C=regexprep (C , ’0’ ,’’ ) ;
56 end
57 if t0 ,
58 t={strcat ( num2str (q ) , ’&’ , num2str (n ) , ’&’ , num2str (S ) , ’&’ ,

num2str (Q0 ) , ’&’ , regexprep ( num2str (Q1 ) , ’\s*’ ,’,’ ) , ’&’ ,C
, ’\\ \hline’ ) } ;

59 T=[T ; t ] ;
60 end
61 end
62 end
63 end
64 end

1 function [ C , k , d ]=GF (u , q , Q , N )
2 % This function carries on the data conversion from the alphabet q
3 % to the alphabets Q=q0,q1,q2,... for block codes of length N
4 [ C , k , d , j ]=deal ( [ ] , 0 , [ ] , 0 ) ;
5 for i=1:length (Q ) ,
6 pr=unique ( factor (Q (i ) ) ) ;
7 m=histc ( factor (Q (i ) ) , pr ) ;
8 r=ceil ( log10 ( ( pr−1)∗m∗N+1)/log10 (pr ) ) ; % for Hamming Codes
9 k0=m∗(N−ceil (r/m ) ) ;

10 k1=floor ( log10 ( power (pr , k0 ) ) /log10 (q ) ) ;
11 if any (k1 ) ,
12 u0=u (j+1:j+k1 ) ;
13 if pr~=q ,
14 u0=dec2vect ( sum (u0 .∗ power (q , k1−1:−1:0) ) ,pr , k0 ) ;
15 end
16 else
17 [ C , k , d ]=deal ( [ ] , 0 , [ ] ) ;
18 break
19 end
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20 [ d (i ) ,C0 , k , j ]=deal (3 , eHam (u0 , m∗N , pr ) ,k+k1 , j+k1 ) ;
21 if m>1,
22 for h=1:N ,
23 [ ~ , e ]=gftuple (C0 (m∗(h−1)+1:m∗h ) ,m , pr ) ;
24 e ( isinf (e ) )=−1;
25 C=[C , e+1] ;
26 end
27 else
28 C=[C , C0 ] ;
29 end
30 end
31 end

1 function [ x , R , t , k ]=eCC (u , n , N , q , BC )
2 % Concatenated q-ary Encoder
3 n (n<4&&q==2)=4;
4 n (~mod (q , 2 )&&any ( mod (n , 2 ) ) )=n+1;
5 [ card , U ,~]= cardinality (q , n ) ;
6 switch BC
7 case 2 % Construction 2.2
8 L=floor ( card /2) ;
9 Q=2∗L ;

10 k=floor ( log10 ( power (Q , N−1) ) /log10 (q ) ) ;
11 if q~=Q ,
12 u=sum (u ( 1 : k ) .∗ power (q , k−1:−1:0) ) ;
13 u0=dec2vect (u , Q , N−1) ;
14 else
15 u0=u ( 1 : k ) ;
16 end
17 C=[u0 , ceil ( sum (u0 ) /L ) ∗L−sum (u0 ) ] ;
18 d=2∗2; % d=2 (Balanced Set) x 2 (I-Set)
19 case 3 % Construction 2.3
20 Q=primes ( card ) ;
21 m=floor ( log10 ( card ) . / log10 (Q ) ) ;
22 pr=card−power (Q , m ) ;
23 pr=find (pr==min (pr ) ) ;
24 Q=power (Q (pr ) ,m (pr ) ) ;
25 [ C , k , d ]=GF (u , q , Q , N ) ;
26 d=2∗d ; % d=2 (Balanced Set) x d of C
27 case 4 % Construction 2.4
28 Q=factor ( card ) ;
29 Q=power ( unique (Q ) , histc (Q , unique (Q ) ) ) ;
30 [ C , k , d ]=GF (u , q , Q , N ) ;
31 d=2∗min (d ) ; % d=2 (Balanced Set) x d of C
32 case 5 % Construction 2.5
33 Q=factor ( card ) ;
34 Q ( any ( mod (q , 2 ) ) , : ) = [ ] ;
35 if ~isempty (Q ) ,
36 m=histc (Q , unique (Q ) ) ;
37 if m (1 )<=2,
38 m0=m (1 ) ;
39 Q=power ( unique (Q (m0+1:end ) ) ,m ( 2 : end ) ) ;
40 elseif m (1 ) >2,
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41 [ m (1 ) ,m0 ]=deal (m (1 ) −2 ,2) ;
42 Q=power ( unique (Q ) ,m ) ;
43 end
44 [ k0 (m0==1) , k0 (m0>1)]=deal (N−1 ,2∗N ) ;
45 k1=floor ( log10 ( power (2 , k0 ) ) /log10 (q ) ) ;
46 if any (~k1 ) ,
47 C =[ ] ;
48 else
49 u0=sum (u ( 1 : k1 ) .∗ power (q , k1−1:−1:0) ) ;
50 u0=dec2vect (u0 , 2 , k0 ) ;
51 if m0==1,
52 C0=[u0 , mod ( sum (u0 ) , 2 ) ] ;
53 else
54 C0=u0 ;
55 end
56 [ C , k , d ]=GF (u (k1+1:end ) ,q , Q , N ) ;
57 if ~isempty (C ) ,
58 C=[floor ( max (Q ) /2) ∗C0 , C ] ;
59 k=k1+k ;
60 d=min ( [ n∗(q−1)∗(m0∗N−k0+1) ,2∗d ] ) ;
61 end % d=2 (U) x d of C & n(q-1)
62 end
63 end
64 otherwise
65 fprintf (’Wrong Construction\n’ ) ;
66 [ x , R , t , k ]=deal ( [ ] ) ;
67 return
68 end
69 if isempty (Q ) | | isempty (C ) | | k==0,
70 [ x , R , t , k ]=deal ( [ ] ) ;
71 return
72 elseif isempty (U ) ,
73 i ( any ( mod (n , 2 ) ) )=sum ( [ power (q , floor (n/2) ) , ( q−1)∗power (q , 0 : ( n−3)/2) ] ) ;
74 i (~any ( mod (n , 2 ) ) )=(q−1)∗sum ( power (q , 0 : n/2−1) ) ;
75 while size (U , 1 )<ceil ( max (Q ) /2) ,
76 x=dec2vect (i , q , n ) ;
77 if sum (x )==n/2∗(q−1) ,
78 [ U ( end+1 ,1:n ) ,i ]=deal (x , i+q−2) ;
79 end
80 i=i+1;
81 end
82 end
83 L=floor ( max (Q ) /2) ;
84 U=unique ( [ U ( 1 : L , : ) ; ( q−1)∗ones (L , n )−U ( 1 : L , : ) ; U (L+any ( mod ( max (Q ) , 2 ) ) , : ) ] , ’

rows’ ,’stable’ ) ;
85 [ x , R , t ]=deal ( reshape (U (C+1 , :) ’ , 1 , [ ] ) ,k/(N∗n ) , floor ( ( d−2)/2) ) ;
86 end
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1 function [ x ]=dec2vect (i , q , n )
2 % This function converts a number i from decimal
3 % to a vector in base q of length n
4 for j=n :−1:1 ,
5 P=power (q , j−1) ;
6 x (n−j+1)=floor (i/P ) ;
7 i=mod (i , P ) ;
8 end
9 end

1 function [ rw , BS , it0 , hlb ] = b_s (x , q , step )
2 % Balancing of q-ary Sequences
3 % This routine finds:
4 % 1) rw: Random Walk
5 % 2) BS: Balancing Sequences and their Indexes.
6 % 3) it0: Total Iterations performed by this method.
7 % 4) hbl: Balance Disparity , Higher & Lower Bounds.
8 n=length (x ) ;
9 if ~mod (q , 2 )&&mod (n , 2 ) , % q even and n odd

10 BS =[ ] ;
11 return
12 end
13 B=n∗(q−1) /2 ; % Balancing Value
14 [ i , it0 ( 1 : 2 ) ]=deal (0 ) ; % Balancing Sequence & Iteration Counter
15 d=B−sum (x ) ; % Initial Balance Disparity
16 zl=d ; % Lower Bound for I-Quadrant
17 zh=q∗(n−1)+mod (d , q ) ; % Higher Bound for I-Quadrant
18 if (d<0) ,
19 zh=q∗n+d ; % Higher Bound for II-Quadrant
20 zl=d+q∗ceil (d/(1−q ) ) ; % Lower Bound for II-Quadrant
21 end
22 if (q==2) , % Adjustment for Binary case
23 zh=q∗n−zl−q∗any (~zl ) ;
24 end
25 hlb=[d , zl , zh ] ; % Initial Balance Dis., Higher & Lower Bounds
26 if step==1, % Step Size for Random Walk
27 zl=0;
28 zh=q∗n−1;
29 else
30 step=q ; % q-Step size (otherwise)
31 end
32 while (zl<=zh ) ,
33 p=mod (zl , n ) ;
34 s=floor (zl/n ) ;
35 bs=[repmat (s+1 ,1 ,p ) , repmat (s , 1 , n−p ) ] ;
36 y=mod (x+bs , q ) ; % Balanced Sequence
37 it0 (2 )=it0 (2 ) +1; % Iteration Counter for all z’s
38 rw ( it0 (2 ) , 1 : 2 ) =[zl , sum (y ) ] ; % Ramdon Walk
39 if ( sum (y )==B ) ,
40 i=i+1; % Balancing Sequence Counter
41 BS (i , 1 : n+1)=[s∗n+p , bs ] ; % Matrix of Balancing Indices & Sequences
42 if i==1,
43 it0 (1 )=it0 (2 ) ; % Iteration Counter for first z
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44 end
45 %break
46 end
47 zl=zl+step ;
48 end
49 end

1 function [ trials , bseq , Ne0 , Pum ]=Test1 (q , n )
2 tic ; close all ; clc ;
3 folder=’/media/alex/Datos/TU Delft/Thesis/Text/STYLESTUFF/’ ;
4 % Initializing variables
5 [ it1 , j , hlb ( 1 , 1 : 3 ) ,bseq , BS ( 1 , 1 : n+1) , Ne0 ( 1 : n ) ]=deal (0 ) ;
6 B=n∗(q−1) /2 ; % Balancing Value
7 for i=0:power (q , n )−1,
8 x=dec2vect (i , q , n ) ;
9 [ ~ , bs , it0 , hlb ( end+1 ,1:3) ]=b_s (x , q , q ) ; % Balancing indices & sequences

10 hlb=unique (hlb , ’rows’ ) ; % Higher & Lower Bounds
11 it1=it1+it0 ; % Iteration Counter
12 bp=size (bs , 1 ) ; % Balancing Positions
13 zlrange (j+1:j+bp , 1 )=repmat ( sum (x ) ,bp , 1 ) ; % Plot Coordinates
14 zlrange (j+1:j+bp , 2 )=bs ( : , 1 ) ; % Balancing Indices
15 zlrange=unique ( zlrange , ’rows’ ) ;
16 j=size ( zlrange , 1 ) ; % Number of Plot Coordinates
17 e0=mod (bs ( 1 , 1 ) ,n ) ; % First Balancing Position
18 Ne0 (e0+1)=Ne0 (e0+1)+1; % Occurrence of Transmitted Index
19 %*****Cardinality & Balanced Sequences*******
20 y=mod (x+bs ( 1 , 2 : n+1) ,q ) ;
21 if ~ismember (BS ( : , 1 : n ) ,y , ’rows’ ) ,
22 BS ( end+1 ,1:n )=y ; % Balanced Sequences
23 BS (~any (BS , 2 ) , : ) = [ ] ; % Remove rows of zeros
24 end
25 ind=find ( ismember (BS ( : , 1 : n ) ,y , ’rows’ ) , 1 ) ;
26 BS (ind , n+1)=BS (ind , n+1)+1; % Occurrence Counter
27 %****Balancing Positions & Occurrence*******
28 if isempty ( find ( bseq ( : , 1 )==bp ) ) , % Description by Column:
29 bseq ( end+1 ,1)=bp ; % Balancing Position
30 bseq (~any ( bseq ( : , 1 ) , 2 ) , : ) = [ ] ; % Remove rows of zeros
31 bseq (end , 3 )=sum (x ) ; % Sequence Weight
32 bseq (end , 4 )=−1; % End flag
33 end
34 ind=find ( bseq ( : , 1 )==bp ) ;
35 bseq (ind , 2 )=bseq (ind , 2 ) +1; % Occurrence Counter
36 %**********Sequence Weights*****************
37 if isempty ( find ( bseq (ind , 3 : end−1)==sum (x ) ) ) ,
38 ind0=find ( bseq (ind , 3 : end )==−1)+2;
39 bseq (ind , ind0 )=sum (x ) ;
40 bseq (ind , ind0+1)=−1;
41 end
42 %***********Error Control******************
43 if ~isequal (bs , b (x , q ) ) ,
44 fprintf (’ERROR\n’ ) ;
45 return
46 else
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47 fprintf ( [ ’q=’ , num2str (q ) , ’, n=’ , num2str (n ) , ’ counter: ’ , num2str (
power (q , n )−i ) ] ) ;

48 clc ;
49 end
50 end
51 Pum ( : , 1 )=unique (BS ( : , n+1) ) ; % u (Occurrence by Balanced

Sequence)
52 Pum ( : , 2 )=histc (BS ( : , n+1) , Pum ( : , 1 ) ) ; % P(u,m)
53 bseq=sortrows ( bseq ) ;
54 card=size (BS , 1 ) ; % Cardinality
55 trials=round ( it1/power (q , n ) ∗100) /100 ; % Average Iterations
56 %*************************Error Control*******************************
57 if ~isequal ( sum ( bseq ( : , 2 ) ) , sum (BS ( : , n+1) ) , sum ( Ne0 ) , power (q , n ) ) | | sum ( Pum

( : , 2 ) )~=card ,
58 fprintf (’ERROR\n’ ) ;
59 return
60 end
61 %*********************************************************************
62 fprintf ( [ ’Total Points: ’ , num2str (j ) , ’, Cardinality: ’ , num2str ( card ) , ’\n’

] ) ;
63 fprintf ( [ ’Approximated Cardinality: ’ , num2str ( power (q , n ) ∗sqrt (6/( pi∗n∗(

power (q , 2 )−1) ) ) ) ,’\n’ ] ) ;
64 fprintf (’1) Total Iterations\n’ ) ;
65 fprintf (’2) Balancing Position , Occurrence & Sequence Weights\n’ ) ;
66 fprintf (’3) Occurrence of Transmitted Index by Position\n’ ) ;
67 fprintf (’4) u and P(u,m)\n’ ) ;
68 %*****************************Plots**************************************
69 x0=randi ( power (q , n )−1) ;
70 x=dec2vect (x0 , q , n ) ; % Random Balancing Sequences
71 [ ~ , bs ,~ ,~ ]= b_s (x , q , q ) ; % Balancing Sequences
72 hlb (~any (hlb , 2 ) , : ) = [ ] ; % Remove rows of zeros
73 zlinR=figure ;
74 set (0 , ’DefaultTextInterpreter’ ,’tex’ ) ;
75 hold on ;
76 grid on ;
77 lbound=plot ( hlb ( : , 1 ) , hlb ( : , 2 ) ) ;
78 hbound=plot ( hlb ( : , 1 ) , hlb ( : , 3 ) ,’color’ ,’black’ ) ;
79 bs0=plot ( repmat (B−sum (x ) , length (bs ( : , 1 ) ) , 1 ) , bs ( : , 1 ) ,’-.g’ ) ;
80 set (bs0 , ’Displayname’ , [ ’\sigma(z)s from: ’ , num2str (x0 ) ] ) ;
81 set ( lbound , ’Displayname’ ,’Lower Bound’ ) ;
82 set ( hbound , ’Displayname’ ,’Higher Bound’ ) ;
83 legend (’Location’ ,’southoutside’ ) ;
84 plot (B−zlrange ( : , 1 ) , zlrange ( : , 2 ) ,’r*’ )
85 xlabel (’Balance Disparity \beta -\sigma(x)’ )
86 ylabel (’Index z’ )
87 title ( [ ’Balance Disparity vrs Index z, q=’ , num2str (q ) , ’, n=’ , num2str (n ) ] )

;
88 hold off ;
89 %saveas(zlinR ,[folder ,’zlinR ’,num2str(q),’x’,num2str(n),’.jpg ’]);
90 %************************************************************************
91 rw=b_s ( [ 2 , 1 , 3 , 2 , 0 , 4 , 1 , 3 , 1 , 4 ] , 5 , 1 ) ;
92 if size (rw , 1 ) ==50,
93 Rwalk=figure ;
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94 hold on ;
95 plot ( [ 0 , 4 9 ] , [ 2 0 , 2 0 ] , ’-.’ ) ;
96 plot (rw ( : , 1 ) ,rw ( : , 2 ) ,’-.r*’ )
97 xlabel (’Index z’ )
98 ylabel (’Sequence Weight \sigma(z)’ )
99 title (’Index z vrs Sequence Weight \sigma(z), q=5, n=10’ ) ;

100 hold off ;
101 saveas ( Rwalk , [ folder , ’Rwalk.jpg’ ] ) ;
102 end
103 fprintf ( [ ’Elapsed Time: ’ , num2str ( round ( toc /6) /10) , ’ min\n’ ] ) ;
104 end
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Appendix B

Calculation Log

B-1 Columns of the Figure 3-4 a)

q 2 2 3 3 4 5 7 8 9 10 11 12 13 14 15 16 31

n 10 14 6 10 8 6 6 4 4 4 4 4 4 4 4 4 3

v Balancing Position Occurrences N(v)
1 0 0 0 1920 3840 960 8148 256 504 800 1144 1536 2288 3136 4080 5120 7440

2 280 3696 297 7170 11584 3600 27342 1920 2736 4200 6116 9120 11908 16072 21120 28160 7440

3 0 0 0 10020 5376 3600 26964 768 1656 2400 3696 4608 7176 9408 12720 15360 14911

4 280 3696 324 12060 28608 4560 33978 1152 1665 2600 3685 5472 7189 9800 12705 16896

5 0 0 0 9900 0 2100 15036

6 240 3360 108 8040 13824 805 6181

7 0 0 5220 0

8 160 2688 3090 2304

9 0 0 1260

10 64 1792 369

11 0

12 896

13 0

14 256

Table B-1: Matlab Calculations: Balancing Positions (v) and their Occurrences N(v), in a full
set of sequences ∈ Aq of length n.

The minimum averaged iterations if all the indices z’s are searched, are calculated using the
following formula: v1 ∗ Pr2(v1) + v2 ∗ Pr2(v2) + ...+ vn ∗ Pr2(vn).
e.g. (2 ∗ 280 + 4 ∗ 280 + 6 ∗ 240 + 8 ∗ 160 + 10 ∗ 64)/210 = 4.9219 for q = 2 & n = 101.

B-2 Calculations to plot out the 2-D Plane for q=3 and n=10

The balancing index is first determined as β = 10 ∗ (3 − 1)/2 = 10. The calculation of ran-
domly chosen cordinates (β − σ(x), z), is carried on as follows:

1Using the data from Table B-1.
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• Coordinates (10, 10) & (10, 25), located in the I-Quadrant:
The sequence x1 = 0000000000, has weight of σ(x1) = 0, thus its balance disparity is
β − σ(x1) = 10 − 0 = 10. The first balancing sequence found is b(1, 0) = 1111111111,
since y1 = x1 ⊕3 b(1, 0) = 0000000000 ⊕3 1111111111 = 1111111111, and σ(y1) =
1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 = 10, thus z1 = s ∗ n+ e = 1 ∗ 10 + 0 = 10.
Another balancing sequence is b(2, 5) = 3333322222, (0000000000 ⊕3 3333322222 =
0000022222 and σ(0000022222) = 10), thus z2 = 2 ∗ 10 + 5 = 25.

• Coordinates (−4, 2) & (−4, 5), located in the II-Quadrant:
The sequence x2 = 2201222120, has weight σ(x2) = 2+2+0+1+2+2+2+1+2+0 = 14,
thus its balance disparity is β − σ(x2) = 10 − 14 = −4. The first balancing sequence
found is b(0, 2) = 1100000000, since y2 = 2201222120 ⊕3 1100000000 = 0001222120,
and σ(x2) = 0 + 0 + 0 + 1 + 2 + 2 + 2 + 1 + 2 + 0 = 10, thus z3 = 0 ∗ 10 + 2 = 2.
Another balancing sequence is b(0, 5) = 1111100000, since 2201222120⊕3 1111100000 =
0012022120, and σ(0012022120) = 10, thus z4 = 0 ∗ 10 + 5 = 5.

The initial values when searching z, denoted as z0, for the coordinates above are calculated
as follows:
(10, 10) & (10, 25)→ z0 = β − σ(x1) = 10
(−4, 2) & (−4, 5)→ j = dβ−σ(x2)

1−q e = d −4
1−3e = 2, z0 = β − σ(x2) + q ∗ j = −4 + 3 ∗ 2 = 2

Notice that the ordinates are spaced by steps of q = 3, for the same abscissa as: z1 = 10 &
z2 = 10 + 3 ∗ 5 = 25 for β − σ(x1) = 10, and z3 = 2 & z4 = 2 + 3 ∗ 1 = 5 for β − σ(x2) = −4.
The indices z1 & z3 are found in the first attempt, and z2 & z4 in the 6th and 2nd trial
respectively.

B-3 Redundancy

The entropy of the Transmitted Index is: He(n) = −Pr1(e = 0) ∗ logq(Pr1(e = 0)) + ... −
Pr1(e = n− 1) ∗ logq(Pr1(e = n− 1)).
e.g. He(10) for q = 3 & n = 10 is calculated as follows.
The transmitted index probabilities are2:
Pr1(e = 0) = 10978/59049 = 0.186, where 310 = 59049.
Pr1(e = 1) = 10899/59049 = 0.185, Pr1(e = 2) = 9843/59049 = 0.167,
Pr1(e = 3) = Pr1(e = 4) = 5343/59049 = 0.09, Pr1(e = 5) = 4870/59049 = 0.083,
Pr1(e = 6) = 3298/59049 = 0.056, Pr1(e = 7) = 3247/59049 = 0.055,
Pr1(e = 8) = 3139/59049 = 0.053, Pr1(e = 9) = 2089/59049 = 0.035.

Thus He(10) = −0.186 ∗ log3(0.186) − 0.185 ∗ log3(0.185) − 0.167 ∗ log3(0.167) − 2 ∗ 0.09 ∗
log3(0.09)−0.083∗ log3(0.083)−0.056∗ log3(0.056)−0.055∗ log3(0.055)−0.053∗ log3(0.053)−
0.035 ∗ log3(0.035) = 1.965.

The entropy of the Auxiliary Data is: Ha(n) = Pr2(1) ∗ logq(1) + Pr2(2) ∗ logq(2) + ... +
Pr2(n) ∗ logq(n).

2Using the data from Table B-2.
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q e
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

2 252 252 112 112 72 72 48 48 28 28 0

2 3432 3432 1584 1584 1080 1080 800 800 600 600 432 432 264 264 0

3 174 174 174 69 69 69 0

3 10978 10899 9843 5343 5343 4870 3298 3247 3139 2089 0

4 10952 10952 10952 10952 5432 5432 5432 5432 0

5 3093 3061 3013 2780 2304 1374 0

7 26138 21198 18678 17453 17181 17001 0

8 1024 1024 1024 1024 0

9 1947 1640 1502 1472 0

10 2730 2730 2270 2270 0

11 3967 3912 3660 3102 0

12 5184 5184 5184 5184 0

13 8060 7140 6726 6635 0

14 10234 10234 8974 8974 0

15 13432 13292 12656 11245 0

16 16384 16384 16384 16384 0

31 10331 9770 9690 0

Table B-2: Matlab calculations: Transmitted Index Occurrences, in a full set of sequences ∈ Aq

of length n.

e.g. Ha(6) = (0 + 297 ∗ log3(2) + 0 + 324 ∗ log3(4) + 0 + 108 ∗ log3(6))/36 = 1.0595 for q = 3
& n = 63.

The entropy using variable-length-prefix scheme is: Hu(n) = q−n ∗ [uqP (uq, n)logq(uq) +
uq+1P (uq+1, n)logq(uq+1) + ...+ uqnP (uqn, n)logq(uqn)].
e.g. Hu(6) = [3 ∗ 18 ∗ log3(3) + 4 ∗ 36 ∗ log3(4) + 5 ∗ 36 ∗ log3(5) + 6 ∗ 20 ∗ log3(6) + 7 ∗ 18 ∗
log3(7) + 8 ∗ 12 ∗ log3(8) + 9 ∗ 1 ∗ log3(9)]/36 = 1.5336 for q = 3 & n = 64.

The entropy for the full set of balanced codewords ∈ Aq of length n is: H0(n) = n− logq(Snq ).
e.g. H0(4) = 4− log8(344) = 1.1912 for q = 8 & n = 4.

3Using the data from Table B-1.
4Using the data from Table B-3.
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q 2 2 3 3 4 5 7 8 9 10 11 12 13 14 15 16 31

n 10 14 6 10 8 6 6 4 4 4 4 4 4 4 4 4 3

u P (u, n)
2 2 2

3 60 252 18 20

4 120 1176 36 500 564

5 60 1260 36 1948 1128 88

6 10 588 20 2552 1128 530

7 140 18 1783 1128 222 1920

8 14 12 1042 1100 248 1800 216

9 1 599 992 141 508 208

10 318 828 108 83 302

11 87 476 74 308 63 384

12 25 239 41 566 21 724

13 14 90 49 292 9 31 712

14 9 63 29 1075 9 42 93 906

15 12 58 57 318 10 104 1084

16 4 58 58 495 96 25 42 39 135 1712

17 8 26 47 359 5 39 45

18 12 20 20 179 67 59

19 12 12 13 176 7 72 15 177

20 8 30 14 187 12 132 24 15 90

21 54 355 9 208

22 40 87 6 105 25 90 65

23 32 78 6 70 65

24 17 86 24 5 3 324 1

25 8 12 77 10 6 6

26 1 64 2 3 231 153

27 64 14 14 6 51

28 76 1 14 6 396

29 39 24

30 32 16 6 18 337

31 27 2 525

32 21 8 6 24 768

33 21 52 24

34 13 3 6 6

35 25 6 1 9 12

36 3 3 76 17 6

37 2 30

38 8 30

39 60

40 8 8

41 9 22

42 3 64 3 11

43 1

44 18

45 136

46 18

48 32 1 6 3 176

49 3 12 9

50 6

51 8

52 16

56 32

60 8

61 1

62 49

63 1

64 80

72 10

73 5

82 4

83 8

93 61

Snq 252 3432 141 8953 8092 1751 9331 344 489 670 891 1156 1469 1834 2255 2736 721

Table B-3: Matlab calculations: P (u, n) with d(x) = u, in the full set of sequences ∈ Aq of
length n.
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q t n Snq N R

2 1 4 6 4 0.438

2 1 4 6 6 0.5

2 1 6 20 4 0.5

2 1 8 70 4 0.563

2 1 4 6 10 0.575

2 1 10 252 4 0.575

2 1 6 20 6 0.583

2 1 4 6 16 0.594

2 1 4 6 20 0.613

2 1 4 6 24 0.615

2 1 4 6 32 0.625

2 1 8 70 6 0.625

2 1 6 20 10 0.633

2 1 10 252 6 0.65

2 1 6 20 16 0.667

2 1 6 20 20 0.683

2 1 6 20 24 0.688

2 1 8 70 10 0.688

2 1 6 20 32 0.693

2 1 10 252 10 0.71

2 1 8 70 16 0.711

2 1 8 70 20 0.725

2 1 8 70 24 0.729

2 1 8 70 32 0.742

2 1 10 252 16 0.744

2 1 10 252 20 0.755

2 1 10 252 24 0.763

2 1 10 252 32 0.772

3 1 2 3 4 0.125

3 1 2 3 6 0.25

3 1 2 3 10 0.25

3 1 2 3 20 0.275

3 1 2 3 16 0.281

3 1 2 3 24 0.292

3 1 2 3 32 0.297

3 1 3 7 4 0.333

3 1 4 19 4 0.438

3 1 3 7 6 0.444

3 1 3 7 10 0.467

3 1 3 7 16 0.5

3 1 3 7 20 0.5

3 1 5 51 4 0.5

3 1 3 7 24 0.514

3 1 3 7 32 0.521

3 1 4 19 6 0.542

3 1 6 141 4 0.542

3 1 5 51 6 0.567

3 1 7 393 4 0.571

3 1 4 19 10 0.575

3 1 9 3139 4 0.583

3 1 8 1107 4 0.594

3 1 10 8953 4 0.6

3 1 4 19 16 0.609

3 1 6 141 6 0.611

3 1 4 19 20 0.613

3 1 4 19 24 0.625

3 1 4 19 32 0.633

3 1 5 51 10 0.64

3 1 7 393 6 0.643

3 1 8 1107 6 0.646

3 1 5 51 16 0.663

3 1 6 141 10 0.667

3 1 9 3139 6 0.667

3 1 5 51 20 0.67

3 1 5 51 24 0.675

q t n Snq N R

3 1 10 8953 6 0.683

3 1 7 393 10 0.686

3 1 5 51 32 0.688

3 1 6 141 16 0.698

3 1 6 141 20 0.708

3 1 8 1107 10 0.713

3 1 6 141 24 0.715

3 1 9 3139 10 0.722

3 1 7 393 16 0.723

3 1 6 141 32 0.724

3 1 7 393 20 0.736

3 1 10 8953 10 0.74

3 1 8 1107 16 0.742

3 1 7 393 24 0.744

3 1 7 393 32 0.75

3 1 8 1107 20 0.756

3 1 9 3139 16 0.757

3 1 8 1107 24 0.76

3 1 8 1107 32 0.77

3 1 9 3139 20 0.772

3 1 10 8953 16 0.775

3 1 9 3139 24 0.778

3 1 10 8953 20 0.785

3 1 9 3139 32 0.788

3 1 10 8953 24 0.792

3 1 10 8953 32 0.8

4 1 2 4 4 0.375

4 1 2 4 6 0.417

4 1 2 4 10 0.45

4 1 2 4 16 0.469

4 1 2 4 20 0.475

4 1 2 4 24 0.479

4 1 2 4 32 0.484

4 1 4 44 4 0.5

4 1 4 44 6 0.542

4 1 6 580 4 0.542

4 1 8 8092 4 0.594

4 1 4 44 10 0.6

4 1 6 580 6 0.611

4 1 4 44 16 0.625

4 1 4 44 20 0.638

4 1 4 44 24 0.646

4 1 4 44 32 0.656

4 1 8 8092 6 0.667

4 1 6 580 10 0.683

4 1 6 580 16 0.708

4 1 6 580 20 0.725

4 1 8 8092 10 0.725

4 1 6 580 24 0.729

4 1 6 580 32 0.74

4 1 8 8092 16 0.758

4 1 8 8092 20 0.769

4 1 8 8092 24 0.776

4 1 8 8092 32 0.785

5 1 2 5 4 0.25

5 1 2 5 6 0.333

5 1 2 5 10 0.35

5 1 2 5 16 0.375

5 1 2 5 24 0.396

5 1 2 5 20 0.4

5 1 2 5 32 0.406

5 1 3 19 4 0.417

5 1 3 19 6 0.444

5 1 4 85 4 0.5

5 1 3 19 10 0.533

q t n Snq N R

5 1 3 19 16 0.542

5 1 4 85 6 0.542

5 1 6 1751 4 0.542

5 1 5 381 4 0.55

5 1 3 19 20 0.567

5 1 3 19 24 0.569

5 1 7 8135 4 0.571

5 1 3 19 32 0.573

5 1 8 38165 4 0.594

5 1 4 85 10 0.6

5 1 5 381 6 0.6

5 1 6 1751 6 0.639

5 1 4 85 16 0.641

5 1 7 8135 6 0.643

5 1 4 85 20 0.65

5 1 4 85 24 0.656

5 1 5 381 10 0.66

5 1 4 85 32 0.664

5 1 8 38165 6 0.667

5 1 6 1751 10 0.683

5 1 5 381 16 0.688

5 1 5 381 20 0.7

5 1 5 381 24 0.7

5 1 5 381 32 0.713

5 1 7 8135 10 0.714

5 1 6 1751 16 0.719

5 1 8 38165 10 0.725

5 1 6 1751 20 0.733

5 1 6 1751 24 0.736

5 1 7 8135 16 0.741

5 1 6 1751 32 0.745

5 1 7 8135 20 0.757

5 1 7 8135 24 0.762

5 1 8 38165 16 0.766

5 1 7 8135 32 0.772

5 1 8 38165 20 0.775

5 1 8 38165 24 0.781

5 1 8 38165 32 0.793

6 1 2 6 4 0.25

6 1 2 6 6 0.417

6 1 2 6 10 0.45

6 1 2 6 16 0.469

6 1 2 6 20 0.475

6 1 2 6 24 0.479

6 1 2 6 32 0.484

6 1 4 146 4 0.5

6 1 4 146 6 0.542

6 1 6 4332 4 0.583

6 1 4 146 10 0.625

6 1 6 4332 6 0.639

6 1 4 146 16 0.641

6 1 4 146 20 0.65

6 1 4 146 24 0.656

6 1 4 146 32 0.672

6 1 6 4332 10 0.7

6 1 6 4332 16 0.729

6 1 6 4332 20 0.733

6 1 6 4332 24 0.743

6 1 6 4332 32 0.75

7 1 2 7 4 0.25

7 1 2 7 6 0.333

7 1 2 7 10 0.4

7 1 2 7 16 0.406

7 1 3 37 4 0.417

7 1 2 7 20 0.425

Table C-1: Construction 2.2 for values: q = 2 to 7 and N = 4, 6, 10, 16, 20, 24, 32.

Alexander Barrantes Muñoz Master of Science Thesis
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q t n Snq N R

7 1 2 7 24 0.438

7 1 2 7 32 0.438

7 1 3 37 6 0.5

7 1 4 231 4 0.5

7 1 3 37 10 0.533

7 1 4 231 6 0.542

7 1 5 1451 4 0.55

7 1 3 37 16 0.563

7 1 3 37 20 0.567

7 1 7 60691 4 0.571

7 1 3 37 24 0.583

7 1 6 9331 4 0.583

7 1 3 37 32 0.594

7 1 5 1451 6 0.6

7 1 4 231 10 0.625

7 1 6 9331 6 0.639

7 1 4 231 16 0.641

7 1 5 1451 10 0.66

7 1 4 231 20 0.663

7 1 4 231 24 0.667

7 1 7 60691 6 0.667

7 1 4 231 32 0.672

7 1 5 1451 16 0.7

7 1 6 9331 10 0.7

7 1 5 1451 20 0.71

7 1 7 60691 10 0.714

7 1 5 1451 24 0.717

7 1 5 1451 32 0.719

7 1 6 9331 16 0.729

7 1 6 9331 20 0.742

7 1 6 9331 24 0.75

7 1 7 60691 16 0.75

7 1 6 9331 32 0.755

7 1 7 60691 20 0.764

7 1 7 60691 24 0.774

7 1 7 60691 32 0.781

8 1 2 8 4 0.375

8 1 2 8 6 0.417

8 1 2 8 10 0.45

8 1 2 8 16 0.469

8 1 2 8 20 0.475

8 1 2 8 24 0.479

8 1 2 8 32 0.484

8 1 4 344 4 0.5

8 1 4 344 6 0.583

8 1 6 18152 4 0.583

8 1 4 344 10 0.625

8 1 6 18152 6 0.639

8 1 4 344 16 0.656

8 1 4 344 20 0.663

8 1 4 344 24 0.667

8 1 4 344 32 0.68

8 1 6 18152 10 0.7

8 1 6 18152 16 0.729

8 1 6 18152 20 0.742

8 1 6 18152 24 0.75

8 1 6 18152 32 0.76

9 1 2 9 4 0.25

9 1 2 9 6 0.333

9 1 2 9 10 0.4

9 1 3 61 4 0.417

9 1 2 9 20 0.425

9 1 2 9 16 0.438

9 1 2 9 24 0.438

9 1 2 9 32 0.453

q t n Snq N R

9 1 3 61 6 0.5

9 1 4 489 4 0.5

9 1 3 61 10 0.533

9 1 5 3951 4 0.55

9 1 3 61 16 0.563

9 1 3 61 20 0.583

9 1 3 61 24 0.583

9 1 4 489 6 0.583

9 1 6 32661 4 0.583

9 1 3 61 32 0.594

9 1 5 3951 6 0.6

9 1 4 489 10 0.625

9 1 6 32661 6 0.639

9 1 4 489 16 0.656

9 1 5 3951 10 0.66

9 1 4 489 20 0.663

9 1 4 489 24 0.667

9 1 4 489 32 0.68

9 1 5 3951 16 0.7

9 1 6 32661 10 0.7

9 1 5 3951 20 0.71

9 1 5 3951 24 0.717

9 1 5 3951 32 0.725

9 1 6 32661 16 0.729

9 1 6 32661 20 0.742

9 1 6 32661 24 0.75

9 1 6 32661 32 0.76

10 1 2 10 4 0.375

10 1 2 10 6 0.417

10 1 2 10 10 0.45

10 1 2 10 16 0.469

10 1 2 10 20 0.475

10 1 2 10 24 0.479

10 1 2 10 32 0.484

10 1 4 670 4 0.5

10 1 4 670 6 0.583

10 1 6 55252 4 0.583

10 1 4 670 10 0.625

10 1 6 55252 6 0.639

10 1 4 670 16 0.656

10 1 4 670 20 0.663

10 1 4 670 24 0.667

10 1 4 670 32 0.68

10 1 6 55252 10 0.7

10 1 6 55252 16 0.74

10 1 6 55252 20 0.75

10 1 6 55252 24 0.757

10 1 6 55252 32 0.766

11 1 2 11 4 0.25

11 1 2 11 6 0.333

11 1 2 11 10 0.4

11 1 3 91 4 0.417

11 1 2 11 16 0.438

11 1 2 11 20 0.45

11 1 2 11 32 0.453

11 1 2 11 24 0.458

11 1 3 91 6 0.5

11 1 4 891 4 0.5

11 1 3 91 10 0.533

11 1 5 8801 4 0.55

11 1 3 91 16 0.583

11 1 3 91 20 0.583

11 1 4 891 6 0.583

11 1 6 88913 4 0.583

11 1 3 91 24 0.597

q t n Snq N R

11 1 5 8801 6 0.6

11 1 3 91 32 0.604

11 1 4 891 10 0.625

11 1 6 88913 6 0.639

11 1 4 891 16 0.656

11 1 4 891 20 0.663

11 1 4 891 24 0.677

11 1 4 891 32 0.68

11 1 5 8801 10 0.68

11 1 5 8801 16 0.7

11 1 6 88913 10 0.7

11 1 5 8801 20 0.71

11 1 5 8801 24 0.725

11 1 5 8801 32 0.731

11 1 6 88913 16 0.74

11 1 6 88913 20 0.75

11 1 6 88913 24 0.757

11 1 6 88913 32 0.766

12 1 2 12 6 0.333

12 1 2 12 4 0.375

12 1 2 12 10 0.45

12 1 2 12 20 0.45

12 1 2 12 24 0.458

12 1 2 12 16 0.469

12 1 2 12 32 0.484

12 1 4 1156 4 0.5

12 1 4 1156 6 0.583

12 1 4 1156 10 0.625

12 1 4 1156 16 0.656

12 1 4 1156 20 0.663

12 1 4 1156 24 0.677

12 1 4 1156 32 0.68

13 1 2 13 4 0.25

13 1 2 13 6 0.333

13 1 2 13 10 0.4

13 1 3 127 4 0.417

13 1 2 13 16 0.438

13 1 2 13 20 0.45

13 1 2 13 24 0.458

13 1 2 13 32 0.469

13 1 3 127 6 0.5

13 1 4 1469 4 0.5

13 1 3 127 10 0.533

13 1 5 17151 4 0.55

13 1 3 127 16 0.583

13 1 3 127 20 0.583

13 1 4 1469 6 0.583

13 1 3 127 24 0.597

13 1 3 127 32 0.604

13 1 4 1469 10 0.625

13 1 5 17151 6 0.633

13 1 4 1469 16 0.656

13 1 4 1469 20 0.675

13 1 4 1469 24 0.677

13 1 5 17151 10 0.68

13 1 4 1469 32 0.688

13 1 5 17151 16 0.713

13 1 5 17151 20 0.72

13 1 5 17151 24 0.725

13 1 5 17151 32 0.731

14 1 2 14 4 0.375

14 1 2 14 6 0.417

14 1 2 14 10 0.45

14 1 2 14 16 0.469

14 1 2 14 20 0.475

Table C-2: Construction 2.2 for values: q = 7 to 14 and N = 4, 6, 10, 16, 20, 24, 32.

Master of Science Thesis Alexander Barrantes Muñoz
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q t n Snq N R

14 1 2 14 24 0.479

14 1 2 14 32 0.484

14 1 4 1834 4 0.5

14 1 4 1834 6 0.583

14 1 4 1834 10 0.625

14 1 4 1834 16 0.656

14 1 4 1834 20 0.675

14 1 4 1834 24 0.677

14 1 4 1834 32 0.688

15 1 2 15 4 0.25

15 1 2 15 6 0.333

15 1 2 15 10 0.4

15 1 3 169 4 0.417

15 1 2 15 16 0.438

15 1 2 15 20 0.45

15 1 2 15 24 0.458

15 1 2 15 32 0.469

15 1 3 169 6 0.5

15 1 4 2255 4 0.5

15 1 5 30381 4 0.55

15 1 3 169 10 0.567

15 1 3 169 16 0.583

15 1 3 169 20 0.583

15 1 4 2255 6 0.583

15 1 3 169 24 0.597

15 1 3 169 32 0.604

15 1 4 2255 10 0.625

15 1 5 30381 6 0.633

15 1 4 2255 16 0.656

15 1 4 2255 20 0.675

15 1 4 2255 24 0.677

15 1 5 30381 10 0.68

15 1 4 2255 32 0.688

15 1 5 30381 16 0.713

15 1 5 30381 20 0.72

15 1 5 30381 24 0.725

15 1 5 30381 32 0.738

16 1 2 16 4 0.375

16 1 2 16 6 0.417

16 1 2 16 10 0.45

16 1 2 16 16 0.469

16 1 2 16 20 0.475

16 1 2 16 24 0.479

16 1 2 16 32 0.484

16 1 4 2736 4 0.5

16 1 4 2736 6 0.583

16 1 4 2736 10 0.625

16 1 4 2736 16 0.656

16 1 4 2736 20 0.675

16 1 4 2736 24 0.677

16 1 4 2736 32 0.688

17 1 2 17 4 0.25

17 1 2 17 6 0.333

17 1 2 17 10 0.4

17 1 3 217 4 0.417

17 1 2 17 16 0.438

17 1 2 17 20 0.45

17 1 2 17 24 0.458

17 1 2 17 32 0.469

17 1 3 217 6 0.5

17 1 4 3281 4 0.5

17 1 5 50101 4 0.55

17 1 3 217 10 0.567

17 1 3 217 16 0.583

17 1 4 3281 6 0.583

17 1 3 217 24 0.597

17 1 3 217 20 0.6

17 1 3 217 32 0.604

q t n Snq N R

17 1 4 3281 10 0.625

17 1 5 50101 6 0.633

17 1 4 3281 16 0.656

17 1 4 3281 20 0.675

17 1 4 3281 24 0.677

17 1 5 50101 10 0.68

17 1 4 3281 32 0.688

17 1 5 50101 16 0.713

17 1 5 50101 20 0.72

17 1 5 50101 24 0.725

17 1 5 50101 32 0.738

18 1 2 18 4 0.375

18 1 2 18 6 0.417

18 1 2 18 10 0.45

18 1 2 18 16 0.469

18 1 2 18 20 0.475

18 1 2 18 24 0.479

18 1 2 18 32 0.484

18 1 4 3894 4 0.5

18 1 4 3894 6 0.583

18 1 4 3894 10 0.625

18 1 4 3894 16 0.656

18 1 4 3894 20 0.675

18 1 4 3894 24 0.677

18 1 4 3894 32 0.688

19 1 2 19 4 0.25

19 1 2 19 6 0.333

19 1 2 19 10 0.4

19 1 3 271 4 0.417

19 1 2 19 16 0.438

19 1 2 19 20 0.45

19 1 2 19 24 0.458

19 1 2 19 32 0.469

19 1 3 271 6 0.5

19 1 4 4579 4 0.5

19 1 5 78151 4 0.55

19 1 3 271 10 0.567

19 1 3 271 16 0.583

19 1 4 4579 6 0.583

19 1 3 271 24 0.597

19 1 3 271 20 0.6

19 1 3 271 32 0.604

19 1 4 4579 10 0.625

19 1 5 78151 6 0.633

19 1 4 4579 16 0.656

19 1 4 4579 20 0.675

19 1 4 4579 24 0.677

19 1 5 78151 10 0.68

19 1 4 4579 32 0.688

19 1 5 78151 16 0.713

19 1 5 78151 20 0.72

19 1 5 78151 24 0.733

19 1 5 78151 32 0.738

20 1 2 20 4 0.375

20 1 2 20 6 0.417

20 1 2 20 10 0.45

20 1 2 20 16 0.469

20 1 2 20 20 0.475

20 1 2 20 24 0.479

20 1 2 20 32 0.484

20 1 4 5340 4 0.5

20 1 4 5340 6 0.583

20 1 4 5340 10 0.625

20 1 4 5340 16 0.656

20 1 4 5340 20 0.675

20 1 4 5340 24 0.677

20 1 4 5340 32 0.688

Table C-3: Construction 2.2 for values: q = 14 to 20 and N = 4, 6, 10, 16, 20, 24, 32.

Alexander Barrantes Muñoz Master of Science Thesis
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q t n Snq N R

3 2 2 3 4 0.25

3 2 2 3 6 0.25

3 2 3 7 4 0.25

3 2 4 19 4 0.313

3 2 6 141 4 0.333

3 2 2 3 10 0.35

3 2 7 393 4 0.357

3 2 2 3 16 0.375

3 2 3 7 6 0.389

3 2 2 3 20 0.4

3 2 3 7 10 0.4

3 2 2 3 24 0.417

3 2 4 19 6 0.417

3 2 2 3 32 0.438

3 2 5 51 6 0.467

3 2 6 141 6 0.472

3 2 3 7 16 0.479

3 2 3 7 20 0.5

3 2 5 51 4 0.5

3 2 7 393 6 0.5

3 2 3 7 24 0.514

3 2 4 19 10 0.525

3 2 3 7 32 0.531

3 2 5 51 10 0.56

3 2 4 19 16 0.578

3 2 4 19 24 0.583

3 2 6 141 10 0.583

3 2 4 19 20 0.6

3 2 4 19 32 0.602

3 2 5 51 16 0.613

3 2 7 393 10 0.614

3 2 5 51 20 0.63

3 2 5 51 24 0.642

3 2 6 141 16 0.646

3 2 5 51 32 0.663

3 2 6 141 20 0.667

3 2 7 393 16 0.67

3 2 6 141 24 0.681

3 2 7 393 20 0.693

3 2 6 141 32 0.698

3 2 7 393 24 0.708

3 2 7 393 32 0.723

4 2 2 4 4 0.25

4 2 4 44 4 0.313

4 2 2 4 6 0.333

4 2 2 4 10 0.35

4 2 6 580 4 0.375

4 2 2 4 16 0.406

4 2 4 44 6 0.417

4 2 2 4 20 0.425

4 2 2 4 24 0.438

4 2 2 4 32 0.438

4 2 6 580 6 0.5

4 2 4 44 10 0.525

4 2 4 44 16 0.578

4 2 4 44 20 0.6

4 2 6 580 10 0.6

4 2 4 44 24 0.615

4 2 4 44 32 0.633

4 2 6 580 16 0.667

4 2 6 580 20 0.683

4 2 6 580 24 0.694

4 2 6 580 32 0.714

5 2 2 5 4 0.25

5 2 3 19 4 0.25

q t n Snq N R

5 2 2 5 10 0.3

5 2 4 85 4 0.313

5 2 2 5 6 0.333

5 2 5 381 4 0.35

5 2 2 5 16 0.375

5 2 3 19 6 0.389

5 2 4 85 6 0.417

5 2 2 5 32 0.422

5 2 2 5 20 0.425

5 2 2 5 24 0.438

5 2 3 19 10 0.467

5 2 5 381 6 0.467

5 2 3 19 16 0.521

5 2 4 85 10 0.525

5 2 3 19 24 0.528

5 2 3 19 20 0.533

5 2 3 19 32 0.552

5 2 5 381 10 0.58

5 2 4 85 16 0.594

5 2 4 85 20 0.613

5 2 4 85 24 0.625

5 2 5 381 16 0.638

5 2 4 85 32 0.641

5 2 5 381 20 0.66

5 2 5 381 24 0.675

5 2 5 381 32 0.688

6 2 2 6 4 0.125

6 2 2 6 6 0.25

6 2 2 6 10 0.3

6 2 4 146 4 0.313

6 2 2 6 16 0.344

6 2 2 6 20 0.375

6 2 2 6 24 0.375

6 2 2 6 32 0.391

6 2 4 146 6 0.458

6 2 4 146 10 0.55

6 2 4 146 16 0.594

6 2 4 146 20 0.613

6 2 4 146 24 0.625

6 2 4 146 32 0.641

7 2 2 7 4 0.25

7 2 3 37 4 0.25

7 2 4 231 4 0.313

7 2 2 7 6 0.333

7 2 2 7 10 0.35

7 2 3 37 6 0.389

7 2 2 7 16 0.406

7 2 2 7 20 0.425

7 2 2 7 24 0.438

7 2 2 7 32 0.453

7 2 4 231 6 0.458

7 2 3 37 10 0.467

7 2 3 37 16 0.521

7 2 3 37 20 0.55

7 2 4 231 10 0.55

7 2 3 37 24 0.556

7 2 3 37 32 0.573

7 2 4 231 16 0.609

7 2 4 231 20 0.625

7 2 4 231 24 0.635

7 2 4 231 32 0.648

8 2 2 8 4 0.25

8 2 2 8 6 0.333

8 2 2 8 10 0.4

8 2 2 8 16 0.438

q t n Snq N R

8 2 2 8 24 0.438

8 2 2 8 20 0.45

8 2 2 8 32 0.453

8 2 4 344 4 0.5

8 2 4 344 6 0.583

8 2 4 344 10 0.625

8 2 4 344 20 0.625

8 2 4 344 24 0.635

8 2 4 344 16 0.656

8 2 4 344 32 0.656

9 2 2 9 4 0.25

9 2 3 61 4 0.25

9 2 4 489 4 0.313

9 2 2 9 6 0.333

9 2 3 61 6 0.389

9 2 2 9 10 0.4

9 2 2 9 16 0.438

9 2 2 9 24 0.438

9 2 2 9 20 0.45

9 2 2 9 32 0.453

9 2 4 489 6 0.458

9 2 3 61 10 0.467

9 2 3 61 16 0.542

9 2 3 61 20 0.55

9 2 4 489 10 0.55

9 2 3 61 24 0.569

9 2 3 61 32 0.583

9 2 4 489 16 0.609

9 2 4 489 20 0.625

9 2 4 489 24 0.635

9 2 4 489 32 0.656

10 2 2 10 4 0.125

10 2 2 10 6 0.25

10 2 4 670 4 0.313

10 2 2 10 10 0.35

10 2 2 10 16 0.406

10 2 2 10 24 0.417

10 2 2 10 32 0.422

10 2 2 10 20 0.425

10 2 4 670 6 0.458

10 2 4 670 10 0.55

10 2 4 670 16 0.609

10 2 4 670 20 0.625

10 2 4 670 24 0.646

10 2 4 670 32 0.656

11 2 2 11 4 0.25

11 2 3 91 4 0.25

11 2 4 891 4 0.313

11 2 2 11 6 0.333

11 2 3 91 6 0.389

11 2 2 11 10 0.4

11 2 2 11 16 0.406

11 2 2 11 20 0.425

11 2 2 11 24 0.438

11 2 2 11 32 0.453

11 2 4 891 6 0.458

11 2 3 91 10 0.467

11 2 3 91 16 0.542

11 2 3 91 20 0.55

11 2 4 891 10 0.55

11 2 3 91 24 0.569

11 2 3 91 32 0.583

11 2 4 891 16 0.609

11 2 4 891 20 0.625

11 2 4 891 24 0.646

Table C-4: Construction 2.3 for values: q = 3− 11 and N = 4, 6, 10, 16, 20, 24, 32.

Master of Science Thesis Alexander Barrantes Muñoz
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q t n Snq N R

11 2 4 891 32 0.656

12 2 2 12 4 0.125

12 2 2 12 6 0.25

12 2 2 12 10 0.35

12 2 2 12 16 0.375

12 2 2 12 20 0.4

12 2 2 12 24 0.417

12 2 2 12 32 0.422

13 2 2 13 4 0.25

13 2 3 127 4 0.25

13 2 2 13 6 0.333

13 2 3 127 6 0.389

13 2 2 13 10 0.4

13 2 2 13 16 0.406

13 2 2 13 20 0.425

13 2 2 13 24 0.438

13 2 2 13 32 0.453

13 2 3 127 10 0.5

13 2 3 127 16 0.542

13 2 3 127 20 0.55

13 2 3 127 24 0.569

13 2 3 127 32 0.583

14 2 2 14 4 0.125

14 2 2 14 6 0.25

14 2 2 14 10 0.35

14 2 2 14 16 0.375

14 2 2 14 20 0.4

14 2 2 14 24 0.417

14 2 2 14 32 0.438

15 2 2 15 4 0.125

15 2 2 15 6 0.25

15 2 2 15 10 0.35

15 2 2 15 16 0.375

15 2 2 15 24 0.396

15 2 2 15 20 0.4

15 2 3 169 4 0.417

15 2 2 15 32 0.422

15 2 3 169 6 0.5

15 2 3 169 10 0.5

15 2 3 169 16 0.542

15 2 3 169 20 0.567

15 2 3 169 24 0.569

15 2 3 169 32 0.583

16 2 2 16 4 0.25

16 2 2 16 6 0.333

16 2 2 16 10 0.4

q t n Snq N R

16 2 2 16 16 0.438

16 2 2 16 20 0.45

16 2 2 16 24 0.458

16 2 2 16 32 0.469

17 2 2 17 4 0.25

17 2 3 217 4 0.25

17 2 2 17 6 0.333

17 2 3 217 6 0.389

17 2 2 17 10 0.4

17 2 2 17 20 0.425

17 2 2 17 16 0.438

17 2 2 17 24 0.438

17 2 2 17 32 0.453

17 2 3 217 10 0.5

17 2 3 217 16 0.542

17 2 3 217 20 0.567

17 2 3 217 24 0.569

17 2 3 217 32 0.583

18 2 2 18 4 0.125

18 2 2 18 6 0.25

18 2 2 18 10 0.35

18 2 2 18 20 0.4

18 2 2 18 16 0.406

18 2 2 18 24 0.417

18 2 2 18 32 0.438

19 2 2 19 4 0.25

19 2 3 271 4 0.25

19 2 2 19 6 0.333

19 2 3 271 6 0.389

19 2 2 19 10 0.4

19 2 2 19 16 0.438

19 2 2 19 24 0.438

19 2 2 19 20 0.45

19 2 2 19 32 0.453

19 2 3 271 10 0.5

19 2 3 271 16 0.542

19 2 3 271 20 0.567

19 2 3 271 24 0.569

19 2 3 271 32 0.594

20 2 2 20 4 0.125

20 2 2 20 6 0.25

20 2 2 20 10 0.35

20 2 2 20 16 0.406

20 2 2 20 24 0.417

20 2 2 20 20 0.425

20 2 2 20 32 0.438

Table C-5: Construction 2.3 for values: q = 11− 20 and N = 4, 6, 10, 16, 20, 24, 32.
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q t n Snq N R

2 2 4 6 4 0.25

2 2 4 6 6 0.292

2 2 8 70 4 0.313

2 2 6 20 4 0.333

2 2 10 252 4 0.375

2 2 4 6 10 0.425

2 2 4 6 16 0.469

2 2 6 20 6 0.472

2 2 8 70 6 0.479

2 2 4 6 20 0.5

2 2 6 20 10 0.5

2 2 8 70 10 0.513

2 2 10 252 6 0.517

2 2 4 6 24 0.521

2 2 4 6 32 0.547

2 2 10 252 10 0.58

2 2 6 20 16 0.583

2 2 8 70 16 0.602

2 2 6 20 20 0.608

2 2 6 20 24 0.625

2 2 6 20 32 0.63

2 2 8 70 20 0.631

2 2 8 70 24 0.651

2 2 10 252 16 0.663

2 2 8 70 32 0.672

2 2 10 252 20 0.69

2 2 10 252 24 0.692

2 2 10 252 32 0.713

3 2 5 51 4 0.35

3 2 7 393 4 0.357

3 2 9 3139 4 0.361

3 2 6 141 4 0.375

3 2 5 51 6 0.433

3 2 8 1107 4 0.469

3 2 6 141 6 0.472

3 2 7 393 6 0.476

3 2 9 3139 6 0.519

3 2 8 1107 6 0.521

3 2 5 51 10 0.54

3 2 6 141 10 0.583

3 2 5 51 20 0.59

3 2 5 51 16 0.6

3 2 7 393 10 0.6

3 2 5 51 24 0.617

3 2 6 141 16 0.635

3 2 5 51 32 0.638

3 2 8 1107 10 0.638

3 2 9 3139 10 0.644

3 2 6 141 20 0.658

3 2 7 393 16 0.661

3 2 6 141 24 0.674

3 2 7 393 20 0.679

3 2 6 141 32 0.693

3 2 8 1107 16 0.695

3 2 7 393 24 0.696

3 2 9 3139 16 0.701

3 2 8 1107 20 0.713

3 2 7 393 32 0.719

3 2 9 3139 20 0.728

3 2 8 1107 24 0.729

3 2 9 3139 24 0.741

3 2 8 1107 32 0.746

3 2 9 3139 32 0.76

4 2 4 44 4 0.313

4 2 6 580 4 0.333

q t n Snq N R

4 2 4 44 6 0.417

4 2 6 580 6 0.472

4 2 4 44 10 0.5

4 2 8 8092 4 0.5

4 2 4 44 16 0.547

4 2 6 580 10 0.567

4 2 4 44 20 0.575

4 2 4 44 24 0.594

4 2 8 8092 10 0.6

4 2 8 8092 6 0.604

4 2 4 44 32 0.609

4 2 6 580 16 0.646

4 2 6 580 20 0.658

4 2 6 580 32 0.677

4 2 6 580 24 0.681

4 2 8 8092 16 0.688

4 2 8 8092 20 0.706

4 2 8 8092 24 0.724

4 2 8 8092 32 0.742

5 2 4 85 4 0.313

5 2 6 1751 4 0.333

5 2 5 381 4 0.35

5 2 8 38165 4 0.375

5 2 4 85 6 0.458

5 2 5 381 6 0.467

5 2 4 85 10 0.5

5 2 6 1751 6 0.5

5 2 8 38165 6 0.542

5 2 5 381 10 0.56

5 2 4 85 16 0.563

5 2 4 85 20 0.575

5 2 4 85 24 0.594

5 2 4 85 32 0.609

5 2 6 1751 10 0.617

5 2 5 381 16 0.625

5 2 8 38165 10 0.625

5 2 5 381 20 0.64

5 2 5 381 24 0.658

5 2 6 1751 16 0.667

5 2 6 1751 20 0.667

5 2 5 381 32 0.681

5 2 6 1751 24 0.688

5 2 8 38165 16 0.695

5 2 8 38165 20 0.713

5 2 6 1751 32 0.714

5 2 8 38165 24 0.729

5 2 8 38165 32 0.746

6 2 6 4332 4 0.458

6 2 6 4332 6 0.556

6 2 6 4332 10 0.633

6 2 6 4332 16 0.656

6 2 6 4332 20 0.675

6 2 6 4332 24 0.694

6 2 6 4332 32 0.708

7 2 4 231 4 0.313

7 2 6 9331 4 0.333

7 2 4 231 6 0.375

7 2 7 60691 4 0.393

7 2 4 231 10 0.475

7 2 6 9331 6 0.5

7 2 7 60691 6 0.524

7 2 4 231 16 0.547

7 2 4 231 20 0.575

7 2 4 231 24 0.594

7 2 6 9331 10 0.6

Table C-6: Construction 2.4 for values: q = 2 to 7 and N = 4, 6, 10, 16, 20, 24, 32.
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q t n Snq N R

7 2 4 231 32 0.617

7 2 7 60691 10 0.643

7 2 6 9331 16 0.667

7 2 6 9331 20 0.683

7 2 7 60691 16 0.696

7 2 6 9331 24 0.701

7 2 6 9331 32 0.719

7 2 7 60691 20 0.721

7 2 7 60691 24 0.732

7 2 7 60691 32 0.75

8 2 4 344 4 0.313

8 2 4 344 6 0.458

8 2 4 344 10 0.55

8 2 4 344 16 0.609

8 2 4 344 20 0.625

8 2 4 344 24 0.625

8 2 4 344 32 0.648

9 2 4 489 4 0.313

9 2 6 32661 4 0.333

9 2 5 3951 4 0.35

9 2 4 489 6 0.417

9 2 5 3951 6 0.5

9 2 6 32661 6 0.5

9 2 4 489 10 0.525

9 2 4 489 16 0.594

9 2 5 3951 10 0.6

9 2 4 489 20 0.613

9 2 6 32661 10 0.617

9 2 4 489 24 0.635

9 2 4 489 32 0.648

9 2 5 3951 16 0.65

9 2 5 3951 20 0.67

9 2 5 3951 24 0.675

9 2 6 32661 16 0.677

9 2 5 3951 32 0.7

9 2 6 32661 24 0.701

9 2 6 32661 20 0.708

9 2 6 32661 32 0.719

10 2 6 55252 4 0.333

10 2 6 55252 6 0.5

10 2 6 55252 10 0.6

10 2 6 55252 16 0.667

10 2 6 55252 24 0.694

10 2 6 55252 20 0.7

10 2 6 55252 32 0.719

11 2 3 91 4 0.25

11 2 5 8801 4 0.35

11 2 6 88913 4 0.375

11 2 3 91 6 0.389

11 2 3 91 10 0.433

11 2 4 891 4 0.438

11 2 5 8801 6 0.467

11 2 3 91 16 0.479

11 2 6 88913 6 0.5

11 2 3 91 20 0.517

11 2 3 91 24 0.542

11 2 4 891 6 0.542

11 2 3 91 32 0.563

11 2 5 8801 10 0.58

11 2 4 891 16 0.594

11 2 4 891 10 0.6

11 2 4 891 20 0.613

11 2 6 88913 10 0.617

11 2 4 891 24 0.635

11 2 5 8801 16 0.638

q t n Snq N R

11 2 4 891 32 0.648

11 2 5 8801 20 0.66

11 2 6 88913 16 0.667

11 2 5 8801 24 0.675

11 2 6 88913 20 0.692

11 2 5 8801 32 0.7

11 2 6 88913 24 0.715

11 2 6 88913 32 0.734

12 2 4 1156 4 0.438

12 2 4 1156 10 0.525

12 2 4 1156 6 0.542

12 2 4 1156 16 0.594

12 2 4 1156 20 0.625

12 2 4 1156 24 0.635

12 2 4 1156 32 0.648

13 2 4 1469 4 0.313

13 2 4 1469 6 0.458

13 2 4 1469 10 0.55

13 2 4 1469 16 0.594

13 2 4 1469 20 0.625

13 2 4 1469 24 0.635

13 2 4 1469 32 0.656

15 2 4 2255 4 0.25

15 2 4 2255 6 0.417

15 2 4 2255 10 0.525

15 2 4 2255 16 0.578

15 2 4 2255 20 0.613

15 2 4 2255 24 0.625

15 2 4 2255 32 0.641

16 2 4 2736 4 0.313

16 2 4 2736 6 0.458

16 2 4 2736 10 0.55

16 2 4 2736 16 0.609

16 2 4 2736 24 0.625

16 2 4 2736 20 0.638

16 2 4 2736 32 0.641

17 2 3 217 4 0.25

17 2 4 3281 4 0.313

17 2 3 217 6 0.333

17 2 3 217 10 0.433

17 2 4 3281 6 0.458

17 2 3 217 16 0.5

17 2 3 217 20 0.533

17 2 4 3281 10 0.55

17 2 3 217 24 0.556

17 2 3 217 32 0.573

17 2 4 3281 16 0.625

17 2 4 3281 20 0.625

17 2 4 3281 24 0.635

17 2 4 3281 32 0.656

19 2 4 4579 4 0.313

19 2 4 4579 6 0.458

19 2 4 4579 10 0.55

19 2 4 4579 16 0.625

19 2 4 4579 24 0.635

19 2 4 4579 20 0.638

19 2 4 4579 32 0.656

Table C-7: Construction 2.4 for values: q = 7 to 19 and N = 4, 6, 10, 16, 20, 24, 32.
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q t n Snq N R

2 2 4 6 4 0.375

2 2 4 6 6 0.375

2 2 8 70 4 0.375

2 2 10 252 4 0.475

2 2 4 6 10 0.5

2 2 6 20 4 0.5

2 2 8 70 6 0.521

2 2 4 6 16 0.531

2 2 4 6 20 0.55

2 2 8 70 10 0.55

2 2 4 6 24 0.563

2 2 6 20 6 0.583

2 2 10 252 6 0.583

2 2 4 6 32 0.586

2 2 6 20 10 0.6

2 2 8 70 16 0.633

2 2 10 252 10 0.64

2 2 6 20 16 0.646

2 2 8 70 20 0.656

2 2 6 20 20 0.658

2 2 6 20 24 0.667

2 2 6 20 32 0.672

2 2 8 70 24 0.672

2 2 8 70 32 0.691

2 2 10 252 16 0.7

2 2 10 252 24 0.717

2 2 10 252 20 0.72

2 2 10 252 32 0.738

4 2 6 580 4 0.417

4 2 4 44 4 0.438

4 2 4 44 6 0.5

4 2 6 580 6 0.528

4 2 8 8092 4 0.563

4 2 4 44 10 0.575

4 2 4 44 16 0.594

4 2 4 44 20 0.613

4 2 6 580 10 0.617

4 2 4 44 24 0.625

4 2 8 8092 10 0.638

4 2 4 44 32 0.641

4 2 8 8092 6 0.646

4 2 6 580 16 0.677

4 2 6 580 20 0.683

4 2 6 580 32 0.698

4 2 6 580 24 0.701

4 2 8 8092 16 0.711

4 2 8 8092 20 0.725

4 2 8 8092 24 0.74

4 2 8 8092 32 0.758

6 2 2 6 6 0.167

6 2 2 6 4 0.25

6 2 4 146 4 0.313

6 2 8 135954 4 0.344

6 2 2 6 10 0.35

6 2 2 6 16 0.375

6 2 2 6 20 0.4

6 2 2 6 24 0.417

6 2 4 146 6 0.417

6 2 2 6 32 0.438

q t n Snq N R

6 2 8 135954 6 0.479

6 2 6 4332 4 0.542

6 2 4 146 10 0.55

6 2 6 4332 6 0.583

6 2 4 146 16 0.594

6 2 8 135954 10 0.613

6 2 4 146 20 0.625

6 2 4 146 24 0.625

6 2 4 146 32 0.641

6 2 6 4332 10 0.667

6 2 6 4332 16 0.677

6 2 8 135954 16 0.688

6 2 6 4332 20 0.692

6 2 6 4332 24 0.708

6 2 8 135954 20 0.719

6 2 6 4332 32 0.724

6 2 8 135954 24 0.724

6 2 8 135954 32 0.746

10 2 6 55252 4 0.375

10 2 6 55252 6 0.528

10 2 6 55252 10 0.633

10 2 6 55252 16 0.688

10 2 6 55252 24 0.708

10 2 6 55252 20 0.717

10 2 6 55252 32 0.734

12 2 4 1156 4 0.5

12 2 4 1156 10 0.575

12 2 4 1156 6 0.583

12 2 4 1156 16 0.609

12 2 4 1156 20 0.65

12 2 4 1156 24 0.656

12 2 4 1156 32 0.664

16 2 2 16 4 0.375

16 2 4 2736 4 0.375

16 2 2 16 10 0.4

16 2 2 16 6 0.417

16 2 2 16 16 0.438

16 2 2 16 20 0.45

16 2 2 16 24 0.458

16 2 2 16 32 0.469

16 2 4 2736 6 0.5

16 2 4 2736 10 0.55

16 2 4 2736 16 0.609

16 2 4 2736 24 0.625

16 2 4 2736 20 0.638

16 2 4 2736 32 0.641

20 2 2 20 4 0.25

20 2 2 20 6 0.333

20 2 2 20 10 0.35

20 2 2 20 16 0.406

20 2 2 20 20 0.45

20 2 2 20 32 0.453

20 2 2 20 24 0.458

Table C-8: Construction 2.5 for values: q = 2 to 20 and N = 4, 6, 10, 16, 20, 24, 32.
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Glossary

List of Acronyms

GPS Global Positioning System

ECC Error Correcting Codes

BPSK Binary Phase-Shift Keying

QPSK Quadrature Phase-Shift Keying

QAM Quadrature Amplitude Modulation

ASK Amplitude Shift Keying

FSK Frequency Shift Keying

PSK Phase Shift Keying

PAM Pulse Amplitude Modulation

VoIP Voice over Internet Protocol

DVD Digital Versatile Disc

CD Compact Disc

FEC Forward Error Correction

ARQ Automatic Repeat Request

SB Symbol-Balanced

CB Charge-Balanced

PB Polarity-Balanced

CPB Charged and Polarity-Balanced

DC Direct Current
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84 Glossary

VLSI Very Large Scale Integration

DSV Digital Sum Variation

BCH Bose, Ray-Chaudhuri and Hocquenghem

GF Galois Field
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