



# FORM-FINDING OF BRANCHING STRUCTURES SUPPORTING FREEFORM ARCHITECTURAL SURFACES

Alex Kouwenhoven 05-07-2018



"You could look at nature as being like a catalog of products, and all of those have benefited from a 3.8 billion year research and development period. And given that level of investment, it makes sense to use it."

**Michael Pawlyn** 











'There is no better structure than the trunk of a tree or a human skeleton'

#### **Antonio Gaudí**



The main issue about these structures is finding the most reasonable form to solve the problem of actual project.







#### **Problem statement**







There is no analytical method of form-finding the optimal branching structure as a support of freeform architectural expressions.



| Presentation                                                                                                                                         |
|------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                      |
|                                                                                                                                                      |
|                                                                                                                                                      |
|                                                                                                                                                      |
|                                                                                                                                                      |
|                                                                                                                                                      |
|                                                                                                                                                      |
|                                                                                                                                                      |
|                                                                                                                                                      |
|                                                                                                                                                      |
| I Research Framework   II Theoretical Framework   III Calculation of structures   IV Design problem   V Design solution   VI Design   VII Conclusion |
|                                                                                                                                                      |
|                                                                                                                                                      |
|                                                                                                                                                      |
|                                                                                                                                                      |
|                                                                                                                                                      |
|                                                                                                                                                      |
|                                                                                                                                                      |
|                                                                                                                                                      |
|                                                                                                                                                      |
|                                                                                                                                                      |
| I Research Framework   II Theoretical Framework   III Calculation of structures   IV Design problem   V Design solution   VI Design   VII Conclusion |











#### **Freeform surfaces**



I Research Framework | II Theoretical Framework | III Calculation of structures | IV Design problem | V Design solution | VI Design | VII Conclusion FORM-FINDING OF BRANCHING STRUCTURES SUPPORTING FREEFORM ARCHITECTURAL SURFACES

#### **Freeform surfaces**





### **Branching stuctures**













The main issue about these structures is finding the most reasonable form to solve the problem of actual project.





### Form finding



I Research Framework | II Theoretical Framework | III Calculation of structures | IV Design problem | V Design solution | VI Design | VII Conclusion | FORM-FINDING OF BRANCHING STRUCTURES SUPPORTING FREEFORM ARCHITECTURAL SURFACES



## Form finding



# Form finding



# Form finding



Finding an (optimal) shape of a [form-active structure] that is in (or approximates) a state of static equilibrium.

J. Lewis

























I Research Framework | II Theoretical Framework | III Calculation of structures | IV Design problem | V Design solution | VI Design | VII Conclusion | FORM-FINDING OF BRANCHING STRUCTURES SUPPORTING FREEFORM ARCHITECTURAL SURFACES

### **Calculation of arches and shells**







$$E_{compl,total} = \sum_{i=1}^{n} F_i^2 l_i = minimum$$

$$E_{compl} = \frac{1}{2}\sigma\varepsilon = E_v$$

$$E_{compl,total} = \sum_{i=1}^n F_i^2 l_i$$



$$E_{compl,total} = \sum_{i=1}^n F_i^2 l_i = minimum$$





$$E_{compl,total} = \sum_{i=1}^n F_i^2 l_i = minimum$$



### **MAXWELL'S THEORY**

#### **MAXWELL'S THEORY**

$$\min \sum V_i = \min \sum A_i l_i = \min \frac{1}{\sigma} \sum |F_i| l_i$$

$$\left(\sum F_i \cdot l_i\right)_{compression} + \left(\sum F_i \cdot l_i\right)_{tension} = \left(\sum \overrightarrow{\mathbf{P}} \cdot \overrightarrow{r}\right)_{loads} + \left(\sum \overrightarrow{\mathbf{P}} \cdot \overrightarrow{r}\right)_{reactions}$$

FORM-FINDING OF BRANCHING STRUCTURES SUPPORTING FREEFORM ARCHITECTURAL SURFACES











# Translation to design problem



















$$rac{F_{v,i}}{d_z} = rac{N_i}{l_i}$$

$$rac{F_{v,i}}{d_z} = rac{N_i}{l_i} \ N_i = rac{l_i \cdot F_{v,i}}{d_z}$$





$$\frac{F_{v,i}}{d_z} = \frac{F_{h,i}}{d_i}$$

$$\frac{F_{v,i}}{d_x} = \frac{F_{hx,i}}{d_x}$$

$$rac{F_{v,i}}{d_z} = rac{F_{h,i}}{d_i} \qquad rac{F_{v,i}}{d_z} = rac{F_{hx,i}}{d_x} \qquad rac{F_{v,i}}{d_z} = rac{F_{hy,i}}{d_y}$$

$$F_{\scriptscriptstyle h,i} = rac{d_i \cdot F_{\scriptscriptstyle v,i}}{d_z}$$

$$F_{ ext{\tiny $h,i$}} = rac{d_i \cdot F_{v,i}}{d_z} \qquad F_{ ext{\tiny $hx,i$}} = rac{d_x \cdot F_{v,i}}{d_z} \qquad F_{ ext{\tiny $hy,i$}} = rac{d_y \cdot F_{v,i}}{d_z}$$

$$F_{{\scriptscriptstyle hy},i} = rac{d_{\scriptscriptstyle y} \cdot F_{\scriptscriptstyle v,i}}{d_{\scriptscriptstyle z}}$$































10F 2-2.62 2,64F 2-2.62 1,85F

Optimal load path

Optimal distribution of forces

## **Discrepancy**







Optimal configuration can be found for a given load case.

This load case, however, is not the most efficient distribution of forces in the found configuration.



Optimal configuration can be found for a given load case.

This load case, however, is not the most efficient distribution of forces in the found configuration.

## **Discrepancy**



## **Discrepancy**



























I Research Framework | II Theoretical Framework | III Calculation of structures | IV Design problem | V Design solution | VI Design | VII Conclusion



I Research Framework | II Theoretical Framework | III Calculation of structures | IV Design problem | V Design solution | VI Design | VII Conclusion





$$\sum_{r=1}^{n} F x_r = rac{dx_{ ext{next member}} \cdot \sum_{r=1}^{n} F z_r}{dz_{ ext{next member}}}$$



$$\sum_{r=1}^{n} F x_r = rac{dx_{ ext{next member}} \cdot \sum_{r=1}^{n} F z_r}{dz_{ ext{next member}}}$$

$$rac{(x_1\!-\!xp_1)\!\cdot\! F_1}{zp_1\!-\!z_1}\!+\!rac{(x_2\!-\!xp_1)\!\cdot\! F_2}{zp_1\!-\!z_2}\!=\!rac{(xp_1\!-\!xpp_1)\!\cdot\! Fp_1}{zpp_1\!-\!zp_1}$$



 $xp_{1} = \frac{F_{1} \cdot x_{1} \cdot z_{2} \cdot zp_{1} - F_{1} \cdot x_{1} \cdot z_{2} \cdot zpp_{1} - F_{1} \cdot x_{1} \cdot zp_{1}^{2} + F_{1} \cdot x_{1} \cdot zp_{1} + F_{2} \cdot x_{2} \cdot zp_{1} - F_{2} \cdot x_{2} \cdot zp_{1} - F_{2} \cdot x_{2} \cdot zp_{1}^{2} + F_{2} \cdot x_{2} \cdot zp_{1} + Fp_{1} \cdot xpp_{1} \cdot z_{1} \cdot zp_{1} - Fp_{1} \cdot xpp_{1} \cdot z_{2} \cdot zp_{1} + Fp_{1} \cdot xpp_{1} \cdot zp_{1}^{2}}{F_{1} \cdot z_{2} \cdot zp_{1} - F_{1} \cdot z_{2} \cdot zpp_{1} - F_{1} \cdot zp_{1}^{2} + F_{1} \cdot zp_{1} \cdot zpp_{1} + Fp_{2} \cdot zp_{1} - Fp_{2} \cdot zp_{1}^{2} + Fp_{2} \cdot zp_{1} - Fp_{2} \cdot zp_{1}^{2} + Fp_{1} \cdot zp_{1} - Fp_{1} \cdot zp_{1} - Fp_{1} \cdot zp_{1}^{2} + Fp_{2} \cdot zp_{1} - Fp_{1} \cdot zp_{1}^{2} + Fp_{2} \cdot zp_{1} - Fp_{2} \cdot zp_{1} - Fp_{2} \cdot zp_{1}^{2} + Fp_{2} \cdot zp_{1} - Fp_{2} \cdot zp_{1}^{2} + Fp_{2} \cdot z$ 













number of trees



number of branches



number of iterations



















Minimum weight

$$mass = A \cdot l \cdot \rho = \min$$

Minimum weight

 $mass = A \cdot l \cdot \rho = \min$ 

Same profiles

$$\Delta A = (A_{\text{max}} - A_{\text{min}}) = \min$$

Minimum weight

Same profiles

Maximum material use

$$mass = A \cdot l \cdot \rho = \min$$

$$\Delta A = (A_{\text{max}} - A_{\text{min}}) = \min$$

 $lowest \sigma_b = \max$ 

Minimum weight

Same profiles

Maximum material use

Minimum costs

$$mass = A \cdot l \cdot \rho = \min$$

$$\Delta A = (A_{\text{max}} - A_{\text{min}}) = \min$$

*lowest* 
$$\sigma_b = \max$$

$$\cos t = \text{ } \in \text{ } profile \cdot l = \min$$

Minimum weight

Same profiles

Maximum material use

Minimum costs

Minumum embodied energy

$$mass = A \cdot l \cdot \rho = \min$$

$$\Delta A = (A_{\text{max}} - A_{\text{min}}) = \min$$

*lowest* 
$$\sigma_b = \max$$

$$\cos t = \text{ } \in \text{ } profile \cdot l = \min$$

$$E_{mbodied} = E \cdot profile \cdot l = \min$$

Minimum weight

Same profiles

Maximum material use

Minimum costs

Minumum embodied energy

Minimize forces in the roof

$$mass = A \cdot l \cdot \rho = \min$$

$$\Delta A = (A_{\text{max}} - A_{\text{min}}) = \min$$

*lowest* 
$$\sigma_b = \max$$

$$\cos t = \text{ } \in \text{ } profile \cdot l = \min$$

$$E_{mbodied} = E \cdot profile \cdot l = \min$$

Minimum weight

Same profiles

Maximum material use

Minimum costs

Minumum embodied energy

Minimize forces in the roof

Other design conditions

$$mass = A \cdot l \cdot \rho = \min$$

$$\Delta A = (A_{\text{max}} - A_{\text{min}}) = \min$$

*lowest* 
$$\sigma_b = \max$$

$$\cos t = \text{ } \in \text{ } profile \cdot l = \min$$

$$E_{mbodied} = E \cdot profile \cdot l = \min$$

### **Multicriteria optimization**

| Optimisation                | Factor of importance |
|-----------------------------|----------------------|
| Minimal weight              | 4                    |
| Same profiles               | 2                    |
| Maximal material use        | 3                    |
| Minimal costs               | 1                    |
| Minimal Embodied Energy     | 5                    |
| Reduce forces roofstructure | 2                    |
| Other design conditions     | 3                    |





#### **Design: location**



### **Design: location**









I Research Framework | II Theoretical Framework | III Calculation of structures | IV Design problem | V Design solution | VI Design | VII Conclusion | FORM-FINDING OF BRANCHING STRUCTURES SUPPORTING FREEFORM ARCHITECTURAL SURFACES





### Design



### Design







### Design



















"How can we design structurally efficient three-dimensional branching structures as a support of freeform architectural surfaces?"









