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A B S T R A C T

We present expressions to compute the inverse of a Cauchy-type singular integral equation representing the
relation between a double-peaked Coulomb stress in a fault or fracture and the resulting slip gradient in two
distinct collinear slip patches. In particular we consider a situation where the patches are close enough to
account for the influence of the slip gradient in one patch on the slip-induced shear stress in the other patch
and vice versa. This situation can occur during depletion-induced or injection-induced fault slip in subsurface
reservoirs for, e.g., natural gas production, hydrogen or CO2 storage, or geothermal operations. The theory
for a single slip patch is well-developed but the situation is less clear for a configuration with two patches
although the monographs of Muskhelishvili (1953) and Weertman (1996) provide earlier results. We show that
the general inverse solution for the coupled two-patch problem requires six auxiliary conditions to ensure six
physical requirements: boundedness of the slip gradient at the four end points of the slip patches and vanishing
of the integrals of the slip gradient over the patches. Mathematically, the presence of two additional conditions,
as compared to earlier formulations, corresponds to two undetermined coefficients in the general solution of
the governing integral equation. Numerical simulation confirms that at least one of these is always non-zero
in the coupled situation. For a coupled double-patch case with a symmetric pre-slip Coulomb stress pattern,
the general inverse solution requires three auxiliary conditions. Moreover the conditions for the asymmetric
case may be reduced to a set of four again, but these are different from the sets of four obtained earlier by
Muskhelishvili (1953) and Weertman (1996). We illustrate the theory with a numerical example in which
the evaluation of the Cauchy integrals is performed with a modified version of augmented Gauss–Chebyshev
quadrature that relies on analytical inversion.
1. Introduction

1.1. Motivation

We address the computation of poroelastic stresses and the result-
ing fault slip caused by injection or production of fluids into/from
deep subsurface reservoirs; i.e., fluid-filled poro-elastic inclusions inside
fluid-tight elastic surroundings (Segall, 1985, 1989; Suckale, 2009;
Elsworth et al., 2016; Foulger et al., 2018; Muntendam-Bos et al.,
2022). In particular we aim to better understand the effects of the
double-peaked shear stress pattern that occurs when these reservoirs
contain displaced faults, i.e. faults with a non-zero offset. The effect
of fault offset on induced fault slip seems to have been first addressed
in relation to the depletion of hydrocarbon reservoirs, and early nu-
merical studies were made by Roest and Kuilman (1994) and Roest
and Mulders (2000) and Mulders (2003). More recent numerical studies

∗ Corresponding author.
E-mail address: j.d.jansen@tudelft.nl (J.-D. Jansen).

were performed by Van den Bogert (2015, 2018), Buijze et al. (2017,
2019), Van Wees et al. (2017, 2019) and Hergert et al. (2022) who all
demonstrated the development of two shear stress peaks, resulting in
two aseismic collinear slip patches that grow with increasing depletion
until they either merge aseismically or become unstable resulting in
a seismic event. The presence of singularities resulting in near-infinite
stress peaks and the possibility of unstable fault slip complicates the
numerical treatment of the problem and warrants the use of (semi-)
analytical techniques to clarify the underlying physics. Such a semi-
analytical treatment was reported by Jansen and Meulenbroek (2022)
but the formulation of the coupling effect of neighboring slip patches,
and thus the understanding of the phenomenon, were incomplete.

1.2. Configuration

We consider a two-dimensional plane-strain model of a subsurface
reservoir; see Fig. 1. We assume the reservoir to be either of finite width
vailable online 11 June 2024
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Fig. 1. Reservoir with a displaced fault (Jansen et al., 2019).
or infinitely wide and of height ℎ = 𝑎 + 𝑏, intersected by a displaced
non-sealing zero-width fault with an offset (also known as fault throw)
of magnitude 𝑡𝑓 = 𝑏 − 𝑎 and a dip angle 𝜃. From the studies listed
above that addressed the effect of fault offset in detail it follows
that depletion typically results in the development of two slip patches
starting from the ‘internal’ reservoir-fault corners at 𝑦 = ±𝑎; see Fig. 2
which displays results for an example with parameter values given in
Table 1. Continuing depletion will usually result in a gradual aseismic
growth of the two slip patches until one of them (or occasionally both)
becomes unstable and generates a seismic event which then also leads
to merging of the patches. In another scenario, which seems to be
less frequently occurring, the slip patches merge aseismically (Van den
Bogert, 2018).

1.3. Stress peaks

The presence of sharp ‘internal’ and ‘external’ reservoir-fault corners
in the reservoir model displayed in Fig. 1 results in positive-valued
peaks in the pre-slip Coulomb stress at 𝑦 = ±𝑎 and negative-valued
peaks at 𝑦 = ±𝑏, see Fig. 2. The physical nature of these peaks stems
from the increase in compressive stresses in the grains of the reservoir
rock caused by a decrease in reservoir pore pressure, and thus a cor-
responding vertical compaction. In those segments of the fault where
reservoir rock juxtaposes non-reservoir rock, this vertical compaction
is restricted by the stiffness of the adjacent non-reservoir rock, which
results in severe stress concentrations at the reservoir-fault corners.
Appendix A gives an example of this effect and provides closed-form
analytical expressions to compute the magnitude of the corresponding
stress field.

The stress peaks are, mathematically, of infinite magnitude. In real-
ity, physical effects such as more rounded corners, a finite fault width
and pore pressure diffusion between the reservoir and the surrounding
rock will somewhat smoothen the stress profile. However, peaks in
the pre-slip Coulomb stress profile remain a typical characteristic of
displaced faults that experience depletion or injection where it should
be noted that, as opposed to the peak configuration during depletion,
injection results in positive peaks at the external corners and negative
peaks at the internal ones (Jansen et al., 2019). Also, for increasing
depletion the ‘internal’ patches will grow further inward with the
negative stress peaks at the external corners blocking progression of
the slip towards the overburden or underburden. Opposed, during in-
jection the external patches will grow outward, into the overburden and
2

Fig. 2. Pre-slip Coulomb stress and slip for the example with properties listed in
Table 1. Left: pre-slip Coulomb stress 𝜏𝐶 = 𝜏 − 𝜏𝑠𝑙 . Right: fault slip 𝛿. The green
horizontal lines at 𝑦 = −76, −51, 47 and 76 m in the left figure correspond to the zeros 𝑦𝑖
of the pre-slip Coulomb stress. The blue horizontal lines at 𝑦 = −80, −33, 29 and 80 m
in the right figure correspond to the slip patch boundaries �̃�𝑖. The horizontal black
dotted lines in both figures represent the four coordinate values 𝑦 = −𝑎, −𝑏, 𝑏 and 𝑎
which correspond to the top and bottom of the reservoir blocks, indicated in gray, at
each side of the fault. The dash-dotted rectangle in the left figure corresponds to the
detailed views in Figs. 4 and 5.

underburden while also the increased reservoir pressure is more likely
to propagate outward through the fault causing a further tendency of
outward slip propagation.

1.4. Coupling and multiple integration intervals

The two slip patches in a fault are often located far enough from
each other to neglect the effect of slip in one patch on the slip in the
other one. E.g., in the example with slip-weakening friction considered
in Jansen and Meulenbroek (2022) coupling became only relevant
for scaled fault offsets 𝑡𝑓∕ℎ larger than about 0.7. Also, in case of
injection-induced seismicity the slip patches will grow outward, instead
of inward like in depletion-induced situations, and coupling will usually
be irrelevant. In those cases it is computationally more efficient to
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consider the stresses and slip in each of the patches in isolation.
However, coupling significantly changes the slip patch growth when
the patches approach each other. In Jansen and Meulenbroek (2022)
an attempt was made to address the coupling effect with an iterative
procedure by alternately considering the effect of fault slip in one
patch on the stresses in the other patch and vice versa. However this
approach was not computationally efficient while also convergence of
the iterative procedure cannot be guaranteed.

Here we present a more rigorous coupling approach based on the
theory for Cauchy singular integrals over multiple intervals. Although
this theory was already developed by Muskhelishvili in the 1940’s,
applications to multiple intervals are scarce and appear to be limited
to a few publications; see, e.g., Muskhelishvili (1953), Lewin (1968)
and Weertman (1996). In particular the book by Weertman (1996) is
relevant because it addresses fracture mechanics and describes how the
multiple-interval formulation of Muskhelishvili can be used compute
the stresses and slip in multiple neighboring cracks. Unfortunately, nei-
ther the original formulation by Muskhelishvili (1953) nor the theory
as worked out by Weertman (1996) appear to be capable to correctly
describe the interaction effects between slip patches in induced fault
slip. In the remainder of this paper we will present a solution to
overcome this shortcoming.

1.5. Organization of the paper

Section 2 briefly describes the geomechanical background of the
problem, and provides the Cauchy-type singular integral equation that
governs the slip gradient in two neighboring slip patches. Section 3
describes how to obtain an analytical inverse of the governing Cauchy
equation that results in a physically realistic configuration of slip
patches, and provides the necessary auxiliary conditions. Section 4
briefly discusses how to numerically compute the integrals that occur
in the inverse solution, and Section 5 provides a numerical example.
Section 6 shows how a symmetric load pattern leads to a reduced set
of auxiliary conditions. The last two sections provide a discussion and
a concluding summary. Three Appendices provide further information
about the geomechanical formulation of the problem, the derivation of
the necessary auxiliary conditions for a consistent inverse solution, and
the numerical integration procedure.

2. Singular integral equations for fault slip

2.1. Pre-slip coulomb stresses

Closed-form analytical expressions for depletion-induced stresses in
2D displaced faults were derived by various authors; see, e.g., Jansen
et al. (2019), Lehner (2019) and Wu et al. (2021). Appendix A lists the
expressions reported in Jansen and Meulenbroek (2022) for a uniform
quasi-steady-state pressure field, and we refer to Cornelissen et al.
(2024) for a recent overview of similar (semi-)analytical methods that
can cope with non-uniform pressures and 3D configurations. Moreover,
depletion-induced stresses may be computed with the aid of numerical
techniques such as finite element, finite volume or (spectral) boundary
element methods. All these techniques can be used to compute the
pre-slip Coulomb stress in a fault, defined as

𝜏𝐶 = 𝜏 − 𝜏𝑠𝑙
= 𝜏 − (𝜅 − 𝜇𝜎′), (1)

here 𝜏 is the shear stress, 𝜏𝑠𝑙 the slip threshold, 𝜎′ the effective normal
tress, 𝜅 cohesion and 𝜇 the friction coefficient; see also Appendix A.
ote that we use the solid mechanics sign convention, in which positive
ormal stresses correspond to tension. The effective normal stress is
hen defined as
′

3

= 𝜎 + 𝛽𝑝, (2) −
Table 1
Reservoir properties and fault geometry (Jansen and Meulenbroek, 2022).

Symbol Property Value SI units

𝑎 See Fig. 1 75 m
𝑏 ’’ 150 m
𝑐 ’’ ∞ m
𝑑 ’’ ∞ m
𝐷0 Depth at reservoir center (𝑦 = 0) 3500 m
𝑔 Acceleration of gravity 9.81 m∕s2

𝐺 Shear modulus 6500 MPa
𝐾0 Ratio of initial effective horizontal to vertical stresses 0.5 –
𝛥𝑝 Incremental reservoir pressure −25 MPa
𝑝00 Initial reservoir pressure at reservoir center 35 MPa
𝛼 Biot coefficient 0.9 –
𝛽 Effective stress coefficient for fault friction 0.9 –
𝜃 Dip angle 70 deg.
𝜅 Cohesion 0 MPa
𝜇𝑠𝑡 Static friction coefficient 0.52 –
𝜈 Poisson’s coefficient 0.15 –
𝜌𝑓𝑙 Fluid density 1020 kg∕m3

𝜌𝑠 Solid density 2650 kg∕m3

𝜙 Porosity 0.15 –

Note: the initial vertical stress, initial pressure and initial effective normal stress have
been computed as: 𝜎0

𝑦𝑦(𝑦) = [(1 − 𝜙)𝜌𝑠 + 𝜙𝜌𝑓𝑙]𝑔(𝑦 −𝐷0), where 𝜎0
𝑦𝑦 < 0, 𝑝0(𝑦) = 𝑝00 − 𝜌𝑓𝑙 𝑔 𝑦,

′0(𝑦) = 𝜎0(𝑦) + 𝛽𝑝0(𝑦). (Valid for reservoir, overburden and underburden.)

here 𝜎 is the normal stress, 𝛽 an effective stress factor (typically
omewhat smaller than or equal to one) and 𝑝 the reservoir pressure,
.e. the pore pressure in the reservoir rock. The stresses and the pressure
re to be interpreted as combined quantities in the sense that they are
he sum of initial components (indicated with a superscript zero) and
ncremental components (indicated with a prefix 𝛥):

𝜏 = 𝜏0 + 𝛥𝜏, (3)
= 𝜎0 + 𝛥𝜎, (4)

𝑝 = 𝑝0 + 𝛥𝑝. (5)

he initial quantities depend on the burial depth of the reservoir and
he regional geological stress regime and may be considered constants.
he incremental quantities result from human-induced activities where

nduced pressures subsequently lead to induced stresses, with positive
alues of 𝛥𝑝 corresponding to fluid injection and negative values to
epletion.

For a deep subsurface situation, as considered in our paper, com-
ined normal stresses are always compressive and therefore negative-
alued. Also, combined normal and shear stresses are typically a func-
ion of position 𝑠 along the fault and of time, while the friction
oefficient may be a function of position, time, temperature, slip, slip
ate and/or additional state variables that represent internal mecha-
isms influencing the friction properties (Ohnaka, 2013; Scholz, 2019).
ere we will only consider the simplest possible formulation: constant

riction, with a static friction coefficient 𝜇𝑠𝑡 and no cohesion. Moreover,
e will restrict our analysis to very slow, i.e. quasi steady-state, changes

n the incremental reservoir pressure 𝛥𝑝 such that the stresses are only
osition-dependent.

Zeros of the pre-slip Coulomb stress, i.e. intersections of the shear
tress with the slip threshold, can be obtained by solving iteratively for
from the implicit equation

(𝑦) = 𝜏𝑠𝑙(𝑦), (6)

here we use the vertical coordinate 𝑦 = 𝑠 sin(𝜃) as independent vari-
ble rather than the along-fault coordinate 𝑠. For the slip-induced
tresses in a displaced fault this results in four values {𝑦1, 𝑦2, 𝑦3, 𝑦4},
here

𝑏 < 𝑦1 < −𝑎 < 𝑦2 < 𝑦3 < 𝑎 < 𝑦4 < 𝑏, (7)

s long as the slip patches have not merged, and two relevant values
𝑦1, 𝑦4}, where
𝑏 < 𝑦1 < −𝑎 < 0 < 𝑎 < 𝑦4 < 𝑏, (8)
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thereafter. In Fig. 2 (left) two zones with positive pre-slip Coulomb
stress values are visible, and the corresponding zeros 𝑦𝑖, 𝑖 = 1,… , 4,
have been indicated with horizontal green lines.

2.2. Slip-induced stresses

In areas where the pre-slip Coulomb stress is positive, fault slip will
occur. However, once slip occurs, the stress field in and around the fault
changes. In particular, slip-induced shear stresses in the fault occur,
which can be shown to have magnitude (Weertman, 1996; Jansen and
Meulenbroek, 2022)

̆(𝑦) = 𝐴

(

PV∫

�̃�2

�̃�1

∇𝛿(𝜉)
𝜉 − 𝑦

𝑑𝜉 + PV∫

�̃�4

�̃�3

∇𝛿(𝜉)
𝜉 − 𝑦

𝑑𝜉

)

, (9)

where, for plane-strain conditions,

𝐴 = 𝐺
2𝜋(1 − 𝜈)

, (10)

ith 𝐺 representing the shear modulus and 𝜈 Poisson’s ratio, and

𝛿(𝜉) =
𝜕𝛿(𝑦)
𝜕𝑦

|

|

|

|𝑦=𝜉
, (11)

ith 𝛿(𝑦) representing the slip and ∇𝛿(𝑦) the slip gradient along the
ault. The variables �̃�𝑖, 𝑖 = 1,… , 4, in Eq. (9) are horizontal projections

on the 𝑦 axis of the lower and upper slip patch boundaries �̃�𝑖. The
prefixes PV in Eq. (9) indicate that either of the integrands may become
singular when 𝜉 = 𝑦. The integral concerned is then a Cauchy-type
singular integral, or a Cauchy integral for short, and has to be inter-
preted in a principal value (PV) sense (Muskhelishvili, 1953; Estrada
and Kanwal, 2000). We will not indicate the singularity of integrals
in the remainder of this paper, and therefore tacitly assume that they
represent a principal value whenever relevant.

The pairs of slip patch boundaries {�̃�1, �̃�2} and {�̃�3, �̃�4} each span
a somewhat larger domain than the corresponding pairs of pre-slip
Coulomb stress zeros {𝑦1, 𝑦2} and {𝑦3, 𝑦4}. In Fig. 2 (right) the four
patch boundaries �̃�𝑖 have been indicated with horizontal blue lines
which are located just above or below the corresponding values of 𝑦𝑖,
indicated with green lines in the left figure. Once slip has occurred, the
post-slip Coulomb stress �̆�𝐶 inside the two slip patches will be equal to
zero, while outside the patches it will be negative-valued.

Eq. (9) is based on the application of dislocation theory and fracture
mechanics to describe fault slip (Bilby and Eshelby, 1968; Rice, 1968,
1980; Weertman, 1996; Segall, 2010). Dislocation theory is defined for
elastic media, but may be also applied to poroelastic media because the
effects of pore pressure enter the theory of poroelasticity in an additive
fashion (Wang, 2000). In our application, moreover, we assume that
the elastic properties of the reservoir rock are identical to those of the
non-reservoir rock. Other assumptions include the presence of only one,
infinitely thin, fault, which is straight such that the two slip patches are
collinear.

In dislocation theory, dilation or compaction of the slip plane does
not play a role, and slip therefore does not result in a change in nor-
mal stresses. In reality, dilation or compaction may play a significant
role, especially in situations where direct injection takes place into a
permeable-gouge-filled fault in a relatively less permeable reservoir;
see, e.g., Heimisson et al. (2022). Also, curvature of the fault may
introduce normal stresses. However, we focus on highly permeable
reservoirs without direct injection into faults, while we only consider
straight faults, and we therefore adhere to the approximation that slip
only results in shear stress changes. Moreover, we assume that in areas
where slip occurs the post-slip Coulomb stress becomes exactly equal
to zero; i.e., slip does not result in an overshoot that would lead to
negative post-slip Coulomb stresses in areas where the pre-slip stresses
were positive. This latter assumption may be challenged when slip
4

results in a seismic event but is justified for aseismic slip. In any case, 𝛷
the assumption of zero post-slip Coulomb stress in a slipping patch
implies that we should have

�̆� = −𝜏𝐶 , (12)

such that Eq. (9) becomes

−𝜏𝐶 (𝑦) = 𝐴

(

∫

�̃�2

�̃�1

∇𝛿(𝜉)
𝜉 − 𝑦

𝑑𝜉 + ∫

�̃�4

�̃�3

∇𝛿(𝜉)
𝜉 − 𝑦

𝑑𝜉

)

,

(�̃�1 < 𝑦 < �̃�2) ∨ (�̃�3 < 𝑦 < �̃�4). (13)

If the two slip patches are located far from each other, coupling
effects may be neglected and we can use the equation for a single patch:

−𝜏𝐶 (𝑦) = 𝐴∫

�̃�+

�̃�−

∇𝛿(𝜉)
𝜉 − 𝑦

𝑑𝜉, �̃�− < 𝑦 < �̃�+, (14)

where (�̃�−, �̃�+) = (�̃�1, �̃�2) or (�̃�−, �̃�+) = (�̃�3, �̃�4) depending on whether we
consider the bottom patch or the top patch. Eq. (14) also holds after
the slip patches have merged in which case we have (�̃�−, �̃�+) = (�̃�1, �̃�4).

.3. Continuity requirement

For a known pre-slip Coulomb stress distribution 𝜏𝐶 , both the slip
radient ∇𝛿(𝑦) and the patch boundaries �̃�𝑖 are unknowns that have
o be determined from the inverse of Eq. (13) or (14) and additional
onditions. Muskhelishvili (1953) proved that an analytical inversion
f singular integral equations can be obtained provided the known
unction in the integrand is Hölder continuous, which is a stricter
orm of continuity than regular continuity as applied in mathematical
nalysis. As discussed in detail by Jansen and Meulenbroek (2022),
he closed-form expressions for induced pre-slip Coulomb stresses in

displaced fault contain jump discontinuities at coordinate values
= {−𝑏, −𝑎, 𝑎, 𝑏} in addition to singularities in the form of infinite

tress peaks. The jump discontinuities clearly violate the regular and
ölder continuity conditions. An effective way to overcome this diffi-
ulty is to regularize the expressions for the shear and normal stresses
n the fault, an approach was followed by Jansen and Meulenbroek
2022), and their regularized expressions have been reproduced in
ppendix A.5 in Appendix A.

. Inverse

.1. General solution

In the monograph by Estrada and Kanwal (2000) it is shown that
he inverse of Eq. (13) can be obtained as (see also Appendix B)

𝛿(𝑦) = 1
𝜋2𝐴𝛹±(𝑦)

(

∫

�̃�2

�̃�1

−𝜏𝐶 (𝜉)𝛹−(𝜉)
𝑦 − 𝜉

𝑑𝜉 + ∫

�̃�4

�̃�3

−𝜏𝐶 (𝜉)𝛹+(𝜉)
𝑦 − 𝜉

𝑑𝜉

+𝐶0 + 𝐶1𝑦

)

, (15)

here

±(𝑦) = ±
√

−(𝑦 − �̃�1)(𝑦 − �̃�2)(𝑦 − �̃�3)(𝑦 − �̃�4), (16)

with the plus and minus signs preceding the square root term corre-
sponding to �̃�3 < 𝑦 < �̃�4 and �̃�1 < 𝑦 < �̃�2 respectively. The last two terms
at the right-hand side of Eq. (15), with the undetermined coefficients
𝐶0 and 𝐶1, form the solution of the homogeneous part of Eq. (13), while
the two integral terms form the particular solution for −𝜏𝐶 (𝑦).

If coupling can be disregarded, each of the two slip patches can be
considered in isolation with the inverse solution of Eq. (14) (Estrada
and Kanwal, 2000):

∇𝛿(𝑦) = 1
𝜋2𝐴𝛷(𝑦)

(

∫

�̃�+

�̃�−

−𝜏𝐶 (𝜉)𝛷(𝜉)
𝜉 − 𝑦

𝑑𝜉 + 𝐶0

)

, (17)

here

(𝑦) =
√

−(𝑦 − �̃� )(𝑦 − �̃� ). (18)
− +
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3.2. Conditions for a bounded solution

Both inverse Eqs. (15) and (17) contain singularities at the end
points �̃�𝑖 of the slip patches because of the presence of the terms 𝛹 (𝑦)
nd 𝛷(𝑦) in the denominators of the fractions preceding the integral
erms, leading to unbounded values for the slip gradient in the end
oints. However, it is well known that a bounded solution of Eq. (17)
an be obtained by rewriting it as

𝛿(𝑦) =
𝛷(𝑦)
𝜋2𝐴 ∫

�̃�+

�̃�−

−𝜏𝐶 (𝜉)
𝛷(𝜉)(𝜉 − 𝑦)

𝑑𝜉, (19)

which is possible provided the following two conditions are fulfilled
(Bilby and Eshelby, 1968); see also Appendix B:

𝐼𝑖 = ∫

�̃�+

�̃�−

−𝜏𝐶 (𝑦) 𝑦𝑖

𝛷(𝑦)
𝑑𝑦 = 0, 𝑖 = 0, 1. (20)

Note that terms 𝛷(𝜉) and 𝛷(𝑦) are now present in the denominators of
the integrands in Eqs. (19) and (20) respectively, such that singularities
occur at the boundaries of the integration domain. However, it can be
shown that (the PVs of) the integrals have finite values. Also note that
the constant 𝐶0 that was present in Eq. (17) has disappeared in the
transformed Eq. (19). It is shown in Appendix B.2 in Appendix B that
the vanishing of 𝐶0 follows from an additional condition to ensure that
the slip remains zero at both ends of the slip patch:

∫

�̃�+

�̃�−
∇𝛿(𝑦)𝑑𝑦 = 0. (21)

While condition (21) thus serves to determine the value of 𝐶0, the other
two conditions (20) can be used to iteratively search for the values of
the two end points �̃�− and �̃�+ of each slip patch; see, e.g., Bilby and
Eshelby (1968), Mavko (1982), Weertman (1996), Uenishi and Rice
(2003) and Segall (2010). Once these points have been found, Eq. (19)
can be integrated to obtain the slip gradient ∇𝛿(𝑦). Thereafter, the
along-fault slip in each of the slip patches can be determined through
another integration according to

𝛿(𝑦) = ∫

𝑦

�̃�−
∇𝛿(𝜉) 𝑑𝜉, (22)

where we make use of our knowledge that 𝛿(�̃�−) = 0. Both integrations
can be performed numerically, or semi-analytically in terms of an
expansion in Chebyshev polynomials; see, e.g., Mavko (1982), Uenishi
and Rice (2003), Segall (2010) and Jansen and Meulenbroek (2022).

Returning to the coupled inverse Eq. (15), conditions to obtain a
bounded solution appear to be less well known. In Appendix B.2 of
Appendix B it is shown that Eq. (15) can be rewritten as

∇𝛿(𝑦) =
𝛹±(𝑦)
𝜋2𝐴

(

∫

�̃�2

�̃�1

−𝜏𝐶 (𝜉)
𝛹−(𝜉)(𝜉 − 𝑦)

𝑑𝜉 + ∫

�̃�4

�̃�3

−𝜏𝐶 (𝜉)
𝛹+(𝜉)(𝜉 − 𝑦)

𝑑𝜉

)

, (23)

which is bounded provided six conditions are fulfilled from which it is
then possible to solve for the four slip patch boundaries �̃�𝑖, 𝑖 = 1,… , 4,
and the unknown coefficients 𝐶0 and 𝐶1. The first four conditions can
be expressed as

𝐶0 + (�̃�1 + �̃�2 + �̃�3 + �̃�4)𝐶1 + 𝐼3 = 0, (24)
𝐶1 + 𝐼2 = 0, (25)

𝐼1 = 0, (26)
𝐼0 = 0. (27)

with

𝐼𝑖 = ∫

�̃�2

�̃�1

−𝜏𝐶 𝑦𝑖

𝛹−(𝑦)
𝑑𝑦 + ∫

�̃�4

�̃�3

−𝜏𝐶 𝑦𝑖

𝛹+(𝑦)
𝑑𝑦 = 0, 𝑖 = 0,… , 3, (28)

while the additional conditions to determine 𝐶0 and 𝐶1 are given by
the equalities

�̃�2
∇𝛿(𝑦, 𝐶0, 𝐶1)𝑑𝑦 = 0,

�̃�4
∇𝛿(𝑦, 𝐶0, 𝐶1)𝑑𝑦 = 0, (29)
5

∫�̃�1 ∫�̃�3
which ensure vanishing slip at the ends of both slip patches. We note
that numerical evaluation reveals that coefficient 𝐶0 always has a non-
zero value whereas 𝐶1 vanishes for the examples considered in our
study; see also the remarks in Appendix B.

An alternative formulation, which requires only four conditions,
is also presented in Appendix B. Although mathematically the two
formulations are equivalent, the four-condition formulation is slightly
faster than the six-condition version, but it is less robust in the sense
that it is more prone to numerical (integration) errors.

In case of continued depletion, the slip patches will grow inward
and may eventually merge. Thereafter, the slip gradient is governed
by a single-interval equation, identical to Eq. (17) with �̃�− = �̃�1 and
̃+ = �̃�4.

3.3. Comparison with earlier formulations

The original treatment of the coupled inversion problem by Muskhe-
lishvili (1953) states that four conditions are sufficient to guarantee
boundedness of the inverse expression, if all end points are bounded,
and these conditions would then be identical to the ones in Eqs. (24)
to (27) but with vanishing 𝐶0 and 𝐶1. Echoes of this statement can be
found in later publications; see, e.g., Pogorzelski (1966). As discussed
in detail in Appendix B, these conditions would indeed be sufficient if
only the direct inverse of the Cauchy equation would be of physical
relevance, i.e., the slip gradient ∇𝛿. However, it is primarily the slip 𝛿
that is of interest in fault mechanics, and therefore the four conditions
of Muskhelishvili (1953) are insufficient for a physically consistent
solution in our application. (Weertman, 1996) provides a slightly dif-
ferent set of four conditions of which the first three are similar to those
of Muskhelishvili (1953), whereas the fourth one is different; see Ap-
pendix B.5 in Appendix B. Both these earlier sets of conditions do lead
to bounded solutions for ∇𝛿. However, subsequent integration to obtain
the slip 𝛿 then produces physically unrealistic results, i.e., slip values
that are not equal to zero at the slip patch boundaries. This therefore
prompted us to derive a more general bounded inverse solution, which
was summarized above and is described in detail in Appendix B.

4. Numerical integration

4.1. Chebyshev polynomials

Cauchy integrals and their corresponding inverse expressions can
often be manipulated efficiently with the aid of Chebyshev polynomi-
als (Mason and Handscomb, 2003). Applications in aerodynamics, con-
tact mechanics and fracture mechanics involve both (semi-)analytical
approaches, and numerical methods that strongly rely on the underly-
ing analytical properties of Chebyshev polynomials; see, e.g., Golberg
(1990), Hills et al. (1996) and Viesca and Garagash (2018). In the
geophysical domain, direct semi-analytical solutions have been applied
to model fault slip by Mavko (1982), Segall (2010), Bruhat and Segall
(2017) and Jansen and Meulenbroek (2022), while a closely related
numerical approach was used by Uenishi and Rice (2003), Viesca and
Rice (2012) and Garagash and Germanovich (2012).

Chebyshev polynomials come in four kinds, but we will only be
concerned with two of them: first-kind polynomials 𝑇𝑛(𝑧) and second-
kind polynomials 𝑈𝑛(𝑧), where the dimensionless variable −1 ⩽ 𝑧 ⩽ 1
indicates the domain of definition and the integer 0 ⩽ 𝑛 < ∞ the or-
der of the polynomial (Mason and Handscomb, 2003). The first-kind
polynomials are defined as 𝑇𝑛(𝑧) = cos(𝑛𝜒) with 𝑧 = cos𝜒 . Their zeros,
known as first-kind Chebyshev points, are projections on the 𝑧 axis of
equally spaced points on the unit circle, resulting in an increasingly
dense distribution of the zeros towards the end points of the domain. A
similar, but slightly different, set of second-kind Chebyshev points con-
sists of the zeros of the second-kind polynomials 𝑈𝑛(𝑧). The first-kind
and second-kind polynomials are closely related, with 𝑑𝑇𝑛

𝑑𝑧 = 𝑛𝑈𝑛−1, and
both sets of Chebyshev points look very similar and are increasing
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in density towards the end points. Also, both sets can approximate
functions on a finite domain very efficiently through expansion in
infinite series, using the polynomials’ orthogonality properties, with
the difference, however, that first-kind polynomials are best suited
to approximate functions with end point singularities, whereas the
second-kind variety is the best choice to approximate functions with
finite end points.

In an earlier publication (Jansen and Meulenbroek, 2022) we used
a peculiar property of Chebyshev polynomials, following similar ap-
plications by, e.g., Mavko (1982), Uenishi and Rice (2003) and Segall
(2010): expansion of a known function in a Cauchy integral in terms
of first-kind polynomials allows for a direct inversion of that integral
in terms of second-kind polynomials and vice versa (Mason and Hand-
scomb, 2003). This leads to a semi-analytical description of induced
stresses in a displaced fault, which is relatively simple to implement
as long as coupling between the slip patches can be disregarded. For
the coupled problem, a more convenient approach is the use of (aug-
mented) Gauss–Chebyshev quadrature, a numerical integration method
that is strongly dependent on the orthogonality properties of the vari-
ous Chebyshev polynomials and that uses the corresponding Chebyshev
points as quadrature points. It was used successfully for crack problems
by, e.g., Hills et al. (1996) and Viesca and Garagash (2018), based on
earlier work of Erdogan and Gupta (1972) and Erdogan et al. (1973).
As noted by Kalandiya (1975), an early derivation of this method was
already published by Multhopp (1938). In our current paper we follow
this approach and also use Gauss–Chebyshev quadrature, although with
a modification: rather than numerical (matrix) inversion, as was used in
the earlier publications, we employ the analytical inversion approach
described above.

4.2. Augmented Gauss-Chebyshev quadrature with analytical inversion

Erdogan and Gupta (1972) proposed an augmented numerical inte-
gration method for Cauchy-type singular integrals based on an earlier
Gauss–Chebyshev integration scheme for non-singular integrals. The
latter makes use of a non-equidistant set of supports consisting of
Chebyshev points, and weight functions based on the discrete orthog-
onality properties of the Chebyshev polynomials. Erdogan and Gupta
(1972) introduced a complementary set of points, in between the
Chebyshev points, to avoid singularities while evaluating the difference
term in the denominator; i.e., the term (𝑦 − 𝜉) in the various Cauchy
quations discussed above. They employed a numerical (matrix) in-
ersion approach to solve for the unknown function in the integral,
s part of the integration procedure. In our approach we only use
he quadrature elements of the original augmented Gauss–Chebyshev
cheme, whereas the inversion is performed analytically, prior to in-
egration. As a result, the optimal choice of the kind of Chebyshev
olynomials is determined by the nature of the end points of the known
unction (bounded or unbounded) rather than by the expected nature
f the endpoints of the unknown function, as in the original method.
n the current application we only require expressions corresponding
o first-kind and second-kind polynomials, and we refer to Appendix C
or details of the computational scheme and the (spectral) convergence
roperties of our modified augmented Gauss–Chebyshev approach.

. Numerical example

Fig. 3 depicts the pre-slip Coulomb stress zeros 𝑦𝑖, 𝑖 = 1,… , 4 and
slip patch boundaries �̃�𝑖 as a function of depletion −𝛥𝑝. As an example
of how to read this graph, two green double arrows illustrate the zones
where the pre-slip Coulomb stress is positive for a depletion value
𝛥𝑝 = −22 MPa. For increasing depletion, these zones, in between the
green curves, grow in size until they merge at around 𝛥𝑝 = −29 MPa.
The two red double arrows similarly illustrate the size of the slip
patches for 𝛥𝑝 = −23 MPa. The blue curves indicate their growth with
increasing depletion if coupling is disregarded, whereas the red curves
6

f

Fig. 3. Pre-slip Coulomb stress zeros 𝑦𝑖 , 𝑖 = 1,… , 4 and slip patch boundaries �̃�𝑖 as a
function of depletion pressure −𝛥𝑝. The vertical dash-dotted black line indicates the
reference pressure 𝛥𝑝 = −25 MPa which was used to produce the red curves in Figs. 2,
4 and 5.

indicate the correct result with coupling taken into account, resulting
in merging just before 𝛥𝑝 = −27 MPa. The orange solid and dash-dotted
curves represent the physically unrealistic results obtained by using
the formulations of Muskhelishvili (1953) and Weertman (1996). To
validate our semi-analytical results, we also performed a numerical
simulation with a finite-volume approach (Novikov et al., 2022, 2023).
The numerical results, which have been displayed with gray circular
markers, confirm our findings. Note that all curves, and the marker
set, are slightly asymmetric with respect tot the line 𝑦 = 0 because the
nitial stresses and initial pressure increase with depth.

Fig. 4 displays the pre-slip Coulomb stress, slip gradient and slip for
ncreasing depletion. In the right figure, two slip patches are visible for
epletion values of −24 up to −26 MPa, whereas for higher depletion
alues (−27 and −28 MPa) a single merged patch can be distinguished.

Fig. 5 displays the same red curves as in Fig. 4 but with additional
nformation. The left figure illustrates the relationship between the pre-
lip and post-slip Coulomb stresses and the slip-induced shear stress.
he post-slip Coulomb stress �̆�𝐶 in a fault with slipping patches is
btained as

�̆�𝐶 = 𝜏𝐶 + �̆�, (30)

here we recall that 𝜏𝐶 is the pre-slip Coulomb stress and �̆� the slip-
nduced shear stress. Inside the slip patches, this post-slip Coulomb
tress is equal to zero because in those areas the slip-induced stress
�̆� just compensates the pre-slip stress 𝜏𝐶 ; see Eq. (12). Outside of the
slip patches, �̆�𝐶 must be smaller than zero because otherwise slip would
have occurred. Numerical values of �̆� at any point along the 𝑦 axis can
e computed with aid of Eq. (9) once the values for the slip gradient
nd the slip patch boundaries are known.

The middle and left figures illustrate that the Muskhelishvili (1953)
nd Weertman (1996) formulations lead to inconsistent results: the
lip gradients in the middle figure vanish at the end points of the
lip patches; however, the corresponding slip values in the right figure
isplay non-zero end points, a results that is physically incorrect.

. Symmetry

As can be seen in Figs. 2 to 5, the Coulomb stress pattern and the
esulting fault slip pattern are almost symmetric around the line 𝑦 = 0.
ogically, the slip gradient pattern is almost anti-symmetric. The reason

or these small asymmetries is the increase in the initial Coulomb stress
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Fig. 4. Pre-slip Coulomb stress, slip gradient and slip for multiple depletion values (detailed view). Left: pre-slip Coulomb stress 𝜏𝐶 . Middle: slip gradient ∇𝛿. Right: slip 𝛿. In all
three figures, the red curves correspond to 𝛥𝑝 = −25 MPa, while the gray curves correspond to 𝛥𝑝 = −24,−26,−27 and −28 MPa. For the key to solid green, solid blue and dotted
lack horizontal lines: see Fig. 2.
Fig. 5. Pre-slip Coulomb stress, slip gradient and slip for reference pressure 𝛥𝑝 = −25 MPa (detailed view). Left: pre-slip Coulomb stress 𝜏𝐶 (red), slip-induced shear stress �̆� (green)
nd post-slip Coulomb stress �̆�𝐶 (blue). Middle: slip gradient ∇𝛿. Right: slip 𝛿. In all three figures, the red curves are identical to those in Fig. 4. In the middle and right figures, the
olid orange and dash-dotted orange curves represent the Muskhelishvili (1953) and Weertman (1996) results respectively. Solid and dash-dotted horizontal orange lines indicate
he corresponding slip patch boundaries. For the key to solid green, solid blue and dotted black horizontal lines: see Fig. 2.
nd the initial pressure with depth. If the reservoir height is much
maller than the average reservoir depth below surface, the pressure
radient and initial stress gradient over the height of the reservoir are
mall compared to their average values in the reservoir. In that case we
an use the approximations 𝑦1 = −𝑦4 and 𝑦2 = −𝑦3, and Appendix B.6
escribes the derivation of the resulting simplified expressions for the
lip gradient. For the symmetric double-patch configuration this leads
o

𝛿(𝑦) =
�̃�±(𝑦) �̃�4 −2 𝜉 𝜏𝐶 (𝜉) 𝑑𝜉, (31)
7

𝜋2𝐴 ∫�̃�3 �̃�+(𝜉) (𝑦2 − 𝜉2)
where

�̃�±(𝑦) = ±
√

(𝑦2 − �̃�23)(�̃�
2
4 − 𝑦2), (32)

with the plus and minus signs preceding the square root term cor-
responding to 𝑦 > 0 and 𝑦 < 0 respectively. Three conditions, instead
of six, are now sufficient to determine �̃�3 and �̃�4 and the unknown
coefficient 𝐶0. They can be expressed as

𝐼1 = 0, 𝐼3 + 𝐶0 = 0,
�̃�4
∇𝛿(𝑦, 𝐶0)𝑑𝑦 = 0, (33)
∫�̃�3
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Fig. 6. Zoomed-in version of Fig. 3 with an additional dashed gray curve representing
the symmetric result.

with

𝐼𝑖 = ∫

�̃�4

�̃�3

−2𝜏𝐶 (𝑦) 𝑦𝑖

�̃�+(𝑦)
𝑑𝑦, 𝑖 = 1, 3. (34)

Just like in the asymmetric situation, an alternative set of condi-
tions, two in this case, can also be derived to determine �̃�3 and �̃�4
without the need to compute 𝐶0 but at the price of a somewhat reduced
numerical robustness.

For the symmetric single-patch case, as occurs after merging, we
find

∇𝛿(𝑦) =
2𝑦�̃�(𝑦)
𝜋2𝐴 ∫

�̃�4

0

−𝜏𝐶 (𝜉)
�̃�(𝜉)(𝑦2 − 𝜉2)

𝑑𝜉, (35)

here

̃ (𝑦) =
√

�̃�24 − 𝑦2, (36)

with a single condition to determine �̃�4:

𝐼0 = ∫

�̃�4

0

−2𝜏𝐶 (𝑦)
�̃�(𝑦)

𝑑𝑦 = 0. (37)

Fig. 6 depicts a zoomed-in version of Fig. 3 with an additional
ashed gray curve. It represents the coupled result for a symmetric
ituation obtained by disregarding the depth-dependence of the initial
oulomb stress and the initial pressure, and using constant values

nstead, chosen as those at the vertical center of the reservoir (i.e. at
= 0).

. Discussion

We presented a semi-analytical formulation to describe the interac-
ion effects between neighboring slip patches during the development
f fault slip in a 2D depletion-induced seismicity setting. The key
urpose of our paper was to develop a method to quantify these
ffects building on the classic theories of singular integral equations
nd dislocation-based fracture mechanics (Muskhelishvili, 1953; Weert-
an, 1996). Our approach is restricted to a poroelastic reservoir with
niform properties embedded in an infinite elastic continuum with
he same elastic properties as the reservoir. Other assumptions include

perfectly straight and infinitely thin fault with two collinear slip
atches without flow along the fault, a simple static friction model, and
he absence of multiphase and pressure-transient effects.

In terms of fracture mechanics the fault slip considered in our
aper corresponds to a mode-II (in-plane shear) fracture. However, the
8

ame theory is valid for mode-I (extensional) and mode-III (out-of-plane
hear) fractures. For the latter, the only change required is to replace
he coefficient 𝐴 = 𝐺

2𝜋(1−𝜈) (valid for modes I and II) by 𝐴 = 𝐺
2𝜋 .

In the example presented in our paper, we modeled a completely
conductive fault such that the pore pressures to the left and the right
of the fault are identical. However, our approach remains valid for a
situation with a non-conductive fault and different pressures at both
sides. We note that in the extreme case of zero incremental pressure
at one side of the fault and a non-zero value at the other side (i.e. for
a bounding fault), there are only two (instead of four) pressure peaks,
a positive and a negative one, such that only a single slip patch will
develop (Van den Bogert, 2015; Wu et al., 2021; Cornelissen et al.,
2024).

A particular feature of induced fault slip in a displaced fault, as
considered in our paper, is the occurrence of sharp peaks in the pre-
slip Coulomb stress distribution, which mathematically are of infinite
magnitude and also show jump-discontinuities. We used a regular-
ization approach to circumvent these issues, resulting in finite and
continuous pre-slip Coulomb stresses. However, these stresses still con-
tain sharp peaks such that we require a high number of integration
points (typically several hundreds) to resolve them in the augmented
Gauss–Chebyshev numerical integration procedure to compute the slip
gradient and the slip. An alternative approach would be to split each
of the integration intervals in two segments, one below and one above
the peak, as long as the patches have not merged, or in three intervals
after merging.

A semi-analytical treatment of fault slip in case of slip-weakening
friction was performed by Uenishi and Rice (2003). They showed
that under slip-weakening conditions, and for a gradually increasing
peak-shaped pre-slip Coulomb stress, the fault slip initially occurs a-
seismically until the slip patch reaches a critical length, also known as
the nucleation length. Beyond this length, equilibrium is no longer pos-
sible and seismic slip occurs. Uenishi and Rice (2003) also showed that,
mathematically, determining the nucleation length for slip-weakening
friction becomes an eigenvalue problem. An extension of this approach,
to describe fault slip in a displaced fault with two slip patches, was
made by Jansen and Meulenbroek (2022). In that paper, however,
the coupling effect between the slip patches could only be taken into
account in an approximate, iterative fashion, and only for the simula-
tion of fault slip, but not in the eigenvalue analysis to determine the
nucleation length. The theory in the present paper offers a basis to
simulate the effect of coupling more rigorously under slip-weakening
conditions and also incorporate it in the eigenvalue analysis.

8. Concluding summary

We considered expressions to compute the inverse of a Cauchy-type
singular integral equation representing the relation between pre-slip
Coulomb stress in a fault or fracture with constant Coulomb friction
and the resulting slip gradient. In particular, we derived expressions
for a situation where the Coulomb stress distribution displays two
neighboring peaks, resulting in slip in two distinct slip patches that
are close enough to account for the influence of the slip gradient in
one patch on the slip-induced shear stress in the other patch and vice
versa.

In our derivation we initially followed the theory of Muskhelishvili
(1953) who showed that inversion of the governing Cauchy equation
requires auxiliary conditions to ensure boundedness of the slip gradient
at the boundaries of the slip patches. The theory for a single slip patch
is well-developed and it can be shown that two conditions in the form
of integrals over the slip patch, in terms of the pre-slip Coulomb stress
and its first moment, are sufficient to guarantee boundedness of the
two end point values (Muskhelishvili, 1953; Bilby and Eshelby, 1968;
Estrada and Kanwal, 2000). Moreover, in case of a single slip patch
these conditions also result in the vanishing of the integral of the slip

gradient over the slip patch, which implies that a zero-valued boundary
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condition for the slip at one end of the patch leads to a zero value of
the slip at the other end, a result that makes physical sense because we
require continuity of the slip at both boundaries.

For a two-patch configuration, the situation is less clear. Muskhe-
lishvili (1953) states that four integral conditions are now required
to ensure boundedness of the slip gradient at the four slip patch
boundaries. We showed that four such conditions are indeed required
to ensure boundedness of the slip gradient, and that the conditions
given by Muskhelishvili (1953) do lead to that result. However, we also
showed that they do not result in the vanishing of the integrals of the
slip gradient over the slip patches. Also an alternative set of integral
conditions, proposed by Weertman (1996), leads to boundedness of
the four slip gradient values at the boundaries but not to the required
vanishing of the two integrals.

To obtain a solution with vanishing integrals of the slip gradient,
and thus with vanishing end point values for the slip, we require two
additional free parameters in the general inverse solution of the cou-
pled Cauchy equation. Guided by results of Bilby and Eshelby (1968)
and Estrada and Kanwal (2000), we showed that these parameters are
provided by the integration constants of the homogeneous solution.
These were stated to be always zero by Muskhelishvili (1953), but at
least one of them obtains a finite value if the two integral conditions
for the slip gradient are properly taken into account.

The reason for the in-applicability of the general solution of Muskhe-
lishvili (1953) to our problem is that his text considers the formal
inversion aspects of Cauchy equations, rather than the physical ap-
plication to fault slip. In the latter, the relevant end-point conditions
are given in terms of the slip, i.e., the integral of the slip gradient,
rather than in terms of the slip gradient itself which forms the unknown
variable in the Cauchy equation. The reason for the erroneous solution
of Weertman (1996) is less clear but is probably the result of an a-
priori assumption that the integration constants are equal to zero, in
combination with a mistake in the contour integration procedure used
by Weertman (1996).

The general inverse solution for the coupled two-patch problem
thus requires six auxiliary conditions: four integral conditions over
both patches (in terms of the pre-slip Coulomb stress, its first, second
and third moment, and two integration constants), and two integral
conditions over the individual slip patches (in terms of the slip gradi-
ent). Numerical evaluation shows that one of the integration constants
is always non-zero whereas the other one vanishes for the examples
considered. Moreover, it turns out to be possible to reduce these six
conditions to four again, provided we are not interested in the values of
the integration constant, but we stress that these four conditions are dif-
ferent from the ones obtained by Muskhelishvili (1953) and Weertman
(1996).

Finally, we repeated the derivation for a coupled double-patch
case with a symmetric pre-slip Coulomb stress pattern. In that case
the general inverse solution requires three auxiliary conditions: two
integral conditions over both patches (now in terms of the symmetric
first and third moments of the pre-slip Coulomb stress, and the single
integration constant), and one integral condition over one of the slip
patches (in terms of the anti-symmetric slip gradient). Also now it turns
out to be possible to reduce the number of conditions, in this case
from three to two, provided we are not interested in the value of the
integration constant.

To solve the various singular integrals in the ‘‘full method’’, with six
unknowns, and the ‘‘short-cut method’’, with four unknowns, we em-
ployed a modified version of augmented Gauss–Chebyshev quadrature
as originally proposed by Erdogan and Gupta (1972). The modification
concerns the use of analytical inversion, prior to integration, which is as
opposed to the original formulation which relies on numerical (matrix)
inversion as part of the integration procedure.

We illustrated our findings with a numerical example of depletion-
induced aseismic fault slip in a displaced normal fault. A compari-
son with fully numerical results, obtained with a finite-volume-based
simulation package for poroelasticity, confirmed the validity of our
9

semi-analytical coupled solution.
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Appendix A. Induced stresses

The material in Appendix A has largely been taken from Jansen and
Meulenbroek (2022) except for Appendix A.2, Eqs. (A.21) to (A.24),
and the figures with the corresponding text.

A.1. Initial stresses

We assume the presence of an initial regional stress pattern with
principal stresses 𝜎0𝑦𝑦 (vertical) and

𝜎0𝑥𝑥 = 𝜎′0𝑥𝑥 − 𝛼𝑝0

= 𝐾0𝜎′0𝑦𝑦 − 𝛼𝑝0

= 𝐾0(𝜎0𝑦𝑦 + 𝛼𝑝0) − 𝛼𝑝0, (A.1)

(horizontal), where 𝛼 is Biot’s coefficient (typically somewhat smaller
than one), 𝑝0 is the initial pore pressure (a superscript ‘0’ means
initial’), 𝐾0 is the initial effective stress ratio, and where a primed
tress variable 𝜎′ represents an ‘effective stress’. We employ the solid
echanics sign convention where positive strains and stresses imply

xtension and tension. The resulting initial normal and shear stresses
cting on the fault follow from a coordinate rotation as
0 = 𝜎0�̃��̃� = 𝜎0𝑥𝑥 sin

2 𝜃 + 𝜎0𝑦𝑦 cos
2 𝜃, (A.2)

𝜏0 = −𝜎0�̃��̃� = (𝜎0𝑥𝑥 − 𝜎0𝑦𝑦) sin 𝜃 cos 𝜃, (A.3)

where �̃� and �̃� are rotated coordinates, and where 𝜃 is the dip angle of
the fault; see Fig. 1. A positive-valued shear stress 𝜏0 corresponds to a
normal faulting regime, i.e. a situation where the hanging wall (to the
left of the fault in Fig. 1) has a tendency to slide down from the foot
wall (to the right of the fault). The initial effective normal stress acting
at the fault follows as

𝜎′0 = 𝜎0 + 𝛽𝑝0, (A.4)

where 𝛽 is an effective stress coefficient which is not necessarily
identical to 𝛼 and is often taken as unity (Scholz, 2019; Fjaer et al.,

2021).
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Fig. A.1. Incremental effective vertical stress 𝛥𝜎′
𝑦𝑦 (left) and incremental shear stress 𝛥𝜎𝑥𝑦 (right) resulting from reservoir depletion for an example with parameter values given

in Table 1. Note that the color bar has a limited range and therefore does not completely represent the shear stress levels which reach (mathematically) positive and negative
infinite values at the internal and external reservoir-fault corners respectively.
A.2. Incremental stresses

An increase or decrease in pore pressure in the reservoir will re-
sult in incremental normal and shear stresses in the reservoir and its
surroundings because of poroelastic effects (Biot, 1941; Segall, 1989;
Wang, 2000). We restrict the analysis in this paper to the case of a quasi
steady state, i.e. a spatially homogeneous incremental pore pressure
𝛥𝑝(𝑡) that is a slow function of time 𝑡. Using a technique known as
inclusion theory it is possible to compute the incremental strains and
stresses, inside and outside the reservoir, that result from a change
in reservoir pore pressure 𝛥𝑝 (Segall, 1985, 1989; Rudnicki, 2011;
Cornelissen et al., 2024). For the depletion example with parameter
values given in Table 1, Fig. A.1 (left) displays the effective change in
vertical stress 𝛥′𝜎𝑦𝑦, defined as

𝛥𝜎′𝑦𝑦 = 𝛥𝜎𝑦𝑦 + 𝛼𝛥𝑝, (A.5)

where 𝛥𝜎𝑦𝑦 is the total change in vertical stress, caused by poroelastic
effects. The incremental pore pressure 𝛥𝑝 is negative and so is the
value of 𝛥𝜎′𝑦𝑦, implying compressive stresses in the grains leading to
vertical compaction. In those parts of the fault where reservoir rock
juxtaposes non-reservoir rock, i.e. for −𝑏 < 𝑦 < −𝑎 and 𝑎 < 𝑦 < 𝑏 with
𝑎 = 75 m and 𝑏 = 150 m, the vertical compaction in the reservoir rock
is hampered by the stiffness of the adjacent non-reservoir rock. As a
result, severe shear stresses develop which, theoretically, reach peak
values of infinite magnitude at the internal and external reservoir-fault
corners as displayed in Fig. A.1 (right).

A.3. Closed-form expressions

Closed-form analytical expressions for incremental normal and
shear stresses in a displaced fault were obtained by Jansen et al. (2019)
with the aid of inclusion theory and can be expressed as

𝛥𝜎 =
(

−𝛥𝜎𝑥𝑦 sin 𝜃 cos 𝜃 + 𝛥𝜎𝑥𝑥 sin
2 𝜃

)

, (A.6)

𝛥𝜏 =
(

𝛥𝜎𝑥𝑦 sin
2 𝜃 + 𝛥𝜎𝑥𝑥 sin 𝜃 cos 𝜃

)

, (A.7)

where 𝛥𝜎𝑥𝑥 = 𝛥𝜎�̃��̃� and 𝛥𝜎𝑥𝑦 = −𝛥𝜎�̃��̃� are normal and shear stresses in a
vertical fault, i.e. for a dip angle 𝜃 = 𝜋

2 . For an infinitely wide reservoir,
they are defined as (see also Appendix A in Jansen and Meulenbroek
(2022))

𝛥𝜎𝑥𝑥 =

⎧

⎪

⎨

⎪

0 if 𝑦 ⩽ −𝑏 or 𝑏 ⩽ 𝑦
−𝜋𝐶 if −𝑏 < 𝑦 ⩽ −𝑎 or 𝑎 ⩽ 𝑦 < 𝑏 ,
−2𝜋𝐶 if −𝑎 < 𝑦 < 𝑎

(A.8)
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⎩

and

𝛥𝜎𝑥𝑦 =
𝐶
2
ln

(𝑦 − 𝑎)2(𝑦 + 𝑎)2

(𝑦 − 𝑏)2(𝑦 + 𝑏)2
, (A.9)

where 𝐶 is a pressure-dependent scaling parameter, with SI units
Newton per meter squared, defined as

𝐶 =
(1 − 2𝜈)𝛼𝛥𝑝(𝑡)

2𝜋(1 − 𝜈)
, (A.10)

with 𝜈 representing Poisson’s ratio. For dipping as well as vertical faults
the incremental effective normal stress is given by

𝛥𝜎′ = 𝛥𝜎 +
{

0 if 𝑦 ⩽ −𝑏 or 𝑏 ⩽ 𝑦
𝛽𝛥𝑝 if −𝑏 < 𝑦 < 𝑏

. (A.11)

In the derivation of Eq. (A.11) it was assumed that only those parts
of the fault that are in direct contact with the reservoir experience
incremental reservoir pressure, i.e. that the relevant fault segment is
given by −𝑏 < 𝑦 < 𝑏. If a larger part of the fault is exposed to incre-
mental pressure, the domain where 𝛽𝛥𝑝 is added should be extended
accordingly.

Somewhat more elaborate closed-form expressions for a finite-
width reservoir, derived with inclusion theory, are given in the paper
by Jansen et al. (2019) and the accompanying Supporting Information.
These can also be used to obtain the stresses in case of a fully sealing
fault with different reservoir pressures to the left and the right of the
fault. Moreover, if the width of the reservoir section to either side of
the fault is taken as zero, these expressions describe the stresses in a
bounding fault, or a sealing fault with zero depletion at one of the sides
in which case only two shear stress peaks occur — one positive an one
negative. Similar expression were published concurrently by Lehner
(2019) and later by Wu et al. (2021), while some mathematical sub-
tleties in these publications were recently discussed by Cornelissen
et al. (2024). We note that the expressions that follow from inclusion
theory can also be derived from potential theory, which is closely
related to the nucleus of strain concept, and we refer to Rudnicki (2002)
and Rudnicki (2011) for further details.

In case of a non-homogeneous pressure field, inclusion theory can
still be applied to obtain the fault stresses but the resulting integrals
have to be solved numerically, an approach that has been followed
early-on by Segall (1985), and later by several other authors; see Cor-
nelissen et al. (2024) for an overview of various recent 2D and 3D
applications.

A.4. Fault slip and Coulomb stress

Fault slip is defined as

𝛿(𝑠, 𝑡) = 𝑢+(𝑠, 𝑡) − 𝑢−(𝑠, 𝑡), (A.12)
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where 𝑠 is the along-fault coordinate while 𝑢− and 𝑢+ are the along-
fault displacements at both sides of the fault. Fault slip is governed by
the combined (i.e. initial plus incremental) shear and effective normal
stresses

𝜏 = 𝜏0 + 𝛥𝜏, (A.13)
𝜎′ = 𝜎′0 + 𝛥𝜎′. (A.14)

Slip-provoking conditions occur when

|𝜏| > 𝜏𝑠𝑙 , (A.15)

where 𝜏𝑠𝑙 is the slip threshold, defined as

𝜏𝑠𝑙 = 𝜅 − 𝜇𝜎′, 𝜅 ⩾ 0, 𝜎′ < 0, (A.16)

with 𝜅 indicating cohesion and 𝜇 the friction coefficient, and where
it should be kept in mind that negative (effective) normal stresses
correspond to compression.

Eq. (A.15) implies that slip of the hanging wall may occur in upward
or downward direction, where exceedance of the slip threshold 𝜏𝑠𝑙
by a positive combined shear stress 𝜏 implies downward slip of the
hanging wall, i.e. a continued normal fault development. In this paper
we only consider such downward slip without reversals of direction and
therefore employ the usual definition of the pre-slip Coulomb stress

𝜏𝐶 = 𝜏 − 𝜏𝑠𝑙 , (A.17)

in which slip corresponds to positive values of 𝜏𝐶 .

A.5. Regularized expressions

Eqs. (A.6) and (A.7) for the incremental stresses contain logarithmic
singularities and jump discontinuities at 𝑦 = ±𝑎 and 𝑦 = ±𝑏. A regu-
larized form of the incremental stresses removes the singularities and
discontinuities; see Appendix B in Jansen and Meulenbroek (2022). We
quote the following expressions from that appendix:

𝛥𝜎𝑟𝑥𝑥 = −𝐶
{

arctan 2
[

(𝑎 + 𝑏)𝜂, 𝜂2 + (𝑦 − 𝑏)(𝑦 + 𝑎)
]

+

arctan 2
[

(𝑎 + 𝑏)𝜂, 𝜂2 + (𝑦 − 𝑎)(𝑦 + 𝑏)
]}

, (A.18)

𝛥𝜎𝑟𝑥𝑦 = 𝐶
2
ln

[

𝜂2 + (𝑦 − 𝑎)2
] [

𝜂2 + (𝑦 + 𝑎)2
]

[

𝜂2 + (𝑦 − 𝑏)2
] [

𝜂2 + (𝑦 + 𝑏)2
] , (A.19)

where the ‘arctan2’ operation is defined for arguments (𝑦, 𝑥) in the
interval [−𝜋, 𝜋] according to

arctan 2(𝑦, 𝑥) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

sgn(𝑦) ⋅ arctan
(

|

|

|

𝑦
𝑥
|

|

|

)

𝑥 > 0
sgn(𝑦) ⋅ 𝜋

2 𝑥 = 0, 𝑦 ≠ 0
undef ined 𝑥 = 0, 𝑦 = 0
sgn(𝑦) ⋅

[

𝜋 − arctan
(

|

|

|

𝑦
𝑥
|

|

|

)]

𝑥 < 0

. (A.20)

Eqs. (A.18) and (A.19) can be used instead of Eqs. (A.8) and (A.9)
to which they can be shown to revert for 𝜂 = 0. The corresponding
regularized version of the second line in Eq. (A.11) for the effective
normal stresses is given by

𝛥𝜎′𝑟 = 𝛥𝜎 + 𝛽𝛥𝑝𝑟 = 𝛥𝜎 + 𝛽
𝛥𝑝
𝜋

arctan 2
[

2𝑏𝜂, 𝜂2 + (𝑦 − 𝑏)(𝑦 + 𝑏)
]

. (A.21)

Eq. (A.21) contains a small correction of the original expression for 𝛥𝜎′𝑟
in Jansen and Meulenbroek (2022): the first term inside the square
brackets was originally taken as (𝑎 + 𝑏)𝜂 whereas here we use 2𝑏𝜂.
In numerical examples the difference is hardly noticeable, but the
current formulation is internally consistent, as demonstrated in the next
paragraph, whereas the original formulation was not.

Both the unregularized and the regularized expressions can be
integrated analytically and it can be shown that

∫

∞

−∞
𝛥𝜎𝑥𝑥(𝑦) 𝑑𝑦 = ∫

∞

−∞
𝛥𝜎𝑟𝑥𝑥(𝑦) 𝑑𝑦 = 2𝜋𝐶(𝑎 + 𝑏), (A.22)

∞
𝛥𝜎𝑥𝑦(𝑦) 𝑑𝑦 =

∞
𝛥𝜎𝑟 (𝑦) 𝑑𝑦 = 0, (A.23)
11

∫−∞ ∫−∞ 𝑥𝑦
Fig. A.2. Pre-slip Coulomb stress 𝜏𝐶 (left) and its spatial derivative 𝑑𝜏𝐶
𝑑𝑦

(right) with and
without regularization, in the neighborhood the singularity at 𝑦 = 𝑎 = 75.0 m (dotted
black line) which coincides with one of the four infinite-magnitude peaks of the
unregularized version of 𝜏𝐶 . The orange horizontal line at 𝑦 = 74.9 m corresponds to the
local zero of the regularized version of 𝑑𝜏𝐶

𝑑𝑦
and therefore to the (finite) local maximum

of the regularized version of 𝜏𝐶 . The figure has been produced with parameter values
from Table 1, and the value of the regularization parameter is 𝜂 = 0.10 m. As a
result of the regularization the location of the maximum value of 𝜏𝐶 has shifted over
approximately the same distance. The same holds for the shift in location of the pre-slip
Coulomb stress zeros; see the solid (regularized) and dotted (unregularized) green lines
in the left plot. The blue dots in the left figure illustrate the location of the Chebyshev
points for a number of points per slip patch �̂�𝑘 = 256.

∫

∞

−∞
𝛥𝑝(𝑦) 𝑑𝑦 = ∫

∞

−∞
𝛥𝑝𝑟(𝑦) 𝑑𝑦 = 2𝑏𝛽𝛥𝑝. (A.24)

hich implies that the regularization has only a local effect that does
ot disturb the global stress distribution in the fault. Also differentiation
f the regularized expressions can be done analytically and the result
or values around one of the infinite peaks in the pre-slip Coulomb
tress has been displayed in Fig. A.2 (right). The corresponding maxi-
um of the pre-slip Coulomb stress, depicted in Fig. A.2 (left), displays
small shift in location, of the same order of magnitude as the value

f the regularization parameter 𝜂. A similar small shift is observed in
he location of the pre-slip Coulomb stress zeros.

In the numerical example in our paper we used 𝜂 = 0.10 m and
e employed around 250 grid points per slip patch in the numerical

ntegration procedure to resolve the corresponding smoothed peaks;
ee Fig. A.2 (left). Reducing the value of 𝜂 leads to convergence of the
esults but at the cost of an increased number of grid points to resolve
he peaks.

ppendix B. Inverse Cauchy equations over neighboring intervals

.1. Problem statement

We aim to derive the inverse expression of Eq. (13) which is
Cauchy-type singular integral over a domain 𝐿 consisting of two

eparate line intervals on the real axis:

V∫𝐿
𝑔(𝜉)
𝜉 − 𝑦

𝑑𝜉 = 𝑓 (𝑦), 𝐿 = 𝐿1 ∪ 𝐿2 ≡ (�̃�1, �̃�2) ∪ (�̃�3, �̃�4), (B.1)

where we introduced a generic notation to indicate the functions 𝑓 (𝑦)
and 𝑔(𝑦) which are known and unknown respectively. For the case of a
two-interval Cauchy integral with pre-slip Coulomb stresses 𝜏𝐶 we have
the following equivalencies:

𝑓 (𝑦) ≡ −𝜏𝐶 (𝑦)∕𝐴, (B.2)

𝑔(𝑦) ≡ ∇𝛿(𝑦). (B.3)
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while the two line intervals represent slip patches. Just like in the main
text we will refrain from indicating the principal value (PV) explicitly in
the remainder of this Appendix. Eq. (B.1) describes a mixed boundary
value problem in which 𝑓 (𝑦) is prescribed for 𝑦 ∈ 𝐿 and 𝑔(𝑦) = 0 for
𝑦 ∉ 𝐿. Moreover, it is a free boundary problem, in the sense that we
do not a-priori know the location of the end points �̃�𝑖, 𝑖 = 1,… , 4, and
need additional conditions to determine them.

Following equation (3.155) of Estrada and Kanwal (2000) the in-
verse of Eq. (B.1) can be expressed as

𝑔(𝑦) = 1
𝜋2𝛹±(𝑦) ∫𝐿

𝛹±(𝜉)𝑓 (𝜉)
𝑦 − 𝜉

𝑑𝜉 +
𝐶0 + 𝐶1𝑦
𝜋2𝛹±(𝑦)

, (B.4)

where

𝛹±(𝑦) = ±
√

−(𝑦 − �̃�1)(𝑦 − �̃�2)(𝑦 − �̃�3)(𝑦 − �̃�4), (B.5)

and where the plus and minus signs preceding the square root term
correspond to 𝑦 ∈ 𝐿2 and 𝑦 ∈ 𝐿1 respectively. Note that in this formu-
lation the square root is always real, as defined in equation (3.152)
of Estrada and Kanwal (2000). Also note that, unlike here, in Estrada
and Kanwal (2000) the dependent and independent variables (𝑦 and 𝜉)
are swapped when going from the ‘forward’ to the ‘inverse’ expression
(Eqs. (B.1) and (B.4)), while the terms 𝜉−𝑦 and 𝑦−𝜉 in the denominators
are identical to those in our formulation, resulting in a sign change
in Eq. (B.4).

The last term in Eq. (B.4) is the solution of the homogeneous version
of Eq. (B.1):

∫𝐿
𝑔(𝜉)
𝜉 − 𝑦

𝑑𝜉 = 0, (B.6)

while the integral term in Eq. (B.4) is a particular solution for the
right-hand side 𝑓 (𝑦) in Eq. (B.1).

B.2. Conditions for a bounded solution at all endpoints

The terms 1∕𝛹±(𝑦) in Eq. (B.4) become unbounded for 𝑦 ∈ {�̃�1, �̃�2,
�̃�3, �̃�4}. To obtain a solution that remains bounded in the four end
points we follow the approach that Bilby and Eshelby (1968) used for
a single-interval problem, and introduce the identity

𝛹 (𝜉)
𝛹 (𝑦)

−
𝛹 (𝑦)
𝛹 (𝜉)

=
𝛹 2(𝜉) − 𝛹 2(𝑦)

𝛹 (𝜉)𝛹 (𝑦)
, (B.7)

here we temporarily drop the subscript ±. The nominator of the
ight-hand side of this expression can be rewritten as
2(𝜉) − 𝛹 2(𝑦) = (𝑦 − 𝜉)(𝐴0 + 𝐴1𝑦 + 𝐴2𝑦

2 + 𝐴3𝑦
3), (B.8)

where

𝐴0 = 𝐵0 + 𝐵1𝜉 + 𝐵2𝜉
2 + 𝐵3𝜉

3, (B.9)
𝐴1 = 𝐵1 + 𝐵2𝜉 + 𝐵3𝜉

2, (B.10)
𝐴2 = 𝐵2 + 𝐵3𝜉, (B.11)
𝐴3 = 𝐵3, (B.12)
𝐵0 = −

(

�̃�1�̃�2�̃�3 + �̃�1�̃�2�̃�4 + �̃�1�̃�3�̃�4 + �̃�2�̃�3�̃�4
)

(B.13)

𝐵1 = �̃�1�̃�2 + �̃�1�̃�3 + �̃�1�̃�4 + �̃�2�̃�3 + �̃�2�̃�4 + �̃�3�̃�4 (B.14)
𝐵2 = −(�̃�1 + �̃�2 + �̃�3 + �̃�4) (B.15)
𝐵3 = 1, (B.16)

With the aid of Eqs. (B.7) to (B.16) we can now rewrite Eq. (B.4) as

𝑔(𝑦) =
𝛹±(𝑦)
𝜋2 ∫𝐿

𝑓 (𝜉)
𝛹±(𝜉) (𝑦 − 𝜉)

𝑑𝜉 +
𝐷0 +𝐷1𝑦 +𝐷2𝑦2 +𝐷3𝑦3

𝜋2𝛹±(𝑦)
+

𝐶0 + 𝐶1𝑦
𝜋2𝛹±(𝑦)

,

(B.17)

here

= 𝐵 𝐼 + 𝐵 𝐼 + 𝐵 𝐼 + 𝐵 𝐼 , (B.18)
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0 0 0 1 1 2 2 3 3 s
1 = 𝐵1𝐼0 + 𝐵2𝐼1 + 𝐵3𝐼2, (B.19)

2 = 𝐵2𝐼0 + 𝐵3𝐼1, (B.20)

3 = 𝐵3𝐼0, (B.21)

ith

𝑖 = ∫𝐿
𝑦𝑖 𝑓 (𝑦)
𝛹±(𝑦)

𝑑𝑦 = ∫𝐿1

𝑦𝑖 𝑓 (𝑦)
𝛹−(𝑦)

𝑑𝑦 + ∫𝐿2

𝑦𝑖 𝑓 (𝑦)
𝛹+(𝑦)

𝑑𝑦, 𝑖 = 0,… , 3. (B.22)

or 𝑔(𝑦) to be bounded in the four end points it is necessary that
he sum of the last two terms at the right-hand side of Eq. (B.17)
anishes. Because the four unknown coefficients 𝐷𝑖(�̃�1,…,4), 𝑖 = 0,… , 3,
re functions of the four end points �̃�1,… , �̃�4, this implies that the end
oints should be selected such that

0 +𝐷0 = 0, (B.23)

1 +𝐷1 = 0, (B.24)
𝐷2 = 0, (B.25)
𝐷3 = 0. (B.26)

ith the aid of Eqs. (B.15) and (B.18) to (B.21), conditions (B.23) to
B.26) can also be expressed as

0 + (�̃�1 + �̃�2 + �̃�3 + �̃�4)𝐶1 + 𝐼3 = 0, (B.27)
𝐶1 + 𝐼2 = 0, (B.28)

𝐼1 = 0, (B.29)
𝐼0 = 0. (B.30)

The unknown coefficients 𝐶0 and 𝐶1 can be obtained by imposing
wo conditions on the general solution. In particular, we require the
ntegral of the slip gradient ∇𝛿 over each of the patches to vanish which
an be represented in the generic notation of this Appendix as:

𝐿1

𝑔(𝑦)𝑑𝑦 = 0, (B.31)

𝐿2

𝑔(𝑦)𝑑𝑦 = 0. (B.32)

ith Eq. (B.4) this can be expressed as

𝐿1

1
𝛹−(𝑦) ∫𝐿

𝛹±(𝜉)𝑓 (𝜉)
𝑦 − 𝜉

𝑑𝜉 𝑑𝑦 + ∫𝐿1

𝐶0 + 𝐶1𝑦
𝛹−(𝑦)

𝑑𝑦 = 0, (B.33)

∫𝐿2

1
𝛹+(𝑦) ∫𝐿

𝛹±(𝜉)𝑓 (𝜉)
𝑦 − 𝜉

𝑑𝜉 𝑑𝑦 + ∫𝐿2

𝐶0 + 𝐶1𝑦
𝛹+(𝑦)

𝑑𝑦 = 0, (B.34)

which can be rewritten as a linear system of equations
[

𝐴11 𝐴12
𝐴21 𝐴22

] [

𝐶0
𝐶1

]

=
[

𝑏1
𝑏2

]

, (B.35)

where

𝐴11 = ∫𝐿1

1
𝛹−(𝑦)

𝑑𝑦, (B.36)

12 = ∫𝐿1

𝑦
𝛹−(𝑦)

𝑑𝑦, (B.37)

21 = ∫𝐿2

1
𝛹+(𝑦)

𝑑𝑦, (B.38)

22 = ∫𝐿2

𝑦
𝛹+(𝑦)

𝑑𝑦, (B.39)

𝑏1 = −∫𝐿1

1
𝛹−(𝑦) ∫𝐿

𝛹±(𝜉)𝑓 (𝜉)
𝑦 − 𝜉

𝑑𝜉 𝑑𝑦, (B.40)

𝑏2 = −∫𝐿2

1
𝛹+(𝑦) ∫𝐿

𝛹±(𝜉)𝑓 (𝜉)
𝑦 − 𝜉

𝑑𝜉 𝑑𝑦. (B.41)

The solution procedure now consists of iteratively searching for the
four values �̃�1,… , �̃�4 that make the four conditions (B.23) to (B.26) (or
conditions (B.27) to (B.30)) equal to zero. During each iteration step the
unknowns 𝐶0 and 𝐶1 have to be obtained by solving the 2 × 2 linear
ystem (B.35).
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Evaluation of numerical examples reveals that 𝐶0 always has a
non-zero value while 𝐶1 is always (numerically) equal to zero. Straight-
forward determination of the conditions under which 𝐶1 vanishes
seems to be out of reach. Although some of the governing integrals can
be solved in terms of elliptic integrals, the presence of singularities, and
therefore the need to use principal values, requires an analysis beyond
the scope of the current paper. Because the vanishing of 𝐶1 does not
influence the main conclusions, we leave a further investigation of this
numerical finding as material for future research.

With 𝐶1 = 0, the solution of the 2 × 2 system (B.35) reduces to

𝐶0 =
𝐴22𝑏1 − 𝐴12𝑏2

𝐴12𝐴21 − 𝐴11𝐴22
. (B.42)

Alternatively, one could use either Eq. (B.33) or (B.34) with 𝐶1 = 0 to
olve for 𝐶0.

.3. Alternative formulation

Instead of using the six conditions (B.23) to (B.32) to determine the
our end points �̃�1,… , �̃�4 and the two coefficients 𝐶0 and 𝐶1, we can use

four alternative conditions to determine the four end points directly,
without the need to compute 𝐶0 and 𝐶1. Note that we continue the use
of 𝐶1 as an unknown parameter, to remain aligned with the derivation
above. In practice, one may want to set 𝐶1 = 0 a priori.

We now use expression (B.17) for 𝑔(𝑦) instead of expression (B.4)
and we first choose the free variables 𝐶0 and 𝐶1 such that

𝐶0 +𝐷0 = 0, 𝐶1 +𝐷1 = 0, (B.43)

in terms of the (at this point unknown) parameters �̃�1,… , �̃�4. This
means that Eq. (B.17) now reduces to

𝑔(𝑦) =
𝛹±(𝑦)
𝜋2 ∫𝐿

𝑓 (𝜉)
𝛹±(𝜉)(𝑦 − 𝜉)

𝑑𝜉 +
𝐷2𝑦2 +𝐷3𝑦3

𝜋2𝛹±(𝑦)
. (B.44)

In order to have a finite slip gradient at the endpoints, we need to
impose the conditions

𝐷2 = 0, 𝐷3 = 0, (B.45)

or, equivalently,

𝐼1 = 0, 𝐼0 = 0, (B.46)

and in order to satisfy conditions (B.31) and (B.32) (the integral of the
slip gradient ∇𝛿 has to vanish over both patches) we need to impose
furthermore the conditions

∫𝐿1

𝛹−(𝑦)
𝜋2 ∫𝐿

𝑓 (𝜉)
𝛹±(𝜉)(𝑦 − 𝜉)

𝑑𝜉 𝑑𝑦 = 0, (B.47)

𝐿2

𝛹+(𝑦)
𝜋2 ∫𝐿

𝑓 (𝜉)
𝛹±(𝜉)(𝑦 − 𝜉)

𝑑𝜉 𝑑𝑦 = 0, (B.48)

here we used expression (B.44) with conditions (B.46) for 𝑔(𝑦). In
ummary, this leads to the four conditions

𝐿1

𝛹−(𝑦)∫𝐿
𝑓 (𝜉)

𝛹±(𝜉) (𝑦 − 𝜉)
𝑑𝜉 𝑑𝑦 = 0, (B.49)

∫𝐿2

𝛹+(𝑦)∫𝐿
𝑓 (𝜉)

𝛹±(𝜉) (𝑦 − 𝜉)
𝑑𝜉 𝑑𝑦 = 0, (B.50)

𝐼1 = 0, (B.51)
𝐼0 = 0, (B.52)

that determine the end point values �̃�1,… �̃�4.
An alternative ‘‘short-cut’’ solution procedure now consists of it-

eratively searching for the four values �̃�1,… , �̃�4 that make the four
alternative conditions (B.49) to (B.52) equal to zero. The two un-
known coefficients 𝐶0 and 𝐶1 can then , in theory, be obtained from
the original conditions (B.23) and (B.24) after computing 𝐷0 and 𝐷1
with the aid of Eqs. (B.13) to (B.16), (B.18) and (B.19). In practice,
however, we do no longer need those two coefficients in the iterative
13
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procedure. Fig. B.1 depicts the values of the non-zero coefficient 𝐶0
for the full formulation (red solid curves) and the alternative (short-
cut) formulation (dashed blue curve), for the example considered in
the main text. It can be seen that the curves exactly overlap. The
computational speed of the alternative formulation is slightly higher
than of the original one. However, for the numerical examples that
we considered, the alternative formulation turned out to be somewhat
more prone to numerical (integration) errors and occasionally resulted
in inaccurate values for the slip patch boundaries.

B.4. Single patch

When coupling effects are neglected, or when the two slip patches
have merged, the problem statement (B.1) reduces to

∫𝐿
𝑔(𝜉)
𝜉 − 𝑦

𝑑𝜉 = 𝑓 (𝑦), 𝐿 = (�̃�−, �̃�+), (B.53)

here (�̃�−, �̃�+) = (�̃�1, �̃�2) for the bottom patch, (�̃�−, �̃�+) = (�̃�3, �̃�4) for
he top patch, and (�̃�−, �̃�+) = (�̃�1, �̃�4) for merged patches. Following
quation (3.155) of Estrada and Kanwal (2000) again, the inverse
f Eq. (B.53) can be expressed as

(𝑦) = 1
𝜋2𝛷(𝑦) ∫𝐿

𝛷(𝜉)𝑓 (𝜉)
𝜉 − 𝑦

𝑑𝜉 +
𝐶0

𝜋2𝛷(𝑦)
, (B.54)

where

𝛷(𝑦) =
√

−(𝑦 − �̃�−)(𝑦 − �̃�+). (B.55)

To guarantee a bounded solution we pursue the same approach as for
the two-patch case and write, keeping the same notation,

𝛷(𝜉)
𝛷(𝑦)

−
𝛷(𝑦)
𝛷(𝜉)

=
𝛷2(𝜉) −𝛷2(𝑦)

𝛷(𝜉)𝛷(𝑦)
, (B.56)

The nominator of the right-hand side of this expression can be rewritten
as

𝛷2(𝜉) −𝛷2(𝑦) = (𝑦 − 𝜉)(𝐴0 + 𝐴1𝑦), (B.57)

where

𝐴0 = 𝐵0 + 𝐵1𝜉, (B.58)
𝐴1 = 𝐵1, (B.59)
𝐵0 = −(�̃�− + �̃�+) (B.60)

𝐵1 = 1, (B.61)

With the aid of Eqs. (B.56) to (B.61) we can now rewrite Eq. (B.54) as

𝑔(𝑦) =
𝛷(𝑦)
𝜋2 ∫𝐿

𝑓 (𝜉)
𝛷(𝜉) (𝑦 − 𝜉)

𝑑𝜉 +
𝐷0 +𝐷1𝑦
𝜋2𝛷(𝑦)

+
𝐶0

𝜋2𝛷(𝑦)
, (B.62)

where

𝐷0 = 𝐵0𝐼0 + 𝐵1𝐼1, (B.63)

1 = 𝐵1𝐼0, (B.64)

ith

𝑖 = ∫𝐿
𝑦𝑖 𝑓 (𝑦)
𝛷(𝑦)

𝑑𝑦, 𝑖 = 0, 1. (B.65)

or 𝑔(𝑦) to be unbounded in the two end points we now obtain the
onditions

0 +𝐷0 = 0, (B.66)
𝐷1 = 0, (B.67)

he unknown coefficient 𝐶0 can again be obtained by imposing a
ondition on the general solution. In particular, we require

𝐿
𝑔(𝑦)𝑑𝑦 = 0. (B.68)

ith Eq. (B.54) the integral in condition (B.68) can be written as

𝑔(𝑦)𝑑𝑦 =
(

1 𝛷(𝜉)𝑓 (𝜉)
𝑑𝜉 +

𝐶0
)

𝑑𝑦

𝐿 ∫𝐿 𝜋2𝛷(𝑦) ∫𝐿 𝜉 − 𝑦 𝜋2𝛷(𝑦)
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Fig. B.1. Coefficient 𝐶0 for different formulations.
= 1
𝜋2

(

∫𝐿 ∫𝐿
𝛷(𝜉)𝑓 (𝜉)
𝛷(𝑦)(𝜉 − 𝑦)

𝑑𝑦 𝑑𝜉 + ∫𝐿
𝐶0
𝛷(𝑦)

𝑑𝑦
)

=
𝐶0
𝜋

, (B.69)

where we made use of the integrals

∫𝐿
1

𝛷(𝑦)(𝜉 − 𝑦)
𝑑𝑦 = 0, (B.70)

∫𝐿
1

𝛷(𝑦)
𝑑𝑦 = 𝜋, (B.71)

(Estrada and Kanwal, 2000; Jansen and Meulenbroek, 2022, Supporting
Information, eqs. (S.2.10) and (S.2.13)). Therefore, in this single-patch
case, we find 𝐶0 = 0 which implies that the homogeneous solution is
uncoupled from the general solution. This is an essential difference
with the double-patch case where the two solutions are coupled, in
which case the computation of the integration constants 𝐶0 and 𝐶1
equires solving six requirements simultaneously. Here we find that
onditions (B.66) and (B.67) reduce to

0 = 𝐷1 = 0, (B.72)

r, equivalently,

𝑖 = ∫𝐿
𝑦𝑖 𝑓 (𝑦)
𝛷(𝑦)

𝑑𝑦 = 0, 𝑖 = 0, 1. (B.73)

B.5. Earlier conditions

As discussed in the main text, Muskhelishvili (1953) and Weertman
(1996) both presented four conditions for the boundedness of the two-
patch case. Both authors set 𝐶0 = 𝐶1 = 0 a priori. However, as discussed
in the previous section, this not necessarily correct. Muskhelishvili then
obtained

𝐼𝑀𝑖 = ∫𝐿
𝑦𝑖 𝑓 (𝑦)
𝛹±(𝑦)

𝑑𝑦 = 0, 𝑖 = 0,… , 3, (B.74)

which is identical to our conditions (B.27) to (B.30) but with vanishing
𝐶0 and 𝐶1, although there is some ambiguity in the counters in the orig-
inal text (Muskhelishvili, 1953, Eq. (88).10). Weertman arrived at the
same result except for a slightly different fourth condition (Weertman,
1996, Eq. (3).45):

𝐼𝑊𝑖 = ∫𝐿
𝑦𝑖 𝑓 (𝑦)
𝛹±(𝑦)

𝑑𝑦 = 0, 𝑖 = 0,… , 2, (B.75)

𝐼𝑊3 = ∫𝐿
𝑦|𝑦| 𝑓 (𝑦)
𝛹±(𝑦)

𝑑𝑦 = 0. (B.76)

oth sets of conditions do indeed lead to bounded solutions for the
lip gradient which, however, fail to adhere to the additional condi-
ions (B.31) and (B.32) which represent the physical requirement that
he integral of the slip gradient over each of the slip patches vanishes.

.6. Symmetry

In this section we will compute 𝑔(𝑦) for a symmetric single slip patch
ith �̃�1 = −�̃�4, as occurs after merging, and for a symmetric double-
atch configuration with �̃�1 = −�̃�4 and �̃�2 = −�̃�3. We will show that
he single-patch solution is the limit of the double-patch solution for
�̃� → 0.
14
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B.6.1. Single patch
If 𝑓 (−𝑦) = 𝑓 (𝑦), Eq. (B.53) can be rewritten as

𝑓 (𝑦) = 𝑓 (−𝑦) = ∫

�̃�4

�̃�1

𝑔(𝜉)
𝜉 + 𝑦

𝑑𝜉 = ∫

−�̃�4

−�̃�1

𝑔(−𝜏)
−𝜏 + 𝑦

𝑑(−𝜏)

= ∫

−�̃�4

�̃�4

𝑔(−𝜏)
−𝜏 + 𝑦

𝑑(−𝜏) = ∫

�̃�4

−�̃�4

𝑔(𝜉)
𝜉 + 𝑦

𝑑𝜉. (B.77)

Defining a symmetric version of Eq. (B.55) as

�̃�(𝑦) =
√

−(𝑦 + �̃�4)(𝑦 − �̃�4) =
√

�̃�24 − 𝑦2, (B.78)

we can therefore rewrite Eq. (B.62) as

𝑔(𝑦) =
�̃�(𝑦)
𝜋2 ∫

�̃�4

−�̃�4

𝑓 (𝜉)
�̃�(𝜉) (𝑦 − 𝜉)

𝑑𝜉

=
�̃�(𝑦)
𝜋2

(

∫

�̃�4

0

𝑓 (𝜉)
�̃�(𝜉)(𝑦 − 𝜉)

𝑑𝜉 + ∫

0

−�̃�4

𝑓 (𝜉)
�̃�(𝜉) (𝑦 − 𝜉)

𝑑𝜉

)

=
�̃�(𝑦)
𝜋2 ∫

�̃�4

0

𝑓 (𝜉)
�̃�(𝜉)

(

1
𝑦 − 𝜉

+ 1
𝑦 + 𝜉

)

𝑑𝜉

=
2𝑦�̃�(𝑦)
𝜋2 ∫

�̃�4

0

𝑓 (𝜉)
�̃�(𝜉)(𝑦2 − 𝜉2)

𝑑𝜉, (B.79)

where we used our knowledge from the asymmetric single-patch case
that 𝐶0 = 0. Eqs. (B.65) become

𝐼1 = ∫

�̃�4

�̃�1

𝑦𝑓 (𝑦)
�̃�(𝑦)

𝑑𝑦 = ∫

�̃�4

−�̃�4

𝑦𝑓 (𝑦)
�̃�(𝑦)

𝑑𝑦 = 0, (B.80)

because the integrand is anti-symmetric, and

𝐼0 = ∫

�̃�4

�̃�1

𝑓 (𝑦)
�̃�(𝑦)

𝑑𝑦 = ∫

�̃�4

0

2𝑓 (𝑦)
�̃�(𝑦)

𝑑𝑦, (B.81)

because the integrand is symmetric, which means that the boundary
point �̃�4 is determined by the equation

∫

�̃�4

0

𝑓 (𝑦)
�̃�(𝑦)

𝑑𝑦 = 0, (B.82)

which now replaces Eq. (B.73).

B.6.2. Double patch
With 0 < �̃�3, 0 < �̃�4, �̃�1 = −�̃�4 < 0 and �̃�2 = −�̃�3 < 0, the symmetric

version of Eq. (B.5) becomes

�̃�±(𝑦) = ±
√

−(𝑦 + �̃�4)(𝑦 + �̃�3)(𝑦 − �̃�3)(𝑦 − �̃�4) = ±
√

(𝑦2 − �̃�23)(�̃�
2
4 − 𝑦2),

(B.83)

with the plus and minus signs preceding the square root term corre-
sponding to 𝑦 > 0 and 𝑦 < 0 respectively. Following similar steps as for
the single patch, Eq. (B.17) can now be rewritten as

𝑔(𝑦) =
�̃�±(𝑦)

2

�̃�4 2𝜉𝑓 (𝜉)
𝑑𝜉 +

𝐷0 +𝐷2𝑦2 +
𝐶0 . (B.84)
𝜋 ∫�̃�3 �̃�+(𝜉) (𝑦2 − 𝜉2) 𝜋2�̃�±(𝑦) 𝜋2�̃�±(𝑦)
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Here we used the result that 𝐵1 and 𝐵3 as defined in Eqs. (B.14) and
B.16) vanish in case of symmetry, and that the symmetric version
f Eq. (B.22) becomes

𝑖 = ∫

−�̃�3

−�̃�4

𝑦𝑖𝑓 (𝑦)
�̃�−(𝑦)

𝑑𝑦+∫

�̃�4

�̃�3

𝑦𝑖𝑓 (𝑦)
�̃�+(𝑦)

𝑑𝑦 = ∫

�̃�4

�̃�3

(1 − (−1)𝑖)𝑦𝑖𝑓 (𝑦)
�̃�+(𝑦)

𝑑𝑦, 𝑖 = 0, 3,

(B.85)

uch that 𝐼0 = 𝐼2 = 0. The four conditions (B.23) to (B.26) now reduce
o

0 +𝐷0 = 0, (B.86)
𝐷2 = 0, (B.87)

hich can also be expressed as

0 + 𝐼3 = 0, (B.88)
𝐼1 = 0. (B.89)

ust as in Eqs. (B.33) and (B.34) for the asymmetric case we require
he integral of the slip gradient to vanish over each of the slip patches
hich now leads to a single equation
�̃�4

�̃�3

1
�̃�+(𝑦) ∫

�̃�4

�̃�3

�̃�+(𝜉) 2𝜉𝑓 (𝜉)
(𝑦2 − 𝜉2)

𝑑𝜉 𝑑𝑦 + ∫

�̃�4

�̃�3

𝐶0

�̃�+(𝑦)
𝑑𝑦 = 0, (B.90)

from which we can compute 𝐶0. The three conditions to determine 𝐶0,
𝐼1 and 𝐼3 are therefore given by Eqs. (B.88) to (B.90).

Alternatively we can start from the four ‘shortcut’ conditions (B.49)
o (B.52). Noting that, apart from a sign, the integrals (B.49) and (B.50)
re now identical, we obtain
�̃�4

�̃�3
�̃�+(𝑦)∫

�̃�4

�̃�3

𝜉𝑓 (𝜉)
�̃�+(𝜉) (𝑦2 − 𝜉2)

𝑑𝜉 𝑑𝑦 = 0 (B.91)

as the first of the two required conditions while the other one is
identical to Eq. (B.89):

∫

�̃�4

�̃�3

𝑦𝑓 (𝑦)
�̃�+(𝑦)

𝑑𝑦 = 0. (B.92)

ig. B.1 depicts the values of 𝐶0 for the symmetric full formulation
gray solid curves) and the symmetric alternative (short-cut) formu-
ation (orange dashed curves), in addition to the asymmetric results
iscussed before. It can be seen that the two curves for the symmetric
ormulation exactly overlap, just like in the asymmetric formulation.
ote that there is not much difference between the 𝐶0 values for the

ymmetric and the asymmetric cases because of the small amount of
symmetry in the example considered.

.6.3. Double patch merging into a single patch
In this section we show that the symmetric single patch solution

an be viewed as a limit case of the symmetric single patch solution.
uppose we have a sequence of double patch solutions (B.84) satisfying
onditions (B.91) and (B.92); suppose furthermore that �̃�3 → 0. In that
ase we find

lim
�̃�3→0

�̃�±(𝑦) = |𝑦|
√

�̃�24 − 𝑦2 = |𝑦|�̃�(𝑦), (B.93)

which means that the symmetric double-patch solution (B.84) becomes

lim
�̃�3→0

𝑔(𝑦) =
|𝑦|�̃�(𝑦)

𝜋2 ∫

�̃�4

0

2𝜉𝑓 (𝜉)
|𝜉|�̃�(𝜉)

(

1
𝑦2 − 𝜉2

)

𝑑𝜉

=
2𝑦�̃�(𝑦)
𝜋2 ∫

�̃�4

0

𝑓 (𝜉)
�̃�(𝜉)(𝑦2 − 𝜉2)

𝑑𝜉, (B.94)

hich is the identical to the symmetric single-patch solution (B.79).
Condition (B.91) implies that 𝐺(�̃�3) = 𝐺(�̃�4), with 𝐺 indicating the

primitive of 𝑔, which means that we also have 𝐺(−�̃�4) = 𝐺(−�̃�3) =
𝐺(�̃�3) = 𝐺(�̃�4), because 𝑔(𝑦) = 0 for −�̃�3 < 𝑦 < �̃�3. This means that
for �̃�3 → 0 the symmetric double-patch condition (B.91) also satisfies
the symmetric single-patch condition (B.82).
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e

Note that in order to determine �̃�4 for the symmetric single-patch
and double-patch solutions respectively, we have different conditions:
see Eqs. (B.82) and (B.92). However, just at the point where �̃�3 = 0,
both conditions become identical:

lim
�̃�3→0∫

�̃�4

�̃�3

𝑦𝑓 (𝑦)
�̃�+(𝑦)

𝑑𝑦 = ∫

�̃�4

0

𝑦𝑓 (𝑦)
𝑦 �̃�(𝑦)

𝑑𝑦 = ∫

�̃�4

0

𝑓 (𝑦)
�̃�(𝑦)

𝑑𝑦. (B.95)

Appendix C. Augmented Gauss-Chebyshev quadrature with ana-
lytical inversion

C.1. Formulation

We refer to Multhopp (1938), Erdogan and Gupta (1972), Erdogan
et al. (1973) and Kalandiya (1975) for detailed derivations of the orig-
inal augmented Gauss–Chebyshev quadrature procedure, and to Hills
et al. (1996) and Viesca and Garagash (2018) for further developments
and implementation details related to fracture mechanics. The resulting
integration formulas can be expressed as

∫

�̃�+

𝑦−

𝑓 (𝜉)
𝛷(𝜉)

𝑑𝜉 ≈
𝑁
∑

𝑗=1
𝑤𝑗𝑓 (𝜉𝑗 ) (Gauss–Chebyshev), (C.1)

for regular integrals, and

∫

�̃�+

𝑦−

𝑓 (𝜉)
𝛷(𝜉)(𝑦 − 𝜉)

𝑑𝜉 ≈
𝑁
∑

𝑗=1

𝑤𝑗𝑓 (𝜉𝑗 )
𝑦𝑖 − 𝜉𝑗

(Augmented Gauss–Chebyshev),

(C.2)

or Cauchy-type singular integrals, where

(𝜉) =
√

−(𝜉 − �̃�−)(𝜉 − �̃�+), (C.3)

and where we use the scaling

𝑦𝑖 = 𝑧𝑖 𝑦 + �̄�, 𝜉𝑗 = 𝜁𝑗 𝑦 + �̄�, (C.4)

�̄� =
�̃�− + �̃�+

2
, 𝑦 =

�̃�+ − �̃�−
2

. (C.5)

ith, for augmented first-kind Gauss–Chebyshev quadrature,

𝑗 = 𝜋
𝑁

, (C.6)

𝜁𝑗 = cos
𝜋(𝑗 − 1

2 )

𝑁
, 𝑗 = 1,… , 𝑁, (C.7)

𝑧𝑖 = cos 𝜋 𝑖
𝑁

, 𝑖 = 1,… , 𝑁 − 1, (C.8)

or, for augmented second-kind Gauss–Chebyshev quadrature,

𝑤𝑗 =
𝜋(1 − 𝜁2𝑗 )

𝑁 + 1
, (C.9)

𝜁𝑗 = cos
𝜋𝑗

𝑁 + 1
, 𝑗 = 1,… , 𝑁, (C.10)

𝑧𝑖 = cos
𝜋(𝑖 − 1

2 )

𝑁 + 1
, 𝑖 = 1,… , 𝑁 + 1. (C.11)

Eqs. (C.7) and (C.10) are expression for first-kind and second-kind
Chebyshev points which are the 𝑁 zeros of the first-kind and second-
kind Chebyshev polynomials 𝑇𝑁 (𝑧) and 𝑈𝑁 (𝑧) respectively, defined on
he domain −1 < 𝑧 < 1. Eqs. (C.8) and (C.11) provide two sets of com-
limentary points which are located mid in-between the corresponding
hebyshev points. Eqs. (C.5) represent the mid point location and the
alf-length of the integration interval and can be used to rescale from
1 < 𝑧 < 1 to �̃�− < 𝑦 < �̃�+, and from −1 < 𝜁 < 1 to �̃�− < 𝜉 < �̃�+, with the
id of Eqs. (C.4). In this formulation the values of 𝑦 and 𝜉 are both
estricted to remain within the integration boundaries �̃�− and �̃�+ where
he discrete values 𝑦𝑖 are collocation points for which the quadrature is
xact if the function 𝑓 (𝜉) is an (𝑁 −1)th degree polynomial (Mason and
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Fig. C.1. Convergence behavior of augmented Chebyshev quadrature as used in the
‘full’’ and ‘‘short cut’’ approaches to compute coupled fault slip in the example with
arameters from Table 1. The figure displays the relative error in the length of the
op slip patch 𝛥𝑦𝑡𝑜𝑝 = �̃�4 − �̃�3, as a function of the number of Chebyshev points per slip

patch �̂�𝑘 = 2𝑘 , 𝑘 = 5,… , 12. The relative errors have been computed with respect to
the results for �̂�𝑚𝑎𝑥 = 213 = 8192 points for each of the methods. The solid blue line
indicates algebraic convergence for which the relative error is proportional to 1

�̂�2
𝑘
.

andscomb, 2003). This formulation is relevant for Cauchy-type singu-
ar integrals, in which case the numerical result should be interpreted as
he principal value. The variable 𝑦 may also take on values outside the
ntegration limits, in which case the integral is no longer singular and 𝑦
ust becomes a parameter. Formulas for integrals with terms that differ
rom those in Eqs. (C.1) and (C.2) can be derived starting from these
quations by moving all non-conforming terms to the function 𝑓 (𝜉).

We note that the original augmented Gauss–Chebyshev formulation,
s applied to solve singular integral equations, relies on numerical in-
ersion (though solving a system of equations) as part of the integration
rocedure to determine the unknown function. In our approach, where
e use analytical inversion prior to integration, we only employ the
uadrature elements of the original formulation without performing
atrix inversion.

.2. Computational aspects

We implemented our version of the augmented Gauss–Chebyshev
uadrature scheme in Matlab. We used the standard function fsolve for
he iterative computation of the slip patch boundaries �̃�𝑖, 𝑖 = 1,… , 4;
mplemented a predictor–corrector-type variable-stepsize algorithm to
rogress the change in incremental pressure 𝛥𝑝; and used Matlab’s
ectorization capacities wherever possible.

We used first-kind Gauss–Chebyshev quadrature to integrate ex-
ressions with unbounded end-point values, such as Eqs. (B.36) to
B.39), and its second-kind companion to integrate expressions with
ounded endpoints, such as Eqs. (B.40) and (B.41). As a result, the
olution of both the ‘‘full’’ and the alternative ‘‘short-cut’’ versions of
ur coupled approach obtain a numerical convergence that is better
han algebraic, a feature often referred to as spectral convergence (Boyd,
001; Viesca and Garagash, 2018). We note that in our implementation,
n which we use analytical inversion prior to integration, it are the
ndpoints of the known function that determine the best choice of
he Gauss–Chebyshev method, and not the expected endpoints of the
nknown function. This is as opposed to the original augmented Gauss–
hebyshev method, which relies on numerical inversion as part of the

ntegration procedure.
Fig. C.1 illustrates the convergence behavior as a function of the

umber of Chebyshev points per slip patch �̂� . Algebraic convergence
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𝑘

s indicated with a solid blue line, and spectral convergence can be
bserved for �̂�𝑘 = 28 up to �̂�𝑘 = 212 where the relative error has been
omputed with respect to the most accurate results for �̂�𝑘 = 213. For
�̂�𝑘 = 25 to �̂�𝑘 = 27 convergence is less favorable because the results
are influenced by the extent to which the Chebyshev points sufficiently
cover the pre-slip Coulomb stress peaks around 𝑦 = ±𝑎. Fig. A.2 (left)
in Appendix A illustrates that, for the example considered, a number of
�̂�𝑘 = 28 = 256 points per patch gives a reasonable coverage.

Clock times scale approximately quadratically with the number of
hebyshev points �̂�𝑘 because of the convolution term in the Cauchy

ntegrals. A better performance may be possible with the use of the
ast Fourier transform, but we did not pursue this option in the current
aper. As an alternative to augmented Gauss–Chebyshev quadrature
e also implemented a variable-support trapezoidal scheme using a
onuniform grid consisting of first-kind or second-kind Chebyshev
oints. The Gauss–Chebyshev implementation typically performed con-
iderably faster (up to about half the clock time) than the trapezoidal
cheme for coupled simulation of fault slip. To give an indication of
he computational performance: with 230 variable-sized pressure steps
nd 256 Chebyshev points per slip patch, it takes a few seconds on a
tandard laptop to generate the red curves in Fig. 3.
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