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Abstract

Batteries play a crucial role in powering contemporary devices and systems, ranging from smartphones
and electric vehicles to renewable energy storage. With the increasing demand for more efficient and
reliable battery technologies, the need for accurate monitoring and assessment of battery condition
and performance has also grown. Online estimators, that continuously analyse battery conditions in
real-time, have emerged as valuable tools to meet these goals. This thesis focuses on constructing
model-based online state estimators for real-time estimation of a battery’s State of Health (SOH).

These estimators, necessitate a state space model for a lithium-ion cell. In the initial part of the
thesis, a physics-based reduced-order model (ROM) of a lithium-ion cell is developed. This model
accounts for major aging mechanisms such as Solid Electrolyte Interphase (SEI) layer formation, Loss
of Active Material (LAM), and Lithium Plating (LIP). To incorporate temperature effects on cell parame-
ters, a simplified lumped thermal model is integrated into the battery model. The model is subsequently
transformed into a state space model using the Discrete Realization Algorithm (DRA) process.

Building upon the noisy outputs from the ROM models, a set of five estimators is formulated: State
of Charge (SOC), Voltage, SEI loss, LAM loss, and LIP loss estimators. These estimators are con-
structed based on Kalman filters and collectively contribute to real-time prediction of a battery’s SOH.
Given their reliance on the model, the ROM model’s output is employed as a reference to gauge the
precision of the estimators.

To address the real life scenarios and to check the robustness of the estimators, a series of sub-
questions were analysed:

Sub question1: How to estimate the SOH of a cell in real-time using adaptive control techniques ?

Sub question2: How fast can the estimator react to changing initial states of the cell?

Sub question3: Can the estimators be adapted to concurrently estimate both the states and the time
varying cell parameters in case of an old cell? How fast can this be achieved in real-time ?

Overall, this research contributes to the development of model-based online estimators, which are
poised to have a significant impact on enhancing battery performance, prolonging lifespan, and facili-
tating the transition towards a more sustainable energy future.
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1
Introduction

Today, the world faces energy challenges on two frontiers: shifting electricity production from burning
fossil fuel to sustainable energy sources and using EVs instead of cars driven by ICEs. EVs are well
recognized in the automobile industry due to their improved performance and efficiency as well as their
contribution to address environmental issues of greenhouse gas emissions and global warming [1].The
performance of EV is defined by its reliability, safety, driving range, power management system[2].

Due to their high power density (≈1200 W/kg) and energy density (≈200 Wh/kg),high energy effi-
ciency (>95%), and relatively long cycle life measured in thousands of cycles, Li-ion batteries are the
accepted solution for electronics, transportation, and grid storage [3]. With the rapid development of
industrial technology and the continuous improvement of the degree of product integration and intel-
ligence, the application scenarios of lithium-ion batteries tend to be complicated [4]. The bottleneck
usually lies with lower costs and higher energy densities over a long lifetime [4].The predictive mainte-
nance of lithium batteries can effectively reduce maintenance costs, shorten failure times, and improve
system reliability. Predictive maintenance is strongly based on the SOH of the battery; therefore, accu-
rate life prediction is the key to effective predictive maintenance.

Currently, the life prediction of lithium-ion batteries is based on prior knowledge of historical battery
usage data. This historical data is used as input parameters in the mathematical models which work in
offline mode to predict the battery behaviour. These models are usually not very flexible to changing
external dynamics. With the development of sensor technology and data analysis methods, the con-
cept of the online estimators provides inspiration and technical ways to solve the above problems[5].

This thesis discusses the development of a multi physics based model of Lithium Ion batteries
developed in Matlab software for online State of health estimation. An online estimator uses real life
data and virtual model simulation technology to explore and predict the operating state of physical
space, which provides the important theoretical basis and technical support for the connection and
real-time interaction between virtual and physical space [6].

1



1.1. Motivation and research gap 2

1.1. Motivation and research gap
Since the early 90’s, academia and industry have done extensive research on the different aging mech-
anisms and came up with 4 methods for modeling LIB degradation behavior

• Machine learning models (MLMs)
• Empirical and semi-empirical models (EMs)
• Physics based models (PBMs)
• Equivalent circuit models (ECMs)

In depth overview of each model is discussed in Chapter 2. Each of these modelling techniques have a
potential to predict the aging behaviour of a LIBs with a varying degree of accuracy. Despite the devel-
opment of these individual models, there have been very few attempts to a combine these modelling
techniques.
In literature the state-of-the-art methods in battery-management algorithms use equivalent-circuit cell
models as a basis. These algorithms can work very well and are representative of the methods used in
practically every fielded BMS at this point. However, majority of the ECM models and EM models are
static in nature and cannot detect how the stoichiometric operating windows have shifted in each elec-
trode.This is valuable input to power-limit calculation, because voltages and internal electrochemical
potentials that an aged cell can withstand are often different from those of a new cell [7]. SOH esti-
mation using physics-based models is valuable for detecting stoichiometric operating windows in cells,
enabling valuable input for power-limit calculations. There have been attempts to use physics based
electro-thermal models along with degradation mechanisms to optimise the charging strategies [8] [9]
[10] or models based on online state estimations using only the physics based performance model [11]
[6]. There still lacks an electro-thermal-aging model based online SOH estimator that can adapt to
different parameter states based on the condition of the battery in literature. This thesis attempts to
develop an algorithm that can accomplish this goal.

1.1.1. Research objectives and questions
The aim of this research is to develop algorithms for online state of health estimation using a multi-
physics reduced order models, that takes into account major degradation mechanisms and a lumped
thermal model.

The research sub questions are:

1. How to estimate the SOH of a cell in real-time using adaptive control techniques ?
2. How fast can the estimator react to changing initial states of the cell?
3. Can the estimators be adapted to concurrently estimate both the states and the time varying cell

parameters in case of an old cell? How fast can this be achieved in real-time ?

1.2. Report Overview
This report is structured as follows:

• Chapter 2 : Provides a review of literature about the different battery modeling techniques. Later
it discusses the dynamics behind the main three-electrochemical models and makes comparative
analysis of the models.Finally it ends with the classification of different aging mechanisms and
review of models available in literature.

• Chapter 3 : This Chapter discuses the process to model a reduce order model with aging mech-
anisms and a lumped thermal model. A validation of the reduced order model is also discussed.
This chapter forms the base to model different online state estimators.

• Chapter 4 : discusses the algorithms to build real time online-state estimators and discusses the
flow of the thesis.

• Chapter 5 : discusses the speed of the estimators to adapt to various initial conditions.
• Chapter 6 : Concludes the findings and presents limitations and future work.



2
Literature Review

The objective of this chapter is to present a comprehensive literature review on Battery Modeling .
Firstly, in section 2.1 a background on how Li-ion batteries function and an overview of various Lithium
Ion chemistries are covered.Followed by the current trends of EV batteries and the need for battery
modelling are discussed in Section 2.2. Finally, battery modelling methodologies and a review of them
is provided in Section 2.3.

2.1. Operation of a Lithium Ion cell
A battery pack contains one or many identical cells. Each cell stores electric power as chemical energy.
LIBs consist of a positive and negative electrode, an electrolyte, and a separator. The electrodes lay
in the electrolyte, a chemical liquid that allows the flow of the Li-ions, but not of the electrons. The
separator is a porous plastic that separates the two electrodes to prevent them from short-circuiting.

During discharge, the electrode that releases the positively charged Li-ions is called the anode, and the
electrode that absorbs Li-ions is the cathode. Figure 2.1 shows how the Li-ions that intercalate through
the electrolyte and the separator towards the cathode, create a flow of negatively charged electrons
from the anode through an external circuit and towards the cathode, to neutralize the charge at the
receiving electrode.

Figure 2.1: Working of Lithium Ion battery [12]

From the battery point of view, during the discharge cycle anode is the graphite electrode and
cathode is the transition metal electrode. Therefore the main, reaction is:

LixN ⇌ xLi+ + xe− +N (2.1)

where N is the active negative electrode material and x represents Li amount in the negative electrode
[13]. Similarly, the main reaction at the positive electrode is

yLi+ + ye− + P ⇌ LiyP (2.2)

3
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where P is the active positive electrode material and y represents Li amount in the positive electrode.
The flow of electrons created by the flow of Li-ions creates an opposite flow of electrical current, which
can power an electric device or vehicle. During charging, the flow reverses.

2.2. Current Trend of EV Batteries
Over the years,variety of rechargeable battery chemistries have been used to power EVs, with the
three main types being PbAc,NiMH and LIB. LIBs have taken the stage in EV applications due to their ,
high volumetric energy density, high specific power, and low self-discharge rate. Figure 2.2 shows the
comparisons of different batteries based on their volumetric energy density (Wh

l ) and power density
(Wh
Kg ). It can be seen that lead acid batteries have the lowest energy and power density, while Solid
State Batteries (SSBs) have the highest power and energy yield. SSBs use a Solid State Electrolyte
(SSE) and a lithium metal anode instead of a liquid electrolyte and a carbon anode that LIBs use, which
could result in a 20% energy density improvement. However, technical challenges with SSEs, coupled
with the decreasing cost of liquid electrolytes, lead researchers to conclude that LIBs will likely remain
the favored technology in the foreseeable future.

Figure 2.2: Ragone plot of several of the battery technologies used in EVs [14]

2.2.1. Current Trend of Li-ion research
There has been extensive research in the field of Li-ion batteries. fig 2.3 shows the trend of Li-ion
battery research based on keyword search. The database consists of roughly 5000 research papers
complied in clusters based on the similar keywords used. The larger the cluster the greater amount
of research articles available on the subject. The keywords are colour coded based on the year of
publishing .
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Figure 2.3: Visualization of trend in Lithium Ion research in literature based on Keywords

It can be inferred from the survey that online state of health estimation using physics based models
is a very new topic, with lot of work of active research carried out in last 4 years.

2.2.2. Li-ion chemistries
Because of the chemistry of their electrodes, LIBs have different properties. Due to its availability,
affordability, extended cycle life, high specific energy (gravimetric energy density), and high specific
power (gravimetric power density), graphite is the most often utilised anode material for LIBs. The
most used options for cathodes are:

1. Lithium Iron Phosphate (LFP)
2. Lithium Cobalt Oxide (LCO)
3. Lithium Nickel Manganese Cobalt Oxide (NMC)
4. Lithium Nickel Aluminum Oxide (NCA).

Anode Options:

1. Graphite (Carbon based) : It is the most common anode material due to its stable cycling perfor-
mance and relatively low cost. However, its energy density is limited compared to some other
materials.
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2. Lithium Titanate (Li4Ti5O12) : This is the anode used in LTO batteries. The main advantage is
the faster charging times and high cycle life, but the overall energy density is low compared to
traditional graphite based batteries. The cost is also high and acts as amajor hurdle in commercial
use of LTO batteries [15].

3. Silicon (Si) : Silicon anodes have the potential for much higher energy density than graphite, but
they suffer from significant volume changes during charging and discharging, leading to perfor-
mance degradation over time.

The energy density or Volumetric density of a battery refers to the amount of energy stored in the
battery per unit volume usually measured in (Wh

l ). It is an essential factor in determining the overall
performance and range of various applications, including electric vehicles and portable electronics.
Power density or gravimetric density, on the other hand, measures how fast the battery can deliver
the energy, expressed in watts per kilogram (Wh

Kg ). The energy and power densities of each kind are
discussed below:

Table 2.1: Theoretical and Industrial energy densities for cathode materials [16][12]

Cathode Material Theoretical Energy Density (Wh/kg) Industrial Energy Density (Wh/kg)
Lithium Iron Phosphate ∼160 ∼90-120
Lithium Cobalt Oxide ∼200-220 ∼150-200
Lithium Nickel Manganese Cobalt Oxide (NMC) ∼200-230 ∼150-200
Lithium Nickel Cobalt Aluminum Oxide (NCA) ∼200-250 ∼170-200

Table 2.2: Theoretical and Industrial Energy Densities for Anode Materials [16]

Anode Material Theoretical Energy Density mAh
g Industrial Energy Density mAh

g

Graphite ∼372 ∼325
Silicon ∼4200 ∼2000 (improved with nanostructured silicon, etc.)

• LCO:
The primary benefit of the LCO battery is its high specific energy and low self-discharge rate [17].
The downsides of the LCO battery include its low thermal stability, which poses safety issues, its
restricted specific power, its relatively short lifespan, and its usage of contentious cobalt [17].

• LMO:
LMO batteries offer low internal resistance, good current handling, and safety compared to LCO
[18]. The downside is that they have short lifespans and average specific power, energy, and low
performance due to capacity fading [19]. However, their design flexibility allows for optimization
for high specific energy, or long lifespan. Blending LMO and NMC improves certain qualities,
such as high current boost during acceleration and extended driving range. OEMs often blend
these two chemistries for improved performance [18].

• LFP
The key advantages of the LFP battery are its safety due to its thermal stability, extended lifespan,
and lack of cobalt. Its performance is related to minimising the battery’s relatively rapid self-
discharge by employing expensive, high-quality cells or using control electronics. Its downsides
are its poor specific energy and average specific power [18].

• NMC:
The advantage of the NMC battery is that it can, similarly to LMO, be optimized to serve a certain
purpose. Nickel on itself provides high specific energy but poor stability, and manganese on itself
provides low internal resistance but low specific energy. By blending nickel and manganese,
the strengths of the two materials are enhanced which according to [20] makes NMC the most
successful Li-ion system. Cobalt increases its specific energy, thermal stability, lifespan, and
safety [20]. Blends of nickel,cobalt, and manganese in proportions of 1:1:1, 5:3:2, 8:1:1 have
proven to offer useful combinations of qualities while reducing the amount of cobalt in the battery
[21], [22].

• NCA:
The advantages of the NCA battery, in which aluminium is used to improve stability, are similar
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to that of NMC. NCA batteries provides a high specific energy, average specific power and long
lifespan [23]. Its disadvantages are its high cost and lack of safety.[20].

• LTO:
The LTO battery uses titanate for its anode instead of graphite, which all the aforementioned
battery chemistries use. The advantages of LTO are its safety due to its thermal stability, and its
long lifespan [17]. The disadvantage of LTO is its low specific energy and high cost.

A detailed comparison of key performance aspects is shown in figure 2.4. LFP, NMC and LTO batteries
will be discussed below. It can be observed that:

1. Cost: NMC batteries are the most costly form of Li-ion battery under consideration, whereas LTO
batteries are the least expensive.

2. Specific Energy: NMC batteries are shown they have the highest specific energy amongst LFP
and LTO batteries. This implies for a required size of the battery in kWh NMC batteries would
occupy the least amount of space. LFP and LTO batteries would occupy a similar amount of
space.

3. Specific Power: AmongNMC and LTO batteries, LFP batteries offer the highest potential specific
power. The particular power capacities of NMC and LTO are comparable.

4. Safety: LFP and LTO batteries are amongst the safest batteries in the industry.
5. Performance and Lifespan: Because of their unique anode material, LTO batteries last a long

time and charge rapidly, but LFP batteries feature a robust cathode material that makes them
safer and allows them to run at high temperatures without substantial deterioration.

Figure 2.4: Comparison of different Li-ion chemistry’s [20]

The demand for batteries is increasing by 32% annually, with China having the biggest demand [14]
as seen in fig. 2.4.
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Figure 2.5: Lithium Ion demand [14]

The same might be stated for contemporary LIB uses in Grid Storage applications, albeit Lithium Iron
Phosphate, LFP-based chemistry has had a large market share in this sort of application during the
previous decade. The industry, on the other hand, is devoted to creating cobalt-free cathodes. It is
worth noting that the cathode generally restricts cell capacity and hence LIB performance because it
has a lower capacity than the graphite anode and is the most costly material in a LIB, resulting in its
establishment as a critical LIB component and the topic of much study. [14].

2.2.3. Li-ion Battery aging
Before modelling physics , it is essential to understand aging in LIBs in detail . The causes of battery
degradation mechanisms, associated degradation modes, and the subsequent effects on the battery
are shown in the diagram in Figure 2.6
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Figure 2.6: Different battery degradation mechanisms [24][23] [25]

The degradation of LIBs occurs during both cycling and idle states, and is caused by physical stress
and chemical side reactions [23][26]. In addition, many factors influence battery degradation, such as
cell chemistry, cell design, pack design,and operating conditions. LIB aging is commonly categorized
into three different aging modes[27].

• Loss of Lithium Inventory (LLI) :It indicates the loss of active lithium ions, which are no longer ac-
cessible for active battery operation. LLI can be caused by parasitic side reactions such surface
film formation, decomposition processes, and lithium plating. LLI is linked to capacity fading [27].

• Loss of Active Material (LAM) : When a battery is charged and discharged, Li-ion is intercalated,
andmost electrodematerials expand before contracting on de intercalation.The alternating strains
in the electrodes caused by these volume expansion-contraction cycles result in fracture propa-
gation. This might result in structural degeneration of the anode or cathode material.LAM has the
potential to reduce both power and capacity [27].

• Conductivity Loss (CL) : This is a contact loss caused by electrical component degradation, such
as current collector corrosion and binder dissolution. [27].

Aging in a LIB occurs at anode and cathode. The electrolyte is not affected by the battery operation
in reference to aging effects.

Anode aging
The negative electrode active materials in most commercial lithium-ion battery cells are made of syn-
thetic or natural graphite.Graphite has a high lithium storage capacity, is affordable and nontoxic, and
can be charged and discharged repeatedly. Perhaps most importantly, lithiated graphite has a very
low voltage in comparison to a lithium-metal reference. Because cell voltage is equal to the positive-
electrode potential minus the negative-electrode potential, this is critical for maximising overall cell
voltage. SEI generation, Lithium plating, and mechanical stress are the key anode ageing processes.
fig 2.7 depicts a summary of anode ageing in LIBs.
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Figure 2.7: Summary of anode aging in LIB [28]

Cathode aging
The cathode is the lithium-containing part of a cell, and the limiting factor during charging as its maxi-
mum voltage determines the end of charge voltage.Common cathode chemistries are LCO, LFP, NMC,
LMO,and NCA. The main aging mechanisms of cathode materials include surface film formation, me-
chanical stress, and transition metal dissolution.Fig 2.8 shows the summary of cathode aging in LIBs

Figure 2.8: Summary of Cathode aging [28]

Various other degradation mechanisms exist, such as surface cracking,electrolyte drying, gas forma-
tion, current collector corrosion, etc.[26]. These mechanisms are not very common and contribute less
to the overall aging of the LIB. The table 2.6 provides an overview of the many degradation models
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available in the literature. The majority of studies have modelled SEI development as kinetically re-
stricted. When Li-ion is intercalated, the electrode materials expand and compress. These alternating
stresses caused by volume expansion and contraction cycles cause fracture formation and material
fatigue in the electrodes. When cracks emerge at the electrode’s surface, more cyclable lithium leaks
out, causing the SEI layer to grow on a greater surface area, [29]. A relationship is established between
surface concentrations and deintercalation stress. This is the most often used approach in the litera-
ture to mimic crack propagation and active material loss. Li-Plating is represented by disintegration
procedures that adhere to typical Butler-Volmer or Tafel kinetcs.
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2.3. Battery Modeling
Batteries are complex electrochemical systems governed by various electrical, thermal factors, and
deterioration. Utilizing a battery model to represent cell dynamics is crucial for analyzing battery-based
storage systems. These models enable prediction and optimization of system behavior under various
circumstances. Advancements in software and processing power have made modeling and simulation
tools more efficient and cost-effective. There are four different ways to model LIB performance and
deterioration.

Figure 2.9: Different Battery Modeling Methods [30]

2.3.1. Data Driven Models
Data DrivenModels feed an algorithm data for it to be able to use simple parameters like voltage,current
and temperature to predict ageing, or combine empirical modeling methods with regression models to
predict ageing.The advantage of these approaches is that, the models can be considered as a black
box to train the algorithms. Few other data driven techniques available in literature are based on model
parameters, such as ohmic resistance, polarization resistance, and polarization capacitance studied by
[31], [32], or combine empirical modeling techniques with regression models to predict the SoH used
by [33].
A multi layer neural network, known as an Radial Basis Function Neural Network (RBFNN), can use
the Gaussian function as the activation function in the hidden layer.These models are used to model
the nonlinear relationship of the battery [34]. Support Vector Machine (SVM) reaches an optimal solu-
tion more quickly than NN. The SVM is better suited to solve a problem with limited sample size when
structural risk reduction is substituted with experiential risk minimization. The SVM is used for simple
battery models, which does not include intricate non linearity. Terminal voltage is the product of the
two-level SVM structure, where current and SOC are the input vectors [35].
The advantages and disadvantages of Data driven Models are summarised below:
Advantage:

• Flexibility These models can adapt to various battery chemistries, designs, and operating con-
ditions without requiring a deep understanding of the underlying physics.

• Real-World Representation Data-driven models are based on empirical data, making them well-
suited for capturing real-world variations and uncertainties.

Challenges:
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• Data Quality The precision of data-driven models is strongly dependent on the quality, quantity,
and variety of accessible data..

• Interpretability Some complicated data-driven models may be difficult to interpret, making it
difficult to comprehend the logic behind their forecasts.

2.3.2. Empirical and semi-empirical models (EMs)
Semi-empirical and empirical models curve-fit the relationship of ageing stress components onto empir-
ical degradation data of a specific cell to develop simple mathematical expressions that might forecast
ageing. The distinction between the two is that semi-empirical models are physics-motivated, whereas
empirical degradation models do not incorporate physical and electrochemical ageing mechanisms, in-
stead relying solely on experimental data to forecast ageing.Because of their simplicity, EMs may be
used in a broad range of research, including system-level design challenges, optimisation models, and
battery management systems. Furthermore, the mathematical formulae provide an intuitive feel for the
influence of various stress conditions [27].

The downside of these models is that their flexibility in terms of operating circumstances is restricted
after they have been calibrated with particular data. The usage of the mathematical expressions is thus
limited to the operational circumstances used to build the ageing model.Furthermore, the mathematical
expressions specified in these models are frequently based on data acquired from accelerated ageing
studies and constrained test settings due to a lack of accessible equipment or time.In addition, EMs are
prone to oversimplifying the complicated behaviour of LIB ageing and the relationship between stress
factors.

2.3.3. Equivalent Circuit Models (ECMs)
The equivalent circuit model characterizes the operational characteristics of a circuit by using a circuit
component to form a specific network. It establishes the relationship between external characteristics
of a battery and its internal state. This model is intuitive, easy to process, and moderate in computation,
making it suitable for simulation experiments and practical engineering applications [36].
G.L Plett in his book Battery Management Systems, Volume 1 - Battery Modeling” [7]used a series of
elements including the combined, simple, zero-state hysteresis, one-state hysteresis, and a non-linear
enhanced self-correcting (ESC) model to adaptively estimate the battery’s SOC. To increase model
accuracy for dynamic load profiles, the latter model considered the impacts of current direction, the
SOCdependency of open-circuit-voltage (OCV) hysteresis, and the relaxation or charge-recovery effect
[37]. In an attempt to model the OCV hysteresis behaviour together with the charge recovery effects,
Roscher et al. [38] developed an empirical model whose parameters required offline identification,
Huria et al.[39] proposed a mathematical model to describe the dynamics of the large hysteresis levels
that exist amongst high-power lithium-ion cells.
Figure 2.6 shows the summary of major ECM models in literature . The Thevenin model is created by
adding an extra RC network to the Rint model, which better captures dynamic terminal voltage. The
PNGVmodel, produced by adding a capacitor Ccap, represents OCV fluctuation by discharging current
buildup. Increasing the number of RC networks helps to characterise terminal voltage in greater detail,
with the PNGV model typically outperforming the Rint and Thevenin models in terms of accuracy. One
extra RC network is included in the GNL model to account for the concentration polarisation effect.
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Figure 2.10: 1-RC model with Diffusion[30]

Equivalent circuit aging models
The bulk of ECM models do not account for the battery’s internal states during operation, such as Li-
ion concentration, overpotential, and deterioration. However, attempts have been made to include the
dynamics of the battery into ECM models. In [40], for example, a 1-RC model with diffusion resistance
illustrated in fig. 2.11 diffusion has been constructed to replicate the battery’s diffusion phenomena in
the low-frequency region. The time-varying diffusion resistance is calculated using a large quantity of
experimental data.

Figure 2.11: 1-RC model with Diffusion[40]

The article [41] proposes a method for measuring SOC and SOP simultaneously using a 1-RC model
that accounts for self-discharge. This technique employs a time-based model, as shown in fig. 2.12
discharge, that contains a capacity, self-discharge resistance, and regulated current source in parallel.
This model attempts to predict the long-term impacts of battery cycling and calendar ageing on available
battery capacity.
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Figure 2.12: 1-RC model with self discharge[41]

The DP model, depicted in Figure 2.13, is a commonly used ECM for estimating SOH. It utilizes two
RC networks with distinct time constants to describe the charge transfer process, double-layer effect,
and diffusion phenomenon, resulting in better model accuracy than the 1-RC model, particularly at
extreme SOC regions. In [42] and [43], a DP model is combined with a two-state thermal model to
simulate battery electrical and thermal dynamics, which allows for real-time reflection of the thermal
effect on model parameters and improves SOP estimation accuracy at varying temperatures. The
authors assess the performance of the DP model with adaptive model parameters in SOC estimation,
which yields a SOC error of less than 2% over the entire battery operating range, compared to 3% for
the basic 1-RC model.

Figure 2.13: Dual Polarisation models[42] [43]

In [44], they suggest an enhanced fractional order model that uses two consecutive resistor-constant
phase element networks to accurately reproduce the internal dynamics of a battery across a wide range
of frequencies, as depicted in Figure 2.14. While this model’s increased complexity improves accuracy,
it is also costly to solve for peak discharge and charge current in real-time. To make the model more
practical for real-world applications, they only consider the initial state within a memory horizon to affect
the battery’s electrical behavior at the end of a prediction window and ignore the other states in between.
However, this approach may negatively impact the model’s accuracy.

Figure 2.14: 2-RC fractional model with warburg element[44] [43]

Figure 2.15 depicts a full representation of an Equivalent Circuit Network that directly tracks the evolu-
tion of species within a cell [45]. This model incorporates complex electrochemical phenomena such as
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changeable double layer capacitance, a full current-over potential relation, and over potentials caused
by mass transport constraints, which are often removed from online battery performance predictors.
The combined electrochemical and thermal model accounts for capacity loss due to a decrease in ac-
tive species as well as power loss due to an increase in resistive solid electrolyte passivation layers on
both electrodes. The model’s ability to simulate cell behaviour during dynamic events is proven using
traditional battery testing load cycles with current rates up to 20 C and realistic automotive drive cycles.

Figure 2.15: A 3 particle pseudo 2-D equivalent circuit network implementation.[45]

2.3.4. Physics based models (PBMs)
PBMs, also called as electrochemical models, are used to simulate the electrochemical and physical
processes that occur in a battery. Doyle et al. [46] for the first PBM, which was based on the porous
electrode model. The electrochemical model takes into account the internal electrochemical processes,
heat transport, ionic diffusion, and other reactions in the battery. It describes the charge and discharge
behaviour of lithium-ion batteries at the mechanism level using partial differential equations.

In the electrochemical battery models, pseudo two-dimensional (P2D) model [47], extended single
particle (eSPM) model [48], [49] and single particle model(SPM) [50] are three commonly used models
for battery performance simulation, but are proposed for different situations. Among them, P2D model
has the ability to completely describe the micro-scale kinetics that occurs in a battery. However, due
to its significant computational complexity, the application of the rigorous P2D model is very limited,
especially for online applications [51]. SPM model and eSPM model can be regarded as approximate
solutions for P2D model . These models and their simplified forms [52] [53] [54] [55] have been used
in many applications.

Pseudo 2- Dimensional (P2D) Model
The presented model is based on the well-known Pseudo Two-Dimensional (P2D) model, which was
originally proposed by Doyle et al. for describing the performance of a lithium anode/solid polymer
separator/insertion cathode cell [47]. Fuller et al. subsequently utilized the porous electrode theory to
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develop a model for a dual lithium ion insertion cell [56]. This model, referred to as Full Order Model
(FOM), can calculate the internal electrochemical states of a cell by solving a group of four PDEs that
are coupled by an algebraic closure term.The conductivity of the current collectors is large enough
to assume that there are no significant changes at the current collector in the y and z spaces, thus
the P2D model assumes the electro-chemical dynamics to be one dimensional [57], specifically the
x direction. Small spherical solid particles are fused with the electrolyte to account for the mobility
of lithium in both the solid and liquid (electrolyte) phases across one dimension. The variations in
lithium concentration within these particles are calculated throughout the radial domain, where r is the
particle’s radial location. As a result, two dimensions are considered in the model dynamics: the x
direction and the pseudo r direction, giving rise to the moniker pseudo 2-dimensional model. While a
complete derivation, including boundary conditions, is available in the book of Plett (Chapter 3-4)[7], the
equations themselves are outlined below. Figure 2.16a and fig. 2.16b illustrate the various variables
within the cell that are employed in the model.

(a) P2D Porous-Electrode Model (b) Schematic diagram of Cell locations

Figure 2.16: Variables used to model a PBM [7]

1. Solid-Phase Charge Conservation

The PDE describing charge conservation in the solid electrode particle matrix is

∂

∂x

(
σeff

∂

∂x
ϕs

)
= asjF (2.3)

where ϕs is the potential in the electrode solid active material as a function of position and time,
σeff is the effective solid electronic conductivity, as is the specific interfacial surface area, j is the
flux of lithium moving from the solid to the electrolyte as a function of position and time, and F is
Faraday’s constant. [58]

The boundary condition is:
At the interface of the current collector and the positive electrode, the charge flux is equal to the
current density applied to the cell. Acell is the current collector plate area of the cell.{(

σeff
∂
∂xϕs

)
|x=0 = Iapp/Acell(

σeff
∂
∂xϕs

)
|x=L = 0

2. Solid-Phase Mass Conservation

The PDE describing mass conservation due to diffusion in the solid is

∂cs
∂t

= Ds(
∂2cs
∂r2

+
2

r

∂cs
∂r

) (2.4)

where cs is the concentration of lithium in the electrode solid active material as a function of po-
sition and time, and Ds is the solid diffusivity [7]. The equation has a second order dependency
with respect to the radial position inside the solid particle r
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The boundary conditions of solid-phase mass conservation’s are:
At surface of the particle, the flux is equal to the consuming rate of Li-ions due to electrochemical
reaction occurring at solid/liquid interface (r=Rs).
At the center of the particle, there is no flux(r=0).{

∂cs
∂r r = Rs = − jli

Ds
∂cs
∂r = |r=0 = 0

The molar flux per electrode jli is considered the input to the P2D model and Rs is the particle
radius.

3. Electrolyte-Phase Mass Conservation

The PDE describing of mass conservation in the electrolyte is

∂(εece)

∂t
=

∂

∂x
De,eff

∂

∂x
ce + as(1− t0+)jli (2.5)

where ce is the concentration of lithium in the electrolyte as a function of position and time,εe is
the electrolyte volume fraction, and De,eff, is the effective electrolyte diffusivity [7].
The boundary conditions are:
At the two ends of the cell in x-direction, there is no mass flux, so,{

−De
∂ce
∂x |x=0 = 0

−De
∂ce
∂x |x=Lp

= 0

In the separator phase (0sep < xsep < sep) ε = 1 and j = 0. It can also be seen that there is a
second order dependency with respect to the horizontal spacial position x for the evolution of ce,
with time and the direct dependency on the input j.

4. Electrolyte-Phase Charge Conservation

The PDE describing charge conservation in the electrolyte is

κeff
∂

∂x
ϕe = −asFj+

2RT (t0+ − 1)

F

(
1 +

∂ ln f±
∂ ln ce

)
∂ ln ce
∂x

(2.6)

where ϕe is the potential in the electrolyte as a function of position and time,κeff is the effective
electrolyte ionic conductivity, R is the universal gas constant, T is absolute temperature, t0+ is
the transference number of the cation with respect to the solvent in the electrolyte, and f± is the
mean molar activity coefficient of the electrolyte [7].

The boundary conditions are:
There is no charge flow in the liquid phase at the cell’s end, but the potential in the solution phase
and its flux are continuous at the electrode and separator interfaces.{

κeff
∂
∂xϕe|x=0 = 0

κeff
∂
∂xϕe|x=L = 0

5. Reaction Kinetics

The Butler–Volmer equation describing reaction kinetics is

jli =
io
F

×
(
exp

(
(1− αn)F

RT
η

)
− exp

(
−αpF

RT
η

))
(2.7)
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which is approximated to,

η =
2RT

F
ln

√(
jli
2i0

)2

+ 1 +
jli
2i0

 (2.8)

where io = Fks(Cs,max
−Cs,surf

)1−α(Cs,surf
)1−α( Ce

Ce0
)α denotes the reaction rate. αn and αp are

the coupling coefficient of the charge transmission in the positive and negative electrodes. They
are generally set to 0.5. η denotes the electrochemical reaction overpotential. The solid phase
and liquid phase are coupled with the input Jli using the butler volmer kinetics.
Electrochemical reaction overpotential also follows the potential balance equation:

η = ϕs − ϕe − Uocp − FRfilmIapp (2.9)

Thus there are 5 equation ( 2 mass transport, 2 charge transport and 1 Butler Volmer equation and 5
unknowns (ϕs, ϕe, Cs, Ce, j).

Single particle Model (SPM)
The microscale cell model consists of five coupled equations that describe lithium movement, potential,
and reaction rate at the solid-electrolyte boundary. However, this model is too complex for control
strategies or real-time applications. A lower order model called the Single particle model was developed
to simplify the model. The diffusion of lithium inside solid particles is the slowest process, with its
dynamic contribution dominating over others. [7][50]. The following assumptions are made to simplify
the model:

• In SPM model, both electrodes are considered as spherical particles of active material with equal
sizes, due to the fact that it is assumed that the current is uniformly distributed across all particles
in the electrode.

• The reactions such as diffusion, transportation, diffusion induced stress will have uniform impact
on each particle.[7]

• The dynamics of electrolyte concentration and potential are ignored. [7].

Due to the limitations that electrolyte concentrations are ignored, SPM models do not perform well
at high charge/discharge rates [50]. To overcome this issue a new model called SMPe was developed,
which has same dynamics as a SPM model with added electrolyte dynamics of a P2D model. The
equations defined in SPMe model are explained in the section below. It is hybrid between the two
models and performs relatively well at higher C-rates.

Electrolyte Enhanced Single Particle Model (SPMe)
As the major drawback of the SPMmodel discussed in 2.3.4, is its limitations to work only at low C-rates.
The SPMe models takes care of this limitation. The major differences with a P2D model in terms of
mathematical description are discussed below.

Solid Phase Dynamics
The PDE describing mass conservation in the solid is

∂cs
∂t

=
1

r2
∂

∂r

(
Dsr

2 ∂cs
∂r

)
(2.10)

where cs is the concentration of lithium in the electrode solid active material as a function of position
and time, and Ds is the temperature dependant solid diffusivity [58]. The major difference between the
equation 3.2 is that only the second-order dependency is considered with respect to radial position.

The boundary conditions of solid-phase mass conservation’s are:
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{
∂Cs

∂r r = Rs = − jLi

Ds
∂Cs

∂r = |r=0 = 0

where jLi is the molar flux at the surface of the sphere at the solid-electrolyte interface.

Electrolyte Phase dynamics
The equations are same as explained in 2.3.4, with and approximation of equation 3.5 to the following

jli =
Iapp
FasL

(2.11)

where, as = total surface area of particle/ total volume of particle

as = εs
4πR2

s
4
3πR

3
s

=
3εs
Rs

2.3.5. PB Model Comparison
Figure 2.17 shows the comparison of 3 performance models (SPM,SPMe and DFN). The simulation
is run in pybamm [59] as a part of comparison study for 1 hour with a constant current. As discussed
in earlier sections the DFN model is the most complex and accurate model of the three. Figure 2.17
and 2.18 show the snapshots of the change in variables at the halfway and end of the experiments.
There is no change in electrolyte concentration in the SPM model as it is assumed to be constant. The
SPMe model follows the same curve as the DFN model in electrolyte concentration variation. As this is
a discharge cycle, Negative particle concentration drops as lithium ions are moving out of the negative
electrode. Same logic applies for the negative electrode potential during the discharge cycle.

Figure 2.17: Comparison of three performance models
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(a) start

(b) Midway

(c) end

Figure 2.18: Comparison of Negative particle surface concentration at various stages of the experiment
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(a) start

(b) Midway

(c) end

Figure 2.19: Comparison of Negative electrode Potential at various stages of the experiment.

The SPMe model is highly accurate for various charge densities, as demonstrated by Luo and
colleagues research [60]. They compared terminal voltage at multiple C-rates across the charging/dis-
charging period to models. Figure 3.9 shows deviations between the three performance models for
1C, 3C, and 4C rates. The voltage profile shape is followed for both SP and SPMe models, with lines
overlapping throughout the discharging period. The maximum deviation in the voltage profile is around
0.027 V, while the SP model deviates more from the P2D model, with a maximum deviation of around
0.003 V. At 3C discharge, the SP model fails to follow the P2D model, while the SPMe model follows it.
At 4C, the SPM model fails to follow the same trajectory as P2D, proving that SPM models are highly
inaccurate at higher C-rates.
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Figure 2.20: Comparison of terminal voltage profiles of three performance models P2D, SP(SPM),SPMe(ESP) at different
C-rates [60]

Summary of performance modeling
In this section, the P2D. SPM and SPMe models have been presented in detail and compared with
each other in terms of accuracy across a range of charge/discharge current densities,as well as the
computational complexity of each model. For the P2D model, it was shown that while it has the highest
accuracy, it cannot be used due to the high computational complexity, making it infeasible for real time
control applications.The SPM and SPMe significantly lower computational time than the P2D model.
Among SPM and SPMe, the SPMe showed the highest accuracy even at high C-rates. As a result,
the best trade-off achieved between accuracy and computational complexity is the SPMe model. Even
though SPMe model is accurate and fast compared to P2D also known as DFN model. It still can-
not be used for real time applications as the equations are coupled and the simulation times are high
enough. The model also requires considerable amount of memory to process which is not available in
a processor of a BMS system of a car. or any other embedded-systems. Therefore, simplified reduced
order model is discussed in in section 3.2, which converts the coupled ordinary difference equations
into transfer functions which can be transformed into state space equations which are essential for real
time estimation and tracking.

This thesis makes use of the SPMe model equations as a input for the Reduced order model discussed
in Chapter 3.



3
Mathematical Modelling and

Implementation

In this Chapter a process of modelling a LIB using a ROM is discussed. Section 3.1 discuses the
flowchart of the thesis. Section 3.2 dwells into the process of modelling a ROM and converting the
physics based performance model into state space model. Section 3.3 discusses the process to add
3 major aging mechanisms to the ROM. Lastly in section 3.4 Lumped thermal model is included to
analyse the effect of cell temperature on various parameters.

3.1. Flowchart of the Thesis
This aim of this thesis is to build online estimators to estimate the SOH of a battery in real-time. These
estimators,uses filtering techniques that requires the performance model and aging model in state
space form. Thus the need to build a Reduced order Model (ROM), which is the final product an exist-
ing physics based performance model into linearised state space model.
The modeling process begins with selecting an appropriate PBM. The PBM acts as a validation for the
results of ROM model. The PBM model used to validate are modelled in pybamm [59], which is an
open source battery modeling platform. The discussion about the different PBMs based on accuracy
and processing time is explained in Section 2.3.5. SPMe model was chosen as an input for the ROM.
Then the model is transformed into state space model using the DRA process explained in Section 3.2.
The output of the ROM are Current, Voltage, Temperature, SOC, Capacity. The ROM model used for
this thesis work is adapted from work of G.L Plett [7]. Additional aging model is implemented based on
the work by Xing Jin [8]. The equations provided by the Jin model are particularly chosen , as the model
is simple to convert into linear state space model and only uses output states of the performance model
(e.g -SOC, Voltage, Temperature, and Capacity AH) as input for calculating aging losses. A lumped
thermal model is added to vary the temperature of the cell due to cyclic conditions based on the equa-
tions discussed in [29]
The final part of the thesis is to develop an estimators using filtering techniques that can estimate major
aging mechanisms and predict the SOH and SOP of a LIB (explained in Chapter 4). These estima-
tors are model based estimators as the input for the estimators are the noisy output from the ROM
aging models. Experimental validation of a PBMs with aging is an complex process, which requires
destructive methods to parameterise, 35 initial parameters required to model a PBM and few additional
parameter’s for the aging models. The aim of the thesis was to develop online estimators, and experi-
mental validation would be an independent project on its own. Therefore, model based estimators are
develop in this thesis work. Figure 3.1 shows the process flow of the thesis.

25
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Figure 3.1: Flowchart of the Thesis

3.2. Reduced order models
The coupled PDE models developed in Chapter 2 are helpful for comprehending a cell’s operation and
may be used to investigate design elements that might be a performance constraint for the cell. With-
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out having to construct several experimental cells, cell shapes, particle sizes, and material properties
may be changed in simulation to optimize a cell’s features. However, these models are too intricate for
real-time battery management. They are, for instance, ”infinite dimensional.” There are an unlimited
number of x- and r-dimensional variables for each point in time t that need to be solved. This means
that for each x and r location, the values of cs(x, r, t), ce(x, t), ϕs(x, t), and ϕe(x, t)must be determined.
Therefore, there is a need to create cell-level ODEs that retain as the fidelity of the continuum-scale
PDEs, with their order reduced to finite space.

This section covers how to turn physics-based models into transfer functions, which are subse-
quently transformed into the state-space form using a realization procedure.

3.2.1. Linear state Space models overview
In this section, the process to generate Linear state space models is discussed. Figure , is flowchart
showing the steps required to obtain a linear state space model.

Figure 3.2: Depiction of Procedural steps used to compute linear state- space model [7]

The steps are as follows:

1. A PDE battery model is used as the first starting point. This thesis takes into account the SPMe
model dynamics covered in Chapter 2. Fourier transform methods are used to linearize five non-
linear continuum equations into discrete time system models.

2. These discrete temporal models are then transformed into unique transfer functions.
3. Transfer functions are transformed into state space models, which may be used to real-time con-

trol, using the DRA (Discrete Realisation Algorithm) approach. In later portions of this chapter,
the DRA procedure is covered.

4. The DRA procedure is independent of the kind of cell chemistry, and cell physics parameters are
supplied to the DRA algorithm as needed.

Transfer functions
As discussed in 2.3.4, there are 5 equations that define the electro-chemistry of a cell(mass and charge
transport in solid electrode, mass and charge transport in electrolyte and butler volmer equation that
couples the solid phase and liquid phase kinetics). The 5 unknowns are (ϕs, ϕe, Cs, Ce, j). The input to
the cell is the current Iapp. Therefore, all the 5 unknown variables should have transfer functions that
relates to the applied current Iapp. The derivation of the transfer functions is beyond the scope of this
report and the detailed derivations can be found in the book [7] chapter 5 and 6, which is the basis of
this reduced order model used in this thesis. The equations can be found in Appendix A.4.
These 5 transfer functions can be combined into a single input (Iapp) multiple output response array,
which is the basis input for a DRA process as seen in fig. 3.2.



3.3. DRA process 28

3.3. DRA process
Given a (possibly single-input multi output) continuous-time transfer function H(s) in the Laplace domain
such that Y(s) = H(s)U(s), and a sampling period, Ts, the resultant state space realization is,

x[k + 1] = Ãx[k] + B̃u[k] (3.1)
y[k] = C̃x[k] + D̃u[k] (3.2)

In the context of the reduced order models U(s) is the input current Iapp and the output matrix, is given
by

H(s) =



Ce,k(x,s))
Iapp(s)
ϕs(z,s)
Iapp(s)
ϕ̃e(z,s)
Iapp

C̃s,e(z,s)
Iapp
J(z,s)
Iapp(s)


(3.3)

where ’k’is the sampling instant. In this formulation, e.q 3.1 captures the dynamics of the system,
and e.q 3.2 describes the linearized system output .

3.3.1. Ho–Kalman algorithm and Hankel matrices
Before, the DRA process is discussed it is necessary to have a understanding of the Ho-kalman al-
gorithm [61]. A discrete ,unit-pulse response of a given linear state-space system g in the discrete
time-domain can be expressed as

gk =

{
D, k = 0

CAk−1B, k = 1, 2, 3...

where A, B, C, D are state space matrices and D is gathered from the system response at time
step zero.The resultant transfer function response can be formulated into a block Hankel matrix [7] of
Markov parameters.
The block hankel matrices corresponds to a subset domain of discrete-time impulse responses.

Hk,m =


g1 g2 g3 · · · gm
g2 g3 g4 · · · gm+1

g3 g4 g5 · · · gm+1

...
...

...
. . . gm+1

gk gk+1 gk+2 · · · gm+k−1


The block hankel matrices also follows, the relationship of

Hk,m = OC

where O is the observability matrix and C is the controllability matrix.

O =


C
CA
CA2

...
CAk−1


and

C =
[
B AB A2B · · · Am−1B

]
The final state space representations are then calculated via

Ã = O+Hk,m+1C
+

B̃ = C[1 : n, 1 : m]

C̃ = O[1 : p, 1 : n]
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where n and p are the state-space output size andHk,m+1 denotes the forward shift of block Hankel
matrix.

DRA steps
The four steps in DRA process followed by the book of Plett [7] are summarized below,

• STEP1: To obtain an approximation to the continuous-time impulse response h(t), sample the
continuous-time transfer function H(s) in the frequency domain at a high rate and perform the
inverse discrete Fourier transform (IDFT) on the samples.

• STEP2: Use h(t) to approximate the continuous-time step response h step(t), also sampled at
the high rate.

• STEP3: Compute the discrete-time unit-pulse response values gk with inter-sample period Ts

from the continuous-time step response h step(t), assuming a sample and hold circuit connected
to the system input.

• STEP4: Generate a discrete-time state-space realization using the deterministic Ho–Kalman al-
gorithm. This algorithm returns the reduced order A, B, and C matrices from the discrete-time
unit pulse response sequence in Step 3. The order of the system is determined from the ordered
singular values of the Hankel matrix computed as part of the algorithm. The D matrix is found by
the initial value theorem.

A detailed explanation of each step can be found in [7] chapter 5.

3.4. Aging Models
Until now, the report discussed physics based performance model of a Li-ion battery. The state space
equations achieved via reduced order models provide ideal states and do not consider any degradation.
In real life cells degrade with time and usage and the aging is non-linear. Therefore to calculate the
SOH of a battery it is necessary to include degradation mechanisms.
Figure 3.3, shows the state space visualisation of the battery model with aging. Here the upper loop
is the state space representation of the performance model where, the States and the outputs are a
function of θ and the input k .The aging model is represented as a function of θ. the changes in the
aging model are send an feedback to the performance model to update the states. Real systems have
noise in them and are processed in the system itself to give noisy output. The use of Filters kFx and
KFθ are discussed in detailed in Chapter 4

Figure 3.3: State space visualization of battery modeling

The three dominant degradation mechanisms that affect battery aging are (1) SEI layer Growth (2)
Lithium Plating (3) Loss of active material. The degradation models used in this report are based on
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the studies conducted by [8],[9] and [62].

3.4.1. SEI layer formation sub-model
It is commonly acknowledged that the SEI layer formation on the anode is one of the primary causes
of capacity loss for a cell with a carbon or graphite-based anode [62]. The generalised side reaction at
the graphite/SEI interface is represented as follows:

S + 2e− + 2Li+ + 2e− ⇌ P (3.4)

where P is the reduction by-product that creates the SEI layer and S is the solvent reactant.
The porosity of the SEI film is rather high. Despite the fact that it contributes an ionic resistivityRf ilm

that enhances cell resistance, lithium may still enter and exit the particle via the film. Furthermore, as
solvent diffuses through the layer during charge, the SEI layer continues to slowly increase, despite
the fact that the film makes it more difficult for solvent to reach the particle surface and form further SEI
since there is adequate porosity for some solvent to flow through. Furthermore, lithium intercalation
into the graphite negative electrode causes the lattice volume to grow, extending and finally fracturing
the SEI layer and exposing more active material to the electrolyte as seen in fig 3.4

Figure 3.4: Schematic diagram of SEI layer formation on the graphite electrode [62]

The rate of side reaction current growth is proportional to the rate of SEI layer growth or capac-
ity loss caused by Qsei layer expansion. Because the products are a mixture of numerous species,
averaged mass and density constants are utilised to study the creation and evolution of the SEI film.
According to this model [8], SEI layer creation is irreversible in nature, and so the SEI layer grows with
each cycle. Furthermore, SEI layer development is solely taken into account on the graphite electrode.
The cathode’s side effects are ignored.

SEI layer formation is related to the side reaction current density, ist via the equation .

Qsei =

∫
istAcelldt (3.5)
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ist is calculated as

ist =
Ksei ∗ e

−Esei
RT

2(1 + λθsei)
√
t

(3.6)

where λ

λ =
cs
√
Ds

cp
√
Dp

θsei = exp[
nseiF

RT
(ηk + UOCP

n − UOCP
s )]

, where UOCP
n is a function of SOC, while UOCP

s is set to be 0.4 V against Li/Li+.
Kinetic overpotential is calculated via,

ηk =
2RT

F
sinh−1 Iapp

2asAcellLnio
(3.7)

The
√
t in the denominator, denotes that SEI layer growth is much higher for a fresh battery than

an aged battery.According to [9], the SEI layer that has already developed on the electrode tends to
passivate the electrode against further layer formation. A little amount of electrolyte can still seep over
the SEI layer, react at the surface of the electrode material, and produce fresh SEI layer due to the
porous nature of the SEI film. A decreased rate of SEI layer production will result from the continually
expanding SEI layer because it will slow down electrolyte solvent migration across it to the active
material/SEI layer interface [9]. The rate of SEI layer thickness growth is given by,

δSEI
dt

=
istMsei

2Fρsei
(3.8)

where ρsei [kg m3] is the average density of the constituent compounds andMsei [kg mol] is the average
molecular weight of the SEI layer’s constituent chemicals. This makes it possible to determine the entire
film resistance as,

Rfilm =
δsei
kp

(3.9)

, where kp is the conductivity of the SEI film and δsei is SEI layer formed due to SEI side current.

Table 3.1: Parameters used for SEI degradation Modelling [9]

Parameter Units Value
Ksei

1√
s

6684.8
Esei

J
mol 39146

io
A
m2 0.05

λ unitless 5.51 e-5
kp unitless 2.00E-06
Msei

kg
mol 0.162

ρsei
kg
m3 1690

3.4.2. Active Material Loss SUB-model(LAM)
Another significant process of degradation that has been noted in experimental research is active ma-
terial loss [63]. According to [63], [64], mechanical stress caused by lithium intercalation inside the
active material particles may also lead to electrode particle breakage or structural degradation, which
may eventually cause the active material to be lost or isolated. According to [62],[9] the rate of lithium
loss because the active material is isolated is represented as,

dQLi,loss

dt
=

dεam
dt

.V.z.cLi,max (3.10)

, where,
dεam
dt

= −k(t)|Iapp| (3.11)
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, and
k(t) = k0amexp(

−Eam

RT
) (3.12)

, where z = cli
cli,max

or z = SOC.(z100% − z0%) + z0. z100% refers to SOC at 100% and z0 refers to SOC
at 0%.

At the start, or in case of a new cell, the total lithium inventory is given by,

Qli,0 =

∫ t

0

εam,0.V.z100%.Cli,maxdt (3.13)

The percentage of capacity loss due to active material loss is given by,

Qam =
Qli,loss

Qli,0
=

∫ t

0

kamexp(
−Eam

RT
).SOC.|Iapp|dt (3.14)

. Here, SOC.Iapp depicts the total lithium available at any given instance.

Table 3.2: Parameter’s used for LAM degradation Modelling [9]

Parameters Units Value
Kam

1√
s

0.0137
Eam

J
mol 39500

3.4.3. Lithium Plating sub model
Lithium plating is not regarded as a prominent degrading process since it occurs seldom, in contrast to
SEI layer development caused by cell manufacturer-specified terminal voltage restrictions. However,
cell terminal voltage is a poor predictor of internal potentials, especially at low temperatures or when
charging at high C-rates, and can result in lithium plating. In the present model, both SEI formation
and lithium plating are viewed as anode side reactions. Thus, as shown in Fig 3.5 , a total of three
electrochemical processes may take place in the anode [32].

• Main intercalation reaction of lithium ions into the graphite electrode during charging/discharging.
C6 + Li+ e− ↔ LiC6

• The side reaction causes fresh SEI to increase as a result of the electrolyte solvent diffusing over
the surface layer.
S + 2e− + 2Li+ + 2e− ⇌ P

• If the local anode potential becomes negative (with respect to pure Li electrode), lithium deposition
would occur.
Li+ e− ↔ Li(s)

Figure 3.5: Schematic diagram of electrochemical reactions occurring at the anode during cell charging [32]

The overportential due to side reaction is given by,

ηs(x, t) = ϕs(x, t)−ϕe(x, t)−UOCP
li −FRfilm.jtot(x, t) (3.15)
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where total current density is given by
Jtot = japp + jsei + jli.
The side reaction for lithium plating only occurs at spatial locations in the negative electrode where
ηs(x, t) < 0 from x = x0 to x = Ln. Refer fig 2.16b for cell locations.The local side-reaction overpotential
of a lithium-ion cell diminishes over time as it is being charged. It is not constant across the electrode;
rather, the value close to the separator tends to fall more quickly than at other points. Additionally,
it demonstrates that plating does not require a cell to be at 100% SOC. SOC is therefore only one
important variable; whether plating takes place is ultimately determined by the local overpotential as
shown in fig 3.6[7].

Figure 3.6: Schematic illustrating overpotential during charge across the negative electrode [7]

Lithium plating does not occur during discharge as most of the side reaction happens only at neg-
ative electrode(anode). We neglect side reactions at cathode as anode aging is the most dominant
part of cell aging. So side reaction overpotential is always greater than zero during discharge. Even
if reversible aging is considered, the consumed Li which forms product layer on anode releases its Li+
ions during discharge, which increases the overall overpotential during discharge phase.

In this report the model used by [62] is used to calculate Li-plating. The reason for choosing this
model is that it only requires output states of the reduced order model to calculate aging, and does not
require to make changes in the initial transfer functions of the reduced order model.

the capacity loss due to lithium plating is given by,

Qli,loss =

∫ t

0

jliAcelldt (3.16)

, where,the lithium deposition reaction current is given by,

jli = asi0,liexp[
−αliF

RT
ηli(x, t)] (3.17)

to calculate Jli, the overportential during charging is given by,

ηli(Ln, t) =
IappLn

2σeffAcell
− E(t)

3
L2
n +

2RT

F
sinh−1 Iapp

2asAcellLnio
+ UOCP

n (3.18)

where, E(t) is a intermediate variable given by,

E(t) = −[
keffD

ce

βϵe − (1− t+o )

Deff
e F

+ 1]
Iapp(t)

KeffAcellLn
(3.19)

The degradation due to SEI layer growth calculated as an output in e.q 4.4.1and Li-plating are
interrelated by the equation,

dεe
dt

= −as
dδsei
dt

(3.20)

As the SEI layer thickness increases, the electrolyte volume fraction εe drops and lowers the ηli(Ln, t)
in process. Therefore, a increase in SEI layer is favourable for Li-plating to occur easily. The detailed
derivation of these equations can be found in [8].
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3.4.4. Results of variation of C-rates with CC charging
The aging models were simulated at various C-rates during the fast Charging of a new NMC cell at
various C-rates as seen in Figure 3.7 and 3.9. The cell is charged from 0% SOC to 100% SOC. In
figure 3.7 SEI aging does not start from zero. This is due to the fact that for SEI layer formation is
highest at high SOC, as there are more lithium ions to form side reactions. Starting from an completely
discharged cell, it takes some time till there are enough Li-ions for the side reaction to take place. This
is also seen in figure 3.8 where the side reaction current for a completely discharged cell while charging
(a) in comparison to the SEI side current during a discharge cycle (b).
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Figure 3.7: Comparison SEI loss with different C-rates for CC charging

(a) Side reaction current ist for a fully discharged cell during charging
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(b) Side reaction current ist for a fully charged cell during discharging

Figure 3.8: Side reaction current ist comparison

The loss of capacity due to LAM is same irrespective of different C-rates as depicted in Fig 3.9 (a).
The faster the C-rate of charging the shorter the charging time. For loss of capacity due to LIP aging is
shown in fig 3.9 (b), a semi-log scale is used for the y-axis, as the rate of degradation’s are very high
for 4C compared to 1C and cannot be compared on a normal scale. Finally in fig 3.9 (c) the Capacity
fade of the cell is shown at different C-rates. As expected the cell degrades faster at higher C-rates.
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Figure 3.9: Comparison of effects of C-rates while CC charging

Variation of C-rates during discharge
Figure 3.10 shows the effect of C-rates on aging characteristics during a 1 UUDS discharge cycle for a
NMC cell. The general trend is followed where, higher C-rates causes faster Capacity loss of the cell.
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(a) Variation of LAM Loss with different C-rates (b) Variation of LIP Loss with different C-rates

(c) Variation of Capacity loss with different C-rates

Figure 3.10: Effect of C-rates on the aging models

3.5. Lumped Thermal Model
Until now all the modeling was assumed at constant temperature. In a real application thermal effects
play a major role in cell degradation and must be taken seriously. A lumped thermal model is described
by the following energy balance equation:

ρAcellCp
dT

dt
= i2Rtot + i(ηn − ηp) + i.T.

∂U

∂t
− hAcell(T − Tamb) (3.21)

, where, ρAcellCp
dT
dt is the total heat generated in the cell, which leads to the rise in temperature. i

2Rtot

is ohmic heat generated per unit volume due to contact resistance between the electrodes and the
current collectors. The second term i(ηn − ηp) is the reaction heat generated due to change in over
potentials. i.T.∂U∂t is the reversible heat generation due to entropy change in the active material of
electrodes during intercalation/de-intercalation of lithium. It is also defined as the change in SOC of
the cell. This term is usually very small, as the rate of change in SOC or entropy change is very small
and is neglected for this model. the last term is the rate of convective heat removal from the cell. The
convective heat transfer co-efficient h defines the rate of cooling applied to the battery and is usually
an control state to the BMS system.

Temperature dependence of model parameters is crucial in understanding the physical and chem-
ical characteristics of cells during high C-rate operation. The electrolyte diffusivity and conductivity
temperature dependencies are obtained from [65], with temperature significantly impacting reaction ki-
netics constant ki and solid phase diffusion coefficient Di. An Arrhenius’ law temperature dependency
is a typical strategy.
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ki = krefi exp

[
Ek

R

(
1

T
− 1

Tamb

)]
(3.22)

Di = Dref
i exp

[
ED

R

(
1

T
− 1

Tamb

)]
(3.23)

Thermal models are also crucial in pack level model to understand the cell-to cell temperature vari-
ations.

Table 3.3: Parameters used for Temperature Modelling

Parameter Units Value
ρ kg m-3 2107
Cp J/ kg K 1172
kt W/m K 0.4
h W m-2 10

Figure 3.11(a) shows the temperature profile of a NMC cell for 1 UDDS discharge cycle. and Figure
3.11 (b) shows the variation of C-rates on the temperature rise in a NMC cell. There is a major jump in
temperature 2C to 4C discharging, while the temperature does not rise a lot during low C-rates.
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(a) Temperature of a NMC cell during 1 UDDS discharge cycle
(b) Effect of C-rates on the temperature of a NMC cell during 1 UDDS

discharge cycle

Figure 3.11: Effect of C-rates on the lumped thermal model

3.6. Summary
This chapter begin with the the explanation of the flow of the thesis. Then the process of converting a
ROM into state space model is explained, followed by explanation of the aging models and the lumped
thermal model used to build a complete model of a Lithium ion cell. The model of the cell build in this
chapter acts a input for the estimators discussed in chapter 4.



4
Online state estimators

Chapter 2 describes the modelling approaches and Chapter 3 explained the methods to model a re-
duced order model with main degradation mechanisms. This chapter uses the model developed as
input to develop an algorithm to estimate the states of the battery in real time. Section 4.1 discusses
the need for real time estimation, followed by a review of different online estimation methods available
in literature. Section 3.1 explains the flow of the thesis in detail. The further sections then explains the
various estimators in detail.

4.1. Need for real time estimation
In previous chapters, the report discussed a reduced-order model able to predict the internal variables
of a cell in addition to its voltage.This paradigm is particularly suited for implementation in a micro-
controller since allocation processing power and memory space is low. To assist in computing cell
SOC, SOH, available energy and power, and other metrics, we may think about employing this ROM
directly in a BMS or any other online estimators. But before the ROM predictions can be regarded
as precise and relevant, deployment in a real-world application brings several additional factors that
need to be handled. It must be specifically acknowledged that the models were created using flawed
assumptions and that it must take into account various aspects of the battery system as a whole in
which the cell functions.

The generic form of a linear state space model is given by,

xk+1 = Akxk +Bkuk + wk

yk = Ckxk +Dkuk + vk

where, xk is the state of the system and yk is the output. A, B, C, D are the values of the matrices of
the state space. Given this model several issues arise while trying to implement it:

• Cell to cell variations
Even those built by the same firm or utilising the same type of battery differ slightly. Because
manufacturing procedures are never perfect, the completed product frequently contains material
and assembly inhomogeneities. This effect may appear insignificant, but when the initial total-
capacity dispersion across cells is considered, it can be demonstrated that there are significant
differences between the predictions of voltage and internal electrochemical variables and the
actual cell behaviours. As a result, the model may not hold true for a group of cells and may
produce inaccurate findings. In terms of state space variables, the derived A, B, C, D matrix may
differ between cells since states might change depending on the initial conditions.

• ROMs and degradation models are not perfect
The transfer functions used in the ROM model are very precise approximations of the primary
models, but they are still approximations. THE DRA method is not without restrictions, and the
linerisation of non-linear connections generates certain inaccuracies. The thermal model em-
ployed is a one-dimensional average estimate of the temperature within the cell. Because of
linearisation and assumptions made when simplifying the models, the values of the state space

38
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matrices estimated via modelling may differ from the true values in the context of state space
models.

• Errors in inputs
The current and internal temperature sensors can have measurement noise and this error prop-
agate throughout the model and can amplify the error in the final results. The error in system is
processed as an input in every iteration and causes the values of the outputs to changes based
on the noise in the system.

All these factors mentioned above create a need to have a method that can reduce this errors and adapt
with changing initial conditions. Filtering is a method that deals with error reduction and correction. This
chapter discusses the most popular of these filters called kalman filters in detail. The report makes use
of the Kalman filter and its variants to predict in real time the states of the battery.

4.2. Different estimators in literature
The current battery’s ability to produce a certain performance in comparison to its capacity to do so
when it was in its initial state is known as SOH. According to the equation below [66], the battery SOH
is calculated by dividing the current capacity by the nominal capacity;

SOH =
Qact

Qnom

Figure 4.1: Classification Of SOH estimation methods [1]

Direct assessment approach
Coulomb counting
The coulomb counting (CC) method is used to calculate the SOC of the battery. Instead of providing an
absolute SOC, coulomb counting provides a relative change in SOC. The amount of Ah that have left
or been received by the battery may be measured by measuring the current over a specific time step.

SOCt = SOCt−1 +
ηI(t)

Qn
∆t (4.1)

By dividing the discharge value by the rated capacity, the coulomb counting method is utilised to cal-
culate battery SOH. DOD, or depth of discharge, is used to calculate the amount of charge discharged
in relation to the battery’s rated capacity. In each charge and discharge cycle, charging and discharging
efficiency compensate for DOD, while re calibration eliminates accumulated impacts. CC consumes
little power but has a large estimate inaccuracy of roughly 10% [1].

OCV based estimation
OCV-based SOH estimation method can be performed online and offline, with extensive laboratory
tests examining the relationship between SOH and OCV. Guo et al. [67] monitored charging curves to
evaluate capacity fade, and the electrochemical model (ECM) and constant current-constant voltage
charging method assessed SOH using transformation function and non-linear least square method.
The estimation error of SOH at all stages of life is under 3%.

Impedance spectroscopy method
This is an experimental method of calculating SOH.Impedance spectroscopy is used to estimate SOH
using wide frequency spectrum. ECM parameters are computed using 16 parameters, and particle
swarm optimization (PSO) is used to determine parameters[68].
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Data driven methods
Fuzzy logic processes complex and nonlinear systems using a fuzzy rule set, divided into crisp and
fuzzy sets. Crisp sets assign specific values, while fuzzy sets categorize uncertainty. Accurate pre-
diction of system health (SOH) relies on selecting the appropriate membership function (MF).Detailed
information can be found in [69].

Neural network (NN) is a robust algorithm for predicting SOH in complex non-linear systems, requir-
ing minimal battery characteristics information. However, high computational cost is a drawback [70].

4.3. Adaptive filters
Kalman filters are based on a framework named ‘sequential probabilistic inference’[58]. Using a model
of the system being described and feedback of the real response of that system, the filters adjust the
internal states of the model to make the predictions converge to better results.An effective approach
that can precisely predict battery SOH is the Kalman filter (KF) and extended Kalman filter (EKF) . In
case of non-linear systems, the unscented kalman filter (UKF) are used instead of the KFs.In cases
where parameter and states are to be updated simultaneously a dual Kalman filter (DKF) is used. In
this thesis use of Kalman filter and dual Kalman filter is made to predict the SOH of a battery in real time.

4.3.1. Kalman filters
In this section the general algorithm of a filtering process is discussed. The idea of a filter is to estimate
the unmeasured state xk of a corresponding physical system in real time in a dynamic environment,
given knowledge of the system’s measured input/output signals. In the context for this report, xk can
be any state like SOC of the cell or the SOH of a battery. The input uk is the applied current. ωk−1 is
the process noise, which can be considered as a noise in measurement of current .υk is output sensor
noise or the noise in predicting the desired noise.

Figure 4.2: A physical system with noise [7]

As seen in figure 4.2 the system measured output can never match the predicted output as long
as there is noise in system. The important thing of noise is that, all physical systems new or old have
some level of noise in them. The noise level can change when the system gets older, and its the re-
sponsibly of the filter to update the assumed system model as a feedback to increase the accuracy of
the predicted output.

Given below is the algorithm for a linear kalman filter.The discrete-time Kalman filter computes
two different estimates of the state and covariance matrix for each sampling interval. The first estimate,
x̃−
k ,is based on the prior state estimate as computed in the previous iteration, x̃

+
k−1, propagated forward

in time one sample interval using a model of system dynamics. It is computed before any system
measurements are made, and is denoted by superscript “−”.

The Kalman filter is initialized with the best available information on the state and error covariance.
This need not be accurate as the filter should be able to converge to real value in few iterations.
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Algorithm 1 Summary of the Kalman filter estimator
Linear state-space Model
xk+1 = Akxk +Bkuk + wk

yk = Ckxk +Dkuk + vk

Initialization

For k = 0 set

x̂+
0 = E [x0]

Σ+
x̃,0 = E

[
(x0 − x̂+

0 )(x0 − x̂+
0 )

T
]

Computation

For k = 1,2,...compute

State estimate time update x̂−
k = Ak−1x̂

+
k−1 +Bk−1uk−1

Error covariance time update Σ−
x̃,k = Ak−1Σ

+
x̃,k−1A

T
k−1 +Σω

Kalman gain matrix Lk = Σ−
x̃,kC

T
k

[
CkΣ

−
x̃,kC

T
k +Συ

]−1

State estimate measurement update: x̂+
k = x̂−

k + Lk

[
yk − (Ckx̂

−
k +Dkuk)

]
Error covariance measurement update Σ+

x̃,k = (I − LkCk)Σ
−
x̃,k

The kalman filter algorithm is divided into two phases as seen in fig 4.3. The prediction phase is
based on the initialization the system state and covariance is estimated based on the input uk and the
output is predicted . It is divide into 3 steps. 1a - is called the state estimate, where the estimate is
done based on previous values. 1b- Updates the covariance or uncertainty based on previous iteration
values. 1c- is where the output is predicted based on the estimated state.

In second phase which is know as innovation or correction phase. It is subdivide into 3 steps 2a
updates the gain based on the predicted covariance, followed by a predicted state value based on the
measured output in 2b. 2c -is where the covariance is updated based on the gain and previous step
covariance. The kalman filter is an iterative process and the goal is to reduce the gain and converge
the uncertainty or covariance to a stable value.

Figure 4.3: Single linear Kalman visualization [7]
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To summarise,the Kalman filter provides a theoretically elegant and time-proven method to process
measurements of system input and output to produce an intelligent real-time estimate of a dynamic
system’s state. The equations are easy to implement in a micro-controller setup in an actual BMS of a
vehicle.

Till now we discussed only a linear kalman filter . But as we will see in section4.4 the SOC of the
battery is used as an input to calculate the LAM aging, while the change in SEI layer causes the internal
resistance of the cell to increase which results in a change in the cell voltage and power fade. So, there
is a need to have a feedback loop with the performance model as well. This can be achieved via the
use of a Dual kalman filter.

Figure 4.4: Dual Kalman visualization. Solid lines represent state and parameter vector signal flow and dashed grey lines
represent error covariance matrix signal flow [7]

The process essentially comprises two Kalman filters running in parallel one adapting the state and
one adapting parameters with some information exchange between the filters. In the model the SOC
and Voltage are updated via the upper loop of KFx and the Aging models are updated via the lower
loop of KFθ. The algorithm for a dual kalman filter is given below.
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Algorithm 2 Summary of the dual Kalman filter estimator
For State Updates
xk+1 = Akxk +Bkuk + wk, where, xk+1 = f(xk, uk|θk)

yk = Ckxk +Dkuk + vk, where, yk = g(xk, uk|θk)

For Parameter Updates

θ̃k+1 = Aθθk +Bθuk + rk , where the output dk = g(xk, uk|θk) + ek

Initialization

For k = 0 set

x̂+
0 = E [x0]

Σ+
x̃,0 = E

[
(x0 − x̂+

0 )(x0 − x̂+
0 )

T
]

θ̂+0 = E [θ0]

Σ+

θ̃,0
= E

[
(θ0 − θ̂+0 )(θ0 − θ̂+0 )

T
]

Computation

For k = 1,2,...compute

Time Update for the weight filter
θ̂−k = θ̂−k−1

Σ−
θ̃,k

= Σ+

θ̃,k−1
+Σr

Time update for the state filter

x̂−
k = Ak−1x̂

+
k−1 +Bk−1uk−1

Σ−
x̃,k = Ak−1Σ

+
x̃,k−1A

T
k−1 +Σω

Measurement update for the state filter

Σ−
x̃,kC

T
k

[
CkΣ

−
x̃,kC

T
k +Συ

]−1

x̂+
k = x̂−

k + Lk

[
yk − Ckx̂

−
k Dkuk

]
Σ+

x̃,k = (I − LkCk)Σ
−
x̃,k

Measurement update for the weight filter

Lθ
k = Σ−

θ̃,k
Cθ

k

T
[
Cθ

kΣ
−
θ̃,k

Cθ
k +Σe

]−1

θ̂+k = θ̂−k + Lk

[
yk − Cθ

k θ̂
−
k +Dkuk

]
Σ+

θ̃,k
= (I − Lθ

kC
θ
k)Σ

−
θ̃,k

Here, ωk, υk, rk and ek are the noise in the system.
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4.4. Estimators
Having introduced the general framework, the contribution of this thesis is to calculate various states
of the battery system in real time. To achieve this, all the states should be brought into a generic form
of State space equation for Kalman filter to be applied. This is true for a linear kalman filter as the
equations of the aging models have linear relationship.

4.4.1. SOH estimator
The aim of this thesis is to estimate the SOH of a battery in real-time. In order to so, we need to
estimate the aging in the battery in real-time. As discussed in earlier sections the major degradation
mechanisms considered in the reduced order model are 1. SEI degradation 2. Loss of active material
3.Lithium plating.
We need to get the equations discussed in 3.4 in state space form. The dynamics to get the aging
models in state space form is discussed below.

SEI aging estimator
SEI layer formation is related to the side reaction current density, is via the equation .

QSEI =

∫
istAcelldt

ist calculation is discussed in section 3.4.1. It is evident that the calculation of ist side current is a
function of the applied current Iapp seen in e.q 3.6 and e.q 3.7. Thus the whole SEI aging is a function
of Iapp. In state space form,

QSEIk+1
= QSEIk + istAcellδt

and growth of SEI layer is given by,
dSEI
dt

=
istMSEI

2FρSEI

can be written as
dseik+1 = dseik +

istMSEI

2FρSEI
dt

As, we are only calculating a single state xk and yk will be the same. So we have multi output single
input filter, where,

Ã =

∣∣∣∣1 0
0 1

∣∣∣∣ , B̃ =

∣∣∣∣ dt
MSEI
2FρSEI

∣∣∣∣ , C̃ = 1, D̃ = 0 (4.2)

The final state space model for SEI degradation is then,∣∣∣∣QSEIk+1

dseik+1

∣∣∣∣ = ∣∣∣∣1 0
0 1

∣∣∣∣ ∣∣∣∣QSEIk
dSEIk

∣∣∣∣+ ∣∣∣∣ dt
MSEI
2FρSEI

∣∣∣∣ ist (4.3)

As the estimators are model based, measurement error was introduced in the ROMSEI agingmodel
to replicate real measurement cases, where there is always some noise in the experimental setup in the
form of process noise and measurement noise (sensor noise). As applied current is only variable input
for the model, a 2% process noise is introduced to input Current Iapp. This causes noise propagation
throughout the system. Table shows the propagation of noise in the system.
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Table 4.1: Noise propagation in SEI sub model

Noise Units
Input Current 2% unitless

Maximum Noise in Current (absolute) 4.2 [A]
Maximum noise in θsei 1.53*e-05 unitless

Maximum Noise in overpotential 0.27 [V]
Maximum Noise in side current (ist) 1.1965*e-05 [A]

Maximum Noise in Qsei 5% [A.h]
Maximum Noise in Qsei (absolute) 1.28*e-06 [A.h]

Maximum Noise in dsei 5% unitless
Maximum Noise in dsei (absolute) 1.2*e-12 [m]

Algorithm 3 Initialization of SEI estimator
Linear state-space Model
xk+1 = Ãkxk + B̃kuk + wk

yk = C̃kxk + D̃kuk + vk

Here,
The sate equation matrix Ã, B̃, C̃, D̃ take the value as given in e.q 4.2.

uk = ist ( Noisy side current as input)

Initialization

For k = 0 set

Set Σω = 1e-05 (The process noise covariance should be close in magnitude as the maximum noise
in input uk for the noise to remain within uncertainty bounds)

Similarly, SetΣυ = 1e-06 (The sensor noise covariance should be close inmagnitude as themaximum
noise in estimation of Output Qsei for the noise to remain within the uncertainty bounds). For dsei,Συ

is initialized to a value of 1e-12.

x̂+
0 = Qsei0 ( The initial value of SEI loss, for a new battery it is set to 0)

Σ+
x̃,0 = 1e − 6 (Initial uncertainty determines how fast the filter can converge to a stable value. For

tuning this value, different high and low values uncertainties were tested. The filter converged faster
when the uncertainty was in same magnitude as the output State Qsei. For dsei Σ+

x̃,0 = 1e− 12

Computation ( Same process as discussed in Algorithm 1)

For k = 1,2,...compute

State estimate time update x̂−
k = Ak−1x̂

+
k−1 +Bk−1uk−1

Error covariance time update Σ−
x̃,k = Ak−1Σ

+
x̃,k−1A

T
k−1 +Σω

Kalman gain matrix Lk = Σ−
x̃,kC

T
k

[
CkΣ

−
x̃,kC

T
k +Συ

]−1

State estimate measurement update: x̂+
k = x̂−

k + Lk

[
yk − Ckx̂

−
k Dkuk

]
Error covariance measurement update Σ−

x̃,k = (I − LkCk)Σ
−
x̃,k
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Results
The results of theQsei estimator for 1 charge balancedUDDs cycle is discussed. The charged balanced
UDDS cycle is a special case of drive cycle, where the starting SOC and the end SOC is kept constant.
This is achieved via large amount of regenerative braking. This special drive cycle is used as it covers
discharge during acceleration and charging during braking. So aging behaviour for both charging and
discharging can be analysed in one cycle. Figure 4.5 shows the estimation Qsei loss with zoomed in
image of the estimator. The red line depicts the noisy output of the ROM SEI Model and the blue line
is the estimator predicted output. The dotted lines are the confidence bounds of the estimator. They
tell us we have high confidence that the true value lies between x̂+

k ± 3
√
Σ+

x̃,k or 3σ bounds.
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Figure 4.5: Estimation of SEI degradation for a fresh cell with noisy inputs and confidence bounds

Figure 4.6 (a) shows the error between the noisy output from the ROM Model and the estimated
output by the estimator. The error start from zero as the estimator was correctly initialized and the
absolute value error increases as the noise in the system accumulated during the cycle.Figure 4.6 (b)
shows the percentage error for the estimator. The estimator is finely tuned and the percentage error
between the estimated value and the model output lies with a maximum of 1.49 % and a minimum of
-1.87 % . The uncertainty of the estimator takes 7 secs to converge to a stable value.

(a) Estimation of SEI error (absolute)

X 691

Y 1.49338

X 179

Y -1.87849

(b) Estimation of SEI error in percentage

Figure 4.6: Estimation OF SEI error

Figure 4.7 shows the dsei estimator result with a zoomed in view. The red line represents the noisy
ROMmodel output and the blue line depicts the estimator output. Dotted lines represent the confidence
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bounds of the estimator. The estimator output underestimates the SEI thickness at start and can be
seen Figure 4.8 (a) and (b). This is due to fact that, even in a fresh battery there is still a small initial
layer of thickness, which causes the initial internal resistance. The initial guess to the estimator is taken
as zero. So, the estimator tries to correct the difference in initial few seconds. It takes 27 seconds for
the uncertainty to converge to a stable value. The maximum error in the stable phase is 1.5% and a
minimum of -1.6% for the entire cycle.
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Figure 4.7: Estimation of SEI layer thickness for a fresh cell with noisy inputs and confidence bounds

(a) Estimation of dsei error (absolute)
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(b) Estimation of dsei error in percentage

Figure 4.8: Estimation OF dsei error

Loss of active material estimator
Similar to the SEI estimator, the LAM estimator has only one output state so, the, state space equation
is given as,

Qamk+1
= Qamk

+ kamexp(
−Eam

RT
).SOC.|Iapp|∆t (4.4)

where,

Ã = 1, B̃ =
−Eam

RT
.SOC.dt, C̃ = 1, D̃ = 0

SOC is taken as an input from performance model. this makes the system into a dual kalman filter
which will be discussed in sections below.
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Similar to the Qsei estimator discussed above, the applied current is introduced with a process
noise of 2%. This causes noise propagation in the sub model.

Table 4.2: Noise propagation in LAM sub model

Noise Units
Input Current 2% unitless

Maximum Noise in Current (absolute) 4.2 [A]
Maximum noise Qam (absolute) 4.74*e-6 [A.h]

Maximum Noise in Qam 2% unitless

In case of LAM estimator, the estimator is more sensitive and takes more time to converge as it has
an feedback loop with SOC estimator and the error in SOC affects the LAM estimator. Similar to SEI
estimator, the initialization of LAM estimator is done by setting uk = Iapp ( Noisy input current ). Σω =
1e-12 ( This is kept so low to reduce the error in system as the error multiplies due to feedback loop
with SOC estimator). Συ = 1e-6.x̂+

0 = QLam0
( The initial value of LAM loss, for a new battery it is set

to 0).

Results
Figure 4.9 shows the LAM estimator with zoomed view. The red line shows the Noisy ROM model
output, while the blue line represents the estimated Qam. The output of the ROM LAM sub model is
extra noisy due to two changing inputs of Iapp and SOC amplifying the noise in the model. Figure 5.2a
(a) shows the absolute error in the system and Figure 5.2a (b) represents the percentage error with a
maximum of 0.3% and min of -0.3%. The LAM estimator is slow to converge, but is more accurate than
all other estimators.
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Figure 4.9: Estimation of LAM degradation for a fresh cell with noisy inputs and confidence bounds
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(a) Estimation of LAM error
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Figure 4.10: Estimation of LAM error

Li-plating estimator
Li-plating sub model estimator is calculated in the same way as done for the above cases,

QLi,k+1 = QLi,k + JliAcelldt

, where,
Ã = 1, B̃ = Acelldt, C̃ = 1, D̃ = 0

where Jli is the lithium plating side current which is dependent on the applied current Iapp discussed
in e.q 4.24, e.q 4.25 and e.q 4.26.

The SEI growth sub model and the Li-plating model are related to each other by the Eq. 4.27. So
the dsei calculated in ’k’ iteration is used as an input to estimate Li-plating for ’k+1’ iteration.
Similar to estimators discussed above, the applied current is introduced with a process noise of 2%.
This causes noise propagation in the sub model. Table 4.3 describes the error propagation in LIP sub
model.

Table 4.3: Noise propagation in LIP sub model

Variables Noise Units
Input Current 2% unitless

Maximum Noise in Current (absolute) 4.2 [A]
Maximum Noise in overpotential -0.0542 [V]

Maximum Noise in side current (jli) 1.20*e-05 [A]
Maximum Noise in Qli 5% unitless

Maximum Noise in Qli (absolute) 6.94*e-4 [A.h]

The LIP estimator is initialized with uk = jst ( Noisy side current density as input).Σω = 1e-07.Συ =
1e-08.x̂+

0 = Qlip0 ( The initial value of LIP loss, for a new battery it is set to 0). The initialization of LIP
estimator required smaller magnitude of process and sensor noise as the noise from the SEI estimator
due to growth of SEI layer being linked to change in Volume fraction for the lithium plating estimator,
generates additional noise.

Results of LIP Estimator
Figure 4.11 shows the results of LIP estimator, with red lines showing the noisy output of the ROM LIP
sub model. The estimator predicts the aging properly and the error seen in Figure 4.12 (a) and (b) are
within the uncertainty bounds. The absolute error increases more towards the end as the balanced
UDDS cycle as high regenerative braking at the end to recover the lost SOC, thus higher charging
current is applied which increases the rate of Lithium plating in the model and thus more error.
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Figure 4.11: Estimation of Li-Plating degradation for a fresh cell with noisy inputs and confidence bounds

(a) Estimation of Li-Plating error (b) Estimation of Li-Plating error in percentage

Figure 4.12: Estimation of Li-Plating error

SOH estimator
The final goal of this thesis was to build a SOH estimator. The SOH estimator answer the first research
sub question of ’How to estimate the SOH of a cell in real-time using adaptive control techniques?
Summing up all the predicted value of the aging estimator, we get capacity loss for a cell. Figure 4.13
(a) shows the capacity loss for a single UDDS drive cycle in absolute terms, while Figure 4.13 (b) shows
the estimation of Capacity loss in percentage for a fresh cell in 1 UDDs drive cycle. The total loss in
Capacity in a single cycle is 0.045% or 3.2*10-4 A.h.
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(a) Estimation of Capacity loss for a fresh cell with noisy inputs and
confidence bounds

380 400 420
99.985

99.99

99.995

(b) Estimation of Capacity loss in relation to a fresh cell with no
degradation capacity

Figure 4.13: Estimation of Capacity loss (SOH estimator)

State of Power (SOP)
SOP is the available power to be charged or discharged from the battery. Instantaneous power deliv-
ered by a cell is given by P = V ∗ I. As we have introduced 2% noise in measuring the current. The
Voltage also deviates as the resistance of the cell changes due to change in thickness of SEI layer,
which is predicted by the Voltage estimator. Thus the power delivered by the cell will vary from an ideal
cell. Figure 4.14 (a) shows the estimated Power by the estimators with noisy inputs vs Actual Power
from ROM model. Figure 4.14(b) shows the estimated Power delivered relative to an ideal cell. The
maximum power delivered is 103% and minimum is 95.3% relative to an ideal cell.
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(a) Estimated Power delivered by a fresh cell
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(b) Estimated Power delivered by a fresh cell with noisy inputs
relative to an ideal cell

Figure 4.14: Estimated Power delivered by a fresh cell with noisy inputs

4.4.2. SOC estimator
As discussed in chapter 3,Cell state of charge can be related either to the total amount of lithium in the
negative electrode or to the total amount in the positive electrode.

The cell SOC can be calculated as

SOC =
θavg − θ0
θ100 − θ0

(4.5)

where, θavg =
cneg
s,avg

cneg
smax

. State of charge varies linearly as the stoichiometry of the negative electrode
varies between x0% and x100% (or, equivalently, as the stoichiometry of the positive electrode varies
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between y0% and y100%).
In this Case, as the state and output is same so xk and yk is the same. A filter is now, reduced to

yk = Ckxk + z0

where,
Ã = 0, B̃ = 0, C̃ =

Cs,k

Cmax
s (θneg100 − θneg0 )

, D̃ = z0

and, z0 is the initial condition of SOC, generally given as an input. For the estimation of SOC, we will
require concentrations of the electrodes online. The measurements available from a cell in real-time
are current (Iapp and Voltage (V). So using only current and Voltage we should be able to estimate
concentrations. This is achieved by two methods:

Current as input
In this method, using the transfer function given in equation A.4, the ROM can provide the required
concentrations cs,avg as a output, which can be used by the estimator to calculate SOC.

Current and voltage as input In this method, cs,avg is calculated by using the Voltage and Current
as input. The Voltage is given by the relationship,

Voltage = Difference in Over Potential of electrodes+ Difference in Open circuit Potential
+ Electrolyte Potential+ Film Resistance

Here,voltage is the measured value . The difference in electrolyte potential is very small (in the
order of 10( − 2)) and can be neglected. The Over Potential can be calculated by the transfer function
A.6, which is a function of input current (Iapp. The remaining variable is the difference in open circuit
variables which are a function of θavg as given in equation and . Thus θavg can be calculated by this
way, to then estimate SOC.

Figure 4.14, shows the SOC estimation for a fresh battery with noisy inputs and confidence bounds.
The red line is the noisy SOC output and Qsoc + wk is the predicted value by the estimator. The
confidence bounds provide a limit to the accuracy of the estimator. Figure 4.15(a) shows the error in
the system and 4.15(b) depicts the percentage error for the estimator. It is to be noted that the estimator
performs well within the error bounds with anmaximum error of 1.8%. The confidence interval converge
to a stable value within first few cycles.

500 550 600

0.7915

0.792

0.7925

Figure 4.15: Estimation of SOC for a fresh cell with noisy inputs and confidence bounds
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(a) Estimation of SOC error( absolute) (b) Estimation of SOC error in percentage

Figure 4.16: Estimation of SOC error

4.4.3. Voltage estimator
The voltage of a cell is calculated as

Vcell = ηpos − ηneg + ϕpos
e − ϕneg

e + Upos
ocp − Uneg

ocp − FRfilmIapp (4.6)

as per e.q 4.16 the resistance of the cell is update every iteration as the thickness of the SEI layer
increases. So a feedback of SEI layer is provided that updates the Rfilm every iteration.
Figure 4.17 shows the estimation of Voltage with zoomed in view. The red line shows the noisy output of
the ROM model and blue line is the predicted estimator output. As seen in figure 4.18 (a) and (b) there
is extra noise in the system and the error goes beyond the the uncertainty bounds at some instances.
The voltage estimator is thus 93% accurate within the 3σ bounds. The maximum estimation error is
4.8% and the minimum error is -2.6%.
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Figure 4.17: Estimation of Voltage for a fresh cell with noisy inputs and confidence bounds
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(a) Estimation of Voltage error (b) Estimation of Voltage error in percentage

Figure 4.18: Estimation of Voltage error

4.5. Summary
In this chapter, the algorithms to estimate the aging of a cell in real time using Kalman filtering methods
is discuused. To estimate the states like SOC and Voltage and aging parameters simultaneously a dual
Kalman filter algorithm is implemented. All the estimators predict the states and the outputs accurately,
with maximum percentage error < 5%. The total capacity loss in one UDDS drive cycle was estimated
to be 0.045%.



5
Adaptability of the estimators

In Chapter 4, the algorithm to estimate the states of the battery in real time was discuused. In this
chapter the ability of the estimators to adapt to various changing conditions is explored.

5.1. Changing Initial Conditions
In this section the answer to the second research sub-question ’How fast can the estimator react to
changing initial states of the cell?’is answered. Till now the all the results were validated for a new cell.
In real life scenarios the cell may age and the initial conditions for the estimators may not be the same.
Thus the estimator accuracy and speed needs to be validated for various cases, with a fresh and old
cell.

Case1 :Fresh Cell
In this case as seen in fig. 5.1, the estimator is run for 5-UDDS charge depleting drive cycles. The initial
estimate for the estimators are the same as for the ROM aging models.The convergence times for the
various estimators are shown in Figure 4.19. The major takeaway from this case is that the estimators
takes 6 seconds to come to estimate the true SOH for a fresh cell. Also, running for a longer cycles,
the loss due to Li-plating which is the major contributor to the overall aging of the cell, plateaus, as the
formation of additional SEI thickness layer, prevents extra plating to occur.

55
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(c) Convergence time of LIP estimator for a fresh cell
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(d) Convergence time of SOH estimator for a fresh cell

Figure 5.1: Convergence time of estimators for a fresh cell

5.1.1. Initial guess of a 5-UDDS cycle old cell to a fresh cell
In this case an cell is run for 5-UUDS cycles at 1C , but the estimators are initialized with the conditions
of a new cell. This is done to check how long the estimator takes to recognise and adapt to the changing
conditions. Figure 4.20 shows the various estimators convergence times. Figure 4.20 (d) shows the
SOH estimator takes 21 secs to adapt to the different initial conditions. This is fast enough to be used
in real-time scenarios.
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(a) Convergence of SEI estimator time of a fresh cell with an initial
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(b) Convergence of LAM estimator time of a fresh cell with an initial
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(c) Convergence of LIP estimator time of a fresh cell with an initial
guess of a used battery for 5-UUDS cycle
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Figure 5.2: Convergence of estimator times of a fresh cell with an initial guess of a used battery for 5-UUDS cycle

Table 5.1 shows the estimators times with different initial conditions of a fresh and old cells. The
highest time taken is by the LAM estimator. This is due to the fact that LAM estimator has 2 noisy
inputs (SOC and Current), thus the noise in the system is high and the estimator takes more time to
converge. Even with a old cell that has undergone aging for few UDDS cycles, the estimator is able
to adapt to the changing conditions in 15-20 secs. This proves the robustness of the estimators in
real-time applications.
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Table 5.1: Convergence of estimators for various cases.

Fresh Cell Old Battery(5-UUDS)
Time (sec) (sec)

Fresh Cell

SOH 6 21
SEI 7 45
dsei 6 40
LAM 134 181
LIP 10 21

5-UDDS at 1C

SOH 16 3
SEI 21 2
dsei 26 2
LAM 120 29
LIP 26 3

5-UDDS at 2C

SOH 21 15
SEI 27 18
dsei 27 11
LAM 126 164
LIP 27 18

10- UDDS

SOH 29 18
SEI 32 18
dsei 29 19
LAM 149 144
LIP 28 17

5.1.2. Parameter estimation
In this section, the final research sub question : ’Can the estimators be adapted to concurrently esti-
mate both the states and the time varying cell parameters in case of an old cell? How fast can this be
achieved in context of real-time estimations?’ is answered.

The research contribution provided in this thesis report will act as a stepping stone to achieving
a digital twin of a Li-ion cell as a part of future projects. In the case of a digital twin, all states and
parameters should adapt to different initial conditions. The idea is to update the initial parameters as
per different initial conditions. This is possible by using the dual Kalman filter to estimate the parameters
and states in parallel for a degradation model.
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Figure 5.3: State space visualisation of the complete estimation process

Figure 5.3, shows the state space visualisation of the complete process used in parameter estima-
tion. Here The first loop is the state space representation of the performance model where, the States
and the outputs are a function of θ and the input k .The aging model is represented as a function of θ.
the changes in the aging model are send an feedback to the performance model to update the states.
The final loop is the parameter update where the input parameters used to calculate the aging models
are updated. Real systems have noise in them and are processed in the system itself to give noisy out-
put. w, e,m are the process noise in the system and v, r, l are the sensor noise for each of the models.
The process comprises of three Kalman filters running in parallel. The first filter KFx estimating and
updates SOC and Voltage. The second filterKFθ estimates and updates the aging states and the final
Kalman filter KFp estimates and updates the parameters.

5.1.3. SEI aging Model parameter update
The total loss SEI aging is as discussed in section 3.4.1 is given as.

Qsei,k+1 = Qseik +
Ksei ∗ e

−Esei
RT

2(1 + λθsei)
√
tk

(5.1)

Here, Ksei, Esei, λ are all initial parameters, which were taken to be constants, to calculate the SEI
aging. With time, these parameters tend to change slowly, as the cell ages. Also, these parameters are
calculated in literature via various tests performed for a fresh cell under specific control environment.
These parameters may not hold true for a aged cell. Here we have to use a dual extended Kalman
filter, as the relationship between the parameters and aging models is non-linear.
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Algorithm 4 Process to update parameters
For state-space aging models.
θk+1 = f(θk, uk|Pk) + ek,

where Pk are the parameters to be updated.

In case of SEI Model, the relationship is as shown in equation 5.1,

For Parameter Updates, we need to find a relationship between aging model and the parameters,
given by the CP

k

where, CP
k = ∂f(θk,uk|Pk)

∂P |
P=

ˆ
P−

k

The partial differentiation for all the 3 parameters gives,

CKsei
k = e

−Esei
RT

2(1+λθsei)
√
t

CEsei
k = e

−Esei
RT

2(1+λθsei)
√
t
∗ −Ksei

RT

Cλsei

k = −Ksei∗e
−Esei

RT ∗θsei
2
√
t(1+λθsei)2

Initialization ( same as the initialisation done for SEI estimator in Algorithm 3)

Computation

For k = 1,2,...compute

Time Update for the parameter filter

P̂−
k = P̂−

k−1

Σ−
P̃ ,k

= Σ+

P̃ ,k−1
+Σm

Time update for the state aging filter

θ̂−k = Ak−1θ̂
+
k−1 +Bk−1uk−1

Σ−
θ̃,k

= Ak−1Σ
+

θ̃,k−1
AT

k−1 +Σe

Measurement update for the state filter

Lθ
k = Σ−

θ̃,k
CT

k

[
CkΣ

−
θ̃,k

CT
k +Σr

]−1

θ̂+k = θ̂−k + Lk

[
yk − Ckx̂

−
k Dkuk

]
Σ+

θ̃,k
= (I − LkCk)Σ

−
θ̃,k

Measurement update for the Parameter filter

LP
k = Σ−

P̃ ,k
CP

k

T
[
CP

k Σ−
P̃ ,k

CP
k +Σl

]−1

P̂+
k = P̂−

k + Lk

[
yk − Ckx̂

−
k Dkuk

]
Σ+

P̃ ,k
= (I − LP

k C
P
k )Σ−

P̃ ,k
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5.1.4. LAM aging Model parameter update
For the LAM aging model, as discussed, there are 2 parameters that needs to be updated, Kam and
Eam.
As discussed in section 3.4.2, the total LAM loss is given by,

Qam,k+1 = Qam,k + kamexp(
−Eam

RT
).SOCk.|Iapp|dt (5.2)

Similar to the process followed for SEI aging parameter update, the partial differentiation for all the
2 parameters gives,

CKam

k = exp(
−Eam

RT
).SOCk.|Iapp|dt

CEam

k =
−Kam

RT
∗ exp(−Eam

RT
).SOCk.|Iapp|dt

5.1.5. Results
SEI parameters
Figure 5.4 shows the change in the value of Ksei, a constant parameter assumed for modelling SEI
aging. Different initial conditions are provided to the estimator with a 5, 10,50 UDDS drive cycle old
aged cell outputs as the input to the estimator. The estimator converges to a new constant value after
a few iteration. Table 5.2 describes the time taken by the estimator and the new updated parameter
value for each case of drive cycle runs. The parameter does not change a lot with aged cells. Even
though, the change is very small in absolute terms, in a large battery pack this variation multiples with
the number of cells and cause large variations in a estimation between a new battery and a old one.
The estimator used in this research is model based, and the values of the constants are taken form
literature. In a experimental scenario, any random value of the constant can be assumed and the
algorithm developed can then be use to converge to the real value.
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Figure 5.4: Ksei parameter variation with different initial conditions

Table 5.2: Ksei Variation with different initial conditions

Ksei New Value % change Convergence
(sec)

Actual 6684.8 0 0
1 UDDS 6684.79999999996 -5.98638E-13 0
5 UDDS 6684.79999999901 -1.48163E-11 36
10 UDDS 6684.7999999966 -5.08706E-11 62
50 UDDS 6684.79999998303 -2.53863E-10 71
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In case of Esei the convergence is fast and value increase with aged cells as seen in figure 5.5.
Table 5.3 shows the variation of Esei and the percentage change with different age d cells.
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Figure 5.5: Esei parameter variation with different initial conditions

Table 5.3: Esei Variation with different initial conditions

Esei New Value % change Convergence
(sec)

Actual 39146 0 0
1 UDDS 39146 0 1
5 UDDS 39146.3 0.000767 1
10 UDDS 39147.02 0.002596 1
50 UDDS 39151.08 0.012986 1

Similar to the other two par maters, λ − sei is updated with different aged cell inputs as seen in
fig. 5.6 and table 5.4 shows the % change in the value of the parameter. The convergence times are
comparable to the time taken by Ksei.
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Figure 5.6: λsei parameter variation with different initial conditions
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Table 5.4: λsei Variation with different initial conditions

λsei New Value % change Convergence
(sec)

Actual 5.5e-5 0 0
1 UDDS 5.5099e-5 0 1
5 UDDS 5.50985e-5 -2.64614E-07 19
10 UDDS 5.50960e-5 -7.20557E-07 43
50 UDDS 5.50870e-5 -3.88333E-06 55

LAM Parameter Update
in case of the parameter of LAM estimator, there is direct relationship between the estimated SOC and
the applied current Iapp, and due to these 2 noisy inputs, the parameter takes a long time to converge.
In some scenarios it does not converge to a constant value as seen in figure5.7 and figure 5.8. The
table for convergence and % are not made as the value of the parameter keeps changing throughout
the drive cycle.
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Figure 5.7: Kam parameter variation with different initial conditions
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5.2. Summary
In this chapter, the adaptability of the estimators with changing initial conditions is discuused. The
adaptability of the estimator is judged based on the convergence times with different aged cells. The
SOH estimator is able to adapt to new condition in 15-20 seconds, which is acceptable for real-time
applications. In later half, a new concept of using 3 kalman filters running in parallel to update the
parameters of the aging models is discussed.



6
Conclusions

The aim of this research was to develop algorithms for online state of health estimation using a multi-
physics reduced order models, that takes into account major degradation mechanisms and a lumped
thermal model. Here the outcomes of the research questions introduced in chapter 1.2 are discuused
in detail:

1. How to estimate the SOH of a battery in real-time using adaptive control techniques ?
To estimate the SOH of a battery in real-time, an adaptive filtering technique called dual Kalman
filters was used as discussed in Chapter 4. The culmination of the five estimators resulted in the
prediction of SOH of a battery in real-time. The estimators which took noisy input form the ROM
model were compared with the output of the ROM model. The SOH estimator predicted the SOH
of a battery with a maximum percentage error of < 5% for a 2% noisy input of applied current. All
the estimators, except the Voltage estimator have there error with the confidence bounds. The
Voltage estimator predicts the output with a confidence of 93%.

2. How fast can the estimator react to changing initial states of the battery?
To check the robustness of the estimators and there application in a real life scenario, the es-
timators were provided with an initial conditions of an aged cell. Even with a old cell that has
undergone aging for few UDDS cycles, the estimator is able to adapt to the changing conditions
in 15-20 secs.

3. Can the estimators be adapted to concurrently estimate both the states and the time vary-
ing cell parameters in case of an old cell? How fast can this be achieved in context of
real-time estimations?
Section 5.1.2 in Chapter 5, a novel idea using 3 Kalman filters to parallel update the time varying
cell parameters along with the estimation of states is developed. The convergence time of the
parameter estimators is slower compared to aging estimators, with the maximum time of 62 secs
required for the Ksei parameter to converge compered to the 32 secs required by SEI estimator
to adapt and converge to a new value.

6.1. Recommendations for future work
The presented thesis work lays a ground work for creating a Digital twin of a battery that can pre-
dict in real time the health of a battery pack and can be implemented in Battery management sys-
tems(BMS).This section lists the areas where further investigation can be done.

1. All the estimators are build for a cell level system. The system can be extended to pack level
systems taking into account cell to cell variations.

65
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2. The current work of online estimators are model based estimators. The estimators are compared
with the output of the ROMmodel. In future and experimental validation of this work can be taken
up.

3. The initial parameters used in modelling, are taken form literature.The experimental validation
of the parameters used for Physics based models is an extensive work and requires destructive
techniques to verify the initial parameters. This can be a master thesis on its own.

4. Lastly, the final aim of this work is to apply the concept in a real life scenario. This can be done by
implementing the algorithm used in the estimators in a micro-controller, and track the data with
sensors to verify the results with a real battery pack.
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A
Appendix

A.1. Battery Model parameters (LGM50 5 Ah NMC cell)

Table A.1: List of Whole cell constants LGM50 (NMC cell) 1[7]

Constants
Parameter Name Value Unit

Electrode Plate Area Acell 0.1027 [m2]
Vcell,min V 2.5 [V]
Vcell,max V 4.2 [V]

Qcap Q 5 [A.h]
Reference Temperature Tref 298.15 [K]

Catonic Transference Number t0+ 0.2594 [unitless]
Activation Energy Electrolyte Diffusivity EDe 0 [J mol-1]

Electrolyte Diffusivity at Tref Deref 1.77E-10 [m2 s-1]
Activation Energy Electrolyte Conductivity Ekappa 0 [J mol-1]

Initial Concentration of Electrolyte Ce0 1000 [mol m-3]

Table A.2: List of LGM50 cell separator parameters [7]

Separator
Parameter Name Value Unit
Length of Separator L 0.000012 [m]
Electrolyte Phase Volume Fraction ϵe 0.47 [unitless]
Bruggeman Coefficient for De Debrug 1.5 [unitless]
Bruggeman Coefficient for kappa kbrug 1.5 [unitless]
Bruggeman Coefficient for kappaD kbrugd 1.5 [unitless]
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Table A.3: List of cell parameters for simulation (LGM50) [7]

Positive Electrode Negative Electrode
Parameter Symbol Value Value Unit

Activation Energy Reaction Rate Ek 17800 35000 [J mol-1]
Normalized reaction rate coefficient krefnorm 3.544E-11 6.716E-12 [mol m-2 s-1]
Activation Energy Solid Conductivity Eσ 0 0 [J mol-1]

Solid Phase Conductivity σref 0.18 215 [S m-1]
Activation Energy Solid Diffusivity EDs 0 0 [J mol-1]

Solid Diffusivity at Tref Dsref 4E-15 3.3E-14 [m2 s-1]
Particle Radius Rs 0.00000522 0.00000586 [m]

Length of Electrode L 0.0000756 0.0000852 [m]
Solid Phase Volume Fraction ϵs 0.665 0.75 [unitless]

Electrolyte Phase Volume Fraction ϵe 0.335 0.25 [unitless]
Max Solid Phase Concentration Cs,max 22860 33133 [mol m-3]

Electrode Stoichiometry at 0% SOC θ0 0.8539 0.0263 [unitless]
Electrode Stoichiometry at 100% SOC θ100 0.2638 0.910612 [unitless]

Charge Transfer Coefficient α 0.5 0.5 [unitless]
Film Resistance Rfilm 0 0 [Ω m2]

Bruggeman Coefficient for De Debrug 1.5 1.5 [unitless]
Bruggeman Coefficient for sigma σbrug 1 1 [unitless]
Bruggeman Coefficient for kappa kbrug 1.5 1.5 [unitless]
Bruggeman Coefficient for kappaD kbrugd 1.5 1.5 [unitless]

In the electrolyte, conductivity is a function of concentration:

κ(ce) = 4.1253 ∗ 10−2 + 5.007 ∗ 10−4ce − 4.7212 ∗ 10−7c2e + 1.5094 ∗ 10−10c3e − 1.6018 ∗ 10−14c4e (A.1)

For the negative electrode, the open circuit potential function is:

Uneg
ocp (θ) = −0.16 + 1.32 ∗ exp(−3θ) + 10 ∗ exp(−2000θ) (A.2)

For the positive electrode, the open circuit potential function is:

Upos
ocp (θ) = 4.19829 + 0.0565661 ∗ tanh(−14.5546θ + 8.60942)− 0.0275479[

1

(0.9984− θ)0.4924
− 1.901]

− 0.15723 ∗ exp(−0.0473θ6) + 0.8102 ∗ exp[−40(θ − 0.1338)] (A.3)

A.2. Definitions
There are many ambiguous terms to describe the state and properties of battery cells. This can lead
to misinterpretation of the results or comparing results with different properties. In this paragraph the
terms used in this thesis will be defined.

1. State of Health (SOH): The state of health (SoH) of a battery is a subjective term and mainly
depends on the application. The SoH indicates the state of the battery between the beginning of
life (BoL) and end of life (EoL) in percentages. The EoL of a battery is reached when the battery
cannot perform according to the minimum requirements. For EV applications this is defined by
the battery manufacturers when one of the following conditions has been fulfilled :

• The capacity of a battery under reference conditions has dropped to 80% compared to the
rated capacity under reference conditions. This is known as capacity fading.

• The maximum power delivered by the battery under reference conditions has dropped to
80% compared to the rated power under reference conditions. This is known as power
fading

2. State of Charge (SOC): The state of charge (SoC) indicates the amount of charge in Amp�hours
left in the battery. The SoC can be divided into two types: engineering�SoC (e�SoC) and ther-
modynamic�SoC (t�SoC). The e�SoC is the SoC apparent to the user of the battery and is rate
dependent; it is the state of the capacity at a certain discharge rate, so different discharge rates
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will result in a different e�SoC at the same amount of charge in the battery. The t�SoC is the
SoC of a battery defined by the thermodynamic properties in the cell and can be determined by
the open�circuit voltage of the battery; it is the state of the useable capacity in the cell.

3. Cell Capacity: The apparent capacity of the cell is the rate dependent capacity experienced by
the user. This capacity is strongly dependent on the internal impedance of the cell and varies
extensively depending on the operating conditions. On the other hand, the useable capacity is
the amount of charge the battery contains and is not rate dependent. It is the theoretically possible
amount of charge that can be discharged from a fully charged cell with an infinitely small current
for a given minimum cell voltage, so that the voltage drop over the internal resistance becomes
close to zero. Both definitions of capacity are dependent on the temperature. Since the internal
resistance voltage drop causes the battery to reach the minimum voltage before 0% SoC, it will
not be possible to use the complete useable capacity.

4. Depth of Discharge(DOD) : The depth of discharge (DoD) of the battery is generally defined as
the amount of charge removed from a fully charged cell in percentages. Based on the DoD, the
number of possible cycles before the EoL of a cell is estimated.

5. C-rate The C�rate is a measure for the current of a battery cell and is scaled to the nominal
capacity of a cell stated by the manufacturer at reference conditions. The current level that a
battery cell can discharge at depends on the capacity of the battery. A current of 1C means that
the battery cell is ideally charged or discharged in one hour, C/2 in two hours and 2C in half an
hour. So a current of 1C for a cell with nominal capacity of 160Ah is 160A and 1C for a 10Ah cell
is 10A.

6. Energy Throughput : The energy throughput is the total amount of energy that can be charged
and discharged within the lifetime of batteries [khojasteh_faria_vale_2021].

A.3. Additional degradation results of main model (pybamm)

Figure A.1: SEI degradation with and without cracks

Figure A.2: Comparison of different degradation for 40 hours
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Figure A.3: Comparison of different degradation for 400 hours

A.4. Transfer Functions
C̃s,e(z, s)

Iapp
= (

ν(s)Rs(z − 1)

asFLnA(keff + σeff )
× σeffcosh(ν(s).z) + keffcosh(ν(s))

sinh(ν(s))
× tanh(β)

(tanh(β)− β)
) (A.4)

where C̃s,e is the debaised surface concentration defined as C̃s,e = Cse − Cs,0 and β = Rs

√
s
Ds
.

’z’ is defined as the spatial electrode location, and ’s’ is the complex frequency domain. ν(s) is a
dimensionless quantity, defined as

ν(s) = Ln

√√√√ as(
1

σeff ) + ( 1
keff )

Rtot + | ∂Uk

∂Cs,e
| Rs

FDs
( tanh(β)
tanh(β)−β )

(A.5)

The reaction flux transfer function can then be derived by combining the results obtained through the
linearised Butler–Volmer Eq. 2.7 and solid phase charge conservation Eq. 2.8.

J(z, s)

Iapp(s)
= (

ν(s)

asFLnA(keff + σeff )
× σeffcosh(ν(s).z) + keffcosh(ν(s)(z − 1))

sinh(ν(s))
(A.6)

The corresponding solid potential ϕs transfer function is,

ϕs(z, s)

Iapp(s)
= − Lnk

eff (cosh(z − 1)ν(s))

Aσeff (keff + σeff )ν(s)sinh(ν(s))
− Lnσ

eff (1− cosh(zν(s))) + zν(s)sinh(ν(s))

Aσeff (keff + σeff )ν(s)sinh(ν(s))
(A.7)

In order to generate an ionic current representation, integrate electrolyte charge conservation Eq.
3.11 with the prior reaction flux transfer function to determine the electrolyte potential. This procedure
results in a two-term representation, which is displayed and discussed in more detail below.

ϕ̃e(z, s)

Iapp
= [ϕ̃e(z, s)]1 + [ϕ̃e(z, s)]2 (A.8)

where the first term is dependent on positive electrode domain, while the second term is determined
by the value of Ce(x, t) at any given instance.

The last step is to acquire the electrolyte concentration transfer function, which is the summation of
negative electrode reaction flux and positive electrode reaction flux, and is given by,

Ce,k(x, s))

Iapp(s)
=

1

s+ λk

[
jnegk (s)

Iapp
+

jposk (s)

Iapp

]
(A.9)

where, λk are the eigen values obtained via the root finding method.
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A.5. Pack level Modeling
Figure A.4 shows an equivalent circuit with 4 cells in parallel. the circuit also shows internal resistances
of the cells and busbar resistances to model to cell to cell variations [71].

Figure A.4: A circuit diagram of a pack with 4 parallel cells showing internal resistances and busbar resistances

Figure A.5 illustrates the algorithm for solving the coupled system of cells .Each battery’s current bal-
ance and boundary conditions are predetermined for the following time-step by time-steps.The initial
current flow through each DFN model is assumed to be equal to the terminal current scaled by the
ratio of the current collector segment length to the total current collector length. The DFN models are
all initialised at the same state-of-charge. Under these circumstances, the models are run for a single,
extremely brief time step of 1 s, and the local over potentials are divided by the local currents to obtain
the local equivalent resistance in accordance with Ohm’s law. By repeatedly modifying the global ter-
minal voltage until the total current equals the desired applied terminal current, these resistances are
utilised to update the resistor network. This new local current is then used as an input to the DFNmodel.
The thermal problem is solved in a non-coupled way with each battery acting as an independent heat
source and interacting with its environment in a “lumped” sense with a volume-averaged heat transfer
coefficient. The change in local current changes the temperature of each cell and causing variation in
other parameters, thus getting the cell to cell variation desired.

Figure A.5: Flowchart of pack-level modeling
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(a) NMC battery pack terminal voltage and current (b) NMC battery pack current

(c) NMC battery pack internal resistance (d) NMC battery cell voltage

(e) NMC battery pack Open circuit Potential (f) NMC battery pack Temperature

Figure A.6: NMC pack model variables using SPM model with a pack of 4 in parallel and 1 in series
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(a) NMC large battery pack terminal voltage and current (b) NMC large battery pack current

(c) NMC large battery pack internal resistance (d) NMC large battery cell voltage

(e) NMC large battery pack Open circuit Potential (f) NMC large battery pack Temperature

Figure A.7: NMC pack model variables using SPM model with a pack of 20 in parallel and 5 in series



A.5. Pack level Modeling 80

(a) NMC battery pack current for UDDS drive cycle (b) NMC battery pack voltage

(c) NMC battery pack Temperature (d) NMC battery pack internal resistance

Figure A.8: NMC pack model variables using SPM model with a pack of 4 in parallel and 1 in series with a UDDS drive cycle.
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