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TIMELY MAPPING OF CROP STAGE AND WATERING EVENTS THROUGH SENTINEL-1
TIME-SERIES

Lorenzo Iannini, Ramses Molijn, Silvia Alfieri, Susan Steele-Dunne, Massimo Menenti

Delft University of Technology

ABSTRACT

Reliable and timely mapping of crop growth conditions and of
their water resources is considered a prioritary application in
light of the abrupt climate changes. With this view, the paper
presents a novel approach that makes use of dense C-Band
time-series for the timely estimation of crop growth stages
and for the detection of changes in crop water conditions, es-
pecially related to precipitation and irrigation events. Aided
by vegetation indexes extracted from Landsat and Sentinel-
2 imagery, the proposed Sentinel-1 centered method exploits
both temporal patterns of crop growth and spatial patterns of
water anomalies to enhance its classification robustness.

Index Terms— Synthetic Aperture Radar, C-Band, Sen-
tinel, data assimilation, land cover mapping, soil, agriculture,
precipitation, irrigation.

1. INTRODUCTION

A robust and timely mapping of land cover in terms of
biomass characteristics and water availability represents a
key factor for modelling land and atmospheric processes at
mesoscale levels as well as for triggering actions in vege-
tation management at district or smaller scale levels. The
latter case includes all the crop management and irrigation
practices aimed at achieving an optimal trade-off between
productivity and water usage. It is foreseen that the system-
atic use of high resolution satellite data for the estimation
of crop growth stage, crop health and soil moisture would
significantly augment the performances of water and energy
balance models in addressing the crop needs.

In such context, active microwave sensors are deemed to
play a crucial role due to their all-weather nature. Especially
in the short term, C-Band imagery is expected to rapidly in-
crease its popularity due to the global avalability and the short
revisit of the Sentinel-1 observations. However, interpreting
backscatter dynamics and hence disentangling the geometric
and dielectric variables in the radar signal is a challenging
task. Several model formulations have been proposed through
the last decades for both bare and vegetated soil [1]. The
most explanatory ones range from from semi-empirical mod-
els such as the popular Oh model for bare soil [2] and the
Water Cloud Model [3] for vegetated land to radiative trans-

fer models where more complex electromagnetic interaction
elements are addressed. The use of the former is in general
favoured due to their simplicity and larger adaptability. A ba-
sic backscattering principle accounted by all the models is its
sensitivity to the media water content, as a result of high per-
mittivity of water (εr = 80) contrasting with the low one of
dry matter (εr = 3). The sensed water belongs to the top layer
of the land medium, where the layer height, or depth, depends
on the penetration capability of the waves. Whereas L-band
receives major signal contributes from the soil even with high
crop canopies and hence can sense soil moisture directly, C-
band at common incidence angles (30◦-40◦) mainly responds
to the water content in vegetation when this latter has LAI >
2m2/m2 [4]. It is indeed acknowledged [5] that the extent of
moisture changes and precipitation events on radar data heav-
ily depend on the canopy thickness.

Despite the intrinsic sensitivity issues, several research
initiatives have been recently conducted on the use of C-band
for the inference of water-related quantities, most notably in
two different directions: 1) the downscaling of soil moisture
products [6, 7, 8], especially after the failure of the L-band
active SMAP instrument, 2) the indirect estimation of pre-
cipitation through its soil moisture proxy [9, 10]. Most of
this research is aimed at regional or global scale, with grid
resolutions larger than 100 m and coarse assumptions on the
vegetation and soil patterns. This might not be sufficient for
agricultural contexts, which are temporally dynamic and spa-
tially heterogenous, with the human intervention (e.g. irriga-
tion) that adds to the climatic behavior. The present paper is
aimed at laying the foundations for the use of C-band SAR in
near-real time crop stage estimation and watering events de-
tection. With watering events we refer to both precipitation
and irrigation as well as their discrimination based on the dif-
ference in their spatial patterns. The retrieval method is based
on a two-step algorithm that estimates in turn the crop stage
and conditions per field by a Hidden Markov Model method-
ology [11] and evaluates the likelihood of water change con-
ditions on a larger spatial scale. The concept of this study has
been developed on a large pilot test area, the Sao Paulo state
(Brazil). An analysis per vegetation density and rain scenario
of the radar backscatter has been here conducted and used as
empirical basis for devising the approach. The method will be
also applied to the Abda-Doukkala (Morocco) demonstration
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Fig. 1. Land cover map of the Sao Paulo state (Brazil) for
year 2010.

area with a controlled irrigation system, in order to test its in-
tegrability into the crop water demand system implemented
for the H2020 project MOSES (Managing crOp water Saving
with Enterprise Services).

2. STUDY AREA AND DATA

The study is conducted on two different types of experiment
sites:

• the Sao Paulo state (Brazil). This area was conveniently
used for pilot conception and experimentation due to
the extensive land cover mapping activities conducted
for previous research projects. The application of the
Hidden Markov Model approach to the Landsat NDVI
and NDWI series [11] led to the generation of semi-
monthly land cover maps, see Fig. 1. The vegetation
mainly consist in rain fed crops and pastureland. Two
years, from 2015 to 2016, were examined.

• the Abda-Doukkala test site, shown in Fig. 2. The site
has been surveyed during 2016 and 2017 growth season
to collect crop type and condition information. Irriga-
tion data, aggregated per district, are also released
by Office Regional de Mise en Valeur Agricole des
Doukkala (ORMVAD), the local agriculture authority.

For all the study areas Sentinel-1 IW products are used in
combination with the surface reflectances from the cloud-free
Landsat-8 and Sentinel-2 (this latter only for the MOSES test
sites) imagery. Both weather stations and Global Precipita-
tion Measurement (GPM) satellite data are used to train and
validate the technique.

3. METHOD AND DISCUSSION

The conceived approach is based on a temporal and spatial
statistical description of the different land cover states identi-

Fig. 2. Demostration area (highlighted by a red rectangle) in
the Abda-Doukkala region (Morocco).

fied in each area. With the terminology ’states’ we can refer
to the smallest (non-aggregated) elements in the chosen tax-
onomy, that might refer to a specific land cover type in a spe-
cific condition, e.g. wet maize in mature stage. The satellite
observations generated by the i-th state, Si, at time t are here-
with modelled through the multivariate gaussian distribution
y(t) ∼ N (mi(t),Ci(t)) with

mi(t) =
[
NDV Ii(t) HVi(t) 4HVi(t)

]T
Ci(t) =

 vNDV I,i(t) 0 0
0 vHV,i(t) χi(t)
0 χi(t) v∆HV,i(t)


whereNDV I stands for the expected Normalized Differ-

ence Vegetation Index,HV (t) is the expected cross-polarized
backscatter in dB at time t and ∆HVi(t) = HVi(t)−HVi(t−
1) , i.e. the expected difference between two consecutive ac-
quisitions from the same Sentinel-1 beam mode and hence
separated by either 6 or 12 days. Notice that the SAR and op-
tical acquisitions are assumed independent and that the distri-
bution becomes bivariate if optical imagery (LS8 or S2) is not
available. The dependency on time t can be simplified into a
dependency on the day of year for some classes or, in the case
of crop states, it can be omitted, as elucidated in [11].

In order to map watering events, each model state is fur-
ther exploded in four different sub-states, each related to a
different scenario. The following water(ing) scenarios are ad-
dressed

DD Dry to Dry
WW Wet to Wet
DW Dry to Wet
WD Wet to Dry

They based on pairs (t,t-1) of images and are intu-
itively aimed at exploiting the backscatter sensitivity to water
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changes. The state Si can be now described by the index
pair Si → Sω

m with m standing for the land cover type and
ω = {DD,WW,DW,WD} for the water scenario. The
state sequence Q = q1 q2 . . . qT for each pixel is modelled
in time by a Markov chain, i.e. by linking probabilistically
the state at time t − 1 with the state at time t through the
transition coefficients am2,ω2

m1,ω1
= P (qt = Sω2

m2

∣∣qt−1 = Sω1
m1

)
satisfying

∑
m2

∑
ω2
am2,ω2
m1,ω1

= 1. Model adherence to reality
shall be enabled by forcing for each land cover type m the
the transitions WW → DD, DD → WW , WD → WD,
DW → DW , WD → WW , DW → DD to have a null
coefficient a.

The approach implementation comprises a training/analysis
phase and an inversion/verification phase. The calibration
phase is aimed at estimating the model λ = (a,m,C), which
results in a challenging task if rigidly approached. For the
sake of simplicity, the transitions and the signature parame-
ters m and C have been first estimated for each crop without
discriminating between different water scenarios. The esti-
mation is carried out by Likelihood Maximization through a
Simulated Annealing technique and is applied only toNDV I
and HV sequences. The results for the Sao Paulo state show
the information brought by the two indicators is complemen-
tary with only partial correlation, see Fig. 3. In a seond step,
each state of the crop and vegetation classes (the points in
Fig. 3) have been then associated to one of the 4 generic
vegetation profiles based on expert knowledge: 1. bare soil
or marginal vegetation, 2. low vegetation, 3. medium vege-
tation, 4. dense/high vegetation. These generic profiles have
been could be characterized basing on the a-priori informa-
tion provided by available the land cover maps and growth
timing, on the available weather station data, and on the GPM
precipitation estimates. The HV - 4HV profiles could be
hence retrieved. The results are in line to our expectations,
see Fig. 4 and 5, as the dependence on the vegetation density
of the rain events on the backscatter is very evident.

The inversion phase, i.e. the application of the approach
for retrieving the land cover information, relies on two funda-
mental steps:

1. Given some initial land cover state probability, the hid-
den Markov model λ = (a,m,C) can be applied to
the data sequences y1 . . . yT at each new acquisition
T through the so-called forward-backward algorithm.
Such solution conveniently allows to compute the log-
probabilities

lk(m,ω, t) = Pk(qt = Sω
m |y1 . . . yT )

for every spatial cell k. Notice that such probabilities
are computed per cell individually.

2. The probabilities pk are spatially aggregated per water
scenario, according to

L (ω, t) =
∑
k

∑
m

lk(m,ω, t)

Fig. 3. Synoptic representation of the class signatures (m -
points, C- errorbars) in the NDVI - HV [dB] space for the
Sao Paulo area. Each point correspond to a different state
for sugarcane and annual crops, whereas it corresponds to a
different time for the other classes.

in order to determine the most likely scenario.

The probability of high or low water content in the scene at a
specific date can be further derived by summation of the com-
plementary pairs WW,DW or DD,WD. Uniform agree-
ments on the most likely scenario over a relatively large num-
ber of fields provides a strong indication of a precipitation
event or of a drought. Viceversa, strong discrepancies be-
tween fields can be a good indication of irrigation activities.
Although the method has been presented as a standalone so-
lution, mainly devoted to the detection of watering events, its
instrinsic soft-labelling nature would strongly value an inte-
gration with other coarse-scale soil moisture products. The
integration would have a two-fold benefit: 1) it would pro-
vide physical interpretation and calibration to the extracted ω
probabilities. 2) It would mitigate eventual errors occurring
during the start of growth and the harvesting period due to
large vegetation, and hence backscatter, dynamics.
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Fig. 4. Bare soil radar backscatter analysis. The bivariate dis-
tribution (HV [dB] -4HV [dB]) associated to the 4 different
water scenarios are reported: WD - Wet to Dry, DD - Dry to
Dry, WW - Wet to Wet, DW - Dry to Wet.

Fig. 5. Medium vegetation radar backscatter analysis. The
bivariate distribution (HV [dB] - 4HV [dB) associated to
the 4 different water scenarios are reported.
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