
D
el

ft
U

ni
ve

rs
it

y
of

Te
ch

no
lo

gy

Analyzing Local
Structure in
Predict+Optimize Loss
Functions
Thomas Kuiper

Analyzing Local
Structure in

Predict+Optimize
Loss Functions

by

Thomas Kuiper

to obtain the degree of Master of Science

at the Delft University of Technology,

to be defended publicly on Monday December 8, 2025 at 15:30 AM.

Student number: 5086217
Project duration: November 1, 2024 – December 8, 2025
Thesis committee: Dr. E. Demirović, TU Delft, head-supervisor

Dr. W. Böhmer, TU Delft
K. Sidorov, TU Delft, daily supervisor

Cover: Canadarm 2 Robotic Arm Grapples SpaceX Dragon by NASA un-
der CC BY-NC 2.0 (Modified)

Style: TU Delft Report Style, with modifications by Daan Zwaneveld

An electronic version of this thesis is available at http://repository.tudelft.nl/.

http://repository.tudelft.nl/

Preface

Kindness and honesty are the best problem solvers.

This report is the culmination of all the work put into my masters thesis. I want to thank my su-
pervisors for guiding me. First and foremost, Konstantin, my daily supervisor. He helped me
immensely in completing this work, but also taught me the excitement of research and the occa-
sional life lesson. His guidance was invaluable, and I will carry it with me for the rest of my life.
Emir, my head supervisor, played a smaller but important role in my process. He kept the train on
the rails, making sure I plan and think things through thoroughly. His feedback often helped me
discover problems I had not thought about and brought me in the right direction. Thank you both!

Lastly, I want to thank my friends and family. They were there for me when I was struggling,
helping me to keep believing in myself. But I also enjoyed explaining ”what I was actually doing”
to them, having discussions or laughs. Thank you for supporting me! I know I can keep counting
on you.

Thomas Kuiper
Delft, November 2025

i

Abstract

Predict then optimize (P+O) is an emerging field that uses machine learning to predict variables
for a combinatorial optimization (CO) problem. In this, it has to overcome the discontinuous nature
of combinatorial problems. Many different solutions have been proposed, like SPO+[6], PFYL[2]
and CaVE[18]. What they all have in common is that they give up some information about the
problem to make the loss function continuous. To get a better idea of where the strengths and
weaknesses lie of P+O losses, we want to find how much of this information on problem structure
is retained. This brings us to the main research question: How much of the local structure of
regret do P+O loss functions follow? Are there ways to improve this?

We found that all P+Omethods tested struggled to consistently find locally optimal solutions, often
leaving room for improvement in adjacent solutions. When locally optimal solutions were found,
they were mostly already globally optimal. We found that P+O methods do not really consider
local regret optimality except for the global solution. Since this solution often cannot be found, we
reason that regret local search could improve these cases a lot.

We develop Decision Guided Learning (DGL) as a regret local search algorithm and find good
improvements for smaller machine learning models and medium to no improvements for larger
machine learning models. We reason that when models are large enough to approximate all the
true optimal solutions, the need for regret local search becomes less.

ii

Contents

Preface i

Abstract ii

1 Introduction 1

2 Preliminaries 3
2.1 Definitions . 3
2.2 What makes P+O hard . 4
2.3 Regret landscapes . 4

3 Related Work 6
3.1 Analytical differentiation and smoothing . 7
3.2 Smoothing by random perturbations . 7
3.3 Differentiating surrogate loss functions . 8

4 Local Structure of P+O Losses 10
4.1 Motivation . 10
4.2 Methodology . 10

4.2.1 Locality experiment . 10
4.2.2 Data generation . 13
4.2.3 P+O losses . 14

4.3 Results . 14
4.3.1 Locality . 14
4.3.2 Random Locality . 15
4.3.3 Local vs Random . 16
4.3.4 Multiple local optima . 17
4.3.5 Impact of problem size on locality . 19
4.3.6 Combined locality . 20

4.4 Summary . 20

5 Decision Guided Learning 22
5.1 Preliminaries . 22

5.1.1 Polyhedral Geometry in P+O . 22
5.1.2 Simplex Algorithm . 25

5.2 Methodology . 26
5.2.1 DGL procedure . 26
5.2.2 Adjacent Decision Finder . 26
5.2.3 Model-Decision Aligner . 27

5.3 Experiments and Results . 27
5.3.1 Experimental setup . 27
5.3.2 Locality experiment . 28
5.3.3 Regret experiments . 30

5.4 Summary . 34

6 Conclusion 35

References 37

A Plots 39

iii

1
Introduction

Machine learning is a well-studied field. With it, a solution can be found for almost any predic-
tion problem. This only holds, though, when viewing the prediction problem in isolation. Predict
then Optimize (P+O) is the field that studies machine learning tasks specifically with downstream
optimization in mind. Conventional prediction-focused machine learning falls short in this setting.
Instead, a decision-focused approach has been shown to produce better results[6]. This involves
including the optimization problem in the machine learning pipeline and learning, not based on
the prediction quality, but the quality of the decision produced by the final optimization using said
prediction.

Including a combinatorial optimization (CO) problem in the learning pipeline also brings new chal-
lenges. Training on a loss defined by the value of the decision leaves gradients zero almost
everywhere. Since a small change in the prediction may not change the decision, and thus also
not the value. And this assumes that we can even compute the gradient; this requires back-
propagation over the optimization problem itself. Facing these challenges, researchers came up
with creative solutions that tackle both of these problems, but in doing so, they have to sacrifice
accuracy to both smoothen out the problem and make it differentiable.

Other works analyze P+O methods based on performance measures and computation time [12]
[19]. In this work, we characterize P+O methods differently. Instead of measuring performance
on different problems, we test the (dis)similarity of P+O loss functions to the fully informed regret
landscape. The regret landscape holds all the problem structure, and thus, for CO problems, the
discontinuities. By calculating the whole regret landscape, we can analyze where P+O methods
give up information and if this might lead to situations where they fail.

There are several advantages of doing analysis on regret landscapes. First, we can analyze the
entire shape of the loss function instead of focusing on a single point. In particular, this allows us
to explore the local regret structure. Second, since we calculate the full landscape, we know what
the optimal regret is. This allows us to measure both model and regret distance to the optimum.
Together, these facts allow for reasoning beyond “lower regret is better.” We can differentiate P+O
methods by their local optimality and ability to find the optimal regret.

Regret landscape analysis also comes with a major downside. Calculating the whole regret land-
scape is practically infeasible for prediction models with more than a single parameter. Hence, in
our research, we are limited to experiments with prediction models of this size.

The analysis is done by finding where P+O losses converge and comparing it with the objectives
of the regret landscape. We define the objectives of the regret landscape by using a specialized
notion of local optimality we call locality. This allows us to compare whether P+O losses follow

1

2

the local structure of regret closely, more loosely, or follow something different altogether. This
brings us to the main research question:

How much of the local structure of regret do P+O loss functions follow? Are there ways to
exploit this?

This thesis is split into two parts in accordance with this question. First, the previously discussed
local regret analysis. Second, amethod to improve local regret in P+O loss functions. Our method,
Decision Guided Learning (DGL), is a regret local search algorithm. It guides gradient descent
towards regret-improving decisions by searching the local decisions and moving towards them by
embedding their normal cones in objective space.

In the first part, we found that P+O losses do not follow the local structure of regret to a very close
degree. All our tested P+O losses miss the local structure for around 50% of the tested problem
instances. We show that, on average, this leads to a worse solution quality. When the local
structure is matched, it is mostly matched around the globally optimal solution. The local regret
landscape is mostly missed. We see a lot of potential for improvement, especially in aligning more
often with regret locally optimal solutions.

For the second part, we found that our implementation of DGL significantly improved the rate at
which the final solution matches local regret. DGL improved one of the methods, CaVE, from
finding locally optimal solutions 40% of the time to 70%. We also tested DGL in more practical
settings that include larger datasets and model sizes. We found that for smaller models, DGL can
give around a 20% reduction in regrets. Increasing the model sizes reduces this improvement
to eventually zero. We find that DGL can help augment other P+O methods, especially where
models struggle, but when a model already performs well, it does not find much improvement.

The rest of the thesis is structured as follows. In Chapter 2, we define the problem and explain a
key technique for the analysis. Chapter 3 describes the main techniques used in P+O methods.
The analysis of P+O methods using the regret landscape is shown in Chapter 4. Section 4.1
motivates the approach, Section 4.2 explains the methodology in detail, and we show and analyze
the outcomes in Section 4.3. Chapter 5 explains how DGL works, is implemented, and how it
performs.

2
Preliminaries

2.1. Definitions
Borrowing notation from Mandi et al. [12], we define a parameterized Mixed Integer Linear Pro-
gram (MILP) as follows.
Definition 2.1.1 (problem description).

x∗(c) = argmin
x

f(x, c) (2.1)

s.t. g(x) ≤ 0 (2.2)
h(x) = 0 (2.3)

The goal of the CO problem is to find an optimal solution x∗(c). An optimal solution is a solution
x ∈ F that minimizes the objective function f(x, c), where F is the feasible space described by
constraints g(x) and h(x).

In the setting of P+O, the objective costs of the optimization problem are unknown. Hence, the
problem description is parameterized by the cost c. c is generally referred to as the true cost, or
the cost under perfect information. P+O models are trained to predict ctrue. A prediction of ctrue
is written as cpred.

With these building blocks, we can formalize the objective of P+O: train a machine learning model
that predicts cpred such that the objective function f(x, ctrue) is minimized.

Conventional machine learning losses can learn to find a cpred close to ctrue but can not minimize
the objective function directly. For this, we need something different from prediction-focused
losses, namely, decision-focused losses. These losses do not compare cost predictions, but
instead base their loss value on the decisions x∗(cpred) and x∗(ctrue).

A very intuitive prediction-focused loss is regret, also known as SPO loss[6].
Definition 2.1.2 (Regret).

Regret(cpred, ctrue) = f(x∗(ctrue), ctrue)− f(x∗(cpred), ctrue) (2.4)

Regret is calculated by taking the difference between the optimal decision under perfect informa-
tion x∗(c) and the optimal decision under predicted information x∗(ĉ). This difference is calculated
in the value of the objective function.

The reason we prefer regret over prediction-based metrics, such as mean squared error (MSE), is
to ensure that the right decision is made even if the prediction is not exactly correct. In this sense,
DFL techniques can be seen as a risk minimization to general machine learning approaches.

3

2.2. What makes P+O hard 4

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0
Value of Item 1

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

Va
lu

e
of

 It
em

 2

Cpred1
Cpred2
Cpred3
Ctrue

Figure 2.1: An example illustrating the difference between regret and prediction-based losses. The figure describes a
knapsack problem where one out of two items can be chosen. It shows that something like MSE can become better

while the decision made becomes worse (by moving from pred 2 to pred 3).

We can illustrate this difference more clearly with an example. In Figure 2.1, a simple knapsack
problem where we maximize the value by picking one of two items. In blue, the true values are
given as 2 and 2.5, respectively. Any prediction in the shaded area has a higher value for item
2 and thus leads to it being chosen. We see that predictions 1 and 2 are in this region. Regret
sees both of them as already good, but a prediction-based metric wants to get closer to the true
prediction. The pink marker is the best one yet according to MSE, even though it would give a
worse decision. Scenarios like this show that regret gives up some accuracy in cost prediction to
ensure accuracy in decisions.

2.2. What makes P+O hard
In predict+optimize, we have a prediction model with parameters ω, a CO problem, and a true
cost-feature dataset. The model predicts some costs cpred which can be paired with the true cost
to calculate the regret. To calculate the gradient of the regret with respect to ω, we apply the chain
rule:

dL(x∗(ĉ), c)

dω
=

dL(x∗(ĉ), c)

dx∗(ĉ))

dx∗(ĉ)

dĉ

dĉ

dω
(2.5)

From the right-hand side, the first and the last term can generally be computed. However the
second term dx∗(ĉ)

dĉ can be quite challenging to calculate directly. This term can be described
as differentiating the optimization mapping ĉ → x∗(c). This mapping directly depends on the
CO problem that we are trying to optimize. Some problems have a well-defined and differentiable
optimization mapping, but most interesting optimization problems have points where gradients are
undefined, as well as many areas where the gradients are simply zero. Even Linear Programming
(LP) problems have zero gradients almost everywhere. Irregular gradients like this make using
gradient descent directly impossible on most problems. In chapter 3, P+Omethods are discussed
in the context of these challenges, and how they overcome them.

2.3. Regret landscapes
This research compares P+O loss functions with regret loss. To do this, we want to calculate the
entire regret landscape so we can find where the local and global optima are. In this section, it is

2.3. Regret landscapes 5

4 3 2 1 0 1 2 3 4
alpha

1.0

0.5

0.0

0.5

1.0

1.5

2.0

pr
ed

ict
ed

 c
os

t

p1
p2
p3

(a) Predicted costs

4 3 2 1 0 1 2 3 4
alpha

1.0

0.5

0.0

0.5

1.0

1.5

2.0

Re
gr

et

p1
p2
p3

(b) Regret

Figure 2.2: Predicted costs (left) and regret (right) for the shortest path example.

explained how the regret landscape is calculated, mathematical properties and assumptions are
shown, as well as an example to introduce some intuition.

The regret landscape can be calculated for a single-dimensional prediction model using a dy-
namic programming approach introduced by Demirović et al. [4]. This method can calculate the
regret landscape for any combinatorial optimization problem that can be solved using dynamic
programming (DP). In short, instead of the normal numbers you would have in DP, there are lin-
ear functions representing the value for all possible model parameters. This is shown in equation
2.6, where the predicted cost for item i is calculated by multiplying feature n with model parameter
α and adding feature e.

ĉ = v(α) = ni · α+ ei (2.6)

For the DP algorithm of choice to work with these functions as values, we need to adapt the oper-
ators to piecewise linear calculus [4]. With these pieces, we can produce a dynamic programming
algorithm that returns a set of intervals I with size equal to the number of different optimal solutions
that span the model parameter space.

di = [αstart
i , αend

i] ∈ I forall i ≤ n (2.7)
s.t. αstart

1 = −∞ (2.8)
αend
n =∞ (2.9)

αend
i = αstart

i+1 (2.10)

Each interval di represents the optimal solution that would be found with the prediction using
any α within it. Calculating the regret of each of these solutions and giving it as the value of the
corresponding interval will produce the piecewise-constant function that fully describes regret.

To illustrate this further, an example is given. We have a shortest path problem with a start and
end node. Between them are three different edges with the following features: edge one: (n1 :
0.5, e1 : 2, c1 : 2), edge two: (n2 : −0.5, e2 : 2, c2 : 1) and edge three: (n3 : −1, e3 : 3, c3 : 1.5).
Applying our value function 2.6 gives three linear functions that describe the predicted cost. The
dynamic programming algorithm finds, at each point in the model parameter space, the edge
predicted as the shortest. In the top figure of Figure 2.2, the result of this can be observed. We
see that in the interval (−∞, 0], edge one is found to be optimal, because the other two edges will
have a higher predicted cost for those model parameters. The key is that with this, we know for
the whole model space which edge will be chosen. We can drop the predicted costs and replace
them with the value of the chosen decision subtracted by the optimal decision value to find the
regret landscape. This is illustrated in the bottom figure of Figure 2.2. We see that the optimal
decision would be predicted with an α between [0, 2].

3
Related Work

Approaches in P+O can be split into two categories: gradient-based and gradient-free. The latter
are not analysed directly in this work; however, they do serve as the basis for our analysis, as
explained in Section 2.3.

Demirović et al. show how to fully calculate the regret landscape for a single-variable model [4].
They propose a top-down approach that leverages information from the combinatorial problem
side to inform what parameter the model should have. They show that using coordinate descent,
they can achieve regret scores on par with or even outperforming state-of-the-art methods like
SPO+[6]. However, the method is limited to CO problems that can be solved using dynamic
programming (DP).

Guler et al. extend thismethod by employing a divide-and-conquer approach to significantly speed
up the training [9]. They also generalize the problem space to include all problems with a bilinear
objective, which is much broader than only DP-solvable problems. This improvement is at the
cost of only being able to map a predefined finite area of the model space, as opposed to the DP
variant, which calculates it entirely.

For gradient-based methods, the challenge lies in overcoming the discontinuities that are often
present due to the combinatorial nature of the problems in the space. In particular, calculating
the gradient over the optimization mapping c→ x∗(c) is the problem, because it is often zero for
most points or even undefined. For example, linear programs (LPs) have gradients that are zero
almost everywhere. In the rest of this section, we go over the different ways that have been found
to overcome this problem.

Mandi et al. give an overview of the state of the P+O field and also compare gradient-based
methods thoroughly on several problems [12]. Some of the main takeaways include:

1. SPO+ shows robust performance across all problems
2. QPTL’s performance depends heavily on the quality of the relaxation, but can outperform

other methods when the relaxation is good.
3. Both LTR losses and NCE can be trained really fast, this is crucial for real-world large-scale

problems and thus makes them suitable. Especially since NCE showed performance that
did not fall far below SPO+ on most test problems.

Continuing to follow Mandi et al. [12], we identified three distinctive classes: (a) analytical dif-
ferentiation of specific problems and finding ways to change or augment different problems into
those specific forms, (b) using perturbations to instead reason over averages, (c) defining surro-
gate loss functions based on heuristics. For each of these classes, the most notable works are
discussed along with general properties that apply to them.

6

3.1. Analytical differentiation and smoothing 7

3.1. Analytical differentiation and smoothing
A natural place to start is to see which problemswe can differentiate directly. For unconstrained op-
timization, Gould et al. show that the argmin of a smooth and convex function can be differentiated
analytically [8]. They then used this method to differentiate through some constrained problems
by introducing a log barrier function in place of inequality constraints, as originally proposed by
Boyd and Vandenberghe [3]. To get good performance from this method, hyperparameter tuning
is needed to define the weight(s) for the log barrier function.

Mandi and Guns used a similar approach to drop constraints while also exploiting several prop-
erties of LPs [11]. In particular, they used an interior point method, making it more efficient while
limiting the use to LP problems.

Amos and Kotler singled out quadratic programs (QPs) as problems that can be differentiated
while constrained [1]. By differentiating through its Karush-Kuhn-Tucker (KKT) conditions, the
gradient of a convex QP can be found. The quadratic nature of the objective function ensures a
continuous value resulting in a non-zero gradient. Wilder et al. propose adding a Euclidean norm
of the decision variables to the objective function. They then make use of Amos and Kotler’s
OptNet to differentiate the optimization mapping[22][1]. They call this combination of techniques
quadratic programming task loss (QPTL).

Something all of the mentionedmethods have in common is that the problems they can solve need
to be convex and continuous. Unfortunately, these properties do not hold for most CO problems.
In this case, continuous relaxation can still be a good option. Ferber et al. show an alternative to
this [7]. They propose using cutting planes before dropping the integrality constraints to greatly
decrease the integrality gap, at the cost of computation speed.

Summary: If the objective function is a smooth and convex function, the optimization mapping
can be differentiated by KKT conditions. However, for most CO problems the objective function
is not smooth and convex. Methods in this section use some means to ensure these properties
by for example, adding a euclidean norm of the decision variables to the objective function.

3.2. Smoothing by random perturbations
Themethods in this section were built on a probabilistic view of the “predict then optimize” problem.
Instead we view the optimization mapping as c onto a probability distribution over feasible region
F . This can be written as the conditional distribution p(x∗(c)|c).

To see why this is a good idea, we look at Domke’s work [5]. They found that if you have a
conditional distribution p(θ1|θ2) with a loss L defined on θ1, the gradient of L with respect to θ2
can be approximated. This is significant considering that when this is applied to p(x∗(ĉ)|ĉ) the
gradient dL(x∗(ĉ))

dĉ is calculated. With this gradient, we do not need to differentiate the optimization
mapping anymore, solving the problem by avoiding it entirely.

dL

dθ2
≈ 1

δ
(E[θ1|(θ2 + δ

d

dθ1
(L(E[θ1|θ2]))]− E[θ1|θ2]) (3.1)

The key observation here is the perturbation of θ2. Many authors used this idea in their work.

Given that Ex∼p(x|c)[x|c] = x∗(c) Vlastelica et al. saw that (3.1) reduces to a linear interpolation
between ĉ and ĉ + δ dL(x∗(ĉ))

dx∗(ĉ) [21][5]. Using this, they created the differentiation of black box
combinatorial solvers (DBB). The name is because it treats the solver as a black box, allowing it
to be any kind of solver. This fact is true for all methods described in this section.

We can also try to calculate (3.1) directly, however for this we need the distribution p(x|c). To
calculate this we would need to go over every point x ∈ F . Papandreou and Yuille circumvent this
by instead estimating the distribution by calculating many perturbations of ĉ[17]. Their Perturb-
and-MAP approach calculates ĉ′ = ĉ + η where η ∼ Gumbel(0, ϵ). With the distribution, the
expected values inside (3.1) can be calculated using Monte Carlo simulation.

3.3. Differentiating surrogate loss functions 8

Berthet et al. make use of this perturb-and-MAP framework to define their differentiable perturbed
optimizers (DPO)[2]. They adapt it to use the reparameterization trick to draw samples from p(x|c).
It uses a temperature coefficient ϵ, which gives a tradeoff between accuracy and smoothness.
Berthet et al. further improve it by constructing a Fenchel-Young loss to go with their differentiation
method[2].

Summary: By reformulating the P+O problem to one of probabilistic inference, we can formulate
an equation that gives the gradient we need. However, to calculate it, we need the distribution
p(x|c). It was proposed to estimate this distribution by perturbing ĉ multiple times and calculating
the corresponding solutions x. Using this idea, the gradient can be calculated regardless of the
solver used.

3.3. Differentiating surrogate loss functions
The methods discussed above described some way to change the model or define the gradient
so that the optimization mapping can be differentiated. Works in this section define specific task
losses that come with gradients or subgradients that are well defined.

Elmachtoub and Grigas find a convex surrogate upperbound of regret that they call SPO+ loss[6].
This loss function has a subgradient defined for any ĉ:

x∗(c)− x∗(2ĉ− c) ∈ δLSPO+

With this subgradient, neural networks can be trained to predict any parameters inside a CO
problem with a linear objective. Elmachtoub and Grigas also show that their surrogate is Fisher
consistent [6]. This means that when minimizing SPO+ loss, the expectation of regret is also
minimized.

Noise Contrastive Estimation (NCE) is a methodology that has been shown to have great perfor-
mance over various machine learning tasks such as language modeling[15] and image classifica-
tion[10]. The idea behind it is to have a model learn to discriminate between the true distribution
and a noise distribution. Mulamba et al. adapt the concept of NCE to P+O by defining a model
that learns to distinguish between the ground-truth solution x∗(c) and different feasible solutions
x′ ∈ S. So the model will learn to predict ĉ that perform well with the solution found by x∗(c) and
worse for solutions x′ [16]. The key to making this work is to construct a good set S, referred to
as “solution cache.” Mulamba et al. suggest to first add all optimal solutions in the training data,
then during training time, new predicted costs are added. Mulamba et al also showed that for any
DFL technique the solver call can be replaced by a solution cache lookup[16].

Mandi et al. transform the DFL objective into a learning-to-rank (LTR) problem [13]. Essentially,
this turns the objective into trying to predict ĉ such that the order of solutions is similar to that given
by the true cost c. Similarly to the NCE approach, they make use of a solution cache S. The loss is
defined such that for each solution pair x∗(c) and x′ ∈ S, it is minimized if the predicted ĉ produces
the same ordering as c. In addition to defining the previously described pairwise learning-to-rank
loss, Mandi et al. also define a pairwise difference and listwise learning-to-rank loss function[13].
Both LTR and NCE approaches have an advantage of not needing to solve the CO problem itself
during training of the model.

Tang and Khalil bypass the CO optimizer bottleneck in a different way, using their Cone-aligned
Vector Estimation (CaVE) [18]. CaVE uses the true cost c to find the optimal decision and then
creates a cone around the true cost vector where the optimal decision is taken. This cone can
be made with the binding constraints at the time of solving for the true cost. During training, the
predicted costs ĉ are projected onto the conic space. The loss is defined as the angle between the
optimal cone and ĉ. Minimizing this loss will ensure that ĉ aligns with the optimal cone constructed
from the ground truth solution x∗(c).

Summary: Surrogate losses are designed to work specifically for combinatorial optimization prob-
lems and come with well-defined gradients or subgradients. These methods also treat the solver

3.3. Differentiating surrogate loss functions 9

as a black box and can hence use any solver. Many surrogate losses minimize the amount of
calls to the solver or even forego the need for it entirely. This makes these methods very time
efficient and usable on more complex problems.

4
Local Structure of P+O Losses

In this chapter, we propose a new way to analyze P+O loss functions. We start by motivating our
approach in section 4.1. In section 4.2, it is explained how we compare P+O loss functions to
the regret landscape in an experiment. Finally, in section 4.3, the results of the experiment are
analyzed and discussed.

4.1. Motivation
The objective of P+O is represented by regret, but as we saw before, regret is not fit for gradi-
ent descent. P+O losses circumvent this by representing a similar objective to regret while also
remaining viable for gradient descent. But how much do they actually represent regret as an
objective?

P+O losses can still be evaluated in regret score, however, as we show in Figure 4.1, it does not
tell the full story. By instead looking at the regret landscape, we can gain more intuition behind
why loss functions fail because we can see which parts of the landscape are followed.

To compare P+O losses with the regret landscape, we need to define when a loss represents the
same objective as regret. An intuitive definition is when the shape is similar, when it goes up and
down in the same places. But, while this describes the ideal case of approximation, it is unrealistic
and takes attention away from the important places of the regret landscape. Instead, we want to
know if it defines the same places as good. If the local optima of the P+O loss line up with good
places in regret, then we can guarantee that gradient descent on it leads to good solutions.

It is hard to say whether the shape of CaVE or SPO+ is closer to the regret landscape. But, if
we first define the left and rightmost segments as regret objectives, we can immediately tell that
SPO+ follows the regret landscape a lot better, since its objective agrees with the regret objective.

This brings us to the research question for this section. To what extent do P+O local optima align
with the regret objectives?

4.2. Methodology
In this section, we define how P+O losses are compared to the regret landscape, what metrics
are tracked and how they are calculated, and the problems used to test the loss functions.

4.2.1. Locality experiment
To start, we need to define which places in the regret landscape are important. To do this, we
use the notion of locality. Locality is an intuitive way to define local optimality in one-dimensional
regret landscapes.

10

4.2. Methodology 11

50

100

150

200

Re
gr

et
Regret Segments

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
Lo

ss

P+O Losses

spop
QPTL
PFYL
CaVE

Figure 4.1: Regret landscape with normalized P+O loss functions. SPO+ selects a good segment far on the right, while
CaVE, QPTL and PFYL select a lot worse segments near the middle. Regret score would tell you SPO+ is the best while
the other 3 are a lot worse. However with the regret landscape we can see that none of the loss functions converge to

the optimal regret segment and that SPO+ is actually the furthest away from it.

First, we introduce some notation: Given a problem P , we generate features and costs for each
objective parameter. Equation 2.6 describes our prediction model where α is the learned param-
eter. For this model, we can fully calculate the regret landscape described by the intervals di ∈ I
and the regret values ri ∈ R. With these variables, we can start describing the experiment.
Definition 4.2.1 (Locality). Given a segment di, it can have three different localities: global, local
and random. If di has the lowest regret in the landscape, then it is a ’global’ segment. We call
di ’local’ if it does not have improving adjacent segments. If it does have an improving adjacent
segment, it is ’random’, i.e., not locally optimal. More formally, we describe these conditions as
the following equations:

di ∈ global ⇐⇒ ri ≤ rj ∀ j (4.1)
di ∈ local ⇐⇒ ri−1 > ri < ri+1 & di /∈ global (4.2)

else di ∈ random (4.3)

The global and local segments are the local optima of the regret landscape and which we thus
use as the objectives. We do not view any random segments as objectives even though they can
be better regret-wise than local. This is because, intuitively, we do not want a learning procedure
to land in a random segment, as it can be improved by a straightforward procedure: take a few
steps to the left, then do the same to the right.

Now that we can partition the regret landscape into local, global, and random segments, we want
to know to which of these segments the differentiable P+O losses converge. We considered using
gradient descent but settled on doing optimistic analysis. Which means recording all stationary
points of each loss function instead of one gradient descent point.

In practice, this means that we calculate the loss and gradients over the finite part of the regret
landscape by varying the single machine learning parameter with regular steps. We do this within
the interval [αend

1 − δ, αstart
n + δ]. Looking at the finite end of the outer segments and adding a

factor δ to it also to account for the outer segments themselves. The loss and gradient values are
calculated for every α in this interval in steps of 0.05.

4.2. Methodology 12

When looking at the sequence of gradient values, we can find the P+O defined local optima by
finding where the gradient is zero, or more likely where it crosses zero. For each sequential pair
of gradient values, if their multiplication∆i ·∆i+1 ≤ 0, then somewhere in between, zero has been
crossed. When this holds true for discontinuous gradients, we cannot be sure that it crossed zero,
it could have jumped over it. Functionally however, it would still act as a point of convergence, so
it still achieves the intended goal. We record the alpha value in the middle of the points we are
comparing, as a local optimum of the loss function. For a convex loss function like SPO+, we can
simplify this process and take the α with the lowest loss value.

The last step is to find within which regret landscape interval di the optimal α of the loss lies.

dopt = αstart
i ≥ αopt > αend

i (4.4)

At this point, we have computed the regret landscape, which intervals are global, local and random,
and the stationary points of each loss function. With this, we can record on which segment each
stationary point lies and thus also the locality associated with it.

For the losses with multiple local optima, we assign the best locality found among them. This
makes their results comparable to the convex loss functions in terms of number. It represents
their potential, but the results do become exaggerated. In section 4.3, we explore this difference
more using precision and recall analysis.
Definition 4.2.2 (Precision and Recall). Precision indicates how likely a segment to which P+O
loss converges is local or global. This is calculated by taking all the local optima, then calculating
the number of locally optimal segments found and dividing this by the total number of segments
spanned by the P+O local optima. If we refer to global/local as ’good’ segments, we can formalize
it as follows:

Precision =
#good segments found

#segments found
(4.5)

Recall is percentage of local and global segments in the regret landscape are found by P+O losses.
With it, we can reason about the extent of the regret landscape that is modeled by the P+O losses.
In our case, we compute it by dividing the number of local and global segments found by the total
number of local and global segments in the landscape.

Recall =
#good segments found

#good segments total
(4.6)

For random and local segments, there can be quite a lot of variance. For example, one random
segment can be next to global while another can be far from anything good. In addition to this,
some random/local segments can have a competitive regret, while others represent really bad
solutions. To explore these differences, we have additional metrics, distance and depth.
Definition 4.2.3 (Distance).

Distance(αopt, dglobal) = min(abs(αopt − αstart
global), abs(αopt − αend

global)) (4.7)

This equation describes the distance from the optimal α found by a loss function to the segment
which is globally optimal in the regret landscape.
Definition 4.2.4 (Depth).

Depth(ropt, rglobal) =
ropt − rglobal
rmax − rglobal

(4.8)

whichmeasures the relative regret of the optimalα compared to the difference between the highest
regret segment and the lowest. In this definition, a 1 would mean that it has the worst possible
regret value, while a 0 would mean that it has the globally optimal regret value.

4.2. Methodology 13

0 1 2 3 4 5 6 7 8 9 100

1

2

3

4

5

6
Re

gr
et

local

global

P+O opt

Depth

Distance

Figure 4.2: Regret landscape illustrating distance and depth metrics. Depth to global: difference in regret of a P+O
stationary point and global. Distance to global: difference in model parameter α between P+O opt and global.

In our definitions, we use the (most used) example of distance/depth to global. However, these
metrics can also be applied in different ways, such as distance/depth to the nearest local, for
example.

Figure 4.2 shows the concepts of distance and depth in a visual example. Along with an example
of a local and global segment.

4.2.2. Data generation
So far, we have described the experiment on a single problem instance. To properly perform it,
we do it for many problem instances divided among three problem types: knapsack, shortest path
(SP), and traveling salesperson problem (TSP). In this section, it is shown how the features and
costs for each problem are generated. All data generation methods are adapted from Tang and
Khalil’s PyEPO [19].

Knapsack The knapsack problem is to find the subset of items that is within the capacity that
has the highest value. Capacity is set to 20. For each item i we generate a weight wi, two
features ni, ei and a true cost ci. The weight is drawn from a uniform distribution U(3, 8) and the
two features are drawn from a normal distribution N(0, 1). We use a random transformation B
to calculate the true costs from the features. B consists of two multipliers drawn from normal
distribution N(0, 2).

c = (B · [n, e])2 (4.9)

Shortest Path The shortest path formulation from PyEPO sets up a grid with edges between
adjacent spaces, where the goal is to find the shortest path between the top left space and the
bottom right. For each edge, two features ni, ei are sampled from a normal distribution N(0, 1)
once again. The true cost for each edge is calculated like in equation 4.9.

4.3. Results 14

PFYL CaVE

SPO+ QPTL

global local random global local random

0

2500

5000

7500

0

2500

5000

7500

C
ou

nt

Problem Type

Knapsack

Shortest Path

TSP

Figure 4.3: Distribution of loss functions having a stationary point on a globally/locally optimal or neither (random).

Traveling salesperson Problem The traveling salesperson problem is to find the shortest route
that passes through all the nodes on a graph once. In our formulation, we use a fully connected
graph. Each node is drawn with initial coordinates from (U(−2, 2), N(0, 1)). Each edge once again
has two features ni, ei drawn from a normal distribution N(0, 1). The true costs of each edge is
the sum of the Euclidean distance and the transformed features, like in equation 4.9.

4.2.3. P+O losses
We perform the described experiment on a group of P+O losses. To represent every type of P+O
loss, we use the following methods:

• QPTL (quadratic programming task loss) as an analytical smoothing technique [22].
• PFYL (perturbed Fenchel-Young loss): as a smoothing by perturbation method [2].
• SPO+ (smart predict then optimize+): a surrogate loss [6].
• CaVE (Cone-aligned vector estimation): another surrogate loss [18].

4.3. Results
In this section, the results of comparing P+O losses to the regret landscape are shown. We first
look at the general distribution of locality. Thenwe take a closer look at local and random instances.
Next, we discuss what happens when we take all the stationary points of the non-convex losses
into account, after which we look at the impact of problem size on locality. Lastly, we talk about
the potential of combining loss functions.

4.3.1. Locality
To start the results section, we look at what types of localities are found by inspecting the distribu-
tion of locality in Figure 4.3. In it, we observe at what frequencies each P+O loss function aligns
with global, local, and random segments.

4.3. Results 15

0
50

100
150
200

−10 −5 0 5 10

co
un

t

Knapsack

0
50

100
150
200

−10 −5 0 5 10

co
un

t

Shortest Path

0

50

100

150

−10 −5 0 5 10
SPO+ Dist. to global − Dist. from global to closest local

co
un

t

TSP

Figure 4.4: SPO+ distribution of the difference between the distance to the global optimum and the distance to the
closest non-global local optimum.

First, we observe that all the distributions are very similar. Although we see some differences, like
QPTL doing better on knapsack problems and worse on others, all the distributions are shaped
very similarly. They are all dominated by a large amount of random segments, with a decent
amount of global and some local. Even though these methods all work differently, they produce
very similar locality.

Two things are interesting here. First, every loss function consistently finds a lot of random seg-
ments, i.e., not aligned with any regret local optima. This is surprising and shows that there is
still considerable room for improvement in the accuracy of these losses. Secondly, when these
losses align with local optima, it is more often a global one.

With these facts from Figure 4.3, we hypothesize that P+O losses do not consider the local regret
landscape closely. If they would close approximate regret, then Instead, it looks like we have an
often faulty approximation of only the optimal regret area. In the following sections, we explore
this hypothesis more closely.

4.3.2. Random Locality
In this section, we look at the random points found by P+O losses. We hypothesize that, even
though these points are random, they are often very close to a regret local optimum. If this is
true, the losses in question follow the local regret better than indicated by the locality distributions.
However, if it is false, it supports our theory that P+O losses do not follow local regret closely.

To find this out, we look at distances from the global and local optima. Specifically, we want to know
whether these points are close to local or global optima, or if the random locality is appropriate,
meaning they do not approach either.

In Figure 4.4, we see the difference between the distance to the global optimum and the distance
to the closest non-global local optimum is plotted three times for each of the different problems.
Less than zero means closer to the global optimum, while above zero means closer to a local

4.3. Results 16

PFYL CaVE

SPO+ QPTL

random local random local

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

Locality

D
ep

th
 to

 G
lo

ba
l O

pt
im

um

Figure 4.5: Depth of random and local points from SPO+. Depth is a measure of relative regret compared to the best
and worst regret in the landscape.

optimum.

Following our hypothesis, we would expect two high-density areas. One below zero and one
above zero, since this would account for the points that are approaching both global and local
points. However, we see something very different. For every problem, it centers around zero. So
our hypothesis was wrong.

For the knapsack and shortest path problem, it is evenly distributed, showing that on average,
SPO+ leads its models between local and global optima. This leads us to the conclusion that
when it aligns with random locality, most of the time it does not ’miss’ the local or global segment,
but instead something more fundamental is misaligned in the approximation of regret. For the
other losses, we see similar patterns and draw the same conclusions. Their results can be found
in Appendix A.

4.3.3. Local vs Random
We have found that the random segments are often aligned with by P+O loss functions. Even
though these points do not exactly follow the regret landscape’s local structure, it could be that
the regret value is still good. In this section, we hypothesize that the quality of solutions of random
is worse than local. If true, we show that converging to a local solution would generally give better
results.

In Figure 4.5 we see that there is a significant difference between the depth (relative regret) of
random and local points found. What this shows is that, even though random points can be close
to the global optimum, they still give a lot worse solutions on average, compared to local ones,
confirming our hypothesis.

With the low number of times a local optima are aligned with, it is reasonable to think that this
is a product of randomness. But looking at Figure 4.6, we see that there is a clear separation in
distance to the global optimum between random points and local points. P+O losses align with

4.3. Results 17

PFYL CaVE

SPO+ QPTL

0 5 10 15 0 5 10 15

random

local

random

local

Distance to Global Optimum

Lo
ca

lit
y

Figure 4.6: Distribution of distance to the global optimum of stationary points found by P+O losses, separated by the
locality of random and local.

local more often when the distance increases. An explanation for this could be as follows: when
the loss is calculated sufficiently far from the global optimum, the pull of the global optimum on
the loss is low, now it can approximate the local structure better and align with a local optimum.

Figure 4.7 shows that for random samples, the distance to the global optimum can be a good
predictor of solution quality. Being close often means a lot better regret. So even though local
solutions are found more often when the distance from global increases, the general solution
quality gets worse.

When comparing the boxplots of the close random points with the local boxplots from Figure 4.5,
they are very similar. Random points close to global get similar regret to local segments. This
suggests that approaching the global optimum is also a good strategy. But we also see the other
50% that is far from global, which drops significantly in quality. Because P+O loss functions are
unaware of the regret landscape, they cannot consistently get close, especially when the true
optimum does not align with the regret optimum.

Most importantly though, we showed that local regret is on average better than regret of random
segments. This shows that there is a good incentive to try to improve these methods to find
locally optimal segments more often. Ideally, the search is close to the global optimum since it
has showed to be a good predictor for lower regret.

4.3.4. Multiple local optima
Both PFYL and CaVE produce many stationary points. So far in the results, we have simply
used the best solution found. Here, we hypothesize that PFYL and CaVE model the local regret

4.3. Results 18

QPTL (median = 5) SPO+ (median = 1.46)

CaVE (median = 1.32) PFYL (median = 0.96)

Close Far Close Far

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

Distance to Global Optimum

D
ep

th
 to

 G
lo

ba
l O

pt
im

um

Figure 4.7: Depth of random points found by P+O losses, both close to the global optima and far from it. Close if below
the median distance to the global optima, far if above it.

Optima found PFYL Mean precision Mean recall CaVE Mean precision Mean recall

0 3279 0% 0% 3258 0% 0%
1 3329 78.1% 38.7% 2934 67.7% 40.3%
2 109 70.4% 47.1% 480 72.7% 62.8%
Total 39.9% 20.0% 35.3% 22.6%

Table 4.1: Precision and recall analysis for non-convex loss functions PFYL and CaVE, grouped by the number of
optima found. Finding more than 2 local optima did not happen for more than 50 cases, so it was left out of the table.

landscape more closely because they can model multiple local optima. We also look at how
realistic our previously made assumption is to always find the best local optima.

In Table 4.1, several statistics are shown about PFYL and CaVE. First, when an optimum is found,
it is almost always the only one that is found. Finding multiple local optima is very rare, showing
once again that these loss functions do not follow the local regret landscape closely, but more
globally.

For this reason, we also see that recall is very low, only about 20% on average. Meaning that
PFYL and CaVE only align with 20% of local+global segments that are in the regret landscape.
This also shows that our hypothesis does not hold, or at least the stationary points beyond the
best one rarely match with other regret local optima.

Regarding precision, we see that PFYL especially does well, with a precision of 78.1% on prob-
lems where it finds an optimum. The local and global counts of PFYL in Figure 4.3 are 78% likely,
so our assumption of using the best result holds decently well. The total precision values for PFYL
and CaVE remain very low at 39.9% and 35.3%, respectively. If you were to take a random one
of the used problems and run PFYL on it, you would have about this chance to train a model into
a regret local optimum. This puts it well below SPO+, for example, which has a mean precision
of 48.3%.

4.3. Results 19

PFYL CaVE

SPO+ QPTL

5 10 15 5 10 15

0%

25%

50%

75%

100%

0%

25%

50%

75%

100%

Number of Segments

P
er

ce
nt

ag
e Locality

global

random

local

Figure 4.8: Locality distribution as the number of segments in the regret landscape goes up.

4.3.5. Impact of problem size on locality
Intuitively, it would make sense that finding good solutions is easier for simple optimization prob-
lems and harder for complicated ones. But since we previously found that P+O losses follow
regret very loosely, it could be that locality is invariant of the complexity of the regret landscape.

In this section, we hypothesize that when problems become more complex, the P+O losses’ lo-
cality becomes worse. To find this, we will connect the size of the problem to the complexity of
the regret landscape and see how the locality of the solutions varies when the complexity of the
landscape increases.

For each of the tested problem types, we varied one of the problem-defining parameters. For
knapsack, we varied the number of items from 10-50, for shortest path, the grid size was varied
from 3x3 to 8x8, and for TSP, the number of nodes varied from 5-15. We made two observations
from this:

1. For knapsack, the locality distribution remained consistent when the problem parameter
increased.

2. For both SP and TSP, as the problem parameter increased, the global locality share went
down while random locality went up.

To explain this difference between knapsack and the other problems, we introduce complexity of
the regret landscape as the number of segments in the landscape. This represents the number
of different possible optimal solutions depending on the objective values. A complex problem will
naturally have more of these.

We find that for SP and TSP we see big increases in the number of segments, from 4-12 and
5-13, while for knapsack it changes very little, from 10-15. This could be an explanation for why
the performance of our loss functions remains consistent across our tested knapsack instances
and becomes worse for SP and TSP.

When we plot the distribution of locality over the number of regret landscape segments in Fig-

4.4. Summary 20

ure 4.8, we see the expected pattern emerge. For smaller problems, global locality is common,
but as complexity increases, it gets replaced by random.

Local fluctuates a little bit, but remains a very small part of the total picture. CaVE seems to find
the most local segments; the contribution makes a small rise as global goes down. This is a
promising pattern, when the global segment cannot be found, settle for a local one.

QPTL looks like a bit of an anomaly, but it can be explained very easily. QPTL only performs well
on knapsack problems. Due to the relaxation of the knapsack problem being good, there is a
spike in global locality around 10-15, where knapsack problems lie mostly.

Generally though, we see that as the regret landscape complexity increases, the global locality
goes down significantly, making it clear that our hypothesis holds. This shows that, especially on
harder problems, there is a lot of room for improvement still. Ideally, when problems become too
hard to align with global, P+O methods would align with local instead, like CaVE already does a
little bit. However, this requires these losses to be aware of the local regret landscape.

Knowing that our hypothesis for this section holds, we can also explain our results in a different
light, namely, based on the limitations. In our experiments, we used a single-parameter model.
This model is unable to approximate the entire solution space. For smaller problems, this effect
is likely limited. But for the larger problems, it means that the best, i.e. zero-regret, solution can
often not be found. P+O losses approximate regret precisely by trying to find this zero-regret
solution; when it cannot be found due to model limitations, it will converge to the place closest to
that solution, which turns out to be random quite often.

4.3.6. Combined locality
A potential way to improve the locality of P+O loss functions is to combine them. As shown
in Figure 4.9, a significantly better locality is found when taking the best out of the four tested
loss functions. When comparing this with their individual performances in Figure 4.3, it can be
observed that a large part of the random points have shifted to the global and local locality, with
global now having by far the most points.

Combining losses also has potential in terms of computation speed since themost computationally
expensive step, running a solver, is only needed once for each step. However, combining these
methods in an optimization setting that trains on a large dataset is not as easy as just choosing
the best one for each problem. When to use which loss function and how to combine multiple loss
functions to produce a single prediction model are problems without clear answers.

4.4. Summary
To conclude, we have seen that all of the tested P+O methods perform quite poorly on our exper-
iment. All of them do not align with any local or global optima around 50% of the time. In the rest
of the results, we looked at why this happens and if it is even a problem at all.

First, we saw that random localities are often found in the middle between local and global seg-
ments, showing that these results do not seem to be pulled closer towards either global or local
segments but instead align with something else.

In a similar trend, we also saw that when SPO+ aligns further away from global localities, it finds
local segments at an increased rate. This is an indicator that when the pull of global on the loss
gets weaker, it can more easily align with local segments.*-+

We found that local segments have better depth than random ones, showing that, generally, it is
better to align with local segments when the global optimum cannot be found.

Problem size is very relevant for locality; we have seen that on small problems, P+O losses find
global segments fairly consistently. As the regret landscape grows larger, however, locality of
P+O losses quickly disappears.

4.4. Summary 21

0

5000

10000

global local random

Combined Locality

C
ou

nt

Problem Type

Knapsack

Shortest Path

TSP

Figure 4.9: Locality distribution by problem type for the maximum locality among loss functions SPO+, QPTL, PFYL,
and CaVE.

Putting all of this together, we can answer the research question for this section: At best, P+O
losses consider locality globally, but in many cases, not at all. If loss functions could consider
locality more, it could move the large amount of random points into local segments and make a
significant improvement.

We have already seen a potential way to make this improvement, namely by combining the
strengths of several of these losses. This seemingly leads to very consistently finding a local
or mostly global segment. This shows potential, but would still need a lot of research to come up
with a way to combine multiple losses effectively. In chapter 5 we propose a different method to
make this improvement, by adjusting gradient descent to be more aware of the solution side and
thus not moving from a local segment to a random one if this would make it worse.

5
Decision Guided Learning

In chapter 4 we found that the current P+O loss functions follow regret local optima to a limited de-
gree. We have established that even on simple problems, commonly used P+O methods struggle
to find locally optimal solutions. It was shown that many solutions with the locality ’random’ were
consistently selected, meaning that there is an adjacent improving solution. If we can search for
and select an improving adjacent solution, then we can further improve current methods.

Searching the local regret landscape is not a simple task. Whenmachine learningmodels become
larger, the model search space becomes hard to explore. Instead, we approach the search from
the decision side. Assuming an LP optimization problem, we can limit the number of ’smart’
decisions to be made. We can explore them and find improving decisions. Then, we adjust the
learning model such that it produces this decision.

In this chapter, we propose a different P+O framework to better take into account locality. A first
version is implemented and tested.

5.1. Preliminaries
In this section, we introduce the key concepts to formulate our method. We first explain howmodel
space, decision space, and objective space interact in polyhedral geometry. Then we explain the
basic concepts of the simplex method.

These two sections will form the basis for each of the two phases that define DGL, the Adjacent
Decision Finder and the Model-Decision Aligner. The adjacent decision finder uses simplex pivots
to find adjacent vertices on the feasible polytope, while the model-decision aligner uses normal
cones to form a loss function that has a gradient towards a certain decision.

5.1.1. Polyhedral Geometry in P+O
In this section, we discuss the basic concepts of polyhedral geometry and their relationship to the
P+O problem.

Polyhedra and vertices.
Definition 5.1.1 (Polyhedron and faces). The feasible region of a linear program is a polyhedron:
the intersection of finitely many half-spaces defined by linear inequalities. Formally, a polyhedron
P ⊆ Rn can be written as

P = {x ∈ Rn | Ax ≤ b}, (5.1)

for some matrix A ∈ Rm×n and vector b ∈ Rm.

22

5.1. Preliminaries 23

A face of P is obtained by turning some of these inequalities into equalities; faces of dimension 0
are called vertices, dimension 1 faces are edges, and so on [23].
Theorem 5.1.1 (Fundamental theorem of linear programming). Whenever P is bounded, an op-
timal solution of a linear program

max{c⊤x | x ∈ P} (5.2)

is attained at a vertex of P [20].
Example 5.1.1 (Finding a vertex in a polygon). The constraint system in Equation 5.3 defines a
polyhedron in R2, shown in Figure 5.1.

maximize x1 + x2

subject to x1 ≥ 0, x2 ≥ 0,

3x1 + 2x2 ≤ 8, (5.3)
x1 ≤ 2,

x2 ≤ 2.

Each inequality corresponds to one of the bounding lines; for example, x2 ≥ 0 defines the hor-
izontal axis as a boundary. The feasible region is the polygon enclosed by all such constraints.
The corner points of this polygon are the vertices. One of the vertices of the feasible polygon is
at (43 , 2). To see why, note that a vertex is obtained when a set of constraints are simultaneously
active, i.e., satisfied as equalities. At (2, 0) the following inequalities are tight:

3x1 + 2x2 ≤ 8 ⇒ 3x1 + 2x2 = 8,

x2 ≤ 2 ⇒ x2 = 2.

The intersection of these two boundary lines is the point (2, 0). This point lies inside all the other
constraints, so it is a feasible solution. Because it is the intersection of two independent boundary
constraints in R2, the feasible set has been “shrunk down’’ to a zero-dimensional object: a single
point. Hence, (43 , 2) is a vertex of the polyhedron.
Definition 5.1.2 (Normal cone). For a given vertex v ∈ P , not all objective vectors c select it as
optimal. The set of all such c forms a convex cone, called the normal cone of v. This cone is
generated by the normals of the active constraints at v [23]. More formally, if a1, . . . , ak are the
normals of the active constraints at v, the cone they generate is

NP (v) =
{ k∑

i=1

λiai

∣∣∣ λi ≥ 0
}
. (5.4)

Geometrically, the normal cone partitions the objective space. Each cone corresponds to the set
of directions in which the vertex remains optimal: if c ∈ NP (v), then v is an optimal solution of the
linear program
Example 5.1.2 (Normal cone). In Figure 5.1, each vertex has a normal cone drawn from it. We
can see that the vertex (43 , 2) contains the true objective and is thus the optimal solution for the
problem defined by that objective.

The cone is defined by the two active constraints in that vertex, i.e., the constraints that can be
replaced with equalities. In this case: 3x1 + 2x2 ≤ 8 becomes (3, 2) and x2 ≤ 2 becomes (0, 1).

Hence the normal cone at (43 , 2) is generated by the vectors (3, 2) and (0, 1). To see that the true
objective c = (1, 1) lies in this cone, observe that it can be written as a conic combination:

(1, 1) = 1
3 (3, 2) +

1
3 (0, 1).

Since c lies inside the cone, the vertex (43 , 2) is indeed optimal for this objective.

5.1. Preliminaries 24

In P+O, the objective is unknown; we define it as such:

maximize c1x1 + c2x2

Figure 5.2 shows the objective space of Equation 5.3 when the objective is unknown. The cones
from Figure 5.1 are the same ones, they can additionally be identified by the vertex labels in
Figure 5.2. The whole space is divided into the normal cones from the decision space. Depending
on the prediction of c1 and c2, a different cone, thus vertex, is defined as optimal.

0.5 0.0 0.5 1.0 1.5 2.0 2.5
x1

0.5

0.0

0.5

1.0

1.5

2.0

2.5

x 2

(0,0) (2,0)

(2,1)

(1.33,2)(0,2)

Decision Space

Feasible region
Objective Direction

Figure 5.1: Decision space of a constraint problem with normal cones.

A P+O model predicts coefficients c1 and c2, We represent the output of our model in the objec-
tive space. Given certain features, the prediction of the model could look like the purple line in
Figure 5.2. We see that, depending on the parameter α, the model could end up in many different
cones, thus giving many different decisions.

Note that any line could depict a model, which means that the model cannot always reach all
cones, including the optimal cone.

5.1. Preliminaries 25

4 3 2 1 0 1 2 3 4
c1

4

3

2

1

0

1

2

3

4

c 2

(0, 0) (2, 0)

(2, 1)

(4
3 , 2)

(0, 2)

= 0

= 2

Objective Space
Model predictions

Figure 5.2: Objective space of a constraint problem with normal cones.

5.1.2. Simplex Algorithm
The simplex method is an algorithm for solving linear programming (LP) problems. It works by
moving from vertex to vertex, exploiting the convexity to make repeated improvements until the
optimum is reached.

• A Basic Feasible Solution (BFS) corresponds to a vertex. It is obtained by setting a set of
variables (the non-basic variables) to zero and solving for the remaining variables (the basic
variables). Each BFS is a candidate solution to the optimization problem.

• A pivot is the operation that moves the algorithm from one BFS to an adjacent one. To do
this one non-basic variable that can improve the objective is selected to enter the basis and
one basic variable is selected to leave. This changes the basis and shifts the solution to
another vertex of the feasible region.

By repeating pivots, the simplexmethod systematically improves the objective value until it reaches
the optimal BFS, defined by the fact that there are no more improving pivots.

5.2. Methodology 26

5.2. Methodology
Decision Guided Learning (DGL) approaches the learning problem starting from the decision side.
In this section, we first explain the general DGL procedure defined by its two phases. After which,
we look at each phase in detail and discuss the implementation.

5.2.1. DGL procedure
DGL is a regret local search algorithm. It does this by alternating between two phases: finding
adjacent improving decisions and aligning the model with those decisions. In Algorithm 1, we
recognize these two phases by the function names in lines 4 and 9. The first takes the current
decisions made and finds adjacent candidate ones that improve the true objective. Then, in the
second phase, the model is aligned with the candidate decisions, and if regret is improved, the
new model is accepted. This is repeated until all the problems have optimal decisions, or if none
of the candidate decisions improve regret.

Algorithm 1 Iterative Model-Decision Alignment
1: Initialize ML model with parameters ω
2: Compute initial set of current decisions X = {x1, . . . ,xn} for all samples
3: while true do
4: X′ ← AdjacentDecisionFinder(X)
5: if X′ = ∅ then
6: stop (optimum reached)
7: end if
8: for all x′ ∈X′ do
9: ω′ ← ModelDecisionAligner(ω,x′)

10: if Regret(ω′) ≤ Regret(ω) then
11: replace corresponding x with x′ in X
12: ω ← ω′

13: end if
14: end for
15: if No improvement found then
16: stop (Local optimum)
17: end if
18: end while

This procedure enumerates all the adjacent decisions that are improving on the single problem
level. This does not yet guarantee that it is also improving on the entire dataset level; hence, a
post-alignment regret check is needed. In addition, if the alignment fails, the regret check will also
ensure the failure is not accepted.

If the first phase can find all the adjacent decisions and the second phase is able to align with
all of them, the DGL procedure gives the guarantees of a local search and converges to a local
optimum.

5.2.2. Adjacent Decision Finder
This component takes the current decision to output an adjacent and improved decision. The chal-
lenges are in the adjacent and improving conditions. Adjacent means that in the regret landscape,
the new decision’s regret region is geometrically adjacent to the current regret region. To meet
these requirements, we use the simplex algorithm to find pivots as new decisions. The pivots are
always adjacent, because only one variable is swapped, and improving by definition.

Simplex requires the problems to be in LP form, making a relaxation of the problem necessary in
most cases. However, past research from Mandi et al. showed that only solving the relaxation is
often sufficient [14]. They found that SPO+ does not fall far behind in solving only the relaxations

5.3. Experiments and Results 27

compared to the full problems. Thus, we expect the negative effect on the performance to be
small.

Implementation details: To initialize simplex, we need to get the BFS of the current decision. To
find this, we take the predicted costs of the current model and set them as the objective for the
problem. Optimizing this problem with simplex will give the BFS for the decision that the current
model would produce. With the current BFS, we can initialize the problem with the true costs.
For bigger problems, there can be many improving pivots, enumerating all of them can be too
time-consuming. Instead, we use k as a hyperparameter that determines how many pivots are
returned. We also do not sort the pivots in any way; k random, improving pivots are returned.

5.2.3. Model-Decision Aligner
In section 5.1, we showed that a decision can be translated to a cone in objective space. CaVE
trains the model to move into the cone of the true objective [18]. We use the same method, but
expand it to move into any cone instead of just the optimal one. The model can be moved towards
a cone by minimizing the angle between the predicted objective and the target cone [18]. First,
cpred is projected onto the cone. We calculate the cosine similarity between the projection and
cpred and use it as a loss.

When we train on many dataset samples at the same time, each one functions as its own problem
and has a separate cone. The pivot is found for one problem while all the others remain the same.
They are combined by minimizing the average angle of each problem’s objective and cone.

5.3. Experiments and Results
To test our implementation of DGL we perform two experiments. First, we test the locality of DGL
following the same steps as 4.2. Second, we test the viability on larger datasets and machine
learning models to find the limits of DGL. In the experiments, we first let CaVE optimize a machine
learning model, which DGL uses as a starting point. We then measure the improvement of DGL
over the original model found by CaVE.

5.3.1. Experimental setup
Since DGL is using a large part of CaVE’s methodology, we compare it with CaVE to see how
much the regret local search component can add to just training towards the optimal solution with
this method.

DGL is tested by letting CaVE optimize a model and then seeing how much further DGL can
improve it. First, we perform gradient descent with CaVE and save the final model achieved with
this. Then this model is used as a starting point for DGL to do local search on.

Locality For the locality experiment, we follow the same methodology as in section 4.2. We do
a smaller experiment only on knapsack problems. The data is generated like in subsection 4.2.2,
varying the number of items from 10 to 40 in steps of 5.

To show results, measures of locality and depth are used as defined in section 4.2.

Since we work with single problems, we are able to fully explore all the adjacent decisions without
it costing too much computation time. Therefore for the locality experiment we set the maximum
number of pivots to consider k to∞.

Regret The locality experiments can only cover limited ground due to the restrictions of single-
parameter models. That is why we also perform regret measurements, done over varying model
sizes and dataset sizes.

We perform this experiment on two different problems: knapsack according to PyEPO [19] and
capacitated vehicle routing problem (CVRP) like in [18]. We use the following problem parameters:

5.3. Experiments and Results 28

Knapsack with both 20 items and a capacity of 20. CVRP with 10 nodes and 5 vehicles each with
a capacity of 30.

We use a simple linear model that scales in size based on the input size and output size. The
outputs are kept constant, so we vary the input, i.e. number of features. They are varied from 2-
20, meaning that the number of model parameters is scaled from 40-400 for knapsack and 20-200
for CVRP. The dataset sizes are varied from 20-80.

Each combination of number of features and dataset size gets 20 different seeds, of which the
results are averaged.

When the number of data samples increases, all the computations become slower while the num-
ber of available pivots becomes much larger. Together, this can make for a very long run time of
hours for a single result. To keep the amount of computation given to DGL fair, we set a time limit
of 5 minutes. To make sure it does not spend all this time looking for pivots on only a small subset
of the data samples, we set k, the max number of decisions returned by the adjacent decision
finder, to 10.

The results are shown in two measurements: First relative regret [6], as shown in Equation 5.5.

Relative Regret(x̂, c) =
c⊤x̂− c⊤x∗

c⊤x∗ . (5.5)

Relative regret equals 0when the prediction is optimal, a value of 0.2means the cost is 20% higher
than optimal, and a value of 1 means the prediction is twice as costly as the optimal decision.

The second is relative improvement as shown in Equation 5.6:

Improvement Ratio =
RegretCaVE

RegretCaVE+DGL
. (5.6)

An improvement ratio of 1 means both methods perform equally, a value of 2 means CaVE+DGL
achieves half the regret of CaVE, values below 1 mean regret became worse. We aggregate the
improvement ratios using the geometric mean.

5.3.2. Locality experiment
DGL is designed to improve locality, so in this section, we show that this is the case.

In Figure 5.3 we observe the results of the experiment. On the left, the locality of CaVE after a
gradient descent procedure. On the right, the locality of those same models after being further
optimized by DGL. In between, the flow from CaVE to DGL locality is shown.

First, we observe that the share of global locality has increased drastically while random has gone
from almost 66% to 30%. The flow in between shows how these changes came to be. Over half
of the random localities are cut down. We see that the majority moves into global, with a small
part moving to local. DGL can drastically improve locality, making non-locally optimal solutions a
minority.

Second, we see that the flow from local is also very interesting. We see that the majority remains
in the local optimum, as you would expect from a local search algorithm. However, we also see
a decent amount move into global and (better regret) random segments. This shows that while
simplex pivots provide a decent approximation of the local regret structure, they can also extend
outside of the directly adjacent segments. The opposite is also true, for some random points, no
better solutions are found, even though in the regret landscape, they are adjacent. This can be
caused by either the aligner not getting to the decision or the decision finder not considering it,
due to, for example, the relaxation of the problem or having many degenerate solutions.

Figure 5.4 shows the distribution of depth for local and random solutions. This shows that even
when DGL does not find the global, the average solution quality is still brought up a lot.

5.3. Experiments and Results 29

random

local

global

random

local

global

0

500

1000

CaVE CaVE+DGL

C
ou

nt

CaVE Locality global local random

Figure 5.3: Change in distribution of locality from CaVE to CaVE+DGL.

0.00

0.25

0.50

0.75

1.00

CaVE CaVE+DGL

D
ep

th
 to

 G
lo

ba
l O

pt
im

um

Figure 5.4: Distribution of Depth of CaVE vs CaVE+DGL for all local and random points.

5.3. Experiments and Results 30

30

40

50

60

70

100 200 300 400
Number of Model Parameters

N
um

be
r

of
 D

at
a

P
oi

nt
s Relative

Improvement

1.0

1.1

1.2

1.3

1.4

1.5

Figure 5.5: Relative training regret improvement of DGL over CaVE calculated on the Knapsack problem. The color
determines the degree of improvement, while the axes show results for different number of data points and model

parameters.

5.3.3. Regret experiments
There are two dimensions in which the problems are scaled up in the previously mentioned ex-
periment settings, the number of samples (i.e. the size of the dataset) and model size. From the
locality experiment we know that DGL works when both these factors are one. So we perform a
grid search among which we scale up both of these parameters to find what the limiting factor is
for DGL.

Knapsack Problem
In Figure 5.5, the relative improvement DGL finds over cave is shown for train regret. A very clear
pattern can be observed where, as the model size increases, the relative improvement decreases.
We can also see a slight trend that when data increases, the improvements get a little bit less, but
this is very weak in comparison. The first pattern has two factors that explain it. First, the Curse of
dimensionality; aligning and finding better solutions becomes more difficult as the dimensionality
of the model increases. Secondly, when the model size increases, CaVE can find better models
by itself, which leaves less room for DGL to find improvements. The latter is shown by CaVE
training regret in Figure 5.6, where we see that the worst regret areas largely correspond with the
biggest improvements.

The effect that when the solution is already good, there is less room for improvement seems really
intuitive and obvious, but it can also be explained by one of the limitations of this implementation
of DGL. When the regret becomes small, it often also means that the model has learned a pattern
that spans all data samples. In this case DGL still tries to improve it by looking at one data sample
at a time, finding pivots for it that would improve that problem, but then breaking the larger pattern
that was discovered by the model.

Figure 5.7 shows the improvement in test regret of DGL. This once again highlights the improve-
ments for smaller models. It seems that 100 model parameters is a threshold where DGL starts
to have a smaller impact. But below that, DGL consistently improves regret with margins between

5.3. Experiments and Results 31

30

40

50

60

70

100 200 300 400
Number of Model Parameters

N
um

be
r

of
 D

at
a

P
oi

nt
s

Regret

(0.14, 0.16]

(0.16, 0.18]

(0.18, 0.20]

(0.20, 0.22]

(0.22, 0.24]

(0.24, 0.26]

(0.26, 0.28]

(0.28, 0.30]

(0.30, 0.32]

Figure 5.6: The training regret of the model trained using CaVE for the Knapsack problem . The color determines the
regret value, while the axes differentiate between the number of data points and model parameters.

30

40

50

60

70

100 200 300 400
Number of Model Parameters

N
um

be
r

of
 D

at
a

P
oi

nt
s Relative

Improvement

0.5

1.0

1.5

Figure 5.7: Relative regret improvement of DGL over CaVE calculated on the Knapsack test set. The color determines
the degree of improvement, while the axes show results for different number of data points and model parameters.

5.3. Experiments and Results 32

30

40

50

60

70

80

50 100 150 200
Number of Model Parameters

N
um

be
r

of
 D

at
a

P
oi

nt
s Relative

Improvement

1.00

1.05

1.10

1.15

1.20

Figure 5.8: Relative regret improvement of DGL over CaVE calculated on the CVRP train set. The color determines the
degree of improvement, while the axes show results for different number of data points and model parameters.

20-40%.

The number of data points seems largely inconsequential, though at very small numbers, DGL
finds less strong improvements. So once we have 30-40 data points, the strong improvement for
smaller models is stable.

We can also observe that DGL does not increase overfitting, which could have been expected.
On average, there are slight improvements everywhere.

Capacitated Vehicle Routing Problem
CVRP is what authors of CaVE used to showcase its strengths [18]. On this problem, we know
that CaVE already performs really well, so we see if DGL is still able to provide value.

In Figure 5.8 we observe the train improvement. Relatively large improvements are found for
smaller models, while for larger models, especially with many data points, almost no improve-
ments are found. The drop off is a lot faster for CVRP, but this pattern is consistent with the
knapsack problem. The best improvements are found for smaller models.

The improvement for test regret however, looks very different. In Figure 5.9 we see a large blue
area where the solutions become worse, a lot of white, and a red area for larger models. Although
this seems very contradictory to the findings for knapsack, we can explain this in a consistent way.
For it, we need to look at the CaVE test regret in Figure 5.10. Interestingly, we see that the test
regret is relatively low in the exact area where DGL finds improvements. Same as for the knapsack
problem, DGL picks up the slack where CaVE performs the worst. But since this improvement
is found for larger models, only small improvements can be found indicated by the light color in
Figure 5.9. Similarly, we see some slight improvements for smaller models, but because such
good test regret is already found in those areas, there is not much to improve for DGL.

The large blue area shows that when a model already does really well on a problem, DGL can
also cause overfitting. Although the decrease is small, it shows that using DGL carelessly can

5.3. Experiments and Results 33

30

40

50

60

70

80

50 100 150 200
Number of Model Parameters

N
um

be
r

of
 D

at
a

P
oi

nt
s Relative

Improvement

0.5

1.0

1.5

Figure 5.9: Relative regret improvement of DGL over CaVE calculated on the CVRP test set. The color determines the
degree of improvement, while the axes show results for different number of data points and model parameters.

30

40

50

60

70

80

50 100 150 200
Number of Model Parameters

N
um

be
r

of
 D

at
a

P
oi

nt
s

Regret

(0.05, 0.10]

(0.10, 0.15]

(0.15, 0.20]

(0.20, 0.25]

(0.25, 0.30]

(0.30, 0.35]

(0.35, 0.40]

Figure 5.10: The regret of the model trained using CaVE for the CVRP test set. The color determines the regret value,
while the axes differentiate between the number of data points and model parameters.

5.4. Summary 34

also be harmful.

5.4. Summary
In short, to improve local regret, DGL combines both gradient-based and gradient-free techniques
in a novel way. By identifying adjacent points on the feasible polytope, we discover directions to
improve regret where gradients fail to do so. Then, using gradients, we build a bridge between
the current and adjacent points using normal cones for the model to follow. This two-step process
makes learning from regret a possibility.

We tested DGL on locality and found significant improvements. Random localities are cut down,
letting global segments have the majority and improving average solution quality drastically.

We also tested DGL in a normal regret setting, but with a varying dataset and model size. Here,
we found that DGL mainly finds good improvements for smaller models. It is limited by two fac-
tors: The model size and the current solution quality. When model sizes get big, the curse of
dimensionality makes it increasingly hard to explore the space. When the solution quality gets
good, there is not much room for DGL to find significant improvements in the local regret space.

6
Conclusion

In this work, we question to what extent the gradient-based P+Omethods that are approximations
and surrogates of regret manage to approach true regret, and how we can improve them.

By comparing P+O loss landscapes with the true regret landscape, we are able to see if they
define the same objectives in their local landscapes. We found that P+O losses define stationary
points in regret locally optimal places around 50% of the time. In the other half of the instances,
they would lead their learning models towards non-locally optimal points in the regret landscape.

In these unoptimized points, we were not able to find a pattern that links them to the regret land-
scape. Instead, it seems the objective is linked to something else, causing it to misalign with
regret. In general, we found that P+O losses can align with the global optimum but inconsistently
and show no awareness of the finer details of the regret landscape. From this, we conclude that
the P+O losses we tested follow the local structure of regret only globally and inconsistently.

To improve the locality of P+O losses, we develop a regret local search algorithm: DecisionGuided
Learning (DGL). It searches the regret landscape from the decision side, reducing the local search
space to a manageable size.

We performed the same experiment now with DGL and found a drastic increase in the ability to
align with regret local optima.

To compare with the true regret, we have to use a heavily simplified setting, so we also tested
DGL on more classical regret settings. We found that DGL is mainly able to find improvements for
smaller models, and when it cannot find very good results for itself. Once the models get bigger
and/or the initial regret score is already better, the improvement DGL can bring diminishes.

To conclude, we found that P+O loss functions do not align with regret very well. We developed a
method to improve this, and it was able to provide good improvements for smaller learning models,
while it struggled for larger models.

Future Work Here is a list of some things we are interested in but were not able to dive deeper
into:

1. Having to calculate the true regret landscape poses restrictions on the model. We used
a simple one-parameter model, and that way, we were able to adapt an existing method
to perform this task. Calculating a higher-dimensional regret landscape is possible, but
a new method has to be developed for this task. Seeing how these results generalize to
higher-dimensional models would give great insight into how this research connects to more
commonly used larger models.

35

36

2. In chapter 4 we found that combining loss functions has great potential to improve regret.
Looking more in-depth at how much potential this brings and researching how to practically
combine loss functions looks like a promising research direction.

3. In chapter 5 we found that when the model is already well optimized the local search has a
diminished effect. We hypothesized that this was because looking to improve one problem
at a time breaks larger patterns and thus worsens overall regret over the dataset. If we can
expand DGL to be able to look for moves in larger neighborhoods, it might be able to find
good improvements, even for already well-optimized models.

References

[1] Brandon Amos and J. Zico Kolter. “OptNet: Differentiable Optimization as a Layer in Neural
Networks”. In: Proceedings of the 34th International Conference onMachine Learning. June
2017, pp. 136–145. url: https://proceedings.mlr.press/v70/amos17a.html.

[2] Quentin Berthet et al. Learning with Differentiable Perturbed Optimizers. June 9, 2020. doi:
10.48550/arXiv.2002.08676.

[3] Lieven Boyd. Stephen and Vandenberghe, Convex optimization theory. Cambridge univer-
sity press, 2004. isbn: 978-0521833783.

[4] Emir Demirović et al. “Dynamic Programming for Predict+Optimise”. In: Proceedings of the
AAAI Conference on Artificial Intelligence 34 (Apr. 3, 2020), pp. 1444–1451. doi: 10.1609/
aaai.v34i02.5502.

[5] Justin Domke. “Implicit Differentiation by Perturbation”. In: Advances in Neural Information
Processing Systems. Ed. by J. Lafferty et al. Vol. 23. Curran Associates, Inc., 2010.

[6] Adam N. Elmachtoub and Paul Grigas. Smart ”Predict, then Optimize”. Nov. 19, 2020. doi:
10.48550/arXiv.1710.08005.

[7] Aaron Ferber et al. MIPaaL: Mixed Integer Program as a Layer. July 17, 2019. doi: 10.
48550/arXiv.1907.05912.

[8] Stephen Gould et al. On Differentiating Parameterized Argmin and Argmax Problems with
Application to Bi-level Optimization. July 20, 2016. doi: 10.48550/arXiv.1607.05447.

[9] Ali Ugur Guler et al. “A Divide and Conquer Algorithm for Predict+Optimize with Non-convex
Problems”. In: Proceedings of the AAAI Conference on Artificial Intelligence 36.4 (June
2022), pp. 3749–3757. doi: 10.1609/aaai.v36i4.20289.

[10] Michael U Gutmann and Aapo Hyvärinen. “Noise-contrastive estimation of unnormalized
statistical models, with applications to natural image statistics.” In: Journal of machine learn-
ing research 13.2 (2012). issn: 1532-4435.

[11] Jayanta Mandi and Tias Guns. “Interior Point Solving for LP-based prediction+optimisation”.
In: Advances in Neural Information Processing Systems. Vol. 33. Curran Associates, Inc.,
2020, pp. 7272–7282. doi: 10.48550/arXiv.2010.13943.

[12] Jayanta Mandi et al. Decision-Focused Learning: Foundations, State of the Art, Benchmark
and Future Opportunities. Aug. 16, 2023. doi: 10.48550/arXiv.2307.13565.

[13] Jayanta Mandi et al. Decision-Focused Learning: Through the Lens of Learning to Rank.
2022. arXiv: 2112.03609 [cs.LG]. url: https://arxiv.org/abs/2112.03609.

[14] JayantaMandi et al. “Smart Predict-and-Optimize for Hard Combinatorial Optimization Prob-
lems”. In: Proceedings of the AAAI Conference on Artificial Intelligence 34.02 (Apr. 2020),
pp. 1603–1610. doi: 10.1609/aaai.v34i02.5521.

[15] Andriy Mnih and Koray Kavukcuoglu. “Learning word embeddings efficiently with noise-
contrastive estimation”. In: Proceedings of the 27th International Conference on Neural
Information Processing Systems - Volume 2. NIPS’13. Lake Tahoe, Nevada: Curran As-
sociates Inc., 2013, pp. 2265–2273.

[16] MaximeMulamba et al. “Contrastive Losses and Solution Caching for Predict-and-Optimize”.
In: Proceedings of the Thirtieth International Joint Conference on Artificial Intelligence. Aug.
2021, pp. 2833–2840. isbn: 978-0-9992411-9-6. doi: 10.24963/ijcai.2021/390.

37

https://proceedings.mlr.press/v70/amos17a.html
https://doi.org/10.48550/arXiv.2002.08676
https://doi.org/10.1609/aaai.v34i02.5502
https://doi.org/10.1609/aaai.v34i02.5502
https://doi.org/10.48550/arXiv.1710.08005
https://doi.org/10.48550/arXiv.1907.05912
https://doi.org/10.48550/arXiv.1907.05912
https://doi.org/10.48550/arXiv.1607.05447
https://doi.org/10.1609/aaai.v36i4.20289
https://doi.org/10.48550/arXiv.2010.13943
https://doi.org/10.48550/arXiv.2307.13565
https://arxiv.org/abs/2112.03609
https://arxiv.org/abs/2112.03609
https://doi.org/10.1609/aaai.v34i02.5521
https://doi.org/10.24963/ijcai.2021/390

References 38

[17] George Papandreou and Alan L. Yuille. “Perturb-and-MAP random fields: Using discrete
optimization to learn and sample from energy models”. In: 2011 International Conference
on Computer Vision. 2011, pp. 193–200. doi: 10.1109/ICCV.2011.6126242.

[18] Bo Tang and Elias B. Khalil.CaVE: A Cone-Aligned Approach for Fast Predict-then-optimize
with Binary Linear Programs. Mar. 15, 2024. doi: 10.48550/arXiv.2312.07718.

[19] Bo Tang and Elias B. Khalil. PyEPO: A PyTorch-based End-to-End Predict-then-Optimize
Library for Linear and Integer Programming. 2023. arXiv: 2206.14234 [math.OC].

[20] Robert J Vanderbei. “Linear programming”. In: Encyclopedia of Applied and Computational
Mathematics. Springer, 2015, pp. 796–800. isbn: 978-3-540-70528-4.

[21] Marin Vlastelica et al. Differentiation of Blackbox Combinatorial Solvers. Feb. 16, 2020. doi:
10.48550/arXiv.1912.02175.

[22] BryanWilder, Bistra Dilkina, andMilind Tambe.Melding theData-Decisions Pipeline: Decision-
Focused Learning for Combinatorial Optimization. Nov. 20, 2018. doi: 10.48550/arXiv.
1809.05504.

[23] Günter M Ziegler. Lectures on polytopes. Vol. 152. Springer Science & Business Media,
2012.

https://doi.org/10.1109/ICCV.2011.6126242
https://doi.org/10.48550/arXiv.2312.07718
https://arxiv.org/abs/2206.14234
https://doi.org/10.48550/arXiv.1912.02175
https://doi.org/10.48550/arXiv.1809.05504
https://doi.org/10.48550/arXiv.1809.05504

A
Plots

0
100
200
300
400
500

-10 -5 0 5 10

co
un

t

Knapsack

0
50

100

-10 -5 0 5 10

co
un

t

Shortest Path

0
50

100

-10 -5 0 5 10
QPTL Dist. to global - Dist. to closest local

co
un

t

TSP

Figure A.1: QPTL distribution of the difference between the distance to the global optimum and the distance to the
closest non-global local optimum.

39

40

0
200
400
600

-10 -5 0 5 10

co
un

t

Knapsack

0
50

100
150

-10 -5 0 5 10

co
un

t

Shortest Path

0
100
200
300
400
500

-10 -5 0 5 10
PFYL Dist. to global - Dist. to closest local

co
un

t

TSP

Figure A.2: PFYL distribution of the difference between the distance to the global optimum and the distance to the
closest non-global local optimum.

0
200
400
600
800

-10 -5 0 5 10

co
un

t

Knapsack

0
100
200
300

-10 -5 0 5 10

co
un

t

Shortest Path

0
200
400

-10 -5 0 5 10
CaVE Dist. to global - Dist. to closest local

co
un

t

TSP

Figure A.3: CaVE distribution of the difference between the distance to the global optimum and the distance to the
closest non-global local optimum.

	Preface
	Abstract
	Introduction
	Preliminaries
	Definitions
	What makes P+O hard
	Regret landscapes

	Related Work
	Analytical differentiation and smoothing
	Smoothing by random perturbations
	Differentiating surrogate loss functions

	Local Structure of P+O Losses
	Motivation
	Methodology
	Locality experiment
	Data generation
	P+O losses

	Results
	Locality
	Random Locality
	Local vs Random
	Multiple local optima
	Impact of problem size on locality
	Combined locality

	Summary

	Decision Guided Learning
	Preliminaries
	Polyhedral Geometry in P+O
	Simplex Algorithm

	Methodology
	DGL procedure
	Adjacent Decision Finder
	Model-Decision Aligner

	Experiments and Results
	Experimental setup
	Locality experiment
	Regret experiments

	Summary

	Conclusion
	References
	Plots

