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On the cover  

The cover shows an image of a cutter head subject to a maintenance inspection. At 
rock-type projects the large pick points mounted on the cutter head wear off 
heavily. In the early days of cutter dredging, workers would stand on top of the 
cutter to replace the pick points. Their only safety line would be a colleague’s hand. 

With regards to safety, dredging operations at GLDD and other dredging companies 
have seen a seismic shift. Among other measures, workers can now perform cutter 
maintenance safely on the cutter platform.  

Safety without compromise.  
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Abstract 
CSD spillage is defined as “any soil that is dislodged above the lowest cutter tip 
trajectory of a single swing, but is not sucked into the suction pipe”. In addition to 
higher energy consumption and material wear for delivering the targeted depth, 
spillage can lead to a variety of environmental issues. As of yet, no analytical model 
exists in literature that can estimate spillage rates for a given set of cutting 
parameters. This thesis presents the Sand-Rock Cutting Spillage Model (SRCSM), an 
engineering model that is particle-size agnostic and makes use of cutting 
parameters that are all available to the dredge operator. 

Prediction accuracy of 5 percentage point is achieved with a two-disc potential flow 
model complemented with empirical closing relationships. A triad of forces governs 
flow in the cutter head for typical cutting conditions: a centrifugal, suction and 
gravitational force are considered. For the centrifugal pump effect, and centrifugal 
pump effect only, the flow inside the cutter is considered steady, non-gravitational, 
inviscid and non-axial. This allows for the derivation of a pressure-discharge affinity 
law from the Navier-Stokes. The axial pump effect is governed by the mixture 
velocity at the suction mouth. It is hypothesized that the pressure difference over 
the discs drives an inflow at the disc closest to the nose.  

Centrifugal advection and rapid redeposition spillage are considered the two most 
significant spillage types out of the six classified. Centrifugal advection can be 
determined by identifying the onset of radial outflow at the disc near the cutter 
ring. The magnitude of rapid redeposition flow and its concentration depend on 
mixing effects that are proportional to the ratio particle settling velocity and the 
mixture velocity squared.  

The model is calibrated with three coefficients. User input parameters are the 
cutter geometry, cut-type factor 𝑓ௗ௧௬௣௘

 (-1  for under-cut), bank slope angle 𝜉, cutter 
inclination angle 𝜆, bank height ℎ, step size 𝑙௦௧௘௣, rotational velocity 𝜔, settling 
velocity 𝑣௧௦, swing velocity 𝑣௦, mixture velocity 𝑣௠ and material densities.  

𝑆 = 𝑓 ቀ𝐷௥௜௡௚, 𝐷௡௢௦௘ , 𝐷௣௜௣௘ , 𝑏, 𝑓ௗ௧௬௣௘
, 𝜉, 𝛾, ℎ, 𝑙௦௧௘௣ , 𝜔, 𝑣௧௦, 𝑣௦ , 𝑣௠, 𝜌௤ , 𝜌௕ , 𝜌௪ቁ  

For calibration, an inverse flow number 𝜃෠ is used that is proportional to the ratio of 
centrifugal flow over mixture flow. Spillage rates from SRCSM are in high agreement 
with reference data for sand (Miltenburg, 1983) and rock (Den Burger, 2003) in an 
under-cut swing.  A sensitivity analysis suggests that most cutter head dynamics are 
adequately incorporated. 

The model is less reliable for (non-typical) inverse flow numbers of 𝜃෠ = 6 [-] and 
higher due to a mixture velocity that drops below zero. In addition, the model is 
calibrated for a relatively high cutter inclination angle of 45 [deg] and bank angle of 
45 [deg]. Caution should be observed with the results. It is also suggested that 
mixing effects related to the swing velocity are incorporated more explicitly in the 
model.  
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For typical sand cutting conditions, the highest spillage reduction (-4.6%) is 
achieved by a 1 [%] smaller step size. For rock, the highest spillage reduction (-
0.63%) is achieved for a 1 [%] decrease in swing velocity. Spillage appears to follow 
the theorem of Ellington (1934): it don’t mean a thing if it ain’t got that swing. 
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 Preface 
As I have just completed writing the conclusions of this thesis, I realize that an 
engineer’s task of building a model is never done. It is only due. By definition, a 
model can always be improved as a perfect model cannot coexist with reality. The 
model report that lies before you is due as it concludes the final stage of my 
graduation. It is the product of an iterative process that comprises of literature 
reviews, model (re)development, python coding, conference presentations and 
elaborate discussions with my thesis committee. Although I believe that further 
model steps can be taken, I take pride in the results that, I hope, will be as 
interesting to you as they have been for me to obtain. 

The foundational flow concept in this model originates from an idea by Sape 
Miedema who has also supervised this research. Sape is a charismatic supervisor 
with the ability to fill a meeting with long but fascinating tangents, only to make up 
for this time with a meticulously devised advice on further steps to take. For these 
conversations as well as the stimulus to aim for publication I would like to express 
my sincerest gratitude. The pleasure of doing this research is also highly attributed 
to the internship opportunity that was provided to me by Robert Ramsdell from 
Great Lakes Dredge and Dock. Robert and his department created an inspiring 
environment where I was given the liberty to explore not only the perks and pitfalls 
of a Dutch mindset, but also the safety culture that comes with a professional team. 
I owe him many thanks for our elaborate spillage discussions and the warm 
welcome in Chicago from him and his family. I am grateful for the help I have been 
given by Cees van Rhee and Bas Nieuwboer who have provided a more scientific 
due diligence and rigorous reviews. In particular, I would like to thank Bas for his 
help editing the two conference papers. A special thanks goes to Cees for 
rearranging his schedule to enable the graduation date of May 24. Lastly, I highly 
appreciate Myron van Damme for his time and efforts to review this research from 
a less dredging-dominated mindset. Little did I know that this research would take 
me to the WEDA and WODCONXXII dredging conferences in Norfolk and Shanghai. 
The conference attendance and time leading up to them has been monumental for 
my personal development as I like to think it has made me more confident.  

In line with my expectation, the model development came with ups and downs. I 
have tried to model using a wide variety of parameters and effects. The iteration 
process and coding process can be slow and tiring. In partial, what kept me going in 
slow times is the realization that for the first time in my studies I had the chance to 
make a scientific contribution to the field. Writing the report posed an interesting 
challenge since I myself know that it can be difficult to grasp the model concept. 
Putting in words what I had been thinking about for a year has been lonesome at 
times. I feel lucky to have felt great support from my friends and family. I have 
received useful help from those with whom I earlier shared a period of research in 
Indonesia. I am grateful that our past cooperation and bonding has enabled us to 
speak in terms of our rich imaginations as well as very to the point. Furthermore, I 
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want to specifically thank the parrot zone pirates. They helped alleviate any 
stressful moments with the much amusing comment that I should not be worrying 
about presenting my thesis but what traditionally comes after. In all seriousness, 
their involvement does not go unnoticed. Especially in the last phase of writing, I 
have found substantial support from my ever-sharp housemates in Delft. I believe 
my gratitude for sharing such a positive and entertaining household has so far been 
least acknowledged of all. Looking back at my studies over the past years, there are 
two people I want to thank the most who have supported me all along the way. 
During celebratory times and sorrow, my parents have been an incredible source 
of inspiration to me. Characteristic of this feeling are the bike rides, whether it be 
in the Andes mountains of Peru or along our usual ride on the dyke to Wijk bij 
Duurstede. My father’s prompt fascination by the things we see, experience or talk 
about never ceases to amaze me. From rationally consistent to hypothetical, I have 
sincere gratitude for the conversations we share and the directions we take. 
Whenever head winds are strong, I find my mother just behind me. This is mostly 
true metaphorically. No matter the time, occasion, or cause, my mother’s 
unwavering support is the silent force that helped me finish my graduation.  
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1 Introduction 
This chapter focuses on formulating a research overview. First, a short introduction 
is given that establishes the motivation for spillage modeling. Next, a research 
objective and sub-questions are presented. Last, a thesis outline and reading guide 
is given.  

This thesis was commissioned by the research department at Great Lakes Dredge 
and Dock (GLDD) and carried out in partial fulfilment of the requirements for 
Master of Science in Offshore and Dredging Engineering at the TU Delft. The model 
presented in this research was first conceptualized by Dr.Ir. Sape Miedema (2017). 
Louis (2017) demonstrated a conceptual implementation for sand. This research 
aims to presents an upgraded model that is calibrated for Sand and Rock. 

1.1 Research motivation 

Depending on its size and installed power, a Cutter Suction Dredge (CSD) is capable 
of cutting a wide range of soil types from silts and clays to fractured or solid rocks. 
Its high precision allows for utilization in a variety of dredge operations including 
navigational channel deepening, port construction and pipeline trenching. In spite 
of being considered relatively efficient, a CSD can spill significantly. In rock, wear of 
dredge material is based on the amount cut while contractors are only paid for 
amount removed. Spillage is therefore a primary driver of operating cost. In sand, 
accurately predicting and controlling the yield of a borrow area is crucial to planning 
works. A lack of prediction methods thus indirectly adds to the cost.   

A typical larger dredging contract is the $47 million Charleston I Deepening 
contract, awarded in 2017 (GLDD, 2019). The contract was awarded to GLDD and 
comprised the cutting 4.7 million cubic meters of soil by CSDs primarily. According 
to company planning, the project is to be executed over a period of approximately 
two and a half years. From a broad perspective, it can be estimated that each 1% 
increase in CSD efficiency may reduce the project cost by $1 million and 
approximately 9 days. Any reduction in spillage rates can thus significantly 
contribute to improved project economics and execution speed.  

Moreover, safety considerations and environmental implications provide ample 
motivation for industry-participants to desire a spillage model that supports risk-
mitigation.  

As of yet, no analytical engineering model exists in literature that is capable of 
predicting spillage. 

1.2 Research objective 

The objective of this thesis is formulated as: 

Develop a particle size-agnostic, adaptable engineering model for the prediction 
of spillage rates for Cutter Suction Dredge cutting. 
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The objective properties are further elaborated upon in the scope of this research. 
It was chosen that the objective is theoretical and does not involve experiments. 

1.2.1 Research scope 
Three foci of the research objective are the properties particle-size agnostic, 
adaptable and engineering. To increase the applicability of the model it was chosen 
to develop a model that applies for sand and rock particles, hence the model should 
be particle-size agnostic. 

The author desires to promote the use and further work on the model. Therefore, 
modularity of the model will be enabled where possible. This property makes the 
model adaptable. 

In “Principles of Production Engineering Models”, Ramsdell et al. (2019) propose a 
framework of engineering model classifications. Engineering models must have 
three properties that are shown in Table 1.1 under “engineering”. Models that fit 
the three requirements are most likely analytical models. This research aims to 
make substantial use of equations derived “from the underlying physical science” 
as well as empirical observations. According to the proposed engineering model 
framework, this model will qualify as both fundamental and empirical. 

Table 1.1: Focus points within the research objective. 

Property Sub-property Property description 
Particle-size 
agnostic 

 Is applicable for the cutting of sand as well as rock 
particles. 

Adaptable  Is easily expandable for further improvements. 
“Engineering” 
 

“Tractable” “[is] Quick to set up and run.”  
Project-specific inputs should be easily changeable, and 
iterations should be fast enough to support decision 
making. 

 “Discernible” “[makes use] Of inputs that are likely to be known to the 
engineer.” 

 “Informative” “Provide outputs of direct interest to the engineer and 
that are valid across a wide range of typical cases.” 

The scope of the research is limited by looking solely at spillage generation during 
a single cutter head swing. Interactions between consecutive swings are not 
considered. The “tractability” of the model is maintained by designing the model 
such that it can be called upon as a function within other models that look at wider 
cutting patterns. 

The model can be made “discernible” by relying on well-known parameters such as 
mixture velocity, rotational velocity, bank height, step size and particle size 
distribution. A discernible and intuitive model is of paramount importance for its 
adoption.  

The “informative” property can be achieved by providing the spillage percentage as 
a direct output of the model. Ideally, the model enables an easy sensitivity analysis 
to dominant process parameters such as the mixture velocity and swing speed.  
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Furthermore, it is planned to design the model in an “informative” way by making 
it sufficiently generic to cutter sizes. When references to cutter scale are made a 
cutter head diameter of 3.11 meter is considered. 

Outside the scope 
A classification of spillage types will be performed, and their significance will be 
evaluated. It is expected that the model will exclude negligible spillage types. Along 
with this evaluation, the influence of non-characteristic variables such as the radius 
of the drive axis of the cutter will be excluded. More cutting variables will be 
assumed negligible as the model fully develops. 

1.2.2 Main research question 
The objective can be reformulated to the research question: 

What are physical parameters, model concepts and assumptions that give rise to 
an adaptable, particle size-agnostic engineering model for CSD spillage rates 
within 5 percentage point accuracy? 

1.2.3 Research sub-questions 
To support the research goal, a series of research questions is formulated.  

1. What is CSD spillage and what types of spillage can be identified? 

The first part of this question may appear trivial. In practice, a large variation 
of dredging terminology and spillage definitions can be observed. In addition, 
the aim of this question is to classify spillage types which are often conflated.   

2. What formulations are fundamental to the motion and behaviour of a fluid 
substance in the physical domain of the cutter head? 

This question’s goal is to provide insight into the origin of the fluid equations 
that form the fundamental fluid relationships that will be used in the model. 

3. In conjunction with the relevant physical parameters, what concepts and 
assumptions enable a CSD spillage engineering model? 

An ideal model would comprehend all fluid, sediment and cutter head 
properties and their respective interactions. This research question aims to 
present compelling arguments for the model concepts as well as some nuance 
for the assumptions that come with it. 

4. Based on the identified physical parameters, concepts and assumptions, 
how does the model perform relative to experimental data? 

Validation of the model proves difficult in an engineering field where data 
sharing is scarce.  Openly available experimental data will be used to calibrate 
the model and the results will be evaluated to help initiate further research. 
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1.3 Research hypothesis 

In the field of dredging, empirical models tend to predict spillage within 10 to 20 
percentage points accuracy. For an analytical model, the accuracy is estimated 
higher. 

A potential flow model with empirical closing relations that capture the 
dynamics of gravitational, centrifugal and suction forcing give rise to a spillage 
rate prediction within 5 percentage point accuracy. 

1.4 Thesis outline and reading guide 

The main concepts in this thesis report have been published over the course of 
writing it. The author of this report is first author of the following three co-
publications: 

1. Werkhoven, J. J., Nieuwboer, B.J., Louis, A.A., Ramsdell, R.C., and Miedema, 
S.A. “A pseudo-analytical model for CSD spillage due to rotational velocity-
induced flow,” Proceedings of the Western Dredging Association Dredging 
Summit & Expo ’18, Norfolk, VA, USA, June 25-28, 2018. 

2. Werkhoven, J. J., Nieuwboer, B.J., Louis, A.A., Ramsdell, R.C., and Miedema, 
S.A. (2019a) “Can a preliminary model describe CSD Spillage due to centrifugal 
advection?” Terra & Aqua, 153, pp 23-35 

3. Werkhoven, J. J., Nieuwboer, B.J., Ramsdell, R.C., and Miedema, S.A. (2019b) 
“CSD Spillage Model for Sand and Rock,” Proceedings of the Twenty-Second 
World Dredging Congress, WODCON XXII, Shanghai, China, April 22-25, 2019. 

Where the second publication is an adapted version of the first with permission of 
the copyright holder. This thesis draws significantly on texts and figures from these 
publications. Since multiple authors are involved in all papers, copied as well as 
adapted parts are referred to in a structural manner. 

Items of text highlighted with a dotted line on the right side are references to 
Werkhoven et al. (2018). This paper introduces a spillage model that works for sand 
and will be referred to as the Sand Cutting Spillage Model (SCSM). 

The paper by Werkhoven et al. (2019b) is referenced using a dashed line on the 
right side of the paragraph. This paper proposes a spillage model for sand and rock 
and will be referred to as the Sand-Rock Cutting Spillage Model (SRCSM). 

A glossary of terms and symbols used in this report is provided in the back. Figures 
that contain a visualization of the cutter head have an overview legend in the corner 
that shows how the viewing angle of the figure.   
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2 Cutter Suction Dredge spillage 
This chapter answers the question: 

What is CSD spillage and what types of spillage can be identified? 

The focus of this chapter is on industry observations rather than mathematical 
descriptions.  

2.1 Cutter Suction Dredge 

A CSD is equipped with a rotating cutter head that is mounted in front of a suction 
mouth. A hoistable ladder carries the installation and along with a set of swing 
winches, provides sufficient weight and force to laterally maneuver the rotating 
cutter head through the soil. Cutter suction dredges can typically reach depths of 
30 meter in a very precise pattern. This depth is considered relatively limited in 
comparison with Trailing Suction Hopper Dredges (TSHD). The maximum ladder 
angle is approximately 45 degrees. 

  
Figure 2.1: CSD with ladder deployed (left) and cutting terminology (right). 

Typically, the axi-symmetrical cutterhead of a CSD consists of 5 or 6 blades with a 
series of teeth that mechanically excavate and suspend bank sediment in order to 
be sucked up by the suction mouth (see Figure 2.1). The cutter head trails along an 
arc-shaped path centered on a carrier spud pole. The maximum rotation angle is 
usually 30 degrees from the centerline.  

2.1.1 Dig Swing and Back Swing 
The circular arc the cutter makes from either port-side to starboard-side or reverse 
is defined as a swing. When the swing velocity and the tangential velocity at the top 
of the cutter align, a scenario arises that is referred to as “over-cutting” (back 
swinging), while opposing vectors render an “under-cutting” (dig swinging) 
scenario. See Figure 2.2 for a visual representation of these scenarios. 
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Figure 2.2: Under-cutting and over-cutting (left) and typical CSD cutting pattern (right).  
Left image is taken from Joanknecht (1976). Right image is taken from Den Burger (2003). 

2.1.2 Cutter head terminology 
Upon entering the bank, an opening is created by the cutter head that is referred 
to as the breach. The penetration depth into the bank depends on the preferred 
step size and the height of the bank. Large step sizes are common for soft, small-
grained materials. Smaller step sizes are chosen when cutting rock to ensure the 
cutter has sufficient power to penetrate the material.  

 

 
Figure 2.3: Names of devices and elements for a cutter equipped to cut sand. 

An overview of CSD components is given in Table 2.1. The blades are mounted with 
adapters to enable easy replacement of teeth/pick-points that are worn out. In 
addition, adapters enable that the teeth or pick-points are always positioned 
correctly. The blades are thick to ensure high cutting forces. 

Table 2.1: Cutter Suction Dredge Terminology. 

Name Function 
Anchor Device that hooks into the bed for holding power to achieve cable tension 
Adapter Connection device for chisels/pick-points and the blades 
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Blade Core element of the cutter head (synonym: arm) 
Blade envelope Envelope of the blade rotation around the cutter axis 
BOS Bottom Of Suction: lowest point of the suction mouth 
Chisel Intermediate width steel cutting tool for sand (synonyms: knife, edge) 
Conical back plate Steel plate that directs flow towards the suction mouth 
Flared-point Tip of the flare 
Flared-point 
Envelope 

Envelope of the flared point of the blade rotation 

Hub Steel three threaded screw connection between the cutter head and shaft  
Ladder Construction upon which the cutter head is mounted 
Nose Name of the top of the cutter head 
Pick-point Short, strong cutting tool for rock 
Ring Steel ring for structural integrity 
Rope guard Drive axis protection (synonym: rubber bearing) 
Shaft Ladder element that transmits torque 
Skirts Optional steel plates welded onto the blades to extend the blades 
Spade Wide-bladed steel cutting tool that enables a continuous cutter envelope 
Spud (auxiliary) Spud that moves the spud carriage back to its start position 
Spud (carrier) Spud that serves as center of rotation during a swing 
Spud carriage Spud moving system at the stern of the cutter 
Suction mouth Cutout in the back plate that forms the entrance of the suction pipe 
Tooth Steel pick-point for the cutting of rock  
TOC Tip Of Cutter: Location of the lowest point of the cutter envelope 
Winch Mechanical device that connects the pulling cables from the vessel to the 

anchors, providing sufficient tension on the cables. 

2.2 Spillage and its implications 

Many different standards are used within the industry to describe spillage.  An 
intuitive measure of spillage is to compare the post-passage bed depth to the 
deepest bed depth during passage. In accordance with this characterization, 
spillage rates are found of around 25% for sand cutting projects. The cutting of 
gravel or rock-type projects is more difficult to predict. The reason being that with 
hard rock cutting, the dredge operator (see Figure 2.1) may prioritize wear 
prevention of the pick-points over spillage reduction in some situations. 

2.2.1 Spillage schools of thought 
Discussions about spillage are impeded because of different interpretations and 
therefore conflicting data. There are generally two schools of thought with regards 
to spillage. One assumes that only the remaining soil above the bottom of the 
suction mouth (BOS) amounts to spillage, making this a convenient metric for the 
operator. The other is to consider spillage as all of the remaining soil above the 
height of the tip of the cutter (TOC). Figure 2.4 (Left) illustrates these different ideas 
by means of the terms 𝑆௦௨௖ [-] and 𝑆௧௢௧ [-] respectively.  
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Figure 2.4: Common definitions for CSD cutting. 

2.2.2 Spillage in dredge contracts 
In Figure 2.4 (Left) the commonly used terms “Pay Face”, “Dig Face” and “Cut Face” 
are visualized. For a typical contract, the dredger is be paid to deepen a certain 
waterway or port. A minimal depth is often demanded and penalties for violating 
the contract are significant. For this reason, the dredger will decide to estimate a 
certain dig face that serves as a safety buffer to achieve the pay face. The dig face 
is estimated by the difference in cut face and predicted spillage. The cut face is 
defined as the vertical distance between the TOC and the top of the bank. The 
method to compensate for reduced depth due to spillage is often referred to as 
“overdepth cutting”. 

2.2.3 Economic implications of spillage 
Overdepth cutting has a number of consequences. In stiff or hard material, the CSD 
spends additional energy cutting more material than it excavates, leading to 
reduced efficiency and greater wear. In areas where the cut depth is restricted, 
spillage limits the borrow area yield or requires costly cleanup to leave grade. 

The reduction of spillage rates is not always a priority. For example, with land 
winning projects the final depth of the borrow area may not be critical. A larger 
spillage rate may be accepted in return for very high mixture volumes. 

In general, many CSDs are deployed to dredging projects where the limiting 
production factor is density. Dredging conditions where the pump limit is not 
exceeded is a priority for operators. A careful consideration must be made between 
spillage optimization and the pump’s sensitivity to changes in density. In an ideal 
project, spillage is minimized without changing pump configurations. 
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2.2.4 Environmental implications of spillage 
In the water column, plumes resulting from spillage may cause environmental loss 
as light reduction and sedimentation affect sensitive receptors (Becker et al., 2014; 
Nakai, 1978). Also, turbidity plumes can reduce oxygen levels and interfere with fish 
respiration and feeding. Furthermore, the release of adsorbed pesticides, 
herbicides, toxic metals and synthetic organic compounds may contaminate the 
water column (Nakai, 1978). Simultaneously, environmental gains are to be 
expected from the release of nutrients and the supply of fine sediments to silt rich 
habitats (Becker et al., 2014). 

2.3 Spillage definition 

In accordance with the informative property of an engineering model, it is chosen 
to define spillage as a relative quantity.  

2.3.1 Single swing VS cutting pattern 
An important differentiator in the determination of spillage is whether a cutting 
pattern is considered or a single swing only. Swing-swing interactions may be very 
complex and difficult to validate. For example, suspended sediment from a prior 
swing may have redeposited or still be in suspension. Consequently, flume 
concentration, dispersion and porosity of the bed is highly unpredictable. Such a 
bed is illustrated in Figure 2.4. The increased face due to a previous swing is called 
𝑆௣௥௘௩ [-]. Overcutting losses from increased bed are mostly not taken into account 
because only general spillage rates are considered. 

A second example of swing-swing interactions is double cutting, where a large face 
is cut in two-fold. Experimental data for spillage is not available for swing-swing 
interactions. Calibration of the model is therefore unrealistic. It is decided to define 
spillage for a single swing.  

2.3.2 Scientific definition 
In his PhD dissertation, Den Burger (2003) defines spillage broadly as “the soil that 
is cut during the dredging process, but is not sucked up by the suction pipe”. This 
research approaches defines spillage more precisely as  

“any soil that is dislodged above the lowest cutter tip trajectory of a single 
swing, but is not sucked into the suction pipe” 

In contrast to Den Burger’s definition, this includes any soil in the vicinity of the 
cutter and above the cutter profile, but not directly in contact with the cutting 
equipment. It will be shown that this broader definition includes spillage due to the 
geometry of the cutter.  

2.4 Spillage Types 

According to Den Burger, spillage can be attributed to the cutting process as well 
as the mixture forming process. Six types of spillage sources pertaining to CSD 
cutting are identified. A brief overview of the types of spillage is given in this 
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section. A detailed discussion of the types centrifugal advection, rapid redeposition, 
and buried cutting is described in later sections. 

2.4.1 Centrifugal Advection 
Centrifugal advection causes spillage due to high rotational velocity-induced 
advection in the cutter. High rotational velocity-induced spillage is a primary 
spillage source for CSD cutting. In its axial trajectory towards the suction mouth, 
entrained aggregates are accelerated by a centrifugal force induced by the 
rotational moment of the cutter, resulting in centrifugal advection along the cutter 
contour. Centrifugal advection leads to a plume in the water column before 
sediment redeposits into the bed. This type of spillage is most pronounced with 
small grain sizes, high rotation velocities and low mixture velocities. Figure 2.5 
schematically depicts the trajectory of a single particle for the over- (left) and 
under-cut (right) scenario. Although not identical, centrifugal advection spillage of 
similar magnitude is observed for each flow pattern (den Burger, 2003). This type 
of spillage 𝑆ଵ [-] is considered most significant in this research. 

Figure 2.5: Centrifugal advection-induced spillage for over-cutting (left) and under-cutting (right). 
Particle trajectories are taken from experiments by Den Burger (2003). Trajectories relevant to high rotational velocities are 
denoted with numbers 1,2,3,5,6. A fourth trajectory was neglected at higher velocities.  

2.4.2 Rapid Redeposition 
The suspension acceleration resulting from mechanical excavation of the blades 
may be offset by the influence of gravity. Therefore, solids that are suspended from 
the bank may rapidly redeposit. Spillage from rapid redeposition 𝑆ଶ [-] is highly 
dependent on particle size and rotational velocity. This can be explained by the 
higher inertia of larger particles that are more difficult to suspend. Furthermore, 
rapid redeposition mostly occurs with cohesive soils such as clay and rock 
(Vlasblom, 2003). In practice, when cutting rock in the under-cut mode, the 
production is “about two to three times higher than in over-cut mode” (Den Burger, 
2003). 

Industry observations indicate a significantly lower production rate for over-cutting 
scenarios. In over-cutting, the tangential velocities of the front and top blades 
coincide with the gravity vector and swing velocity respectively. Dislodged 
sediment will therefore accelerate downwards and through the suction zone of 
influence to redeposit immediately (see Figure 2.6, left). In under-cut mode, the 
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opposing rotational and gravitational force vectors result in a particle trajectory 
characterized by relatively high suspension rates and improved mixing in the cutter 
as depicted in Figure 2.6 (right). Sediment passes through the suction zone of 
influence with lower velocity.  

 
Figure 2.6: Rapid redeposition-induced spillage for over-cutting (left) and under-cutting (right). 

2.4.1 Buried Cutting 
When dredging a bank height that exceeds the effective height of the cutter head, 
the undermined soil will fail and rest onto the cutter head. Generally, this soil 
volume will be entrained into the cutter head, thereby increasing production. 
However, the cutter head might reach saturation, upon which remaining particles 
will move past the cutter head and fall behind the cutter head as illustrated in 
Figure 2.7 (left). Spillage due to buried cutting 𝑆ଷ [-] is generally determined by the 
height of the bank and the swing speed.  

 
Figure 2.7: Spillage due to buried cutting (left) and spillage due to violent cutting (right) for an under-cutting. 

Ploughing 
A second effect that relates to the saturation of the cutter head is ploughing. When 
the swing velocity relative to the cutter rotation is too high, uncut material may be 
diverted collinearly with the cutter axis past the cutter ring. This material will not 
enter the cutter head and is considered spillage. 
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2.4.2 Violent Cutting  
Violent cutting 𝑆ସ is a CSD aspect that pertains to particle suspension and 
subsequent transportation to an area beyond the reach of the CSD head. As the 
blades and teeth (or chisels for sand cutting) of the cutter head penetrate the bank, 
soil disintegrates in front of the cutter and some particles will be lifted due to the 
rotational motion of the cutter head as depicted in Figure 2.7 (right). Moreover, a 
high swing velocity can cause a bull-dozing effect on the bank which lifts and 
suspends particles. Particles that redeposit in front of the cutter may be 
encountered by the cutter head again. Particles that settle behind the cutter 
contribute to spillage. This type of spillage is most visible when digging rock and 
cemented material. 

Breaching 
When the cutter head breaches the bank, the slope angle of the breach may be 
larger than the internal friction angle of the bank material. With the absence of 
capillary forces below the water line, the steep slope will cause bank instability for 
granular materials. Van Rhee et al. (1998) describes that the bank wall following a 
dredger passage can be temporarily steep for sand due to dilatancy-induced plastic 
deformation of the breach. Shear deformation increases the pore volume of sand 
and an increased dilatancy causes an under-pressure in the pores resulting in an 
inflow of water. This process temporarily increases the effective pressure on the 
bank, yielding a temporarily stable bank slope. The slope will collapse when the 
maximum possible dilatancy is reached.  

 
Figure 2.8: Spillage due to bank instability (left) and spillage due to cutter geometry (right). 

Figure 2.8 (left) depicts a situation in which the bank wall has collapsed after the 
cutter passes. It can be seen that the newly created slope extends towards the area 
that has already been dredged. Hence, this soil remains on the seabed and is 
considered spillage. Spillage due to bank instability 𝑆ହ [-] is mostly dependent on 
the porosity, particle size and the swing speed. 

Since breaching mostly occurs between swings, at the starting point of the cutting 
pattern breaching effects are neglected for this research. 
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Unstable Breaching 
When the slope angle below a temporary stable wall is smaller than the existing 
slope angle, the breaching process is considered unstable (van Rhee et al., 1998). 
According to Van Rhee (2018), unstable breaching may occur at stationary bulk 
dredging operations with large face where spillage is less relevant. 

2.4.3 Cutter Geometry 
Inherent to the geometry of the cutter head, a relatively small spillage source 𝑆଺ [-
] can be observed. As the cutter travels forward in discrete step sizes, a portion of 
the soil above the lower cutter tip depth is undisturbed (see Figure 2.8, right). Based 
on tradeoffs between the magnitude of inertia and the irregularity of cut areas, 
cutter geometry has evolved from cylindrically-shaped heads to parabolically-
shaped heads (Vlasblom et al., 2006). In lateral direction, spillage due to the cutter 
geometry exists but is considered negligible. Appendix I illustrates why this is a 
reasonable assumption. 

Cutter height 
The cutter height is highly influential with regards to spillage rates. Taller heads are 
less productive due to the distance of the suction mouth to the breach (Slotta, 
1984). 

Suction mouth 
Industry observations indicate that the spillage also results from the shape and 
rotation of the suction mouth. The entrance of the suction pipe can be rotated 
backwards or forwards to more directly entrain the mixture flow. Improvement of 
the geometry is very much an iterative process due to the interaction of cutter 
components. 

Skirts 
For sand cutting projects, dredgers may make use of skirts. Skirts are steel plates 
welded to the trailing edge of the blades in the vicinity of the cutter mouth. This 
decreases the probability of particles leaving the cutter head. 

2.4.4 Other factors (single swing) 
Operations in ports, canals, rivers and offshore locations make the CSD subject to a 
variety of environmental conditions. Translational and rotational vessel 
movements such as surge, heave and pitch result in unexpected cutter head 
movements. Furthermore, soil type estimations and bathymetry measurements are 
complex and prone to errors. The effect of vessel movement and erroneous 
estimations are inherently difficult to measure directly and can magnify other 
spillage sources. For this reason, other factors for a single swing are neglected in 
this research. 

2.4.5 Other factors (Swing-swing) 
Spillage from one swing may be cut in a consecutive swing. When the spillage of a 
consecutive swing is increased because of its previous swing. this process may be 
called recycling. The consequences of swing-swing spillage interactions are non-



28 
 

linear and can be computed when spillage models for individual swings are of 
sufficient quality.  

2.5 Spillage diagram 

The spillage sources identified in this research can be partitioned in single swing 
and swing-swing types as presented in Figure 2.9. The spillage types can be 
differentiated with respect to the ratio of forces that govern a particle motion inside 
the cutter head. The relevant forces are the gravitational acceleration 𝐹௚, the 
centrifugal force 𝐹௖௙ and the suction force 𝐹௦. Pumping dynamics are governed by 
the ratio 𝐹௖௙/𝐹௦ and is relevant to the centrifugal advection as well as the remaining 
single-swing spillage types. Gravitating effects are governed by 𝐹௚/𝐹௦ and is relevant 
for rapid redeposition. The ratio 𝐹௖௙/𝐹௚  is relevant for mixing effects inside the 
cutter, which are not seldomly also referred toas “cutting effects”. Section 4 further 
discusses these force ratios. 

 

 
Figure 2.9: Spillage type diagram. 

The two considered spillage types in this research are centrifugal advection and 
rapid redeposition. 

2.6 Empirical models for total spillage 

As of yet, no analytical model exists in literature that can provide an estimate of 
spillage rates given a set of cutting parameters. Industry practices commonly 
estimate spillage by linearly scaling the total amount of fines subject to 
dislodgement by an empirically-derived coefficient as evidenced by equation (1) 
(Becker et al. 2014). This expression presumes that a certain fraction of fines is 
representative or in its entirety responsible for spillage due to centrifugal 
advection.  

𝑚௘௤ = Ξ௘௤𝜌ௗ௥𝑉෠௖𝑓ழ଺ଷఓ௠ (1)

Where 𝑚௘௤ is the total cutter head related mass of fines (dry solids) brought into 
suspension [kg], Ξ௘௤ is an empirical source term fraction associated with cutter 
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head spillage [-], 𝜌ௗ௥ is the dry solids density [kg/m3], 𝑉෠௦௜௧௨ is the in situ dredge 
volume [m3] and 𝑓ழ଺ଷ  is the fraction of fines smaller than 63 μm [-]. The fraction 
of fines during the dredge operation may increase due to degradation (Ngan-Tillard 
et al, 2009). Empirical source term fractions are typically proprietary data. 

2.6.1 Regression Analyses  
Joanknecht (1976) found empirical relations for dimensionless similitude criteria 
obtained from experimental data for a cylindrical cutter head. It was observed that 
Froude scaling complemented with the ratio of the terminal settling velocity and 
the mixture velocity resulted in appropriate scaling. The experiments indicated that 
over-cutting spillage was positively correlated with the ratio of the swing velocity 
𝑣௦ and the tangential velocity, whereas under-cutting spillage remained insensitive 
to this ratio. 

Slotta (1978) utilized the Buckingham Π theorem to find empirical relations with 
the Euler, Reynolds and Froude numbers as well as a diameter ratio and a ratio of 
the rotational velocity and the mixture velocity. Experimental data indicated that 
Reynolds scaling should be applied for the suction inlet. 

Hayes (1986) performed a linear regression study for dimensionless variable groups 
obtained from observed suspended sediment concentrations resulting from CSD 
operations at Calumet harbour (Hayes et al. 1988). Collins (1995) expanded this 
dataset with three field operations and two experimental studies and performed a 
similar linear regression. The improved empirical model could, however, “not 
explain suspended sediment variations very well” (Hayes et al., 2000). Earlier 
research by Andrassy et al. (1988) in which CSD operation parameters were used in 
a correlation study for a similar dataset, was unable to identify statistically 
significant relationships. 

Hayes et al. (2000) performed a dimensional criteria study to support a 
dimensionless regression analysis based on the Buckingham Π theorem to find 
spillage correlations. The “106 observation data set used in this study represents a 
too limited range of operating parameters to generate a model applicable to a 
wider variety of conditions”, however, reasonable accuracy was obtained for 
spillage data. Additional validation is needed to substantiate the model. 

2.7 Conclusion 

What is CSD spillage and what types of spillage can be identified? 

In this research, CSD spillage is defined as “any soil that is dislodged above the 
lowest cutter tip trajectory of a single swing, but is not sucked into the suction 
pipe”. A classification of spillage based on pumping, mixing and gravitating effects 
results in six distinct spillage types. It is reasoned that four types can be considered 
negligible under typical cutting circumstances. The first significant type is named 
centrifugal advection and is defined as the radial outflow of suspended particles in 
close proximity to the cutter ring and is driven by high rotational velocity of the 
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cutter. Centrifugal advection affects spillage rates for all particle sizes but is most 
pronounced for fine particles such as sand. The second, concurrent spillage type is 
referred to as rapid redeposition and is governed by the ratio of the particle settling 
velocity over the mixture velocity. 
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3 Fundamental physics 
This chapter focuses on the physics that govern cutter head flows and aims to 
answer the question: 

What formulations are fundamental to the motion and behaviour of a fluid 
substance in the physical domain of the cutter head? 

First, cutter flow observations are presented based on a literature review. Second, 
the governing forces inside the cutter are identified. Motivation is given for the use 
of a cylindrical coordinate system of Navier-Stokes equations for the considered 
cutter head.  

In search of an expression for flow inside the cutter, a series of assumptions is 
provided that reduce the Navier-Stokes equations to Euler’s Equations. These can 
be further simplified to find Euler’s pump equation for centrifugal pumps. It is 
demonstrated that Bernoulli’s principle can be used to establish Euler’s pump 
equation. An overview of derivation steps is given in Figure 3.1. A full derivation is 
provided in Appendix C.  

 
 Figure 3.1: Derivation steps for Euler’s pump equation. 

3.1 Cutter flow characterization 

In the 1970s, a joint research effort from a group of Dutch contractors united under 
the name Combinatie Speurwerk Baggertechniek (CSB), Ministerial Agency of Public 
Works Rijkswaterstaat and research institute WL|Delft Hydraulics conducted a 
series of experiments to gain a better understanding of the internal flows in and 
around the cutter. The conducted experiments considered only water. 

As summarized by Den Burger (2003), the experimental results indicate that the 
cutter head resembles a combination of an axial pump as well as a centrifugal 
pump.   
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This dual phenomenon of an axial and a centrifugal pump effect was first noticed 
by Miltenburg (1983). Figure 3.2 displays the observations from these sources. 

 

 Figure 3.2: Centrifugal pump effect characterization by Miltenburg (1983, left) and Den Burger 
(2003, right).  
Figures are adapted. 

A numerical model based on Unsteady Reynolds Averaged Navier Stokes equations 
by Nieuwboer et al. (2017) indicates that “water movement caused by the passing 
of the blades does accelerate the particles outward” with spillage as a 
consequence. 

The mixture velocity was varied in the experiments at WL|Delft Hydraulics. 
Depending on the mixture velocity, a transition value was observed for the 
rotational velocity. The data showed that there is an inward flow along the entire 
contour of the cutter head for rotational velocities below the transition value.  

However, above this threshold an outwards flow near the back plate was observed 
that increased with rotational velocity. This outward flow contains suspended 
particles which may not re-enter the cutter head. Figure 3.2 (right) schematically 
depicts the flow that is generated by these pump effects as well as the location 
along the contour line of the cutter head where inflow reverses to outflow. 

Particle trajectories in the under-cut and over-cut situation appeared very different. 
However, for both situations they appeared insensitive to variations of the 
rotational velocity and mixture velocity. Also, the ratio of the transition value for 
the rotational velocity and the mixture velocity appeared relatively constant and 
identical for the under-cut and over-cut situation. For a 0.6 [m] cutter head this 
ratio was approximately 0.42 [-], hence 

𝜔

𝑣௠

≈
𝑣௥௔௧௜௢

𝑅௥௜௡௚

=
0.42

0.6
= 0.7 (2) 

Den Burger describes that the rotational velocity and mixture velocity do influence 
the magnitude of the velocities in both situations as was found by Moret (1977a). 
The outflow is also confirmed by Steinbusch (1999). Further literature observations 
are given in Appendix G.  

Axial 

Centrifugal 
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3.2 Governing forces 

The effects described in section 3.1 suggest that particle trajectories in a CSD are 
governed by the centrifugal force 𝐹௖௙ in the cutter [N], the gravitational force 𝐹௚ [N] 
and the product of the particle volume and radial pressure gradient in the suction 
mouth 𝐹௦ [N]. The ratios between these terms provide convenient indicators for the 
governing motion of a fluid substance inside the cutter head.  

3.2.1 Inertial force vs gravitational force 
A typical ratio for the cutting-related forces can be found by dividing the centrifugal 
force over the gravitational force as demonstrated in equation (3).  

𝐹௖௙

𝐹௚

∝
𝑚௣𝑅௥௜௡௚𝜔ଶ

൫𝜌௤ − 𝜌௪൯𝑉௣𝑔
=

𝜌௤

൫𝜌௤ − 𝜌௪൯

𝑅௥௜௡௚𝜔ଶ

𝑔
 (3) 

Where 𝑚௣ is the particle mass [kg], 𝑉௣ is the particle volume [m3] and 𝑔 the 
gravitational acceleration [m/s2]. This ratio is representative of the degree of mixing 
of in situ dredge material inside the cutter. When particles are not mixed into the 
cutter head, they will not be entrained in the axial flow towards the suction mouth. 
A lack of mixing directly contributes to spillage. The ratio between the inertial and 
gravitational force is significantly different for the under-cut and over-cut mode. 

3.2.2 Inertial force vs suction force 
Of equal interest is the ratio of centrifugal force and suction force. The suction force 
is proportional to the product of the pressure gradient and the volume of the 
particle, i.e. the volume-pressure gradient product. The ratio is presented in 
equation (4). 

𝐹௖௙

𝐹௦

∝
𝜌௤

𝜌௪

ቆ
𝜔𝑅௥௜௡௚

ଷ

𝑣௠𝑅௣௜௣௘
ଶ ቇ

ଶ

 (4) 

Where 𝜌௤ is the particle density [kg/m3], 𝜌௪ is the water density [kg/m3], 𝑅௥௜௡௚ 
and 𝑅௣௜௣௘ are the cutter ring and pipe radii [m] and 𝑣௠ is the mixture velocity [m/s]. 
This ratio is a governing metric for the process that takes place near the suction 
mouth. A high ratio indicates a small influence from the suction mouth. Den burger 
(2003) noted that “there is a distinct relationship between the productivity of the 
cutter head and the ratio of the suction flow and the rotational velocity of the cutter 
head”. This ratio is expected to be governing for centrifugal advection.  

3.2.3 Gravitational force vs suction force 
The gravitational force can be divided over the volume-pressure gradient product 
as demonstrated in equation (5).  

𝐹௚

𝐹௦

∝
𝜌௪

൫𝜌௤ − 𝜌௪൯

𝑣௠𝑅௣௜௣௘
ଶ

𝑉෠௣𝑔
 (5) 

This ratio provides insights into the dynamics of rapid redeposition. If the 
gravitational force is stronger in comparison to the suction force then the influence 
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of the suction mouth is insignificant and particles will redeposit onto the bank. 
Coarser material such as rock is more subject to gravitational acceleration since it 
has a higher terminal settling velocity. 

3.3 Cylindrical coordinate system 

In the scope of this research (Section 1.2.1) it was determined that an analytical 
model is desired. Analytical models highly benefit from a coordinate system that is 
in accordance with the physical domain. The hemiellipsoidal shape of the cutter 
head prescribes a cylindrical coordinate system. Cylindrical coordinates have the 
advantage of symmetry, which will later prove useful to eliminate a velocity 
component in the Navier-Stokes equations. 

The velocity of a fluid is then given by its radial distance, azimuthal angle and axial 
distance, as shown in equation (6). 

𝒗(𝑟, 𝜃, 𝑧, 𝑡) = 𝑣௥(𝑟, 𝜃, 𝑧, 𝑡)𝒆௥ + 𝑣ఏ(𝑟, 𝜃, 𝑧, 𝑡)𝒆ఏ + 𝑣௭(𝑟, 𝜃, 𝑧, 𝑡)𝒆௭ (6)

Where  {𝐞୰, 𝐞஘, 𝐞୸} is a triad of unit vectors. These velocities will prove to be helpful 
in the derivation of the continuity equation. 

3.4 Derivation of Navier-Stokes equations 

The movement of fluid in the physical domain of the cutter head is driven by 
velocity, pressure, density, viscosity and to a lesser extent, temperature. The 
dynamics between these properties are based on the principles of conservation of 
energy, mass and momentum.  

3.4.1 Conservation of energy 
Since the cutter flows consist of water and suspension flows, it can be assumed that 
the fluids are incompressible. Incompressible flows are energy conserving. 

3.4.2 Conservation of mass: continuity equation 
Conservation of mass is governed by the continuity equation. Let us consider an 
infinitesimally small control volume as visualized in Figure 3.3 (left). 
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Figure 3.3: Continuity (left) and stress balance (right) for an infinitesimally small control volume. 

It can be assumed that the cutter head is in steady state, hence all temporal terms 
in the derivation can be set to zero. It can be demonstrated that the continuity 
equation then reduces to equation (7). 

1

𝑟

𝜕(𝑟𝑣௥)

𝜕𝑟
+

1

𝑟

𝜕𝑣ఏ

𝜕𝜃
+

𝜕𝑣௭

𝜕𝑧
= 0 (7) 

3.4.3 Conservation of momentum: Cauchy 
The total force per infinitesimally small element within the cutter equal to the sum 
of molecular forces and body forces. The continuity equation holds within the 
cutter and the velocity order of the magnitudes suggests non-relativistic 
momentum transport. The Cauchy momentum equation can therefore be written 
as presented in equation (8). 

𝜌
𝐷𝒗

𝐷𝑡
= 𝛻 ⋅ 𝝈 + 𝜌 ⋅ 𝒈 (8) 

Where gravity is the only body force considered. Again, the time-rated change in 
velocity is zero which sets the time-rated changes of the unit vector according to 
equation (9). 

𝜕𝒗

𝜕𝑡
=

𝜕𝑣௥

𝜕𝑡
𝒆௥ +

𝜕𝑣ఏ

𝜕𝑡
𝒆ఏ +

𝜕𝑣௭

𝜕𝑡
𝒆௭ (9) 

Material derivative of velocity 
It can be demonstrated that the material derivative from equation (8) reduces to 

𝐷𝒗

𝐷𝑡
= ቈ

𝜕𝑣௥

𝜕𝑡
+ 𝑣௥

𝜕𝑣௥

𝜕𝑟
+

𝑣ఏ

𝑟

𝜕𝑣௥

𝜕𝜃
−

𝑣ఏ
ଶ

𝑟
+ 𝑣௭

𝜕𝑣௥

𝜕𝑧
቉ 𝒆𝒓

+ ൤
𝜕𝑣ఏ

𝜕𝑡
+ 𝑣௥

𝜕𝑣ఏ

𝜕𝑟
+

𝑣ఏ

𝑟

𝜕𝑣ఏ

𝜕𝜃
+

𝑣ఏ𝑣௥

𝑟
+ 𝑣௭

𝜕𝑣ఏ

𝜕𝑧
൨ 𝒆ఏ

+ ൤
𝜕𝑣௭

𝜕𝑡
+ 𝑣௥

𝜕𝑣௭

𝜕𝑟
+

𝑣ఏ

𝑟

𝜕𝑣௭

𝜕𝜃
+ 𝑣௭

𝜕𝑣௭

𝜕𝑧
൨ 𝒆௭

 (10) 
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Stress tensor 
Figure 3.3 displays the stresses present on an infinitesimally small control volume. 
By summing the radial, azimuthal and axial stresses it can be shown that the stress 
divergence term from equation (11) arises. 

𝛻 ⋅ 𝝈 = ൤
𝜎௥௥

𝑟
+

𝜕𝜎௥௥

𝜕𝑟
+

1

𝑟

𝜕𝜎௥ఏ

𝜕𝜃
+

𝜕𝜎௥௭

𝜕𝑧
− 𝜎ఏఏ𝑟൨ 𝒆𝒓

+ ൤
2𝜎௥ఏ

𝑟
+

𝜎௥ఏ

𝜕𝑟
+

1

𝑟

𝜕𝜎ఏఏ

𝜕𝜃
+

𝜕𝜎ఏ௭

𝜕𝑧
൨ 𝒆ఏ

+ ൤
𝜎௥௭

𝑟
+

𝜕𝜎௥௭

𝜕𝑟
+

1

𝑟

𝜕𝜎ఏ௭

𝜕𝜃
+

𝜕𝜎௭௭

𝜕𝑧
൨ 𝒆௭

 (11) 

The stress effect on the control volume is represented by the sum of the isotropic 
and anisotropic part of the stress tensor, i.e. 

𝝈 = −𝑝𝑰 + 𝝉 (12) 

The viscous forces are captured by the anisotropic stress tensor (∇ ⋅ 𝛔) while the 
pressure gradient makes up the isotropic stress tensor (∇𝑝). Since the fluid is 
considered incompressible, the only viscous forces are shear. A series of operations 
including equation (13) can be performed to find stresses required to solve 
equation (11). 

𝝉 = 𝜇(𝛻𝒗 + 𝛻𝒗்) (13) 

where 𝜇 is the viscosity [Pa∙s]. In the radial direction, the result is given in equation 
(14) 

−
𝜕𝑝

𝜕𝑟
+ 𝜇 ቈ−

𝑢௥

𝑟ଶ
+

𝜕

𝜕𝑟
ቆ

1

𝑟

𝜕(𝑟𝑣௥)

𝜕𝑟
+

1

𝑟

𝜕𝑢ఏ

𝜕𝜃
+

𝜕𝑣௭

𝜕𝑧
ቇ

+
1

𝑟

𝜕

𝜕𝑟
൬𝑟

𝜕𝑣௥

𝜕𝑟
൰ +

1

𝑟ଶ

𝜕ଶ𝑣௥

𝜕𝜃ଶ
 +

𝜕ଶ𝑣௥

𝜕𝑧ଶ
−

2

𝑟ଶ

𝜕𝑣ఏ

𝜕𝜃
቉

 (14) 

As demonstrated in equation (7) of the continuity equation derivation, the terms 
between the first parentheses, the radial derivative, is equal to zero.  

Gravitational acceleration 
Suppose a unit mass is inclined under an angle 𝜆 [rad] with respect to a reference 
frame aligned with the seabed as depicted in Figure 3.4. 
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Figure 3.4: Gravitational acceleration in a cylindrical coordinate system. 

The gravitational accelerations in the 𝑟-, 𝜃- and 𝑧-direction can then be found 
according to the formulations given in equation (15). 

𝑔௥ = 𝑔 𝑐𝑜𝑠 𝜃 𝑐𝑜𝑠 𝜆
𝑔ఏ = 𝑔 𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 𝜆
𝑔௭ = 𝑔 𝑠𝑖𝑛 𝜆

 (15) 

The Navier-Stokes (NS) equation in the radial direction can be obtained from the 
Cauchy Momentum equation (8) by substitution of equations found for the 
velocities (10), the stress tensor (14 and the gravitational acceleration (15). 

𝜌 ቎
𝜕𝑣௥

𝜕𝑡ต
௩௔௥௜௔௧௜௢௡

+ 𝑣௥

𝜕𝑣௥

𝜕𝑟
+

𝑣ఏ

𝑟

𝜕𝑣௥

𝜕𝜃
−

𝑣ఏ
ଶ

𝑟
+ 𝑣௭

𝜕𝑣௥

𝜕𝑧ᇣᇧᇧᇧᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇧᇧᇧᇥ
௖௢௡௩௘௖௧௜௢௡

቏

= −
𝜕𝑝

𝜕𝑟ด
௣௥௘௦௦௨௥௘

௚௔௜௡

+ 𝜇 ቈ−
𝑢௥

𝑟ଶ
+

1

𝑟

𝜕

𝜕𝑟
൬𝑟

𝜕𝑣௥

𝜕𝑟
൰  +

1

𝑟ଶ

𝜕ଶ𝑣௥

𝜕𝜃ଶ
+

𝜕ଶ𝑣௥

𝜕𝑧ଶ
−

2

𝑟ଶ

𝜕𝑣ఏ

𝜕𝜃
቉

ᇣᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇧᇥ
+ 𝜌𝑔௥ต

௘௫௧௘௥௡௔௟
௦௢௨௥௖௘

ௗ௜௙௙௨௦௜௢௡

 (16) 

The NS components of the azimuthal and axial direction are presented in Appendix 
C. 

3.5 Viscosity, density, inertia 

The three-dimensional nature and complex geometry of the cutter head, combined 
with the difficulty of accurately quantifying spillage types, encumber CSD spillage 
modeling and validation. Additionally, observations from experiments and 
empirical models are subject to scaling difficulties. In order to assess the influence 
of viscosity, density and inertia in the cutter head, A few dimensionless numbers 
are evaluated, namely 
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𝑅𝑒𝑦𝑛𝑜𝑙𝑑𝑠 𝑛𝑢𝑚𝑏𝑒𝑟 =
𝑖𝑛𝑒𝑟𝑡𝑖𝑎

𝑣𝑖𝑠𝑐𝑜𝑢𝑠 𝑓𝑜𝑟𝑐𝑒

𝐸𝑢𝑙𝑒𝑟 𝑛𝑢𝑚𝑏𝑒𝑟 =
𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒

𝑖𝑛𝑡𝑒𝑟𝑡𝑖𝑎

𝑆𝑡𝑟𝑜𝑢ℎ𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 =
𝑙𝑜𝑐𝑎𝑙 𝑎𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛

𝑐𝑜𝑛𝑣𝑒𝑐𝑡𝑖𝑣𝑒 𝑎𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛

𝐹𝑟𝑜𝑢𝑑𝑒 𝑛𝑢𝑚𝑏𝑒𝑟ଶᇣᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇥ
ௗ௘௡௦௜௠௘௧௥௜௖

=
𝑖𝑛𝑒𝑟𝑡𝑖𝑎

𝑔𝑟𝑎𝑣𝑖𝑡𝑦

 (17) 

The general relevance of these numbers for the proposed model can be derived 
from the NS equations, which can be generalized from equation (14) and further 
derivations in Appendix C.7, to the form 

𝜌
𝜕𝒗

𝜕𝑡
+ 𝜌𝒗 ⋅ 𝛻𝒗

ᇣᇧᇧᇧᇤᇧᇧᇧᇥ
௔௖௖௘௟௘௥௔௧௜௢௡

= − 𝛻𝑝ด
௣௥௘௦௦௨௥௘
௚௥௔ௗ௜௘௡௧

+ 𝜇𝛻ଶ𝒗ᇣᇤᇥ
௦௛௘௔௥

௦௧௥௘௦௦௘௦

+ 𝜌𝒈ด
௚௥௔௩௜௧௔௧௜௢௡௔௟
௔௖௖௘௟௘௥௔௧௜௢௡

 (18) 

To derive the dimensionless numbers, it is sought to make the NS equations 
dimensionless. As a first step, it is realized that the fluid density in the cutter 
comprises a hydrostatic and a hydrodynamic part (ρ = 𝜌଴ + Δ𝜌). For the pressure 
gradient, the NS equations can be made more insightful by considering only the 
dynamic pressure (𝑝ௗ௬௡ = 𝑝 − 𝑝௦). The generalized NS can be rewritten and 
divided by 𝜌଴ to find 

൬1 +
𝛥𝜌

𝜌଴

൰ ൬
𝜕𝒗

𝜕𝑡
+ 𝒗 ⋅ 𝛻𝒗൰ = −

1

𝜌଴

𝛻𝑝ௗ +
𝜇

𝜌଴

𝛻ଶ𝒗 + ൬1 +
𝛥𝜌

𝜌଴

൰ 𝒈 (19) 

The relative importance of the dimensionless coefficients can be found by 
normalizing equation (19) to relevant scales. To this end, the following definitions 
are introduced 

𝒗ᇱ =
𝒗

𝑉

𝑡ᇱ =
𝑡

𝑇

𝒍′ =
𝒍

𝐿

𝑝ௗ௬௡
ᇱ =

𝑝ௗ௬௡

𝑃෠ௗ௬௡

𝒈ᇱ =
𝒈

𝐺

 (20) 

Where the pressure scale 𝑃෠ௗ௬௡ is yet to be estimated. The normalized NS equations 
are 

൬1 +
𝛥𝜌

𝜌଴

൰ ൬
𝐿

𝑇𝑉

𝜕𝒗

𝜕𝑡
+ 𝒗′ ⋅ 𝛻𝒗′൰ = −

𝑃ௗ

𝑉ଶ

1

𝜌଴

𝛻′𝑝ௗ ′ +
1

𝑉𝐿
𝜇𝛻ଶ𝒗′ +

𝑔𝐿

𝑉ଶ

𝛥𝜌

𝜌଴

𝒈′ (21) 

In which the following dimensionless numbers can be identified 
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𝑅𝑒 =
𝐿𝑉

𝑣

𝐸𝑢 =
𝑃ௗ

𝜌଴𝑉ଶ

𝑆𝑡 =
𝐿

𝑇𝑉

𝐹𝑟ଶ =
𝜌଴𝑉ଶ

𝛥𝜌𝑔𝐿

 (22) 

3.5.1 Reynolds number 
The flow regime is determined by the Reynolds number. As mentioned in the 
research scope (section 1.2.1), a cutter head of 3.12 [m] is chosen as a characteristic 
length scale. Furthermore, a very common 30 revolutions per minute [rpm] for the 
cutter and a suction flow of 6 [m/s] are considered. The Reynolds number can be 
found as 

𝑅𝑒 = 0.7 ⋅ 10଻ ≈ 1 ⋅ 10଻ (23) 

The Reynolds number is large enough to conclude that viscosity can be neglected. 

3.5.2 Euler number 
The Euler number provides a ratio between the pressure and inertia forces. An 
indication of the dynamic pressure Pୢ is found in Bernoulli’s principle (see Appendix 
A). 

𝑃ௗ ∝
1

2
𝜌𝑉ଶ (24) 

From equation (22) the Euler number can thus be obtained 

𝐸𝑢 =
𝑃ௗ

𝜌଴𝑉ଶ
=

1

2

𝜌

𝜌଴

≈ 1 (25) 

It can be concluded that an Euler number corresponding to approximately 1 
represents a cutter head with frictionless flow. 

3.5.3 Strouhal number 
The Strouhal number for the acceleration ratio is used to assess whether viscosity 
dominates the cutter flow. A case is considered for laminar flow and for flow with 
high rotational velocity. 

Laminar flow 
Again, an estimate of the time-scale T is to be made. The cutter head volume is 
approximated by taking half of a sphere volume and then scaling the volume with 
a common cutter height 𝑏 of 2.50 [m]. The volume is then found as 

𝑉𝑜𝑙𝑢𝑚𝑒 =
2.5

𝐿
⋅

1

2
⋅

1

6
𝜋𝐷ଷ ≈ 6.4 (26) 

Again, the characteristic length scale is the diameter of the cutter head of 3.12 [m]. 
Next, the flow through the cutter head needs to be estimated. For this estimation 
the volumetric flow rate 𝑄௔೘

 [m3/s] through the cutter head can be used. A 
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common value of 4 cubic meters per second is chosen. The time-scale is then 
approximated by the retention time in the cutter, i.e. 

𝑇 =
𝑉

𝑄௔೘

=
6.4

4
= 1.6 (27) 

This time-scale from equation (27), the diameter length scale and a velocity scale 
of 𝑉 = 𝜔𝐷/2 = 4.9 [m/s] is substituted in equation (22) to find 

𝑆𝑡 =
𝐿

𝑇𝑉
=

3.12

1.6 ⋅ 4.9
= 0.4 ≈ 0.1 (28) 

High rotational velocity 
A high rotational velocity is considered of 40 [rpm]. For this velocity, a more 
appropriate time-scale is estimated by Den Burger (2003). It is proposed that a six-
bladed cutter head has a cycle time of 0.25 [s]. The Strouhal number then becomes 

𝑆𝑡 =
𝐿

𝑇𝑉
=

3.12

0.25 ⋅ 4.9
= 2.54 ≈ 3 (29) 

This order of magnitude suggests that for higher rotational velocities the Strouhal 
number is more significant and that viscosity would have to be included. 

3.5.4 Froude number (densimetric) 
The Froude number is indicative of the influence of density differences in the cutter 
head. With rapid redeposition present in the cutter head, the density differences 
between the top and bottom of the cutter head can be high and lead to density 
currents. 

Equation (22) requires an estimation of the fluid density with suspended material. 
A dredge pump transports a typical density of 1200 [kg/m3]. The hydrodynamic 
density in the cutter is found through subtraction of the static density (Δρ = ρ −

𝜌଴ = 1200 − 1000 = 200 [kg/m3]. Secondly, an approximation should be made 
for the characteristic length scale. It is assumed that half the cutter is penetrated 
into the bank, thus the length scale 𝐿 is set at 𝑏/2. The densimetric Froude number 
is therefore 

𝐹𝑟 =
𝜌଴𝑉ଶ

𝛥𝜌𝑔
𝑏
2

=
1000 ⋅ 4.9ଶ

200 ⋅ 9.81 ⋅
2.5
2

= 9.79 ≈ 10 (30) 

A Froude number of 10 suggest that the inertial forces are dominant over the 
gravitational body force. The influence of gravity is can be considered negligible. 

Density error 
The model assumes uniform density in the cutter, whereas in reality the density 
varies between 1000 and 1200 [kg/m3], an thus error is to be expected. The 
maximum size of the error is estimated using equation (26). 

𝛥𝜌

𝜌଴

=
200

1000
= 0.2 (31) 
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The dominance of inertial forces indicates that the assumption of uniform density 
introduces a maximum error of 20%. The error is acceptable for dredging standards. 

Dominant scaling parameters 
The dominant scaling parameters for the cutting process, flow within the cutter and 
influence of the suction mouth are now considered. The mechanical excavation of 
the cutter scales according to Froude’s number since inertial and gravitational 
forces are governing. The suction mouth process is characterized by dominant 
inertial and viscous forces, rendering Reynolds scaling most appropriate. When 
gravity and viscosity dominate, the particle trajectories become more sensitive to 
the viscosity and density (Slotta, 1978). 

From the Reynolds and Euler number, it was concluded that the viscosity in the 
cutter head can be neglected. The Strouhalm number consists of a length scale, 
time-scale and velocity scale. It can be reasoned that these numbers scale linearly 
and therefore do not significantly impose restrictions on scaling. The Euler number 
is thus rendered the most important dimensionless scaling number for flow. In 
other words, the pressure is considered the most dominant contribution to the 
dynamic of flows in the cutter.  

3.6 Derivation of Euler equation 

From the dimensionless number analysis, it is assumed that fluid is inviscid. With 
the absence of shear stresses, the fluid is also irrotational. Setting 𝜇 = 0 gives the 
Euler Equation as shown in equation (32) for the radial direction. In conjunction 
with the axial and azimuthal components, this equation is known as the Euler 
equation. 

𝜌 ቈ
𝜕𝑣௥

𝜕𝑡
+ 𝑣௥

𝜕𝑣௥

𝜕𝑟
+

𝑣ఏ

𝑟

𝜕𝑣௥

𝜕𝜃
−

𝑣ఏ
ଶ

𝑟
+ 𝑣௭

𝜕𝑣௥

𝜕𝑧
቉ = −

𝜕𝑝

𝜕𝑟
+ 𝜌𝑔௥ (32) 

3.7 Derivation of Euler’s pump equation 

Let us assume that the fluid flows axisymmetrically, i.e. any change in velocity with 
respect to 𝜃 is zero. It was assumed that the physical domain of the cutter is in a 
steady state that will remove any temporal change from the NS equations. In the 
radial direction, the following assumptions are imposed 

𝑣ఏ

𝑟

𝜕𝑣௥

𝜕𝜃
= 0,

𝜕𝑣௥

𝜕𝑡
= 0 (33)

The Euler equation in radial direction (32) can therefore be substituted with the 
assumptions from equation (33). The result is given in equation (34) and serves as 
a basis for Euler’s pump equation. 

𝜌 ቆ𝑣௥

𝜕𝑣௥

𝜕𝑟
−

𝑣ఏ
ଶ

𝑟
+ 𝑣௭

𝜕𝑣௥

𝜕𝑧
ቇ − 𝜌𝑔௥  = −

𝜕𝑝

𝜕𝑟
 (34) 

The velocities in equation (34) are the absolute velocities 𝑣௥௜ and 𝑣ఏ௜
 at axial 

location i in radial and tangential direction respectively [m/s]. Equation (32) is 
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known in the field of pump design. Since the cutter head highly resembles that of a 
centrifugal pump, it is assumed that Euler’s pump equation is suitable for flow 
descriptions of the centrifugal kind. The blades of the cutter head can be compared 
to the vanes of a centrifugal pump. For this reason, the following derivation draws 
heavily on the analogy that can be made with a centrifugal pump. 

3.7.1 Velocity triangles  
The derivation is continued by considering a streamline within a cylinder. In 3D 
space, the pressure on an infinitesimally small element with respect to the radius 
at location 𝑟𝜃𝑧 = {𝑟, 𝜃, 𝑧} along a section of the streamline, can be found as 

𝑑𝑝

𝑑𝑟
ฬ

௥ఏ௭
=

𝜕𝑝

𝜕𝑟
+

𝜕𝑝

𝜕𝜃

𝑑𝜃

𝑑𝑟
ฬ

௥ఏ௭
+

𝜕𝑝

𝜕𝑧

𝑑𝑧

𝑑𝑟
ฬ

௥ఏ௭
 (35) 

A unit mass, in a cylindrical coordinate system, travels along a blade (depicted in 
yellow) with a velocity 𝒘 [m/s] relative to the blade. Since the blade has absolute 
velocity 𝒖 [m/s], the sum of 𝒖 and 𝒘 yields the absolute velocity 𝒗 [m/s] of the unit 
mass. Here, 𝒖 is depicted in green and 𝒗 is depicted in grey, with components 𝒗𝜽 
(azimuthal) in grey and 𝒗𝒓 (radial) in red. Figure 3.5 visualizes the vectors in the 
cylindrical coordinate system. 

 

 
Figure 3.5: Blade-induced velocities of an infinitesimally small fluid volume. 

As can be seen in the figure, a two-dimensional velocity triangle would simplify the 
velocity triangles found in the figure significantly. In reality, axial flow is an 
important component that is induced by the suction pressure as well as the 
curvature of blades near the nose. However, if axial flow is incorporated in the 
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derivation of the radial pressure gradient, then the equations become significantly 
more complex which introduces the risk of compromising on tractability.  

For the derivation of the radial pressure gradient of the centrifugal pump effect, 
flow velocities in the axial direction are neglected. 

The velocities in the axial direction at the leading and trailing edge of the blade set 
to zero. The effect of axial flow is incorporated in the volumetric flow rate balance 
later. 

𝑣௭

𝜕𝑣௥

𝜕𝑧
= 0 (36)

All presented velocity triangles for 𝑣 are now subject to the goniometric rules as 
presented in equation (37), (38) and (39).  

𝑢௜ = 𝜔𝑟௧௜
 (37)

𝑤௥ ௜
= 𝑤௜ ⋅ 𝑠𝑖𝑛 𝛽௜ (38)

𝑣௜
ଶ = 𝑢௜

ଶ + 𝑤௜
ଶ − 2𝑢௜𝑤௜ 𝑐𝑜𝑠 𝛽௜ (39)

Where 𝛽௜ is the blade (vane) angle of the supposed centrifugal pump [rad], 𝑤௜ is the 
velocity of the fluid relative to the blade [m/s] and 𝑢௜ is the azimuthal (tangential) 
velocity of the blade [m/s]. A comprehensive list of velocity triangle relationships is 
provided in appendix B. 

From the shape of the linearized velocity triangle, which is valid for an 
infinitesimally small element, the angle 𝛽 between the tangential and relative 
velocities is given in equation (40). 

𝑑𝑟

𝑟𝑑𝜃
ฬ

௥ఏ௭
 = 𝑡𝑎𝑛 𝛽 (40)

It is also known that this angle equals the ratio of radial and azimuthal velocities, 
hence the following relations hold 

𝑤௥

𝑤ఏ

=
𝑣௥

𝑤ఏ

= 𝑡𝑎𝑛 𝛽

⇔ 𝑐𝑜𝑡 β =
𝑤ఏ

𝑤௥

 (41)

Equations (40) and (41) can be combined to find the angular change with respect 
to the radius along a streamline as shown in equation (42). 

𝑑𝜃

𝑑𝑟
ฬ

௥ఏ௭
=

𝑤ఏ

𝑟𝑣௥

 (42)

We also know that the discharge that is delivered by a pump must be in accordance 
with equation (43). 

𝑤௥ =
𝑄

𝑓ఊ2𝜋𝑟𝑏
 (43)
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Where 𝑓ఊ is a factor that limits the outflow area of the centrifugal pump. With the 
assumption of axisymmetrical flow, the radial and azimuthal velocities are now a 
two-dimensional approximation of what was considered a three-dimensional 
physical domain.  

Linearization 
The pressure and the velocity in Equation (34) can be linearized as shown in section 
C.10.1. The pressure that results from these operations is given in equation (44). 

−
𝑑𝑝

𝑑𝑟
ฬ

௥ఏ௭
= 𝜌 ቈ−𝜔ଶ𝑟 +

1

2

𝑑𝑤ଶ

𝑑𝑟
− 𝑔𝑓௚ೝ

቉ (44) 

It can be demonstrated that equation (44) can be rewritten and integrated to find 
equation (45) where indications for the leading edge and trailing edge are 
abbreviated to 𝑡 and 𝑙 respectively.  

𝑝ଶ − 𝑝ଵ = 𝜌 ቈ𝜔ଶ
𝑟௧,௜

ଶ − 𝑟௟,௜
ଶ

2
+

𝑤௟,௜
ଶ − 𝑤௧,௜

ଶ

2
+ 𝑔𝑓௚ೝ

൫𝑟௧,௜ − 𝑟௟,௜൯቉ (45) 

Notation 
From here, the denotations {… }ଵ and {… }ଶ of the velocities 𝒘, 𝒖 and 𝒗 in equation 
(48) will be replaced by {… }௟,௜ and {… }௧,௜ to reflect their location at the leading and 
trailing edge of the blade respectively. See chapter 7 for further details. 

3.7.2 Gravitational acceleration 
In equation (45) a gravity constant is introduced as 𝑓௚ೝ

= 𝑐𝑠𝑐 𝛽 𝑐𝑜𝑠 𝜆 𝑠𝑖𝑛(𝛽 + 𝜃) +

𝑐𝑜𝑡 𝛼 𝑠𝑖𝑛 𝜆, in which the cosecant is used (𝑐𝑠𝑐 β =
ଵ

ୱ୧୬ ఉ
). A derivation of this 

formulation for the gravity is provided in appendix B, section C.7 by means of 
equation (199).  

The effect of gravitational acceleration is especially important when cutting rock, 
however, it is neglected for the derivation of the affinity laws. Since gravity is the 
driving mechanism behind rapid redeposition, its effect is approximated in chapter 
4. For Euler’s pump equation derivation, the fluid is assumed non-gravitational. 

3.7.3 Bernoulli’s Principle for energy conservation 
Bernoulli’s principle states that a fluid’s potential head and pressure are inversely 
related to the fluid velocity. Incorporating this relationship is the next step in the 
derivation of Euler’s pump equation. For Bernoulli’s principle to hold, a steady flow 
along a streamline is assumed with negligible shear stress influence. This restriction 
is in accordance with earlier assumptions in the derivation of the NS equations. 

Again, the density of the fluid is constant for the considered domain and the fluid 
is considered incompressible. Lastly, the flow is required to be irrotational with 
respect to the streamline. Bernoulli’s principle is then found as presented in 
equation (46). A derivation of this equation is demonstrated in Appendix A.  
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ℎ௧,௜ − ℎ௟,௜ᇣᇧᇧᇤᇧᇧᇥ
௘௟௘௩௔௧௜௢௡

௛௘௔ௗ

−
𝑝௧,௜ − 𝑝௟,௜

𝜌𝑔ᇣᇧᇧᇤᇧᇧᇥ
௣௥௘௦௦௨௥௘

௛௘௔ௗ

= −
𝑣௧,௜

ଶ − 𝑣௟,௜
ଶ

2𝑔ᇣᇧᇧᇤᇧᇧᇥ
௩௘௟௢௖௜௧௬

௛௘௔ௗ

 
(46)

Combining equation (37), (38), (39), (45) and subsequent substitution in the 
formulation of Bernoulli’s principle of equation (46) yields equation (47) for the 
elevation head generated by a centrifugal pump. 

ℎ௧,௜ − ℎ௟,௜ = 𝜔ଶ
𝑟௧,௜

ଶ − 𝑟௟,௜
ଶ

𝑔
+

𝑟௟,௜𝜔𝑤௥௟,௜
𝑐𝑜𝑡 𝛽௟,௜ − 𝑟௧,௜𝜔𝑤௥௧,௜

𝑐𝑜𝑡 𝛽௧,௜

𝑔
 (47)

More commonly, equation (47) is expressed in terms of pressure difference through 
𝛥𝑝 = 𝛥ℎ௜𝜌௜𝑔. This relationship can be substituted, and the equation can be 
rewritten. These operations give rise to what is commonly referred to as Euler’s 
pump equation as displayed in equation (220). The pressure gain is a result of both 
static and kinematic contributions. 

𝑝ଶ − 𝑝ଵ = 𝜌𝜔ଶ൫𝑟௧,௜
ଶ − 𝑟௟,௜

ଶ ൯ᇣᇧᇧᇧᇤᇧᇧᇧᇥ
௦௧௔௧௜௖

+ 𝜔𝜌
𝑄

𝑓ఊ2𝜋𝑏
൫𝑐𝑜𝑡 𝛽௟,௜ − 𝑐𝑜𝑡 𝛽௧,௜൯

ᇣᇧᇧᇧᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇧᇧᇧᇥ
௞௜௡௘௠௔௧௜௖

 (48) 

3.8 Conclusion 

What formulations are fundamental to the motion and behaviour of a fluid 
substance in the physical domain of the cutter head? 

Experimental and analytical research provides substantial evidence to confirm that 
cutter flow resembles a combination of an axial pump near the nose and a 
centrifugal pump effect near the ring (Miltenburg (1983); Den Burger (2003); 
Nieuwboer et al. (2017)). From the characteristic Reynolds and Euler numbers, it 
can be concluded that the inertial forces render viscosity in the cutter head 
negligible. For the centrifugal pump dynamics, the flow inside the cutter is 
considered steady, non-gravitational, inviscid and non-axial. It can be 
demonstrated that the Navier-Stokes equations therefore reduce to Euler’s pump 
equation. The axial flow dynamics are governed by the product of the particle 
volume and radial pressure gradient in the suction mouth. Den Burger observed 
that there is an inward flow along the entire contour of the cutter head for 
rotational velocities below a certain ratio of the rotational to the mixture velocity. 
Above this ratio, the cutter dynamics give rise to a radial outflow that increases with 
rotational velocity.  
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Table 3.1 presents an overview of the assumptions that underpin the potential flow 
model. 

Table 3.1: Assumptions relevant to the physical parameters in the model. 

Property Definition 
Axisymmetrical No change in velocity with respect to the azimuthal axis 
Non-cavitational No presence of voids causing cavitation 
Continuous No internal source terms 
(Non-)gravitational Gravity is neglected. 
Incompressible Conservation of energy 
Inviscid Viscosity effects are neglected (ideal fluid) 
Irrotational No net rotation with respect to the cylindrical coordinate system (follows 

from inviscid fluid) 
(Non-)relativistic Velocities are considered less than relativistic velocities 
Steady (state) No temporal change of magnitude or direction with time 
Two-dimensional No velocity components in the axial direction 
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4 Model setup 
In chapter 1 it was decided that model should be analytical. From the spillage 
classification of chapter 2 it was concluded that the most prominent spillage types 
are centrifugal advection and rapid redeposition. Chapter 3 provides the relevant 
assertions that give rise to a spillage model. This chapter aims to answer the sub-
question: 

In conjunction with the relevant physical parameters, what concepts and 
assumptions enable a CSD spillage engineering model? 

From this chapter forward, the model proposed in this research is referred to as the 
Sand-Rock Cutting Spillage Model (SRCSM). SRCSM is an analytical potential flow 
model with several empirical closing relations. All subsequent model steps are 
described in this chapter. First, the geometry of the cutter head is described. 

4.1 Geometry 
   4.1.1 Cutter head 
  4.1.2 Bank    

Next, it is explained how the volumetric flow rates that underlie a potential flow 
model can be obtained. An iterative solution method is provided in section 4.2.7. 

4.2 Potential flow model 
  4.2.1 Continuity   
   4.2.2 Centrifugal advection 
   4.2.3 Radial inflow at nose 
   4.2.4 Axial inflow at nose 
   4.2.5 Rapid redeposition 
   4.2.6 Mixture flow 
   4.2.7 In situ dredge flow 
   4.2.8 Solving for continuity  

In order to compute spillage rates, the concentrations of the respective flows are 
computed. 

4.3 Spillage computation  
   4.3.2 Average concentration 
   4.3.2 Rapid redeposition concentration 
   4.3.4 Spillage numbers 

The chapter also provides an implementation template (section 4.4) to help set up 
the model. A reference implementation in Python is given in Appendix I. The model 
can be analyzed using a Python tool that is presented in Appendix K. 

4.4 Implementation template  
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4.1 Geometry 

First, a geometrical description of the cutter head should be obtained. 
Subsequently, the cutter head geometry can be placed into the bank. This section 
provides an advanced geometrical description. Alternatively, a more simple 
approximation for the geometry is provided in Appendix E. 

4.1.1 Cutter head 
A representative large cutter head is chosen for which the radii and blade angles 
are approximated with second-degree polynomials. Figure 4.1 (left) displays a 
series of plots for the trailing edge and leading edge radii of the envelope of the 
cutter head as well as the radius of the plate 𝑟௣௟௔௧௘ [m] and the drive shaft 𝑟௦௛௔௙௧ 
[m]. Figure 4.1 (right) provides an estimate of representative trailing and leading 
edge blade angles 𝛽௧,௜ and 𝛽௟,௜ [deg]. It should be noted that this envelope does not 
include the reach of the cutter teeth or chisels, which typically increase the 
envelope size.  

 

 

 

Figure 4.1: Typical geometry approximation of a relatively large cutter head. 

 
An analytical description of the cutter head geometry is given in equation (49) and 
equation (302), (303) and (304) of Appendix G. These equations are for the trailing 
and leading edge radii as well as the trailing and leading edge blades angles 
respectively.  
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𝑧  [m] 

𝑟௧  Trailing edge radius [m] 
𝑟௟  Leading edge radius [m] 
𝑅௣௟௔௧௘  Back plate radius [m] 

𝑅௦௛௔௙௧ Drive shaft radius [m] 

𝛽௧   Trailing edge angle [deg] 
𝛽௟   Leading edge angle [deg] 
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𝑟௧ = 𝑟௧,௭బ
+ 𝑓௥௧ଵ

𝑧ଶ + 𝑓௥௧ଶ
𝑧

𝑓௥௧ଶ
= −

௥೟,೥బି௥೟,೥್

௕
− 𝑓௥௧ଵ

𝑏

𝑓௥௧ଵ
= −0.1

𝑟௧,௭బ
=

஽ೝ೔೙೒

ଶ

𝑟௧,௭್
=

஽೙೚ೞ೐

ଶ

  (49) 

4.1.2 Bank 
The placement of the cutter in the bank is described according to the schematic 
representation of Figure 4.2. The origin of the axes in this figure is located at the 
intersection of the z-axis and the cutter ring.  

Figure 4.2: Advanced geometry description for cutter-bank interaction. 

 
In the spillage type classification of chapter 2, it was concluded that spillage due to 
swing interactions is neglected in this model. With no redeposited particles from a 
previous swing, hence no spillage height h୭ୢ [m], the following formulation can be 
made 

ℎ௣௘௡ = ℎ௣௘௡ + ℎ௢ௗ  (50) 

For the interaction of the cutter head with the bank, the cutter inclination angle 𝜆 
[rad] and slope angle 𝜉 [rad] should be chosen. The location of the tip of the cutter 
(TOC), 𝑧௧௜௣ [m], is found by taking the derivative of the lower trailing edge radius 
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equal to the inclination of the cutter. The derivative of the trailing edge radius and 
the inclination angle is given as: 

𝑑

𝑑𝑧
(−𝑟௧) =

𝑑

𝑑𝑧
− ቀ𝑟௧,௭బ

+ 𝑓௥௧ଵ
𝑧ଶ + 𝑓௥௧ଶ

𝑧ቁ

𝑑

𝑑𝑧
(−𝑟௧) = −2𝑓௥௧ଵ

𝑧 − 𝑓௥௧ଶ

 (51) 

Setting the latter part of equation (51) equal to tan 𝜆 yields the desired location of 
TOC in the reference frame of the cutter head. 

𝑧௧௜௣ = ൞
−

1

2

𝑡𝑎𝑛 𝜆 + 𝑓௥௧ଶ

𝑓௥௧ଵ

, 𝑧௧௜௣ ≤ 𝑏

𝑏, 𝑏 < 𝑧௧௜௣

 (52) 

This formulation is subject to the condition that 𝑧௧௜௣ is limited to the height 𝑏, hence 
the conditional format. Next, a parameter is introduced for the penetration depth 
z୮ୣ୬ [m] that is linearly related with the chosen step size 𝑙௦௧௘௣ [m]. 

𝑧௣௘௡ = 𝑙௦௧௘௣ 𝑐𝑜𝑠 𝜆 (53) 

With the penetration depth known, the cutter-bank characteristics from equation 
(54) can be computed consecutively. 

𝑧ଶ = 𝑏 − 𝑧௣௘௡

𝑟௧,௭మ
= 𝑟௧|௭మ

𝑟௧,௭೛೐೙
= 𝑟௧|௭೛೐೙

𝑟௧,௭೟೔೛
= 𝑟௧|௭೟೔೛

𝛥𝑟 = ቚ−𝑟௧,௭೛೐೙
− ൫−𝑟௧,௭మ

+ ൫𝑧௧௜௣ − 𝑧ଶ൯ 𝑡𝑎𝑛 𝜆൯ቚ

ℎ௣௘௡ = 𝛥𝑟 𝑐𝑜𝑠 𝜆

𝑧ଵ = 𝑧ଶ − 𝛥𝑟 𝑡𝑎𝑛 ቀ
𝜋

2
− 𝜉 − 𝜆ቁ

𝑟௕,௭మ
= −𝑟௧,௭మ

𝑟௕,௭భ
= 𝑟௧,௭మ

− 𝛥𝑟

𝑟௕,௭బ
= 𝑟௕,௭భ

− 𝑧ଵ 𝑠𝑖𝑛 𝜆

ℎ෠ =
ℎ

𝑠𝑖𝑛 𝜉

ℎ෠ଶ =
ℎ௣௘௡

𝑠𝑖𝑛 𝜉

ℎ෠ଷ = ℎ෠ − ℎ෠ଶ

𝑧ଷ = ൝
𝑏, 𝑧ଷ ≤ 𝑏

ℎ෠ଷ 𝑠𝑖𝑛 ቀ
𝜋

2
− 𝜉 − 𝜆ቁ + 𝑧ଶ, 𝑏 < 𝑧ଷ

𝑟௕,௭య
= −𝑟௧,௭మ

+ ටℎ෠ଷ
ଶ + (𝑧ଷ − 𝑧ଶ)ଶ

𝑧ସ = 𝑏

𝑟௕,௭ర
= 𝑟௕,௭య

+ (𝑧ସ − 𝑧ଷ) 𝑡𝑎𝑛 𝜆

𝛥�̂�௣௘௡ =
𝑧ଶ − 𝑧ଵ

𝑐𝑜𝑠 𝜆

 (54) 
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A conditional function can be found for the computation of the bank height in the 
reference frame of the cutter. 

𝑟௕,௭ = ቐ

𝑟௕,௭బ
+ 𝑧 𝑡𝑎𝑛 𝜆 , 𝑧 < 𝑧ଵ

𝑟௕,௭మ
+ (𝑧 − 𝑧ଶ) 𝑡𝑎𝑛(𝜆 + 𝜉) , 𝑧ଵ ≤ 𝑧 < 𝑧ଷ

𝑟௕,௭య
+ (𝑧 − 𝑧ଷ) 𝑡𝑎𝑛 𝜆 , 𝑧ଷ ≤ 𝑧

 (55) 

Cut area 
Basis geometrical rules now prescribe a series of operations that enable the 
computation of the total cut area 𝐴௖௨௧ [m2]. Figure 4.2 provides an overview of the 
calculated surfaces. It should be noted that spillage due to cutter geometry was 
neglected. Equation (56) provides a basis for the development of a spillage 
computation for this type. 

𝑎௦ = ℎ෠

𝑏௦ =
ℎ

𝑐𝑜𝑠 ቀ
𝜋
2

− 𝜆ቁ

𝑐௦ =
𝑧ଷ − 𝑧ଵ

𝑐𝑜𝑠 𝜆

𝑠 =
𝑎௦ + 𝑏௦ + 𝑐௦

2

𝐴௖௨௧,△ = ቊ
0, 𝑐௦ = 0

ඥ𝑠(𝑠 − 𝑎)(𝑠 − 𝑏)(𝑠 − 𝑐), 0 < 𝑐௦

𝐴௖௨௧,▱ = ℎ
𝑧ସ − 𝑧ଷ

𝑐𝑜𝑠 𝜆
𝐴௖௨௧ = 𝐴௖௨௧,△ + 𝐴௖௨௧,▱

 (56) 

A relevant parameter for the cutter-bank interaction is the bank contact angle 𝛾௭ 
[rad]. Figure 4.3 (left) depicts the relevance of this variable for a small and large 
bank height 𝑟௕,௭ [m]. This angle can be found using the goniometrical relationships 
of a circle with chord 𝑘௭ as shown in equation equations (57). The length of the 
chord can also be computed with the Pythagorean theorem as presented in 
equation (58). The angle ఊ

ଶ
 can also be found as  

𝑘௭ = 2𝑟௧,௭ 𝑠𝑖𝑛
𝛾௭

2
 (57) 

𝑘௭ = ට𝑥௭
ଶ + 𝛥𝑟௕

ଶ (58) 

𝑡𝑎𝑛
𝛾

2
=

𝛥𝑟௕,௭

𝑥௭

 (59) 

Where 𝑥௭ is the horizontal component of 𝑟௧,௭ [m] (in the reference frame of section 
cut) and 𝛥𝑟௕,௭ is the absolute height of the bank at location 𝑧 [m].  The absolute 
length depends on whether the bank contact angle exceeds 𝜋/2, which can be 
formulated as: 

𝛥𝑟௕,௭ = ቊ
𝑟௧,௭ − ห𝑟௕,௭ห , 𝑟௕,௭ ≤ 0

𝑟௧,௭ + 𝑟௕,௭ , 0 < 𝑟௕,௭
 (60) 
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Equations (57), (58), (59) and (60) can now be combined according to the steps 
given in equation (61). 

𝑥௭
ଶ + 𝛥𝑟௕

ଶ = ቀ2𝑟௧,௭ 𝑠𝑖𝑛
𝛾௭

2
ቁ

ଶ

𝑥௭
ଶ + 𝛥𝑟௕

ଶ = ൬2𝑟௧,௭ 𝑠𝑖𝑛 ൬𝑡𝑎𝑛ିଵ ൬
𝛥𝑟௕

𝑥௭

൰൰൰
ଶ

𝑥௭
ଶ + 𝛥𝑟௕

ଶ =

⎝

⎜
⎜
⎛

2𝑟௧,௭

𝛥𝑟௕

𝑥௭

ඨቀ
𝛥𝑟௕

𝑥௭
ቁ

ଶ

+ 1

 

⎠

⎟
⎟
⎞

ଶ

𝑥௭
ଶ + 𝛥𝑟௕

ଶ = 4𝑟௧,௭
ଶ

ቀ
𝛥𝑟௕

𝑥௭
ቁ

ଶ

ቀ
𝛥𝑟௕

𝑥௭
ቁ

ଶ

+ 1

ቆ൬
𝛥𝑟௕

𝑥௭

൰
ଶ

+ 1ቇ (𝑥௭
ଶ + 𝛥𝑟௕

ଶ) = 4𝑟௧,௭
ଶ ൬

𝛥𝑟௕

𝑥௭

൰
ଶ

𝛥𝑟௕
ଶ

𝑥௭
ଶ

(𝑥௭
ଶ + 𝛥𝑟௕

ଶ) + (𝑥௭
ଶ + 𝛥𝑟௕

ଶ) = 4𝑟௧,௭
ଶ

𝛥𝑟௕
ଶ

𝑥௭
ଶ

(𝑥௭
ଶ)ଶ + 2𝛥𝑟௕

ଶ𝑥௭
ଶ + (𝛥𝑟௕

ଶ)ଶ − 4𝑟௧,௭
ଶ 𝛥𝑟௕

ଶ = 0

𝑥௭
ଶ =

−2𝛥𝑟௕
ଶ ± ට2𝛥𝑟௕

ଶ − 4൫−4𝑟௧,௭
ଶ 𝛥𝑟௕

ଶ൯

2

𝑥௭
ଶ = −𝛥𝑟௕

ଶ ± ඨ
1

2
𝛥𝑟௕

ଶ + 4𝑟௧,௭
ଶ 𝛥𝑟௕

ଶ

 (61) 

The value of the horizontal length is easily found as the positive result from the 
quadratic method. Subsequently, the bank contact angle is found according to 
equation (62). The bank contact angle can be transformed to a dimensionless 
coefficient named the outflow factor which is given in equation (63). 

𝑡𝑎𝑛
𝛾௭

2
=

𝛥𝑟௕,௭

𝑥௭

⇔ 𝛾௭ = 2 𝑡𝑎𝑛ିଵ
𝛥𝑟௕,௭

𝑥௭

 (62) 

𝑓ఊ௭
= 1 −

𝛾௭

2𝜋
 (63) 

It is assumed that the shaft radius 𝑟௦௛௔௙௧ and the back plate radius 𝑟௣௟௔௧௘ in Figure 
4.2 negligible. 
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Figure 4.3: Schematic depiction of the bank contact angle (left) and disc division of the cutter head (right).  

4.2 Potential flow model 

In 0 it was concluded that the Euler number is most important scaling number due 
to the dominance of the pressure gradient in the equation. This conclusion supports 
the development of a potential flow model. Aligned with the conclusions from Den 
Burger as mentioned in section 3.1, a foundational model assumption is made with 
respect to the cutter presumed pump effects in the cutter. 

The physical domain of the cutter head is split into two discs with the disc 
closest to the cutter ring governed by centrifugal flow and the disc closest to the 
nose governed by axial flow  

Figure 4.3 (right) depicts the assumed flow configuration. The two discs (also 
referred to as segments in the SCSM) can have different heights. Disc 1, closest to 
the back ring, is assumed to have radial outflow. Disc 2, located at the nose, is 
assumed to entrain specific flow. It is hypothesized that spillage due to centrifugal 
advection can be related to the outflow of disc 1, i.e. the height 𝑏ଵ of disc 1. This 
height can be computed based on the volumetric flow rate balance for the cutter 
head. Rapid redeposition is established independent of the cut depth. The height 
of disc 2, 𝑏ଶ, can be found as shown in equation (64). 

𝑏ଶ = 𝑏 − 𝑏ଵ (64)

4.2.1 Continuity 
The second most important concept of the Sand-Rock Cutting Spillage Model is a 
mass flow rate balance that ensures continuity of cutter head flows.  

Continuity of mass and volume is preserved for the disc 1 and 2 compounded. 

To provide insight into the effects of concentration differences of suspended 
material of the respective flow terms, the basis of the SRCSM is chosen to be the 
mass balance as suggested in equation (65).  

𝜌ଶ𝑄௔௡௢௦௘
+ 𝜌௖𝑄௖ + 𝜌ଶ𝑄௥ ଶ

− 𝜌ଵ𝑄௥ଵ
− 𝜌ଵ𝑄ௗ − 𝜌ଵ𝑄௔௠

= 0 (65)
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With varying heights for 𝑏ଵ and 𝑏ଶ [m] it is beneficial to make use of specific flow 
instead of volumetric flow, hence equation (65) can be rewritten to: 

𝜌ଶ𝑄௔௡௢௦௘
+ 𝜌௖𝑄௖ + 𝜌ଶ𝑞௥ ଶ

𝑏ଶ − 𝜌ଵ𝑞௥ଵ
𝑏ଵ − 𝜌ଵ𝑄ௗ − 𝜌ଵ𝑄௔௠

= 0 (66)

Where 𝑄௔௡௢௦௘
 is an axial flow rate (assumed positive) through the cutter nose 

[m3/s], 𝑄௖  the incoming volumetric flow rate of dislodged bank material [m3/s], 𝑞௥మ
 

the specific radial flow rate of water entering the cutter (assumed positive) through 
the peripheral boundary of disc 2 [m2/s], 𝑞௥భ

 the specific radial flow rate of material 
leaving the cutter through the peripheral boundary of disc 1 (assumed negative) 
[m2/s], 𝑄ௗ  the rapid redeposition flow rate [m3/s] and 𝑄௔೘

 the axial mixture flow 
rate through the suction pipe [m3/s]. The inclusion of an axial flow rate through the 
nose is hypothetical and may be discarded in a later stage.  

Suppose that the density of fluid in disc 1 𝜌௠ is uniform for any outflow term and 
that sediment concentration around the cutter is negligible, i.e. the incoming flow 
density is equal to the density of water. The bulk density at the bank is an input 
parameter to the model and is computed using the estimated or known 
concentration of the material. Equations (67)-(71) summarize the abovementioned 
assumptions. 

𝜌௖ = 𝜌௤𝑐௖ + 𝜌௪(1 − 𝑐௖) (67)

𝜌௔ = 𝜌௪ (68)

𝜌ଶ = 𝜌௪ (69)

𝜌ଵ = 𝜌௠ (70)

𝜌௠ = 𝑐௩௦൫𝜌௤ − 𝜌௪൯ + 𝜌௪  (71)

Where 𝑐௖  is the spatial concentration  of solids in the bank [-], 𝑐௩௦ is the spatial 
concentration  of solids in the cutter [-],  𝜌௤ is the particle quartz density [kg/m3], 
𝜌௪ the density (= 1025) of water [kg/m3] and 𝜌௠ the density inside disc 1 and 2 
[kg/m3]. 

Volumetric flow rate balance 
The volumetric flow rate balance also holds for the cutter head. Substitution of 
equation (72) in the mass flow rate balance of particles yields an expression for the 
spatial concentration 𝑐௩௦ [-] of disc 1 and disc 2 as shown in equation (73). 

𝑄௔௡௢௦௘
+ 𝑄௖ + 𝑄௥ ଶ

− 𝑄௥ଵ
− 𝑄ௗ − 𝑄௔௠

= 0 (72)

𝑐௩௦ =
𝑐௖𝑄௖

𝑄௥ଵ
+ 𝑄ௗ + 𝑄௔௠

 (73)

Substitution of equation (73) in equation (71) yields for the internal density of fluids 
in the cutter: 
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𝜌௠ = 𝑐௩௦൫𝜌௤ − 𝜌௪൯ + 𝜌௪ = ቆ
𝑐௖𝑄௖

𝑄௥ଵ
+ 𝑄ௗ + 𝑄௔௠

൫𝜌௤ − 𝜌௪൯ + 𝜌௪ቇ (74)

Figure 4.4 provides a 3D overview of the components of the volumetric flow rate 
balance. This section continues with the establishment of the volumetric flow rates 
outlined in the flow rate balances. 

Figure 4.4: Schematic 3D view of the cutter head division in disc 1 and 2 with relevant parameters. 

4.2.2 Centrifugal advection 
Centrifugal advection occurs near the back ring and is therefore designed to occur 
in disc 1. Based on the findings in chapter 3.1, centrifugal advection is 
predominantly a function of the mixture velocity and the rotational velocity. 

𝑄௥ଵ
= 𝑓(𝑣௠, 𝜔) 

This section will proceed to find an expression for the flow induced by the rotational 
velocity of the cutter. Influence of the mixture velocity will be incorporated in 
through the mixture flow rate in the continuity equation. Section 3.7 provides a 
derivation of Euler’s pump equation. The applicability of this equation for 
centrifugal advection flow is evaluated for the cutter. Euler’s pump equation, as 
derived from equation (48), reads 

𝑝ଶ − 𝑝ଵ = 𝜌𝜔ଶ(𝑟ଶ
ଶ − 𝑟ଵ

ଶ)ᇣᇧᇧᇧᇤᇧᇧᇧᇥ
௦௧௔௧௜௖

+ 𝜔𝜌
𝑄

𝑓ఊ2𝜋𝑏
(𝑐𝑜𝑡 𝛽ଵ − 𝑐𝑜𝑡 𝛽ଶ)

ᇣᇧᇧᇧᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇧᇧᇧᇥ
௞௜௡௘௠௔௧௜௖

 (75) 
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The geometry of the cutter head dictates that the implied impeller vanes are 
forward bladed and that the 2-dimensional velocity triangles that underpin Euler’s 
pump equation can be found as shown in Figure 4.5. 

   
Figure 4.5: Approximated 2-dimensional velocity triangles at the blades for disc 1 (left) and disc 2 (right).  
The pressure side of the blade is colored in purple and the suction side is colored in brown. 

For a 6-bladed cutter head, a small fluid volume (highlighted in blue) has widths 
ranging between గ

ଷ
𝑟௟,௜ and గ

ଷ
𝑟௧,௜. The velocity triangles are slightly different between 

the pressure (𝑠) and suction (𝑝) side of the blades. An approximation of a typical 
cutter head suggests that the blade thickness in the cross-sectional plane is small 
near the back ring and relatively large near the nose. 

Application of Euler’s pump equation to the cutter is subject to certain 
assumptions. First, the impeller passages are filled with the flowing fluid at all time 
(no void spaces and non-cavitating conditions).  

Second, an infinite number of blades is assumed. Therefore, is reasoned that the 
outflow velocity profile is linear between blades (aligns with the irrotational 
property during the derivation). The velocities, as well as blade angles, can be found 
by computing the average of the suction and pressure side of the blades, i.e. 𝒗𝒓𝒕,𝒊

=

(𝒗𝒓𝒕,𝒑,𝒊
+ 𝒗𝒓𝒕,𝒔,𝒊

)/2.  

Third, work transfer of the blades is considered frictionless (aligns with the 
assumption of an inviscid fluid). Also, flow between two adjacent streams does not 
disturb each other. 

Establishing the affinity law for pressure 
The use of Euler’s pump equation would introduce the unknowns 𝑝௧,௜ and 𝑝௟,௜ into 
the model. Analogous to the affinity that are used for centrifugal pumps, an 
important assumption is made. 

The affinity law for pressure for centrifugal advection can be obtained by 
assuming that the inner radius in Euler’s pump equation is equal to zero.  
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Consequently, there cannot be a radial velocity at the origin of the cylindrical 
coordinate system. Euler's pump equation then simplifies to equation (76) when 
the dimensionless head of the considered disc, 𝛹௜, is taken in accordance with 
equation (77). 

𝛥𝑝௜ = 𝛹௜𝜌௜𝜔ଶ𝑟௧,௜
ଶ  (76)

𝛹௜ = 1 −
𝑤௥೔

𝜔𝑟௜

𝑐𝑜𝑡 𝛽௜ (77)

Where Δ𝑝௜ is the pressure difference for the considered streamline, or 𝑝௧,௜ − 𝑝௟,௜, 
for the pressures at the trailing and leading radii of the cutter head. The derivation 
of equation (76) and the value for 𝛹 is given in Appendix C, section C.12. 

Establishing the affinity law for discharge 
Let us consider flow similitude for both discs, i.e. the ratio of the average fluid 
velocity 𝑣௥ [m/s] and the tangential impeller velocity 𝑢 [m/s] equals a constant 
dimensionless flow number 

𝑣௥

𝑢
= Φ (78)

Where Φ is known as the pump flow number [-]. The average fluid velocity exits the 
cutter over an area equal to the circumference of the cutter, multiplied by the disc 
height and limited by the outflow factor 𝑓ఊ [-] that accounts for limitations to the 
outflow area, i.e. 𝑓ఊ2𝜋𝑟𝑏. The outflow factor is introduced in equation (63). Again, 
assuming incompressible flow and flow equilibrium, the fluid velocity inside the 
cutter follows from volume continuity and reads 

𝑣௥ =
𝑄௥

𝑓ఊ2𝜋𝑟𝑏
 (79)

Where 𝑄௥ is the disc discharge [m3/s], 𝑟 is the cutter radius [m] and 𝑏 the blade 
width [m]. The tangential velocity of the blade is found through multiplication of 
the angular velocity 𝜔 [rad/s] and the cutter radius [m] (𝑢 = 𝜔𝑟). Substitution of 
the velocity ratio in equation (79) and subsequent reordering yields an expression 
for the discharge as a function of the angular velocity as evidenced in equation 
(227). 

𝑄௥ = Φ𝑓ఊ2π𝑏𝜔𝑟ଶ = Φ෡ 𝑓ఊ𝑏𝜔𝑟ଶ (80)

Physically, the coefficient Φ෡  can be considered a dimensionless ratio of the velocity 
components in the radial direction and the tangential (azimuthal) direction. The 
effect of fluid viscosity is captured by this dimensionless measure. Equation (80) 
can be referred to as the affinity law for cutter discharge. In terms of specific flow, 
the affinity law at location 𝑖 is found through 𝑞௥௜ = 𝑄௥௜/𝑏௜. 

𝑞௥ = Φ𝑓ఊ2π𝑏𝜔𝑟ଶ = Φ෡𝑓ఊ𝜔𝑟ଶ (81)
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The affinity laws for pressure (76) and discharge (81) can be combined to compute 
a second expression for the pressure-generating specific outflow 𝑞௥௜ [m

2/s] using a 
pump flow number Φ௜, [-] and dimensionless head Ψ௜ [-].  

𝑞௥ ௜
=

𝛷௜

𝛹௜

2𝜋
1

𝜔𝜌௜

𝑓ఊ௜
𝛥𝑝௜  (82)

Where 𝜌௜ is the density [kg/m3], 𝜔 the angular velocity of the cutter head [rad/s] 
and 𝑟௧,௜ the representative outer radius [m] (trailing edge of the blades) at axial 
location 𝑧 = 𝑖. Expressed as a volumetric flow rate, the centrifugal flow at disc 1 is 
found in two ways. The first equation is based on equation (80) and is used to 
compute 𝑄௥ଵ. The second equation is based on equation (82) and is used in the 
computation of the radial inflow at the nose. 

𝑄
𝑟1

= Φෝ𝑓
𝛾1

𝑏1𝜔𝑟𝑡,1
2

𝑄
𝑟1

=
𝛷1

𝛹1

2𝜋𝑏1

1

𝜔𝜌
1

𝑓
𝛾1

𝛥𝑝
1

 (83)

4.2.3 Radial inflow at nose 
Miedema (2017) and Nieuwboer (2018) conceptualized that any flow leaving the 
cutter head near the back ring may return near the nose. This implied that the flow 
pattern exhibits a (partial) return flow of some magnitude. 

The pressure along the outside contour of the cutter head is initially assumed to be 
equal to the ambient pressure. The pressure inside the cutter is driven by the 
centrifugal force. Since this force is proportional to the distance to the rotational 
axis, the centrifugal force is larger at the blades near the ring of the cutter than at 
the blades near the nose. From the trailing edge onwards, the pressure is expected 
to drop with the distance to the cutter squared. Figure 4.6 (left) depicts the 
expected pressure drops from the contours of disc 1 and 2 independently. 
Miedema and Nieuwboer hypothesized that the flow from disc 1 may return in full 
or partially at disc 2. Since the pump affinity law is used to compute the pressure 
gradient inside the cutter, the leading edge pressures in each disc are equal to zero. 

The assumption is made that the true pressure at the trailing edge of the cutter 
is equal to the pressure that is generated in disc 1. As a consequence, the 
difference in estimated pressure gradients between the discs drives an inflow at 
disc 2. 

Figure 4.6 (right) depicts this assumption. The inflow at the disc is found as 

𝛥𝑝ௗ௜௦௖௦ଶ
= 𝛥𝑝ଵ − Δ�̂�ଶ (84)
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Figure 4.6: Pressure expectations (left) and assumptions (right) from the cutter head.  

The magnitude of the specific flow rate of radial inflow at the nose can be computed 
as follows. First, the affinity laws for centrifugal pumps are used to calculate the 
pressure-generating outflow 𝑞௥ଵ and to estimate 𝑞ො௥ଶ. Please note the hat notation 
for estimate. Equation (82) is used to provide the estimate. 

𝑞ො௥ ଶ
=

𝛷ଶ

𝛹ଶ

2𝜋
1

𝜔𝜌ଶ

𝑓ఊଶ
𝛥�̂�ଶ (85)

The actual value of the specific radial outflow 𝑞௥ଶ [m2/s] is obtained by combining 
equation (82) in equation (84). Subsequently, the estimated pressure difference 
that drives outflow is substituted from equation (85) and rewritten to obtain 

𝑞௥ ଶ
=

𝛷ଶ

𝛹ଶ

2𝜋
1

𝜔𝜌௪

𝑓ఊଶ
𝛥𝑝ௗ௜௦௖௦ଶ

=
𝛷ଶ

𝛹෡ଶ

2𝜋
1

𝜔𝜌௪

𝑓ఊଶ
൫𝛥𝑝ଵ − 𝛥�̂�

ଶ
൯

=
𝛷ଶ

𝛹ଶ

2𝜋
1

𝜔𝜌௪

𝑓ఊଶ
ቆ

𝛹ଵ

𝛷ଵ

1

2𝜋𝑓ఊଵ

𝜔𝜌௠𝑞௥ଵ
−

𝛹ଶ

𝛷ଶ

1

2𝜋𝑓ఊଶ

𝜔𝜌௠𝑞ො௥ ଶ
ቇ

=
𝛹ଵ

𝛹ଶ

𝜌௠

𝜌௪

𝛷ଶ

𝛷ଵ

𝑓ఊଶ

𝑓ఊଵ

𝑞௥ଵ
− 𝑞ො௥ ଶ

 (86) 

Appendix F.1 provides a full derivation of this assertion. The mixture density 𝜌௠ can 
now be substituted from equation (74). Also, the affinity law for cutter discharge 
from equation (81) can be used to compute 𝑞௥ଵ and 𝑞ො௥ଶ. This results in a new 
expression for the specific inflow rate at disc 2. 

𝑞௥ ଶ
= 2𝜋𝜔 ൥

𝛹ଵ

𝛹ଶ

𝛷ଶ

𝛷ଵ

൭
𝑐௖𝑄௖

𝛷෡ଵ2𝜋𝜔𝑟௧,ଵ
ଶ 𝑓ఊଵ

𝑏ଵ + 𝑄ௗ + 𝑄௔௠

൬
𝜌௤

𝜌௪

− 1൰ + 1൱ 𝑓ఊଶ
𝛷ଵ𝑟௧,ଵ

ଶ − 𝛷ଶ𝑟௧,ଶ
ଶ 𝑓ఊଶ

൩ (87)

The pump flow number and dimensionless head are assumed equal for disc 1 
and 2. 

In equation (87) the variables 𝛷ଵ = 𝛷ଶ cancel out the influence of the flow number. 
The physical interpretation of this cancellation is that the velocity components in 
the radial direction and the tangential (azimuthal) direction are equal. This is a 
heavy simplification of reality since the discs are divided based on their typical flow 
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direction (axial versus centrifugal). However, it can be reasoned that the respective 
changes in pump flow number scale similarly for both discs. The actual ratio of these 
numbers can therefore be captured by a dimensionless scaling coefficient that is 
added later. 

The value of dimensionless head 𝛹ଵ, 𝛹ଶ was found in equation (77). The 
assumption that the dimensionless head is equal for both discs implies that the 
ratio of the blade angles is constant.  

𝛹௜ = 1 −
𝑤௥೔

𝜔𝑟௜

𝑐𝑜𝑡 𝛽௜  (88)

The radial inflow at the nose is now obtained by multiplication of equation (87) by 
the disc height 𝑏ଶ as shown in equation (89). Section F.1 provides a full derivation 
of the volumetric flow rate for radial flow at the nose. 

𝑄௥ ଶ
= 2𝜋𝜔

⎝

⎜
⎛ 𝑓ఊଶ

𝑐௖𝑄௖

2𝜋𝜔𝑓ఊଵ
𝑏ଵ +

𝑄ௗ

𝛷ଵ𝑟௧,ଵ
ଶ +

𝑄௔௠

𝛷ଵ𝑟௧,ଵ
ଶ

൬
𝜌௤

𝜌௪

− 1൰ + 𝑓ఊଶ
𝛷ଵ𝑟௧,ଵ

ଶ − 𝛷ଶ𝑟௧,ଶ
ଶ 𝑓ఊଶ

⎠

⎟
⎞

𝑏ଶ (89) 

Influence of density difference between in- and outflow 
The pressure outside disc 1 is generated by an outflow containing suspended 
sediment. In contrast, the inflow at disc 2 consists of water only. The affinity laws 
from equation (85) therefore dictate that the reduction in density is counteracted 
by an increase in specific flow rate. However, the latter term of equation (86) shows 
that the actual radial inflow increases with increasing cutter density 𝜌௠. This actual 
inflow reduces the density inside the cutter. Therefore it is expected that the 
addition of density differences does not significantly change the behavior of the 
model.  

4.2.4 Axial inflow at nose 
Section 3.1 highlights substantial evidence that suggests that an axial flow is present 
in disc 2. The axial flow may partially originate through the nose. An axial flow 
𝑄௔௡௢௦௘

 [m3/s] is introduced to simulate the axial pump effect. Den Burger (2003) 
argues that, in a freely spinning cutter, axial flow is generated by the curvature of 
the blades near the hub which suck in water through the nose. Also, a large under 
pressure caused by the suction flow will most likely dominate axial flow.  

To study the effect of the axial flow through the cutter, the flow rate is initially 
estimated as half of the axial mixture flow rate near the back ring, i.e. 

𝑄௔௡௢௦௘
=

𝑄௔௠

2
 (90) 

Upon placement of the cutter in the bank, the nose is fully covered. This implies 
that only a limited flow rate is entrained through the nose. It is hypothesized that 
this flow can be therefore be neglected at a later stage. 
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4.2.5 Rapid redeposition 
Rapid redeposition flow is a function of the following variables 

𝑄ௗ = 𝑓 ቀ𝑣௧௦, 𝑣௠, 𝜔, 𝜆, 𝑓ௗ೟೤೛೐
, 𝑧௣௘௡, ℎቁ 

Where 𝑣௧௦ is the particle terminal settling velocity [m/s], 𝑓ௗ௧௬௣௘
 is a cutting scenario 

factor [-] that indicates whether the cutter is in under-cut mode (𝑓ௗ௧௬௣௘
= −1) or 

over-cut mode (𝑓ௗ௧௬௣௘
= 1). 

A reference point in the cutter is chosen that is assumed to best represent the 
dynamics relevant to rapid redeposition. 

   
Figure 4.7: Reference point for rapid redeposition from frontal (left) and lateral perspective (right). 

The reference point is taken on the axial location at 𝑧 = 𝑏 − 𝑧௣௘௡/2. This is an 
approximation of the axial location of the centroid of the bank surface 𝐴௖௨௧. On the 
azimuthal axis, the location 𝜃 = 𝜋/2 is chosen. This is the location of the front of 
the cutter, hence this location is in contact with the bank. On the radial axis, the 
trailing edge 𝑟 = 𝑟௧  is chosen since this radius is best representative of the 
magnitude of the rotational velocity. 

Notation 
From this point onwards, the approximate location (hence the hat notation) of 
rapid redeposition reference point is denoted as  

𝑣ො{… }௧,
గ
ଶ

,௕ି
௭೛೐೙

ଶ

= 𝑣ො{… }௥௘௙
 (91)

In accordance with Figure 4.7 (left and right), the following formulations are found 
that approximate (hence the hat notation) the relevant velocities at the bank 
reference point.  

𝑣ොఏ௥௘௙
= 𝑣ො௧௦௥

+ 𝑓ௗ௧௬௣௘
𝑓ௗ𝑢௥௘௙  (92)

Where 𝑣ො௧௦௥
 is the representative radial component of the terminal settling velocity 

and 𝑓ௗ is a dimensionless rapid redeposition factor [-]. It should be observed that 
the tangential velocity at the reference point may be positive or negative, 
depending on the cutting scenario. In an under-cut scenario 𝑓ௗ௧௬௣௘

= −1, resulting 
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in a negative value for 𝑣ොఏ௥௘௙
. To prevent negative values for rapid redeposition, a 

limitation is set such that the tangential velocity will always remain positive 
(𝑣ොఏ௥௘௙

> 0). The value of 𝑣ො௧௦௥
 is determined such that an increase in the cutter 

inclination angle increases the radial component of the settling velocity as shown 
in equation (93). The radius that gives the tangential velocity 𝑢௥௘௙ is chosen as 𝑟௧,ଶ 
since rapid redeposition effects will be governing in disc 2. 

𝑣ො௧௦௥
=

𝑣௧௦

cos 𝜆
 (93)

𝑢௥௘௙ = 𝜔𝑟𝑡,𝑟𝑒𝑓 = 𝜔𝑟𝑡,2 (94)

The tangential velocity from equation (92) is be used to determine the velocity of 
the rapid redeposition flow. To determine the outflow area for rapid redeposition, 
the horizontal length 𝑥ଶ is used that was introduced in equation (61). The disc 
height 𝑏ଶ is the second metric that enables the computation of a surface plan 
orthogonal to the radial component of the settling velocity. 

𝐴ௗ = 𝑥ଶ𝑏ଶ (95)

Velocity ratio 
The governing forces for rapid redeposition are the suction force and gravitational 
force. A characteristic velocity ratio can be established that represents the 
dynamics between these forces in the form  

𝑣ො௥௔௧௜௢ =
𝑣௠

𝑣ො௧௦௥

 (96)

The axial component of the terminal settling velocity is considered negligible since 
this component is generally much smaller than the mixture velocity. The square of 
the velocity ratio can be taken as a representation of the dynamics introduced by 
the suction and gravitational force. The volumetric flow rate for rapid redeposition 
is established by taking an estimate of redepositing material and subsequent scaling 
with the velocity ratio squared. The result is multiplied by a dimensionless factor 
that incorporates the height of the bank and the distance of the bank to the suction 
mouth. The result is given in equation (97). 

𝑄ௗ = 𝑣ොఏ௥௘௙
𝐴𝑑 ቆ

𝑣௠

𝑣ො௧௦௥

ቇ

ଶ 𝑏 −
𝑧௣௘௡

2
ℎ

 (97)

4.2.6 Mixture flow 
The mixture flow rate is trivially found through multiplication of the suction pipe 
area and the mixture velocity 

𝑄௔௠
= 𝜋𝑅௣௜௣௘

ଶ 𝑣௠  (98)

Where 𝑅௣௜௣௘ is the radius of the suction pipe [m], 𝑣௠ the mixture velocity measured 
in the suction pipe [m/s]. 
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4.2.7 In situ dredge flow 
Equation (99) demonstrates a straight forward method to calculate the flow that 
enters the cutter head. 

𝑄௖ = 𝐴௖௨௧𝑣௦ (99)

Where 𝐴௖௨௧ the projected bank surface from equation  (56) and 𝑣௦ the swing speed 
of the cutter [m/s].  

Neglected flow terms 
In reality, the lateral movement of the cutter head implies a flow of water from the 
front to the back of the cutter. It is assumed that these flows cancel out and do not 
contribute significantly to the mass balance. 

4.2.8 Solving continuity of volume 
The volumetric flow rate balance of equation (72) can be substituted with the 
volumetric flow rates found in equations (83), (89), (90), (97), (98) and (99) which 
are repeated for clarity.  

𝑄௥ଵ
= Φ෡𝑓ఊଵ

𝑏ଵ𝜔𝑟ଶ

𝑄௥ ଶ
= 2𝜋𝜔

⎝

⎜
⎛ 𝑓ఊଶ

𝑐௖𝑄௖

2𝜋𝜔𝑓ఊଵ
𝑏ଵ +

𝑄ௗ

𝛷ଵ𝑟௧,ଵ
ଶ +

𝑄௔௠

𝛷ଵ𝑟௧,ଵ
ଶ

൬
𝜌௤

𝜌௪

− 1൰ + 𝑓ఊଶ
𝛷ଵ𝑟௧,ଵ

ଶ − 𝛷ଶ𝑟௧,ଶ
ଶ 𝑓ఊଶ

⎠

⎟
⎞

𝑏ଶ

𝑄௔௡௢௦௘
=

𝜋

2
𝑅௣௜௣௘

ଶ 𝑣௠

𝑄ௗ = 𝑣ොఏ௥௘௙
𝑥ଶ𝑏ଶ ቆ

𝑣௠

𝑣ො௧௦௥

ቇ

ଶ 𝑏 −
𝑧௣௘௡

2
ℎ

𝑄௔௠
= 𝜋𝑅௣௜௣௘

ଶ 𝑣௠

𝑄௖ = 𝐴௖௨௧𝑣௦

(100)

Substitution of the volumetric flow rates in the continuity equation results in a 
laborious equation. The equation can be reorganized to express the cutter height 
𝑏ଵ in the form of a quadratic polynomial as shown in equation (101). A full 
derivation of equation (101) is provided in section Appendix F.3. The height of disc 
1 cannot drop below zero hence a condition is set for 𝑏ଵ ≥ 0 in the model. 

𝛷2𝜋𝜔 ቂቀ𝑓ఊଶ
𝑓ఊଵ

+ 𝑓ఊଵ

ଶቁ 𝑟௧,ଵ
ଶ − 𝑓ఊଶ

𝑓ఊଵ
𝑟௧,ଶ

ଶ ቃ 𝑏ଵ
ଶ

−2𝜋𝜔𝑓ఊଵ
ቂ𝛷𝑓ఊଶ

൫𝑟௧,ଵ
ଶ − 𝑟௧,ଶ

ଶ ൯𝑏 + ൫𝑄௔௡௢௦௘
+ 𝑄௖ − 𝑄ௗ − 𝑄௔௠

൯ቃ 𝑏ଵ

+ ൥𝑓ఊଶ
𝑐௖𝑄௖ ൬

𝜌௤

𝜌௪

− 1൰ + ൭𝑓ఊଵ
+ 𝑓ఊ

ଶ
ቆ1 −

𝑟௧,ଶ
ଶ

𝑟௧,ଵ
ଶ ቇ൱ ൫𝑄ௗ + 𝑄௔௠

൯൩ 𝑏ଵ

−𝑓ఊଶ
ቈ൬

𝜌௤

𝜌௪

− 1൰ 𝑐௖𝑄௖ + ቆ1 −
𝑟௧,ଶ

ଶ

𝑟௧,ଵ
ଶ ቇ ൫𝑄ௗ + 𝑄௔௠

൯቉ 𝑏

−
1

𝛷2𝜋𝜔𝑟௧,ଵ
ଶ ൫𝑄௔௡௢௦௘

+ 𝑄௖ − 𝑄ௗ − 𝑄௔௠
൯൫𝑄ௗ + 𝑄௔௠

൯

= 0

 (101)
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Should all parameters in the above equation be known, then quadratic polynomial 
can be solved using the quadratic formula. An interpretation of the dynamics that 
result from this polynomial is difficult. Let us consider the case where only water is 
flowing through the cutter head, i.e. 𝜌௤ = 𝜌௪. The above equation then reduces to 
a less complex equation where the width 𝑏ଵ can be computed directly. 

𝑏ଵ = ൞

Φ෡𝑓ఊଶ
൫𝑟௧,ଵ

ଶ − 𝑟௧,ଶ
ଶ ൯𝑏𝜔 + 𝑄௖ + 𝑄௔௠

− 𝑄௔௡௢௦௘
− 𝑄ௗ

Φ෡ ቀ𝑓ఊଵ
+ 𝑓ఊଶ

ቁ 𝑟௧,ଵ
ଶ 𝜔 − Φ෡𝑓ఊଶ

𝑟௧,ଶ
ଶ 𝜔 

, 𝑏ଵ ≥ 0

0, 𝑏ଵ < 0

 (102)

This formulation suggests that an increase in the mixture velocity 𝑣௠ results in a 
decrease of the width 𝑏ଵ and therefore a decrease in centrifugal advection spillage. 
Likewise, according to the model, an increase in the swing speed 𝑣௦ leads to an 
increase in spillage in this spillage type. 

Implicit problem 
Equations (101) and (102) are implicit because the radii 𝑟௧,ଵ

ଶ  and 𝑟௧,ଶ
ଶ  of the cutter 

depend on the disc height 𝑏ଵ and 𝑏ଶ respectively. The solution to this implicit 
problem is found by iteratively evaluating to approximate 𝑏ଵ.  

4.3 Spillage computation 

When the disc height 𝑏ଵ is known, the spillage results in the model can be obtained. 
Spillage 𝑆 is a dimensionless number [-] which is often expressed in terms of a 
percentage. For the computation of spillage, the concentrations of the respective 
flows is to be obtained. 

4.3.1 Centrifugal advection concentration 
It was assumed that the concentration inside the cutter is homogenous. Since the 
density of centrifugal advection 𝑄௥ଵ is essential to the pressure and thereby density 
assumptions, it is evident that the concentration 𝑐௥ for centrifugal advection should 
not be adapted (𝑐௥ = 𝑐௩௦). The concentration of centrifugal advection is equal to 
the average concentration. Hence, equation (73) for the spatial concentration 
inside disc 1 

𝑐௥ = 𝑐௩௦ =
𝑐௖𝑄௖

𝑄௥ଵ
+ 𝑄ௗ + 𝑄௔௠

 (103)

4.3.2 Rapid redeposition concentration 
It can be reasoned that the volumetric flow rate of rapid redeposition is of similar 
magnitude as the in situ dredge flow rate. Therefore, heterogeneous concentration 
is obtained by adapting the concentration 𝑐ௗ [-]. The dredge flow rate 
concentration is an order higher than the spatial concentration and can be obtained 
from equation  (104).  

𝑐௖ =
𝜌௕ − 𝜌௪

𝜌௤ − 𝜌௪
 (104)
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Figure 4.8 (left) schematically depicts the relevant velocities that determine the 
concentration of rapid redeposition. The concentration of rapid redeposition is 
approximated by considering a minimum concentration equal to 𝑐ௗ,௠௜௡ [-] and a 
maximum concentration equal to 𝑐ௗ,௠௔௫ [-]. The location of the spectrum between 
these concentrations is found by the velocity ratio 𝑣ො௥௔௧௜௢ which was also found in 
equation (96). Figure 4.8 (right) depicts this method.  

It is assumed that the ratio of a particle’s terminal settling velocity over its 
velocity provides a useful dimensionless coefficient that scales the 
concentration of the rapidly redepositing flow.  

The concentration of rapid redeposition 𝑐ௗ  is obtained through 

𝑐ௗ = 𝑐௩௦ + 𝑓௖೏
൫𝑐ௗ,௠௔௫ − 𝑐ௗ,௠௜௡ ൯ ቆ

𝑣௠

𝑣ො௧௦௥

ቇ

ଶ

 (105)

Where 𝑓௖೏
 is the rapid redeposition concentration factor [-]. The concentration is 

limited by the magnitude of 𝑐௖  since the particles cannot be packed tighter than in 
the bank. The maximum concentration 𝑐ௗ,௠௔௫ is obtained by setting the mixture 
velocity to zero in the mass flow rate balance. The ends of the spectrum are 
determined as 

𝑐ௗ,௠௔௫ = ൞

𝑐𝑐𝑄𝑐 − 𝑐𝑟𝑄𝑟1

𝑄𝑑

, 𝑐𝑑,𝑚𝑎𝑥 ≤ 𝑐𝑐

𝑐𝑐, 𝑐𝑐 < 𝑐𝑑,𝑚𝑎𝑥

 (106)

𝑐ௗ,௠௜௡ = c୴ୱ (107)

   
Figure 4.8: Velocity approximations for a fluid element at the cutter bottom (left) and concentration scaling for rapid 
redeposition (right). 

With the special concentration 𝑐௩௦ unchanged, the increase in rapid redeposition 
concentration can only be explained by a drop in the concentration of solids in the 
mixture flow. Therefore, it is of interest to monitor the concentration 𝑐௠ as shown 
in equation (106). 

𝑐ௗ,௠௔௫ 

𝑐ௗ,௠௜௡ 

ቆ
𝑣௠

𝑣ො௧௦௥

ቇ

ଶ

 



66 
 

𝑐௠ =
𝑐௖𝑄௖ − 𝑐௥𝑄௥భ

− 𝑐ௗ𝑄ௗ

𝑄௠
   (108)

4.3.3 Spillage numbers 
In accordance with the assumptions of the model, the two types that contribute to 
spillage as centrifugal advection 𝑆ଵ [-] and rapid redeposition [𝑆ଶ]. The total spillage 
rate 𝑆 and its components are found as given in equations (109)-(111). 

𝑆ଵ =
𝑐௥𝑄௥ଵ

𝑐௖𝑄௖
 (109)

𝑆ଶ =
𝑐ௗ𝑄ௗ

𝑐௖𝑄௖
 (110)

𝑆 = 𝑆ଵ + 𝑆ଶ (111)

4.4 Implementation template 

The objective of the model is to compute the volumetric flow rates that underlie 
the continuity equation. For continuity to hold, the correct value of 𝑏ଵ is to be 
found. This section provides an overview of the chronological steps a user can take 
to find a solution for 𝑏ଵ and subsequently to compute spillage rates. The essence of 
the solution is to iterate over the value of 𝑏ଵ until an accuracy threshold is met. 
Straight forward spillage rate computations then complement the model. The 
template is given in Figure 4.9. A reference is given for equations. 

1 Input 𝐷௥௜௡௚   
2 Input 𝐷௡௢௦௘   
3 Input 𝐷௣௜௣௘  
4 Input 𝑏  
5 Define function for r௧,୸ (49) 
6 Input 𝜉  
7 Input 𝜆  
8 Input ℎ  
9 Input 𝑙௦௧௘௣  
10 Compute 𝑧௧௜௣  (52) 
11 Compute 𝑧௣௘௡ (53) 
12 Compute geometry  (54) 
13 Define function for r௕,୸ (55) 
14 Define function for Δrb,z (60) 
15 Define function for 𝑥௭ (61) 
16 Define function for γ୸  (62) 
17 Input initial 𝑏෠ଵ estimate  
18 Set convergence coefficient 𝑟𝑒𝑙𝑎𝑥 = 1E-2 
19 Set accuracy coefficient 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 =1E-4 
20 While 𝑒𝑟𝑟𝑜𝑟 > 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑  
21    Compute 𝑏ଶ 63 
22    Input 𝜔   
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23    Input Φ෡  
24    Compute r௧,ଵ and r௧,ଶ Step 5 
25    Compute 𝛾ଵ and 𝛾ଶ  Step 16 
26    Compute 𝑓ఊଵ

 and 𝑓ఊଵ
  (63) 

27    Compute 𝑄௥ଵ
 (83) 

28    Input 𝑄௔௡௢௦௘
 (90) estimate 

29    Input 𝑣௧௦  
30    Compute 𝑣ො௧௦௥

 (93) 
31    Input 𝑓ௗ  
32    Input 𝑓ௗ௧௬௣௘

  
33    Compute 𝑢௥௘௙ (94) 
34    Compute 𝑣ොఏ௥௘௙

 (92) 
35    Compute 𝑥ଶ Step 15 
36    Compute 𝐴ௗ (95) 
37    Compute 𝑣ො௥௔௧௜௢ (96) 
38    Compute 𝑄ௗ (97) 
39    Input 𝑣௦  
40    Compute 𝐴௖௨௧ (56) 
41    Input 𝑣௠  
42    Compute 𝑄௔௠

 (98) 
43    Compute 𝑄௖ (99) 
44    Compute 𝑏ଵ (101) 
45    𝑒𝑟𝑟𝑜𝑟 = ห𝑏ଵ − 𝑏෠ଵห  

46    𝑏෠ଵ = 𝑏෠ଵ(1 − 𝑟𝑒𝑙𝑎𝑥) + 𝑏ଵ(𝑟𝑒𝑙𝑎𝑥)  
47 Compute 𝑄௥ ଶ

= 𝑄ௗ + 𝑄௔௠
+ 𝑄௥భ

− 𝑄௔௡௢௦௘
− 𝑄௖  

48 Input 𝜌௤  
49 Input 𝜌௕  
50 Input 𝜌௪  
51 Compute 𝑐௖ (104) 
52 Compute 𝑐௥  
53 Compute 𝑐ௗ,௠௔௫ (106) 
54 Compute 𝑐ௗ,௠௜௡ (107) 
55 Input 𝑓௖೏

  
56 Compute 𝑐ௗ (105) 
57 Compute 𝑐௠ (108) 
58 Compute 𝑆ଵ (109) 
59 Compute 𝑆ଶ (110) 
60 Compute 𝑆 (111) 
61 End  

Figure 4.9: Implementation template. 
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4.5 Conclusion 

In conjunction with the relevant physical parameters, what concepts and 
assumptions enable a CSD spillage engineering model? 

A spillage model can be set up by taking three steps. First, an advanced geometrical 
description of the cutter head-bank interface can be derived. Important parameters 
are the cutter radius and curvature, cutter height, bank height, bank slope angle, 
cutter inclination angle and the step size of the cutting pattern. Second, a potential 
flow model can be set up based on flow continuity in the cutter. The cutter is split 
into two discs with disc 1 at the cutter ring and disc 2 at the nose. Volumetric flow 
rates are determined for centrifugal advection flow, radial as well as axial inflow 
through the nose, rapid redeposition flow, mixture flow and an in situ dredge flow. 
The model strategy is outlined below 

1. Among other assumptions, the pump effects of the leading edge of the cutter 
blade are considered negligible. This allows for the simplification of Euler’s 
pump equation to a pump affinity law that expresses discharge as a function of 
radial pressure difference. This affinity law and the height of disc 1 are used to 
approximate centrifugal advection flow near the ring.  

2. For the radial inflow at the nose, the assumption is made that the true pressure 
at the trailing edge of the cutter is equal to the pressure that is generated in 
disc 1. As a consequence, the difference in estimated pressure gradients 
between the discs drives an inflow at disc 2. Again, the pump affinity law is used 
in conjunction with density considerations to provide an estimate of the flow 
rate into disc 2. 

3. Axial inflow at the nose is added as an optional component in the flow balance 
but is assumed negligible due to geometrical considerations. 

4. A spillage flow for rapid redeposition is found as a function of the rotational 
velocity, cutting scenario, particle settling velocity, mixture velocity and 
geometrical parameters for a reference point in the cutter. 

5. Straight forward expressions are obtained for the mixture flow rate where the 
user inputs the mixture velocity. 

6. The swing velocity is an input parameter to determine the in situ dredge flow 
rate. 

The resulting continuity balance poses an implicit problem and is solved iteratively. 
The third step in the model is to rewrite the mass flow rate balance to find the 
concentrations of outgoing flows Gravitational acceleration is expected to affect 
the entrainment rate of particles into the axial flow and increases the concentration 
of rapid redeposition. Spillage is computed as the mass flow ratios of the spillage 
components to the mass flow rate of incoming bank material. Table 4.1 provides an 
overview of the user input parameters as well as model coefficients. 

Table 4.1: Overview of input parameters 

Parameter Symbol Unit General estimate 
Diameter of the cutter ring 𝐷௥௜௡௚ m 3 
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Diameter of the cutter nose 𝐷௡௢௦௘  m 2.5 
Diameter of the suction pipe 𝐷௣௜௣௘  m 1 
Height of the cutter head 𝑏 m 2.5 
Bank slope angle 𝜉 rad 30 deg ≈ 0.5 rad 
Cutter inclination angle 𝛾 rad 30 deg ≈ 0.5 rad 
Bank height ℎ m 1 
Step size 𝑙௦௧௘௣ m 1.5 
Rotational velocity 𝜔 rad/s 30 rpm = 𝜋 rad/s 
Terminal settling velocity 𝑣௧௦ m/s 𝑓(𝑑ହ଴) 
Swing velocity 𝑣௦ m/s 0.2 
Mixture velocity 𝑣௠ m/s 1 
Quartz density 𝜌௤ Kg/m3 2650 
Bulk density (wet) 𝜌௕ Kg/m3 1700 
Water density 𝜌௪ Kg/m3 1025 
Pump flow number  Φ෡  [-] 𝑓(𝑑ହ଴) 
Rapid redeposition factor 𝑓ௗ - 0.012 
Cutting scenario factor 𝑓ௗ௧௬௣௘

 - -1 (under cut) 
1 (over cut) 

Rapid redeposition concentration 
factor 

𝑓௖೏
 - 20 
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5 Results and discussion 
This research aims to find a grain size-agnostic model. Previous chapters have 
presented a series of derivations, model concepts and assumptions. These findings 
culminated in an engineering model named the Sand-Rock Cutting Spillage Model 
(SRCSM). In essence, SRCSM is a potential flow model with empirical closing 
relations based on the assumptions from chapter 4. The last sub-question in this 
research reads 

Based on the identified physical parameters, concepts and assumptions, how 
does the model perform relative to experimental data? 

The first iteration of the results is focused on fitting the model for sand. Next, the 
calibration is performed for rock. For all calibration, the dig-swing is considered. 

5.1 Calibration number 

The pressure gradient is considered the most dominant force in the model (see 
section 0). In section 3.2.2 it was described that particle trajectories in a cutter are 
in part governed by the centrifugal force 𝐹௖௙ in the cutter [N] and the product of 
the particle volume and radial pressure gradient in the suction mouth 𝐹௦ [N]. 
Equation (4) was derived and is repeated here for clarity 

𝐹௖௙

𝐹௦

∝
𝜌௣

𝜌௪

ቆ
𝜔𝑅௥௜௡௚

ଷ

𝑣௠𝑅௣௜௣௘
ଶ ቇ

ଶ

 (112) 

Where 𝜌௣ is the particle density [kg/m3], 𝜌௪ is the water density [kg/m3], 𝑅௥௜௡௚ 
and 𝑅௣௜௣௘ are the cutter ring and pipe radii [m] and 𝑣௠ is the mixture velocity [m/s]. 
In work by Steinbusch et al. (1999) and Dekker et al. (2003), the inverse term of the 
expression between brackets in equation (112) was identified as a characteristic 
flow number for the ratio of the cutter-induced velocity and the suction velocity. 
This term was named a flow number and denoted as θ (please note this number is 
different from the pump flow number Φ෡ ). Similar versions have been used for 
spillage and flow phenomena (Mol (1977a); Miltenburg (1983); Den Burger (2003); 
Nieuwboer et al. (2017)). Calibration of the SRCSM is chosen to be performed using 
the inverse of the flow number, defined as 

𝜃෠ = 𝜃ିଵ =
𝜔𝑅௥௜௡௚

ଷ

𝑄௔௠

 (113) 

Nieuwboer et al. (2017) suggest that typical inverse flow numbers in the industry 
lie between 1.6 and 3.7. 

5.2 Calibration data 

Data from the cutters in the field is difficult to obtain. Density meters in the suction 
pipe only indicate production. Since the meters are typically located far from the 
cutter head there is increased uncertainty and a delay in feedback.  
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The SRCSM is evaluated using comprehensively upscaled experimental data from 
Miltenburg (1983, as cited in Den Burger (2003)) for prototype sand particles 
(𝑑ହ଴=180E-3 [mm]) and Den Burger (2003) for prototype rock particles (𝑑ହ଴=80 
[mm]).  

Caution should be observed since the spillage data for rock are obtained 
synthetically. The method is pictured in Figure 5.1 (right). First, Den Burger set the 
angular velocity of the cutter at a 30 [rpm] equivalent. Then, the mixture velocities 
were varied between 2 and 5 [m/s] and production was measured. The spillage 
rates were set out against the inverse flow number. Several polynomials were fitted 
through the production rates 𝑃 [%] which exhibited a maximum spill rate for each 
mixture velocity. The production curve for rock was then determined by curvefitting 
a line tangential to the polynomials that exhibit maximums of the individual mixture 
velocity curves. In this research, spillage is computed from the production as 𝑆 =

1 − 𝑃 and is therefore measured in [%]. The spillage data for the experiments with 
sand were measured directly.  

Table 5.1: Experiment parameters for Miltenburg (1983) and Den Burger (2003).  
1Estimated value. 

  Sand (Miltenburg, 1983) Rock (Den Burger, 2003)  
Parameter Symbol Prototype Experiment Prototype Experiment Units 
Particle diameter 𝑑ହ଴ 180E-3(1) 180E-3 80 10 mm 
Bed concentration 𝑐௖ 0.4 0.4 0.42 0.42 - 
Quartz density 𝜌௤ 2650 2650 2200 2650 Kg/m3 
Bulk density (wet) 𝜌௕,௪௘௧  2000 2000 2200 2200 Kg/m3 
Settling velocity  𝑣௧௦ 0.02 0.021 0.73 0.73 m/s 
Drag coefficient 𝐶ௗ௥௔௚ 9  91 0.4 0.4 - 
Diameter of the cutter ring 𝐷௥௜௡௚ 2.80 0.40 3.12 0.4 m 
Diameter of the cutter nose 𝐷௡௢௦௘ 2.11(1) 0.18 2.11(1) 0.28 m 
Diameter of the suction pipe 𝐷௣௜௣௘  0.7 0.1 0.95 0.1 m 
Height of the cutter head 𝑏 2.5(1) 0.265 2.50(1) 0.265 m 
Swing velocity 𝑣௦ 0.2 0.1 0.2 0.1 m/s 
Cutoff area 𝐴௖௨௧ 1.4 0.023 1.4 0.03 m2 
Bank contact angle 𝛾 𝜋 2⁄  𝜋 2⁄  𝜋 2⁄  𝜋 2⁄  rad 
Cutter inclination angle 𝜆 45 45 45 45 deg 
Rotational velocity 𝜔 30 100 30 90 rpm 
Cutting scenario 𝑓ௗ೟೤೛೐

 Under-cut (𝑓ௗ೟೤೛೐
= −1) - 

 
For calibration of the model, 𝑅௥௜௡௚ is chosen as 3.12 [m] and the bank cut off area 
is set at 𝐴௖௨௧ = 1.4 [m2]. The shape of the bank is determined such that the 
experiment cross section is approximated. Spillage data is highly scarce for over-cut 
scenarios; hence the under-cut scenario is chosen for calibration. It should be noted 
that the cutter inclination angle is relatively large at 45 degrees. Typical cutter 
angles are 30 degrees. Additional caution should therefore be observed when 
applying the model for small cuter inclination angles. 
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Figure 5.1: Photo of experimental cutter head (left) and production curve (right). 
From top left to bottom right in the left image: open cutter, closed cutter, short back plate and long back plate used by 
Miltenburg (1983). The right plot depicts the synthetic production curve approximation for rock by Den Burger (2003). 

5.3 Results for sand 

The settling velocity for sand is equal to 0.02 [m/s] and is therefore of negligible 
influence for sand with a 𝑑ହ଴ of 180 micron. For this reason, the effect of rapid 
redeposition can be neglected. With spillage reduced to centrifugal advection only, 
the relevant calibration parameter is the pump flow number Φ෡ . The pump flow 
number was found to be 0.58. The spillage results for sand are presented in Figure 
5.2 (left).  

Figure 5.2: Sand spillage results (left) and magnitude of error (right). 
Reference data is obtained from laboratory experiments by Miltenburg (1983). Typical operation range is indicated with the 
purple dash-dotted line. 

A high similarity can be observed between the curvature of SRCSM and the 
experimental data. The dynamics of centrifugal advection appear to be adequately 
captured by the model. For a cutter with a diameter of 3.11 [m] the onset of spillage 
occurs at a mixture flow of around 5 [m3/s]. The model error is given in the right 
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plot of Figure 5.2 and is expressed in percentage point [pp]. A large error can be 
observed at θ෠ = 3. The curvature of the calibration data suggests that the 
experimental data exhibits an outlier at this inverse flow number. The model 
deviation is therefore neglected. The remaining errors, especially within the region 
of interest, are all within the 5 [pp] bandwidth, indicating that the model is in 
agreement with the data. 

5.3.1 Flow Rates and concentrations for sand 
Figure 5.3 displays the volumetric flow rates and concentrations for sand. In 
accordance with expectations, centrifugal advection flow increases for higher 
inverse flow numbers. Centrifugal advection significantly increases the total in- and 
outflow of the cutter, which would otherwise be dominated by the mixture flow. 
At θ෠ = 2.5 an interesting onset of 𝑄௥ଵ can be observed. There appears to be a 
smooth transition from inflow to outflow at the cutter ring which is also visible at 
the experimental data. The model captures the dynamics of centrifugal advection 
fittingly. The concentration inside the cutter  is stable at approximately 0.025 with 
an associated cutter density and mixture density of 1065 [kg/m3].     

Figure 5.3 Volumetric flow rates (left) and concentrations (right) for sand. 
Typical operation range is indicated with the purple dash-dotted line. 
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5.3.2 Axial flow through the nose 
The model enables the addition of an axial flow through the nose. It was 
hypothesized however that this flow only exists when the cutter rotates in water. 
Low through the nose is heavily impeached by the breach as well as the compact 
geometry of the cutter. Axial flow is detrimental to the model’s performance as can 
be seen in Figure 5.4. The increase in axial flow induces more radial advection at 
low inverse flow numbers because the dredge pump is not capable of entraining 
this additional flow. The right plot clearly demonstrates that axial flow should be 
neglected. 

 

Figure 5.4 Volumetric flow rates (left) and sand spillage results for sand (right) with axial flow through the nose. 
Typical operation range is indicated with the purple dash-dotted line. 

5.1 Results for rock 

The results for rock are presented in Figure 5.5 (left). Rapid redeposition is to be 
calibrated for rock. In addition to the pump flow number, the model requires a 
value for the rapid redeposition factor and the rapid redeposition concentration 
factor. The primer scales the influence of the rotational velocity of the cutter. The 
latter scales the magnitude of the redeposition concentration between the average 
spatial concentration and bank concentration. These factors and the pump flow 
number are found to be 

𝑓ௗ = 0.012
𝑓௖ௗ

= 20

𝜃෠ = 0.92

  

Rapid redeposition proves significant for high values of the inverse flow number, 
associated with low mixture velocities in the suction pipe, which was hypothesized 
during development. Contrary to centrifugal advection, the rate of change of rapid 
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redeposition rises with increasing inverse flow numbers. Rapid redeposition 
appears to be inversely proportional to the mixture velocity. The model is in high 
agreement with the calibration data. The rapid redeposition component 
complements centrifugal advection satisfactorily as the plot fits the curvature of 
the spillage data. The errors that are displayed in Figure 5.5 (right) are within the 5 
percentage point margins. 

 
Figure 5.5: Rock Spillage results (left) and magnitude of error (right). 
Reference data is obtained from laboratory experiments by Den Burger (2003). Typical operation range is indicated with the 
purple dash-dotted line. 

5.1.1 Flow rates and concentrations for rock 
The results for the flow rates and concentrations when cutting rock are given in 
Figure 5.6. The onset for centrifugal advection is at θ෠ = 2 despite the hypothesis 
that rock particles are less impacted by drag in the centrifugal direction. High 
centrifugal advection for rock-type particles may be explained by arguing that these 
particles are also less affected by drag induced by the mixture velocity. Centrifugal 
advection for rock may take place relatively close to the suction mouth. With the 
given redeposition factors, the volumetric flow rate for redeposition is small. 
However, Figure 5.6 (indicates) that the concentration is relatively high in 
comparison to the spatial concentration in the cutter. It can be seen that the 
concentration of the bank is higher for rock than for sand. At θ෠ = 5.5, the model 
exhibits a small discontinuity in the redeposition concentration. This can be 
explained by the method used to calculate the redeposition concentration from 
equation (106). The model approaches the value of 𝑐ௗ,௠௔௫ which is equal to the 
bank concentration. As a result, the concentration increase is limited. In spite of 
this limit, the amount of solids that is modelled downwards is so large that this 
would only be possible if solids would be flowing out of the mixture pipe. Hence the 
proximity with 𝜃෠ = 6 where mixture concentration drops below zero. The model 
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concentrations for the mixture are similar to concentrations found in experiments 
by Den Burger (0.01 – 0.05 [-]). 

Potentially, the volumetric flow rate can be adapted to further detail. Since this 
model artifact is outside the region of interest, the relatively small discontinuity is 
accepted. 

Figure 5.6 Volumetric flow rates (left) and concentrations (right) for rock. 
Typical operation range is indicated with the purple dash-dotted line. 

5.2 Expression for pump flow number  

Based on calibration of the Sand-Rock Cutting Spillage Model for sand and rock 
data, the results indicate that the pump (cutter) flow number can be related to a 
relevant particle property. This is the last parameter that is unknown to the user 
and can be calculated according to, for instance 

Φ෡ = 0.57 + 0.48𝑣௧௦  

The pump flow number is higher for larger particles. The physical interpretation of 
this relationship is that rock particles are less subject to drag forces in the radial 
direction. Therefore, the ratio of the radial velocity over the axial velocity must be 
larger for rock for the model to be in agreement with the data. 

5.3 Sensitivity analysis 

In alignment with the model property to be informative to its user, a sensitivity 
analysis is performed. Important user parameters are the swing velocity, step size 
and cutter inclination angle.  
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5.3.1 Spillage sensitivity to swing velocity 
The model’s sensitivity to swing velocity is evaluated. An increase in swing velocity 
typically increases spillage rates since adequate mixing is impeded. This is not 
explicitly modeled; its implied effect however was noticed in equation (102). Figure 
5.7 displays the spillage centrifugal advection sensitivity to swing velocity for sand 
and rock. The plots demonstrate that for relevant inverse flow numbers, a 1 [%] 
increase in swing velocity may result in more than 3 (sand) or 4 (rock) [%] 
increments in spillage. The reverse effect is observed for a drop in swing velocity. 
The symmetry of this sensitivity indicates that the model functions well. The effect 
for sand is higher than for rock. This can be explained by the fact that sand particles 
may now be more heavily advected out of the cutter in the lateral direction. It was 
found that that rapid redeposition was not significantly affected by the swing 
velocity. It will be recommended to adapt the model to better incorporate the 
effects of mixing to rapid redeposition. 

 

Figure 5.7: Model sensitivity to swing velocity for centrifugal advection for sand (left) and rock (right). 
Typical operation range is indicated with the purple dash-dotted line. The reference swing velocity 𝑣௦ = 0.2 [m/s] and is 
increased and decreased with 1 [%]. 

5.3.1 Spillage sensitivity to step size 
An increase of the step size implies a deeper penetration into the bank. The spatial 
concentration in the cutter increases. The dynamics of the pressure assumption 
from section 4.2.3 can be used to explain how this effects spillage. The density ratio 
in equation (86) suggest that the actual specific flow rate q୰ଶ at disc 2 increases 
when the higher concentrations. 

q୰ଶ
=

Ψ෡ଵ

Ψ෡ଶ

ρ୫

ρ୵

Φ෡ ଶ

Φ෡ଵ

fஓଶ

fஓଵ

q୰ଵ
− qො ୰ଶ
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From axial inflow at the nose it was concluded that a larger inflow increases 
centrifugal advection for low inverse flow numbers. Figure 5.8 (left) indicates that 
cutting 20 [%] deeper does increase spillage rates for centrifugal advection with 
potentially more than 20 [%]. The right plot indicates that rapid redeposition 
increases decreases for longer step sizes. Equation (97) is repeated for clarity.  

𝑄ௗ = 𝑣ොఏ௥௘௙
𝐴𝑑 ቆ

𝑣௠

𝑣ො௧௦௥

ቇ

ଶ 𝑏 −
𝑧௣௘௡

2
ℎ

 

The latter ratio is indicative of the distance to the cutter mouth versus the bank 
height. With the penetration depth 𝑧௣௘௡  proportional to the step length, it can be 
concluded that rapid redeposition rates should drop with increasing step size. The 
model appears to exhibit this behavior well, as shown in Figure 5.8 (right). An 
increase in step size of 20 [%] results in a decrease of the spillage rates of about 6 
[%]. The large sensitivity step of 20 [%] is chosen to demonstrate the non-linear 
results that are obtained from the advanced geometrical description of the cutter 
head. For different bank parameters, the curvature of the sensitivity for rapid 
redeposition may differ. 

 

Figure 5.8: Model sensitivity to step length for centrifugal advection (left) and rapid redeposition (right) for rock. 
Typical operation range is indicated with the purple dash-dotted line. The reference swing velocity 𝑙௦௧௘௣ = 0.2 [m/s] and is 
increased and decreased with 20 [%]. 
 

5.3.2 Spillage sensitivity to cutter inclination angle 
Large inclination angles increase the vertical distance of particles to the suction 
mouth. Figure 5.9 depicts the sensitivity analysis for the cutter inclination angle. For 
centrifugal advection (left), the sensitivity to small changes of the cutter inclination 
angle is considered negligible since this effect is not incorporated. For rapid 
redeposition (right) the results indicate that a minor 1 [%] increase in inclination 
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angle leads to more than 6 [%] more spillage. These effects are significant and in 
accordance with the hypothesis that was made in section 3.2.3. 

 

Figure 5.9: Model sensitivity to cutter inclination angle for centrifugal advection (left) and rapid redeposition (right) for rock. 
Typical operation range is indicated with the purple dash-dotted line. The reference inclination angle 𝜆 = 45 [deg] and is 
increased and decreased with 1 [%]. 
 

5.3.1 Spillage sensitivity to slope angle 
The slope angle 𝜉 of the bank determines the size of 𝐴௖௨௧. Figure 5.12 depicts the 1 
[%] sensitivity of the model to the slope angle. Most interesting, an increase in slope 
angle reduce spillage for redeposition. The center of gravity of the cut surface is 
removed further from the cutter for increasing inclination angles. This dynamic 
appears to be adequately captured by the geometrical description of the bank. 
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Figure 5.10: Model sensitivity to the slope angle for centrifugal advection (left) and rapid redeposition (right) for rock. 
Typical operation range is indicated with the purple dash-dotted line. The reference swing velocity 𝜉 = 45 [deg] and is 
increased and decreased with 1 [%]. 
 

5.3.1 Spillage sensitivity to bank height 
In certain occasions, dredge operators will have to determine optimal productivity 
for cutting large bank heights. A choice can be made between swinging either once 
or twice per step. Larger bank heights are exclusive for sand cutting since due to 
the torque limitations of the cutter and for wear considerations. For this decision 
an analysis of the sensitivity to the bank height ℎ is provided in Figure 5.12. The 
total spillage rate and sensitivity for sand equals that of the centrifugal advection 
component. It can be observed that a 20 [%] increase in bank height increases 
spillage with approximately 5 to 40 [%[ in the region of interest.   
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Figure 5.11: Model sensitivity to the bank height for centrifugal advection for sand. 
Typical operation range is indicated with the purple dash-dotted line. The reference swing velocity 
ℎ = 1 [m] and is increased and decreased with 1 [%]. 

 

5.3.2 Sensitivity overview 
An overview of the overall sensitivity to cutting parameters is given in Table 5.2. 
When cutting with a ring radius 𝑟௥௜௡௚ = 3.11 [m], a representative mixture flow rate 
of 4.5 [m3/s] is chosen which corresponds to an inverse flow number of 𝜃෠ =2.77. 

Table 5.2: Sensitivity to relevant parameters at 𝜽෡ = 𝟐. 𝟕𝟕. 
1Considered a model artifact. Sensitivity measured at.  

 Sand, 𝒅𝟓𝟎=180E-3 [mm] Rock, 𝒅𝟓𝟎=80 [mm]  
Parameter -1 [%] Symbol +1 [%] -1 [%] Symbol +1 [%] Ref. value 
Swing velocity -2.80 𝑣௦ 2.73 -0.63 𝑣௦ 0.62 0.2 m/s 
Step size -4.64 𝑙௦௧௘௣ 4.60 -0.37 𝑙௦௧௘௣ 0.37 1.4 m 
Cutter angle 0.871 𝜆 -1.041 -0.62 𝜆 0.65 45 deg 
Slope angle -1.43 𝜉 1.37 0,03 𝜉 -0.03 45 deg 
Bank height -2.8 ℎ 2.76 -0.63 ℎ 0.62 1 m 

5.3.3 Over-cut vs under-cut 
The lack of over-cutting spillage data impedes adequate calibration for the over-cut 
mode. To demonstrate the effect of cutter rotation direction, a qualitative 
evaluation is performed. For over-cutting (𝑓ௗ೟೤೛೐

= 1), the following parameters 
are chosen where 𝑓ௗ is relatively arbitrary.  

𝑓ௗ = 0.05
𝑓௖ௗ

= 20

𝜃෠ = 0.92

  

The model results are plotted in Figure 5.12. Reference data is given for under-cut 
mode and only serves as a qualitative reference. In over-cut mode, spillage rates 
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are higher for the broad range of inverse flow numbers. The rapid redeposition 
effect is the highest contributor to this spillage rate increase. Caution should be 
observed with the interpretation of these results, since the computed spillage rates 
are unrealistic in practice. This is mostly due to the very high cutter inclination 
angle. 

 
Figure 5.12: Sensitivity of over-cut scenario to cutter inclination angle (left) and respective errors (right). 
Typical operation range is indicated with the purple dash-dotted line. The reference inclination angle 𝜆 = 45 [deg] and is 
increased and decreased with 1 [%]. Reference data is given for under-cut mode and only serves as a qualitative reference.  
 

5.4 Further discussion 

This section evaluates certain assumptions and model concepts and sets limits to 
the applicability of the presented SRCSM. 

5.4.1 Strouhal number 
For the Strouhal number of equation (28), it was assumed that the volumetric flow 
rate through the cutter is approximately 4 [m3/s]. This assumption seems in line 
with the range of volumetric flow rates in the SRCSM that are relevant. The Strouhal 
number for lower rotational velocity indicates that viscosity at this flow rate can be 
neglected. It can be concluded that the assumptions hold. 

5.4.2 Pressure considerations 
The foundational concept of the model is the assumption that the pressure 
difference between disc 1 and 2 at the trailing edge drives an inflow at disc 2. 
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Justification of this assumption is subject to discussion. In favor of the assumption, 
it can be argued that the square relation between the pressure and the disc 
diameter allows for a significantly larger pressure generation at disc 1, rendering 
the generated pressure at disc 2 negligible. Also, in reality, the dimensionless head 
Ψ෡௜ will be larger for disc 2 due to the fact that larger impellers (and blades also) are 
more efficient. These blades are also more curved outwards and therefore axial 
flow can be considered smaller in comparison to the nose.  

In contrast, the volumetric flow rate 𝑄௥ଵ is found to be up to an order of magnitude 
smaller compared to 𝑄௥ଶ (see Figure 5.3, left). The extent to which such a small 
flow rate is able to drive an inflow may be smaller than assumed. However, it can 
be reasoned that the squared radio of the cutter radii are highly representative for 
overall flow entrainment and therefore this assumption may hold.  

5.4.3 Limits to applicability 
The model is presented based on the dimensionless inverse flow number. This 
suggests that the model is applicable for small to large cutters. Since many 
assumptions were made about the dimensionless scaling coefficients, caution 
should be taken when interpreting the model results for a prototype scale. 

For non-relevant inverse flow numbers of 6 and higher, the concentration of the 
mixture velocity drops below zero. This suggests that the model is less reliable at 
high inverse flow numbers. However, this range is not informative to the end user 
and is thus not relevant for the model. In addition, the model is calibrated for very 
high cutter inclination angles. It has therefore been calibrated using data that is less 
realistic.  

5.5 Conclusion 

Based on the identified physical parameters, concepts and assumptions, how 
does the model perform relative to experimental data? 

The performance of the model can be evaluated using a dimensionless flow number 
𝜃෠ that incorporates the cutter radius, angular velocity and mixture velocity. Two 
particle sizes are chosen for calibration and only the under-cut mode is considered. 
The data for sand (𝑑ହ଴ = 180 E-3 [mm]) proves useful for the determination of the 
pump affinity law number since the low settling velocity for sand eliminates the 
effect of rapid redeposition. Model parameters can be identified for which both 
sand and rock (𝑑ହ଴ = 80 [mm]) spillage is estimated within a 5 [pp] accuracy over 
the available range of 𝜃෠ = 〈2,6〉 [-]. Moreover, the plot curvature exhibits a large 
resemblance with the experimental data for sand as well as rock. For rock, the rapid 
redeposition component appears to be inversely proportional to the mixture 
velocity. The relevant flow number for the dredge industry equals 𝜃෠ = 2.7 [-] for 
which a sensitivity analysis is performed. The dynamics of the governing ratios 
between centrifugal force, suction force and gravitational force appear to be 
captured adequately by the model. The influence of the cutter inclination angle 
appears arbitrary for sand cutting. This is ascribed to a model artefact that is linked 
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to the absence of rapid redeposition where cutter inclination becomes is of higher 
significance. The model exhibits correct behaviour for a qualitative simulation of 
over-cutting. For sand cutting, spillage is reduced for a 1 [%] reduction of the step 
size (-4.6%), swing velocity (-2.8%), bank height (-2.8%) or bank slope angle  
(-1.43%). For rock, spillage is reduced for a 1 [%] reduction of the swing velocity  
(-0.63%), bank height (-0.63%), cutter inclination angle (-0.62%) or step size  
(-0.37%). It is suggested that mixing effects related to the swing velocity are 
incorporated more explicitly in the model. To conclude, the model is in high 
agreement with calibration data and the SRCSM pump flow number Φ෡  can be 
expressed as a function of particle properties such as the settling velocity. 
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6 Conclusion and recommendations 
This chapter provides an overview of the conclusions from the sub-questions to 
formulate a conclusion for the main research question. The intermediate 
conclusions for the research sub-questions are repeated for clarity. 

What is CSD spillage and what types of spillage can be identified? 

In this research, CSD spillage is defined as “any soil that is dislodged above the 
lowest cutter tip trajectory of a single swing, but is not sucked into the suction 
pipe”. A classification of spillage based on pumping, mixing and gravitating effects 
results in six distinct spillage types. It is reasoned that four types can be considered 
negligible under typical cutting circumstances. The first significant type is named 
centrifugal advection and is proportional to the radial outflow of suspended 
particles in close proximity to the cutter ring and is driven by high rotational velocity 
of the cutter. Centrifugal advection affects spillage rates for all particle sizes but is 
most pronounced for fine particles such as sand. The second, concurrent spillage 
type is referred to as rapid redeposition and is governed by the ratio of the particle 
settling velocity over the mixture velocity. 

What formulations are fundamental to the motion and behaviour of a fluid 
substance in the physical domain of the cutter head? 

Experimental and analytical research provides substantial evidence to confirm that 
cutter flow resembles a combination of an axial pump near the nose as well as a 
centrifugal pump effect near the ring (Miltenburg (1983); Den Burger (2003); 
Nieuwboer et al. (2017)). From the characteristic Reynolds and Euler numbers it can 
be concluded that the inertial forces render viscosity in the cutter head negligible. 
For the centrifugal pump dynamics, the flow inside the cutter is considered steady, 
non-gravitational, inviscid and non-axial. It can be demonstrated that the Navier-
Stokes equations therefore reduce to Euler’s pump equation. The axial flow 
dynamics are governed by the product of the particle volume and radial pressure 
gradient in the suction mouth. Den Burger observed that there is an inward flow 
along the entire contour of the cutter head for rotational velocities below a certain 
ratio of the rotational to the mixture velocity. Above this ratio, the cutter dynamics 
give rise to a radial outflow that increases with rotational velocity. 

In conjunction with the relevant physical parameters, what concepts and 
assumptions enable a CSD spillage engineering model? 

A spillage model can be set up by taking three steps. First, an advanced geometrical 
description of the cutter head-bank interface can be derived. Important parameters 
are the cutter radius and curvature, cutter height, bank height, bank slope angle, 
cutter inclination angle and the step size of the cutting pattern. Second, a potential 
flow model can be set up based on flow continuity in the cutter. The cutter is split 
into two discs with disc 1 at the cutter ring and disc 2 at the nose. Volumetric flow 
rates are determined for centrifugal advection flow, radial as well as axial inflow 
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through the nose, rapid redeposition flow, mixture flow and an in situ dredge flow. 
The model strategy is outlined below 

1. Among other assumptions, the pump effects of the leading edge of the cutter 
blade are considered negligible. This allows for the simplification of Euler’s 
pump equation to a pump affinity law that expresses discharge as a function of 
radial pressure difference. This affinity law and the height of disc 1 are used to 
approximate centrifugal advection flow near the ring.  

2. For the radial inflow at the nose, the assumption is made that the true pressure 
at the trailing edge of the cutter is equal to the pressure that is generated in 
disc 1. As a consequence, the difference in estimated pressure gradients 
between the discs drives an inflow at disc 2. Again, the pump affinity law is used 
in conjunction with density considerations to provide an estimate of the flow 
rate into disc 2. 

3. Axial inflow at the nose is added as an optional component in the flow balance 
but is assumed negligible due to geometrical considerations. 

4. A spillage flow for rapid redeposition is found as a function of the rotational 
velocity, cutting scenario, particle settling velocity, mixture velocity and 
geometrical parameters for a reference point in the cutter. 

5. Straight forward expressions are obtained for the mixture flow rate where the 
user inputs the mixture velocity. 

6. The swing velocity is an input parameter to determine the in situ dredge flow 
rate. 

The resulting continuity balance poses an implicit problem and is solved iteratively. 
The third step in the model is to rewrite the mass flow rate balance to find the 
concentrations of outgoing flows Gravitational acceleration is expected to affect 
the entrainment rate of particles into the axial flow and increases the concentration 
of rapid redeposition. Spillage is computed as the mass flow ratios of the spillage 
components to the mass flow rate of incoming bank material. The resulting 
continuity balance poses an implicit problem and is solved iteratively. The third step 
in the model is to rewrite the mass flow rate balance to find the concentrations of 
outgoing flows. Gravitational acceleration is expected to affect the entrainment 
rate of particles into the axial flow and increases the concentration of rapid 
redeposition. Spillage is computed as the mass flow ratios of the spillage 
components to the mass flow rate of incoming bank material. 

Based on the identified physical parameters, concepts and assumptions, how 
does the model perform relative to experimental data? 

The performance of the model can be evaluated using a dimensionless flow number 
𝜃෠ that incorporates the cutter radius, angular velocity and mixture velocity. Two 
particle sizes are chosen for calibration and only the under-cut mode is considered. 
The data for sand (𝑑ହ଴ = 180 E-3 [mm]) proves useful for the determination of the 
pump affinity law number since the low settling velocity for sand eliminates the 
effect of rapid redeposition. Model parameters can be identified for which both 
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sand and rock (𝑑ହ଴ = 80 [mm]) spillage is estimated within a 5 [pp] accuracy over 
the available range of 𝜃෠ = 〈2,6〉 [-]. Moreover, the plot curvature exhibits a large 
resemblance with the experimental data for sand as well as rock. For rock, the rapid 
redeposition component appears to be inversely proportional to the mixture 
velocity. The relevant flow number for the dredging industry equals 𝜃෠ = 2.7 [-] for 
which a sensitivity analysis is performed. The dynamics of the governing ratios 
between centrifugal force, suction force and gravitational force appear to be 
captured adequately by the model. The influence of the cutter inclination angle 
appears arbitrary for sand cutting. This is ascribed to a model artefact that is linked 
to the absence of rapid redeposition where cutter inclination becomes is of higher 
significance. The model exhibits correct behaviour for a qualitative simulation of 
over-cutting. For sand cutting, spillage is reduced for a 1 [%] reduction of the step 
size (-4.6%), swing velocity (-2.8%), bank height (-2.8%) or bank slope angle  
(-1.43%). For rock, spillage is reduced for a 1 [%] reduction of the swing velocity  
(-0.63%), bank height (-0.63%), cutter inclination angle (-0.62%) or step size  
(-0.37%). It is suggested that mixing effects related to the swing velocity should be 
incorporated more explicitly in the model. To conclude, the model is in high 
agreement with calibration data and the SRCSM pump flow number Φ෡  can be 
expressed as a function of particle properties such as the settling velocity. In 
conclusion, the research sub-questions have culminated in sufficient results in 
order to answer the main research question.  

6.1 Conclusion 

What are physical parameters, model concepts and assumptions that give rise to 
an adaptable, particle size-agnostic engineering model for CSD spillage rates 
within 5 percentage point accuracy? 

The effects of CSD spillage can be adequately captured by a potential flow model 
with empirical closing relations. Essential spillage flows are centrifugal advection 
due to radial outflow at the ring and rapid redeposition caused by the settling 
velocity of the particles. The SRCSM can be set up with only three coefficients that 
follow from scaling: the pump flow number Φ෡  (0.58 for sand, 0.92 for rock), for 
centrifugal flow and the coefficients for rapid redeposition 𝑓ௗ and its concentration 
𝑓௖ௗ

. 

A sensitivity analysis suggests that most cutter head dynamics are adequately 
incorporated. For typical sand cutting conditions, the highest spillage reduction (-
4.6%) is achieved by a 1 [%] smaller step size. For rock, the highest spillage reduction 
(-0.63%) is achieved for a 1 [%] decrease in swing velocity. The model is less reliable 
for (non-typical) inverse flow numbers of 𝜃෠ = 6 [-] and higher due to a mixture 
velocity that drops below zero. In addition, the model is calibrated for a relatively 
high cutter inclination angle of 45 [deg] and bank angle of 45 [deg]. Caution should 
be observed with the results. It is also suggested that mixing effects related to the 
swing velocity are incorporated more explicitly in the model.  
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A high degree of model adaptability is enabled through the modularity of the 
continuity equation and dimensionless coefficients. The engineering requirement 
of the model is preserved in three ways. First, the implicit analytical model is 
computable within seconds and the relevant parameters are easily changeable. This 
contributes to the tractability of the model. Second, the assumptions have led to 
an intuitive model that makes use of realistically known parameters, giving rise to 
a discernible model. Last, the model provides accurate spillage sensitivity feedback 
for relevant cutting variables. This informative feature concludes the engineering 
property of the model. 

6.2 Recommendations for further research 

This section provides the author’s recommendations for further research. It is 
stressed that the usability of the model should remain focused on its tractability, 
discernibility and informative value. It is not recommended to perform analyses in 
the category of computational fluid dynamics for this model. 

6.2.1 Mixing effects 
Mixing effects were assumed to relate to the ratio of the centrifugal force and 
gravitational force. The current model does only incorporates mixing effects 
through rapid redeposition. For future iterations, it is suggested to make the effects 
of mixing more prominent. A more elaborate function for the rapid redeposition 
coefficient 𝑓ௗ could be established for future development of the model. Mixing 
dynamics are also an important driver of the spillage mechanism behind violent 
cutting and buried cutting. For these spillage types a, filling degree of the 
cutterhead can be found through the ratio of the rotational velocity to the swing 
velocity. Ploughing was considered a second effect that is related to the saturation 
of the cutter. The effect of ploughing may be incorporated by evaluating the ratio 
of rotational velocity over the swing velocity. 

6.2.2 Cut surface and teeth contour 
In the current calibration, the bank-cutter interaction is modeled with very high 
slope and cutter inclination angles. It can be shown that these values would render 
spillage from the shape of the cutter head significant while it was assumed 
negligible. It is advised to use more realistic calibration data or to derive a spillage 
expression for losses due to the bank geometry.  

In the current model, the cutter radii have been chosen to represent the radius of 
the contour that the cutter teeth follow during the rotation. When using flared 
points (or chisels) for sand cutting, the actual flared-point envelope may be 
significantly wider than the cutter ring. For rock, the pick-points are stronger and 
smaller. The pick points will have a limited effect on cutter envelope radius. It is 
suggested to consider these envelope effects in future model iterations. 

6.2.3 Rotation of the cutter head 
Industry observations suggest that the orientation of the suction mouth in terms of 
angular offset can play an important role for spillage. A parameter that incorporates 
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this effect may be of great benefit to helping reduce spillage. Implementation of 
the cutter head rotation seems trivial for the model. 

6.2.4 Experimental data 
It is strongly recommended to conduct experiments for two reasons. First, 
experimental data for spillage will enable further model calibration and improve 
sensitivity correctness to the model parameters. Second, the physical working of 
the model can be more closely analyzed with experimental data. For example, a 
freely rotating cutter in water can be mounted with pressure sensors. The results 
may substantiate the assumptions underlying the SRCSM. The location of the 
pressure sensors would have to be chosen correctly. For this, section the derivation 
of Euler’s pump equation in section 3.7 provides a useful foundation. 

6.2.5 N-slice model 
The SRCSM is based on a 2-disc model for the cutter head shape. This assumption 
is ideal to determine the inflow at the nose. A further, more advanced flow model 
can be set up by dividing the cutter in 𝑛 slices. This would provide more insight into 
the flow dynamics but is significantly more complex to solve because more 
assumptions are to be made for the boundary condition of pressure inside and 
outside of the cutter. Figure 6.1 depicts a schematic representation this suggestion. 

 
Figure 6.1 Overview of flows for n-slice model 

An outflow 𝑄௥௜  can be positive or negative for a slice. This results in 𝑁 equations 
for radial flow. If 𝑄௔ಿశభ

 is assumed negligible, the axial flow rates comprise of 𝑁 −

1 equations. A solution of the model is proposed to make use of a pressure 
correction method (van Rhee, 2018) and may take the following steps. 
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1. First, pressures outside the cutter (𝑝௘௡௩,௜) are assumed zero. The pressure 
gradient now requires 𝑁 assumptions for the blade-induced pressures. 

2. An average of the trailing edge pressures (𝑝௧,௜) and leading edge (𝑝௟,௜) is 
estimated 𝑝ௗ௜௦௖,௜. A proportionality with the tangential velocity of the cutter 
may be assumed. 

3. The in situ dredge flow rate 𝑄௖௜
 per slice is determined based on the cutter 

geometry. 
4. The rapid redeposition flow rate 𝑄ௗ,௜ per slice can be estimated similar to the 

SRCSM model. 
5. The volumetric flow rates 𝑄௔,௜ can be determined using Bernoulli’s principle 

and the pressure gradient between slices Δ𝑝௔,ఏ,௜. Energy losses may be 
accounted for in this step. 

6. The volumetric flow rates of radial flow 𝑄௥,௜  are similarly determined with the 
pressure gradient Δ𝑝௥,ఏ,௜. 

7. The obtained volumetric flow rate may violate the continuity equation per disc 
for the initial pressure assumptions. The initial pressure assumptions 𝑝ௗ௜௦௖,௜ is 
now adapted by iterating over the pressure assumption. Where inflow is too 
small, the disc pressures are lowered and reversely. An accuracy threshold can 
be set to find the pressure profile in the cutter for which the continuity balance 
holds. 

8. Spillage can be computed based on the mass flow rate balance per disc. 

As mentioned earlier, the SRCSM model performs well. An N-slice spillage model may 
compromise on calculation speed to improve the model accuracy. A careful consideration 
should be made to evaluate the added value of the model for engineering purposes. 
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7 List of symbols 
7.1 Symbols 

Symbol Unit Description 
𝐴 m2 area 

𝐸𝑢 - euler number 
𝐹𝑟 - froude number 
𝐷 m diameter 
𝐺 m/s2 characteristic gravitation-scale 
𝑃 - production rate 
𝐿 m characteristic length-scale 
𝑃 - production rate 
𝑃෠ n/m2 characteristic pressure-scale 
𝑄 m3/s flow 
𝑅 m radius 

𝑅𝑒 - reynolds number 
𝑆 - spillage rate 
𝑆𝑡 - strouhal number 
𝑇 s characteristic time-scale 
𝑉෠  m3 volume 
𝑉 m/s characteristic velocity-scale 
𝑏 m height 
𝑐 - concentration 
𝒆 - unity vector 
𝑓 - factor 
𝑔 m/s2 gravitational acceleration 
ℎ m height (of the bank) 
𝑘 m chord 
𝑙 m length 

𝑚 kg mass 
𝑛 rpm rotational velocity of the cutter head 
𝑝 n/m2 pressure 
𝑟 m radius 
𝑠 m characteristic triangle scale 
𝑢 m/s azimuthal (tangential) velocity 
𝑣 m/s absolute velocity 
𝑤 m/s relative velocity 
𝑥 m orthogonal distance of cutter centroid to bank top 
Δ - difference 
Ψ෡  - dimensionless head 
Φ෡  - pump flow number  
𝛼 rad angle between radial and axial component 
𝛽 rad blade angle 
𝜆 rad cutter inclination angle 
𝜃෠ - inverse flow number / adapted flow number 
𝜅 rad angle between radial and azimuthal component 
𝛾 rad cutter inclination angle 
𝜇 m2/s kinematic viscosity 
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𝜉 rad bank slope angle 
𝜌 kg/m3 density 
𝜎 kg/(m s2) stress 
𝜔 rad/s rotational velocity 

7.2 Indices 

Indice Description 
0 (zero) origin 

1 disc 1 / centrifugal advection 
2 disc 2 / rapid redeposition 
3 buried cutting 
4 violent cutting 
5 bank instability 
6 geometry 
𝑎 axial 
𝑏 bank 
𝑐 in situ 

𝑐𝑓 centrifugal 
𝑐𝑢𝑡 cut surface 
𝑑 (re)deposition 

𝑑𝑟 dry 
𝑑𝑦𝑛 dynamic 
𝑒𝑞 equivalent 
𝑔 gravitation 
𝑖 indicator for element number 
𝑙 leading edge 

𝑚 mixture 
𝑚𝑎𝑥 max 
𝑚𝑖𝑛 min 
𝑛𝑜𝑠𝑒 cutter nose location 

𝑜𝑑 over depth 
𝑝 particle 

𝑝𝑒𝑛 penetration 
𝑝𝑖𝑝𝑒 pipe 
𝑝𝑙𝑎𝑡𝑒 plate 
𝑝𝑟𝑒𝑣 previous 
𝑝𝑜𝑠𝑡 posterior 

𝑞 quartz 
𝑟 radial 

𝑟𝑎𝑡𝑖𝑜 ratio 
𝑟𝑒𝑓 reference 
𝑟𝑖𝑛𝑔 cutter ring location 

𝑠 swing 
𝑠ℎ𝑎𝑓𝑡 shaft 
𝑠𝑡𝑒𝑝 step 
𝑠𝑢𝑐 suction 

𝑡 trailing edge 
𝑡𝑖𝑝 tip of cutter (toc) 
𝑡𝑜𝑡 total 
𝑡𝑠 terminal settling 
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𝑡𝑦𝑝𝑒 cutting scenario 
𝑣𝑠 spatial 
𝑤 water 

𝑤𝑒𝑡 submerged 
𝜃 azimuthal 
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8 Glossary 
Word Synonym(s) Description 
Blade Arm Core element of the cutter head 
Blade envelope  Envelope of the blade rotation around the cutter axis 
Borrow Area  Area from which material is excavated by the cutter 
BOS  Bottom Of Suction: lowest point of the suction mouth 
Centrifugal Advection High rotational 

velocity-induction 
Process in which suspended particles are transported in 
radial direction through the flow of water 

Chisel knive, edge Medium-size cutting tool for granular material 
CSD  Cutter Suction Dredge 
Cut face Bank height Depth of the tip of the cutter into the bank  
Cutter head Cutter Synonym for cutter head 
Back Swing Over-cut Cutter head swing in over-cut mode 
Dig face  Net dredge depth 
Dig Swing Under-cut Cutter head swing in under-cut mode 
Euler Equations  Form of Navier-Stokes equations governing inviscid (and 

adiabatic) flow 
Navier Stokes Equations NS equations Equations governing the motion of fluid flow 
Euler’s Pump Equation  Equation that governs the pressure head, fluid velocities 

and geometry of centrifugal pumps  
Flared-point  Tip of the flare 
Flared-point Envelope  Envelope of the flared point of the blade rotation 
Hub  Steel three threaded screw connection between the 

cutter head and shaft 
Ladder  Construction upon which the cutter head is mounted 
Nose  Name of the top of the cutter head 
Pay face  Depth that dredgers are paid for 
Pick-point  Short, strong cutting tool for rock 
Rapid Redeposition  Spillage type where suspended sediment settles back 

onto the bank before reaching the suction mouth 

Ring  Steel ring for structural integrity 
Rope guard Rubber bearing Drive axis protection 
Sand Cutting Spillage Model SCSM Reference to the model for cutting of sand (Werkhoven 

et al., 2018) 
Sand-Rock Cutting Spillage 
Model 

SRCSM Reference to the model for cutting of sand and rock as 
presented in this thesis and in (Werkhoven et al., 
2019b) 

Shaft  Ladder element that transmits torque 

Skirts  Optional steel plates welded onto the blades to extend 
the blades 

Spade  Wide-bladed steel cutting tool that enables a 
continuous cutter envelope 

Spud (auxiliary)  Spud that moves the spud carriage back to its start 
position 

Spud (carrier)  Spud that serves as center of rotation during a swing 
Spud carriage  Spud moving system at the stern of the cutter 

Suction mouth  Cutout in the back plate that forms the entrance of the 
suction pipe 
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Swing velocity Haul velocity Velocity of the cutter head in lateral direction 

Tooth  Steel pick-point for the cutting of rock 

TOC  Tip Of Cutter: Location of the lowest point of the cutter 
envelope 

Winch  Mechanical device that connects the pulling cables from 
the vessel to the anchors, providing sufficient tension 
on the cables 
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A Derivation of Bernoulli’s principle 
A derivation is provided that demonstrates how Bernoulli’s principle is found from 
an energy balance for a fluid mass. Work and Energy relation to power according to 
equation (114) 

𝑊 = 𝐸ଶ − 𝐸ଵ = (𝑝ଶ − 𝑝ଵ)𝑉 (114) 

Neglecting friction, for net Work (Energy) we find for a fluid section of mass 𝑚 
traveling along a streamline in a 3-dimensional space  

𝐸ଶ − 𝐸ଵ = ቆ𝑚𝑔ℎଶ +
𝑚𝑣ଶ

ଶ

2
ቇ − ቆ𝜌𝑉𝑔ℎଵ +

𝑚𝑣ଵ
ଶ

2
ቇ (115) 

Where 𝑣௭, 𝑧 equals the velocity in 𝑧-direction at location 𝑖. Equations (114) and 
(115) are combined to obtain 

(𝑝ଶ − 𝑝ଵ)𝑉 = ቆ𝑚𝑔ℎଵ +
𝑚𝑣ଵ

ଶ

2
ቇ − ቆ𝑚𝑔ℎଶ +

𝑚𝑣ଶ
ଶ

2
ቇ (116) 

Or using 𝑚 = 𝜌𝑉 and reorganizing to find for the elevation head gain 

ℎଶ − ℎଵᇣᇧᇤᇧᇥ
௘௟௘௩௔௧௜௢௡

௛௘௔ௗ

=
𝑝ଵ − 𝑝ଶ

𝜌𝑔ᇣᇧᇤᇧᇥ
௣௥௘௦௦௨௥௘

௛௘௔ௗ

−
𝑣ଶ

ଶ − 𝑣ଵ
ଶ

2gᇣᇧᇤᇧᇥ
௩௘௟௢௖௜௧௬

௛௘௔ௗ

 
(117) 

The latter ratio is defined as the velocity head. Bernoulli becomes useful for the 
derivation of the Euler pump equation after the static pressure has been found. The 
elevation head is a representation of the fluids weight. The pressure head is a result 
of static pressure; the pressure the fluid exerts on its environment. Lastly, the 
velocity head results from kinetic energy and relates to dynamic pressure. 
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B Velocity triangles of a pump 
This appendix elaborates on the goniometric properties of velocity triangles that 
are used for the calculation of pump power. 

B.1 2D Velocity triangles 

Let us consider two-dimensional fluid velocity vectors of a unit mass in the 𝑟𝜃-
plane. Velocities in the z-direction are neglected in this section.  

A unit mass, in a cylindrical coordinate system, travels along a blade (depicted in 
yellow) with a velocity 𝒘 [m/s] relative to the blade. Since the blade has absolute 
velocity 𝒖 [m/s], the sum of 𝒖 and 𝒘 yields the absolute velocity 𝒗 [m/s] of the unit 
mass. Here, 𝒖 is depicted in green and 𝒗 is depicted in grey, with components 𝒗𝜽 
(azimuthal) in grey and 𝒗𝒓 (radial) in red. 

 

 

Figure B.1: Velocity Triangles in 2D 

From the triangle Δ𝒖𝒗𝒘 and vector length 𝑥 ≝ ‖𝒙‖, a series of geometric 
relationships can be formulated as shown in equation (118). 

𝑤ଶ = 𝑤௥
ଶ + 𝑤ఏ

ଶ

𝑤ఏ = ‖𝒘ఏ‖ = ‖𝒘‖ ⋅ 𝑐𝑜𝑠 𝛽 = 𝑣ఏ + 𝜔𝑟 

𝑤௥ = ‖𝒘௥‖ = ‖𝒘‖ ⋅ 𝑠𝑖𝑛 𝛽

𝑣ఏ = ‖𝒗ఏ‖ = ‖𝒖‖ + ‖𝒘𝜽‖ = −𝜔𝑟 + 𝑤ఏ

𝑣௥ = ‖𝒗௥‖ = ‖𝒘𝒓‖

𝑢 = −‖𝒖‖ = −‖𝝎 ⋅ 𝒓‖

 (118)
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The geometrical relationships in the velocity triangle dictate that 

𝑣ଵ
ଶ = ‖𝒖ଵ‖ଶ + ‖𝒘ଵ‖ଶ − 2 ⋅ ‖𝒖ଵ‖ ⋅ ‖𝒘ଵ‖ ⋅ 𝑐𝑜𝑠 𝛽ଵ

𝑣ଶ
ଶ = ‖𝒖ଶ‖ଶ + ‖𝒘ଶ‖ଶ − 2 ⋅ ‖𝒖ଶ‖ ⋅ ‖𝒘ଶ‖ ⋅ 𝑐𝑜𝑠 𝛽ଶ

 (119)

Or rewritten to alternative forms 

𝑣ଵ
ଶ = 𝑢ଵ

ଶ + 𝑤ଵ
ଶ − 2𝑢ଵ𝑤ଵ 𝑐𝑜𝑠 𝛽ଵ

𝑣ଶ
ଶ = 𝑢ଶ

ଶ + 𝑤ଶ
ଶ − 2𝑢ଶ𝑤ଶ 𝑐𝑜𝑠 𝛽ଶ

 (120)

From the shape of the linearized velocity triangle, which is valid for an 
infinitesimally small element, the angle 𝛽 between the tangential and relative 
velocities is given in equation (121). 

𝑑𝑟

𝑟𝑑𝜃
ฬ

௥ఏ௭
 = 𝑡𝑎𝑛 𝛽 (121)

It is also known that this angle equals the ratio of radial and azimuthal velocities, 
hence the following relations are true 

𝑤௥

𝑤ఏ
=

𝑣௥

𝑤ఏ
= 𝑡𝑎𝑛 𝛽

⇔ 𝑐𝑜𝑡 β =
𝑤ఏ

𝑤௥

 (122)

Equations (121) and (122) can be combined to find the angular change with respect 
to the radius along a streamline as shown in equation (123). 

𝑑𝜃

𝑑𝑟
ฬ

௥ఏ௭
=

𝑤ఏ

𝑟𝑣௥
 (123)

We also know that the discharge that is delivered by a pump must be in accordance 
with equation (124). 

𝑤௥ =
𝑄

𝑓ఊ2𝜋𝑟𝑏
 (124)

Where 𝑓ఊ is a factor that limits the outflow area of the centrifugal pump. 

B.2 3D Velocity Triangles 

When considering a blade that is curved in the axial direction too, the velocity 
triangles become more complex. The absolute and relative fluid velocities can now 
be decomposed in three directions. 
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Figure B.2: Velocity Triangles in 3D and 2D 

An angle 𝛼 can be presumed that represents the curvature of the blade in the 𝑧-
direction 

𝑑𝑟

𝑑𝑧
ฬ

௥ఏ௭
= 𝑡𝑎𝑛 𝛼 (125) 

And this angle equals the ratio of radial and axial velocities, which are given in two 
forms in equation (126). 

𝑤௥

𝑤௭

=
𝑣௥

𝑤௭

= 𝑡𝑎𝑛 𝛼

⇔ 𝑐𝑜𝑡 𝛼 =
𝑤௭

𝑤௥

 (126) 

Combining equations (125) and (126) yields 

𝑑𝑟

𝑑𝑧
ฬ

௥ఏ௭
=

𝑤௥

𝑤௭

 (127) 
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Similary, an angle 𝜅 can be presumed that represents the curvature of the blade in 
the 𝑧-direction 

𝑑𝑧

𝑟𝑑𝜃
ฬ

௥ఏ௭
= 𝑡𝑎𝑛 𝜅 (128) 

By definition, this angle equals the ratio of radial and axial velocities as given in 
equation (129). 

𝑤௭

𝑤ఏ

=
𝑣௭

𝑤ఏ

= 𝑡𝑎𝑛 𝜅 (129) 

Combining equations (128) and (129) gives a relationship that can be used in a 
three-dimensional derivation of pressure-discharge relationships of a pump. 

𝑑𝜃

𝑑𝑧
ฬ

௥ఏ௭
=

𝑤ఏ

𝑟𝑤௭

 (130) 
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C Derivation of centrifugal pump affinity laws from 
Cauchy momentum equation 
This appendix demonstrates how the pump affinity laws can be derived in a 
cylindrical coordinate system. For this, the Cauchy momentum equation and 
Bernoulli’s principle are used, among other relationships. 

C.1 Derivation of Cauchy momentum equation 

Consider a constant mass. The rate of change in momentum equals the net force 
on an element with volume 𝑉 [m3] 

𝑑

𝑑𝑡
න 𝜌 ⋅ 𝒗 𝑑𝑉 = න 𝜌 ⋅

𝐷𝒗

𝐷𝑡
 𝑑𝑉

௏௏

 (131) 

Where 𝒗 [m/s] is the flow velocity vector field, 𝜌 equals the density [kg/m3] and 𝑡 
represents time [s]. The net molecular force acts within a thin surface layer of the 
control volume. In a three-dimensional space, each of the 3 sets of surface planes 
experiences a 3-component force, giving rise to 9 components in all. These form 
the stress tensor 𝝈 [N/m2] so that the force exerted per unit area across a surface 
element, or 𝒅𝑺 = 𝒏ෝ ⋅ 𝑑𝑆, reads 

𝒇𝝈 = 𝝈 ⋅ 𝒏ෝ ⇒ 𝑭𝝈 = න𝝈 ⋅ 𝒅𝑺
ௌ

 (132) 

Where 𝒏 points on the fluid on the other side. The net force consists of body forces 
and molecular forces internal to the fluid. The only body force assumed here is 
gravity as given in equation (132). 

𝑭𝒈 = න 𝜌 ⋅ 𝒈 𝑑𝑉
௏

 (133) 

The total force per element is therefore the sum of molecular forces and body 
forces 

න 𝜌 ⋅
𝐷𝒗

𝐷𝑡
 𝑑𝑉

௏

= න𝝈 ⋅ 𝒅𝑺
ௌ

+ න 𝜌 ⋅ 𝒈 𝑑𝑉
௏

 (134) 

Which can be rewritten using the divergence of sigma (𝛻 ⋅ 𝝈) 

න 𝜌 ⋅
𝐷𝒗

𝐷𝑡
 𝑑𝑉

௏

= න 𝛻 ⋅ 𝝈 ⋅ 𝒅𝑽
௏

+ න 𝜌 ⋅ 𝒈 𝑑𝑉
௏

 (135) 

Equation (135) can be reduced to find the Cauchy momentum equation as 
presented in equation (136). 

𝜌
𝐷𝒗

𝐷𝑡
= 𝛻 ⋅ 𝝈 + 𝜌 ⋅ 𝒈 (136) 

This equation is valid provided that the continuity equation holds. For completeness 
it should be noted that this equation is valid for non-relativistic momentum 
transport.  
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C.2 Velocities In a cylindrical coordinate system 

The material derivative on the left-hand side of Eq. (136) equals 

𝐷𝒗

𝐷𝑡
=

𝜕𝒗

𝜕𝑡
+

𝜕𝒗

𝜕𝑟

𝑑𝑟

𝑑𝑡
+

𝜕𝒗

𝜕𝜃

𝑑𝜃

𝑑𝑡
+

𝜕𝒗

𝜕𝑧

𝑑𝑧

𝑑𝑡
 (137) 

Since unit vectors in a cylindrical coordinate system are not fixed, the unit vectors 
should also be differentiated. Unit vectors with respect to the radius are constant. 
The azimuthal rated change of the radial unit vector 𝒆௥ is equal to the azimuthal 
unit vector 𝒆ఏ, while the azimuthal rated of change of the azimuthal unit vector is 
the negative radial unit vector. These relations are given in equation (138), (139) 
and (140). 

𝜕𝒆௥

𝜕𝑟
=

𝜕𝒆ఏ

𝜕𝑟
=

𝜕𝒆௭

𝜕𝑟
= 0 (138) 

𝜕𝒆௥

𝜕𝜃
= 𝒆ఏ (139) 

𝜕𝒆ఏ

𝜕𝜃
= −𝒆௥ (140) 

The partial derivative at right-hand side of eq. (137) is located at fixed position 
hence unit vectors are not subject to temporal change and can be set to zero. 

𝜕𝒗

𝜕𝑡
=

𝜕𝑣௥

𝜕𝑡
𝒆௥ +

𝜕𝑣ఏ

𝜕𝑡
𝒆ఏ +

𝜕𝑣௭

𝜕𝑡
𝒆௭ (141) 

The remining terms at the right hand side of equation (137) can be rewritten by 
making use of the definitions in equation (142). 

𝑣௥ ≝
ௗ௥

ௗ௧
,  

௩ഇ

௥
≝

ௗఏ

ௗ௧
,  𝑣௭ ≝

ௗ௭

ௗ௧
 (142) 

Substitution in equation (137) yields equation (143), (144) and (145) for the partial 
derivatives of the radial, azimuthal and axial axes respectfully. 

𝑑𝑟

𝑑𝑡

𝜕𝒗

𝜕𝑟
= 𝑣௥

𝜕𝒗

𝜕𝑟

= 𝑣௥ ൤
𝜕𝑣௥

𝜕𝑟
𝒆௥ + 𝑣௥

𝜕𝒆௥

𝜕𝑟
+

𝜕𝑣ఏ

𝜕𝑟
𝒆ఏ + 𝑣ఏ

𝜕𝒆ఏ

𝜕𝑟
+

𝜕𝑣௭

𝜕𝑟
𝒆௭ + 𝑣௭

𝜕𝒆௭

𝜕𝑟
൨

= 𝑣௥ ൤
𝜕𝑣௥

𝜕𝑟
𝒆௥ +

𝜕𝑣ఏ

𝜕𝑟
𝒆ఏ +

𝜕𝑣௭

𝜕𝑟
𝒆௭൨

 (143) 

𝑑𝜃

𝑑𝑡

𝜕𝒗

𝜕𝜃
=

𝑣ఏ

𝑟

𝜕𝒗

𝜕𝜃

=
𝑣ఏ

𝑟
൤
𝜕𝑣௥

𝜕𝜃
𝒆௥ + 𝑣௥

𝜕𝒆௥

𝜕𝜃
+

𝜕𝑣ఏ

𝜕𝜃
𝒆ఏ + 𝑣ఏ

𝜕𝒆ఏ

𝜕𝜃
+

𝜕𝑣௭

𝜕𝜃
𝒆௭ + 𝑣௭

𝜕𝒆௭

𝜕𝜃
൨

=
𝑣ఏ

𝑟
൤
𝜕𝑣௥

𝜕𝜃
𝒆௥ + 𝑣௥𝒆ఏ +

𝜕𝑣ఏ

𝜕𝜃
𝒆ఏ + 𝑣௥(−𝒆ఏ) +

𝜕𝑣௭

𝜕𝜃
𝒆௭൨

=
𝑣ఏ

𝑟
൤൬

𝜕𝑣௥

𝜕𝜃
− 𝑢ఏ൰ 𝒆௥ + ൬

𝜕𝑣ఏ

𝜕𝜃
+ 𝑣௥൰ 𝒆ఏ +

𝜕𝑣ఏ

𝜕𝜃
𝒆௥ +

𝜕𝑣௭

𝜕𝜃
𝒆௭൨

 

 

(144) 
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𝑑𝑧

𝑑𝑡

𝜕𝒗

𝜕𝑧
= 𝑣௭

𝜕𝒗

𝜕𝑧

= 𝑣௥ ൤
𝜕𝑣௥

𝜕𝑧
𝒆௥ + 𝑣௥

𝜕𝒆௥

𝜕𝑧
+

𝜕𝑣ఏ

𝜕𝑧
𝒆ఏ + 𝑣ఏ

𝜕𝒆ఏ

𝜕𝑧
+

𝜕𝑣௭

𝜕𝑧
𝒆௭ + 𝑣௭

𝜕𝒆௭

𝜕𝑧
൨

= 𝑣௥ ൤
𝜕𝑣௥

𝜕𝑧
𝒆௥ +

𝜕𝑣ఏ

𝜕𝑧
𝒆ఏ +

𝜕𝑣௭

𝜕𝑧
𝒆௭൨

 

 

(145) 

Equation (141), (143), (144) and (145) can now be accumulated by unit vector 
products and substituted in equation (137) to find the material derivative. 

𝐷𝒗

𝐷𝑡
= ቈ

𝜕𝑣௥

𝜕𝑡
+ 𝑣௥

𝜕𝑣௥

𝜕𝑟
+

𝑣ఏ

𝑟

𝜕𝑣௥

𝜕𝜃
−

𝑣ఏ
ଶ

𝑟
+ 𝑣௭

𝜕𝑣௥

𝜕𝑧
቉ 𝒆𝒓

+ ൤
𝜕𝑣ఏ

𝜕𝑡
+ 𝑣௥

𝜕𝑣ఏ

𝜕𝑟
+

𝑣ఏ

𝑟

𝜕𝑣ఏ

𝜕𝜃
+

𝑣ఏ𝑣௥

𝑟
+ 𝑣௭

𝜕𝑣ఏ

𝜕𝑧
൨ 𝒆ఏ

+ ൤
𝜕𝑣௭

𝜕𝑡
+ 𝑣௥

𝜕𝑣௭

𝜕𝑟
+

𝑣ఏ

𝑟

𝜕𝑣௭

𝜕𝜃
+ 𝑣௭

𝜕𝑣௭

𝜕𝑧
൨ 𝒆௭

 

 

(146) 

C.3 Derivation of continuity equation 

The continuity equation for a cylindrical coordinate system is found by considering 
an infinitesimally small control volume as depicted in Figure C.1.  

 

 
Figure C.1: Velocity components of an infinitesimally small control volume . 

The differential control volume is bound as given in equation (147). 

𝑑𝑉 = ൬𝑟 +
𝛥𝑟

2
൰ 𝛥𝑟𝛥𝜃𝛥𝑧 (147) 
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The radial rated change of the mass balance can be found by summing all 
contributions in the radial direction. 

൬𝜌𝑣௥ +
𝜕𝜌𝑣௥

𝜕𝑟
𝛥𝑟൰ (𝑟 + 𝛥𝑟)𝛥𝜃𝛥𝑧 − 𝜌𝑣௥𝑟𝛥𝜃𝛥𝑧 (148) 

Equation (148) is can be rewritten through division by by 𝛥𝑟𝛥𝜃𝛥𝑧 to find that the 
first and last terms cancel out. Additionally, Δr, Δθ, Δz are let to zero so that in the 
fourth term in equation (149), 𝜕𝜌𝑣௥, can be considered negligible.  

𝜌
𝑣௥

𝛥𝑟
𝑟 +

𝜕𝜌𝑣௥

𝜕𝑟
𝑟 + 𝜌

𝑣௥

𝛥𝑟
𝛥𝑟 +

𝜕𝜌𝑣௥

𝜕𝑟
𝛥𝑟 − 𝜌

𝑣௥

𝛥𝑟
𝑟 (149) 

The result is equation (149). 

1

𝑟
𝜌𝑣௥ +

𝜕𝜌𝑣௥

𝜕𝑟
 (150) 

A similar procedure is performed in the 𝜃-direction and 𝑧-direction that yields the 
terms from equation (151) and (152). 

1

𝑟

𝜕𝜌𝑣ఏ

𝜕𝜃
 (151) 

𝜕𝜌𝑣௭

𝜕𝑧
 (152) 

The rate of change of mass is 

𝜕𝜌

𝜕𝑡
 (153) 

Combining terms (153), (150), (151) and (152) respectively we find for the 
continuity equation 

𝜕𝜌

𝜕𝑡
+

1

𝑟
𝜌𝑣௥ +

𝜕𝜌𝑣௥

𝜕𝑟
+

1

𝑟

𝜕𝜌𝑣ఏ

𝜕𝜃
+

𝜕𝜌𝑣௭

𝜕𝑧
= 0 (154) 

Let us consider a fluid that is incompressible. Assuming this steady state, i.e. డఘ

డ௧
=

0, division by 𝜌 and rearrangement of the radial components of the velocity by 
making use of the product rule, gives equation (155). 

1

𝑟

𝜕(𝑟𝑣௥)

𝜕𝑟
+

1

𝑟

𝜕𝑣ఏ

𝜕𝜃
+

𝜕𝑣௭

𝜕𝑧
= 0 (155) 
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C.4 Derivation of divergence of stress tensor  

Again, an infinitesimally small control volume is considered with the aim to find the 
divergence of the stress tensor in the Cauchy momentum equation (136). 

 

Figure C.2: Stresses on an infinitesimally small control volume. 

Assume an infinitesimally small control volume with an approximate volume from 
equation (147). Summing all the contributions in the radial direction, it can be found 
that 

൬𝜎௥௥ +
𝜕𝜎௥௥

𝜕𝑟
𝛥𝑟൰ (𝑟 + 𝛥𝑟)𝛥𝜃𝛥𝑧 − 𝜎௥௥𝑟𝛥𝜃𝛥𝑧

+ ൬𝜎௥ఏ +
𝜕𝜎௥ఏ

𝜕𝜃
𝛥𝜃൰ 𝛥𝑟𝛥𝑧 𝑐𝑜𝑠

𝛥𝜃

2
− 𝜎௥ఏ𝛥𝑟𝛥𝑧 𝑐𝑜𝑠

𝛥𝜃

2

+ ൬𝜎௥௭ +
𝜕𝜎௥௭

𝜕𝑧
𝛥𝑧൰ ൬𝑟 +

𝛥𝑟

2
൰ 𝛥𝑟𝛥𝜃 − 𝜎௥௭ ൬𝑟 +

𝛥𝑟

2
൰ 𝛥𝑟𝛥𝜃

− ൬𝜎ఏఏ +
𝜕𝜎ఏఏ

𝜕𝜃
𝛥𝜃൰ 𝛥𝑟𝛥𝑧 𝑠𝑖𝑛

𝛥𝜃

2
− 𝜎ఏఏ𝛥𝑟𝛥𝑧 𝑠𝑖𝑛

𝛥𝜃

2

 (156) 

Equation (156) can be rewritten through division by 𝑟ΔrΔθΔz. This allows for the 
cancellation of negligible terms analogous to the rewriting of equation (149). The 
differential magnitudes Δr, Δθ, Δz are let to zero to find equation (157). 

𝜎௥௥

𝑟
+

𝜕𝜎௥௥

𝜕𝑟
+

1

𝑟

𝜕𝜎௥ఏ

𝜕𝜃
+

𝜕𝜎௥௭

𝜕𝑧
− 𝜎ఏఏ𝑟 (157) 

This procedure can be repeated for the 𝜃-direction and 𝑧-direction, for which the 
result is presented in equation (158) and (159) respectively. 
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2𝜎௥ఏ

𝑟
+

𝜎௥ఏ

𝜕𝑟
+

1

𝑟

𝜕𝜎ఏఏ

𝜕𝜃
+

𝜕𝜎ఏ௭

𝜕𝑧
 (158) 

𝜎௥௭

𝑟
+

𝜕𝜎௥௭

𝜕𝑟
+

1

𝑟

𝜕𝜎ఏ௭

𝜕𝜃
+

𝜕𝜎௭௭

𝜕𝑧
 (159) 

The results from equation (157), (158) and (159) can be substituted in equation 
(137) so that the first right hand term in the Cauchy momentum equation is 
elaborated upon as demonstrated in equation (160). 

𝛻 ⋅ 𝝈 = ൤
𝜎௥௥

𝑟
+

𝜕𝜎௥௥

𝜕𝑟
+

1

𝑟

𝜕𝜎௥ఏ

𝜕𝜃
+

𝜕𝜎௥௭

𝜕𝑧
− 𝜎ఏఏ𝑟൨ 𝒆𝒓

+ ൤
2𝜎௥ఏ

𝑟
+

𝜎௥ఏ

𝜕𝑟
+

1

𝑟

𝜕𝜎ఏఏ

𝜕𝜃
+

𝜕𝜎ఏ௭

𝜕𝑧
൨ 𝒆ఏ

+ ൤
𝜎௥௭

𝑟
+

𝜕𝜎௥௭

𝜕𝑟
+

1

𝑟

𝜕𝜎ఏ௭

𝜕𝜃
+

𝜕𝜎௭௭

𝜕𝑧
൨ 𝒆௭

 (160) 

C.5 Derivation of stress-strain relationships in a cylindrical coordinate system 

The stress tensor can be represented by the addition of the pressure gradient to 
the deviatoric (shear) stress tensor.  

𝝈 = −𝑝𝑰 + 𝝉 (161) 

The pressure gradient ∇𝑝 arises from isotropic part of the Cauchy Stress tensor. 
Viscous forces give rise to ∇ ⋅ 𝝉 which is the anisotropic part of the Cauchy stress 
tensor. For incompressible flow this is only a shear effect. Therefore 𝝉 is the 
deviatoric stress tensor, i.e. the stress tensor for a system which consists of unequal 
principal-stresses. From equation (136) we know 

𝜌
𝐷𝒗

𝐷𝑡
 = 𝛻 ⋅ 𝝈 + 𝜌𝒈 (162) 

Where the shear tensor can be written as 

𝝉 = 𝜇(𝛻𝒗 + 𝛻𝒗்) (163) 

Which means the gradient of the vector and the gradient of its transpose vector. 
These gradients are tensors (higher order). The control volume has six sides. The 
gradients can be represented by the dyadic product of the vector with the gradient 
operator 

𝒗 ⊗ 𝛻 = 𝜇(𝑣௥𝒆𝒓 + 𝑣ఏ𝒆𝜽 + 𝑣௭𝒆𝒛) ⊗ ൬𝒆𝒓

𝜕

𝜕𝑟
+ 𝒆𝜽 

1

𝑟

𝜕

𝜕𝜃
+ 𝒆𝒛 

𝜕

𝜕𝑧
൰ (164) 

When evaluating the derivatives, the basic vectors are functions of the azimuthal 
coordinate 𝜃 and therefore their derivatives may not vanish. E.g. 

1

𝑟

𝜕

𝜕𝜃
(𝑣௥𝒆𝒓) ⊗ 𝒆𝜽 =

1

𝑟

𝜕𝑣௥

𝜕𝜃
𝒆𝒓 ⊗ 𝒆𝜽 +

𝑣௥

𝑟

𝜕𝒆𝒓

𝜕𝜃
⊗ 𝒆ఏ 

=
1

𝑟

𝜕𝑣௥

𝜕𝜃
𝒆𝒓 ⊗ 𝒆𝜽 +

𝑣௥

𝑟
𝒆𝜽 ⊗ 𝒆𝜽  

(165) 

Equation (165) can be rewritten to represent 𝛻𝒗 as shown in equation (166). 
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𝛻𝒗 =

⎣
⎢
⎢
⎢
⎢
⎡
𝜕𝑣௥

𝜕𝑟

1

𝑟

𝜕𝑣௥

𝜕𝜃
−

𝑣ఏ

𝑟

𝜕𝑣௥

𝜕𝑧
𝜕𝑣ఏ

𝜕𝑟

1

𝑟

𝜕𝑣ఏ

𝜕𝜃
+

𝑣௥

𝑟

𝜕𝑣ఏ

𝜕𝑧
𝜕𝑣௭

𝜕𝑟

1

𝑟

𝜕𝑣௭

𝜕𝜃

𝜕𝑣௭

𝜕𝑧 ⎦
⎥
⎥
⎥
⎥
⎤

 (166) 

The transpose of this matrix is given in equation (167). 

𝛻𝒗 =

⎣
⎢
⎢
⎢
⎢
⎡

𝜕𝑣௥

𝜕𝑟

𝜕𝑣ఏ

𝜕𝑟

𝜕𝑣௭

𝜕𝑟
1

𝑟

𝜕𝑣௥

𝜕𝜃
−

𝑣ఏ

𝑟

1

𝑟

𝜕𝑣ఏ

𝜕𝜃
+

𝑣௥

𝑟

1

𝑟

𝜕𝑣௭

𝜕𝜃
𝜕𝑣௥

𝜕𝑧

𝜕𝑣ఏ

𝜕𝑧

𝜕𝑣௭

𝜕𝑧 ⎦
⎥
⎥
⎥
⎥
⎤

 (167) 

Combining equations (163), (166) and (167) allows for substitution in equation 
(161). Equation (168) demonstrates the stress terms resulting from this operation. 

𝜎௥௥ = −𝑝 + 2𝜇
𝜕𝑣௥

𝜕𝑟

𝜎ఏఏ = −𝑝 + 2𝜇 ൬
1

𝑟

𝜕𝑣ఏ

𝜕𝜃
+

𝑣௥

𝑟
൰

𝜎௭௭ = −𝑝 + 2𝜇
𝜕𝑣௭

𝜕𝑧

𝜎௥ఏ = 𝜎ఏ௥ = 𝜇 ൬
1

𝑟

𝜕𝑣௥

𝜕𝜃
+

𝜕𝑣ఏ

𝜕𝑟
−

𝑣ఏ

𝑟
൰

𝜎௥௭ = 𝜎௭௥ = 𝜇 ൬
𝜕𝑣௥

𝜕𝑧
+

𝜕𝑣௭

𝜕𝑟
൰

𝜎ఏ௭ = 𝜎௭ఏ = 𝜇 ൬
1

𝑟

𝜕𝑣௭

𝜕𝜃
+

𝜕𝑣ఏ

𝜕𝑧
൰

 (168) 

Substitution of the stress terms in equation (160) renders, for the radial component 

൤
𝜎௥௥

𝑟
+

𝜕𝜎௥௥

𝜕𝑟
+

1

𝑟

𝜕𝜎௥ఏ

𝜕𝜃
+

𝜕𝜎௥௭

𝜕𝑧
− 𝜎ఏఏ𝑟൨ 𝒆𝒓 = ቈ൬−𝑝 + 2𝜇

𝜕𝑣௥

𝜕𝑟
൰ + ቆ−

𝜕𝑝

𝜕𝑟
+ 2𝜇

𝜕ଶ𝑣௥

𝜕𝑟ଶ
ቇ

+𝜇 ቆ
1

𝑟ଶ

𝜕ଶ𝑣௥

𝜕𝜃ଶ
+

𝜇

𝑟

𝜕ଶ𝑣ఏ

𝜕𝑟𝜕𝜃
−

𝑣ఏ

𝑟ଶ

𝜕𝑣ఏ

𝜕𝜃
ቇ

+𝜇 ቆ
𝜕ଶ𝑣௥

𝜕𝑧ଶ
+

𝜕ଶ𝑣௭

𝜕𝑟𝜕𝑧
ቇ − ൬−

𝑝

𝑟
+

2𝜇

𝑟ଶ

𝜕𝑣ఏ

𝜕𝜃
+ 2𝜇

𝑣௥

𝑟ଶ
൰቉ 𝒆𝒓

= −
𝜕𝑝

𝜕𝑟
+ 𝜇 ቈ

2

𝑟

𝜕𝑣௥

𝜕𝑟
+  2

𝜕ଶ𝑣௥

𝜕𝑟ଶ
+

1

𝑟

𝜕ଶ𝑣ఏ

𝜕𝑟𝜕𝜃
+

1

𝑟ଶ

𝜕ଶ𝑣௥

𝜕𝜃ଶ
−

1

𝑟ଶ

𝜕𝑣ఏ

𝜕𝜃

 + ቆ
𝜕ଶ𝑣௥

𝜕𝑧ଶ
+

𝜕ଶ𝑣௭

𝜕𝑟𝜕𝑧
ቇ −

2

𝑟ଶ

𝜕𝑣ఏ

𝜕𝜃
−

2

𝑟ଶ
𝑢௥቉

(169) 

In the result of equation (169), the first two terms between the square brackets are 
rewritten as demonstrated in equation (170).  

2

𝑟

𝜕𝑣௥

𝜕𝑟
+ 2

𝜕ଶ𝑣௥

𝜕𝑟ଶ
=

1

𝑟

𝜕

𝜕𝑟
൬𝑟

𝜕𝑣௥

𝜕𝑟
൰ +

1

𝑟

𝜕𝑣௥

𝜕𝑟
+

𝜕ଶ𝑣௥

𝜕𝑟ଶ

=
1

𝑟

𝜕

𝜕𝑟
൬𝑟

𝜕𝑣௥

𝜕𝑟
൰ +

𝑢௥
ଶ

𝑟ଶ
+

𝜕

𝜕𝑟
ቆ

1

𝑟

𝜕(𝑟𝑣௥)

𝜕𝑟
ቇ 

(170) 
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The chain rule is applied to the third term between square brackets to obtain 

1

𝑟

𝜕ଶ𝑣ఏ

𝜕𝑟𝜕𝜃
=

𝜕

𝜕𝑟
൬

1

𝑟

𝜕𝑣ఏ

𝜕𝜃
൰ +

1

𝑟ଶ

𝜕𝑣ఏ

𝜕𝜃
 (171) 

We can now find the radial component by substitution of equation (170) and (171) 
in the result of equation (169). This resulting expression for the stress tensor in 
radial direction is therefore given in equation (172). 

−
𝜕𝑝

𝜕𝑟
+ 𝜇 ቈ

1

𝑟

𝜕

𝜕𝑟
൬𝑟

𝜕𝑣௥

𝜕𝑟
൰ +

𝑢௥
ଶ

𝑟ଶ
+

𝜕

𝜕𝑟
ቆ

1

𝑟

𝜕(𝑟𝑣௥)

𝜕𝑟
ቇ +

𝜕

𝜕𝑟
൬

1

𝑟

𝜕𝑢ఏ

𝜕𝜃
൰ +

1

𝑟ଶ

𝜕𝑣ఏ

𝜕𝜃

+
1

𝑟ଶ

𝜕ଶ𝑣௥

𝜕𝜃ଶ
−

1

𝑟ଶ

𝜕𝑣ఏ

𝜕𝜃
 + ቆ

𝜕ଶ𝑣௥

𝜕𝑧ଶ
+

𝜕ଶ𝑣௭

𝜕𝑟𝜕𝑧
ቇ −

2

𝑟ଶ

𝜕𝑣ఏ

𝜕𝜃
−

2

𝑟ଶ
𝑢௥቉

 (172) 

Grouping relevant terms and reorganizing yields 

−
𝜕𝑝

𝜕𝑟
+ 𝜇 ቈ−

𝑢௥

𝑟ଶ
+

𝜕

𝜕𝑟
ቆ

1

𝑟

𝜕(𝑟𝑣௥)

𝜕𝑟
+

1

𝑟

𝜕𝑢ఏ

𝜕𝜃
+

𝜕𝑣௭

𝜕𝑧
ቇ

+
1

𝑟

𝜕

𝜕𝑟
൬𝑟

𝜕𝑣௥

𝜕𝑟
൰ +

1

𝑟ଶ

𝜕ଶ𝑣௥

𝜕𝜃ଶ
 +

𝜕ଶ𝑣௥

𝜕𝑧ଶ
−

2

𝑟ଶ

𝜕𝑣ఏ

𝜕𝜃
቉

 (173) 

As demonstrated in equation (155) of the continuity equation derivation, the terms 
between the first parentheses, the radial derivative, is equal to zero. In the radial 
direction, the right side of the momentum equation therefore reduces to equation 
(174). 

−
𝜕𝑝

𝜕𝑟
+ 𝜇 ቈ−

𝑢௥

𝑟ଶ
+

1

𝑟

𝜕

𝜕𝑟
൬𝑟

𝜕𝑣௥

𝜕𝑟
൰ +

1

𝑟ଶ

𝜕ଶ𝑣௥

𝜕𝜃ଶ
 +

𝜕ଶ𝑣௥

𝜕𝑧ଶ
−

2

𝑟ଶ

𝜕𝑣ఏ

𝜕𝜃
቉ (174) 

C.6 Gravitational acceleration 

Suppose a unit mass is inclined under an angle 𝜆 [rad] with respect to a reference 
frame aligned with the seabed as depicted in Figure C.3. The gravitational 
accelerations in the 𝑟-, 𝜃- and 𝑧-direction can then be found according to the 
formulations given in equation (175).  

𝑔௥ఏ = 𝑔 𝑐𝑜𝑠 𝜆
𝑔௭ = 𝑔 𝑠𝑖𝑛 𝜆

 (175)

Gravitational acceleration in the radial and azimuthal direction is found in 
accordance with Figure C.3. 

𝑔௥ = 𝑔௥ఏ 𝑐𝑜𝑠 𝜃
𝑔ఏ = 𝑔௥ఏ 𝑠𝑖𝑛 𝜃

 (176)

Hence 

𝑔௥ = 𝑔 𝑐𝑜𝑠 𝜃 𝑐𝑜𝑠 𝜆
𝑔ఏ = 𝑔 𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 𝜆
𝑔௭ = 𝑔 𝑠𝑖𝑛 𝜆

 (177)
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Figure C.3: Gravitational acceleration acting on an infinitesimally small control volume. 

C.7 Derivation of Navier-Stokes equations 

The Navier-Stokes equations can be obtained from the Cauchy Momentum 
equation (162) by substitution of equations found for the velocities (146), the stress 
tensor (174) and the gravitational acceleration (177). 

𝜌 ቈ
𝜕𝑣௥

𝜕𝑡
+ 𝑣௥

𝜕𝑣௥

𝜕𝑟
+

𝑣ఏ

𝑟

𝜕𝑣௥

𝜕𝜃
−

𝑣ఏ
ଶ

𝑟
+ 𝑣௭

𝜕𝑣௥

𝜕𝑧
቉

= −
𝜕𝑝

𝜕𝑟
+ 𝜇 ቈ−

𝑢௥

𝑟ଶ
+

1

𝑟

𝜕

𝜕𝑟
൬𝑟

𝜕𝑣௥

𝜕𝑟
൰  +

1

𝑟ଶ

𝜕ଶ𝑣௥

𝜕𝜃ଶ
+

𝜕ଶ𝑣௥

𝜕𝑧ଶ
−

2

𝑟ଶ

𝜕𝑣ఏ

𝜕𝜃
቉ + 𝜌𝑔௥

 (178) 

In a similar fashion, Navier-Stokes for the 𝜃-component is given in equation (179). 

𝜌 ൤
𝜕𝑣ఏ

𝜕𝑡
+ 𝑣௥

𝜕𝑣ఏ

𝜕𝑟
+

𝑣ఏ

𝑟

𝜕𝑣ఏ

𝜕𝜃
+

𝑣ఏ𝑣௥

𝑟
+ 𝑣௭

𝜕𝑣ఏ

𝜕𝑧
൨

= −
1

𝑟

𝜕𝑝

𝜕𝜃
+ 𝜇 ቈ−

𝑢ఏ

𝑟ଶ
+

1

𝑟

𝜕

𝜕𝑟
൬𝑟

𝜕𝑣ఏ

𝜕𝑟
൰ +

1

𝑟ଶ

𝜕ଶ𝑣ఏ

𝜕𝜃ଶ
 +

𝜕ଶ𝑣ఏ

𝜕𝑧ଶ
+

2

𝑟ଶ

𝜕𝑣௥

𝜕𝜃
቉ + 𝜌𝑔ఏ

 (179) 

Lastly, for the axial 𝑧-component, the Naiver-Stokes are given in equation (180).  

𝜌 ൤
𝜕𝑣௭

𝜕𝑡
+ 𝑣௥

𝜕𝑣௭

𝜕𝑟
+

𝑣ఏ

𝑟

𝜕𝑣௭

𝜕𝜃
+ 𝑣௭

𝜕𝑣௭

𝜕𝑧
൨

= −
𝜕𝑝

𝜕𝑧
+ 𝜇 ቈ

1

𝑟

𝜕

𝜕𝑟
൬𝑟

𝜕𝑣௭

𝜕𝑟
൰ +

1

𝑟ଶ

𝜕ଶ𝑣௭

𝜕𝜃ଶ
 +

𝜕ଶ𝑣௭

𝜕𝑧ଶ
቉ + 𝜌𝑔௭

 (180) 
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C.8 Alternative forms of Navier-Stokes equations 

The Navier-Stokes equations can be rewritten in alternate forms using Newton’s 
law of viscosity. A Newtonian fluid is assumed 

𝝉 ≝ 𝜇𝛻𝒗 (181) 

Using the above definition, equations (178), (179) and (180) can be transformed to 
equations (181), (182) and (183) respectively. For the radial component 

𝜌 ቈ
𝜕𝑣௥

𝜕𝑡
+ 𝑣௥

𝜕𝑣௥

𝜕𝑟
+

𝑣ఏ

𝑟

𝜕𝑣௥

𝜕𝜃
−

𝑣ఏ
ଶ

𝑟
+ 𝑣௭

𝜕𝑣௥

𝜕𝑧
቉

= −
𝜕𝑝

𝜕𝑟
+ 𝜇 ቈ−

𝑢௥

𝑟ଶ
+

1

𝑟

𝜕

𝜕𝑟
൬𝑟

𝜕𝑣௥

𝜕𝑟
൰  +

1

𝑟ଶ

𝜕ଶ𝑣௥

𝜕𝜃ଶ
+

𝜕ଶ𝑣௥

𝜕𝑧ଶ
−

2

𝑟ଶ

𝜕𝑣ఏ

𝜕𝜃
቉ + 𝜌𝑔௥ 

= −
𝜕𝑝

𝜕𝑟
+ ቈ−𝜇

𝑢௥

𝑟ଶ
+

1

𝑟

𝜕

𝜕𝑟
൬𝑟𝜇

𝜕𝑣௥

𝜕𝑟
൰ +

1

𝑟ଶ
𝜇

𝜕ଶ𝑣௥

𝜕𝜃ଶ
+ 𝜇

𝜕ଶ𝑣௥

𝜕𝑧ଶ
 −

2

𝑟ଶ
𝜇

𝜕𝑣ఏ

𝜕𝜃
቉ + 𝜌𝑔௥  

= −
𝜕𝑝

𝜕𝑟
+ ൤−𝜇

𝑢௥

𝑟ଶ
+

1

𝑟

𝜕

𝜕𝑟
(𝑟𝜏௥௥) +

1

𝑟

𝜕𝜏௥ఏ

𝜕𝜃
 +

𝜕𝜏௥௭

𝜕𝑧
−

2

𝑟
𝜏ఏఏ൨ + 𝜌𝑔௥

(182) 

In a similar fashion, the Navier-Stokes equation for the 𝜃-component is  

𝜌 ൤
𝜕𝑣ఏ

𝜕𝑡
+ 𝑣௥

𝜕𝑣ఏ

𝜕𝑟
+

𝑣ఏ

𝑟

𝜕𝑣ఏ

𝜕𝜃
+

𝑣ఏ𝑣௥

𝑟
+ 𝑣௭

𝜕𝑣ఏ

𝜕𝑧
൨

= −
1

𝑟

𝜕𝑝

𝜕𝜃
+ 𝜇 ቈ−

𝑢ఏ

𝑟ଶ
+

1

𝑟

𝜕

𝜕𝑟
൬𝑟

𝜕𝑣ఏ

𝜕𝑟
൰ +

1

𝑟ଶ

𝜕ଶ𝑣ఏ

𝜕𝜃ଶ
 +

𝜕ଶ𝑣ఏ

𝜕𝑧ଶ
+

2

𝑟ଶ

𝜕𝑣௥

𝜕𝜃
቉ + 𝜌𝑔ఏ  

= −
1

𝑟

𝜕𝑝

𝜕𝜃
+ ቈ−𝜇

𝑢ఏ

𝑟ଶ
+

1

𝑟

𝜕

𝜕𝑟
൬𝑟𝜇

𝜕𝑣ఏ

𝜕𝑟
൰ +

1

𝑟ଶ
𝜇

𝜕ଶ𝑣ఏ

𝜕𝜃ଶ
 + 𝜇

𝜕ଶ𝑣ఏ

𝜕𝑧ଶ
+

2

𝑟ଶ
𝜇

𝜕𝑣௥

𝜕𝜃
቉ + 𝜌𝑔ఏ 

= −
1

𝑟

𝜕𝑝

𝜕𝜃
+ ൤−𝜇

𝑢ఏ

𝑟ଶ
+

1

𝑟

𝜕

𝜕𝑟
(𝑟𝜏ఏ௥) +

1

𝑟

𝜕𝜏ఏఏ

𝜕𝜃
 +

𝜕𝜏ఏ௭

𝜕𝑧
+

2

𝑟ଶ
𝜏௥ఏ൨ + 𝜌𝑔ఏ  

(183) 

And Navier-Stokes equation for the 𝑧-component equals 

𝜌 ൤
𝜕𝑣௭

𝜕𝑡
+ 𝑣௥

𝜕𝑣௭

𝜕𝑟
+

𝑣ఏ

𝑟

𝜕𝑣௭

𝜕𝜃
+ 𝑣௭

𝜕𝑣௭

𝜕𝑧
൨

= −
𝜕𝑝

𝜕𝑧
+ 𝜇 ቈ

1

𝑟

𝜕

𝜕𝑟
൬𝑟

𝜕𝑣௭

𝜕𝑟
൰ +

1

𝑟ଶ

𝜕ଶ𝑣௭

𝜕𝜃ଶ
 +

𝜕ଶ𝑣௭

𝜕𝑧ଶ
቉ + 𝜌𝑔௭ 

= −
𝜕𝑝

𝜕𝑧
+ ቈ

1

𝑟

𝜕

𝜕𝑟
൬𝑟𝜇

𝜕𝑣௭

𝜕𝑟
൰ +

1

𝑟ଶ
𝜇

𝜕ଶ𝑣௭

𝜕𝜃ଶ
 + 𝜇

𝜕ଶ𝑣௭

𝜕𝑧ଶ
቉ + 𝜌𝑔௭ 

= −
𝜕𝑝

𝜕𝑧
+ ൤

1

𝑟

𝜕

𝜕𝑟
(𝑟𝜏௭௥) +

1

𝑟

𝜕𝜏௭ఏ

𝜕𝜃
 +

𝜕𝜏௭௭

𝜕𝑧
൨ + 𝜌𝑔௭

 (184) 

C.9 Derivation of Euler equations 

In accordance with equation (155), the fluid is considered incompressible. The Euler 
equations can be obtained by assuming an inviscid fluid, i.e. the viscosity of the fluid 
is to be neglected. 

𝜇 = 0 (185) 

Neglecting the viscosity yields the Euler equations in Lagrangian form, as shown in 
equation (186), where the first constraint follows from the continuity equation. 
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𝐷𝜌

𝐷𝑡
= 0

𝐷𝒖

𝐷𝑡
= −

𝛻𝑝

𝜌
+ 𝒈

𝛻 ⋅ 𝒖 = 0

 (186) 

Alternatively written, the Euler equations for incompressible fluids in a cylindrical 
coordinate system are given in equation (182), (183) and (184). For the 𝑟-
component 

𝜌 ቈ
𝜕𝑣௥

𝜕𝑡
+ 𝑣௥

𝜕𝑣௥

𝜕𝑟
+

𝑣ఏ

𝑟

𝜕𝑣௥

𝜕𝜃
−

𝑣ఏ
ଶ

𝑟
+ 𝑣௭

𝜕𝑣௥

𝜕𝑧
቉ = −

𝜕𝑝

𝜕𝑟
+ 𝜌𝑔௥ (187) 

For the 𝜃-component 

𝜌 ൤
𝜕𝑣ఏ

𝜕𝑡
+ 𝑣௥

𝜕𝑣ఏ

𝜕𝑟
+

𝑣ఏ

𝑟

𝜕𝑣ఏ

𝜕𝜃
+

𝑣ఏ𝑣௥

𝑟
+ 𝑣௭

𝜕𝑣ఏ

𝜕𝑧
൨ = −

1

𝑟

𝜕𝑝

𝜕𝜃
+ 𝜌𝑔ఏ (188) 

For the 𝑧-component 

𝜌 ൤
𝜕𝑣௭

𝜕𝑡
+ 𝑣௥

𝜕𝑣௭

𝜕𝑟
+

𝑣ఏ

𝑟

𝜕𝑣௭

𝜕𝜃
+ 𝑣௭

𝜕𝑣௭

𝜕𝑧
൨ = −

𝜕𝑝

𝜕𝑧
+ 𝜌𝑔௭ (189) 

C.10 Derivation of Euler’s pump equation 

It is assumed that the fluid is flowing axisymmetrically within the physical domain 
of the cutter head. Therefore, any change in velocity with respect to the azimuth 𝜃 
is zero.  

𝑣ఏ

𝑟

𝜕𝑣௥

𝜕𝜃
= 0

𝑣ఏ

𝑟

𝜕𝑣ఏ

𝜕𝜃
= 0

𝑣ఏ

𝑟

𝜕𝑣௭

𝜕𝜃
= 0

 (190) 

Furthermore, the fluid within the domain is considered to be in a steady state. This 
allows for the simplifications presented in equation (191). 

𝜕𝑣௥

𝜕𝑡
= 0

𝜕𝑣ఏ

𝜕𝑡
= 0

𝜕𝑣௭

𝜕𝑡
= 0

 (191) 

Euler’s equations from (187), (188) and (189) can now be reduced to equation 
(192), (193) and (194) respectively. 

𝜌 ቆ𝑣௥

𝜕𝑣௥

𝜕𝑟
−

𝑣ఏ
ଶ

𝑟
+ 𝑣௭

𝜕𝑣௥

𝜕𝑧
ቇ − 𝜌𝑔௥  = −

𝜕𝑝

𝜕𝑟
 (192) 

In a similar fashion, for the 𝜃-component  
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𝜌 ൬𝑣௥

𝜕𝑣ఏ

𝜕𝑟
+

𝑣ఏ𝑣௥

𝑟
+ 𝑣௭

𝜕𝑣ఏ

𝜕𝑧
൰ − 𝜌𝑔௭ = −

1

𝑟

𝜕𝑝

𝜕𝜃

⇔ 𝑟𝜌 ൬𝑣௥

𝜕𝑣ఏ

𝜕𝑟
+

𝑣ఏ𝑣௥

𝑟
+ 𝑣௭

𝜕𝑣ఏ

𝜕𝑧
൰ − 𝑟𝜌𝑔ఏ = −

𝜕𝑝

𝜕𝜃

 (193) 

And for the 𝑧-component  

𝜌 ൬𝑣௥

𝜕𝑣௭

𝜕𝑟
+ 𝑣௭

𝜕𝑣௭

𝜕𝑧
൰ − 𝜌𝑔௭ = −

𝜕𝑝

𝜕𝑧
 (194) 

C.10.1 Implementing boundary conditions 
The derivation of Euler’s pump equation is continued by considering a streamline 
within a cylinder. In 3D space, the pressure on an infinitesimally small element with 
respect to the radius at location rθz = {r, θ, z} along a section of the streamline 
equals 

𝑑𝑝

𝑑𝑟
ฬ

௥ఏ௭
=

𝜕𝑝

𝜕𝑟
+

𝜕𝑝

𝜕𝜃

𝑑𝜃

𝑑𝑟
ฬ

௥ఏ௭
+

𝜕𝑝

𝜕𝑧

𝑑𝑧

𝑑𝑟
ฬ

௥ఏ௭
 (195) 

Substitution of equations (192), (193) and (194) yields 

−
𝑑𝑝

𝑑𝑟
ฬ

௥ఏ௭
= 𝜌 ቆ𝑣௥

𝜕𝑣௥

𝜕𝑟
−

𝑣ఏ
ଶ

𝑟
+ 𝑣௭

𝜕𝑣௥

𝜕𝑧
ቇ − 𝜌𝑔௥

+ ൤𝑟𝜌 ൬𝑣௥

𝜕𝑣ఏ

𝜕𝑟
+

𝑣ఏ𝑣௥

𝑟
+ 𝑣௭

𝜕𝑣ఏ

𝜕𝑧
൰ − 𝑟𝜌𝑔ఏ൨

𝑑𝜃

𝑑𝑟
ฬ

௥ఏ௭

+ ൤𝜌 ൬𝑣௥

𝜕𝑣௭

𝜕𝑟
+ 𝑣௭

𝜕𝑣௭

𝜕𝑧
൰ − 𝜌𝑔௭൨

𝑑𝑧

𝑑𝑟
ฬ

௥ఏ௭

 (196) 

Further substitution of equations (123) and (126) in  equation (196) results in 

−
𝑑𝑝

𝑑𝑟
ฬ

୰஘୸
= 𝜌 ቆ𝑣௥

𝜕𝑣௥

𝜕𝑟
−

𝑣ఏ
ଶ

𝑟
+ 𝑣௭

𝜕𝑣௥

𝜕𝑧
ቇ − 𝜌𝑔௥

+ ൤𝜌 ൬𝑣௥

𝜕𝑣ఏ

𝜕𝑟
+

𝑣ఏ𝑣௥

𝑟
+ 𝑣௭

𝜕𝑣ఏ

𝜕𝑧
൰ − 𝜌𝑔ఏ൨

𝑤ఏ

𝑣௥

+ ൤𝜌 ൬𝑣௥

𝜕𝑣௭

𝜕𝑟
+ 𝑣௭

𝜕𝑣௭

𝜕𝑧
൰ − 𝜌𝑔௭൨

𝑤௭

𝑤௥

 (197) 

Equation (197) can be rewritten to group variables. For convenience, some relative 
velocities are interchanged with absolute velocities. Where applicable, 𝑣௥ = 𝑤௥ and 
𝑣௭ = 𝑤௭ in the top row, and 𝑤௥ = 𝑣௥ and 𝑤௭ = 𝑣௭ in the center and bottom row.  

−
𝑑𝑝

𝑑𝑟
ฬ

௥ఏ௭
= 𝜌 ቈ𝑣௥

𝜕𝑣௥

𝜕𝑟
−

𝑣ఏ
ଶ

𝑟
+ 𝑤ఏ

𝜕𝑣ఏ

𝜕𝑟
+ 𝑤ఏ

𝑣ఏ

𝑟
+ 𝑤௭

𝜕𝑣௭

𝜕𝑟

+𝑣௭

𝜕𝑣௥

𝜕𝑧
+ 𝑣௭

𝜕𝑣ఏ

𝜕𝑧

𝑤ఏ

𝑣௥

+ 𝑣௭

𝜕𝑣௭

𝜕𝑧

𝑤௭

𝑤௥

− ൬𝑔௥ +
𝑤ఏ

𝑤௥

𝑔ఏ +
𝑤௭

𝑤௥

𝑔௭൰൨

 (198) 

Next,, we know that gravity can be rewritten by substituting Eq. (122) and (126) in 
the gravity formulations of Eq. (177). The result is demonstrated in equation (199). 
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− ൬𝑔௥ +
𝑤ఏ

𝑤௥

𝑔ఏ +
𝑤௭

𝑤௥

𝑔௭൰ = − ൬𝑔 𝑐𝑜𝑠 𝜃 𝑐𝑜𝑠 𝜆 +
𝑤ఏ

𝑤௥

𝑔 𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 𝜆 +
𝑤௭

𝑤௥

𝑔 𝑠𝑖𝑛 𝜆൰

= −(𝑔 𝑐𝑜𝑠 𝜃 𝑐𝑜𝑠 𝜆 + 𝑐𝑜𝑡 𝛽 𝑔 𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 𝜆 + 𝑐𝑜𝑡 𝛼 𝑔 𝑠𝑖𝑛 𝜆)

= −𝑔(𝑐𝑜𝑠 𝜃 𝑐𝑜𝑠 𝜆 + 𝑐𝑜𝑡 𝛽 𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 𝜆 + 𝑐𝑜𝑡 𝛼 𝑠𝑖𝑛 𝜆)

= −𝑔(𝑐𝑠𝑐 𝛽 𝑐𝑜𝑠 𝜆 𝑠𝑖𝑛(𝛽 + 𝜃) + 𝑐𝑜𝑡 𝛼 𝑠𝑖𝑛 𝜆)

= −𝑔𝑓௚ೝ

 (199) 

Where 𝑓௚ೝ
= 𝑐𝑠𝑐 β 𝑐𝑜𝑠 λ 𝑠𝑖𝑛(β + θ) + 𝑐𝑜𝑡 α 𝑠𝑖𝑛 λ, a gravity constant, in which the 

cosecant is used (𝑐𝑠𝑐 β =
ଵ

ୱ୧୬ ఉ
). Combining equation (198) and (199) results in 

−
𝑑𝑝

𝑑𝑟
ฬ

௥ఏ௭
= 𝜌 ቈ𝑤௥

𝜕𝑤௥

𝜕𝑟
−

𝑣ఏ
ଶ

𝑟
+ 𝑤ఏ

𝜕𝑣ఏ

𝜕𝑟
+ 𝑤ఏ

𝑣ఏ

𝑟
+ 𝑤௭

𝜕𝑤௭

𝜕𝑟

+𝑣௭

𝜕𝑣௥

𝜕𝑧
+ 𝑣௭

𝜕𝑣ఏ

𝜕𝑧

𝑤ఏ

𝑣௥

+ 𝑣௭

𝜕𝑣௭

𝜕𝑧

𝑣௭

𝑣௥

−𝑔𝑓௚ೝ
൧

 (200) 

Substitution of terms from equation (118) in Eq. (200) yields 

−
𝑑𝑝

𝑑𝑟
ฬ

௥ఏ௭
= 𝜌 ቈ𝑤௥

𝜕𝑤௥

𝜕𝑟
−

(−𝜔𝑟 + 𝑤ఏ)ଶ

𝑟
+ 𝑤ఏ

𝜕(−𝜔𝑟 + 𝑤ఏ)

𝜕𝑟
+ 𝑤ఏ

(−𝜔𝑟 + 𝑤ఏ)

𝑟
+ 𝑤௭

𝜕𝑤௭

𝜕𝑟

+𝑣௭

𝜕𝑣௥

𝜕𝑧
+ 𝑣௭

𝜕𝑣ఏ

𝜕𝑧

(𝑣ఏ + 𝜔𝑟)

𝑣௥

+ 𝑤௭

𝜕𝑣௭

𝜕𝑧

𝑣௭

𝑣௥

− ൬𝑔௥ +
𝑤ఏ

𝑤௥

𝑔ఏ +
𝑤௭

𝑤௥

𝑔௭൰൨

(201) 

Simplifying top and center line of Eq. (201) 

−
𝑑𝑝

𝑑𝑟
ฬ

௥ఏ௭
= 𝜌 ൤−𝜔ଶ𝑟 + 𝑤௥

𝜕𝑤௥

𝜕𝑟
+𝑤ఏ

𝜕𝑤ఏ

𝜕𝑟
+ 𝑤௭

𝜕𝑤௭

𝜕𝑟

+𝜔𝑟
𝑣௭

𝑣௥

𝜕𝑣ఏ

𝜕𝑧
+

𝑣௭

𝑣௥

൬+𝑣௥

𝜕𝑣௥

𝜕𝑧
+ 𝑣ఏ

𝜕𝑣ఏ

𝜕𝑧
+ 𝑣௭

𝜕𝑣௭

𝜕𝑧
൰

−𝑔𝑓௚ೝ
൧

 (202) 

By making use of the product rule this can be written as  

−
𝑑𝑝

𝑑𝑟
ฬ

௥ఏ௭
= 𝜌 ቈ−𝜔ଶ𝑟 +

1

2

𝜕(𝑤௥
ଶ + 𝑤ఏ

ଶ + 𝑤௭
ଶ)

𝜕𝑟

+𝜔𝑟
𝑣௭

𝑣௥

𝜕𝑣ఏ

𝜕𝑧
+

𝑣௭

𝑣௥

1

2

𝜕(v௥
ଶ + vఏ

ଶ + v௭
ଶ)

𝜕z

−𝑔𝑓௚ೝ
൧

 (203) 

C.10.2 Axisymmetrical flow (2D) 
Further operations on equation (203) are highly complex because the physical 
domain is three-dimensional. A 3D domain becomes particularly problematic upon 
linearization of the velocities. 
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Since the flow is assumed axisymmetrical, the axial rated change of the velocities 
on the right-hand side (the azimuthal velocity and the velocity), are set to zero, i.e. 
ப୴ಐ

ப୸
= 0 and v௥

ଶ + vఏ
ଶ + v௭

ଶ = 0. Equation (203) therefore reduces to equation (204). 

−
𝑑𝑝

𝑑𝑟
ฬ

௥ఏ௭
= 𝜌 ቈ−𝜔ଶ𝑟 +

1

2

𝜕𝑤ଶ

𝜕𝑟
− 𝑔𝑓௚቉ (204) 

With the assumption of axisymmetrical flow, the radial and azimuthal velocities 
now a two-dimensional approximation of what was considered a three-dimensional 
physical domain. A 2D linearization for the velocity is considered in equation (205). 

𝛥𝑤ଶ ≝
𝜕𝑤ଶ

𝜕𝑟
𝛥𝑟 +

𝜕𝑤ଶ

𝜕𝜃
𝛥𝜃 (205) 

We divide by Δ𝑟, assume ୼ఏ

୼௥
= 0 and let Δ go to zero to find 

𝑑𝑤ଶ

𝑑𝑟
=

𝜕𝑤ଶ

𝜕𝑟
 (206) 

Equation (204) can be substituted with the result from equation (206) to obtain  

−
𝑑𝑝

𝑑𝑟
ฬ

௥ఏ௭
= 𝜌 ቈ−𝜔ଶ𝑟 +

1

2

𝑑𝑤ଶ

𝑑𝑟
− 𝑔𝑓௚቉ (207) 

For ease of use the sign of the above equation is changed 

𝑑𝑝

𝑑𝑟
ฬ

௥ఏ௭
= 𝜌 ቈ𝜔ଶ𝑟 −

1

2

𝑑𝑤ଶ

𝑑𝑟
+ 𝑔𝑓௚቉ (208) 

The pressure along a stage of the streamline from 𝑟ଵ to 𝑟ଶ can be found as 

න 𝑑𝑝
௦௧௔௚௘

= 𝜌 ቈ𝜔ଶ න 𝑟 𝑑𝑟 −
1

2
න 𝑑𝑤ଶ

௦௧௔௚௘

+ න 𝑔𝑓௚ 𝑑𝑟
௦௧௔௚௘௦௧௔௚௘

 (209) 

Which yields for the increase in pressure over the given stage 

𝑝ଶ − 𝑝ଵ = 𝜌 ቈ𝜔ଶ
𝑟ଶ

ଶ − 𝑟ଵ
ଶ

2
+

𝑤ଵ
ଶ − 𝑤ଶ

ଶ

2
+ 𝑔𝑓௚(𝑟ଶ − 𝑟ଵ)቉ (210) 

C.11 Derivation of Euler’s pump equation 

In appendix A, the derivation of Bernoulli’s principle is given, which proves useful 
in the further derivation. In the derivation of Euler’s pump equation, the 
gravitational acceleration is neglected 

𝑔𝑓௚(𝑟ଶ − 𝑟ଵ) = 0 (211) 

It is fair to neglect gravity since the Froude number for the cutter head is estimated 
at 10 [-] (See section 3.5.4). 

After taking into account the restriction of equation (211), Equation (210) and (117) 
can be combined to obtain a formulation for the elevation head gain. It should be 
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noted that the friction head is neglected because viscosity was considered 
negligible.  

ℎଶ − ℎଵ = 𝜔ଶ
𝑟ଶ

ଶ − 𝑟ଵ
ଶ

2𝑔
+

𝑤ଵ
ଶ − 𝑤ଶ

ଶ

2𝑔
+

𝑣ଶ
ଶ − 𝑣ଵ

ଶ

2𝑔
 (212) 

Appendix B provides an overview of a selection of velocity triangle relationships. 
Substitutions of the equations from (119) in equation (212) yields  

ℎଶ − ℎଵ = 𝜔ଶ
𝑟ଶ

ଶ − 𝑟ଵ
ଶ

2𝑔
+

𝑤ଵ
ଶ − 𝑤ଶ

ଶ

2𝑔

+
𝑢ଶ

ଶ + 𝑤ଶ
ଶ − 2𝑢ଶ𝑤ଶ 𝑐𝑜𝑠 𝛽ଶ − (𝑢ଵ

ଶ + 𝑤ଵ
ଶ − 2𝑢ଵ𝑤ଵ 𝑐𝑜𝑠 𝛽ଵ)

2𝑔

 (213) 

Where some variables are cancelled out to find 

ℎଶ − ℎଵ = 𝜔ଶ
𝑟ଶ

ଶ − 𝑟ଵ
ଶ

2𝑔
+

𝑢ଶ
ଶ − 2𝑢ଶ𝑤ଶ 𝑐𝑜𝑠 𝛽ଶ − 𝑢ଵ

ଶ + 2𝑢ଵ𝑤ଵ 𝑐𝑜𝑠 𝛽ଵ

2𝑔
 (214) 

Realizing that and 𝑢 = 𝑟𝜔 and 𝑢ଶ = 𝑟ଶ𝜔ଶ from equation (118), it can be 
demonstrated that a further cancellation of terms results in equation (215). In this 
operation, notice the switch in radii in the latter term. 

ℎଶ − ℎଵ = 𝜔ଶ
𝑟ଶ

ଶ − 𝑟ଵ
ଶ

𝑔
+

𝑟ଵ𝜔𝑤ଵ 𝑐𝑜𝑠 𝛽ଵ − 𝑟ଶ𝜔𝑤ଶ 𝑐𝑜𝑠 𝛽ଶ

𝑔
 (215) 

Rewriting the above formulation using 𝑤௥ = ‖𝒘‖ ⋅ sin 𝛽 from equation (118) yields 

ℎଶ − ℎଵ = 𝜔ଶ
𝑟ଶ

ଶ − 𝑟ଵ
ଶ

𝑔
+

𝑟ଵ𝜔
𝑤௥ଵ

𝑠𝑖𝑛 𝛽ଵ
𝑐𝑜𝑠 𝛽ଵ − 𝑟ଶ𝜔

𝑤௥ ଶ

𝑠𝑖𝑛 𝛽ଶ
𝑐𝑜𝑠 𝛽ଶ

𝑔
 (216) 

By using the definition cot 𝛽 ≝
ୡ୭ୱ ఉ

௦௜௡ ఉ
 equation (217) can be obtained. 

ℎଶ − ℎଵ = 𝜔ଶ
𝑟ଶ

ଶ − 𝑟ଵ
ଶ

𝑔
+

𝑟ଵ𝜔𝑤௥ଵ
𝑐𝑜𝑡 𝛽ଵ − 𝑟ଶ𝜔𝑤௥ଶ

𝑐𝑜𝑡 𝛽ଶ

𝑔
 (217) 

Subsequent substitution of equation (124) gives 

ℎଶ − ℎଵ = 𝜔ଶ
𝑟ଶ

ଶ − 𝑟ଵ
ଶ

𝑔
+ 𝜔

𝑄

𝑓ఊ2𝜋𝑏

(𝑐𝑜𝑡 𝛽ଵ − 𝑐𝑜𝑡 𝛽ଶ)

𝑔
 (218) 

Where 𝑓ఊ is a factor that limits the outflow area of the pump. For clarity, the 
elevation height in the equation above is replaced with the more commonly used 
metric of pressure gain (see below) 

ℎଶ − ℎଵ =
𝑝ଶ − 𝑝ଵ

𝑔𝜌
 (219)

The use of pressure gain on the left-hand side gives rise to what is commonly 
referred to as Euler’s pump equation as displayed in equation (220). The pressure 
gain is a result of both static and kinematic contributions. 
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𝑝ଶ − 𝑝ଵ = 𝜌𝜔ଶ(𝑟ଶ
ଶ − 𝑟ଵ

ଶ)ᇣᇧᇧᇧᇤᇧᇧᇧᇥ
௦௧௔௧௜௖

+ 𝜔𝜌
𝑄

𝑓ఊ2𝜋𝑏
(𝑐𝑜𝑡 𝛽ଵ − 𝑐𝑜𝑡 𝛽ଶ)

ᇣᇧᇧᇧᇧᇧᇧᇧᇧᇤᇧᇧᇧᇧᇧᇧᇧᇧᇥ
௞௜௡௘௠௔௧௜௖

 (220) 

C.12 Derivation of affinity law for pressure 

With Euler’s pump equation fully derived, further assumptions can be made to 
establish the affinity laws for centrifugal pumps. Continuing with equation (220), it 
can be assumed that the inner radius equals zero. Consequently, there cannot be a 
radial velocity at the origin. The equation simplifies to 

𝑝ଶ − 𝑝ଵ = 𝜌𝜔ଶ𝑟ଶ
ଶ − 𝜔𝜌

𝑄

𝑓ఊ2𝜋𝑏
𝑐𝑜𝑡 𝛽ଶ (221) 

The relationship between discharge 𝑄 and radial velocity is given according to 
equation (124) and can be used to rewrite equation (221) into 

𝑝ଶ − 𝑝ଵ = 𝜌𝜔ଶ𝑟ଶ
ଶ − 𝜔𝜌𝑤௥మ

𝑐𝑜𝑡 𝛽ଶ (222) 

Which can be rewritten to find an expression for the pressure gain as a function of 
the dimensionless head, rotational velocity and trailing point radius of the pump 
and the fluid’s velocity 

𝑝ଶ − 𝑝ଵ = ൬1 −
𝑤௥మ

𝜔𝑟ଶ

𝑐𝑜𝑡 𝛽ଶ൰ 𝜌𝜔ଶ𝑟ଶ
ଶ = 𝛹෡𝜌𝜔ଶ𝑟ଶ

ଶ (223) 

Where the dimensionless head equals 

𝛹෡ = 1 −
𝑤௥మ

𝜔𝑟ଶ

𝑐𝑜𝑡 𝛽ଶ (224) 

Equation (223) is known as the affinity law for pressure of a centrifugal pump. 

C.13 Derivation of affinity law for discharge 

Let us consider flow similitude for a centrifugal pump, i.e. the ratio of the average 
fluid velocity 𝑣௥ [m/s] and the tangential impeller velocity 𝑢 [m/s] equals a constant 
dimensionless flow number 

𝑣௥

𝑢
= Φ (225)

Where Φ represents the flow number [-]. The average fluid velocity exits the pump 
over an area equal to the circumference of the pump, multiplied by the impeller 
width and limited by a factor 𝑓ఊ [-] that accounts for limitations to the outflow area, 
i.e. fஓ2𝜋𝑟𝑏. Assuming incompressible flow and flow equilibrium, the fluid velocity 
inside the volute chamber follows from volume continuity and reads 

𝑣௥ =
𝑄

𝑓ఊ2𝜋𝑟ଶ𝑏
 (226)

Where 𝑄 is the pump discharge [m3/s], 𝑟 is the pump radius [m] and 𝑏 the impeller 
width [m]. The tangential velocity of the impeller is found through multiplication of 
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the angular velocity 𝜔 [rad/s] and the cutter radius [m] (𝑢 = 𝜔𝑟). Substitution of 
the velocity ratio in equation (226) and subsequent reordering yields an expression 
for the discharge as a function of the angular velocity as evidenced in equation 
(227). 

𝑄 = Φπ𝑏𝜔𝑟ଶ
ଶ = Φ෡𝑓ఊ𝑏𝜔𝑟ଶ

ଶ (227)

Where Φ෡  is an adapted flow number [-]. Physically, the coefficient Φ෡  can be 
considered a dimensionless ratio of the velocity components in the tangential 
(azimuthal) direction and the radial direction. The effect of fluid viscosity is 
captured by this dimensionless measure. Equation (227) can be referred to as the 
affinity law for pump discharge. 

C.14 Affinity law for pump power 

By definition, the energy head gain 𝛥𝐻 = 𝐻ଶ − 𝐻ଵ at a given discharge of fluid with 
density 𝜌 [kg/m3] can be obtained from the pump power 𝑃 [kg⋅m2/s3] as shown in 
equation (228). 

𝛥𝑃 =

𝑝𝑟𝑒𝑠𝑠𝑢𝑟𝑒 𝑔𝑎𝑖𝑛 × 𝑣𝑜𝑙𝑢𝑚𝑒𝑡𝑟𝑖𝑐 𝑓𝑙𝑜𝑤 𝑟𝑎𝑡𝑒 𝛥𝑝𝑄
𝑒𝑛𝑒𝑟𝑔𝑦 ℎ𝑒𝑎𝑑 𝑔𝑎𝑖𝑛 × 𝑚𝑎𝑠𝑠 𝑓𝑙𝑜𝑤 𝑟𝑎𝑡𝑒 𝛥𝐻𝜌𝑄

𝑒𝑙𝑒𝑣𝑎𝑡𝑖𝑜𝑛 ℎ𝑒𝑎𝑑 𝑔𝑎𝑖𝑛 × 𝑔𝑟𝑎𝑣𝑖𝑚𝑒𝑡𝑟𝑖𝑐 𝑓𝑙𝑜𝑤 𝑟𝑎𝑡𝑒 𝛥ℎ𝑔𝜌𝑄
ቑ ⇒ 𝛥𝐻 =

𝛥𝑃

𝜌𝑄
(228) 
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D Derivation of pump relationships for radial and axial 
flow in 3D 
This section demonstrates that a derivation of pump relationships is significantly 
more complicated in three dimensions and serves as a justification to assume 
axisymmetrical flow in order to obtain Euler’s pump equation (see Appendix C). The 
derivation is open ended. 

D.1 Radial pressure head in three-dimensional physical domain 

A linearization for the differential velocity is considered 

𝛥𝑤ଶ ≝
𝜕𝑤ଶ

𝜕𝑟
𝛥𝑟 +

𝜕𝑤ଶ

𝜕𝜃
𝛥𝜃 +

𝜕𝑤ଶ

𝜕𝑧
𝛥𝑧 (229) 

We divide by Δ𝑟, assume 
୼ఏ

୼௥
= 0 and let Δ go to zero to find 

𝑑𝑤ଶ

𝑑𝑟
=

𝜕𝑤ଶ

𝜕𝑟
+

𝜕𝑤ଶ

𝜕𝑧

𝑑𝑧

𝑑𝑟
 (230) 

Similarly, for v  

𝛥𝑣ଶ ≝
𝜕𝑣ଶ

𝜕𝑟
𝛥𝑟 +

𝜕𝑣ଶ

𝜕𝜃
𝛥𝜃 +

𝜕𝑣ଶ

𝜕𝑧
𝛥𝑧 (231) 

We divide by Δ𝑧, assume ୼ఏ

୼௭
= 0 and let Δ go to zero to find 

𝑑𝑣ଶ

𝑑𝑧
=

𝜕𝑣ଶ

𝜕𝑟

𝑑𝑟

𝑑𝑧
 +

𝜕𝑣ଶ

𝜕𝑧
 (232) 

Hence substitutions reduce Eq. (204) to (using ୵౰

୵౨
=

ௗ೥

ௗೝ
) 

−
𝑑𝑝

𝑑𝑟
ฬ

௥ఏ௭
= 𝜌 ቈ−𝜔ଶ𝑟 + ቆ

1

2

𝑑𝑤ଶ

𝑑𝑟
−

1

2

𝜕𝑤ଶ

𝜕𝑧

𝑑𝑧

𝑑𝑟
ቇ +

𝑑𝑧

𝑑𝑟
ቆ

1

2

𝑑𝑣ଶ

𝑑𝑧
−

1

2

𝜕𝑣ଶ

𝜕𝑟

𝑑𝑟

𝑑𝑧
ቇ − 𝑔𝑓௚቉ (233) 

Rewriting and changing sign (!) 

𝑑𝑝

𝑑𝑟
ฬ

௥ఏ௭
= 𝜌 ቈ𝜔ଶ𝑟 −

1

2

𝑑𝑤ଶ

𝑑𝑟
−

1

2

𝑑𝑣ଶ

𝑑𝑟
+

1

2

𝜕𝑤ଶ

𝜕𝑧

𝑑𝑧

𝑑𝑟
+

1

2

𝜕𝑣ଶ

𝜕𝑟
+ 𝑔𝑓௚቉ (234) 

The pressure along a stage of the streamline from 𝑟ଵ to 𝑟ଶ can be found as 

න 𝑑𝑝
௦௧௔௚௘

= 𝜌 ቈ𝜔ଶ න 𝑟 𝑑𝑟 −
1

2
න 𝑑𝑤ଶ

௦௧௔௚௘௦௧௔௚௘

−
1

2
න 𝑑𝑣ଶ

௦௧௔௚௘

+
1

2
න

𝜕𝑤ଶ

𝜕𝑧
𝑑𝑧

௦௧௔௚௘

+
1

2
න

𝜕𝑣ଶ

𝜕𝑟௦௧௔௚௘

𝑑𝑟

+ න 𝑔𝑓௚ 𝑑𝑟
௦௧௔௚௘

቉

 (235) 

Which yields for the pressure related to the potential head along one streamline 
stage in the radial direction 
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𝑝ଶ − 𝑝ଵ = 𝜌 ቈ𝜔ଶ
𝑟ଶ

ଶ − 𝑟ଵ
ଶ

2
+

𝑤ଵ
ଶ − 𝑤ଶ

ଶ

2
+

𝑣ଵ
ଶ − 𝑣ଶ

ଶ

2
+ 𝑔𝑓௚(𝑟ଶ − 𝑟ଵ)቉ (236) 

Substitution in (117) helps us find the elevation head gain, which is the sum of the 
potential head and the velocity head 

ℎଶ − ℎଵ = 𝜔ଶ
𝑟ଶ

ଶ − 𝑟ଵ
ଶ

2𝑔ᇣᇧᇧᇤᇧᇧᇥ
௣௥௘௦௦௨௥௘ ௛௘௔ௗ?

+
𝑤ଵ

ଶ − 𝑤ଶ
ଶ

2𝑔
+

𝑣ଵ
ଶ − 𝑣ଶ

ଶ

2𝑔
+ 𝑓௚(𝑟ଶ − 𝑟ଵ)ᇣᇧᇧᇤᇧᇧᇥ

௘௟௘௩௘௔௧௜௢௡ ௛௘௔ௗ?

+
𝑣ଶ

ଶ − 𝑣ଵ
ଶ

2𝑔ᇣᇧᇤᇧᇥ
௩௘௟௢௖௜௧௬ ௛௘௔ௗ

 
(237) 

D.2 Axial pressure head in a three-dimensional domain 

𝑑𝑝

𝑑𝑧
ฬ

௥ఏ௭
=

𝜕𝑝

𝜕𝑟

𝑑𝑟

𝑑𝑧
ฬ

௥ఏ௭
+

𝜕𝑝

𝜕𝜃

𝑑𝜃

𝑑𝑧
ฬ

௥ఏ௭
+

𝜕𝑝

𝜕𝑧
 (238) 

Substitution yields 

−
𝑑𝑝

𝑑𝑧
ฬ

௥ఏ௭
= ቈ𝜌 ቆ𝑣௥

𝜕𝑣௥

𝜕𝑟
−

𝑣ఏ
ଶ

𝑟
+ 𝑣௭

𝜕𝑣௥

𝜕𝑧
ቇ − 𝜌𝑔௥቉

𝑑𝑟

𝑑𝑧
ቤ

௥ఏ௭

+ ൤𝑟𝜌 ൬𝑣௥

𝜕𝑣ఏ

𝜕𝑟
+

𝑣ఏ𝑣௥

𝑟
+ 𝑣௭

𝜕𝑣ఏ

𝜕𝑧
൰ − 𝑟𝜌𝑔ఏ൨

𝑑𝜃

𝑑𝑧
ฬ

௥ఏ௭

+𝜌 ൬𝑣௥

𝜕𝑣௭

𝜕𝑟
+ 𝑣௭

𝜕𝑣௭

𝜕𝑧
൰ − 𝜌𝑔௭

 (239) 

Substitution of Eq. XX and Eq. (123) in Eq. (196) results in 

−
𝑑𝑝

𝑑𝑧
ฬ

௥ఏ௭
= ቈ𝜌 ቆ𝑣௥

𝜕𝑣௥

𝜕𝑟
−

𝑣ఏ
ଶ

𝑟
+ 𝑣௭

𝜕𝑣௥

𝜕𝑧
ቇ − 𝜌𝑔௥቉

w୰

w୸

+ ൤𝜌 ൬𝑣௥

𝜕𝑣ఏ

𝜕𝑟
+

𝑣ఏ𝑣௥

𝑟
+ 𝑣௭

𝜕𝑣ఏ

𝜕𝑧
൰ − 𝜌𝑔ఏ൨

𝑤ఏ

𝑣௭

+𝜌 ൬𝑣௥

𝜕𝑣௭

𝜕𝑟
+ 𝑣௭

𝜕𝑣௭

𝜕𝑧
൰ − 𝜌𝑔௭

 (240) 

Grouping terms  

−
𝑑𝑝

𝑑𝑧
ฬ

௥ఏ௭
= 𝜌 ቈ

𝑤௥

𝑤௭

𝑣௥

𝜕𝑣௥

𝜕𝑟
−

𝑤௥

𝑤௭

𝑣ఏ
ଶ

𝑟
+

𝑤ఏ

𝑣௭

𝑣௥

𝜕𝑣ఏ

𝜕𝑟
+

𝑤ఏ

𝑣௭

𝑣ఏ𝑣௥

𝑟
+ 𝑣௥

𝜕𝑣௭

𝜕𝑟

+
𝑤௥

𝑤௭

𝑣௭

𝜕𝑣௥

𝜕𝑧
+ 𝑤ఏ

𝜕𝑣ఏ

𝜕𝑧
+ 𝑣௭

𝜕𝑣௭

𝜕𝑧

− ൬
𝑤௥

𝑤௭

𝑔௥ +
𝑤ఏ

𝑣௭

𝑔ఏ + 𝑔௭൰൨

 (241) 

and 𝑣௥ = 𝑤௥ and 𝑣௭ = 𝑤௭ in the top row, 𝑤௥ = 𝑣௥ and 𝑤௭ = 𝑣௭ in the center and 
bottom row. In the bottom row, we know that gravity can be rewritten by 
substituting Eq. (122) and (126) in the gravity formulations and 𝑐𝑜𝑡 κ =

௪ഇ

௪೥
 and 

tan α =
௪ೝ

௪೥
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− ൬
𝑤௥

𝑤௭

𝑔௥ +
𝑤ఏ

𝑣௭

𝑔ఏ + 𝑔௭൰ = − ൬
𝑤௥

𝑤௭

𝑔 𝑐𝑜𝑠 𝜃 𝑐𝑜𝑠 𝜆 +
𝑤ఏ

𝑤௭

𝑔 𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 𝜆 + 𝑔 𝑠𝑖𝑛 𝜆൰

= −(𝑡𝑎𝑛 𝛼 𝑔 𝑐𝑜𝑠 𝜃 𝑐𝑜𝑠 𝜆 + 𝑐𝑜𝑡 𝜅 𝑔 𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 𝜆 + 𝑔 𝑠𝑖𝑛 𝜆)

= −𝑔(𝑡𝑎𝑛 𝛼 𝑐𝑜𝑠 𝜃 𝑐𝑜𝑠 𝜆 + 𝑐𝑜𝑡 𝜅 𝑠𝑖𝑛 𝜃 𝑐𝑜𝑠 𝜆 + 𝑠𝑖𝑛 𝜆)

= −𝑔(𝑐𝑜𝑠 𝜆 (𝑡𝑎𝑛 𝛼 𝑐𝑜𝑠 𝜃 + 𝑠𝑖𝑛 𝜃 𝑐𝑜𝑡 𝜅) + 𝑠𝑖𝑛 𝜆)

= −𝑔𝑓௚೥

 (242) 

Where 𝑓௚೥
= cos λ (tan α 𝑐𝑜𝑠 θ + 𝑠𝑖𝑛 θ 𝑐𝑜𝑡 κ) + sin λ. This yields 

−
𝑑𝑝

𝑑𝑧
ฬ

௥ఏ௭
= 𝜌 ቈ

𝑤௥
ଶ

𝑤௭

𝜕𝑤௥

𝜕𝑟
−

𝑤௥

𝑤௭

𝑣ఏ
ଶ

𝑟
+

𝑤ఏ

𝑤௭

𝑤௥

𝜕𝑣ఏ

𝜕𝑟
+

𝑤ఏ

𝑤௭

𝑣ఏ𝑤௥

𝑟
+ 𝑤௥

𝜕𝑤௭

𝜕𝑟

+𝑣௥

𝜕𝑣௥

𝜕𝑧
+ 𝑤ఏ

𝜕𝑣ఏ

𝜕𝑧
+ 𝑣௭

𝜕𝑣௭

𝜕𝑧
−𝑔𝑓௚೥

൧

 (243) 

Substitution of terms from Eq. (118) (also 𝑤ఏ = 𝑣ఏ + 𝜔𝑟) in Eq. (200) yields  

−
𝑑𝑝

𝑑𝑧
ฬ

௥ఏ௭
= 𝜌 ቈ

𝑤௥
ଶ

𝑤௭

𝜕𝑤௥

𝜕𝑟
−

𝑤௥

𝑤௭

(−𝜔𝑟 + 𝑤ఏ)ଶ

𝑟
+

𝑤ఏ

𝑤௭

𝑤௥

𝜕(−𝜔𝑟 + 𝑤ఏ)

𝜕𝑟
+

𝑤ఏ

𝑤௭

(−𝜔𝑟 + 𝑤ఏ)𝑤௥

𝑟
+ 𝑤௥

𝜕𝑤௭

𝜕𝑟

+𝑣௥

𝜕𝑣௥

𝜕𝑧
+ (𝑣ఏ + 𝜔𝑟)

𝜕𝑣ఏ

𝜕𝑧
+ 𝑣௭

𝜕𝑣௭

𝜕𝑧
−𝑔𝑓௚೥

൧

 (244) 

Simplifying top and center line of Eq. (201) 

−
𝑑𝑝

𝑑𝑧
ฬ

௥ఏ௭
= 𝜌 ൤

𝑤௥

𝑤௭

൬−𝜔ଶ𝑟 + ൬
1

𝑟
− 1൰ 𝑤ఏ

ଶ + 𝑤௥

𝜕𝑤௥

𝜕𝑟
+𝑤ఏ

𝜕𝑤ఏ

𝜕𝑟
൰ + 𝑤௥

𝜕𝑤௭

𝜕𝑟

+𝜔𝑟
𝜕𝑣ఏ

𝜕𝑧
+ ൬𝑣௥

𝜕𝑣௥

𝜕𝑧
+ 𝑣ఏ

𝜕𝑣ఏ

𝜕𝑧
+ 𝑣௭

𝜕𝑣௭

𝜕𝑧
൰

−𝑔𝑓௚೥
൧

 (245) 

By making use of the product rule this can be written as (basis for further 
development) 

−
𝑑𝑝

𝑑𝑧
ฬ

௥ఏ௭
= 𝜌 ൤

𝑤௥

𝑤௭

൬−𝜔ଶ𝑟 + ൬
1

𝑟
− 1൰ 𝑤ఏ

ଶ + 𝑤௥

𝜕𝑤௥

𝜕𝑟
+𝑤ఏ

𝜕𝑤ఏ

𝜕𝑟
൰ + 𝑤௥

𝜕𝑤௭

𝜕𝑟

+𝜔𝑟
𝜕𝑣ఏ

𝜕𝑧
+

1

2

𝜕(v௥
ଶ + vఏ

ଶ + v௭
ଶ)

𝜕z
−𝑔𝑓௚೥

൧

 (246) 

The latter term on the first row can be rewritten to 

𝑤௥

𝜕𝑤௭

𝜕𝑟
= ൬

𝑤௥

𝑤௭

−
𝑤௥

𝑤௭

൰ 𝑤௥

𝜕𝑤௭

𝜕𝑟
+ 𝑤௥

𝜕𝑤௭

𝜕𝑟
=

𝑤௥

𝑤௭

𝑤௥

𝜕𝑤௭

𝜕𝑟
+ ൬1 −

𝑤௥

𝑤௭

൰ 𝑤௥

𝜕𝑤௭

𝜕𝑟
 (247) 

So that 
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−
𝑑𝑝

𝑑𝑧
ฬ

௥ఏ௭
= 𝜌 ቈ

𝑤௥

𝑤௭

ቆ−𝜔ଶ𝑟 + ൬
1

𝑟
− 1൰ 𝑤ఏ

ଶ + ൬𝑤௥

𝜕𝑤௥

𝜕𝑟
+𝑤ఏ

𝜕𝑤ఏ

𝜕𝑟
+ 𝑤௥

𝜕𝑤௭

𝜕𝑟
൰ቇ + ൬1 −

𝑤௥

𝑤௭

൰ 𝑤௥

𝜕𝑤௭

𝜕𝑟

+𝜔𝑟
𝜕𝑣ఏ

𝜕𝑧
+

1

2

𝜕(v௥
ଶ + vఏ

ଶ + v௭
ଶ)

𝜕z
−𝑔𝑓௚೥

൧

 (248) 

Which is equal to (using product rule).  

−
𝑑𝑝

𝑑𝑧
ฬ

௥ఏ௭
= 𝜌 ቈ

𝑤௥

𝑤௭

ቆ−𝜔ଶ𝑟 + ൬
1

𝑟
− 1൰ 𝑤ఏ

ଶ +
1

2

𝜕𝑤ଶ

𝜕𝑟
ቇ + ൬1 −

𝑤௥

𝑤௭

൰ 𝑤௥

𝜕𝑤௭

𝜕𝑟

+ 𝜔𝑟
𝜕𝑣ఏ

𝜕𝑧
+

1

2

𝜕𝑣ଶ

𝜕𝑧
− 𝑔𝑓௚೥

቉ 
(249) 

We still consider the change of tangential velocity with respect to z zero, therefore 
the fourth term can be neglected. We rewrite here 

−
𝑑𝑝

𝑑𝑧
ฬ

௥ఏ௭
= 𝜌 ቈ

𝑤௥

𝑤௭

ቆ−𝜔ଶ𝑟 + ൬
1

𝑟
− 1൰ 𝑤ఏ

ଶ +
1

2

𝜕𝑤ଶ

𝜕𝑟
ቇ + ൬1 −

𝑤௥

𝑤௭

൰ 𝑤௥

𝜕𝑤௭

𝜕𝑟

+
1

2

𝜕𝑣ଶ

𝜕𝑧
− 𝑔𝑓௚೥

቉ 
(250) 

In the considered 3-dimensional space we know that from linearization  

𝛥𝑤ଶ ≝
𝜕𝑤ଶ

𝜕𝑟
𝛥𝑟 +

𝜕𝑤ଶ

𝜕𝜃
𝛥𝜃 +

𝜕𝑤ଶ

𝜕𝑧
𝛥𝑧 (251) 

We divide by Δ𝑟, assume 
୼ఏ

୼௥
= 0 and let Δ go to zero to find 

𝑑𝑤ଶ

𝑑𝑟
=

𝜕𝑤ଶ

𝜕𝑟
+

𝜕𝑤ଶ

𝜕𝑧

𝑑𝑧

𝑑𝑟
 (252) 

Similarly, for v  

𝛥𝑣ଶ ≝
𝜕𝑣ଶ

𝜕𝑟
𝛥𝑟 +

𝜕𝑣ଶ

𝜕𝜃
𝛥𝜃 +

𝜕𝑣ଶ

𝜕𝑧
𝛥𝑧 (253) 

We divide by Δ𝑧, assume 
୼ఏ

୼௭
= 0 and let Δ go to zero to find 

𝑑𝑣ଶ

𝑑𝑧
=

𝜕𝑣ଶ

𝜕𝑟

𝑑𝑟

𝑑𝑧
 +

𝜕𝑣ଶ

𝜕𝑧
 (254) 

We also conclude that 
ப୴ಐ

ப୸
= 0 because of axisymmetrical flow. Hence substitutions 

reduce Eq. (204) to (using 
୵౨

୵౰
=

ௗ௥

ௗ௭
) 

−
𝑑𝑝

𝑑𝑧
ฬ

௥ఏ௭
= 𝜌 ቎

𝑤௥

𝑤௭

ቌ−𝜔ଶ𝑟 + ൬
1

𝑟
− 1൰ 𝑤ఏ

ଶ + ቆ
1

2

𝑑𝑤2

𝑑𝑟
−

1

2

𝜕𝑤2

𝜕𝑧

𝑑𝑧

𝑑𝑟
ቇቍ

+ ൬1 −
𝑤௥

𝑤௭

൰ 𝑤௥

𝜕𝑤௭

𝜕𝑟
+ ቆ

1

2

𝑑𝑣2

𝑑𝑧
−

1

2

𝜕𝑣2

𝜕𝑟

𝑑𝑟

𝑑𝑧
ቇ

−𝑔𝑓௚೥
൧

 (255) 

Rewriting and changing sign  
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−
𝑑𝑝

𝑑𝑧
ฬ

௥ఏ௭
= 𝜌 ቈ

𝑤௥

𝑤௭

𝜔ଶ𝑟 +
𝑤௥

𝑤௭

൬1 −
1

𝑟
൰ 𝑤ఏ

ଶ −
𝑤௥

𝑤௭

1

2

𝑑𝑤2

𝑑𝑟
+

𝑤௥

𝑤௭

1

2

𝜕𝑤2

𝜕𝑧

𝑑𝑧

𝑑𝑟

+ ൬
𝑤௥

𝑤௭

− 1൰ 𝑤௥

𝜕𝑤௭

𝜕𝑟
−

1

2

𝑑𝑣2

𝑑𝑧
+

1

2

𝜕𝑣2

𝜕𝑟

𝑑𝑟

𝑑𝑧

+𝑔𝑓௚೥
൧

 (256) 

Or rewritten 

−
𝑑𝑝

𝑑𝑧
ฬ

௥ఏ௭
= 𝜌 ቈ

𝑤௥

𝑤௭

𝜔ଶ𝑟 −
𝑤௥

𝑤௭

1

2

𝑑𝑤2

𝑑𝑟
−

1

2

𝑑𝑣2

𝑑𝑧

+
𝑤௥

𝑤௭

൬1 −
1

𝑟
൰ 𝑤ఏ

ଶ +
𝑤௥

𝑤௭

1

2

𝜕𝑤2

𝜕𝑧

𝑑𝑧

𝑑𝑟
+ ൬

𝑤௥

𝑤௭

− 1൰ 𝑤௥

𝜕𝑤௭

𝜕𝑟
+

1

2

𝜕𝑣2

𝜕𝑟

𝑑𝑟

𝑑𝑧

+𝑔𝑓௚೥
൧

(257) 

The pressure along a stage of the streamline from 𝑟ଵ to 𝑟ଶ can be found as (multiply 
by 𝑑𝑧) 

න 𝑑𝑝
௦௧௔௚௘

= 𝜌 ቈ𝜔ଶ න 𝑟 𝑑𝑧 −
𝑤௥

𝑤௭

𝑑𝑧

𝑑𝑟

1

2
න 𝑑𝑤ଶ

௦௧௔௚௘௦௧௔௚௘

−
1

2
න 𝑑𝑣ଶ

௦௧௔௚௘

+
𝑤௥

𝑤௭

𝑑𝑧

𝑑𝑟

1

2
න

𝜕𝑤ଶ

𝜕𝑧௦௧௔௚௘

𝑑𝑧 + ൬
𝑤௥

𝑤௭

− 1൰ 𝑤௥ න
𝜕𝑤௭

𝜕𝑟
𝑑𝑧

௦௧௔௚௘

+
1

2

𝑑𝑟

𝑑𝑧
න

𝜕𝑣ଶ

𝜕𝑟௦௧௔௚௘

𝑑𝑧

+ න 𝑔𝑓௚೥
 𝑑𝑟

௦௧௔௚௘

቉

(258) 

This is simplified using known ratios to 

න 𝑑𝑝
௦௧௔௚௘

= 𝜌 ቈ𝜔ଶ න 𝑟 𝑑𝑧 −
1

2
න 𝑑𝑤ଶ

௦௧௔௚௘௦௧௔௚௘

−
1

2
න 𝑑𝑣ଶ

௦௧௔௚௘

+
1

2
න

𝜕𝑤ଶ

𝜕𝑧௦௧௔௚௘

𝑑𝑧 + ൬
𝑤௥

𝑤௭

− 1൰ 𝑤௥ න
𝜕𝑤௭

𝜕𝑟
𝑑𝑧

௦௧௔௚௘

+
1

2

𝑑𝑟

𝑑𝑧
න

𝜕𝑣ଶ

𝜕𝑟௦௧௔௚௘

𝑑𝑧

+ න 𝑔𝑓௚೥
 𝑑𝑟

௦௧௔௚௘

቉

(259) 

Which yields for the pressure related to the potential head along one streamline stage 
in the axial direction?! 

𝑝ଶ − 𝑝ଵ = 𝜌 ቈ𝜔ଶ
𝑟ଶ

ଶ − 𝑟ଵ
ଶ

2
+

𝑤ଵ
ଶ − 𝑤ଶ

ଶ

2
+

𝑣ଵ
ଶ − 𝑣ଶ

ଶ

2
+ 𝑔𝑓௚(𝑟ଶ − 𝑟ଵ)቉ (260) 
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E Simple derivation of affinity law for pump pressure  
A more simplistic derivation of the affinity law for pump pressure 𝑝 [Pa] can be 
obtained from force equilibrium in a pump. 

Simulating a pump effect for the cutter head requires an expression for the force 
that is exerted by the fluid on the hypothetical volute chamber. This centrifugal 
force for a rotating mass is given in equation (261). 

𝐹௖௙ = 2𝛹
𝑚𝑢ଶ

𝐷
 (261)

Where 𝑚 is the fluid mass (𝜌𝜋/4𝐷ଶ𝑏) inside the cutter [kg] and Ψ is the 
dimensionless head [-], a coefficient that scales the centroid of the fluid mass.  The 
meridional exit area 𝐴 [m2] of the virtual volute chamber equals 𝜋𝐷𝑏, hence the 
internal pressure 𝑝ି [Pa] that is exerted on the volute chamber can be found by 
again substituting 𝑢 = 𝜔𝐷/2. The affinity law for pump pressure is then found 
according to equation (262). 

𝑝 =
1

8
𝛹𝜌𝜔ଶ𝐷ଶ = 𝛹෡𝜌𝜔ଶ𝐷ଶ (262)
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F Expansion of the model’s continuity equation 
F.1 Derivation of actual radial specific flow for disc 1 and 2 

Restating the affinity laws 

𝑞௥ ௜
=

𝛷௜

𝛹෡௜

2𝜋
1

𝜔𝜌௜

𝑓ఊ௜
𝛥𝑝௕௟௔ௗ௘ ௜

 (263) 

Or reversely 

𝛥𝑝௕௟௔ௗ௘ ௜
=

𝛹௜

𝛷௜

1

2𝜋𝑓ఊ௜

𝜔𝜌௜𝑞ො௥௜
 (264) 

We say 

𝑞௥ ଶ
=

𝛷ଶ

𝛹෡ଶ

2𝜋
1

𝜔𝜌௪

𝑓ఊଶ
𝛥𝑝ௗ௜௦௖௦ ଶ

=
𝛷ଶ

𝛹෡ଶ

2𝜋
1

𝜔𝜌௪

𝑓ఊଶ
൫𝛥𝑝௕௟௔ௗ௘ଵ

− 𝛥𝑝௕௟௔ௗ௘ ଶ
൯ (265) 

Substituting equation (264) 

𝑞௥ ଶ
=

𝛷ଶ

𝛹ଶ

2𝜋
1

𝜔𝜌௪

𝑓ఊଶ
𝛥𝑝ௗ௜௦௖௦ଶ

=
𝛷ଶ

𝛹ଶ

2𝜋
1

𝜔𝜌௪

𝑓ఊଶ
ቆ

𝛹ଵ

𝛷ଵ

1

2𝜋𝑓ఊଵ

𝜔𝜌௠𝑞ො௥ଵ
−

𝛹ଶ

𝛷ଶ

1

2𝜋𝑓ఊଶ

𝜔𝜌௠𝑞ො௥ ଶ
ቇ

 (266) 

Simplify to find 

𝑞௥ ଶ
=

𝛷ଶ

𝛹ଶ

1

𝜌௪

𝑓ఊଶ
ቆ

𝛹ଵ

𝛷ଵ

1

𝑓ఊଵ

𝜌௠𝑞ො௥ଵ
−

𝛹ଶ

𝛷ଶ

1

𝑓ఊଶ

𝜌௠𝑞ො௥ ଶ
ቇ (267) 

Which can be written as 

𝑞௥ ଶ
= ቆ

𝛹ଵ

𝛹ଶ

𝜌௠

𝜌௪

𝛷ଶ

𝛷ଵ

𝑓ఊଶ

𝑓ఊଵ

𝑞ො௥ଵ
− 𝑞ො௥ ଶ

ቇ (268) 

Suppose 

𝜌௠ = 𝑐௩௦൫𝜌௤ − 𝜌௪൯ + 𝜌௪ = ቆ
𝑐௖𝑄௖

𝑄௥ଵ
+ 𝑄ௗ + 𝑄௔௠

൫𝜌௤ − 𝜌௪൯ + 𝜌௪ቇ (269) 

Then 

𝜌௠

𝜌௪

= 𝑐௩௦ ൬
𝜌௤

𝜌௪

− 1൰ + 1 = ቆ
𝑐௖𝑄௖

𝑄௥ଵ
+ 𝑄ௗ + 𝑄௔௠

൬
𝜌௤

𝜌௪

− 1൰ + 1ቇ (270) 

Hence 

𝑞௥ ଶ
= ቆ

𝛹ଵ

𝛹ଶ

𝛷ଶ

𝛷ଵ

ቆ
𝑐௖𝑄௖

𝑄௥ଵ
+ 𝑄ௗ + 𝑄௔௠

൬
𝜌௤

𝜌௪

− 1൰ + 1ቇ
𝑓ఊଶ

𝑓ఊଵ

𝑞ො௥ଵ
− 𝑞ො௥ଶ

ቇ (271) 

Knowing 

𝑞ො௥ଵ
= 𝛷ଵ2𝜋𝜔𝑟௧,ଵ

ଶ 𝑓ఊଵ
 (272) 
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𝑞ො௥ ଶ
= 𝛷ଶ2𝜋𝜔𝑟௧,ଶ

ଶ 𝑓ఊଶ
 (273) 

Also 

𝑞௥ଵ
= 𝑞ො௥ଵ

= 𝛷෡ଵ2𝜋𝜔𝑟௧,ଵ
ଶ 𝑓ఊଵ

 (274) 

Then the radial velocity for disc 2 is given as 

𝑞௥ଶ
=

𝛹ଵ

𝛹ଶ

𝛷ଶ

𝛷ଵ

ቆ
𝑐௖𝑄௖

𝑞௥ଵ
𝑏ଵ + 𝑄ௗ + 𝑄௔௠

൬
𝜌௤

𝜌௪

− 1൰ + 1ቇ
𝑓ఊଶ

𝑓ఊଵ

𝛷෡ଵ2𝜋𝜔𝑟௧,ଵ
ଶ 𝑓ఊଵ

− 𝛷෡ଶ2𝜋𝜔𝑟௧,ଶ
ଶ 𝑓ఊଶ

(275) 

Or 

𝑞௥ଶ
= 2𝜋𝜔 ൥

𝛹ଵ

𝛹ଶ

𝛷ଶ

𝛷ଵ

൭
𝑐௖𝑄௖

𝛷෡ଵ2𝜋𝜔𝑟௧,ଵ
ଶ 𝑓ఊଵ

𝑏ଵ + 𝑄ௗ + 𝑄௔௠

൬
𝜌௤

𝜌௪

− 1൰ + 1൱ 𝑓ఊଶ
𝛷ଵ𝑟௧,ଵ

ଶ − 𝛷ଶ𝑟௧,ଶ
ଶ 𝑓ఊଶ

൩ (276) 

F.2 Derivation of polynomial for disc height 1 

De volumetric flow rate at disc 2 is obtained from equation (276). 

𝑄௥ଶ = 2𝜋𝜔

⎝

⎜
⎛ 𝑓ఊଶ

𝑐௖𝑄௖

2𝜋𝜔𝑓ఊଵ
𝑏ଵ +

𝑄ௗ

𝛷ଵ𝑟௧,ଵ
ଶ +

𝑄௔௠

𝛷ଵ𝑟௧,ଵ
ଶ

൬
𝜌௤

𝜌௪
− 1൰ + 𝑓ఊଶ

𝛷ଵ𝑟௧,ଵ
ଶ − 𝛷ଶ𝑟௧,ଶ

ଶ 𝑓ఊଶ

⎠

⎟
⎞

𝑏ଶ (277) 

Split 

𝑄௥ ଶ
= 2𝜋𝜔

⎝

⎜
⎛ 𝑓ఊଶ

𝑐௖𝑄௖

2𝜋𝜔𝑓ఊଵ
𝑏ଵ +

𝑄ௗ

𝛷ଵ𝑟௧,ଵ
ଶ +

𝑄௔௠

𝛷ଵ𝑟௧,ଵ
ଶ

൬
𝜌௤

𝜌௪

− 1൰ + 𝑓ఊଶ
𝛷ଵ𝑟௧,ଵ

ଶ − 𝛷ଶ𝑟௧,ଶ
ଶ 𝑓ఊଶ

⎠

⎟
⎞

𝑏

−2𝜋𝜔

⎝

⎜
⎛ 𝑓ఊଶ

𝑐௖𝑄௖

2𝜋𝜔𝑓ఊଵ
𝑏ଵ +

𝑄ௗ

𝛷ଵ𝑟௧,ଵ
ଶ +

𝑄௔௠

𝛷ଵ𝑟௧,ଵ
ଶ

൬
𝜌௤

𝜌௪

− 1൰ + 𝑓ఊଶ
𝛷ଵ𝑟௧,ଵ

ଶ − 𝛷ଶ𝑟௧,ଶ
ଶ 𝑓ఊଶ

⎠

⎟
⎞

𝑏ଵ

 (278) 

Rewrite 

𝑄௥ ଶ
= 2𝜋𝜔

⎝

⎜
⎛ 𝑓ఊଶ

𝑐௖𝑄௖

2𝜋𝜔𝑓ఊଵ
𝑏ଵ +

𝑄ௗ

𝛷ଵ𝑟௧,ଵ
ଶ +

𝑄௔௠

𝛷ଵ𝑟௧,ଵ
ଶ

൬
𝜌௤

𝜌௪

− 1൰ + 𝛷 ቀ𝑓ఊଶ
𝑟௧,ଵ

ଶ − 𝑟௧,ଶ
ଶ 𝑓ఊଶ

ቁ

⎠

⎟
⎞

𝑏

−2𝜋𝜔

⎝

⎜
⎛ 𝑓ఊଶ

𝑐௖𝑄௖

2𝜋𝜔𝑓ఊଵ
𝑏ଵ +

𝑄ௗ

𝛷ଵ𝑟௧,ଵ
ଶ +

𝑄௔௠

𝛷ଵ𝑟௧,ଵ
ଶ

൬
𝜌௤

𝜌௪

− 1൰ + 𝛷 ቀ𝑓ఊଶ
𝑟௧,ଵ

ଶ − 𝑟௧,ଶ
ଶ 𝑓ఊଶ

ቁ

⎠

⎟
⎞

𝑏ଵ

 (279) 

Or 
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𝑄௥ ଶ
= 2𝜋𝜔

⎝

⎜
⎛ 𝑓ఊଶ

𝑐௖𝑄௖

2𝜋𝜔𝑓ఊଵ
𝑏ଵ +

𝑄ௗ

𝛷𝑟௧,ଵ
ଶ +

𝑄௔௠

𝛷𝑟௧,ଵ
ଶ

൬
𝜌௤

𝜌௪

− 1൰ + 𝛷 ቀ𝑓ఊଶ
𝑟௧,ଵ

ଶ − 𝑟௧,ଶ
ଶ 𝑓ఊଶ

ቁ

⎠

⎟
⎞

𝑏

−2𝜋𝜔

⎝

⎜
⎛ 𝑓ఊଶ

𝑐௖𝑄௖

2𝜋𝜔𝑓ఊଵ
𝑏ଵ +

𝑄ௗ

𝛷𝑟௧,ଵ
ଶ +

𝑄௔௠

𝛷𝑟௧,ଵ
ଶ

൬
𝜌௤

𝜌௪

− 1൰ + 𝛷 ቀ𝑓ఊଶ
𝑟௧,ଵ

ଶ − 𝑟௧,ଶ
ଶ 𝑓ఊଶ

ቁ

⎠

⎟
⎞

𝑏ଵ

 (280) 

The volumetric flow rate at disc 1 is obtained from equation (274). 

𝑄௥భ
= 𝑞௥ଵ

𝑏ଵ = 𝛷ଵ2𝜋𝜔𝑟௧,ଵ
ଶ 𝑓ఊଵ

𝑏ଵ (281) 

The volumetric flow rate balance is taken 

𝑄௔௡௢௦௘
+ 𝑄௖ + 𝑄௥మ

− 𝑄௥ଵ
− 𝑄ௗ − 𝑄௔௠

= 0 (282) 

So 

2𝜋𝜔

⎝

⎜
⎛ 𝑓ఊଶ

𝑐௖𝑄௖

2𝜋𝜔𝑓ఊଵ
𝑏ଵ +

𝑄ௗ

𝛷𝑟௧,ଵ
ଶ +

𝑄௔௠

𝛷𝑟௧,ଵ
ଶ

൬
𝜌௤

𝜌௪

− 1൰ + 𝛷 ቀ𝑓ఊଶ
𝑟௧,ଵ

ଶ − 𝑟௧,ଶ
ଶ 𝑓ఊଶ

ቁ

⎠

⎟
⎞

𝑏

−2𝜋𝜔

⎝

⎜
⎛ 𝑓ఊଶ

𝑐௖𝑄௖

2𝜋𝜔𝑓ఊଵ
𝑏ଵ +

𝑄ௗ

𝛷𝑟௧,ଵ
ଶ +

𝑄௔௠

𝛷𝑟௧,ଵ
ଶ

൬
𝜌௤

𝜌௪

− 1൰ + 𝛷 ቀ𝑓ఊଶ
𝑟௧,ଵ

ଶ − 𝑟௧,ଶ
ଶ 𝑓ఊଶ

ቁ

⎠

⎟
⎞

𝑏ଵ

+𝑄௔௡௢௦௘
+ 𝑄௖ − 𝑄ௗ − 𝑄௔௠

= 𝛷ଵ2𝜋𝜔𝑟௧,ଵ
ଶ 𝑓ఊଵ

𝑏ଵ

 (283) 

Rewrite 

𝑓ఊଶ
𝑐௖𝑄௖

2𝜋𝜔𝑓ఊଵ
𝑏ଵ +

𝑄ௗ

𝛷𝑟௧,ଵ
ଶ +

𝑄௔௠

𝛷𝑟௧,ଵ
ଶ

൬
𝜌௤

𝜌௪

− 1൰ 2𝜋𝜔𝑏 + 𝛷 ቀ𝑓ఊଶ
𝑟௧,ଵ

ଶ − 𝑟௧,ଶ
ଶ 𝑓ఊଶ

ቁ 2𝜋𝜔𝑏

−
𝑓ఊଶ

𝑐௖𝑄௖

2𝜋𝜔𝑓ఊଵ
𝑏ଵ +

𝑄ௗ

𝛷𝑟௧,ଵ
ଶ +

𝑄௔௠

𝛷𝑟௧,ଵ
ଶ

൬
𝜌௤

𝜌௪

− 1൰ 2𝜋𝜔𝑏ଵ − 𝛷 ቀ𝑓ఊଶ
𝑟௧,ଵ

ଶ − 𝑟௧,ଶ
ଶ 𝑓ఊଶ

ቁ 2𝜋𝜔𝑏ଵ

+𝑄௔௡௢௦௘
+ 𝑄௖ − 𝑄ௗ − 𝑄௔௠

= 𝛷ଵ2𝜋𝜔𝑟௧,ଵ
ଶ 𝑓ఊଵ

𝑏ଵ

 (284) 

So 

𝑓ఊଶ
𝑐௖𝑄௖ ൬

𝜌௤

𝜌௪

− 1൰ 2𝜋𝜔𝑏 + 𝛷 ቀ𝑓ఊଶ
𝑟௧,ଵ

ଶ − 𝑟௧,ଶ
ଶ 𝑓ఊଶ

ቁ 2𝜋𝜔𝑏 ቆ2𝜋𝜔𝑓ఊଵ
𝑏ଵ +

𝑄ௗ

𝛷𝑟௧,ଵ
ଶ +

𝑄௔௠

𝛷𝑟௧,ଵ
ଶ ቇ

−𝑓ఊଶ
𝑐௖𝑄௖ ൬

𝜌௤

𝜌௪

− 1൰ 2𝜋𝜔𝑏ଵ − 𝛷 ቀ𝑓ఊଶ
𝑟௧,ଵ

ଶ − 𝑟௧,ଶ
ଶ 𝑓ఊଶ

ቁ 2𝜋𝜔𝑏ଵ ቆ2𝜋𝜔𝑓ఊଵ
𝑏ଵ +

𝑄ௗ

𝛷𝑟௧,ଵ
ଶ +

𝑄௔௠

𝛷𝑟௧,ଵ
ଶ ቇ

+ ቆ2𝜋𝜔𝑓ఊଵ
𝑏ଵ +

𝑄ௗ

𝛷𝑟௧,ଵ
ଶ +

𝑄௔௠

𝛷𝑟௧,ଵ
ଶ ቇ ൫𝑄௔௡௢௦௘

+ 𝑄௖ − 𝑄ௗ − 𝑄௔௠
൯ = ቆ2𝜋𝜔𝑓ఊଵ

𝑏ଵ +
𝑄ௗ

𝛷𝑟௧,ଵ
ଶ +

𝑄௔௠

𝛷𝑟௧,ଵ
ଶ ቇ 𝛷ଵ2𝜋𝜔𝑟௧,ଵ

ଶ 𝑓ఊଵ
𝑏ଵ

(285) 

Is 
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𝑓ఊଶ
𝑐௖𝑄௖ ൬

𝜌௤

𝜌௪

− 1൰ 2𝜋𝜔𝑏

+𝛷 ቀ𝑓ఊଶ
𝑟௧,ଵ

ଶ − 𝑟௧,ଶ
ଶ 𝑓ఊଶ

ቁ 2𝜋𝜔𝑏 ቆ2𝜋𝜔𝑓ఊଵ
𝑏ଵ +

𝑄ௗ

𝛷𝑟௧,ଵ
ଶ +

𝑄௔௠

𝛷𝑟௧,ଵ
ଶ ቇ

−𝑓ఊଶ
𝑐௖𝑄௖ ൬

𝜌௤

𝜌௪

− 1൰ 2𝜋𝜔𝑏ଵ

−𝛷 ቀ𝑓ఊଶ
𝑟௧,ଵ

ଶ − 𝑟௧,ଶ
ଶ 𝑓ఊଶ

ቁ 2𝜋𝜔𝑏ଵ ቆ2𝜋𝜔𝑓ఊଵ
𝑏ଵ +

𝑄ௗ

𝛷𝑟௧,ଵ
ଶ +

𝑄௔௠

𝛷𝑟௧,ଵ
ଶ ቇ

+ ቆ2𝜋𝜔𝑓ఊଵ
𝑏ଵ +

𝑄ௗ

𝛷𝑟௧,ଵ
ଶ +

𝑄௔௠

𝛷𝑟௧,ଵ
ଶ ቇ ൫𝑄௔௡௢௦௘

+ 𝑄௖ − 𝑄ௗ − 𝑄௔௠
൯

= ቆ2𝜋𝜔𝑓ఊଵ
𝑏ଵ +

𝑄ௗ

𝛷𝑟௧,ଵ
ଶ +

𝑄௔௠

𝛷𝑟௧,ଵ
ଶ ቇ 𝛷ଵ2𝜋𝜔𝑟௧,ଵ

ଶ 𝑓ఊଵ
𝑏ଵ

 (286) 

Separate terms 

𝑓ఊଶ
𝑐௖𝑄௖ ൬

𝜌௤

𝜌௪

− 1൰ 2𝜋𝜔𝑏

+𝛷 ቀ𝑓ఊଶ
𝑟௧,ଵ

ଶ − 𝑟௧,ଶ
ଶ 𝑓ఊଶ

ቁ 2𝜋𝜔𝑏2𝜋𝜔𝑓ఊଵ
𝑏ଵ + 𝛷 ቀ𝑓ఊଶ

𝑟௧,ଵ
ଶ − 𝑟௧,ଶ

ଶ 𝑓ఊଶ
ቁ 2𝜋𝜔𝑏 ቆ

𝑄ௗ

𝛷𝑟௧,ଵ
ଶ +

𝑄௔௠

𝛷𝑟௧,ଵ
ଶ ቇ

−𝑓ఊଶ
𝑐௖𝑄௖ ൬

𝜌௤

𝜌௪

− 1൰ 2𝜋𝜔𝑏ଵ

−𝛷 ቀ𝑓ఊଶ
𝑟௧,ଵ

ଶ − 𝑟௧,ଶ
ଶ 𝑓ఊଶ

ቁ 2𝜋𝜔𝑏ଵ2𝜋𝜔𝑓ఊଵ
𝑏ଵ − 𝛷 ቀ𝑓ఊଶ

𝑟௧,ଵ
ଶ − 𝑟௧,ଶ

ଶ 𝑓ఊଶ
ቁ 2𝜋𝜔𝑏ଵ ቆ

𝑄ௗ

𝛷𝑟௧,ଵ
ଶ +

𝑄௔௠

𝛷𝑟௧,ଵ
ଶ ቇ

+൫𝑄௔௡௢௦௘
+ 𝑄௖ − 𝑄ௗ − 𝑄௔௠

൯2𝜋𝜔𝑓ఊଵ
𝑏ଵ + ൫𝑄௔௡௢௦௘

+ 𝑄௖ − 𝑄ௗ − 𝑄௔௠
൯ ቆ

𝑄ௗ

𝛷𝑟௧,ଵ
ଶ +

𝑄௔௠

𝛷𝑟௧,ଵ
ଶ ቇ

= 𝛷ଵ2𝜋𝜔𝑟௧,ଵ
ଶ 𝑓ఊଵ

𝑏ଵ2𝜋𝜔𝑓ఊଵ
𝑏ଵ + 𝛷ଵ2𝜋𝜔𝑟௧,ଵ

ଶ 𝑓ఊଵ
𝑏ଵ ቆ

𝑄ௗ

𝛷𝑟௧,ଵ
ଶ +

𝑄௔௠

𝛷𝑟௧,ଵ
ଶ ቇ

 (287) 

Rewrite 

−𝛷 ቀ𝑓ఊଶ
𝑟௧,ଵ

ଶ − 𝑟௧,ଶ
ଶ 𝑓ఊଶ

ቁ 2𝜋𝜔2𝜋𝜔𝑓ఊଵ
𝑏ଵ

ଶ − 𝛷ଵ2𝜋𝜔𝑟௧,ଵ
ଶ 𝑓ఊଵ

2𝜋𝜔𝑓ఊଵ
𝑏ଵ

ଶ

+𝛷 ቀ𝑓ఊଶ
𝑟௧,ଵ

ଶ − 𝑟௧,ଶ
ଶ 𝑓ఊଶ

ቁ 2𝜋𝜔𝑏2𝜋𝜔𝑓ఊଵ
𝑏ଵ + ൫𝑄௔௡௢௦௘

+ 𝑄௖ − 𝑄ௗ − 𝑄௔௠
൯2𝜋𝜔𝑓ఊଵ

𝑏ଵ

−𝑓ఊଶ
𝑐௖𝑄௖ ൬

𝜌௤

𝜌௪

− 1൰ 2𝜋𝜔𝑏ଵ − 𝛷 ቀ𝑓ఊଶ
𝑟௧,ଵ

ଶ − 𝑟௧,ଶ
ଶ 𝑓ఊଶ

ቁ 2𝜋𝜔 ቆ
𝑄ௗ

𝛷𝑟௧,ଵ
ଶ +

𝑄௔௠

𝛷𝑟௧,ଵ
ଶ ቇ 𝑏ଵ

+𝑓ఊଶ
𝑐௖𝑄௖ ൬

𝜌௤

𝜌௪

− 1൰ 2𝜋𝜔𝑏 + 𝛷 ቀ𝑓ఊଶ
𝑟௧,ଵ

ଶ − 𝑟௧,ଶ
ଶ 𝑓ఊଶ

ቁ 2𝜋𝜔𝑏 ቆ
𝑄ௗ

𝛷𝑟௧,ଵ
ଶ +

𝑄௔௠

𝛷𝑟௧,ଵ
ଶ ቇ

+൫𝑄௔௡௢௦௘
+ 𝑄௖ − 𝑄ௗ − 𝑄௔௠

൯ ቆ
𝑄ௗ

𝛷𝑟௧,ଵ
ଶ +

𝑄௔௠

𝛷𝑟௧,ଵ
ଶ ቇ

−𝛷ଵ2𝜋𝜔𝑟௧,ଵ
ଶ 𝑓ఊଵ

𝑏ଵ ቆ
𝑄ௗ

𝛷𝑟௧,ଵ
ଶ +

𝑄௔௠

𝛷𝑟௧,ଵ
ଶ ቇ = 0

 (288) 

Or 
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𝛷 ቀ𝑓ఊଶ
𝑟௧,ଵ

ଶ − 𝑟௧,ଶ
ଶ 𝑓ఊଶ

ቁ 2𝜋𝜔2𝜋𝜔𝑓ఊଵ
𝑏ଵ

ଶ + 𝛷ଵ2𝜋𝜔𝑟௧,ଵ
ଶ 𝑓ఊଵ

2𝜋𝜔𝑓ఊଵ
𝑏ଵ

ଶ

−𝛷 ቀ𝑓ఊଶ
𝑟௧,ଵ

ଶ − 𝑟௧,ଶ
ଶ 𝑓ఊଶ

ቁ 2𝜋𝜔𝑏2𝜋𝜔𝑓ఊଵ
𝑏ଵ − ൫𝑄௔௡௢௦௘

+ 𝑄௖ − 𝑄ௗ − 𝑄௔௠
൯2𝜋𝜔𝑓ఊଵ

𝑏ଵ

+𝑓ఊଶ
𝑐௖𝑄௖ ൬

𝜌௤

𝜌௪

− 1൰ 2𝜋𝜔𝑏ଵ + 𝛷 ቀ𝑓ఊଶ
𝑟௧,ଵ

ଶ − 𝑟௧,ଶ
ଶ 𝑓ఊଶ

ቁ 2𝜋𝜔 ቆ
𝑄ௗ

𝛷𝑟௧,ଵ
ଶ +

𝑄௔௠

𝛷𝑟௧,ଵ
ଶ ቇ 𝑏ଵ

−𝑓ఊଶ
𝑐௖𝑄௖ ൬

𝜌௤

𝜌௪

− 1൰ 2𝜋𝜔𝑏 − 𝛷 ቀ𝑓ఊଶ
𝑟௧,ଵ

ଶ − 𝑟௧,ଶ
ଶ 𝑓ఊଶ

ቁ 2𝜋𝜔𝑏 ቆ
𝑄ௗ

𝛷𝑟௧,ଵ
ଶ +

𝑄௔௠

𝛷𝑟௧,ଵ
ଶ ቇ

−൫𝑄௔௡௢௦௘
+ 𝑄௖ − 𝑄ௗ − 𝑄௔௠

൯ ቆ
𝑄ௗ

𝛷𝑟௧,ଵ
ଶ +

𝑄௔௠

𝛷𝑟௧,ଵ
ଶ ቇ

+𝛷ଵ2𝜋𝜔𝑟௧,ଵ
ଶ 𝑓ఊଵ

𝑏ଵ ቆ
𝑄ௗ

𝛷𝑟௧,ଵ
ଶ +

𝑄௔௠

𝛷𝑟௧,ଵ
ଶ ቇ = 0

 (289) 

Combine 

ቀ𝛷 ቀ𝑓ఊଶ
𝑟௧,ଵ

ଶ − 𝑟௧,ଶ
ଶ 𝑓ఊଶ

ቁ 2𝜋𝜔2𝜋𝜔𝑓ఊଵ
+ 𝛷ଵ2𝜋𝜔𝑟௧,ଵ

ଶ 𝑓ఊଵ
2𝜋𝜔𝑓ఊଵ

ቁ 𝑏ଵ
ଶ

−𝛷 ቀ𝑓ఊଶ
𝑟௧,ଵ

ଶ − 𝑟௧,ଶ
ଶ 𝑓ఊଶ

ቁ ൭2𝜋𝜔𝑏2𝜋𝜔𝑓ఊଵ
− 2𝜋𝜔 ቆ

𝑄ௗ

𝛷𝑟௧,ଵ
ଶ +

𝑄௔௠

𝛷𝑟௧,ଵ
ଶ ቇ൱ 𝑏ଵ

+ ൬𝑓ఊଶ
𝑐௖𝑄௖ ൬

𝜌௤

𝜌௪

− 1൰ − ൫𝑄௔௡௢௦௘
+ 𝑄௖ − 𝑄ௗ − 𝑄௔௠

൯2𝜋𝜔𝑓ఊଵ
൰ 2𝜋𝜔𝑏ଵ

− ൭𝑓ఊଶ
𝑐௖𝑄௖ ൬

𝜌௤

𝜌௪

− 1൰ + 𝛷 ቀ𝑓ఊଶ
𝑟௧,ଵ

ଶ − 𝑟௧,ଶ
ଶ 𝑓ఊଶ

ቁ ቆ
𝑄ௗ

𝛷𝑟௧,ଵ
ଶ +

𝑄௔௠

𝛷𝑟௧,ଵ
ଶ ቇ൱ 2𝜋𝜔𝑏

−൫𝑄௔௡௢௦௘
+ 𝑄௖ − 𝑄ௗ − 𝑄௔௠

൯ ቆ
𝑄ௗ

𝛷𝑟௧,ଵ
ଶ +

𝑄௔௠

𝛷𝑟௧,ଵ
ଶ ቇ

+𝛷2𝜋𝜔𝑟௧,ଵ
ଶ 𝑓ఊଵ

ቆ
𝑄ௗ

𝛷𝑟௧,ଵ
ଶ +

𝑄௔௠

𝛷𝑟௧,ଵ
ଶ ቇ 𝑏ଵ = 0

 (290) 

Divide by 2𝜋𝜔 

ቀ𝛷 ቀ𝑓ఊଶ
𝑟௧,ଵ

ଶ − 𝑟௧,ଶ
ଶ 𝑓ఊଶ

ቁ 2𝜋𝜔𝑓ఊଵ
+ 𝛷ଵ𝑟௧,ଵ

ଶ 𝑓ఊଵ
2𝜋𝜔𝑓ఊଵ

ቁ 𝑏ଵ
ଶ

−𝛷 ቀ𝑓ఊଶ
𝑟௧,ଵ

ଶ − 𝑟௧,ଶ
ଶ 𝑓ఊଶ

ቁ ൭𝑏2𝜋𝜔𝑓ఊଵ
− ቆ

𝑄ௗ

𝛷𝑟௧,ଵ
ଶ +

𝑄௔௠

𝛷𝑟௧,ଵ
ଶ ቇ൱ 𝑏ଵ

+ ൬𝑓ఊଶ
𝑐௖𝑄௖ ൬

𝜌௤

𝜌௪

− 1൰ − ൫𝑄௔௡௢௦௘
+ 𝑄௖ − 𝑄ௗ − 𝑄௔௠

൯2𝜋𝜔𝑓ఊଵ
൰ 𝑏ଵ

− ൭𝑓ఊଶ
𝑐௖𝑄௖ ൬

𝜌௤

𝜌௪

− 1൰ + 𝛷 ቀ𝑓ఊଶ
𝑟௧,ଵ

ଶ − 𝑟௧,ଶ
ଶ 𝑓ఊଶ

ቁ ቆ
𝑄ௗ

𝛷𝑟௧,ଵ
ଶ +

𝑄௔௠

𝛷𝑟௧,ଵ
ଶ ቇ൱ 𝑏

−൫𝑄௔௡௢௦௘
+ 𝑄௖ − 𝑄ௗ − 𝑄௔௠

൯
1

2𝜋𝜔
ቆ

𝑄ௗ

𝛷𝑟௧,ଵ
ଶ +

𝑄௔௠

𝛷𝑟௧,ଵ
ଶ ቇ

+𝛷𝑟௧,ଵ
ଶ 𝑓ఊଵ

ቆ
𝑄ௗ

𝛷𝑟௧,ଵ
ଶ +

𝑄௔௠

𝛷𝑟௧,ଵ
ଶ ቇ 𝑏ଵ = 0

 (291) 

Rewrite 
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ቀ𝛷𝑓ఊଶ
𝑟௧,ଵ

ଶ 𝑓ఊଵ
− 𝛷𝑟௧,ଶ

ଶ 𝑓ఊଶ
𝑓ఊଵ

+ 𝛷ଵ𝑟௧,ଵ
ଶ 𝑓ఊଵ

𝑓ఊଵ
ቁ 2𝜋𝜔𝑏ଵ

ଶ

−𝛷 ൥ቀ𝑓ఊଶ
𝑟௧,ଵ

ଶ − 𝑟௧,ଶ
ଶ 𝑓ఊଶ

ቁ ൭2𝜋𝜔𝑓ఊଵ
𝑏 − ቆ

𝑄ௗ

𝛷𝑟௧,ଵ
ଶ +

𝑄௔௠

𝛷𝑟௧,ଵ
ଶ ቇ൱ − 𝑟௧,ଵ

ଶ 𝑓ఊଵ
ቆ

𝑄ௗ

𝛷𝑟௧,ଵ
ଶ +

𝑄௔௠

𝛷𝑟௧,ଵ
ଶ ቇ൩ 𝑏ଵ

+ ൬𝑓ఊଶ
𝑐௖𝑄௖ ൬

𝜌௤

𝜌௪

− 1൰ − ൫𝑄௔௡௢௦௘
+ 𝑄௖ − 𝑄ௗ − 𝑄௔௠

൯2𝜋𝜔𝑓ఊଵ
൰ 𝑏ଵ

− ൭𝑓ఊଶ
𝑐௖𝑄௖ ൬

𝜌௤

𝜌௪

− 1൰ + 𝛷 ቀ𝑓ఊଶ
𝑟௧,ଵ

ଶ − 𝑟௧,ଶ
ଶ 𝑓ఊଶ

ቁ ቆ
𝑄ௗ

𝛷𝑟௧,ଵ
ଶ +

𝑄௔௠

𝛷𝑟௧,ଵ
ଶ ቇ൱ 𝑏

−൫𝑄௔௡௢௦௘
+ 𝑄௖ − 𝑄ௗ − 𝑄௔௠

൯
1

2𝜋𝜔
ቆ

𝑄ௗ

𝛷𝑟௧,ଵ
ଶ +

𝑄௔௠

𝛷𝑟௧,ଵ
ଶ ቇ

= 0

 (292) 

Rewrite again 

𝛷2𝜋𝜔 ቂቀ𝑓ఊଶ
𝑓ఊଵ

+ 𝑓ఊଵ

ଶቁ 𝑟௧,ଵ
ଶ − 𝑓ఊଶ

𝑓ఊଵ
𝑟௧,ଶ

ଶ ቃ 𝑏ଵ
ଶ

− ൥𝛷2𝜋𝜔𝑓ఊଵ
𝑓ఊ

ଶ
൫𝑟௧,ଵ

ଶ − 𝑟௧,ଶ
ଶ ൯𝑏 − ൭𝑓ఊଵ

+ 𝑓ఊ
ଶ

ቆ1 −
𝑟௧,ଶ

ଶ

𝑟௧,ଵ
ଶ ቇ൱ ൫𝑄ௗ + 𝑄௔௠

൯൩ 𝑏ଵ

+ ൤𝑓ఊଶ
𝑐௖𝑄௖ ൬

𝜌௤

𝜌௪

− 1൰ − 2𝜋𝜔𝑓ఊଵ
൫𝑄௔௡௢௦௘

+ 𝑄௖ − 𝑄ௗ − 𝑄௔௠
൯൨ 𝑏ଵ

−𝑓ఊଶ
ቈ൬

𝜌௤

𝜌௪

− 1൰ 𝑐௖𝑄௖ + ቆ1 −
𝑟௧,ଶ

ଶ

𝑟௧,ଵ
ଶ ቇ ൫𝑄ௗ + 𝑄௔௠

൯቉ 𝑏

−
1

𝛷2𝜋𝜔𝑟௧,ଵ
ଶ ൫𝑄௔௡௢௦௘

+ 𝑄௖ − 𝑄ௗ − 𝑄௔௠
൯൫𝑄ௗ + 𝑄௔௠

൯

= 0

 (293) 

And on 

𝛷2𝜋𝜔 ቂቀ𝑓ఊଶ
𝑓ఊଵ

+ 𝑓ఊଵ

ଶቁ 𝑟௧,ଵ
ଶ − 𝑓ఊଶ

𝑓ఊଵ
𝑟௧,ଶ

ଶ ቃ 𝑏ଵ
ଶ

−2𝜋𝜔𝑓ఊଵ
ቂ𝛷𝑓ఊଶ

൫𝑟௧,ଵ
ଶ − 𝑟௧,ଶ

ଶ ൯𝑏 + ൫𝑄௔௡௢௦௘
+ 𝑄௖ − 𝑄ௗ − 𝑄௔௠

൯ቃ 𝑏ଵ

+ ൥𝑓ఊଶ
𝑐௖𝑄௖ ൬

𝜌௤

𝜌௪

− 1൰ + ൭𝑓ఊଵ
+ 𝑓ఊ

ଶ
ቆ1 −

𝑟௧,ଶ
ଶ

𝑟௧,ଵ
ଶ ቇ൱ ൫𝑄ௗ + 𝑄௔௠

൯൩ 𝑏ଵ

−𝑓ఊଶ
ቈ൬

𝜌௤

𝜌௪

− 1൰ 𝑐௖𝑄௖ + ቆ1 −
𝑟௧,ଶ

ଶ

𝑟௧,ଵ
ଶ ቇ ൫𝑄ௗ + 𝑄௔௠

൯቉ 𝑏

−
1

𝛷2𝜋𝜔𝑟௧,ଵ
ଶ ൫𝑄௔௡௢௦௘

+ 𝑄௖ − 𝑄ௗ − 𝑄௔௠
൯൫𝑄ௗ + 𝑄௔௠

൯

= 0

 (294) 
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G Geometry descriptions 
There are multiple methods to describe the geometry of the cutter head. A 
preliminary model may overlay the cutter with a truncated cone as demonstrated 
in appendix G.1. An advanced geometrical description goes into further detail as 
presented in  

G.1 Cutter (preliminary) 

In order to describe the flows in this model, the control volume is heavily simplified 
by reducing the cutter head geometry to a segmented cylinder geometry. First, the 
geometry is reduced to a truncated cone shape. Next, the cylinder diameters are 
found through linear interpolation within the truncated cone. These diameters are 
representative for the flow through the full heights 𝑏ଵ [m] and 𝑏ଶ [m] of the 
respective discs of the cutter as depicted in Figure G.1: Simplification of the cutter 
geometrya and expressed in equations (295) and (296). 

𝐷ଵ = 𝐷௥௜௡௚ −
𝑏ଵ

2 𝑡𝑎𝑛 𝜅
 (295) 

𝐷ଶ = 𝐷௧௢௣ −
𝑏 − 𝑏ଵ

2 𝑡𝑎𝑛 𝜅
 (296) 

Where 𝐷ଵ is the average diameter of segment 1 [m], 𝐷ଶ is the average diameter of 
segment 2 [m], 𝐷௥௜௡௚ is the diameter of the cutter ring [m], 𝐷௧௢௣ is the diameter of 
the cutter top [m] and 𝜅 represents the angle between the truncated cone and the 
cutter ring [deg]. Figure G.1 depicts the shape of the truncated cone. 

 
Figure G.1: Simplification of the cutter geometry. 
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G.2 Bank (preliminary) 

For simplicity purposes, the cutterhead is considered penetrated in the bank under 
an angle 𝜆 [deg] into an equally inclined bank angle of 45 degrees. In reality, this is 
highly uncommon since the high suction mouth placement induces rapid 
redeposition. Figure G.1: Simplification of the cutter geometryb depicts the cutter 
placement for this model. The cut off area of the bank 𝐴௖௨௧ [m2] is related to the 
placement of the cutter and can be mapped onto the segmented cutterhead shape 
by introducing the effective bank height ℎ෠  [m], i.e. the height of the bank in the 
coordinate system of the cutter. Choosing a lower bank height ℎ [m] and thus 
effective bank height allows for the distribution of cut face towards segment 1 of 
the simplified shape. It is assumed that the tip of the simplified cutter geometry can 
be identified as the lower end of the effective bank height of segment 2 ℎଶ

෢ [m].  

 Figure G.2: Schematic visualization of the bank contact angle (left) and the relation between bank 
height and effective bank height (right). 

As depicted in Figure G.2, the angle 𝛾௜  [rad] associated with the intersecting 
circumference of the cutter and the bank geometry can be expressed as a function 
of the cutter diameter and effective bank height as evidenced in equation (297). 
Note that this equation is only valid when the bank and ladder angle are equal and 
for 2ℎప

෡ ≤ 𝐷௜. Additional geometry formulations are necessary for larger bank 
heights. 

ℎప
෡ =

𝐷௜

2
(1 − 𝑐𝑜𝑠 𝛾௜) ⇔ 𝛾௜ = 𝑐𝑜𝑠ିଵ ቆ1 −

2ℎప
෡

𝐷௜

ቇ (297) 

Discretization of the cutterhead requires a geometry criterion to determine 
segment contributions to the cut face. Equation (298) relates a linearized 
estimation of the cut depth to the cut off area. 

𝑏௖௨௧ =
஺೎ೠ೟

௛෡
  (298) 

Where 𝑏௖௨௧ is an estimate for the depth of the cut for the given bank-cutter 
interaction. Consequently, a sequence of geometry expressions allow for the 
computation of the parameters relevant to the cutting contributions of segment 1 
and 2 for any given 𝐷ଵ and 𝐷ଶ as outlined in equation (299) and (300). 
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ℎଶ
෢ = ቐ

𝐴௖௨௧

𝑏ଶ

, 𝑏௖௨௧ < 𝑏ଶ

ℎ෠, 𝑏௖௨௧ ≥ 𝑏ଶ

 (299) 

ℎଵ
෢ = ቐ

0, 𝑏௖௨௧ < 𝑏ଶ

𝐴௖௨௧ − ℎଶ
෢𝑏ଶ

𝑏ଵ

, 𝑏௖௨௧ ≥ 𝑏ଶ

 (300) 

Where ℎଵ
෢ is de effective bank height of segment 1 [m]. Since flows through soil are 

neglected, the active flow contribution areas of segment 1 and 2 are found using 
the bank contact angle 𝛾௜  [rad] (see Figure G.2 (left)). The bank contact angle is used 
to determine the dimensionless factor fஓ౟

 [-] that was introduced to account for the 
free flow factor of the impeller exit area as shown below 

𝑓ఊ೔
= 1 −

𝛾௜

2𝜋
 (301) 

G.3 Cutter (adcanvced) 

The following geometrical descriptions of the leading edge radius of the cutter and 
the blade angle at the leading and trailing edge respectively, supplement the 
advanced geometrical descriptions given in the main report.  

𝑟௟ = 𝑟௟,௭బ
+ 𝑓௥௟ଵ

𝑧ଶ + 𝑓௥௟ଶ
𝑧

𝑓௥௟ଶ
= −

𝑟௟,௭బ
− 𝑟௟,௭್

𝑏
− 𝑓௥௟ଵ

𝑏

𝑓௥௟ଵ
= −0.15

𝑟௟,௭బ
=

𝐷௥௜௡௚

2

3

3.5

𝑟௟,௭್
=

𝐷௡௢௦௘

2

1

3.5

 (302) 

𝛽௧ = 𝛽௧,௭బ
+ 𝑓ఉ௧ଵ

𝑧ଶ + 𝑓ఉ௧ଶ
𝑧

𝑓ఉ௧ଶ
= −

𝛽௧,௭బ
− 𝛽௧,௭್

𝑏
− 𝑓ఉ௧ଵ

𝑏

𝑓ఉ௧ଵ
= −10

𝛽௧,௭బ
= 155

𝛽௧,௭್
= 100

 (303) 

𝛽௟ = 𝛽௟,௭బ
+ 𝑓ఉ௟ଵ

𝑧ଶ + 𝑓ఉ௟ଶ
𝑧

𝑓ఉ௟ଶ
= −

𝛽௟,௭బ
− 𝛽௟,௭್

𝑏
− 𝑓ఉ௟ଵ

𝑏

𝑓ఉ௟ଵ
= −15

𝛽௟,௭బ
= 170

𝛽௟,௭್
= 60

 (304) 
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H Literature Notes 
H.1 Den Burger (2003) 

1. Goal 
“A better understanding of the occurrence of spillage when using a cutter suction dredge” 

a. Mostly looking at hard formations 
b. Not necessarily reducing spillage 

2. Spillage Definition 
“the soil that is cut during the dredging process, but is not sucked up by the suction 
pipe. 

a. Spillage resulting from the cutting process 
i. Violent cutting 

1. Chips are thrown away immediately 
b. Spillage resulting from the mixture forming process 

i. Particles (chips) enter cutter head but leave for some reason. Influenced by 
1. Geometry of cutter head 
2. Shape of the suction mouth 
3. Operational parameters 

a. Rotational velocity 
b. Mixture velocity 
c. Swing/Haul velocity 

3. Consequences of Spillage 
a. Reduces productivity of the CSD 

i. Digging deeper than required 
b. Increase uncertainty with regards to production estimates because difficult to estimate 

i. Increases risk involved in obtaining dredging work 
c. Over-depth cutting required 

i. Increases wear 
ii. More energy consumption 

1. All together more costly operation 
4. Reduce spillage options 

a. Optimize cutter geometry 
i. Very much iterative process, trial and error 

b. Adjusting operational parameters 
i. Hard to obtain feedback 

ii. Density meters in the suction pipe only indicate production. Far from cutter 
head, so delay in feedback. Additionally, Difficulties when 

1. Large parameters 
2. Flow fluctuations 
3. Slip between water and particles 

5. General 
a. Trailing suction hopper dredge dominates market 
b. CSD advantages 

i. Wide range of soil type cutting 
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ii. Precision 
c. Disadvantages 

i. Dredging depth limited 
d. Applications 

i. Dredging of harbors and fairways 
ii. Land fill projects 

6. Set-up 
a. Ladder provides weight on the cutter head so teeth can penetrate the soil 

i. Practice, maximum ladder angle is about 45 degrees. The larger the angle, the 
larger spillage. 

b. Teeth/Chisels are mounted on adapters, which are mounted on the blades. 
i. Easy replacement when teeth are worn out 

ii. Ensures teeth are always positioned correctly 
c. Blades 

i. Thick, to ensure high cutting forces 
d. Drive shaft 

i. Connected to the head by means of a screw joint 
e. Conical back plate 

i. Distance of the breach to the suction mouth becomes smaller, beneficial for 
productivity. 

f. Suction pipe 
i. Mounted on the ladder. Sticks through conical back plate. 

g. Spud carriage 
i. Center of rotation for vessel 

ii. Rotation performed by winches that are fastened by cables to side anchors 
iii. Typically 30 degrees per side, 60 in total 
iv. Working spud 

1. Fixed to the bottom, centere of rotation 
v. Auxiliary spud is down in the corners. Spud carriage is moved back towards the 

front of the ship. Then working spud is lowered again and auxiliary spud is lifted. 
h. Height of cutter head 

i. Has big influence on productivity (Slotta 1984). Taller heads are less productive 
due to distance of suction mouth. 

ii. Suction force only significant in vicinity of suction mouth. 
i. Skirts 

i. Have positive effect on productivity. Decrease probability of particles leaving 
the cutter head. 

ii. Simple steel plates, welded on the blades at the trailing edge.  
7. Working 

a. Hard formations: Head is typically halfway the breach to reduce cutting forces 
b. Soft formations: Head can be deeper 
c. Two functions that may set contradictory demands to the design of a cutter head 

i. Mechanical cutting 
1. Goal: optimum between required power and wear 
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2. Literature reference: Roxborough 1975, Deketh 1995, Verhoef 1997. 
ii. Mixing (water/soil mixture) for suction pipe suck up 

1. Goal: minimize spillage 
d. Over-cut 

i. Teeth of the cutter head start to cut at the top of the breach/bank working their 
way down 

e. Under-Cut 
i. Teeth start at the bottom and work way up 

ii. Practice: when cutting rock, in the under-cut situation the production is about 
two to three times higher than in over-cut stituation 

8. Soft formations: 
a. Particles will follow the water flow more easily than hard formations. 
b. For sand there is a distinct relationship between productivity of a cutter head and the 

ratio of the suction flow and the rotational velocity of the cutter head.  
c. ratio of suction flow and rotational velocity of the cutter head determines the flow 

inside the cutter head. Steinbusch first to introduce a flow number Q_m/(omega*R). 
This flow number assumes uniformity of flow. 

i. (Mol1977a and Moret1997a)  
ii. Steinbusch et al al. (1999) and Dekker et al. (1999). 

9. Hard formations: 
a. Particles will be larger and consequently have a certain freedom of motion with respect 

to water flow. 
b. Large particles: gravitational and inertial forces are expected to be more dominant in 

comparison with the cutting of sand. In that case, spillage is determined by the 
indivudal values of the suction flow and the rotational velocity of the cutter head (and 
particle diameter and density) rather than the flow number only (as verified in chapter 
6). 

10. WATER tests 
a. For every suction flow there is a transition value for the angular velocity of the cutter 

head. Below the transition value, there is an ingoing flow along the entire contour head 
that equals the suction flow. 

b. If angular velocity of cutter head is larger, an outgoing flow starts to develop. Incoming 
= outgoing flow + suction flow. 

c. The ratio of angular velocity and mixture flow appeared fairly constant. 
11. Flow origin 

a. Due to shape of blades near the hub, due to screw propeller. Sucks in water from the 
front. 

b. If axial flow is increased beyond suction flow, then water will leave the cutter near the 
ring. Particles that are dragged along cause spillage. This is considered the centrifugal 
pump effect. 

c. The centrifugal pump effect amplifies the axial pump effect. 
d. The pump effect caused by the blades is considered negligible to the under pressure 

caused by the suction flow.  
e. The pump effect does not refer to a pressure rise inside the cutter head. 
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f. Flow inside cutter head is governed by the navier-stokes equations and trajectory of a 
particle by its equations of motion. 

i. See appendix A 
ii. Dimensionless equations of motion for a particle show that for prototype scale 

1. Inertia of particles plays an important role when particle relaxation time 
is approximately of the same order of magnitude as the characteristic 
time scale of the fluid.  

2. Particle Reynolds number is well within the turbulent or Newton range 
(1x103<Re<2x105). Drag coefficient is independent of Rep. In this range, 
the particle drag coefficient will vary between 0.5 for speherical 
particles and 1.1 for sand-like particles (van Rijn, 1984). 

g. Den burger (2003) focuses mainly on 1 particle. Is assumed representative for a large 
number of particles, with strong assumptions of 

i. neglecting particle-particle interactions 
ii. neglecting flow disturbance due to particles 

h. Residence time of particles are calculated and trajectories filmed (Chapter 4) 
i. Simulate trajectory of particle in CSD (chapter 5) 

i. Forced vortex to represent the rotation of the fluid and a sink (suction flow) 
j. Cutting tests (rock) and influence of inclination angle (chapter 6) 
k. Results 

i. Production curves have optimum 
1. Initial increase in angular velocity increases production 

ii. Influence of cutter geometry on production (chapter 7) 
1. Verified with a model (chapter 8) 

l. Conclusions (chapter 9) 
12. Prototype tests are hard 

a. Because expensive 
b. Difficult to perform 

13. Therefore model tests 
c. Reduces number of experiments that have to be performed 
d. Scaling tests give similar insights 

14. Disadvantages 
e. Certain process may be scaled incorrectly and the consequence should be evaluated 

15. Types of similarities 
f. Geometrical similarity 

i. Equal geometrical ratios 
g. Kinematic similarity 

i. Similarity of time as well as geometry 
1. Velocity-scale ratio will be same on model and prototype scale 

h. Dynamic similiartiy 
i. Similarity of geometry, time and force 

16. Literature conclusions: 
i. External force on the soil particles is gravitational in origin: Froude is appropriate scaling 

(Joanknecht 1976) 
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i. Ratio of fall velocity and suction velocity should be equal on all scales (no 
physical argument  given), but still we use NS because more appropriate 

17. Viscous stresses 
j. Appendix A shows that Reynolds number is large enough to neglect the viscous stresses.  
k. Therefore NS reduces to dimensionless Euler equation 

i. Characteristic scales 
1. T: time scale is either residence time of a fluid particle (applicable when 

the suction flow is dominant) or a specific time based on the cycle of the 
cutter head (when rotational velocity of the cutter head is dominant). 

Residence time = 𝑡 =
௏೎

ொ೔
 

18. Operational parameters 
l. Typical values, on prototype scale, for the rotational velocity of the cutter head and 

mixture velocity are 30 RPM and 5m/s. 
m. Rock density between 2000 kg/m3 and 2650 kg/m3. 

Regarding spillage: 

19. Cutter head works axial + centrifgugal pump: sucks in water from the front and accelerates it 
towards the back plate (axial pump effect). Near the back plate or cutter ring the centrifugal 
pump effect becomes important, by which water is thrown out of the cutter head. 

20. Every mixture flow showed a transition value where an outflow started to develop near the 
cutter ring. The flow increased with increasing rotational velocity. 

21. The ratio of the transition value for the rotational velocity and the mixture velocity was failry 
constant.  
ఠோ

௩
=0.42. Almost identical in both under-cut and over-cut scenario (perhaps relate transition 

value to transition of Reynolds to Froude number? 
22. Flow field inside the cutter head in under-cut situation cflearly differed from the flow field in 

over-cut situation. (This explains why Hayes’  model was a bad fit). The flow fields (patterns) 
were very similar with varying mixture velocities as well as rotational velocities. (moret, 1977a). 

23. Interesting: placed in a water, the transition value was higher, so in the bank water actually 
escapes the cutter head more easily!!! This might be caused by the limitation effect of the 
breach. 

24. Mol 1977a: the influence of the haul velocity could be accounted for by the superposing the 
haul velocity on the flow field of the stationary situation. Haul veloicity facilitated the fluid flow 
out of the cutter head near the cutter ring. Important metric. 

25. Plastic tests in a stationary cutter showed that the trajectory of the particles depended on the 
velocity ratio. 

26. Irregardless of overcut / undercut, the amount of particles sucked up depended on the velocity 
ratio. Production trend followed.  

27. Important: heavier particles (D50 = 1800 micrometer), deviated more from streamlines of the 
fluid than the paths of the samller particles. 

28. In Under-cut: the drag force and the gravitational force might cancel each other out in some 
parts of the cutter head. 



140 
 

29. In over-cut situation, the gravitational force always had a negative influence on the number of 
particles that was sucked up.  

H.2 Slotta (1976) 

- Experiments to scale up to 2.5 [m] cutterhead Buckingham PI theory 
- Non-dimensional relation for velocity using a set of dimensionless groups 

of variables 

𝑄௣

𝑣௣𝐷௛௘௔ௗ

= 𝑓

⎝

⎜
⎜
⎜
⎛

൬
𝑑௡

𝐷௛௘௔ௗ

൰
ᇣᇧᇤᇧᇥ
ௗ௜௔௠௘௧௘௥

௥௔௧௜௢

௠

, ൬
𝜔𝐷௛௘௔ௗ

𝐷௛௘௔ௗ

൰
ᇣᇧᇧᇤᇧᇧᇥ
௡௢௥௠௔௟௜௭௘ௗ

௩௘௟௢௖௜௧௬

௡

, ቆ
𝑔𝐷௛௘௔ௗ

𝑣௣
ଶ

ቇ
ᇣᇧᇧᇤᇧᇧᇥ

௜௡௩௘௥௦௘
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With 𝜇 = viscosity, 𝑣௣= velocity at suction nozzle 

Principles of dimensional analysis: which of dynamic forces is dominant? 

- If the same fluid is used in both model and prototype, then strict similitude 
can be found for only one force.  

- If flow is turbulent and gravity dominant, then scale according to equal 
Froude numbers 

- If viscous forces are dominant (laminar flow), then scale according to equal 
Reynolds numbers 

- If  both gravity and viscosity dominate, model becomes very sensitive to 
density and viscosity 

For CSD, Reynolds scaling seems appropriate from the correlations found, even 
though you might expect Froude. 

H.3 Joanknecht (1976) 

Efficiency set out against a dimensionless number 

𝜂 =
𝑄௘௙௙

𝑄௧௛

 (306) 

The dominant parameter for kinematic similarity between model and prototype is 
the number of Froude based on grain size. 

- For dynamic similarity, the ratio of the entrance velocity into the suction 
mouth and the terminal velocity of the soil cuttings should be equal in 
model and prototype. 

- Similarity rules also by Joanknecht 
- Sub-division between the cutting process and the transportation f particles 

towards the suction mouth. 
- d50 = 200 micrometer. 
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- Used Froude scaling for cutting process 
- Used ratio of terminal velocity and mixture velocity for transportation of 

particles 
- Spillage: 

 

H.4 Steinbusch (1999) 

- For low flow number rotation dominates the flow and spillage occurs near 
the cutter ring. For high flow number the suction flow dominates the flow, 
but this does not result in spillage. For nominal flow number there is a 
balance between rotation and suction flow. A simplified case is considered 
with water only. When the Reynolds number is large, and the initial flow 
conditions are irrotational, the Navier-Stokes equations can be simplified 
to the incompressible potential flow model [2] (Remember: Reynolds is 
most active for the suction inlet) Non-dimensional flow number 
characterizes an important ratio between angular velocity and the fluid 
velocity in the suction mouth 

𝜃 =
𝑄

𝛺𝑅ଷ
 (307) 

- This number was plotted horizontally and vertically the velocities were 
plotted. Basically two diamensional numbers plotted against each other. 

- Relative velocities are plotted.  
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- For high flow number the suction flow induced by the pump dominates the 
flow. No Spillage is pre-dicted, but the flow no longer is neatly aligned with 
the blade. 

- The computed flow patterns on the blade of the cutter head are shown in 
Figure 4 for three 

- flow numbers, low, nominal and high. These figures show the relative 
velocity, i.e. the velocity 

- seen by an observer that rotates with the cutter head. In addition a figure 
is given that shows 

- the orientation of the blade with respect to the cutter ring in these plots. 

 

  
 

- For the low flow number, the flow is directed outward left of the line AB. 
There the flow leaves the cutter head (spillage). At the front of the blade 
near the cutter ring, the velocities are high. In between the line CD and the 
hub the velocity is low and recirculation is found, see the arrow E. For the 
low flow number, the flow induced by the rotation dominates the flow. 
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-  
- For the nominal flow number no outflow is observed (no spillage). Flow 

velocities are roughly uniform, although lower velocities are found near the 
hub. For the nominal flow number there is an balance between rotation 
and suction induced flows. 

 

 

- No actual flow number is given for these graphs 
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H.5 Hayes (2000) 

- Operating characteristics, sediment properties, site characteristics and 
environmental conditions are identified 

- Dimensional analysis for numbers 
- Parameters correlated with observed sediment rates.  
- Lots of research on suspended sediment transport, but requires 

information about sediment resuspension at dredging operation (mass 
generation rate or a concentration distribution) 

- “One TGU correspoinds to the quantity of turbidity generated when a unit 
of quantitiy of bed material is dredged.” Hayes (2000) about Nakai (1978) 

𝑇𝐺𝑈 =
𝐾𝐵𝐻𝑢𝐶௥

𝑄௣

 (308) 

- 𝑅଻ସ = fraction by weight of particles finer than 74 micrometer 
- 𝑅଴ =fraction by weight of particles smaller than the diameter of a poarticle 

whose critical resuspension velocity equals the measured current velocity 
- 𝑄௣ = volume rate of dredged materials [m3/s] ??? denoted as Q_s in paper 

but expected to be Q_p 
- 𝐵 is the width of the turbid area [m] 
- 𝐻 = depth of water [m] 
- 𝑢 = unidirectional tidal current velocity 
- 𝐶௥= net concentration of suspended solids generated by dredging [kg/m3].  
- Relation assumes uniform vertical and horizontal dsediment distributions 

in the water column and a constant, unidirectional velocity.  
 
Hayes (1986) found this relation from correlation to dimensionless 
variables 
Data: - Calumet Harbour III 

𝐶௥ = 0.150 ቆ
𝑣௦

𝑣௣

ቇ

ଶ.଼଺ଽ

ቆ
𝑣𝑟௧

𝑣௣

ቇ

ଵ.଴ଶ଻

 (309) 

- 𝑣௦= swing velocity [m/s] 
- 𝑣௣= suction intake velocity [m/s] 
- 𝑣௥௧= tangential velocity at top of the rotation relative to surrounding water 

[m/s] 
- The R2 statistic for multiple determination of 0.72 (n=12,p=3). The cut 

thickness (face) is approximately equal to cutter diameter, but since equal, 
was not taken into account in the regression. Elliptical cutterhead is 
assumed. Note that 

𝑣௥௧ = ൜
|𝑣௦ + 𝑣௧|, 𝑠𝑡𝑎𝑟𝑏𝑜𝑎𝑟𝑑 − 𝑡𝑜 − 𝑝𝑜𝑟𝑡
|𝑣௦ + 𝑣௧|, 𝑝𝑜𝑟𝑡 − 𝑡𝑜 − 𝑠𝑡𝑎𝑟𝑏𝑜𝑎𝑟𝑑

 (310) 
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H.6 Andrassy and Herbich (1988)  

Examined the relationship between dredging operational parameters and 
observed sediment resuspension concentrations from many field and laboratory 
studies. Including data from Brahme (1983) and Herbich and DeVries (1986). 
Parameters were: 
- rotational velocity 
- suction velocity 
- swing velocity 
- thickness of cut 
- ladder angle 
-sediment size 
- cutterhead size 
No statistically significant relationships were identified in the study. 
Field data were: 
- James River 
- Savannah River 
- Calumet Harbor 
- Port Kanda (Japan) 
- lab data (Brahme) 
- lab data (Herbich deVries) 

Collins (1995) performed a regression analysis similar to Hayes 1986, but 
included data from 
- Calumet Harbor 
- James River 
- Savannah River 
(More dredge sizes, operating parameters and sediment characteristics) 
A new relation for Cr 

𝐶௥

𝜌
= 10଺𝐹ி𝐹஽  ቆ

𝑣௦

𝑣௣

ቇ

ଶ.଼ସ଼

ቆ
𝑣௧

𝑣௣

ቇ

ଵ.଴ଶଶ

 (311) 

Ff and Fd regression parameters for (cutter size) and (thickness of cut relative to 
the cutter). 

 
(Note: the latter term can be rewritten to make it simpler. But since the absolute 
velocities are used and always have a positive value, they are indistinguishable. Low 
swing speed equals high swing speed with counter velocity! 

Empirical relations for spillage estimation type 1 

In essence, sediment dislodged by the cutter head can be differentiated with 
respect to three flow rates (Hayes, 2000) as formulated in Equation (312). 

�̇�ௌ = �̇�௉ + �̇�ீ + �̇�஽ (312)
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where �̇�ௌ is the rate of in situ sediment dislodged by the cutter head [kg/m3] �̇�௉, 
is the rate of sediment removal via the suction mouth [kg/s], �̇�ீ  is the rate of 
sediment that is suspended and immediately redeposited by the cutter [kg/s], �̇�஽ 
is the rate of sediment brought into suspension by the cutter and transported away 
[kg/s]. Neglecting the spillage source from the violent nature of the cutting process 
(type 1), it can be assumed that 

�̇�ௌ = 𝑐௖𝐴௖ ∗ 𝑣௦ (313)

Cc = concentration of the cut 

The surface of the cut is dependent of the cutter geometry and commonly 
estimated rudimentarily using 𝐴௖ = 𝐿௖𝑡௖, where 𝐿௖ and 𝑡௖ are the length of the 
cutterhead and thickness of the cut respectively [m]. 

According to Hayes, �̇�ௌ as well as �̇�௉ can be estimated with reasonable accuracy 

�̇�௉ = 𝑐௣𝑄௣ (314)

Field data suggest �̇�ௌ ≫ �̇�஽ and �̇�௉ ≫ �̇�஽  

Hayes expects that sediment resuspension results from fine sediment particles 
adhering to the cutter blades as they pass through the sediment 

If so, sediment resuspension should be related to the rotational surface area 
exposed to the 

washing mechanism of the water, i.e., while they are out of the bottom sediment 
and exposed to erosional forces associated with water passing across the blade 
surface. Thus, the total surface area exposed to washing (The disturbed mass of air 
or water pushed aft (or fore when in reverse) by the) can be estimated as 

𝐴ா = 𝐴ி + 𝐴் (315)

Ae=exposed area 

AF=surface area on the forward face of the cutter exposed to washing action 

AT=exposed cutter area on the trailing side of the cutter 

Very elaborate derivation of surface area for washing is presented (Crocket 1933) 

�̇�஽ = 𝑐஽𝐿௖𝐻஽𝑣௦ (316)

𝐻஽=height above newly dredged elevation ~ 2Dc 

mD= [kg/h] 

Hayes estimated that resuspended solid concentration decreases to background 
concentrations at approximately twro cutter head diameters above the 
postdredging bottom. Conservative estimate. Very limited field observations. 
“Values for Cr were first adjusted for background  total suspended solids 
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concentration and, thus, reflect only the resuspended sedim,ent resulting from the 
dredging operations.”  

Parameters were made non-dimensional. A stepwise linear regression analysis was 
conducted. ‘g’ replaced �̇�஽ to annotate predicted values.  

Correlation was found:  

𝑔 = 10ହ.଺଺଺𝑣௥௧
ଵ.଼଺ସ ൬

𝐴ா

𝐴஼
൰

ଵସ.ଵସଷ

 (317)

g= predicted value 

R2 = 0.572 

This relation was shown to be a better predictor than the mean values (RMSE/S_m). 
It was seen that the effect of swing velocity was obscured by other variables. Also, 
�̇�஽
෢  was not yet included. This can be rewritten to dimensional function 

g = 1.3147|𝑉௦ ± 𝑛𝜋𝐷௛௘௔ௗ|ଵ.଼଺ସ ൬
𝐴ா

𝐷௛௘௔ௗ𝐿௖
൰

ଵସ.ଵସଷ

 (318)

Dimensional analysis yielded significance of variables. Now Dimensionless numbers 
are considered. 

Buckinghem Π theory (Buckinghem, 1995)) was used to reduce the number of 
independent solutions to be investigated. 

�̇�஽

�̇�ௌด
గభ

= 𝑓

⎝

⎛
�̇�ௌ

�̇�௉ด
గమ

,
𝑣௦

𝑣௣

 𝐴ா

𝐴஼ᇣᇤᇥ
గయ

,
𝐴ா

𝐴஼ด
 గర

,
𝑣௥௧

𝑣௣ด
గఱ

  

⎠

⎞ (319)

Buckhingham Π analysis yielded 

𝜋ଵ = 10ିହ.଼ଵଶ𝜋ଷ
ଵ.଼଴ସ𝜋ହ

ଵ.ଽ଺଺ (320)

Or 

g =
𝑐௖𝑡௖𝐷௛௘௔ௗ

ଵ.ଽ଺଺𝐿௖
ଶ.ଽ଺଺𝑉௦

ଶ.଼଴ସ𝐴ா
ଵ.଼଴ସ|𝑉௦ ± 𝑛𝜋𝐷௛௘௔ௗ|ଵ.ଽ଺଺

30.5𝑄ଷ.଻଻଴
 (321)
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The dimensionless model and dimensional model are =compared.  

 

 

Rewrite to % loss using formula above for mD and mS for dimensional 

𝑔ො =
|𝑉௦ ± 𝑛𝜋𝐷௛௘௔ௗ|ଵ.଼଺ସ

27.4𝑐௖𝑉௦𝑡௖𝐿௖
ଵହ.ଵସଷ  

൬
𝐴ா

𝐷௛௘௔ௗ
൰

ଵସ.ଵସଷ

 (322)

Dimensionless 

𝑔ො =
(𝐿௖𝐷௛௘௔ௗ)ଵ.ଽ଺଺(𝑣௦𝐴ா)ଵ.଼଴ସ|𝑉௦ ± 𝑛𝜋𝐷௛௘௔ௗ|ଵ.ଽ଺଺

1.099𝑄ଷ.଻଻଴
 (323)

n= [rps], Q=volumetric flow rate through the cutter. 
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 DM NDM 
Adjusted 
correlation 
coefficient 
r 

0.76 0.72 

𝑆௘ (kg/hr) 0.42 0.94 
RMSE/𝑆௘ 0.63 0.54 

Bold = best prediction 

However, sensitivity important with such power equations. Specific variables are: 
cutter diameter = D_head = 1.07 m 
Lc=0.91 m 
flow rate = 0.6 m3/s 
dredging depth = 6.1 [m] 
ladder angle = 23.6 [deg] 
When not the dependent variables, these were values: (so buckinghem theory 
rotates dependend variables) 
n = 0.25 rps (0.15 rpm) 
v_s = 0.305 
tc/D_f = 1 
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Careful: 
- Most applicable for similar models 
- only apply to dredges within the range of operating characteristics 
- application was tried against Acushnet River data, but intial models did not 
explain resuspended sediment variations very well. Better models needed. 
- 0.0035% LOSS 

H.7 Emperical relations for spillage estimation type 1 

In essence, sediment dislodged by the cutter head can be differentiated with 
respect to three flow rates (Hayes, 2000) as formulated in Equation (312). 

�̇�ௌ = �̇�௉ + �̇�ீ + �̇�஽ (324) 

where �̇�ௌ is the rate of in situ sediment dislodged by the cutter head [kg/m3] �̇�௉, 
is the rate of sediment removal via the suction mouth [kg/m3], �̇�ீ  is the rate of 
sediment that is suspended and immediately redeposited by the cutter [kg/m3], 
�̇�஽ is the rate of sediment brought into suspension by the cutter and transported 
away [kg/m3]. Neglecting the spillage source from the violent nature of the cutting 
process (type 1), it can be assumed that 

�̇�ௌ = 𝐶௦𝐴௖ ∗ 𝑣௦ (325) 

The surface of the cut is dependent of the cutter geometry and commonly 
estimated rudimentarily using 𝐴௖ = 𝐿௖𝑡௖, where 𝐿௖ and 𝑡௖ are the length of the 
cutterhead and thickness of the cut respectively [m]. 

According to Hayes, �̇�ௌ as well as �̇�௉ can be estimated with reasonable accuracy 
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I Cutter tip trajectory 
Cutter tip trajectories for a single bladed cutter head. 

 

Cutter tip trajectories for dig-swing (top) and back swing (bottom) 

Cutter tip trajectories for a six-bladed cutter head. 

 

Cutter tip trajectories for dig-swing (top) and back swing (bottom) 
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J Reference Implementation (Python) 
SRCSM.py 

# -*- coding: utf-8 -*- 
""" 
Created on Mon Jun 11 14:01:51 2018 
 
@author: jwerkhoven 
@version: Python 2.7 
""" 
 
# Import functions 
from __future__ import division 
import numpy as np 
import tkMessageBox 
import time 
import matplotlib.pyplot as plt 
 
 
#%% Define Sand-Rock Cutting Spillage Model (Version 1)                                                
def M_SRCSM(speed,vrbls,geometry,nvrnmnt,ii): 
     
    # Geometrical variables     
    D_ring      = geometry.D_ring 
    r_ring      = D_ring/2 
    D_nose      = geometry.D_nose 
    r_nose      = D_nose/2 
    b           = geometry.b_cutter 
    b_1start    = 0.25*b # Estimate width for iteration 
    D_pipe      = geometry.D_pipe 
    xideg       = geometry.xi_deg 
 
    # Environmental variables 
    h           = nvrnmnt.h_bank   
    lambdadeg   = nvrnmnt.lambda_deg 
    c_c         = nvrnmnt.c_c 
    v_s         = nvrnmnt.v_s 
    l_step      = nvrnmnt.l_step 
     
    # Cutting variables 
    v_m         = vrbls.v_m_index[ii] 
    Phi         = vrbls.Phi 
    f_d         = vrbls.f_d 
    f_c_d       = vrbls.f_c_d 
    f_d_type    = vrbls.f_d_type 
    particle    = vrbls.particle 
    omegarad    = vrbls.omega_rad 
     
    # Compute penetration depth 
    lambdarad   = np.deg2rad(lambdadeg) 
    xirad       = np.deg2rad(xideg)     
    z_pen       = l_step * np.cos(lambdarad) 
     
    # Input particle-specific parameters     
    if particle == 1: #Sand 
        v_ts  = 0.02 
        rho_q = 2650 
        rho_b = 1700 
        rho_w = 1025 
    elif particle == 0: #rock 
        v_ts  = 0.73 
        rho_q = 2200 
        rho_b = 1700 
        rho_w = 1025   
             
    #%% Improved Geometry 
     
    # Trailing edge radii ring (0) and nose (b) (given) 
    r_t_0 = D_ring/2 
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    r_t_b = D_nose/2     
    r_t_0_fit1 = -0.1 
    r_t_0_fit2 = -(r_t_0 - r_t_b)/b - r_t_0_fit1*b 
    def r_t_function(z): 
        r_t = r_t_0 + r_t_0_fit1*z**2 + r_t_0_fit2*z 
        return r_t                   
     
    # Leading edge radii at ring (0) and nose (b) (from drawings) 
    r_l_0 = r_t_0 * 3.0/3.5   
    r_l_b = r_t_b * 1.0/3.5    
    r_l_0_fit1 = -0.15 
    r_l_0_fit2 = -(r_l_0 - r_l_b)/b - r_l_0_fit1*b     
    def r_l_function(z): 
        r_l = r_l_0 + r_l_0_fit1*z**2 + r_l_0_fit2*z 
        return r_l        
     
    # Leading edge blade angles at ring (0) and nose (b) (from drawings) 
    B_t_0 = 155 
    B_t_b = 100 
    B_t_0_fit1 = -10 
    B_t_0_fit2 = -(B_t_0 - B_t_b)/b - B_t_0_fit1*b 
    def B_t_function(z): 
        B_t = B_t_0 + B_t_0_fit1*z**2 + B_t_0_fit2*z 
        return B_t  
     
    # Trailing edge blade angles at ring (0) and nose (b) (from drawings) 
    B_l_0 = 170 
    B_l_b = 60 
    B_l_0_fit1 = -25 
    B_l_0_fit2 = -(B_l_0 - B_l_b)/b - B_l_0_fit1*b 
    def B_l_function(z): 
        B_l = B_l_0 + B_l_0_fit1*z**2 + B_l_0_fit2*z 
        return B_l 
     
    # Optional check 
    def r_t_derivative(z): 
        r_t_d = -2*r_t_0_fit1*z - r_t_0_fit2 
        return r_t_d   
     
     
    #%% Bank contact parameters 
  
    # Apply condition for z_tip 
    z_tip       = -1/2 * (np.tan(lambdarad)+r_t_0_fit2)/r_t_0_fit1 
    if z_tip < b: 
        z_tip = z_tip 
    else: 
        z_tip = b 
         
    z_0         = 0 
    z_2         = b-z_pen 
    r_t_z_2     = r_t_function(z_2) 
    r_t_z_pen   = r_t_function(z_pen) 
    r_t_z_tip   = r_t_function(z_tip) 
    Delta_r     = abs(-r_t_z_tip - (-r_t_z_2 + (z_tip-z_2)*np.tan(lambdarad))) 
    h_pen       = Delta_r*np.cos(lambdarad) 
    z_1         = z_2 - Delta_r * np.tan(np.pi/2-xirad-lambdarad) 
     
    r_b_z_2     = -r_t_z_2 
    r_b_z_1     = -r_t_z_2 - Delta_r 
    r_b_z_0     = r_b_z_1 - z_1*np.tan(lambdarad)  
     
    h_hat       = h/np.sin(xirad) 
    h_hat_2     = h_pen*np.sin(xirad) 
    h_hat_3     = h_hat-h_hat_2  
     
    # Apply condition for z_3 
    z_3         = h_hat_3*np.sin(np.pi/2-xirad-lambdarad) + z_2          
    if b <= z_3: 
        z_3 = b 
    elif b < z_3: 
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        z_3 = z_3 
         
    r_b_z_3     = -r_t_z_2 + np.sqrt(h_hat_3**2 + (z_3-z_2)**2) 
    z_4         = b 
    r_b_z_4     = r_b_z_3 + (z_4-z_3)*np.tan(lambdarad) 
    delta_z_hat_pen = (z_2-z_1)/np.cos(lambdarad) 
    r_t_z_4     = r_t_function(z_4) 
     
    #%% Compute cut area     
    a_s         = h_hat # verified 
    b_s         = h/np.cos(np.pi/2 - lambdarad) 
    c_s         = (z_3-z_1)/np.cos(lambdarad) # verified 
    s           = (a_s+b_s+c_s)/2 
     
    # Apply condition for A_cut_triangle in case lambda == xi 
    if c_s == 0: 
        A_cut_triangle = 0 
    elif 0 < c_s: 
        A_cut_triangle = np.sqrt(s*(s-a_s)*(s-b_s)*(s-c_s))     
     
    A_cut_parallelogram = h*(z_4-z_3)/np.cos(lambdarad) # verified 
    A_cut       = A_cut_triangle + A_cut_parallelogram 
     
    #%% Determine outflow angle 
    def gamma_function(z,r_t_z,r_b_z): 
        if r_b_z <= -r_t_z: 
            gamma = 0 
        elif -r_t_z < r_b_z <= r_t_z: 
            if r_b_z <= 0: 
                Delta_r_b_z = r_t_z - abs(r_b_z) 
            elif 0 < r_b_z: 
                Delta_r_b_z = r_t_z + r_b_z 
            x_z_squared_1 = -Delta_r_b_z**2 + np.sqrt(1/2*Delta_r_b_z**2 + \ 
                            4*r_t_z**2*Delta_r_b_z**2) 
            x_z_squared_2 = -Delta_r_b_z**2 - np.sqrt(1/2*Delta_r_b_z**2 + \ 
                            4*r_t_z**2*Delta_r_b_z**2) 
            x_z_squared = max(x_z_squared_1,x_z_squared_2) 
            x_z = np.sqrt(x_z_squared) 
            gamma = 2*np.arctan(r_b_z/x_z) 
        elif r_t_z < r_b_z: 
            gamma = 1 
        return gamma 
     
     
    def r_b_function(z): 
        if z < z_1: 
            r_b_z = r_b_z_0 + z*np.tan(lambdarad) 
        elif z_1 <= z < z_3: 
            r_b_z = r_b_z_2 + (z-z_2)*np.tan(lambdarad+xirad) 
        elif z_3 <= z: 
            r_b_z = r_b_z_3 + (z-z_3)*np.tan(lambdarad) 
        return r_b_z 
     
    #%% Checking geometry    
     
#    x = np.linspace(0, b, 100) 
#    fig = plt.figure() 
#    plt.plot(x, r_t_function(x)) 
#    plt.plot(x, -r_t_function(x))      
#    plt.plot([z_0,z_1,z_2,z_3,z_4], [r_b_z_0,r_b_z_1,r_b_z_2,r_b_z_3,r_b_z_4]) 
#    plt.xlim(0, 6) 
#    plt.ylim(-4, 2) 
#    plt.gca().set_aspect('equal', adjustable='box') 
#    plt.show 
         
    #%% Iteration model 
     
    # Iteration starter 
    jj          = 0 
     
    # Specify iteration parameters 
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    relax       = speed.relax                   # Determine iteration step 
    threshold   = speed.threshold               # Determine required accuracy 
    error       = 1                             # Start value for error 
     
    # Iterate under accuracy condition 
    while error > threshold:     
        jj=jj+1 
         
        # Compute iteration geometry 
        b_2         = b-b_1start                # Height of disc 2  
        r_ext_1     = r_t_function(b_1start)    # Radius of disc 1 
        r_ext_2     = r_t_function(b_1start + b_2/2) # Radius of disc 2 
 
         
        #%% Bank contact area and parameters (Simple geometry) 
        if geometry.version == 1: 
 
            # Simple geometry does not take into account he shape of the bank 
            b_cut       = A_cut/h_hat 
            h_hat       = h/np.sin(xirad) 
            kapparad    = np.arctan(b/((D_ring-D_nose)/2)) 
            D_1         = D_ring-b_1start/np.tan(kapparad) 
            D_2         = D_nose+(b_2)/np.tan(kapparad) 
             
            # Verify condition for h 
            if 2*h_hat <= D_1: 
                h_hat = h_hat 
            else: 
                tkMessageBox.showerror('Geometry error', 'h_hat < D_z/2') 
             
            if b_cut < b_2: 
                h_hat_2 = A_cut/b_2 
                h_hat_1 = 0 
            elif b_cut > b_2: 
                h_hat_2 = h_hat 
                h_hat_1 = (A_cut-h_hat_2*b_2)/b_1start 
                 
            if h_hat_1 < D_1/2: 
                gamma_1     = np.arccos(1-(2*h_hat_1/D_1)) 
            else: 
                gamma_1     = np.arcsin(2*h_hat_1/D_1-1+np.pi/2) 
                 
            if h_hat_2 < D_2/2: 
                gamma_2     = np.arccos(1-(2*h_hat_2/D_2)) 
            else: 
                gamma_1     = np.arcsin(2*h_hat_2/D_2-1+np.pi/2)                         
             
        #%% Bank contact area and parameters (Advanced geometry)        
         
        elif geometry.version == 2: 
             
            # Linearized geometry for the computation of outflow parameter 
            r_t_1 = r_t_function(b_1start/2) 
            r_t_2 = r_t_function(b_1start+b_2/2) 
            r_b_1 = r_b_function(b_1start/2)  
            r_b_2 = r_b_function(b_1start+b_2/2) 
            gamma_1 = gamma_function(b_1start/2,r_t_1,r_b_1) 
            gamma_2 = gamma_function(b_1start+b_2/2,r_t_2,r_b_2) 
             
        elif geometry.version == 3: 
             
            # Take average of a series of slices to determine average gamma 
            n_slices = 10 
             
            # For disc 1 
            gamma_collect_1 = [] 
            x = np.linspace(0, b_1start, n_slices) 
            for ii in x: 
                r_t_1 = r_t_function(ii) 
                r_b_1 = r_b_function(ii)  
                gamma = gamma_function(ii,r_t_1,r_b_1) 
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                gamma_collect_1 = np.hstack(([gamma_collect_1,gamma])) 
                 
            # For disc 2 
            gamma_collect_2 = [] 
            x = np.linspace(b_1start, b, n_slices) 
            for ii in x: 
                r_t_2 = r_t_function(ii) 
                r_b_2 = r_b_function(ii)  
                gamma = gamma_function(ii,r_t_2,r_b_2) 
                gamma_collect_2 = np.hstack(([gamma_collect_2,gamma])) 
                 
            # Take averages     
            gamma_1 = sum(gamma_collect_1)/n_slices 
            gamma_2 = sum(gamma_collect_2)/n_slices 
             
        # Coefficients 
        f_gamma_1 = 1-gamma_1/(2*np.pi)    
        f_gamma_2 = 1-gamma_2/(2*np.pi) 
         
        # Blade angle at the trailing edge 
        B_t_1 = B_t_function(b_1start/2) # Pre Green Light version 
 
        #%% SRCSM start 
 
        # Centrifugal advection, volumetric flow rate disc 1 (estimate) 
        Q_r_1     = Phi*2*np.pi*omegarad*r_ext_1**2*f_gamma_1*b_1start 
         
        # In situ volumetric dredge flow rate 
        Q_c         = A_cut*v_s 
         
        # Axial volumetric flow rate at the suction pipe 
        Q_a_m       = 1/4*np.pi*D_pipe**2*v_m 
         
        # Axial volumetric flow rate at the nose 
        Q_a_nose    = Q_a_m*nvrnmnt.Q_a_nose 
         
        #  
        if vrbls.version == 1: # WODCONXXII version 
             
            Q_a_nose = 0 
             
        elif vrbls.version == 2: # Post Green Light Version  
             
            if gamma_2 <= np.pi: 
                x_2   = r_t_2 * np.sin(gamma_2) 
             
            # Compute radial component of v at theta = pi/2,  
            # half penetration depth            
            v_ts_r    = v_ts/np.cos(lambdarad)             
            v_r_thalfpihalfzpen_hat = v_ts_r # _hat because approximation        
             
            # Compute axial component of v at theta = pi/2, half penetration  
            # depth 
            v_z_thalfpihalfzpen_hat = v_m # _hat because approximation 
             
            # Compute velocity 
            u_thalfzpen = omegarad*r_t_2        
            v_ratio_hat = v_r_thalfpihalfzpen_hat/(v_z_thalfpihalfzpen_hat) 
             
            # Apply minimum criterium for the downards velocity             
            v_theta_thalfpihalfzpen = v_ts_r + f_d_type*f_d*u_thalfzpen             
            if v_theta_thalfpihalfzpen > 0: 
                v_theta_thalfpihalfzpen = v_theta_thalfpihalfzpen 
            elif v_theta_thalfpihalfzpen <= 0: 
                v_theta_thalfpihalfzpen = 0 
             
            r_t_ref     = r_ext_2 
            A_d         = abs(x_2)*b_2 
            Q_d         = A_d *v_theta_thalfpihalfzpen *(v_ratio_hat)**2 \ 
                          *(b-z_pen/2)/h_hat 
             



157 
 

        # Compute new value for b_1true 
        # This calculation method prioritizes simplicty over runtime and can 
        # changed adapted for speed improvements 
        b_1true  =(f_gamma_2*r_ext_1**2*c_c*Q_c / \ 
                   (Phi*2*np.pi*omegarad*r_ext_1**2*f_gamma_1*b_1start + \ 
                    Q_d + Q_a_m)* \ 
                   ((rho_q/rho_w)-1) \ 
                   + f_gamma_2*r_ext_1**2 - r_ext_2**2*f_gamma_2)/ \ 
                   r_ext_1**2*f_gamma_1 \ 
                   +(Q_a_nose + Q_c - Q_d - Q_a_m)/ \ 
                   (Phi*2*np.pi*omegarad*r_ext_1**2*f_gamma_1) 
                    
        # b_1 cannot be negative            
        b_1true     = max(b_1true,0)          
                     
        # Convergence criterium 
        error       = abs(b_1true - b_1start) 
        b_1start    = b_1start*(1-relax)+b_1true*relax         
        b_1         = b_1true 
         
        # Centrifugal advection, volumetric flow rate disc 1 (iterated) 
        Q_r_1     = Phi*2*np.pi*omegarad*r_ext_1**2*f_gamma_1*b_1 
         
        # Radial volumetric flow rate at disc 2 
        Q_r_2     = Q_d + Q_a_m + Q_r_1 - Q_a_nose - Q_c 
         
        # Concentration at the bank 
        c_c         = (rho_b - rho_w)/(rho_q - rho_w) 
         
        # Concentration in the cutter (disc 1 specifically) 
        c_vs      = c_c*Q_c/(Q_a_m + Q_r_1 + Q_d)   # Average in disc 1 
        c_r       = c_vs                            # Centrifugal Advection 
 
        # Determine rapid redeposition 
        if Q_d == 0:             
            c_d_max   = 0 
            c_d       = 0             
        elif Q_d > 0: 
            c_d_max   = min((c_c*Q_c - c_vs*Q_r_1)/Q_d,c_c) # When Q_a_m = 0 
            c_d       = f_c_d*c_vs+(c_d_max-c_vs)* v_ratio_hat**2  
        elif Q_d < 0: 
            tkMessageBox.showerror('Q_d turns negative', 'Q_d < 0') 
         
        # Determine concentrations 
        c_m       = (c_c*Q_c - c_r*Q_r_1 - c_d*Q_d)/Q_a_m; # Suction flow 
        c_c       = c_c 
         
        # Compute Spillage 
        SpillageR = c_r*Q_r_1/(c_c*Q_c) 
        SpillageD = c_d*Q_d/(c_c*Q_c) 
        Spill_rate  = SpillageR+SpillageD     
        Prod_rate   = 1-Spill_rate 
        theta_hat   = omegarad*(r_ring)**3/Q_a_m 
         
        # Collect and return         
        collect = np.array([Spill_rate,Prod_rate,theta_hat,Q_c,Q_a_m,Q_r_1, \ 
                            Q_r_2,b_1,b_2,c_r,c_m,c_d_max,c_d,f_gamma_1, \ 
                            f_gamma_2,SpillageR,SpillageD,Q_d,Q_a_nose,\ 
                            A_cut,c_c]) 
#    Debug Mode                     
#    import pdb            
#    pdb.set_trace()  
                       
    return collect 
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K Model analysis tool (Python) 
Control_panel.py 

# -*- coding: utf-8 -*- 
""" 
"Analyzing CSD Spillage Models" 
@author: jwerkhoven 
""" 
 
#%% Establish framework 
from __future__ import division # Required since 2.7 divides integers to floor 
# raw_input("Press Enter to continue...") 
 
from IPython import get_ipython 
get_ipython().magic('reset -sf') 
 
#%% Start-up and importing 
import datetime 
import os 
unused_variable = os.system("cls") # on windows 
import pandas as pd 
import numpy as np 
import matplotlib.pyplot as plt 
plt.close('all') 
 
#%% Speed considerations 
class speed: 
    relax       = 1E-2 
    threshold   = 1E-4 
     
#%% Specific variables 
 
# These variables should be taken from a file or project 
class geometry: 
    D_ring      = 3.11 
    D_nose      = 2.12 
    b_cutter    = 2.5 
    D_pipe      = 0.95 
    xi_deg      = 45 
    version     = 3 # choose 1 for simple, 2 intermediary, 3 for advanced 
#%% Define cutting variables 
class nvrnmnt: 
    h_bank      = 1 # 1 for A_cut =1.4 
    l_step      = 1.4 # 1 for A_cut=1.4 
    v_s         = 0.2 
    c_c         = 0.4  
    lambda_deg  = 45  
    Q_a_nose    = 0 # factor to determine relative size of Q_a_nose 
     
#%% Calibration Data 
 
# NEW VERSION     
xlsxnumpy = pd.read_excel("SpillageDataMiltenburg.xlsx") 
Cal_Data = np.array(xlsxnumpy) 
 
#How to select data for calibration 
#    Data = Data[Data[:,8] == 1] # Find all rows for the long cutter 
#    Data = Data[Data[:,8] == 0] # Find all rows for the short cutter 
#    Data = Data[Data[:,9] == 1] # Find all rows for under-cutting 
#    Data = Data[Data[:,9] == 0] # Find all rows for over-cutting 
#    Data = Data[Data[:,10] == 30] # Find all rows for non-rotated mouth 
#    Data = Data[Data[:,10] == 30] # Find all rows for forward rotated mouth 
#    Data = Data[Data[:,10] == -30] # Find all rows for backward rotated mouth 
#    Data = Data[Data[:,14] == 1] # Find all rows for sand 
#    Data = Data[Data[:,14] == 0] # Find all rows for rock 
#    Data = Data[Data[:,15] == 1] # take simple 
#    Data = Data[Data[:,15] == 0] # take sensitivity data 
 
# OLD VERSION     
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class clbrtn: 
    theta_hat  = np.array([ 7, 6.5,   6, 5.5,   5, 4.5,   4, 3.5,   3, 2.5,   \ 
                           2, 1.5,   1, 0.5,   0], dtype=float) 
    prod_rate  = np.array([30,  35,  40,  45,  51,  58,  64,  73,  81,  97,  \ 
                           99, 100, 100, 100, 100], dtype=float) 
    spill_rate = 100-prod_rate 
    name       = 'Miltenburg (1983)' 
    pythonexample = 1 
 
#%%        Model Name   Phi    under=1 long=1  suc_m   gmtry  simple?   Sand=#1, 
models = [['SRCSM',    0.58,   1,      1,      0,      1,     1,       1],   
          ['SRCSM',    0.92,   1,      1,      0,      1,     1,       0], 
          ['WCSM',     0.58,   1,      1,      0,      1,     1,       1],   
          ['WCSM',     0.92,   1,      1,      0,      1,     1,       0]]   
 
f_d    = 0.012 #0.012 
f_c_d  = 20    #20 
f_d_type = -1 # udercut =-1, overcut = 1 
 
for mm in range(len(models)): 
    exec("import %s" % (str(models[mm][0]))) 
     
#%% Options 
rotate          = 5               # Which sensitivity analysis to perform? See list below 
model_index     = np.array([0,1]) # Which models to be evaluated? 
sens_rotate     = 1               # Which model on display in the graphs? 1 is middle 
D_rotate        = 3.11            # Rotate the diameter for which to display Q_m 
 
#%% Independent variables 
class vrbls: 
    v_m_index   = np.array([2.25, 2.375, 2.5, 2.626, 2.75, 3, 3.25, 3.25, \ 
                            3.5, 3.75, 4, 4.5, 5, 5.5, 6, 6.5, 7, 7.5, 8, 8.5]) 
    omega_rpm    = 30 
    omega_rad    = omega_rpm*2*np.pi/60     # = (pi) [rad/s] 
    Q_m_index   = np.array([11, 8, 7 , 6, 5, 4, 3, 2]) 
    D_ring_index = np.ones(shape=[1,8])*D_rotate # indexii for default conversion to Q_m 
    theta_hat_index = omega_rad*(D_ring_index/2)**3/Q_m_index 
    version     = 2 # choose 1 for WODCONXXII paper, 2 for final version 
 
#%% Define variables to rotate for sensitivity analysis 
mutation        = 0.01 
s_min           = 1-mutation 
s_plus          = 1+mutation 
 
class snstvt: 
    s0          = np.array([s_min*(geometry.xi_deg-1),geometry.xi_deg-1,    \ 
                            s_plus*(geometry.xi_deg-1)])  # xi_deg  
    n0          = 'geometry.xi_deg' 
    s1          = np.array([s_min*nvrnmnt.v_s,nvrnmnt.v_s,s_plus*nvrnmnt.v_s])                          
    n1          = 'nvrnmnt.v_s' 
    s2          = np.array([s_min*nvrnmnt.c_c,nvrnmnt.c_c,s_plus*nvrnmnt.c_c])                        
    n2          = 'nvrnmnt.c_c' 
    s3          = np.array([s_min*nvrnmnt.h_bank,nvrnmnt.h_bank,s_plus*nvrnmnt.h_bank])               
    n3          = 'nvrnmnt.h_bank' 
    s4          = np.array([s_min*nvrnmnt.l_step,nvrnmnt.l_step,s_plus*nvrnmnt.l_step])          
    n4          = 'nvrnmnt.l_step' 
    s5          = np.array([s_min*(nvrnmnt.lambda_deg-1),nvrnmnt.lambda_deg-1,   \ 
                            s_plus*(nvrnmnt.lambda_deg-1)]) # lambda_deg 
    n5          = 'nvrnmnt.lambda_deg' 
    s6          = np.array([s_min*geometry.D_ring,geometry.D_ring,s_plus*geometry.D_ring])               
    n6          = 'geometry.D_ring'     
    s7          = np.array([s_min*geometry.D_nose,geometry.D_nose,s_plus*geometry.D_nose])              
    n7          = 'geometry.D_nose' 
    s8          = 
np.array([s_min*geometry.b_cutter,geometry.b_cutter,s_plus*geometry.b_cutter])           
    n8          = 'geometry.b_cutter' 
    s9          = np.array([s_min*geometry.D_pipe,geometry.D_pipe,s_plus*geometry.D_pipe])                
    n9          = 'geometry.D_pipe' 
    s10         = np.array([s_min*vrbls.omega_rad,vrbls.omega_rad,s_plus*vrbls.omega_rad])                
    n10         = 'vrbls.omega_rad' 
    s11         =  np.array([1,1,1]) #placeholder                                                         
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    n11         = 'vrbls.f_d_type' 
    s12         = np.array([s_min*nvrnmnt.Q_a_nose,nvrnmnt.Q_a_nose,s_plus*nvrnmnt.Q_a_nose])        
    n12         = 'nvrnmnt.Q_a_nose' 
     
    #  
             
#%% Loop through cutting variables  
 
n_v_m           = len(vrbls.v_m_index)           # should be universal, number of  
                                                 #variable changes to loop through 
n_models        = len(model_index) 
n_sens          = len(eval('snstvt.s'+str(rotate))) 
var_number      = 21                             # how many variables expected to attract  
                                                 # from function file 
 
# Collect matrix with model results 
Data_collect = np.zeros(shape=[n_v_m, var_number, n_sens, n_models]) # open collection matrix 
for mm in range(n_models): 
     
    #What models do you want to run? 
    model_rotate= model_index[mm] # select the mm'th model from model_index 
    vrbls.Phi   = models[model_rotate][1] # for now, find Phi number 
    vrbls.f_d   = f_d 
    vrbls.f_c_d = f_c_d 
    vrbls.f_d_type = f_d_type 
    vrbls.particle=models[model_rotate][7] #  
     
    # Exception for f_d_type 
    snstvt.s11 = np.array([1,-1,-1])  
    snstvt.n11 = 'vrbls.f_d_type' 
     
    labels0     = [] 
    sens_collect= np.zeros(shape=[n_v_m, var_number, 0]) 
    for kk in range(n_sens): 
                 
        if rotate == 0: 
            geometry.xi_deg = snstvt.s0[kk] 
        elif rotate == 1: 
            nvrnmnt.v_s = snstvt.s1[kk] 
        elif rotate == 2: 
            nvrnmnt.c_c = snstvt.s2[kk] 
        elif rotate == 3: 
            nvrnmnt.h_bank = snstvt.s3[kk]    
        elif rotate == 4: 
            nvrnmnt.l_step = snstvt.s4[kk] 
        elif rotate == 5: 
            nvrnmnt.lambda_deg = snstvt.s5[kk] 
        elif rotate == 6: 
            geometry.D_ring = snstvt.s6[kk] 
        elif rotate == 7: 
            geometry.D_nose = snstvt.s7[kk]     
        elif rotate == 8: 
            geometry.b_cutter = snstvt.s8[kk] 
        elif rotate == 9: 
            geometry.D_pipe = snstvt.s9[kk] 
        elif rotate == 10: 
            vrbls.omega_rad = snstvt.s10[kk] 
        elif rotate == 11: 
            vrbls.f_d_type = snstvt.s11[kk]    
        elif rotate == 12: 
            nvrnmnt.Q_a_nose = snstvt.s12[kk] 
             
        sens_analysis = eval('snstvt.n'+str(rotate)) 
        print('Variable rotation = '+sens_analysis+'['+str(kk)+']') 
         
        var_collect = np.zeros(shape=[0, var_number]) 
        for ii in range(n_v_m): 
            collect = eval(models[mm][0]+'.M_'+models[mm][0]+\ 
                           '(speed,vrbls,geometry,nvrnmnt,ii)') 
        #    print(Model_collect) 
            var_collect=np.vstack((var_collect,collect)) 
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        sens_collect = np.dstack((sens_collect,var_collect)) 
        print('Variable Number = '+str(kk)+'/'+str(n_sens-1))         
 
    Data_collect[:,:,:,mm] = sens_collect 
      
#%% Plotting Data 
 
x0_start       = 0.5 
x0_end         = 7.5 
y0_start       = 0 
y0_end         = 100 
y5_start       = -25 
y5_end         = 25 
 
#use different shapes for graphs 
markers = ['o','s','^'] 
 
# Workaround operations 
theta_hat_index1 = np.insert(vrbls.theta_hat_index,0,x0_start) 
theta_hat_index1 = np.append(theta_hat_index1,x0_end) 
Q_m_index1 = vrbls.Q_m_index.tolist() 
Q_m_index1.append('') 
Q_m_index1.insert(0,'') 
 
datetime_object = datetime.datetime.now() 
 
#%% Graph mark-up 
label_size       = 16 
title_size       = 12 
 
from matplotlib import rcParams 
rcParams['mathtext.fontset'] = 'stix' 
rcParams['font.family'] = 'STIXGeneral' 
 
# Collect values for specific location of theta 
for mm in range(n_models): 
     
    r_plus= (Data_collect[14,15,2,mm]-Data_collect[14,15,1,mm])/\ 
    Data_collect[14,15,1,mm]*100 
    d_plus= (Data_collect[14,16,2,mm]-Data_collect[14,16,1,mm])/\ 
    Data_collect[14,16,1,mm]*100 
    t_plus= (Data_collect[14,0,2,mm] -Data_collect[14,0,1,mm])/\ 
    Data_collect[14,0,1,mm]*100 
    r_min = (Data_collect[14,15,0,mm]-Data_collect[14,15,1,mm])\ 
    /Data_collect[14,15,1,mm]*100 
    d_min = (Data_collect[14,16,0,mm]-Data_collect[14,16,1,mm])/\ 
    Data_collect[14,16,1,mm]*100 
    t_min = (Data_collect[14,0,0,mm] -Data_collect[14,0,1,mm])/\ 
    Data_collect[14,0,1,mm]*100 
     
    Data_collect[14,2,2,mm] 
    if mm == 0: 
        d_plus = 0 
        d_min = 0 
     
    print(t_min,t_plus) 
 
#%% PLot data if condition is met 
     
markers_colorst = ['darkcyan','c','cyan'] 
markers_colorsc = ['k','k','k'] 
markers_colorsr = ['darkred','r','salmon'] 
markers_colorsd = ['darkgreen','g','lightgreen'] 
markers_colorsm = ['b','b','b'] 
 
plotting = 1 
if plotting == 1:   
     
     
    #$$ PLot 1 
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    for mm in range(n_models): 
         
        Data = Cal_Data 
        Data = Data[Data[:,9] == models[mm][2]] # Find all rows for under-cutting 
        Data = Data[Data[:,8] == models[mm][3]] # Find all rows for the long cutter 
        Data = Data[Data[:,10] == models[mm][4]] # Find all rows for non-rotated mouth 
        Data = Data[Data[:,15] == models[mm][6]] # take simple 
        Data = Data[Data[:,14] == models[mm][7]] # Find all rows for sand (1) or rock (0) 
        Data = Data[np.argsort(Data[:,13])] 
        theta_hat = Data[:,13] 
        spill_rate= Data[:,3]  
         
        theta_hat = map(float,theta_hat) 
        theta_hat = np.asarray(theta_hat) 
         
        spill_rate = map(float,spill_rate) 
        spill_rate= np.asarray(spill_rate)     
             
        #$$ Create overview figure 
        fig1, axarr = plt.subplots(1,2,figsize=(14,6)) 
         
        if mm % 2 == 0: # sand   
            data_label = '$d_{50} = 180E^{-3}  [mm]$ (Miltenburg, 1983)' 
            d50        = '$d_{50} = 180E^{-3}  [mm]$' 
        elif mm % 2 == 1: 
            data_label = '$d_{50} = 80  [mm]$ (Den Burger, 2003)' 
            d50        = '$d_{50} = 80  [mm]$' 
        axarr[0].plot(theta_hat,spill_rate,'kx', label = data_label)  
         
        legend_title = d50+', $\^\Phi$='+str(models[mm][1]) 
        title_add = ('$'+eval('snstvt.n'+str(rotate)).split('.')[1].split('_')[0]+ \ 
            '_{'+eval('snstvt.n'+str(rotate)).split('.')[1].split('_')[-1]+ \ 
            '}'+'='+str(eval('snstvt.s'+str(rotate))[kk])+'$') 
     
        for kk in range(n_sens): 
             
            if kk == sens_rotate: 
             
                var      = format(eval('snstvt.s'+str(rotate))[kk], '.23') 
                var_value = str(var)     
                var_name = '$'+(eval('snstvt.n'+str(rotate)).split('.')[1].split('_')[0]+ \ 
                '_{'+eval('snstvt.n'+str(rotate)).split('.')[1].split('_')[-1]+ \ 
                '}')+'$' 
                total_spillage_label = var_name+'='+var_value+\ 
                ', Total spillage' 
                centrifugal_advection_label = var_name+'='+var_value+\ 
                ', Centrifugal advection' 
                rapid_redeposition_label = var_name+'='+var_value+\ 
                ', Rapid redeposition' 
                  
                x_given = Data_collect[::-1,2,kk,mm] 
                y_given = Data_collect[::-1,0,kk,mm]         
                x_find = theta_hat 
                y_find = np.interp(x_find,x_given,y_given) 
                delta_y_find = 100*y_find-spill_rate 
         
                   
                # Spillage Plot 
                axarr[0].set_xlabel(r'$\^\theta = \frac{\omega R_{ring}^3}{Q_m}$', \ 
                     fontsize=label_size+2) 
                axarr[0].set_ylabel(r'Spillage rate [%]', fontsize=label_size)  
                axarr[0].plot(Data_collect[:,2,kk,mm],Data_collect[:,0,kk,mm]*100,\ 
                     color=markers_colorst[kk],  \ 
                     markerfacecolor=markers_colorst[kk],linestyle='-', \ 
                     marker=markers[kk], label='Total spillage') 
                axarr[0].plot(Data_collect[:,2,kk,mm],Data_collect[:,15,kk,mm]*100, \ 
                     color=markers_colorsr[kk], \ 
                     markerfacecolor=markers_colorsr[kk], linestyle='--', \ 
                     marker=markers[kk], label= 'Centrifugal Advection') 
                axarr[0].plot(Data_collect[:,2,kk,mm],Data_collect[:,16,kk,mm]*100, \ 
                     color=markers_colorsd[kk],  \ 
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                     markerfacecolor=markers_colorsd[kk], linestyle='-.', \ 
                     marker=markers[kk], label='Rapid redeposition') 
                axarr[0].set_xlim([x0_start, x0_end]) 
                axarr[0].set_ylim([y0_start, y0_end]) 
                axarr[0].grid(which='major',axis='both', linestyle=':', linewidth=0.5) 
         
                # Add second horizontal axis 
                axadd = axarr[0].twiny() 
                axadd.set_xlabel(r'$Q_{m}$ $[m^3/s]$, $D_{ring}$='+str(D_rotate)+' \ 
                                 [m]', fontsize=label_size) # de facto title 
                axadd.set_xticks(theta_hat_index1.tolist(), minor=False) # create second axis 
                axadd.set_xlim([x0_start , x0_end]) 
                axadd.set_xticklabels(Q_m_index1)  # set the labels to display at those ticks 
                axadd.grid(which='major',axis='x', color='k', linestyle='--', \ 
                           linewidth=0.5) 
                 
                # Delta vs theta_hat         
                axarr[1].plot(x_find,delta_y_find, color=markers_colorst[kk], \ 
                     markerfacecolor=markers_colorst[kk], \ 
                     linestyle='-', marker=markers[kk], label='Total spillage') 
                axarr[1].set_xlabel(r'$\^\theta = \frac{\omega r_{ring}^3}{Q_m}$', \ 
                     fontsize=label_size+2) 
                axarr[1].set_ylabel(r'Spillage rate error [pp]', fontsize=label_size)  
                axarr[1].set_xlim([x0_start, x0_end]) 
                axarr[1].set_ylim([y5_start, y5_end]) 
                axarr[1].grid(which='major',axis='both', linestyle=':', linewidth=0.5) 
        #        axarr[1].legend(labels5, title=legend_title) 
                 
                # Add second horizontal axis 
                axadd = axarr[1].twiny() 
                axadd.set_xlabel(r'$Q_{m}$ $[m^3/s]$, $D_{ring}$='+str(D_rotate)+' [m]', \ 
                                 fontsize=label_size) 
                axadd.set_xticks(theta_hat_index1.tolist(), minor=False) # create second axis  
                axadd.set_xticklabels(Q_m_index1)  # set the labels to display at those ticks 
                axadd.set_xlim([x0_start , x0_end]) 
                axadd.set_xticklabels(Q_m_index1)  # set the labels to display at those ticks 
                axadd.grid(which='major',axis='x', color='k', linestyle='--', linewidth=0.5) 
                 
            axarr[0].legend(loc='upper center', ncol=2, title=legend_title) 
            axarr[1].legend(loc='upper center', ncol=2, title=legend_title) 
             
            axarr[1].axhline(y=-5, color='r', linestyle='-.')         
            axarr[1].axhline(y=5, color='r', linestyle='-.') 
            axarr[1].axhline(y=-10, color='k', linestyle='--') 
            axarr[1].axhline(y=10, color='k', linestyle='--') 
             
            axarr[0].axvline(x=1.7, color='tab:purple', linestyle='-.')   
            axarr[0].axvline(x=3.6, color='tab:purple', linestyle='-.')  
            axarr[1].axvline(x=1.7, color='tab:purple', linestyle='-.')  
            axarr[1].axvline(x=3.6, color='tab:purple', linestyle='-.') 
             
            # Save plot 
            timestamp = str(datetime_object) 
            if mm==0: 
                p ='Sand' 
            elif mm == 1: 
                p = 'Rock'         
            figname='PlotTotals/'+p+'.'+timestamp+'fig1.png' 
            figname=figname.replace(':','.') 
             
            fig1.savefig(figname,dpi=200) 
     
    #$$ PLot 2 
    for mm in range(n_models): 
         
        if mm % 2 == 0: # sand   
            data_label = '$d_{50} = 180E^{-3}  [mm]$ (Miltenburg, 1983)' 
            d50        = '$d_{50} = 180E^{-3}  [mm]$' 
        elif mm % 2 == 1: 
            data_label = '$d_{50} = 80  [mm]$ (Den Burger, 2003)' 
            d50        = '$d_{50} = 80  [mm]$' 
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        #$$ Create overview figure 
        fig2, axarr = plt.subplots(1,2,figsize=(14,6)) 
     
    #    plt.tight_layout() 
        legend_title = d50+', $\^\Phi$='+str(models[mm][1]) 
        title_add = ('$'+eval('snstvt.n'+str(rotate)).split('.')[1].split('_')[0]+ \ 
            '_{'+eval('snstvt.n'+str(rotate)).split('.')[1].split('_')[-1]+ \ 
            '}'+'='+str(eval('snstvt.s'+str(rotate))[kk])+'$') 
                 
        model_name = models[mm][0] 
        phi_name = ', $\^\Phi$='+str(models[mm][1]) 
         
        for kk in range(n_sens): 
             
            var      = format(eval('snstvt.s'+str(rotate))[kk], '.23') 
            var_value = str(var)     
            var_name = '$'+(eval('snstvt.n'+str(rotate)).split('.')[1].split('_')[0]+ \ 
            '_{'+eval('snstvt.n'+str(rotate)).split('.')[1].split('_')[-1]+ \ 
            '}')+'$' 
            size = str(mutation*100)                   
               
            # Volumetric Flow Rates 
            if kk == sens_rotate: 
                axarr[0].stackplot(Data_collect[:,2,kk,mm], +Data_collect[:,6,kk,mm], \ 
                     +Data_collect[:,3,kk,mm], \ 
                     +Data_collect[:,18,kk,mm], colors=['m','k','y']) 
                axarr[0].stackplot(Data_collect[:,2,kk,mm], -Data_collect[:,4,kk,mm], \ 
                     -Data_collect[:,5,kk,mm], \ 
                     -Data_collect[:,17,kk,mm], colors=['b','r','g']) 
                axarr[0].set_xlabel(r'$\^\theta = \frac{\omega r_{ring}^3}{Q_m}$', \ 
                     fontsize=label_size+2) 
                axarr[0].set_ylabel(r'Volumetric Flow Rates [$m^3/s$]', \ 
                     fontsize=label_size) # de facto title 
                axarr[0].set_xlim([x0_start, x0_end]) 
                axarr[0].set_ylim([-8, 8]) 
                axarr[0].grid(which='major',axis='both', linestyle=':', linewidth=0.5) 
                 
                # Add second horizontal axis 
                axadd = axarr[0].twiny() 
                axadd.set_xlabel(r'$Q_{m}$ $[m^3/s]$, $D_{ring}$='+str(D_rotate)+' [m]', \ 
                                 fontsize=label_size) # de facto title 
                axadd.set_xticks(theta_hat_index1.tolist(), minor=False) # create second axis  
                axadd.set_xticklabels(Q_m_index1)  # set the labels to display at those ticks 
                axadd.set_xlim([x0_start , x0_end]) 
                axadd.set_xticklabels(Q_m_index1)  # set the labels to display at those ticks 
                axadd.grid(which='major',axis='x', color='k', linestyle='--', linewidth=0.5) 
                 
                # Ceoncentrations 
                axarr[1].plot(Data_collect[:,2,kk,mm],Data_collect[:,20,kk,mm], \ 
                     color=markers_colorsc[kk], \ 
                     markerfacecolor=markers_colorsc[kk], linestyle='-', \ 
                     marker=markers[kk], label='$c_{c}$') 
                axarr[1].plot(Data_collect[:,2,kk,mm],Data_collect[:,10,kk,mm], \ 
                     color=markers_colorsm[kk], \ 
                     markerfacecolor=markers_colorsm[kk], linestyle=':', \ 
                     marker=markers[kk], label='$c_{m}$') 
                axarr[1].plot(Data_collect[:,2,kk,mm],Data_collect[:,9,kk,mm], \ 
                     color=markers_colorsr[kk], \ 
                     markerfacecolor=markers_colorsr[kk], linestyle='--', \ 
                     marker=\markers[kk], label='$Q_{r_{1}}$') 
                axarr[1].plot(Data_collect[:,2,kk,mm],Data_collect[:,12,kk,mm], \ 
                     color=markers_colorsd[kk], \ 
                     markerfacecolor=markers_colorsd[kk], linestyle='-.', \ 
                     marker=markers[kk], label='$Q_{d}$') 
                axarr[1].set_xlabel(r'$\^\theta = \frac{\omega r_{ring}^3}{Q_m}$', \ 
                     fontsize=label_size+2) 
                axarr[1].set_ylabel(r'Concentrations [-]', fontsize=label_size) # de facto 
title 
                axarr[1].set_xlim([x0_start, x0_end]) 
                axarr[1].set_ylim([-0.1, 0.65]) 
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                axarr[1].grid(which='major',axis='both', linestyle=':', linewidth=0.5) 
                 
                # Add second horizontal axis 
                axadd = axarr[1].twiny() 
                axadd.set_xlabel(r'$Q_{m}$ $[m^3/s]$, $D_{ring}$='+str(D_rotate)+\ 
                                 ' [m]', fontsize=label_size) # de facto title 
                axadd.set_xticks(theta_hat_index1.tolist(), minor=False) # create second axis  
                axadd.set_xticklabels(Q_m_index1)  # set the labels to display at those ticks 
                axadd.set_xlim([x0_start , x0_end]) 
                axadd.set_xticklabels(Q_m_index1)  # set the labels to display at those ticks 
                axadd.grid(which='major',axis='x', color='k', linestyle='--', \ 
                           linewidth=0.5) 
                
        lg = axarr[0].legend(['$Q_{r_{2}}$','$Q_{c}$','$Q_{a_{nose}}$',\ 
                  '$Q_{a_{m}}$','$Q_{r_{1}}$','$Q_{d}$'],\ 
                  loc='upper center',ncol=2, title=legend_title) 
        lg.get_title().set_fontsize(title_size) 
        lg = axarr[1].legend(ncol=2, title=legend_title)     
        lg.get_title().set_fontsize(title_size) 
         
        axarr[0].axvline(x=1.7, color='tab:purple', linestyle='-.')   
        axarr[0].axvline(x=3.6, color='tab:purple', linestyle='-.')  
        axarr[1].axvline(x=1.7, color='tab:purple', linestyle='-.')  
        axarr[1].axvline(x=3.6, color='tab:purple', linestyle='-.') 
         
        # Save plot 
        timestamp = str(datetime_object) 
        if mm==0: 
            p ='Sand' 
        elif mm == 1: 
            p = 'Rock'         
        figname='PlotTotals/'+p+'.'+timestamp+'fig2.png'     
        figname=figname.replace(':','.') 
         
        fig2.savefig(figname,dpi=200) 
         
    #$$ PLot 3 
    for mm in range(n_models): 
         
        if mm % 2 == 0: # sand   
            data_label = '$d_{50} = 180E^{-3}  [mm]$ (Miltenburg, 1983)' 
            d50        = '$d_{50} = 180E^{-3}  [mm]$' 
        elif mm % 2 == 1: 
            data_label = '$d_{50} = 80  [mm]$ (Den Burger, 2003)' 
            d50        = '$d_{50} = 80  [mm]$' 
             
        #$$ Create overview figure 
        fig3, axarr = plt.subplots(1,2,figsize=(14,6)) 
         
        for kk in range(n_sens): 
             
            model_name = models[mm][0] 
            phi_name = '$\^\Phi$='+str(models[mm][1]) 
             
             
            if kk == sens_rotate: 
                 
                var      = format(eval('snstvt.s'+str(rotate))[kk], '.23') 
                var_value = str(var)     
                var_name = '$'+(eval('snstvt.n'+str(rotate)).split('.')[1].split('_')[0]+ \ 
                '_{'+eval('snstvt.n'+str(rotate)).split('.')[1].split('_')[-1]+ \ 
                '}')+'$' 
                size = str(mutation*100) 
                 
                # Concentrations 
                axarr[0].plot(Data_collect[:,2,1,mm],\ 
                     (Data_collect[:,15,0,mm]-Data_collect[:,15,1,mm])/\ 
                     Data_collect[:,15,1,mm]*100, \ 
                     color=markers_colorsr[kk-1], markerfacecolor=markers_colorsr[kk-1], \ 
                     linestyle='-.', \ 
                     marker=markers[kk-1], label=var_name+' -'+size+'[%]') 
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                axarr[0].plot(Data_collect[:,2,1,mm],\ 
                     (Data_collect[:,15,2,mm]-Data_collect[:,15,1,mm])/\ 
                     Data_collect[:,15,1,mm]*100, \ 
                     color=markers_colorsr[kk+1], markerfacecolor=markers_colorsr[kk+1], \ 
                     linestyle='-', \ 
                     marker=markers[kk+1], label=var_name+' +'+size+'[%]') 
                axarr[0].set_xlabel(r'$\^\theta = \frac{\omega r_{ring}^3}{Q_m}$', \ 
                     fontsize=label_size+2) 
                axarr[0].set_ylabel(r'Change in centrifugal advection-induced spillage rate 
[%]', \ 
                     fontsize=label_size) 
                axarr[0].set_xlim([x0_start, x0_end]) 
                axarr[0].grid(which='major',axis='both', linestyle=':', linewidth=0.5) 
                             
                # Add second horizontal axis 
                axadd = axarr[0].twiny() 
                axadd.set_xlabel(r'$Q_{m}$ $[m^3/s]$, $D_{ring}$='+str(D_rotate)+' [m]', \ 
                                 fontsize=label_size) 
                axadd.set_xticks(theta_hat_index1.tolist(), minor=False) # create second axis  
                axadd.set_xticklabels(Q_m_index1)  # set the labels to display at those ticks 
                axadd.set_xlim([x0_start , x0_end]) 
                axadd.set_xticklabels(Q_m_index1)  # set the labels to display at those ticks 
                axadd.grid(which='major',axis='x', color='k', linestyle='--', linewidth=0.5)            
            
                 
                axarr[1].plot(Data_collect[:,2,1,mm],\ 
                     (Data_collect[:,16,0,mm]-Data_collect[:,16,1,mm])/\ 
                     Data_collect[:,16,1,mm]*100, \ 
                     color=markers_colorsd[kk-1], markerfacecolor=markers_colorsd[kk-1], \ 
                     linestyle='-.', \ 
                     arker=markers[kk-1], label=var_name+' -'+size+'[%]') 
                axarr[1].plot(Data_collect[:,2,1,mm],\ 
                     (Data_collect[:,16,2,mm]-Data_collect[:,16,1,mm])/\ 
                     Data_collect[:,16,1,mm]*100, \ 
                     color=markers_colorsd[kk+1], markerfacecolor=markers_colorsd[kk+1],\ 
                     linestyle='-', \ 
                     marker=markers[kk+1], label=var_name+' +'+size+'[%]') 
                axarr[1].set_xlabel(r'$\^\theta = \frac{\omega r_{ring}^3}{Q_m}$', \ 
                     fontsize=label_size+2) 
                axarr[1].set_ylabel(r'Change in rapid redeposition-induced spillage rate [%]', 
\ 
                     fontsize=label_size)  
                axarr[1].set_xlim([x0_start, x0_end]) 
                axarr[1].grid(which='major',axis='both', linestyle=':', linewidth=0.5)            
                 
                # Add second horizontal axis 
                axadd = axarr[1].twiny() 
                axadd.set_xlabel(r'$Q_{m}$ $[m^3/s]$, $D_{ring}$='+str(D_rotate)+' [m]', \ 
                                 fontsize=label_size) 
                axadd.set_xticks(theta_hat_index1.tolist(), minor=False) # create second axis  
                axadd.set_xticklabels(Q_m_index1)  # set the labels to display at those ticks 
                axadd.set_xlim([x0_start , x0_end]) 
                axadd.set_xticklabels(Q_m_index1)  # set the labels to display at those ticks 
                axadd.grid(which='major',axis='x', color='k', linestyle='--', linewidth=0.5)    
                 
        lg = axarr[0].legend(ncol=2, title=d50+', '+phi_name+'\n'+'Sensitivity for '\ 
                  +var_name, fontsize=title_size) 
        lg.get_title().set_fontsize(title_size) 
        lg = axarr[1].legend(ncol=2, title=d50+', '+phi_name+'\n'+'Sensitivity for '\ 
                  +var_name, fontsize=title_size)   
        lg.get_title().set_fontsize(title_size) 
         
        axarr[0].axvline(x=1.7, color='tab:purple', linestyle='-.')   
        axarr[0].axvline(x=3.6, color='tab:purple', linestyle='-.')  
        axarr[1].axvline(x=1.7, color='tab:purple', linestyle='-.')  
        axarr[1].axvline(x=3.6, color='tab:purple', linestyle='-.') 
         
        # Save plot 
        timestamp = str(datetime_object) 
        if mm==0: 
            p ='Sand' 
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        elif mm == 1: 
            p = 'Rock'         
        figname='PlotTotals/'+p+'.'+timestamp+'fig3.png'     
        figname=figname.replace(':','.') 
         
        fig3.savefig(figname,dpi=200) 
         
    #$$ PLot 4 # Variety of data 
    if mm == 0: 
         
        Data = Cal_Data 
        Data = Data[Data[:,9] == models[mm][2]] # Find all rows for under-cutting 
        Data = Data[Data[:,8] == models[mm][3]] # Find all rows for the long cutter 
        Data = Data[Data[:,10] == models[mm][4]] # Find all rows for non-rotated mouth 
        Data = Data[Data[:,15] == 0] # take scattered data 
        Data = Data[Data[:,14] == models[mm][7]] # Find all rows for sand (1) or rock (0) 
        Data = Data[np.argsort(Data[:,13])] 
        theta_hat = Data[:,13] 
        spill_rate= Data[:,3]  
         
        theta_hat = map(float,theta_hat) 
        theta_hat = np.asarray(theta_hat) 
        spill_rate = map(float,spill_rate) 
        spill_rate= np.asarray(spill_rate) 
             
        #$$ Create overview figure 
        fig4, axarr = plt.subplots(1,2,figsize=(14,6)) 
     
        legend_title = d50+', $\^\Phi$='+str(models[mm][1]) 
        title_add = ('$'+eval('snstvt.n'+str(rotate)).split('.')[1].split('_')[0]+ \ 
            '_{'+eval('snstvt.n'+str(rotate)).split('.')[1].split('_')[-1]+ \ 
            '}'+'='+str(eval('snstvt.s'+str(rotate))[kk])+'$') 
         
        if mm % 2 == 0: # sand   
            data_label = '$d_{50} = 180E^{-3}  [mm]$ (Miltenburg, 1983)' 
            d50        = '$d_{50} = 180E^{-3}  [mm]$' 
        elif mm % 2 == 1: 
            data_label = '$d_{50} = 80  [mm]$ (Den Burger, 2003)' 
            d50        = '$d_{50} = 80  [mm]$' 
             
        axarr[0].plot(theta_hat,spill_rate,'kx', label = data_label)          
        z = np.polyfit(theta_hat, spill_rate, 2) 
        axarr[0].plot(z) 
                
        plt.show() 
         
        for kk in range(n_sens): 
             
            var      = format(eval('snstvt.s'+str(rotate))[kk], '.23') 
            var_value = str(var)     
            var_name = '$'+(eval('snstvt.n'+str(rotate)).split('.')[1].split('_')[0]+ \ 
            '_{'+eval('snstvt.n'+str(rotate)).split('.')[1].split('_')[-1]+ \ 
            '}')+'$' 
            total_spillage_label = var_name+'='+var_value+', Total spillage' 
            centrifugal_advection_label = var_name+'='+var_value+', Centrifugal advection' 
            rapid_redeposition_label = var_name+'='+var_value+', Rapid redeposition' 
             
            if kk == sens_rotate: 
              
                x_given = Data_collect[::-1,2,kk,mm] 
                y_given = Data_collect[::-1,0,kk,mm]         
                x_find = theta_hat 
                y_find = np.interp(x_find,x_given,y_given) 
                delta_y_find = 100*y_find-spill_rate 
                   
                # Spillage Plot 
                axarr[0].set_xlabel(r'$\^\theta = \frac{\omega R_{ring}^3}{Q_m}$', \ 
                     fontsize=label_size+2) 
                axarr[0].set_ylabel(r'Spillage rate [%]', fontsize=label_size) # de facto title 
                axarr[0].plot(Data_collect[:,2,kk,mm],Data_collect[:,0,kk,mm]*100, \ 
                     color=markers_colorst[kk],  \ 
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                     markerfacecolor=markers_colorst[kk],linestyle='-', \ 
                     marker=markers[kk], label='Total spillage') 
                axarr[0].plot(Data_collect[:,2,kk,mm],Data_collect[:,15,kk,mm]*100, \ 
                     color=markers_colorsr[kk], \ 
                     markerfacecolor=markers_colorsr[kk], linestyle='--', \ 
                     marker=markers[kk], label= 'Centrifugal Advection') 
                axarr[0].plot(Data_collect[:,2,kk,mm],Data_collect[:,16,kk,mm]*100, \ 
                     color=markers_colorsd[kk],  \ 
                     markerfacecolor=markers_colorsd[kk], linestyle='-.', \ 
                     marker=markers[kk], label='Rapid redeposition') 
                axarr[0].set_xlim([x0_start, x0_end]) 
                axarr[0].set_ylim([y0_start, y0_end]) 
                axarr[0].grid(which='major',axis='both', linestyle=':', linewidth=0.5) 
         
                # Add second horizontal axis 
                axadd = axarr[0].twiny() 
                axadd.set_xlabel(r'$Q_{m}$ $[m^3/s]$, $D_{ring}$='+str(D_rotate)+' [m]', \ 
                                 fontsize=label_size) # de facto title 
                axadd.set_xticks(theta_hat_index1.tolist(), minor=False) # create second axis 
                axadd.set_xlim([x0_start , x0_end]) 
                axadd.set_xticklabels(Q_m_index1)  # set the labels to display at those ticks 
                axadd.grid(which='major',axis='x', color='k', linestyle='--', \ 
                           linewidth=0.5) 
                 
                # Delta vs theta_hat         
                axarr[1].plot(x_find,delta_y_find, color=markers_colorst[kk], \ 
                     markerfacecolor=markers_colorst[kk], \ 
                     linestyle='-', marker=markers[kk], label='Total spillage') 
                axarr[1].set_xlabel(r'$\^\theta = \frac{\omega r_{ring}^3}{Q_m}$', \ 
                     fontsize=label_size+2) 
                axarr[1].set_ylabel(r'Spillage rate error [pp]', fontsize=label_size)  
                axarr[1].set_xlim([x0_start, x0_end]) 
                axarr[1].set_ylim([y5_start, y5_end]) 
                axarr[1].grid(which='major',axis='both', linestyle=':', linewidth=0.5) 
        #        axarr[1].legend(labels5, title=legend_title) 
                 
                # Add second horizontal axis 
                axadd = axarr[1].twiny() 
                axadd.set_xlabel(r'$Q_{m}$ $[m^3/s]$, $D_{ring}$='+str(D_rotate)+' [m]', \ 
                                 fontsize=label_size) # de facto title 
                axadd.set_xticks(theta_hat_index1.tolist(), minor=False) # create second axis  
                axadd.set_xticklabels(Q_m_index1)  # set the labels to display at those ticks 
                axadd.set_xlim([x0_start , x0_end]) 
                axadd.set_xticklabels(Q_m_index1)  # set the labels to display at those ticks 
                axadd.grid(which='major',axis='x', color='k', linestyle='--', linewidth=0.5) 
                 
            axarr[0].legend(loc='upper center', bbox_to_anchor=(0.5, -0.2), ncol=2, \ 
                 title=legend_title, frameon=False) 
            axarr[1].legend(loc='upper center', bbox_to_anchor=(0.5, -0.2), ncol=2, \ 
                 title=legend_title, frameon=False) 
             
            axarr[1].axhline(y=-5, color='r', linestyle='-.')         
            axarr[1].axhline(y=5, color='r', linestyle='-.') 
            axarr[1].axhline(y=-10, color='k', linestyle='--') 
            axarr[1].axhline(y=10, color='k', linestyle='--') 
             
            axarr[0].axvline(x=1.7, color='tab:purple', linestyle='-.')   
            axarr[0].axvline(x=3.6, color='tab:purple', linestyle='-.')  
            axarr[1].axvline(x=1.7, color='tab:purple', linestyle='-.')  
            axarr[1].axvline(x=3.6, color='tab:purple', linestyle='-.') 
             
            # Save plot 
            timestamp = str(datetime_object) 
            if mm==0: 
                p ='Sand' 
            elif mm == 1: 
                p = 'Rock'         
            figname='PlotTotals/'+p+'.'+timestamp+'fig4.png'     
            #fig.savefig(figname,dpi=1000) 
            figname=figname.replace(':','.') 
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            fig4.savefig(figname,dpi=200) 
         
    #$$ PLot 5, Multiple spillage plots 
    for mm in range(n_models): 
         
        Data = Cal_Data 
        Data = Data[Data[:,9] == models[mm][2]] # Find all rows for under-cutting 
        Data = Data[Data[:,8] == models[mm][3]] # Find all rows for the long cutter 
        Data = Data[Data[:,10] == models[mm][4]] # Find all rows for non-rotated mouth 
        Data = Data[Data[:,15] == models[mm][6]] # take simple 
        Data = Data[Data[:,14] == models[mm][7]] # Find all rows for sand (1) or rock (0) 
        Data = Data[np.argsort(Data[:,13])] 
        theta_hat = Data[:,13] 
        spill_rate= Data[:,3]  
         
        theta_hat = map(float,theta_hat) 
        theta_hat = np.asarray(theta_hat) 
        spill_rate = map(float,spill_rate) 
        spill_rate= np.asarray(spill_rate) 
     
             
        #$$ Create overview figure 
        fig5, axarr = plt.subplots(1,2,figsize=(14,6)) 
         
        legend_title = d50+', $\^\Phi$='+str(models[mm][1]) 
        title_add = ('$'+eval('snstvt.n'+str(rotate)).split('.')[1].split('_')[0]+ \ 
            '_{'+eval('snstvt.n'+str(rotate)).split('.')[1].split('_')[-1]+ \ 
            '}'+'='+str(eval('snstvt.s'+str(rotate))[kk])+'$') 
         
        if mm % 2 == 0: # sand   
            data_label = '$d_{50} = 180E^{-3}  [mm]$ (Miltenburg, 1983)' 
            d50        = '$d_{50} = 180E^{-3}  [mm]$' 
        elif mm % 2 == 1: 
            data_label = '$d_{50} = 80  [mm]$ (Den Burger, 2003)' 
            d50        = '$d_{50} = 80  [mm]$' 
        axarr[0].plot(theta_hat,spill_rate,'kx', label = data_label)     
         
        for kk in range(n_sens): 
             
            var      = format(eval('snstvt.s'+str(rotate))[kk], '.23') 
            var      = round(float(var), 3) 
            var_value = str(var)   
            var_name = '$'+(eval('snstvt.n'+str(rotate)).split('.')[1].split('_')[0]+ \ 
            '_{'+eval('snstvt.n'+str(rotate)).split('.')[1].split('_')[-1]+ \ 
            '}')+'$' 
            total_spillage_label = var_name+'='+var_value+', Total spillage' 
            centrifugal_advection_label = var_name+'='+var_value+', Centrifugal advection' 
            rapid_redeposition_label = var_name+'='+var_value+', Rapid redeposition' 
              
            x_given = Data_collect[::-1,2,kk,mm] 
            y_given = Data_collect[::-1,0,kk,mm]         
            x_find = theta_hat 
            y_find = np.interp(x_find,x_given,y_given) 
            delta_y_find = 100*y_find-spill_rate     
               
            # Spillage Plot 
            axarr[0].set_xlabel(r'$\^\theta = \frac{\omega R_{ring}^3}{Q_m}$', \ 
                 fontsize=label_size+2) 
            axarr[0].set_ylabel(r'Spillage rates [%]', fontsize=label_size) # de facto title 
            axarr[0].plot(Data_collect[:,2,kk,mm],Data_collect[:,0,kk,mm]*100, \ 
                 color=markers_colorst[kk],  \ 
                 markerfacecolor=markers_colorst[kk],linestyle='-', marker=markers[kk], \ 
                 label=total_spillage_label) 
            axarr[0].plot(Data_collect[:,2,kk,mm],Data_collect[:,15,kk,mm]*100, \ 
                 color=markers_colorsr[kk], \ 
                 markerfacecolor=markers_colorsr[kk], linestyle='--', marker=markers[kk], \ 
                 label=centrifugal_advection_label) 
            axarr[0].plot(Data_collect[:,2,kk,mm],Data_collect[:,16,kk,mm]*100, \ 
                 color=markers_colorsd[kk],  \ 
                 markerfacecolor=markers_colorsd[kk], linestyle='-.', marker=markers[kk], \ 
                 label=rapid_redeposition_label) 
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            axarr[0].set_xlim([x0_start, x0_end]) 
            axarr[0].set_ylim([y0_start, y0_end]) 
            axarr[0].grid(which='major',axis='both', linestyle=':', linewidth=0.5) 
     
            # Add second horizontal axis 
            axadd = axarr[0].twiny() 
            axadd.set_xlabel(r'$Q_{m}$ $[m^3/s]$, $D_{ring}$='+str(D_rotate)+' [m]', \ 
                             fontsize=label_size) # de facto title 
            axadd.set_xticks(theta_hat_index1.tolist(), minor=False) # create second axis 
            axadd.set_xlim([x0_start , x0_end]) 
            axadd.set_xticklabels(Q_m_index1)  # set the labels to display at those ticks 
            axadd.grid(which='major',axis='x', color='k', linestyle='--', linewidth=0.5) 
             
            # Delta vs theta_hat         
            axarr[1].plot(x_find,delta_y_find, color=markers_colorst[kk], \ 
                 markerfacecolor=markers_colorst[kk], \ 
                 linestyle='-', marker=markers[kk], label=total_spillage_label) 
            axarr[1].set_xlabel(r'$\^\theta = \frac{\omega r_{ring}^3}{Q_m}$', \ 
                 fontsize=label_size+2) 
            axarr[1].set_ylabel(r'Spillage rate errors [pp]', fontsize=label_size) # de facto 
title 
            axarr[1].set_xlim([x0_start, x0_end]) 
            axarr[1].set_ylim([y5_start, y5_end]) 
            axarr[1].grid(which='major',axis='both', linestyle=':', linewidth=0.5) 
    #        axarr[1].legend(labels5, title=legend_title) 
             
            # Add second horizontal axis 
            axadd = axarr[1].twiny() 
            axadd.set_xlabel(r'$Q_{m}$ $[m^3/s]$, $D_{ring}$='+str(D_rotate)+' [m]', \ 
                             fontsize=label_size) # de facto title 
            axadd.set_xticks(theta_hat_index1.tolist(), minor=False) # create second axis  
            axadd.set_xticklabels(Q_m_index1)  # set the labels to display at those ticks 
            axadd.set_xlim([x0_start , x0_end]) 
            axadd.set_xticklabels(Q_m_index1)  # set the labels to display at those ticks 
            axadd.grid(which='major',axis='x', color='k', linestyle='--', linewidth=0.5) 
             
        axarr[0].legend(loc='upper center', bbox_to_anchor=(0.5, -0.2), ncol=2, \ 
             title=legend_title, frameon=False) 
        axarr[1].legend(loc='upper center', bbox_to_anchor=(0.5, -0.2), ncol=2, \ 
             title=legend_title, frameon=False) 
         
        axarr[1].axhline(y=-5, color='r', linestyle='-.')         
        axarr[1].axhline(y=5, color='r', linestyle='-.') 
        axarr[1].axhline(y=-10, color='k', linestyle='--') 
        axarr[1].axhline(y=10, color='k', linestyle='--') 
         
        axarr[0].axvline(x=1.7, color='tab:purple', linestyle='-.')   
        axarr[0].axvline(x=3.6, color='tab:purple', linestyle='-.')  
        axarr[1].axvline(x=1.7, color='tab:purple', linestyle='-.')  
        axarr[1].axvline(x=3.6, color='tab:purple', linestyle='-.')   
         
        timestamp = str(datetime_object) 
        if mm==0: 
            p ='Sand' 
        elif mm == 1: 
            p = 'Rock'         
        figname='PlotTotals/'+p+'.'+timestamp+'fig5.png'    
        figname=figname.replace(':','.') 
         
        fig5.savefig(figname,dpi=200) 
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