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Executive Summary 
 
The urgency of the transition from fossil to renewable energy sources is critical for the Netherlands, 
particularly under the National Climate Agreement, which aims to reduce CO2 emissions by 95% by 2050 
compared to 1990 levels. Local municipalities are at the forefront of this transition, tasked with implementing 
measures to decarbonise residential energy consumption, which accounts for approximately 20% of the total 
energy use in the Netherlands. One of the most promising technologies in this transition is solar photovoltaics 
(PV). Solar PV systems offer a practical solution for residential areas because they can integrate seamlessly 
into existing built environments. The Dutch government recognises this potential and has set a goal of 
generating at least 7 TWh of renewable energy production through small onshore solar projects by 2030. The 
adoption of residential solar PV has significantly exceeded expectations, with a capacity increase of 2600% 
over the past decade, achieving the goal of 7 TWh already by 2022.  
 
However, the rapid adoption of solar PV presents several challenges for policymakers, particularly at the 
municipal level. These challenges include integrating solar power into the existing grid, developing financing 
mechanisms for solar PV, and ensuring equitable access to solar technology. Addressing these issues 
requires a deep understanding of the factors influencing solar PV adoption and the dynamics at play within 
different municipalities. Inverse modelling presents a methodology to explore these complexities. This 
technique involves working backwards from observed outcomes to identify and understand the underlying 
processes and parameters that generated those results. The application of inverse modelling is, however, 
very novel. Therefore, this thesis aims to lay the groundwork for future applications of inverse modelling by 
exploring the factors that influence solar PV adoption in Dutch municipalities. To achieve this goal, the 
following research question has been formulated: 
 
How can inverse modelling contribute to uncovering plausible explanations for residential solar PV 

adoption dynamics in Dutch municipalities? 
 

The methodology of this thesis involves a modelling approach that combines inverse modelling with agent-
based modelling to model residential solar PV adoption. The study employs a multiple-case design to explore 
the adoption dynamics across different municipalities. This design allows for the identification of patterns, 
similarities and differences in solar PV adoption between these municipalities. Two machine learning 
algorithms are used to enable the inverse modelling process by exploring the parameter space. These 
algorithms are a Random Search algorithm and a Bayesian Search algorithm.  
 
The results of this thesis reveal insights into the factors influencing solar PV adoption. Social factors emerge 
as the most critical determinants, often outweighing economic incentives. For instance, in Bloemendaal, 
despite its high income levels, social influences are more impactful than economic factors. This trend is 
consistent across the other municipalities, where social utility plays a crucial role in adoption rates. However, 
in Vaals, economic incentives are more significant than in the other municipalities, highlighting the variability 
in adoption drivers across the municipalities. Environmental impact, on the other hand, significantly influences 
adoption decisions in Westerveld, indicating that regional differences must be considered in policymaking.  
 
The discussion chapter delves into the implications of these findings. It discusses the conclusiveness of the 
current results in light of data constraints and the reliance on a single ABM, which required extensive 
modifications. Despite these challenges, this thesis demonstrates the viability of inverse modelling as a 
promising approach to understanding solar PV adoption dynamics. However, it is also emphasised that further 
research is necessary to enhance the conclusiveness of the results. Furthermore, it questions the previously 
mentioned performance dilemma, which discusses whether individual results or general robustness is more 
important. Considering the purpose of inverse modelling, it is concluded that consistency and robustness 
seem more important in the inverse modelling process. 
 
In terms of scientific relevance, this thesis makes substantial methodological contributions by demonstrating 
the application of inverse modelling in the socio-economic context of solar PV adoption in Dutch 
municipalities. The transparency of this work in addressing its limitations also sets a precedent for future 
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research on the topic. These limitations include the study’s reliance on a heavily modified ABM, computational 
constraints, limited data points and the exploration of only four parameters, which may oversimplify the 
complex dynamics of solar PV adoption. This thesis provides an initial framework for future inverse modelling 
research. The study's social relevance is that understanding the dynamics of solar PV adoption can inform 
policy decisions and interventions aimed at promoting solar PV. The study underscores the importance of 
considering social dimensions in solar PV adoption, noting that financial incentives alone are insufficient to 
drive widespread adoption.  
 
Finally, recommendations for future research include exploring alternative approaches for inverse modelling. 
Since the method outlined in this thesis is novel and experimental, alternative approaches are presented to 
enhance the inverse modelling framework. For instance, an alternative approach is the incorporation of 
multiple ABMs, which could enhance the robustness and cross-validate results, though this would increase 
complexity and demand more computational resources. Additionally, future inverse modelling research could 
either focus more on machine learning to increase model accuracy or focus less on machine learning to 
explore other methodologies. Exploring hybrid approaches to these recommendations that combine various 
techniques could also offer possibilities for future research. 
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1 
Introduction 

 
This chapter introduces the research problem that will be addressed in this work. Furthermore, it 
emphasises the scientific relevance of the problem and the research question derived in Chapter 1.2. 
Subsequently, in Chapter 1.3 the systems perspective and relation to the master program are 
depicted, after which the research approach is presented in Chapter 1.4. Finally, the outline of the 
thesis is presented in Chapter 1.5.  
 

1.1 Research Problem 
The urgency of the energy transition has risen on the political agenda, as underscored by the unveiling 
of the National Climate Agreement by the Dutch Government in 2019 (Government of the 
Netherlands, 2023a). This agreement is a crucial component of the National Energy and Climate Plan 
(NCEP) and the Climate Plan required by the European Union (European Commission, 2023). The 
main ambition of this agreement is a CO2 reduction target of 95% by 2050 in comparison to 1990, 
presenting a major sustainability challenge for the electricity sector (RVO, 2023b). Embedded within 
this overarching national initiative lies a significant focus on municipalities, underscoring the critical 
role local governance plays in achieving sustainability targets (Government of the Netherlands, 
2023c). In the Netherlands, approximately 20% of the final energy consumption can be attributed to 
residential households, emphasising the significance of decarbonisation through the electrification of 
this sector as a key strategy on the journey towards achieving net-zero carbon emissions (Besagni et 
al., 2021; Zappa & van den Broek, 2018). This also offers a concrete pathway for municipalities to 
progress towards their objectives outlined in the National Climate Agreement.  
 
Solar photovoltaics (PV) is expected to play a fundamental role in urban areas to meet the objectives 
of the National Climate Agreement as it offers the advantage of simple integration into the current 
built environment (Creutzig et al., 2017; Shafique et al., 2020). Therefore, the Dutch government has 
set the goal in the National Climate Agreement of at least 7 TWh renewable energy generation with 
small onshore solar energy projects of less than 15 kWp (Government of the Netherlands, 2023b). 
Over the past decade, residential solar PV capacity in the Netherlands has increased by over 2600%, 
as can be observed in Figure 1 below (Ballas et al., 2023). This transformation resonates deeply at 
the municipal level since this growth strongly advances sustainability goals. By the end of 2022, a 
total of 7,2 TWh of renewable energy generation with small onshore solar energy projects of less than 
15 kWp had been realised, reaching goals more than 7 years ahead of projections (RVO, 2023a). 
This substantial growth can be attributed to increased cost competitiveness, technological advances 
and enhanced durability and reliability of solar panels, collectively leading to a notable shift in public 
opinion among Dutch citizens regarding solar energy (Statista, 2022; Kraaijvanger et al., 2023). 
However, this rapid change in Dutch citizens’ attitudes towards solar energy poses a challenge for 
policymakers, particularly at the municipal level. Key concerns include ensuring the seamless 
integration of solar power into existing grids, establishing sustainable financing mechanisms to 
support infrastructure development and addressing social equity issues to ensure fair access to solar 
technologies (Kraaijvanger et al., 2023; Pierie et al., 2021). Policymakers must navigate these 
complexities to foster financial viability, inclusive solar PV adoption, and equitable benefit distribution.  
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Figure 1: Total installed residential PV capacity in the Netherlands between 2012 and 2020 (Ballas et al., 2023) 

 
Traditional ABMs (Agent-Based Models) are commonly used for analysing complex adaptive systems 
and transitions such as the energy transition (Schelling, 1971). They help researchers and 
policymakers understand complex system behaviour, predict future actions and address socio-
technical challenges such as the energy transition (Turgut & Bozdag, 2023). However, the system's 
complexity and dynamic nature, combined with the constraints of observational data and modelling 
methodologies, may result in certain features going unnoticed.  
 
Inverse modelling is a concept that could contribute to this challenge. IM employs programming to 
construct equation-based algorithms and decision trees for agents across simulation runs until the 
desired outcome is achieved (So et al., 2020). In doing so, inverse modelling offers a promising 
methodology for understanding the complexities of residential solar PV adoption dynamics. It can be 
used to uncover previously overlooked patterns in a system, which shows great potential for this 
research. In addition, it also shows potential for improving ABMs, increasing their adaptability during 
runs and thereby increasing their resemblance to reality. The application of inverse modelling is, 
however, very novel.  
 
For this reason, this study aims to lay the groundwork for future applications of inverse modelling by 
exploring the factors that influence solar PV adoption in Dutch municipalities. Agent-based modelling 
and machine learning have an instrumental function towards this goal (Bogner et al., 2020). The 
research aims to employ IM techniques to reveal previously overlooked patterns and features 
influencing solar PV adoption, thereby enriching the understanding of adoption dynamics beyond 
traditional predictive accuracy metrics for solar PV adoption in the Netherlands. This also means that 
by leveraging IM to unravel the complex dynamics underlying solar PV adoption, this study aims to 
pave the way for future research and more practical applications of inverse modelling.   
 

1.2 Research Question 
Based on the research objective described above, the following main research question can be 
derived with the aim of providing new insights into the potential contribution of ML and IM to ABMs.  
 

How can inverse modelling contribute to uncovering plausible explanations for residential 
solar PV adoption dynamics in Dutch municipalities? 

 
Answering the question presented above can generate insights into the potential future role of 
incorporating inverse modelling in agent-based modelling for energy transition questions.  
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1.3 Systems Perspective and Relation to the CoSEM Programme 
This thesis topic fits well into the Complex Systems Engineering and Management (CoSEM) study 
programme as the challenge can be characterised as a Complex Adaptive System: a dynamic 
network comprising numerous agents which operate in parallel, continuously engaging in actions and 
reactions to those of other agents (Holland, 2006). The collective behaviour of the system emerges 
from many decisions made by numerous individual agents at each moment. This definition can be 
applied to the case of residential solar PV capacity in the Netherlands since it is the actions and 
decisions of many agents (e.g. residents, governmental organisations, firms) that result in a certain 
amount of installed residential solar PV capacity. Consequently, complex system properties ought to 
be taken into consideration (e.g. emergent behaviour, self-organisation and path dependence) 
(Nikolic et al., 2013a). 
 
On top of that, this topic requires a multidisciplinary approach as it encompasses both a human and 
a physical subsystem. The human subsystem comprises psychological, demographic and biophysical 
variables such as residents, whereas the physical subsystem consists of the technical solar PV 
systems and infrastructure (Hitchcock, 1993). Moreover, these human and physical subsystems 
converge with institutional frameworks, which refer to the policies, regulations, incentives and 
organisations that govern the adoption, installation and integration of residential solar PV systems 
(Gupta et al., 2008). On top of that, the use of artificial intelligence presents ethical concerns (Díaz-
Domínguez, 2020). Some ethical concerns regarding machine learning may include bias, which can 
arise from the analysis of extensive datasets and the tendency to prioritise popular outcomes. 
Additionally, a potential lack of transparency, or opacity, poses a challenge as machine learning 
models operate as “black boxes”. 
 
This study holds societal importance as it seeks to research the role of inverse modelling in 
uncovering plausible explanations for solar PV adoption dynamics in the Netherlands. These insights 
could be used in further research towards inverse modelling or influence interventions in decision-
making processes related to the energy transition. This, in turn, facilitates more efficient and secure 
planning of energy infrastructure (Moglia et al., 2022). The study also leads to an improved and more 
accurate understanding of the system, which could result in more thoughtful policy formulation and 
even improved energy grid management in the future. 
 
Thus, this challenge encompasses strong social, technological and institutional aspects and therefore 
fits well into the CoSEM study programme.   
 

1.4 Introduction to the Research Approach 
There are various methods to study the forecasting of systems such as residential solar PV capacity. 
In Figure 2 different ways to study a system are presented, where the components in the blue frame 
are based on Law & Kelton (1991), pages 2 and 109 specifically. The components in the red frame 
adhere to the simulation taxonomy used by for instance Borshchev & Filippov (2004) and Sumari et 
al. (2013). A modelling approach has been selected for this research because experimenting with an 
actual system is impossible when forecasting residential solar PV capacity. Physical models, such as 
the model presented by Liu & Zhang (2016), are very effective when forecasting solar PV capacity 
using technical and geographical data but overlook the influence of human behaviour on the system. 
Therefore, a mathematical model is chosen over a physical model for this research. Due to the 
complexity of system interactions in the case, a simulation model is chosen over an analytical solution.  
 
To study solar PV adoption, a simulation modelling approach that is both generative and interactive 
is required (Nikolic et al., 2013b). Therefore Agent-Based Modelling is chosen to form the base of the 
inverse modelling process. The reason for this lies in the ability of ABMs to capture dynamic systems 
that are high in complexity, multidisciplinary and adaptive (Borshchev & Filippov, 2004). Moreover, 
using an ABM in this research allows for a bottom-up approach for modelling individual consumer 
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behaviour towards solar PV (Zhang et al., 2022). Individual, heterogeneous actors can engage in 
interactions among themselves and with their surroundings. Simultaneously, the impacts of various 
organisational, institutional and temporal factors can be examined.  
 
The development of a generic ABM proves, however, challenging due to the data precision that is 
required to forecast residential solar PV capacity. Consequently, a case study approach is selected 
to complement the modelling approach. This research will adopt a multiple-case design (Yin, 2012), 
which is particularly suitable for exploring complex phenomena and allowing for the investigation of 
patterns, commonalities, and differences across cases. Additionally, the embedded nature of this 
design enables the ability to capture in-depth knowledge of the case and its underlying complexity 
(Ragin, 2014). This means that a multiple-case study approach can aid in the formulation of new 
theories since an in-depth analysis of the relations between cases might unveil patterns or 
connections that contribute to theoretical progress. This aspect is important for this research, given 
that the application of inverse modelling to ABM is a new field. The exact research approach will be 
further elaborated in Chapter 3.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2: Ways to study a system, adapted from Law & Kelton (1991), highlighting the choices for this research 
 
In the context of this research, inverse modelling is employed as a methodology for understanding 
the dynamics underlying residential solar PV adoption. It entails the comparison of observed solar PV 
adoption data with model predictions and adjustment of model inputs to match real-world patterns. 
This creates the potential for a deeper understanding of the factors influencing adoption rates across 
Dutch municipalities.  
 

1.5 Research Outline 
The structure of this thesis is as follows: after the introduction, the theoretical framework and relevant 
concepts for the research are elaborated in Chapter 2. On top of that, this chapter presents a literature 
review. Chapter 3 introduces the methodology for this research, including the research approach, 
research framework and the scope of the case study. Chapter 4 focuses on the data required for this 
research and the two algorithms that will be used to enhance an ABM on residential solar PV adoption. 
Then, Chapter 5 focuses on the model. This means that the current ABM that will be used for the IM 
process is presented along with the modifications that ought to be made for the mode to fit the case. 
This chapter also presents the model formalisation, software implementation and the model validation 
and verification. Chapter 6 presents the results of the study, including the data analysis of these 
results. Then, Chapter 7 focuses on the discussions that come forth from this research. Finally, 
Chapter 8 presents the conclusions that can be drawn from this research and the study's limitations. 
This chapter also includes the research questions' answers and the research's scientific and societal 
relevance. 
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2 
Theoretical Background  

 
To comprehend the complexity of the question presented in the introduction, it is essential to grasp 
relevant concepts. In this regard, this chapter adopts a top-down approach. The chapter begins by 
presenting the concept of solar photovoltaics in Chapter 2.1. Then, it introduces the method of inverse 
modelling in Chapter 2.2, and later, it delves into the principles of agent-based modelling in Chapter 
2.3. The reasoning behind this order lies in the objective of this study. The exploration focuses mainly 
on plausible explorations for solar PV adoption and how inverse modelling can enable this. Therefore, 
these two topics are introduced first. Since agent-based modelling is instrumental to the aim of this 
research, these topics will be introduced after the topics of inverse modelling and solar PV adoption. 
These relations between the concepts are presented in Chapter 2.4. Finally, Chapter 2.5 presents 
the academic knowledge gap. To ensure that the research conducted in this thesis makes a 
meaningful contribution to science and avoids reinventing the wheel, establishing a knowledge gap 
is essential. This gap is identified through a PRISMA literature review, with the findings resulting in 
the formulation of the main research question.  
 

2.1 Solar Photovoltaics (PV) Adoption 
The first relevant concept is solar photovoltaics (PV) and their role in the energy transition of 
residential areas. It relates to the conversion of energy contained in sunlight, solar energy, into 
electricity. When this energy undergoes direct conversion into electricity utilising semiconductor-
based devices, it is referred to as photovoltaics (Smets et al., 2016). Solar PV has emerged as a key 
technology in the global transition towards renewable energy sources, offering substantial potential 
for mitigating climate change and reducing dependence on fossil fuels. In the Netherlands, solar PV 
is expected to play a fundamental role on a municipal level in meeting the national renewable energy 
targets. This is for instance due to the fact that households account for almost 20% of the total energy 
consumption in the Netherlands (Klimaatmonitor, 2021). This highlights that decarbonization via the 
electrification of residences is a pivotal driver towards achieving national targets (Jägemann et al., 
2013). On top of that, solar PV knows the advantage of relatively simple and seamless integration 
into the existing built environment which also makes solar PV an attractive solution for municipalities 
(Creutzig et al., 2017; Shafique et al., 2020).  
 
In the Netherlands, installed solar PV capacity in urban areas has grown significantly in the past 
decade. This is believed to have had several reasons. For starters, solar PV technology knows strong 
technological advances, with advancements pushing the boundaries of conversion rates. For years, 
the efficiency of solar panels was roughly 17%, but recent developments are propelling efficiency 
rates to an anticipated 26% (TNO, 2023). These strides are achieved through innovations in materials 
and cell designs. These advancements do not only enhance the performance of solar PV systems, 
but they also drive down costs, making solar energy increasingly competitive and accessible for 
adoption on a residential level. On top of that, the durability and reliability of solar panels have 
improved over time due to improvements in manufacturing processes, materials and quality control 
measurements. These enhancements further increase the appeal and attractiveness of solar panels. 
Finally, the Dutch policy environment regarding solar energy has been pivotal (Osseweijer et al., 
2018). According to Londo et al. (2020), the net metering policy is, next to feed-in tariffs, considered 
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to be an important mechanism for improving the financial viability of households considering investing 
in solar PV. The Netherlands has had a net metering policy since 2004, which enables households 
with a PV system (referred to as ‘prosumers’) to utilise the electricity they generate at their discretion 
rather than solely at the moment of generation (Government of the Netherlands, 2004). This 
effectively equates the value of power generated by their PV system to the consumer tariff regardless 
of when it is produced or consumed. In combination with the substantial decrease in PV system costs, 
the net metering policy is considered a significant contributor to the rapid decrease in payback times 
for PV systems for Dutch households. Figure 3 presents the decrease in payback times and the 
corresponding growth in the capacity of PV systems in the first major adoption years in the 
Netherlands.   

 

Figure 3: The development of installed capacity of household PV systems in the Netherlands (Londo et al., 2020) 
 
As can be seen in both Figure 1 and Figure 3, the solar PV transition in the Netherlands is already 
well on its way, meaning that a wide variety of data is available on the topic. This makes a good case 
for inverse modelling, as relatively large datasets are required for this method.  
 

2.2 Inverse Modelling 
Inverse modelling is a method which can be derived from Inverse Generative Social Science (IGSS). 
IGSS represents a novel methodology within the domain of social science, wherein researchers use 
generative models to understand how social phenomena work. As elaborated before, ABMs are 
currently the primary tool for understanding how individual behaviours and interactions influence 
larger social patterns (Vu et al., 2019). However, until now, agents have been moved forward in 
iterations to produce explanations for certain phenomena (Epstein, 2012). This presents the forward 
modelling problem, which involves the prediction of the outcome of a system or phenomenon based 
on known inputs or parameters. This process does, however, not explain the system or phenomenon. 
Inverse Generative Social Science attempts to address this problem. The approach aims to 
understand the underlying processes that generate observed social data and can be used to make 
predictions or test hypotheses about social systems (Epstein, 1999). It is often used when the system 
is complex or poorly understood, and it requires iterative techniques to converge on the most likely 
values for unknown parameters. The link with inverse modelling becomes apparent in this 
methodology, as both share a common objective: the estimation of model parameters or inputs based 
on observed data and a deeper understanding of the system. Inverse Generative Social Science can 
utilise inverse modelling techniques as part of its methodology, which means that in this context, 
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inverse modelling can be used to understand the complex dynamics underlying solar PV adoption. In 
other words, the forward modelling problem focuses on predicting outcomes based on known inputs 
of parameters whereas inverse modelling involves estimating unknown inputs or parameters based 
on observed outcomes. This potentially reveals new dynamics that may have been overlooked due 
to being counterintuitive or not immediately apparent (Greig et al., 2023). In the figure below, the 
process of IGSS is represented, demonstrating its efforts to reveal the potential spectrum of individual 
behaviours that contribute to an observed collective dynamic (Naumann-Woleske, 2021).  

 
Figure 4: Visual presentation of Inverse Generative Social Science. Source: Naumann-Woleske (2021) 

2.2.1. Challenges in Inverse Modelling 
Inverse modelling is a promising method, however, it also comes with certain challenges. For one, 
the topic of inverse modelling is very novel and there is a scarcity of literature addressing the subject. 
This novelty of the concept of inverse modelling is a potential challenge for this research since it 
means that there is very limited experience and available documentation on its implementation.   
 
On top of that, the challenge of data overfitting arises (Renzini et al., 2023). In inverse modelling, data 
overfitting can occur when a complex model fits ‘noise’ (random variations or fluctuations in the data 
that do not represent meaningful information or patterns) rather than underlying patterns due to limited 
data. This leads to inaccurate parameter estimates. Furthermore, according to Frank et al. (2022), a 
crucial consideration within inverse modelling revolves around determining when data is sufficient to 
determine model parameters. Insufficient data may result in unreliable parameter estimates, impairing 
the model’s ability to truthfully represent the underlying system. Finally, the high sensitivity of both 
data quality and quantity poses a significant challenge in inverse modelling. This means that 
inaccuracies or uncertainties in the data can lead to biased or unreliable parameter estimates as well. 
This again hinders the model’s ability to accurately represent the underlying system. Balancing the 
need for high-quality data and an adequate quantity of data is crucial for inverse modelling, and it 
highlights the importance of careful data collection and validation.  
 
It is important to note that while these challenges remain valid, this research places a lesser emphasis 
on them. Instead, the focus lies on establishing a foundational understanding of inverse modelling. 
Thus, achieving perfection in addressing these challenges is not the primary goal. Rather, the 
research aims to provide a basis for future work in inverse modelling, acknowledging the importance 
of careful data collection and validation while still recognising that absolute perfection in modelling is 
not attainable (Box, 1976) 

2.2.2. Machine Learning as a Means for Inverse Modelling 
Inverse modelling can be enabled through machine learning (abbreviated as ML) (Epstein, 2023). 
This is a research field within computer science (specifically artificial intelligence) that is dedicated to 
researching algorithms and methodologies aimed at automating solutions for complex problems that 
prove challenging to address through traditional programming approaches (Rebala et al., 2019). It 
aims to enable computers to improve their performance over time and to learn without explicit 
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programming (Bi et al. (2019); Murphy (2012)). Through fitting data, computers gain certain 
“experience” and can thereby improve their functioning. Machine learning possesses the unique 
ability to extract patterns from data and draw inferences even when encountering previously unseen 
data (Bogner et al., 2020). These capabilities offer a significant advantage in overcoming some of the 
previously mentioned challenges (Bashardoust et al., 2023).   
 
The connection between machine learning and this research lies within its complementary and 
instrumental role in inverse modelling. According to Vu et al. (2019), machine learning has the 
potential to help explain human behaviour, potentially moving the modelling of complex systems into 
a new era. Inverse modelling helps refine the parameters of the ABM to better match observed data 
and understand the underlying system, while machine learning techniques aid in the analysis of real-
world data to identify patterns and features that inform the parameter refinement process. Together, 
they can enable a deeper understanding of the factors influencing solar PV adoption dynamics. In 
other words: machine learning can enable inverse modelling. The application of machine learning to 
inverse modelling is, however, extremely novel.  
 
The domain of machine learning can be categorised in various manners (Flach (2012) ; Morales & 
Escalante (2022)). This study follows a traditional categorisation for a broader perspective of ML, 
namely (1) supervised learning, (2) unsupervised learning and (3) reinforcement learning (Alpaydin, 
2010). In the table below, an overview of these categories is presented together with their objectives 
(Ale Ebrahim Dehkordi et al., 2023).  
 
Table 1: Overview of Machine Learning categories (Ale Ebrahim Dehkordi et al., 2023) 

ML category Data Objective Learning 

Supervised Labelled Prediction By mapping inputs to desired 
outputs 

Unsupervised Unlabelled Identification of structures or 
patterns 

By identifying the distribution or the 
structure of the input 

Reinforcement Interaction with 
environment 

Optimisation By rewarding good behaviour 

 
At first sight, unsupervised learning seems to be more suitable for this research due to its ability to 
identify structures or patterns (Mohri et al., 2018). However, this study employs a different approach 
– reinforcement learning. Although the data on solar PV adoption includes labelled information, 
suggesting supervised learning (Chawla & Karakoulas, 2005), this research benefits from a RL 
framework, which allows the model to learn optimal strategies through trial and error. Furthermore, 
the exploitation vs exploitation balance is a central theme. As will be discussed in Chapter 7, 
managing this balance is crucial in the IM process, proving the suitability of RL. 
 
As mentioned, using ML for IM is unprecedented in the literature. This novel approach poses a 
challenge due to the lack of experience and available documentation, making correct implementation 
difficult. However, this novelty adds value to any results obtained, contributing to future research. A 
second challenge in the use of ML for IM lies in its ethics. As our dependence on technology continues 
to expand, the significance of ethical considerations in machine learning will become more important. 
(Shadowen, 2017). One ethical issue is the ‘black box’ problem, concerning the lack of transparency 
in the decision-making processes of ML algorithms (Miller, 2019). Secondly, the application of ML can 
create ethical issues in terms of trustworthiness and fairness. In the context of computer systems, 
trustworthiness denotes the assurance that these systems operate in accordance with the assertions 
made by their designers. A third ethical consideration lies within the issue of ‘learning without 
understanding’. It refers to the capability of machine learning models to make accurate predictions 
without truly comprehending the underlying concepts or relationships in the data or as described by 
Epstein (2019): “Artificial intelligence and machine learning are displacing humans, but not explaining 
them”. This means that the application of ML to IM in itself does not explain the phenomena. 
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2.3 Agent-Based Modelling 
Agent-based modelling (ABM) is the third relevant concept in this research and it describes a bottom-
up approach for the simulation of human systems and behaviour (A. T. Crooks & Heppenstall, 2012). 
It is a computational modelling technique that is used to simulate complex systems by modelling 
individual agents and their interactions within an environment (Nikolic et al., 2013a). These agents 
can represent a wide variety of entities, such as individuals, organisations, or animals, each with 
unique attributes, behaviours, and decision-making processes. Typically, each agent follows a set of 
rules of behaviour based on its characteristics and interactions with other agents in the environment. 
As an ABM operates based on principles of bottom-up modelling, system-level behaviours emerge 
from interactions of individual agents.  
 
The primary purpose of ABMs is to be able to understand and analyse the dynamics of complex 
systems by simulating the interactions and behaviours of the agents in these systems (Turgut & 
Bozdag, 2023). It is used to deduce the system’s behaviour (macro-level) or emergent behaviour by 
modelling the agents’ individual behaviour (micro-level) and interaction (Nan, 2011). By capturing the 
heterogeneity and autonomy of agents, ABMs can replicate real-world systems’ complexity and 
emergent properties. Due to their flexibility, ABMs are valuable tools for exploring hypothetical 
scenarios, conducting experiments and testing theories in a controlled, virtual environment. This 
means that ABMs are increasingly being used by policymakers to inform decision-making processes 
(Belfrage et al., 2022). 

2.3.1. Challenges in Agent-Based Modelling  
However, despite its advantages, ABMs face certain challenging obstacles that constrain their 
applicability and resilience. For instance, it can be difficult to run complex models in an ABM 
framework because of the computational demands (Bashardoust et al., 2023). Parametrisation is a 
common challenge as it requires the specification of parameters that govern agent behaviour, 
interactions and environmental factors. Estimating these parameters (based on empirical data) can 
be a challenge. On top of that, ABMs often involve the modelling of a system with a large number of 
interacting agents with their own set of behaviours, attributes and decision-making processes which 
brings great complexity. Managing this complexity and ensuring that the model accurately reflects the 
real-world system it aims to simulate can be a challenge. Inverse Modelling could provide solutions 
for these challenges, as elaborated earlier in this chapter. ABM also knows the challenges related to 
its community. The primary criticism on this front that is often directed at ABMs is their tendency to 
be constructed as standalone models (Turgut & Bozdag, 2023). Conversely, researchers advocate 
for the sharing, extension and reuse of ABMs across various studies. This research aims to contribute 
to this challenge within the ABM community by reusing an existing ABM on solar PV adoption. This 
will be further elaborated on in Chapter 5. Finally, ABM often struggles with stochasticity, where 
randomness influences simulation outcomes. A fixed random seed ensures reproducible results, 
which is crucial for validating and comparing models. Without a fixed seed, each simulation run can 
yield vastly different outputs, complicating the analysis of the behaviour of the system. Identifying 
optimal parameters becomes challenging as each iteration produces different results, increasing 
computational complexity and uncertainty. Effective seed control can mitigate these issues by 
providing consistent results, simplifying the inverse modelling process, and facilitating robust 
comparisons. This issue with stochasticity becomes especially challenging when doing inverse 
modelling since this multiplies the issues. Thus, controlling stochasticity is essential for reliable and 
meaningful applications of IM when using ABMs.  

2.3.2. ABM Development 
Agent-based models have three primary elements: agents, environment, and time (Nikolic et al., 
2013a). Agents are individual entities that interact with each other and the environment according to 
predefined rules or behaviours. It is the smallest element of an ABM. Each agent has a certain state, 
which refers to the parameter collection that belongs to an agent at a certain moment in time. It is 
specific to the agent and can change over time.  
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According to Jennings (2000) and Nikolic et al. (2013), agents have the following characteristics: 

• Agents are encapsulated, possessing distinct identities with clearly defined boundaries. 

• They operate within specific environments, receive information from and react to it. 

• Agents are flexible, being able to adapt to changes and proactively responding to stimuli. 

• They are autonomous, exercising control over their internal states and behaviours. 

• Agents are goal-oriented, striving to fulfil objectives, solve problems or achieve defined goals.  
 
Agents operate in an environment where they are provided with inputs and receive output from agent 
actions. Agents reside in this environment and it includes elements beyond the agent itself, such as 
other agents, making an agent’s environment context-dependent (Nikolic et al., 2013a). Agents can 
influence and be influenced by the environment based on their action rules (Macal & North, 2009).  
 
The final element in an agent-based model is time. In real-life systems, agents can interact 
concurrently and continuously (Nikolic et al., 2013a). However, computational limitations require 
modelling time discretely constraining parallel interactions based on software and hardware 
capabilities. It is crucial to acknowledge these constraints to develop models that effectively represent 
reality despite these limitations (Hammond, 2015).  
 
According to Klügl (2009) and North & Macal (2007), developing an ABM goes as follows: firstly, 
theories regarding the modelled system should be sought based on empirical evidence. Then, a 
conceptual model should be built. This means agents need to be classified, the interaction between 
these agents and the environment needs to be defined, and agent behaviour needs to be defined. 
Thereafter, the ABM should be constructed using conceptualisation. Then, the conceptual model 
should be implemented in a computer using simulation software.  

2.3.3. ABM Classification 
Agent-based models can be classified by their intended objective. Klügl (2009) identifies three types 
of objectives: prediction, optimisation and understanding. ABMs that have prediction as their main 
objective aim to project future states or behaviours of the system being modelled. They are 
characterised by the capacity to foresee specific elements of data that are currently unknown, with a 
dependable level of accuracy, utilising a computational model (Ale Ebrahim Dehkordi et al., 2023). 
Optimisation is the second objective of ABMs and it aims to identify the most favourable or efficient 
configuration of system parameters to achieve certain objectives (Turgut & Bozdag, 2023). As ABMs 
can be used for the exploration of scenarios and parameter settings, optimal solutions that maximize 
desired outcomes (or minimise undesirable ones) can be determined. Finally, ABMs with the objective 
of understanding aim to improve insights into the underlying mechanisms and dynamics of complex 
systems. By simulating the interactions of individual agents and observing emergent patterns and 
behaviours, one can develop a deeper understanding of how the system functions and how its 
components influence one another. In this research, the focus will be on the final type of ABM with 
the objective of understanding. It is good to note that ABMs can be created for multiple objectives.  
 

2.4 Relations Between Concepts 
In Figure 5 below, a simple overview of the concepts is presented. Understanding solar PV adoption 
in Dutch municipalities is the main objective of this study. As mentioned earlier in this chapter, inverse 
modelling can improve this understanding. The basic structure of the inverse modelling process is 
presented as the green-dotted box. Within this process, parameters are selected using a Machine 
Learning algorithm. This ML algorithm enables a smart search of the parameter grid to select new 
parameters for each run. These parameters are then given to the agent-based model, which 
generates a certain output. This output is then compared to data (in this case, real solar PV adoption 
data), and the comparison is fed back to the algorithm, which suggests new parameters.  
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Agent-based modelling (in the forward modelling context) in itself also can improve understanding of 
solar PV adoption but in a different way. On the one hand, ABM allows for better exploration of 
emergent behaviour, scenario analysis and policy evaluation. Inverse modelling, on the other hand, 
allows for more data-driven insights based on empirical evidence and more targeted policy 
implementation. Neither one of these concepts is better than the other, they are simply different 
methodologies. ABM can, however, be a means for inverse modelling by iteratively refining the model 
parameters to match observed data. Machine learning can also serve as a means in this process 
since it can enable efficient parameter grid search.  

 

 

2.5 Literature Review 
To identify the research gap, a literature review is conducted following the PRISMA 2020 guidelines 
for systematic review reporting (Page et al., 2021). For this literature review, the search engine 
Scopus is used and only English articles are selected. On top of that, due to the novelty of the topics 
in this research, only articles that were published after 2016 that are accessible through the TU Delft 
institution are considered. This literature review consists of four rounds, each with its purpose. The 
purpose of the first round is to validate the lack of understanding of the complexity behind solar PV 
adoption. After this is validated, the potential for the use of inverse modelling for agent-based 
modelling will be further analysed. After validation of this second round, the third round tries to identify 
the potential for machine learning algorithms in ABMs for case studies on complex systems (such as 
solar PV adoption). Finally, the potential for using machine learning as a means for the application of 
inverse modelling to ABMs is validated.  

 

Figure 6: Rounds in the literature review 
 
The first step of the literature review, the identification, resulted in a total of 89 hits on Scopus. Based 
on an initial screening of the abstracts of these researches, 59 articles were excluded due to 
irrelevancy. Thereafter, the remaining 30 articles were screened more thoroughly, which resulted in 
the exclusion of 17 more papers. The most important reasons for exclusion were a too-large focus on 
data science, authors using ABM in ML instead of ML for ABM, and using ML, IM, and ABMs in 
separate parts of the research. Finally, 2 more articles were excluded since they were duplicates 
between rounds. Additionally, 7 more articles were selected through snowballing, resulting in a final 
selection of 17 articles. The review was conducted on the 8th of March 2024.  

Figure 5: Relations between the concepts 
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Figure 7: Prisma 2020 diagram of the literature review 
 
The findings of the literature review are concretely described in Table 2. The academic knowledge 
gap is then identified based on the review, which results in the formulation of the research question.  
 
Round 1:  
The transition to renewable energy heavily depends on accurate residential solar PV adoption 
predictions. Ardila et al. (2022) assess the application of agent-based models in studying renewable 
energy transitions. This paper provides a broad overview of the complexities in renewable energy 
adoption, including solar PV, through ABMs. It emphasises the critical role of reliable adoption data 
in shaping energy policies and decision-making processes. It notes that the precision of such data 
can significantly influence the strategic planning of the energy transition.  
 
Nuñez-Jimenez et al. (2023) delve into the uncertainties surrounding solar PV adoption, attributing 
them partly to the scarcity of case studies employing agent-based modelling (ABM) to simulate these 
dynamics. This lack of comprehensive ABM studies limits understanding of the complex factors 
influencing solar PV adoption, such as socioeconomics, demographic and geographic variables. N. 
Zhang et al. (2022) highlight the complexity behind consumer behaviour and decision-making in solar 
PV adoption. They argue for enhancing ABMs by integrating high-quality data sources, influencing 
Geographic Information Systems (GIS) data, and detailed information on housing and homeowner 
characteristics. This paper suggests that these improvements can lead to a deeper understanding of 
the patterns and drivers behind solar PV adoption.  
 
Ardila et al. (2022) also critique existing ABMs for not fully capturing the inherent complexity of solar 
PV systems. They advocate for the introduction of additional dynamic layers to these models to reflect 
the real-world complexities of the energy transition. Akhatova et al. (2022) use agent-based modelling 
to analyse the adoption of solar PV systems. It examines various factors influencing adoption, using 
a case study approach to illustrate these dynamics and explores the complexities behind solar PV 
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adoption. Macal's (2016) paper offers a comprehensive overview of methods and techniques used in 
agent-based modelling for simulating social systems. It covers the fundamentals of ABM and its 
applications in various domains, including energy systems. Furthermore, the paper’s broad coverage 
also includes discussions relevant to integrating inverse modelling with ABMs. Both Akhatova et al. 
(2022) and Macal (2016) stress that this increasing complexity necessitates careful parametrisation 
and a thorough understanding of the system to ensure that ABMs can accurately simulate these 
systems. 
 
Round 2:  
Inverse modelling offers a promising approach to exploring the underlying dynamics of complex 
systems by adjusting model parameters to align with observed outcomes. The foundational paper by 
Epstein (2023) proposes the concept of Inverse Generative Social Science, where instead of 
simulating forward to see what might happen, models are used inversely to identify the initial 
conditions and parameters that lead to observed outcomes. This approach is particularly useful in 
agent-based modelling. According to this paper, inverse modelling can be used to gain deeper 
insights into complex social phenomena, which can particularly be beneficial for understanding the 
intricate factors driving residential solar PV adoption. 
 
Vu et al. (2023) support Epstein’s advocacy for a new era of model exploration aimed at uncovering 
the hidden mechanisms of complex social systems. They emphasise that inverse modelling could 
address the challenges identified in Round 1 by providing a more nuanced understanding of the 
adoption dynamics. Lastly, Greig et al. (2023) provide empirical support for the use of inverse 
modelling in ABMs. They apply Genetic Programming as as a method for it in ABMs, demonstrating 
its effectiveness in improving model accuracy and uncovering the underlying processes in complex 
systems. This case study underscores the practical utility of inverse modelling techniques in refining 
and validating ABMs.  
 
Round 3: 
The purpose of the third round of the literature is to prove the potential for machine learning algorithms 
in ABMs for case studies concerning complex systems. The reason for this is that if the literature 
proves that this is not possible, this has substantial consequences for the application of ML in IM for 
this case. The literature, however, proves that there is definitely potential for ML in ABMs.  
 
Ale Ebrahim Dehkordi et al. (2023) provide a comprehensive review of the application of ML in ABMs. 
They categorise various ML techniques and their applications, illustrating how these technologies can 
be used to achieve different objectives, handle diverse data types and support various learning 
processes within ABMs. Bogner et al. (2020) discuss how ML can be used to enhance ABMs, focusing 
on improving model accuracy, scalability, and predictive power. It identifies challenges and 
opportunities in integrating ML with ABMs for various applications. 
 
Turgut & Bozdag (2023) take this further by proposing a framework for integrating machine learning 
into ABMs. Their framework outlines how ML can be systematically employed to enhance the 
performance and capabilities of ABMs in simulating complex systems. This includes improving model 
precision, reducing computational costs and enabling real-time analysis. Nugroho & Uehara (2023) 
discuss the performance enhancements that ML can bring to ABMs. They highlight how ML can 
optimise the processing of large datasets and facilitate more accurate and efficient simulations. The 
paper by Y. Zhang et al. (2018) demonstrates the application of ML algorithms to ABMs in urban 
settings, which can be analogous to the complexities found in solar PV adoption. Harder et al. (2023) 
use ABM to examine the adoption of renewable energy technologies, including solar PV. They look 
into how economic, social and policy factors influence adoption decisions and diffusion patterns.  
Both Y. Zhang et al. (2018) and Harder et al. (2023) recognise the transformative impact of ML on 
the scalability and prediction capabilities of ABMs. 
 
Frank et al. (2022) research the combination of ABM and ML to analyse energy systems and thereby 
focus on how ML can improve the accuracy and efficiency of ABMs in predicting energy system 
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behaviours and transitions. They also acknowledge the potential of inverse modelling but caution 
against the risk of overfitting, where models become too tailored to specific datasets, potentially losing 
their generalisability. This highlights the need for a balanced approach in applying inverse modelling 
to avoid compromising the model’s robustness and applicability across different scenarios.  
 
W. Zhang et al. (2023) focus on the potential of ML in modelling complex systems. They argue that 
ML algorithms can manage the high-dimensional data and intricate interactions of such systems, 
making them ideal for enhancing the capabilities of ABMs. Finally, An et al. (2023) address the 
uncertainties and challenges associated with integrating ML into ABMs for urban energy systems. 
They emphasise the need for careful consideration of when and how to apply ML techniques and the 
types of ML most suitable for different modelling scenarios. This underscores the importance of the 
strategic integration of ML into ABMs.  
 
Round 4:  
The final round synthesises the insights from the previous rounds to explore the potential of using ML 
for inverse modelling in ABMs. This involves combining ML's advanced parameter estimation 
capabilities with ABM's sophisticated system simulations.  
 
Greig et al. (2023) and Epstein (2023) both recognise the potential of ML as a tool for inverse 
modelling within ABMs. They argue that ML can enhance the accuracy and efficiency of inverse 
modelling processes by leveraging its powerful data processing and pattern recognition abilities. 
Epstein (2023) suggests that ML should not be seen merely as an end in itself but as a means to 
facilitate more effective inverse modelling. By using ML to refine the parameters and dynamics of 
ABMs, researchers can achieve a deeper and more accurate understanding of complex systems like 
solar PV adoption. Greig et al. (2023) provide a practical example of this synergy by using Genetic 
Programming to perform inverse modelling in ABMs. Their results demonstrate the significant 
improvements in the model’s ability to capture complex system behaviours that can be achieved 
through this integrated approach.  
 
All in all, this round concludes that ML should not be seen as a prime focus point in this research; it 
should be seen as a tool to enable inverse modelling. The most important knowledge gap, however, 
that can be identified from this round is the novelty of the topic. The lack of application of inverse 
modelling to ABMs proves the essence of this research.  
 
Through the identification of the knowledge gaps in the literature review, the following research 
question has been formulated to address these challenges: 
 

How can inverse modelling contribute to uncovering plausible explanations for residential 
solar PV adoption dynamics in Dutch municipalities? 
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Table 2: Research gap identification 
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(Akhatova et al., 2022) 1     X 

(Ale Ebrahim Dehkordi et al., 2023) 3  X  X  

(An et al., 2023) *  X  X  

(Ardila et al., 2022) 1     X 

(Bogner et al., 2020) *  X  X  

(Epstein, 2023) 2 & 4 X     

(Greig et al., 2023) 2 & 4   X   

(Frank et al., 2022) *   X   

(Harder et al., 2023) 3    X  

(Macal, 2016) *  X  X  

(Nugroho & Uehara, 2023) 3  X  X  

(Nuñez-Jimenez et al., 2023) *     X 

(Turgut & Bozdag, 2023) 3  X  X  

(Vu et al., 2023) 2 X   X  

(N. Zhang et al., 2022) 1     X 

(Y. Zhang et al., 2018) *  X  X  

(W. Zhang et al., 2023) *  X  X  
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3 
Methodology 

 
Addressing the research question necessitates access to data, which is acquired through research 
methodologies. Selecting the appropriate method is crucial as incorrect choices could yield data that 
is unsuitable for addressing the main research question. This chapter delves into the research 
methodologies that will be employed during the study. The structure of this chapter is as follows: 
Firstly, the research approach will be presented, after which the research framework will be presented 
and discussed. Thereafter, the scope of the case study will be presented. Finally, this chapter will 
focus on how machine learning can be used as a means for inverse modelling.  
 

3.1 Research Approach 
To address the research gap identified in the literature review in Chapter 2, a state-of-the-art agent-
based model that applies inverse modelling will be created. This approach addresses all identified 
research gaps as follows: An existing ABM on solar PV adoption will be modified so that it fits the 
case. This ABM can help understand the complexity behind solar PV adoption. As became clear 
in the literature review, inverse modelling can help in understanding complex dynamics underlying 
complex phenomena. Therefore, an inverse modelling approach will be used to understand these 
complexities behind solar PV adoption and inverse modelling will be applied to the ABM. Case-
specific solar PV adoption curves will be integrated to serve as training data. This subchapter focuses 
on the modelling approach. Since the ABM that will be used requires more attention, this topic will be 
discussed separately. This means that this subchapter can be seen as more high-over. Further 
elaboration on the ABM can be found in Chapter 5.1. The general elaboration of machine learning as 
a means for inverse modelling can be found in this chapter, in Chapter 3.4. The actual application of 
inverse modelling can be found in Chapter 5. 
 
This research employs a modelling approach whilst using a case study. By employing a modelling 
approach, the complex socio-technical system of solar PV adoption can be visualised and the impact 
of certain system interventions can be analysed, therewith enabling the opportunity for understanding 
the complex dynamics underlying the system (Nikolic et al.,2013). The advantage of using a modelling 
approach is the wide exploration of the impacts of different social, technical and institutional 
arrangements on solar PV adoption. This offers nearly limitless possibilities for visualising system 
interventions. However, the main disadvantage of taking a modelling approach is an inherent 
imperfection in models, as emphasised by Box (1976): “All models are wrong, but some are useful”. 
This means that models will never show exact similarities with reality. The accuracy of model 
assumptions determines its proximity to reality. This means also, that by employing a modelling 
approach, the results will not be perfect. This is a limitation that ought to be kept in mind.  
 
For this specific research, an ABM on solar PV adoption has been selected from the Computational 
Model Library at CoMSES (2024). A quick research review on CoMSES found only 3 open-source 
models that included solar energy. One of these models, however, focused on the charging behaviour 
of EV (electric vehicle) drivers and only included solar PV minimally (van der Kam et al., 2019). 
Another model, by van der Kam et al. (2023), could be considered to be a good model for solar PV 
adoption, however, it relied too heavily on survey data. Therefore, this model could not be used for 
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reproduction in this study. In conclusion, only 1 model could be selected, namely the model by 
Muelder & Filatova (2018). This model will be further elaborated on in Chapter 5.1. 
 
The inverse modelling process includes changing the values of input parameters. Changing the 
values of these input parameters changes the output of the model. This model output can be 
compared with certain training data. In this case, the training data is equal to solar PV adoption data, 
which will be further elaborated on in Chapter 4. Since this training data resembles reality, a certain 
error value can be generated that describes how well the model predicts solar PV adoption. By 
applying inverse modelling, the input parameter values that generate the smallest error value can be 
found, creating more insight into the dynamics underlying solar PV adoption.   
 
For the existing ABM, a variety of parameters will be included in the inverse modelling process. The 
parameter space of the ABM by Muelder & Filatova (2018) includes 4 parameters. The original ABM 
included more parameters, however, these have been excluded. The reason for exclusion is that this 
study aims to form a basis for future inverse modelling research. Therefore, the aim is not to make 
this study as perfect as possible (which can be achieved by including more parameters to vary) and 
including more parameters will not contribute to this ambition. The (exclusion of) parameters in the 
parameter space of the model will be further elaborated on in Chapter 5.1.  
 

3.2 Research Framework 
The research framework is presented in Figure 8. It summarizes the full research framework for 
studying the exploration of solar PV adoption using inverse modelling. This thesis relies on a 
structured approach that links its various components such as the main research question, research 
steps and outcomes such as certain data and chapters in the thesis. The research framework can be 
elaborated in the following process phases: 
 
Problem Identification: The problem identification phase consists of three chapters within the thesis. 
This phase aims to identify the research problem, the research approach, the research gap and 
proposes a methodology. A literature review is conducted in this phase to improve the understanding 
of the concepts of inverse modelling, solar PV adoption and agent-based modelling. Scientific 
literature is used as input for this phase. 
 
Model Conceptualisation & Formulation: The second phase starts with the process of finding data 
to compare the predictions of the ABM. On top of that, relevant ML algorithms are identified in this 
phase that will be used to search the parameter grid. Thereafter, the model conceptualization and 
formulation phase focuses on adapting the existing ABM to fit the case of this research. This means 
that certain adaptations in NetLogo (sometimes with the help of self-written Python scripts) need to 
be made so that the ABM in NetLogo is ready for further software implementation. On top of that, a 
conceptual model is created that schematically presents the next steps for the ABM model. This 
means that it presents the general steps within the Python model. Finally, the formal modelling step 
will take place. This includes writing the pseudo-code for the model.  
 
Why Python? 
There are various reasons why Python is used for further processing of the ABM in this research, and 
not NetLogo. These reasons are all mostly related to Python’s adaptability and more extensive 
capabilities. Due to its versatility, integration of ABM with advanced data analysis and ML techniques 
is more efficient in Python. On top of that, Python offers a large number of libraries, facilitating a more 
efficient application of the inverse modelling process than NetLogo. Finally, Python is more 
compatible with other tools and workflows, which improves the reproducibility of this research.  
 
Software Implementation: The software implementation phase is where the previous phases come 
together. The new knowledge about inverse modelling, ABM, machine learning techniques and solar 
PV adoption come together with the conceptual model and demographic data in the Python model. 
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This model enables the inverse modelling process. In the software implementation phase, 
programming takes place, and a schematic overview of the different code files, their inputs, outputs, 
and interdependencies will be presented.  
 
Validation & Verification: As the title suggests, this phase involves validating and verifying the 
Python model. Verification takes place through static code analysis using Pylint and code review. 
Validation takes place through the creation of a model validation file in Python. This means that the 
output of this phase is a verified and validated model ready for data analysis.  
 
Data Analysis: The fifth phase focuses on data analysis, which will be qualitative rather than 
quantitative. Using data analysis, the research results can be interpreted, and a better understanding 
of the role that inverse modelling can play in solar PV adoption dynamics can be gained. After this 
phase is completed, an answer to the research question can also be formulated.  
 
Application: The insights from the data analysis phase can then be used in the final phase, namely 
application. This phase presents the policy implications of the results, a conclusion, and a critical 
discussion about this research. It also presents recommendations for future research and this thesis's 
scientific and societal relevance.  
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Figure 8: Research Framework 
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3.3 Scope of the Case Study 
For the development of this thesis, a case study is chosen as a suitable research approach for the 
exploration of inverse modelling. According to Eisenhardt (1989), a case study is particularly 
applicable when little is known about a phenomenon. This applies well to the case of residential solar 
PV adoption in the Netherlands because the rapid shift in public opinion towards solar energy calls 
for further research on the underlying dynamics of this social phenomenon. On top of that, case 
studies also prove valuable when aiming to examine particular systems with strongly defined 
boundaries. As outlined by Flyvbjerg (2011), opting for a case study directs research towards an 
individual unit, thereby establishing the limits of what this unit encompasses. In the context of this 
study, the “unit” is limited to the geographical scope of the Netherlands, exemplified by a selected 
municipality sample.  
 
Using a case study offers various advantages, such as improved empirical validity because it closely 
aligns theory-building with evidence (Eisenhardt, 1989). Furthermore, it presents the benefits of 
minimizing researcher bias and increasing the probability of uncovering novelty. This latter advantage 
is particularly crucial in this context since the focus of this study is explorative. Nonetheless, case 
studies also come with certain drawbacks, such as the potential for collecting irrelevant data and the 
necessity of fitting within theoretical frameworks (Crowe et al., 2011). These limitations can be 
addressed by justifying the choices made since this creates in-depth knowledge and allows 
unexpected issues to arise. Yin (1994) highlights the importance of contemporary events in case 
studies, although, in this research, much of the significant growth in solar PV in the Netherlands has 
already occurred. Balancing these strengths, a modelling approach employing a case study is 
considered appropriate, recognising the complementary nature of both methodologies.  
 
As mentioned before, the scope of this research is solar PV adoption in the Netherlands. This scope 
will, however, be limited to a municipal level due to practical and data availability considerations. A 
total of 6 municipalities will be considered in this study. The selection of this number of municipalities 
as the focal point for the case study is primarily motivated by data considerations. Specifically, the 
necessity for highly specific geographic information and data about roof sizes (as is required for the 
model by Muelder & Filatova (2018)) dictates the choice. These essential datasets are obtainable 
from TUDelft3d (2024), which provides comprehensive information on every building in the 
Netherlands. The extensive scope of information contained within this website encompasses data for 
all buildings in the country, resulting in a substantial file size. To effectively manage the data and 
delineate clear system boundaries, the decision is made to select only municipalities that have less 
than 75.000 inhabitants and to select only 6 municipalities. This choice is guided by its manageable 
scale and feasible fit within the partitioned patches of the information map. By focusing on these 
aspects, the study can establish distinct and manageable parameters, facilitating a more systematic 
modelling approach.  
 
In the process of selecting municipalities for this case study on residential solar PV adoption in the 
Netherlands, a variety of criteria can be considered. However, seeing the practical limitations of this 
study, only 3 criteria are used. The research by Stake (2005) provides insights into the process of 
case selection, emphasising the importance of considering socio-economic characteristics when 
choosing research cases. On top of that, the selection criteria that will be used for the case study 
should be parameters that can be changed in the model that will be used in the research. Considering 
these two factors, the following criteria emerge: income, population density and solar PV adoption per 
1000 households. It should be noted that in the selection of the municipalities, only municipalities with 
a number of residents lower than 50.000 are considered due to computational abilities.  
 
Income level is an important factor because it functions as a representative of household wealth and 
purchasing power, which substantially influences the affordability and accessibility of solar PV 
systems. For this criterion, the municipalities of Bloemendaal and Vaals are considered since these 
are the two municipalities having the highest (Bloemendaal) and the lowest (Vaals) median income 
out of all municipalities with less than 50.000 inhabitants (CBS, 2023a). 
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The second criterion to be considered is population density. The municipalities of Westerveld (least 
population-dense, excluding the Dutch islands) and Oegstgeest (most population-dense) will be used 
for the case study (CBS, 2023b).  
 
The final criterion is the number of solar PV installations per 1000 households. The municipalities of 
Dantumadiel (with the most) and Laren (with the fewest) are selected as cases for this criterion.  
 
All of these municipalities are presented in the table below. The median income presented in this 
table is based on CBS (2023a) and the number of residents is based on KadastraleKaart (2024). 
Appendix C presents an overview of the income distributions in these municipalities, which are later 
used in the ABM. 
 
Table 3: Overview of the selected municipalities for the case study 

Municipality Province Number of Residents Median Income 

Bloemendaal Noord-Holland 23.159 €51.400 

Dantumadiel Friesland 19.135 €34.650 

Laren Noord-Holland 11.195 €48.250 

Oegstgeest Zuid-Holland 25.939 €47.750 

Vaals Limburg 10.190 €29.550 

Westerveld Drenthe 19.348 €38.750 

 

3.4 Machine Learning as a Means for Inverse Modelling 
As mentioned before, inverse modelling can be used to explore the dynamics underlying solar PV 
adoption. It involves the process of inferring the parameters of a model that best explains observed 
data, thereby providing insights into the factors driving solar PV adoption. One way to perform inverse 
modelling for solar PV adoption is by using machine learning techniques (Vu et al., 2023). This can 
work as follows: ML techniques, such as Bayesian Search and Random Search, can iteratively 
explore the parameter space which is defined by the solar PV adoption models. It samples parameter 
configurations, runs the model with these configurations, and evaluates the model’s performance 
against observed data. In this sense, the objective function can be defined as the error between the 
(real-world) observed solar PV adoption data (training data) and the model predictions generated 
using the current parameter configuration. The goal is to minimise this error and, therefore, effectively 
improve the ability of the model to simulate real-world adoption dynamics. This process enables 
inverse modelling and can create better insights into the dynamics underlying solar PV adoption.  
 
For instance, say, Bayesian Search is used as a ML algorithm. As the Bayesian Search progresses, 
it refines its estimate of the optimal parameter values based on the observed, real-world (training) 
data. This iterative process continues until convergence or until a predefined stopping criterion is met. 
In this case, two splits (see Chapter 5.4.2. for reasoning) and 15 iterations will be done for a total of 
25 runs (see Chapter 5.4.2. for reasoning). The stopping criterion is therefore mostly based on 
computational abilities.  
 

3.5 Chapter Summary 
This methodology chapter outlines the research approaches and frameworks used to research solar 
PV adoption on a municipal level in the Netherlands. It begins with the research approach, detailing 
how an ABM will be employed and modified to fit the specific case study. This model uses inverse 
modelling to adjust input parameters, aiming to provide insights into the underlying dynamics. The 
research framework involves several structured phases. Initially, the problem is defined, and a 
literature review supports the methodology. Model Conceptualization adapts an existing ABM and 
identifies relevant machine learning algorithms. The Software Implementation phase integrates the 
model with Python, enhancing inverse modelling capabilities. The Validation and Verification phase 
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ensures the model’s accuracy, while the Data Analysis phase interprets results qualitatively to better 
understand solar PV adoption dynamics for the case. Importantly, these results are discussed as well. 
Finally, the Application phase draws conclusions and recommendations for future research.  
 
This chapter also elaborates that the study focuses on six Dutch municipalities—Bloemendaal, 
Dantumadiel, Laren, Oegstgeest, Vaals, and Westerveld—selected based on income level, 
population density, and solar PV adoption rates. Two machine learning techniques, Bayesian Search 
and Random Search, are used for inverse modelling.  
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4 
Data & Algorithms 

 
This chapter comprehensively explores the foundational pillar of inverse modelling: data requisites. 
Understanding complex systems through modelling starts with collecting important data. Therefore, 
this chapter will first examine the key data necessary for inverse modelling and how it can be used. 
Thereafter, the machine learning algorithms that could be utilised to enable inverse modelling will be 
explored.  
 

4.1 Data requisites  
The data that is required for the inverse modelling process can roughly be divided into 2 categories: 
(1) necessary data for running the initial ABM model, and (2) necessary data for running the Python 
model. This section elaborates on this data. It should be noted, however, that the exact 
implementation will not be discussed in this chapter but rather in Chapter 5.  

4.1.1. Necessary Data for Running the Model 
The agent-based model that is used in this research is the NetLogo model by Muelder & Filatova 
(2018) which originally focuses on solar PV adoption in the municipality of Dalfsen in the Netherlands. 
This model has, however, several data limitations, which result in the model being unable to run. The 
reason for this is the fact that for the model datasheets, surveys and shapefiles were used that are 
not publicly available due to privacy reasons. Therefore, various adjustments need to be made to the 
model for it to run. However, not all data used in these datasheets, surveys, and shapefiles are 
essential for running the model. Therefore, the essential parameters that fully rely on these private 
data and that need to be adjusted have been identified. These are three parameters in total, namely 
geolocation of the households, income of the households and roof sizes. The exact modifications that 
have been done to the model will be discussed in Chapter 5. However, this chapter will go into further 
detail on the content of the data that is used to make the model run.  
 
The first parameter is geolocation. In the original model, shapefiles have been used to identify the 
locations of houses in the municipalities. The spatial location and geographical distances between 
households in the model play a role when initialising the social network. This means that geolocation 
was the first adjustment that had to be fixed in the model. These geolocations for all houses were 
found via a webpage called 3DBag (TUDelft3d, 2024). Coincidentally, this page also contains the roof 
sizes of each house in the Netherlands. Due to its size, this webpage works with small patches that 
can be downloaded and that contain the required information. For the municipality of Laren for 
instance, a total of 8 tiles had to be downloaded. For the other municipalities, the number of tiles that 
had to be downloaded varied between 4 and 21. Each of the files of the patches contained, however, 
also a lot of unnecessary data that was not required for the implementation in the model of Muelder 
& Filatova (2018). Therefore, two Python scripts had to be written to extract the geolocation. The 
purpose of the first Python script was to extract the required data from the downloaded files from 
3DBag, convert the geolocations to WGS84 form and convert this to a CSV and a shapefile. This 
script can be found in Appendix A. The purpose of the second Python script was to combine each of 
the individual patches into one larger patch. This, however, results in a larger amount of buildings 
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than the number of municipalities. This is due to the fact that each of the municipalities is also home 
to several stores and company buildings. Therefore, it was implemented in the code to limit the 
amount of data points extracted to the number of households.  
 
For the roof sizes, two Python scripts had to be written as well, serving the same purpose as the 
Python scripts for the geolocations. These can be found in Appendix A and B as well. By writing these 
scripts, one shapefile containing the geographical locations of the houses and one CSV file containing 
roof sizes were created which could be used in the model.  
 
The final parameter that required new data is income. This data is acquired through CBS (2023a) and 
uses the median standardised income and the income distribution in each of the municipalities for 
2022. These distributions can be found in Appendix C.  

4.1.2. Data for Training The Model  
Training data is essential for the process of inverse modelling. In the table below, the solar PV 
adoption data for the 6 municipalities is presented. The data that is used for training the model 
concerns the number of solar PV installations in residential homes throughout the years for each of 
these municipalities and is obtained from CBS (2020) and CBS (2023c). Data on the number of 
residential solar PV installations is only available from 2012 and is still incomplete for 2023, so only 
data from between 2012 and 2022 is used.  
 
Table 4: Training data for inverse modelling 

Number of solar PV installations (residential houses) 

Period 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 

Municipality 

Bloemendaal 75 136 203 300 378 453 612 794 1047 1447 1879 

Dantumadiel 187 322 417 503 591 715 977 1360 2344 3228 4126 

Laren  10 36 64 84 93 127 152 191 284 360 584 

Oegstgeest 134 240 346 445 545 667 902 1407 1971 2461 3135 

Vaals 0 108 173 217 255 439 534 734 916 1073 1238 

Westerveld 141 296 427 920 1138 1706 2263 2717 3045 3440 4023 

 
This training data is also presented in Figure 9 and Figure 10 below. Figure 9 is an exact visual 
representation of the data in Table 4. Figure 10, on the other hand, presents the number of solar PV 
installations per household for each municipality and, therefore, accounts for the sizes of the 
municipalities. From these figures, it becomes clear that most of these municipalities (especially 
Laren, Bloemendaal, Vaals and Oegstgeest) follow relatively similar curves, having a moderately 
exponential growth with varying degrees of increase over the years. The municipality of Dantumadiel 
follows this exponential curve as well, only steeper than for the previous four municipalities, indicating 
a slow start followed by a steep increase. The municipality of Westerveld presents a very interesting 
curve that is significantly different from the other municipalities, as it is sometimes sublinear and 
sometimes superlinear. This curvature presents a rapid increase in installations over the years, but 
the increase accelerates more gradually compared to the exponential growth of, for instance, 
Dantumadiel.  
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Figure 9: Number of residential solar PV installations per municipality (CBS (2020) & CBS (2023e)) 

 
 

 
Figure 10: Number of solar PV installations per household (CBS (2020) & CBS (2023e)) 

 

4.2 Machine Learning Algorithms 
As elaborated in Chapter 3, machine learning algorithms can be a means for inverse modelling in the 
pursuit of understanding the complex dynamics underlying solar PV adoption. These algorithms can 
be used to uncover patterns and insights with vast datasets. Among the diverse array of algorithms 
available, Random Search and Bayesian Search stand out for their versatility and applicability to 
inverse modelling tasks in this domain. These two algorithms will therefore be the two algorithms that 
will be applied to the models because of their ability to explore high-dimensional spaces while 
remaining computationally efficient (Bergstra & Bengio, 2012). Each of these two algorithms has 
different strengths and weaknesses. The Random Search algorithm for instance finds strengths in its 
simplicity, whereas Bayesian Optimisation finds strengths in its adaptability due to its ability to adapt 
the search based on previous evaluations. Below, the algorithms are elaborated more individually.  
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As mentioned before, many more algorithms could be applied to the model, such as random forests 
and neural networks. These algorithms might be better at capturing the complex patterns underlying 
the models. However, they are more complicated and less powerful in parameter optimisation. Since 
the focus of this thesis is socio-technical rather than purely within the domain of computer science, 
these other algorithms will not be further explored. They do, however, present intriguing opportunities 
for future research. 
 
It should be mentioned again that the application of machine learning for this research is purely 
instrumental. This is another reason why only 2 algorithms are explored and not more. The data that 
is used for training the model is presented in Table 4.     

4.2.1. Random Search 
Random Search is a hyperparameter optimisation technique widely employed in machine learning to 
efficiently explore the hyperparameter space and identify optimal configurations for models (Bergstra 
& Bengio, 2012). Unlike exhaustive grid search, which evaluates every possible combination of 
hyperparameters, Random Search randomly samples from the parameter space θ (Andradóttir, 
2006), making it computationally more efficient and suitable for high-dimensional problems like solar 
PV adoption modelling.  
 
One of Random Search’s key advantages lies in its ability to handle non-linear relationships and 
complex interactions between input features (Marmolejo et al., 2017). By systematically varying 
hyperparameters such as learning rates, regularisation strengths and network architectures, Random 
Search can uncover the most influential factors driving solar PV adoption and shed light on their 
interplay. Another advantage of Random Search algorithms is limited computational effort (Zabinsky, 
2011). Random Search algorithms are rather popular due to their ability to swiftly and effortlessly yield 
a fairly good solution. Furthermore, the Random Search’s stochastic nature allows it to explore 
diverse regions of the parameter space, thereby providing a more comprehensive understanding of 
the underlying dynamics. Through iterative experimentation and evaluation, researchers can refine 
their models and gain insights into the factors shaping solar PV adoption patterns.  
 
The general structure of Random Search methods, as defined by Zabinsky (2011), is as follows:  

1. Initialise. Initialisation of the algorithm parameters (θ0), the iteration index (k=0) and initial 
points (X0 ⊂ S), whereby S is a feasible region of n dimensions.  

2. Sample. Generation of a set of candidate points (Vk+1 ⊂ S) using a designated generator and 
its corresponding sampling distribution 

3. Simulate. Update (Xk+1) using candidate points (Vk+1), previous iterations, and algorithmic 
parameters. Additionally, update algorithmic parameters to (θk+1) 

4. Iterate. If the stopping criterion is satisfied, terminate. Otherwise, increment k and go back to 
the first step.  

 
Random Search involves sampling points from the hyperparameter space. Each point represents a 
specific configuration of hyperparameters. The idea is to explore the various regions of the 
hyperparameter space to find good configurations without exhaustively searching the entire space.  
With a multiple-point generator, Random Search generates multiple candidate configurations in each 
iteration (Zabinsky, 2011). These configurations are then evaluated, and the best-performing one is 
selected for further exploration. Using multiple points in each iteration allows Random Search to 
explore the hyperparameter space more efficiently compared to a single-point generator, which 
evaluates only one configuration at a time.  
 
In short, this means that the key strength of the Random Search algorithm lies mostly in its simplicity. 
The algorithm also knows, however, certain weaknesses. The first weakness of the algorithm is 
inefficiency. It may require a large number of evaluations to find the optimal parameters, especially in 
models with a high degree of dimensionality. The second weakness of the algorithm relates to a lack 
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of guidance since this algorithm does not leverage information from previous evaluations to guide the 
search.  

4.2.2. Bayesian Search 
Bayesian Search can be seen as an extension of Random Search. It incorporates probabilistic models 
to guide the search process towards promising regions of the parameter space (Mortazavi, 2022). 
The technique relies on probabilistic surrogate models to estimate the behaviour of the objective 
function. By iteratively updating the surrogate model based on observed data, Bayesian Search 
intelligently explores the parameter space, which is the purpose of this research and therefore makes 
this algorithm very applicable.  
 
One of Bayesian Search’s notable strengths lies in its ability to adaptively adjust the search strategy 
based on previous evaluations, leading to more efficient exploration of the parameter space (Snoek 
et al., 2012). This adaptability is particularly advantageous in inverse modelling tasks, where the goal 
is to minimise the error between model predictions and observed data. Additionally, Bayesian Search 
provides uncertainty estimates for each evaluated point in the parameter space, enabling researchers 
to quantify the confidence in their model’s predictions. This uncertainty quantification can be 
invaluable for robust decision-making and hypothesis testing in the context of solar PV adoption 
research. The final strength of the Bayesian Search Algorithm lies in its efficiency, especially relative 
to the Random Search Algorithm. Due to its ability to adapt the search based on previous evaluations 
and thereby focus on promising regions of the parameter space, it typically requires fewer evaluations 
compared to the Random Search algorithm to find good parameter values. The algorithm does, 
however, also know weaknesses. The first weakness is related to its implementation, which can be 
more complex compared to Random Search. Additionally, Bayesian Search is often more 
computationally intensive since it involves building and updating the model. 
 

4.3 Chapter Summary 
This chapter explores the data requisites that will play a fundamental role in the inverse modelling 
process. From the data requisite section, it becomes clear that for the agent-based model by Muelder 
& Filatova (2018) to run, three main parameters have to be adjusted, namely income, roof size and 
geolocation. Furthermore, the data that will be used to train these models has been identified. Solar 
PV adoption data is found for each of the municipalities that will be considered in the training process. 
Finally, the machine learning algorithms that will be considered to serve as a means for the inverse 
modelling process have been identified, namely: Random Search and Bayesian Search. The data 
that is used for training the model is presented in Table 4. In summary, it can be said that while 
Random Search is simple and easy to implement, Bayesian Search tends to be more efficient and 
effective. Therefore, a comparison between the results of both algorithms is interesting. 
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5 
The Model 

 
This chapter focuses on the modelling within this research. Firstly, the NetLogo model by Muelder & 
Filatova (2018) will be elaborated. Thereafter, the modifications that had to be done to this model in 
order to fit the objectives of this research will be disucussed. Finally, the model assumptions for this 
model will be discussed. Then, an explanation of the actual implementation of the entire inverse 
modelling process in Python will be given. This means that the existing NetLogo model by Muelder & 
Filatova (2018) is used as a basis for the inverse modelling process but that the IM process does not 
actually take place here since NetLogo does not have the capability to do efficient parameter 
calibration. Therefore, in order to make the IM process happen, a model in Python is created where 
parameter calibration is executed. To elaborate further on the relationship between the original 
NetLogo model and the new Python model, as well as the data and outcomes, a conceptualisation is 
presented in Chapter 6.2.1. This model conceptualisation, therefore, focuses on the entire modelling 
process within inverse modelling.  
 
Finally, model validation and verification will be discussed in Chapter 5.4. It is good to note that in this 
chapter, the original model presented by Muelder & Filatova (2018) will be referred to as the ‘original 
model’, whereas the version of this model that has been adapted to fit the case of this specific 
research will be referred to as the ‘modified model’ or the ´Python model`. 
 

5.1 NetLogo Model Elaboration 
The model that is used in this research is the model presented in the work by Muelder & Filatova 
(2018). The study by Muelder & Filatova focuses on the transparency and consistency of ABMs in 
social science research. It highlights the challenge of translating qualitative social theories into 
quantitative models and the potential for varied interpretations. The study researches how different 
formalisations of a social theory, namely the Theory of Planned Behaviour, affect the outcomes of an 
ABM, using simulations focused on household solar PV investment decisions. This model specifically 
focuses on the municipality of Dalfsen in the Netherlands. The ABM that is presented in the study by 
Muelder & Filatova will be used as a basis for this research but it will be adapted to fit the case. It can 
collect data regarding the share of agents purchasing solar PVs and the total amount of energy 
generated by all installed PVs in the simulation. Therefore, this model can be used to apply inverse 
modelling to and hopefully gain a deeper understanding of the factors influencing adoption decisions. 

5.1.1. NetLogo Model Modifications 
In Chapter 4 it was discussed that initially, the model by Muelder & Filatova (2018) was not able to 
run. Therefore, the first modifications to the model are related to the agents' geolocation, income, and 
roof sizes. However, more errors were found in the model during the modelling process. These will 
be described in this chapter as well. This chapter will not dive deeper into these modifications since 
they have been elaborated on in the previous chapter. 
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Agents: 
The model has one agent type, namely households. Each of these households has certain agent 
state variables and is characterised by a certain geographical location, household traits, involvement 
in a social network and decision-making processes. Appendix E includes these agent state variables 
from the modified model. This means that not all state variables are exactly equal to the original 
model. It should also be noted that the NetLogo code contains a lot more turtles-own variables than 
the amount of agent state variables listed in the appendix. The reason for this is that the original model 
lists many transfer variables as turtles-own. These transfer variables are not included for reasons of 
conciseness.  
The income of the agents has been changed compared to the original model. Originally, a survey 
determined this income; however, this data is no longer available. Therefore, income data from CBS 
(2023a) was taken in the modified model. To balance the new number of households per income 
group, the income group thresholds were also modified. Originally these income group thresholds 
were €30.000 / year and €45.000 / year. However, this meant that the number of households in the 
income group > €45.000 a year was very large. Therefore, these income class thresholds were 
modified to €40.000 / year and €60.000 / year. As elaborated in Chapter 4, the roof sizes of the 
households have also been modified.  
Finally, the initial PV share used in the model had to be adapted. Unfortunately, the way this 
parameter was utilised in the original model was not functional, so the code was changed to make it 
functional. Changes also had to be made to the setup and the go procedure for the model to work.   
 
Environment: 
The environment in this model is a municipality. So for instance for the municipality of Vaals, the 
environment is the municipality of Vaals. The interface, therefore, represents all households in the 
municipality at their geographical location and the links that are formed between these households 
(that form their social networks). Most of the environmental variables are presented in Appendix F. In 
Figure 12 the interface of this model is presented.  
 
Again, several variables were left out since these were transfer variables. Some of the environmental 
state variables can, however, not be changed during the run. Their attribute levels are presented in 
Table 5. It should be noted that these attribute levels are based on their values as of 2012. Some of 
these variables, such as electricity prices, have changed a lot in the past decade. Furthermore, the 
PV costs are also considered stable during the runs, while in reality, these costs have decreased by 
over 80% since 2012 (IRENA, 2021). This forms a limitation to this study and would indicate that the 
NetLogo model likely underestimates the number of solar PV installations in a municipality.  
 
Table 5: Attribute levels for environmental state variables that cannot be changed during the run 

Variable Attribute Attribute levels Reference 

PV costs per m2 The costs of solar panels per 
m2 

€1000 / m2 (IEA, 2020) 

PV peak power The maximum power in 
kW/m2 

1 kW/m2 (Huynh et al., 2013) 

Sunshine hours Total sunshine hours per 
year 

2209 hours (Statista, 
2022a)(Zonneplan, 
2012)  

Performance ratio The overall performance 
efficiency of the PV system 

0.6 (Ghazali M. & Abdul 
Rahman, 2012) 

PV lifetime The assumed lifetime of a 
PV system in years 

25 years (Tan et al., 2022) 

Grid electricity costs The electricity price €0.26/kWh (CBS, 2012) 

 
Processes: 
At the heart of the model lies the household’s decision-making process, where they decide whether 
to invest in solar PV or not. This process occurs in every time step and for each of the households. 
Following each time step, the attributes of the households are adjusted and the cumulative outcomes 
are projected for the entire municipality. Moreover, the model offers three alternatives for depicting 
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the decision-making process, each based on different interpretations of the Theory of Planned 
Behaviour (TPB) (Muelder & Filatova, 2018). However, due to computational limitations, only one of 
these interpretations will be used in this research, namely the RR model presented in the consecutive 
studies by Rai & Robinson (2015) and Robinson & Rai (2015). In their studies, household decisions 
regarding the adoption of solar PV installations and the diffusion of PVs in a residential area in Texas 
in the USA were investigated. Within this analytical framework, household agents were conceived as 
rational actors, weighing various determinants including environmental consequences, economic 
viability and social influences.  
 
Economic considerations are operationalised in the model through metrics such as payback period 
estimation, system profitability and anticipated monthly electricity bill savings. In the ABM 
instantiation, economic utility is introduced to encapsulate this aspect. Environmental impact includes 
dimensions such as CO2 emission savings and households’ environmental consciousness. Social 
influence is explained via metrics like the prevalence of PVs in the neighbourhood and interactions 
with PV owners. In the original papers by Rai & Robinson (2015), a comfort utility related to the 
psychological and aesthetic dimensions was not included. Muelder & Filatova (2018), do include this 
utility in their NetLogo model.  
 
In the model, income is firstly compared to payback assessments through: 
 

𝑡ℎ𝑖𝑛𝑐 > 𝑢𝑒𝑐𝑜       (1) 
 

If this PBC barrier is passed, households assess their potential utility of a PV investment decision 
using multi-attribute utility through:  
 

𝑈𝑅𝑅 = 𝑤𝑒𝑐𝑜 ∗ 𝑢𝑒𝑐𝑜 + 𝑤𝑒𝑛𝑣 ∗ 𝑢𝑒𝑛𝑣 + 𝑤𝑠𝑜𝑐 ∗ 𝑢𝑠𝑜𝑐 + 𝑤𝑐𝑜𝑓 ∗ 𝑢𝑐𝑜𝑓       (2) 

 
The decision of the household to install PV or not is taken by a comparison between the result of the 
multi-attribute utilities associated with solar PV (𝑈𝑅𝑅) against a predetermined threshold value which 

is called “𝑅𝑅𝑠𝑖𝑎” in the model. In Figure 11, this process is visualised. 
 

 
Figure 11: The simulation process for the operationalisation of the Theory of Planned behaviour by  Robinson & Rai 

(2015) 
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Design Concepts: 
In each time step, a variety of data is collected, starting with the share of agents purchasing solar 
PVs. Furthermore, the number of PV installations categorised by income class and the average 
environmental significance of households with PV installations are categorised by income class. 
Some data, however, requires calculations. For instance, the total electricity production aggregated 

across all installed PV systems can be calculated through the following formula whereby 𝑒𝑚𝑎𝑥  =  𝑃𝑉 

peak power, 𝑡𝑠𝑢𝑛  =  𝑠𝑢𝑛𝑠ℎ𝑖𝑛𝑒 ℎ𝑜𝑢𝑟𝑠, 𝑝 =  𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 𝑟𝑎𝑡𝑖𝑜 𝑜𝑓 𝑡ℎ𝑒 𝑃𝑉 and 𝑎 =  𝑟𝑜𝑜𝑓 𝑠𝑖𝑧𝑒.  
 

𝐸𝑡𝑜𝑡(𝑡𝑝𝑣) = 𝑒𝑚𝑎𝑥 ∗ 𝑡𝑠𝑢𝑛 ∗ 𝑝 ∗ 𝑎       (3) 

 
The overall financial savings for households that result from solar PV installations are calculated 
based on the total revenue generated by the PV system (𝑟𝑡𝑜𝑡). This comprises the summation of the 

power generated by the PV system (𝐸𝑡𝑜𝑡) multiplied by the electricity costs (𝐶𝑒) over the PV system's 

lifetime (𝑡𝑃𝑉), subtracted by the total cost per square meter (𝐶𝑃𝑉) and roof size (𝑎):  
 

𝑆𝑚𝑜𝑛 = 𝑟𝑡𝑜𝑡(𝑡𝑃𝑉) − (𝐶𝑃𝑉 ∗ 𝑎) 

𝑟𝑡𝑜𝑡 =  ∑ 𝐸𝑡𝑜𝑡(𝑡)
𝑡𝑃𝑉
𝑡=1 ∗  𝐶𝑒       (4) 

 
Finally, the total reduction in CO2 emissions attributed to solar PV installations can be calculated by 

multiplying the total electricity production from PVs (𝐸𝑡𝑜𝑡(𝑡𝑃𝑉)) by the average CO2 savings per kWh 

(𝑆𝐶𝑂2): 

 

𝑆𝐶𝑂2 =  𝐸𝑡𝑜𝑡(𝑡𝑃𝑉) ∗  𝑆𝐶𝑂2       (5) 
 

       
Figure 12: Presentation of the interface of the model by Muelder & Filatova (2018). In this case, the municipalities of 

Vaals (left) and Oegstgeest (right) have been taken.  

5.1.2. Model Assumptions 
Several assumptions have been made for the model. While it is impossible to name all assumptions, 
the most important are the following: 
 

• The attribute levels of environmental state variables that cannot be changed during the run 
are based on their values in 2012. Some of these values changed drastically throughout the 
past decade, however. Therefore, this is an assumption that presents a limitation to the study.  
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• The model focuses mainly on the behaviour of households and does not include policy 
measurements to a large degree.  

5.1.3. Fixed Parameters for Inverse Modelling 
Each of the municipalities has certain demographical characteristics that are fixed. These 
characteristics are therefore also set as fixed parameters in the inverse modelling process: they 
cannot be changed. Table 6 below presents an overview of these parameters and their values for 
each municipality. Firstly, the number of households is set as a fixed parameter. The second of these 
fixed parameters is the initial PV share, which relates to the share of households owning solar panels 
at t=0. Note that these are not a percentage but rather a fraction of the total population (amount of 
households). Furthermore, the income distribution is set as a fixed parameter. These distributions per 
municipality are presented in Appendix C. Finally, the roof sizes and geolocations are also set as 
fixed parameters. These are based on data from TUDelft3d (2024). These fixed parameters per 
municipality for the model can be found in Appendix D.  

5.1.4. Variable Interface Parameters for Inverse Modelling  
In the table below, an overview is given of the parameters that will be used in the inverse modelling 
process and the range and steps by which they will be changed during this process. In total, 5 variable 
parameters were chosen. The reason behind this number is a combination of computational abilities 
(more parameters slowing down the model due to a larger search area) and processibility in the data 
analysis. Note that when a distribution is (0, 1, 0.1) this means that the parameter will have a discrete 
distribution where 0 is the minimum, 1 is the maximum and the steps are 0.1.  
 
The economic utility weight reflects the significance that households attribute to financial factors when 
making decisions about purchasing solar PV systems. Similarly, the environmental utility weight 
indicates the importance households place on the environmental impact of solar PV. The comfort 
utility pertains to the significance households assign to the psychological comfort derived from solar 
PV systems, such as potential concerns regarding aesthetic disruption or other forms of discomfort 
unrelated to financial aspects. Lastly, social utility refers to the importance households place on 
familiarity or shared experiences with PV systems within their social circle (Muelder & Filatova, 2018). 
 
Some of the parameters are fixed in Python, such as the RandomSeed and the fact that only the RR 
model will be used. Since the number of households is based on a shapefile, this parameter is not 
defined. On top of that, the initial PV share is also fixed since this is based on real data (CBS, 2020). 
 
Table 6: Parameter Distributions for the Inverse Modelling Process in Python 

Parameter Description Distribution 

Discrete Parameters 

Weight_eco The economic utility (0, 1, 0.01) 

Weight_env The environmental utility. (0, 1, 0.01) 

Weight_cof The comfort utility.  (0, 1, 0.01) 

Weight_soc The social utility. (0, 1, 0.01) 

 

5.1.5. Excluded Parameters in the IM Process 
Due to computational limitations (specifically, overflow errors in the Python file), not all of the 
parameters in the NetLogo model can be considered. Therefore, several parameters have been set 
to a default value in the NetLogo model, and will therefore not be used in the search space during the 
inverse modelling process. This list of excluded parameters has been added in Appendix H. This 
chapter will briefly elaborate on the reasoning behind excluding these parameters in the inverse 
modelling process, and their default value in the NetLogo model. Note: this does not mean that these 
parameters are not considered at all. It only means that one value is considered, instead of the entire 
value space for the parameter.  
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The first exclusion decision is related to the type of TPB that is used. The purpose of the original 
model was to test different code implementations of the Theory of Planned Behaviour in this specific 
model on solar PV adoption, namely MF (based on Muelder & Filatova (2018)), SE (based on Schwarz 
& Ernst (2009)) and RR (based on Robinson et al. (2007)). However, since this is not the objective of 
this study, only one type of TPB operationalisation will be sufficient. For this study, the RR model will 
be considered due to it being the earliest implementation of the TPB and it being the one resulting in 
the least computational limits. For this reason, all of the parameters related to the MF and the SE 
model are non-applicable. The RR_sensitivity_barrier is also not included since this parameter is not 
included in the original code of the model by default: it needs to be uncommented for it to be included. 
Considering the computational limits, it was therefore decided not to uncomment this section in the 
code.  
 
The Uncertainty switch relates to whether or not uncertainty is included in financial aspects, such as 
the payback time of solar panels. Since this will always be the case in reality, this switch is excluded 
from the inverse modelling process and set to “True” by default. The Financial_Information and the 
Probability_Financial_information parameters are excluded because of internal modelling mistakes, 
which means that the Financial_Information switch does not impact the model results. The 
Information_Threshold switch is therefore set to “False” by default. The exclusion of the 
Random_links parameter also relates to an internal modelling mistake: including this parameter 
sometimes results in an error in the model, therefore it was chosen not to include it in the inverse 
modelling process and set its default value to 0. The weight distribution is set to homogenous by 
default because the heterogenous option makes use of survey results of the weights of the economic, 
environmental, social and comfort utility, whereas this research aims to consider these parameters in 
the model as well. The Information_distribution that Is used for the calculation of the uncertainty level 
for different information distributions is by default set to empirical. The reason for this is that this is 
the only option within this parameter that makes use of scientific literature for the reasoning behind 
this distribution. (Rai & McAndrews (2012) ; Rai et al. (2016)).  
 
The Ajadv and Ajsoc parameters were not included in the inverse modelling process due to their 
limited influence and were therefore set to a value of 0.02 by default. The true/false parameters 
Visibility, Sparking_events, Info_Costs, Info_Costs_revenue, Infor_Costs_Income and 
Information_Threshold were not included due to their relatively low impact in the model. These 
parameters have been set to True by default. Furthermore, the discrete parameters Interest rate and 
PV_SDE_premium are not included because the values of these parameters do not differ per 
municipality: they are fixed on a national level. The interest rate is set to 0.06 by default and the 
PV_SDE_premium is set to 0.10 by default. The Influence_cost_time and the 
information_threshold_value are both not included due to their limited impact and are set to a value 
of 0.25 by default. The close_links parameter has been set to 2 by default.  
 
Finally, the RR_sia parameter was not included. Even though this parameter would have been 
interesting to research since it dives deeper into the adoption barrier for solar PV adoption, the 
influence of the value of this parameter was too large for this research. This meant that even a minor 
change in this parameter would result in completely different values for all other parameters. For this 
reason, it was decided that the RR_sia parameter is too unstable to use in the data analysis. By 
default, this value has been set to 0.15.  
 

5.2 Model Conceptualisation Within the Inverse Modelling Process 
This subchapter introduces the conceptual framework of the model and presents a UML diagram 
illustrating its general structure. The aim is to clearly understand the proposed model's theoretical 
basis and organisational layout. It is important to note that even though this chapter is titled “Model 
Conceptualisation,” it encompasses two independent models: the NetLogo model previously 
presented and a Python model. However, these two models cannot be seen individually within the IM 
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process (they are both required) and operate as a unity. Therefore, any reference to “the model” in 
this work pertains to the entire modelling process, which includes both the NetLogo and the Python 
model. Specific references to either the NetLogo or Python model will be explicitly stated.  
 
To understand the conceptual model, one must start with the real world. Real-world data provides 
information on demographics such as income distribution, initial pv-share and roof sizes mentioned 
earlier in this chapter. This data forms the ‘fixed parameters’ or parameters that are fixed for a certain 
municipality and that will not change during the inverse modelling process. On top of that, certain 
variable parameters also form inputs for the NetLogo model. These variable parameters have also 
been presented earlier in this chapter. Together, these fixed and variable parameters form the inputs 
for the NetLogo model for a certain municipality. This NetLogo model is then able to generate a certain 
output. This output is then used in the Python model. With the output of the NetLogo model, the 
Python model can generate predictions on solar PV adoption for that municipality using machine 
learning algorithms. These predictions are then compared with the real data on solar PV adoption, as 
presented in Chapter 4. These predictions are the number of solar PV installations installed for that 
municipality during the years 2012 – 2022 (so 1 value per year, totalling 11 predicted values). The 
predictions made by the model and the real data (which is also in the shape of installed solar PV 
installations for that municipality during the years 2012 - 2022) are then compared, and a certain error 
value can be calculated. This error value gives an indication of how good (or bad) the prediction is. 
This means that the goal is to minimise this error value. By changing the variable parameters, different 
predictions can be made which results in different error values and corresponding values for the 
variable parameters for each iteration. This is the inverse modelling process. After a certain number 
of iterations, a number of error values and associated parameters are generated, and the lowest error 
value represents the best prediction. This means that the model will have one minimum error value 
and associated variable parameters for each run. Adjusting the model parameters to match the 
simulation outputs as closely as possible to real-world data is also called parameter calibration. 
 
This process can be executed for each of the municipalities, resulting in a total of 6 different outputs 
for each of the models. These outputs can then be analysed. The goal hereby is to research if, given 
the fixed values, the same or different values for the variable parameters lead to good (or bad) 
predictions between the municipalities. In doing so, one can explore the potential interactions between 
fixed and variable parameters that might explain regional differences in solar PV adoption and analyse 
how fixed parameters contribute to regional variations in solar PV adoption rates. In Chapter 6, the 
data analysis process will be further elaborated.  
 
Figure 13 presents the conceptual model of the inverse modelling process visually. Note that this 
conceptual model visualises the process for 3 municipalities instead of 6. This conceptual model 
presents the relationships between the NetLogo models, the Python models, and the real world. This 
relationship and feedback to the real world are essential in the inverse modelling process since this 
is the part that improves the understanding of the system.  
 
This conceptual model also clearly defines the difference between parameter calibration and inverse 
modelling, two terms that can easily be confused. Figure 13 shows that parameter calibration focuses 
on adjusting model parameters to optimise the model’s fit to the observed, real-world data, aiming for 
accurate predictions. Conversely, inverse modelling seeks to understand the driving forces and 
dynamics shaping solar PV adoption rather than solely optimising model parameters for prediction 
accuracy. This means that inverse modelling, in a sense, goes deeper. Whereas optimising the model 
parameters is the end goal for parameter calibration, for inverse modelling, parameter calibration can 
be seen as a means to get to the end goal of actually explaining a particular phenomenon.  
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Figure 13: Conceptualization of the inverse modelling process in this research 
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5.3 Python Model Formalisation 
After the model conceptualisation, the model formalisation process takes place. In this subchapter, a 
comprehensive overview of the structure of the model and the pseudocode is presented to clarify and 
further interpret the conceptual model. This is a crucial phase in the model development because it 
marks the transition from abstract conceptualisation to concrete implementation.  

5.3.1. UML Diagram of the Basic Model Structure 
The first step in the model formalisation process is to zoom in on the Python model and create a basic 
UML diagram of the model structure. From this conceptual model, one can zoom in on the Python 
model and create a basic UML diagram of the basic model structure. The model can be run from the 
main file. This main file requires, however, certain other files. Firstly, the main file requires training 
data. This data is generated in the right format in the generate_data file. On top of that it makes use 
of a custom cross-validator. This cross-validator is used to evaluate the performance of the model by 
partitioning the dataset into subsets, training the model and then evaluating it on the remaining 
subsets. This helps in preventing overfitting. The plot_fit file is not directly used for running the main 
file, but rather for visualisation purposes. However, since the plot_fit file cannot exist without using 
the main file, the relationship between these two files is a composition. The main file can create one 
or more plot fits, depending on the inputs of the main file. Furthermore, the main file makes use of an 
optimise file. In this file, a custom model is defined that is based on the NetLogo model (defined in 
the model file), along with utility functions for hyperparameter tuning and evaluation. The model uses 
parameters to configure its behaviour and makes predictions using the error file. In the error file, an 
error function is defined and used to determine how good or bad the model's prediction is. Therefore, 
the predictions and training data are compared in this file. This process is repeated over and over 
again (see the model fit process) until the optimal parameters of the model that minimise the error 
metric are found. The basic UML diagram of this model structure can be found below. The main file 
creates one optimal error value. This one optimal error value comes, however, forth from the optimise 
file. Using the optimise file, a variety of error values and their belonging parameter values are 
generated. The one optimal error value is the smallest of these error values.  

 
Figure 14: UML diagram of the basic model structure of the Python model used for parameter calibration within the 

inverse modelling process 
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5.3.2. Detailed Model Structure 
This subchapter aims to provide a more detailed overview of the structure of the Python model 
presented in Figure 15 and elaborate on it so that it provides a basis for understanding the 
pseudocode. This detailed model structure begins with the NetLogo model. This NetLogo model is 
loaded into the model file, meaning that it serves as a bridge between Python and the NetLogo model. 
Pynetlogo is used as an interface to access NetLogo from Python (Jaxa-Rozen & Kwakkel, 2018). In 
this file, a NetLogo instance is started and the model is loaded. Then, a function called 
run_model_with_parameters is defined. In this function, the input parameters are set and the model 
is set up. The model runs 11 ticks, whereby one tick equals one year (each year between 2012 and 
2022). Then the model is run and the number of solar PV installations is counted per tick. Finally, a 
data frame is created with the data per tick. The function returns this data frame.  
The second file is the generate data file. Its goal is to take the training data and convert it to a CSV 
file.  
 
The third file is the plot_fit file. This file defines the function of showing a plot containing the 
predictions, the results, and potentially the error and parameters.  
In the fourth file, called the error file, the error function is defined. The CSV containing the training 
data that was generated in the generate_data file is read and the data from the municipality is 
extracted. Then, a custom distance metric function is defined. This function computes the distance 
between the model data and the target data, considering the standard deviation. It first calculates the 
median and mean of the model data and checks if the absolute difference between the model’s 
median or mean and the target data is within 10% of the specified standard deviation. If it is, the 
function returns 0; otherwise, it returns the absolute difference. Thereafter, the error function is 
defined. This function calculates the Dynamic Time Warping (DTW) distance between the predictions 
and the actual data on solar PV adoption for the municipality using the custom distance metric defined 
before. Dynamic Time Warping is a technique that can be used for measuring the similarity between 
two sequences (Salvador & Chan, 2007; Berndt & Clifford, 1994). The advantage of using DTW is 
that it is relatively robust to temporal variations which makes it useful for time series data such as the 
data in this research. Finally, the distance is returned.  
 
The fifth file is the optimise file. In this file, a custom model class is defined that serves as a wrapper 
for the machine learning algorithm. This class initialises various parameters that define the behaviour 
of the model. They are set with default values and stored in a dictionary, which makes them easily 
accessible throughout the class. Then, the fit method is defined, which is later used to fit the machine 
learning algorithm in the main file. Thereafter, the prediction method is defined which generates 
predictions. For scoring the model, the score method computes the model’s performance score using 
the error function defined earlier. This score makes sure that the smallest error value is selected, so 
the parameter configuration with the smallest margin between the predictions and the real data. 
 
The sixth file is the custom_cv file. This file defines a custom cross-validation strategy. The purpose 
of the base-cross validator is to define the common interface and behaviour for all cross-validation 
strategies. It assesses the performance of the predictive model by splitting the dataset into multiple 
subsets, training the model, and then evaluating it on the remaining subsets.  
 
The seventh file is the main file. This is the file that aims to optimise the model using the machine 
learning algorithm. The file firstly imports all necessary libraries, just like in the other files. Thereafter, 
it sets the number of runs for the optimisation process. Thereafter, it defines a function to load the 
data from the CSV file and a function that defines the custom discrete function for generating search 
spaces. A function that saves the error values and the parameter values to a CSV file is also created. 
Then, the training data is loaded and the required data is extracted. This means that first the years 
are extracted from the data, then the training data and the data for only the municipality. Due to the 
required data formats of the algorithm, the training data ought to be transposed. Then, the model is 
initialised, and the parameter distributions are defined. This creates the search space for the ML 
algorithm. Then, the randomised search for hyperparameter tuning is performed for each run and the 
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fit method, defined in the optimise file, is applied. The best model outcome is then used to make 
predictions on the training data. Finally, the error value between the predictions and the actual values 
is computed. These error values (one for each run) and corresponding parameters are saved to a 
CSV file. The pseudocode for each of these files can be found in Appendix I.  

 

Figure 15: More detailed UML diagram of the Python model structure 

5.3.3. Machine Learning Application 
The machine learning algorithm serves as a means for the inverse modelling process in this model. 
The file utilises the Random Search algorithm. This subchapter elaborates on the algorithm's 
application.  
 
To begin with, the (NetLogo) model is imported. This model represents the algorithm that will be 
optimised throughout the process. The optimisation process revolves around tuning 
hyperparameters. These hyperparameters are defined in a parameter grid and consist of all the 
variable parameters presented earlier in this chapter. The core of the optimisation takes place within 
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a loop where the algorithm is employed. The algorithm is initialised with certain parameters, such as 
the model, the parameter grid, the cross-validation strategy (including the number of splits), the 
verbosity level, the number of parallel jobs and the number of parameter settings to sample. Hereby, 
the verbose controls the verbosity of the output during the process, and the number of jobs specifies 
the number of parallel jobs to run during model training (this will be set to -1 to ensure that all available 
CPU cores will be utilised for the process) and the number of iterations refers to the number of times 
the optimisation process is repeated. Then, the Randomised Search or Bayesian Search instance is 
fitted to the training data. During this process, it randomly samples combinations of hyperparameters 
from the parameter grid and evaluates the model’s performance using cross-validation. Once fitted, 
the best model found during the search is obtained. This is done by using the best_estimator_ attribute 
of the Randomised Search or Bayesian Search instance. The best model is then used to make 
predictions on the training data. The error value and the corresponding best parameters found are 
stored in lists during each iteration of the optimisation loop.   
 

5.4 Python Model Validation and Verification 
In the methodology in Chapter 2, the process of verifying and validating the model was shortly 
highlighted to ensure its accuracy and intended functionality. Within this process, three key stages 
can be delineated for ABMs, namely: model verification, model validation and sensitivity analysis 
(Cooley & Solano, 2011). For this research, however, the sensitivity analysis stage will not be 
considered. This is due to the fact that within a sensitivity analysis, one tries to evaluate the 
robustness and reliability of the model by assessing the sensitivity of its outcomes to changes in input 
variables. However, since this research focuses on modifying the input parameters, a sensitivity 
analysis will not be executed.  

5.4.1. Model Verification 
Verification and validation are often conflated. In the context of this research, however, refers to 
assessing whether the model’s logic is sound. This means ensuring that both the programming logic 
and the formal logic of the model are correct (Cooley & Solano, 2011). Hereby, it is essential to ensure 
that the model behaves as anticipated.  
 
Various verification techniques were employed throughout the programming process based on the 
techniques presented by Whitner & Balci (1989). Firstly, informal analysis was continuously employed 
during the coding process. This approach hinges on the modeller’s understanding of the code’s logic 
and the influence of modelling decisions on the model’s outcomes. Additionally, desk checking was 
regularly conducted. This involves reviewing the code to confirm that the sequence of commands and 
the underlying logic adhered to the structure outlined in the conceptual model.  
 
Syntax analysis is an inherent feature of both the NetLogo and Python environments. Therefore, this 
type of analysis occurs automatically each time the code is compiled. Furthermore, the entire code is 
divided into distinct functions, each serving a specific purpose. This organisation, called structural 
analysis, ensures a structured codebase, facilitating error identification and enabling the testing of 
individual functions.  
 
The primary focus during the development of the model was dynamic analysis, emphasising the 
examination of the model’s behaviour during execution. As previously mentioned, the code was 
structured into separate functions, each with its distinct role. Upon completion of a new function or 
new part in the code, it underwent independent testing to explore its capabilities, considering its 
reliance on inputs from other functions. It was also during this phase that it was discovered that the 
original NetLogo model contained several functions that were either not functioning or functioning 
wrongly (e.g. the initial PV share), as mentioned before in Chapter 5.1. These functions were then 
changed so that they could work. In the event of errors, debugging and execution tracing 
methodologies were employed to pinpoint and resolve issues.  
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Finally, pylint was used. Pylint is a code analysis tool for Python that can help improve code quality 
by identifying programming errors, adherence to coding standards and potential issues in Python 
code. It analyses the code and provides feedback on various aspects such as coding standards, 
syntax errors, unused variables, etc. In doing so, it contributes to model verification. Pylint was used 
during the programming process. However, not all of the feedback from pylint was always 
implemented. For instance, pylint often gave recommendations for making the code more compact. 
This feedback was not always implemented since it was thought to reduce the readability and 
reproducibility of the code. Suggestions often made the code more ‘black box’ which is not desired. 
Therefore, all code files except the main and optimise files achieved a pylint score of 9.00/10.00 or 
higher.  

5.4.2. Model Validation 
Validation, on the other hand, concerns the degree to which the model accurately mirrors the system 
it represents (Darvishi & Ahmadi, 2014). However, determining if a model is valid is not a simple 
binary answer (A. Crooks et al., 2008). Validity assessment often entails comparing model outputs 
with empirical data. The validity of the model was checked in two ways. Firstly, face validity (Cooley 
& Solano (2011) ; A. T. Crooks & Heppenstall (2012)) was performed by consulting with advisor Lukas 
Schubotz. This led to a continuous review of the model, improving its validity.  
 
On top of that, the model's validity was checked by creating a separate Python script to check its 
validity. This Python script performs a validation curve analysis to determine the optimal number of 
splits for cross-validation in the modelling task. The script begins by loading the municipality's real 
solar PV adoption data. Then, cross-validation is performed using a custom cross-validation method, 
namely the one described in the custom_cv file. The dataset is split into training and testing sets 
based on the specified number of splits. The model is trained on the training data and then evaluated 
on the testing data using the error function specified in the error file. The cross-validation process is 
repeated for different numbers of splits. Due to computational limitations, the maximum number of 
splits was set to 5.  
 
The mean cross-validated error and its standard deviation are computed for each number of splits. 
These values are then plotted on a validation curve, with the number of splits on the x-axis and the 
cross-validated error on the y-axis. The script identifies the optimal number of splits as the value that 
minimises the mean cross-validated error. It prints out this optimal value along with the corresponding 
error and standard deviation. In Appendix I.8. the pseudo-code for this file is presented. In Figure 16, 
the validation curve is presented. Note that the validation curve is run with random input parameter 
values, therefore the error value itself is not representative of the error value in the future, only the 
relationship between the error values for each number of splits is relevant. From this graph, it can be 
concluded that 2 is the optimal amount of splits. Therefore, the model will be run with 2 splits in the 
future. Not that the model validation is based on the Random Search algorithm. To facilitate the best 
comparison between the two algorithms, the number of splits for the Bayesian Search algorithm is 
also configured to be 2. This is a limitation of the study since the Bayesian Search algorithm might 
require more splits to find the optimal search area. The number of iterations was set to 15, resulting 
in 30 fits executed for 25 runs. This configuration was carefully chosen to balance the reliability and 
trustworthiness of the results with computational constraints. Increasing the number of iterations and 
splits typically enhances the robustness and accuracy of the results by providing a more 
comprehensive exploration of the parameter space and a better estimate of the model’s performance. 
However, this comes at the cost of increased computational demand and processing time. This 
careful consideration ensures that the results are credible and obtained within a reasonable 
timeframe, making the research rigorous and feasible.  
 

5.5 Chapter Summary 
This chapter thoroughly explores the model conceptualisation, formalisation, validation and 
verification process. Firstly, the chapter presents an exploration of the NetLogo model’s 
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conceptualisation. This part presents a foundation for understanding the design and functionality of 
the NetLogo model, which serves as a fundamental component for bridging real-world data with the 
simulation, as presented in Chapter 5.2. The chapter highlights the significance of incorporating both 
fixed parameters, such as demographic data, and variable inputs, which are essential for driving the 
model’s predictive capabilities. The following section, Chapter 5.2, provides a deeper understanding 
of the conceptual framework. A UML model is used to visually present the model’s basic format and 
data flows. Chapter 5.3 describes the transition of the model conceptualisation to implementation. It 
outlines the various model files, including NetLogo integration, data generation, error computation 
and optimisation. Finally, the validation and verification of the model are elaborated on in Chapter 5.4. 
Verification techniques such as informal analysis, desk checking, syntax analysis and the use of Pylint 
are employed to confirm the correctness of the model’s logic and implementation. The validation, on 
the other hand, focuses on aligning the model with empirical data through face validity and empirical 
data analysis, which are concluded in a validation curve analysis to optimise cross-validation 
parameters.  
 

 
Figure 16: Validation curve of the model, presenting the optimal amount of splits 
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6 
Results 

 
This chapter focuses on the results that come forth from running the model. In total, 12 different 
versions of the model have been produced, namely 2 for each municipality (one for the Random 
Search algorithm, one for the Bayesian Search algorithm). In this chapter, the results from each of 
these models will be analysed qualitatively. For organisational purposes, this chapter is structured as 
follows: Firstly, a municipality-specific analysis will be conducted for each of the municipalities in 
Chapters 6.1 – 6.6. This means that the results will be analysed individually for each municipality. 
The municipality-specific analysis starts with research on general demographic information on the 
municipalities, a Google Trends analysis and a short analysis of news articles concerning solar PVs 
in each of the municipalities. Thereafter, the solar PV adoption curve for each municipality will be 
discussed briefly. After this general discussion about each municipality, the results from the inverse 
modelling process will be presented and discussed. This part will also discuss the fitness and scatter 
of the model results, and each subchapter ends with a short discussion of future projections based 
on the IM results. Chapter 6.7 focuses on an inter-municipal analysis. In this part, the outcomes for 
each of the municipalities in Chapters 6.1-6.6 will be compared and checked for patterns and 
similarities between them. Finally, Chapter 6.8 focuses on an experimental change in the setup, 
whereby the number of splits and iterations is increased for one municipality, namely Laren.  
 
It is essential to note that throughout this chapter, terms such as ́ social factor´, ‘environmental factor’, 
´economic weight´ or even simply `comfort´ are used (to give examples). It is important to keep in 
mind that these terms, though they might not initially seem related to the model, are always based on 
the results of the model and relate to its parameters (so weight_eco, weight_env, weight_soc and 
weight_cof ). This means that they should not be read as self-contained statements but rather in the 
context of the model. So instead of ´social factor´, one could read ´the social parameter weight_soc 
of the model shows XYZ´. This has been done to improve the readability of the text.  
 

6.1 The Municipality of Bloemendaal 
The municipality of Bloemendaal, situated in the province of Noord-Holland, has held the title of the 
wealthiest municipality in the Netherlands in recent years, boasting a median income of €51.400 and 
an average income of even €90.300 (CBS, 2023c). The municipality has 23.782 inhabitants and 9945 
households as of 2024 (AlleCijfers, 2024a). The municipality has a population density of 602 
inhabitants per km2 (CBS, 2023b). This data is also specified in Appendix D, along with the 
demographic data of the other municipalities. In Figures 9 and 10, the solar PV adoption curve of the 
municipality is presented, also in relation to the adoption curves of the other municipalities. The 
adoption curve in this graph shows a steady increase in the number of installations over the years. 
This indicates a growing interest and adoption of solar energy within the municipality. On top of that, 
the rate of adoption seems to accelerate over time. The increase in the number of installations 
appears to be more pronounced in recent years (e.g. from 2017 to 2022). While Google Trends can 
provide insights into residents' interest in solar PVs, its regional monitoring capabilities are limited to 
the province level, such as Noord-Holland. However, it does offer the ability to gauge general interest 
within individual municipalities over time. Scores are assigned on a scale from 0 to 100, with 100 
indicating the highest relative popularity of a search term compared to total searches within the area. 
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For example, a score of 50 represents proportionally half the popularity. Notably, the municipality of 
Drenthe exhibits the highest relative popularity nationwide, while Noord-Holland scores 41, the lowest 
among all regions. Within Noord-Holland, Bloemendaal ranks fifth lowest with a score of 32. Thus, it 
can be inferred that residents of Bloemendaal infrequently search for information on solar panels, 
potentially impacting the adoption of solar PV systems within the municipality. 
 
Additionally, between 2012 and 2022, there were 34 news articles on Google featuring the Dutch term 
for solar panels combined with the municipality name of Bloemendaal. The majority of these articles 
revolved around the development of a solar carport equipped with 5,000 solar panels within the 
municipality. However, it is worth noting that this carport cannot be classified as residential solar PV. 
Furthermore, other news articles were not directly related to residential solar PV in Bloemendaal. 
 
From these observations, it can be concluded that despite its affluent status, Bloemendaal 
demonstrates a relatively low level of interest in adopting solar PV technology. This becomes evident 
from not only the solar PV adoption curve but also from the limited searches for information on solar 
panels, suggesting a slower uptake of residential solar PV installations compared to other regions. 
Furthermore, news coverage within Bloemendaal regarding solar VP appears limited. 

6.1.1. Inverse Modelling Results for Bloemendaal 
As mentioned, the inverse modelling process uses a Random Search and a Bayesian Search 
algorithm. The results of the inverse modelling process of each of these algorithms are described and 
compared below. Furthermore, a boxplot with the inverse modelling results is created. The boxplot 
for the municipality of Bloemendaal can be found in Figure 17. Note that the boxplot colours are 
chosen based on the colours in the solar PV adoption curves in Figures 9 and 10. In those graphs, 
Bloemendaal has, for instance, the colour blue, Dantumadiel orange, Laren green, etc. For uniformity 
purposes, these colours have also been kept for the boxplots. Only the colour of the Bayesian Search 
algorithm has been selected as a lighter shade of the original colour to distinguish between the 
algorithms. 
 
Running the Random Search model took roughly 4 hours and 24 minutes, while the Bayesian Search 
algorithm's runtime was 4 hours and 35 minutes. This indicates that the Bayesian Search model took 
roughly 25 additional seconds per run. This additional time is due to Bayesian Search building and 
updating the model to guide its search. Each iteration involves fitting this model and optimising to 
select the next set of parameters, which adds computational load compared to the Random Search 
model that does not include these steps.  
 
Boxplot elaboration: 
In the figure below, the boxplots of the results of the inverse modelling process are presented. This 
graph visually compares the distributions of the error values generated by the inverse modelling 
process for the municipality of Bloemendaal for both the Random Search algorithm and the Bayesian 
Search algorithm. A boxplot is used to present these results since this type of plot is useful for 
summarising the key characteristics of each of the datasets. Note that since the error value measures 
the distance between the predicted and the real (actual) solar PV adoption values in the municipality, 
a lower error value presents a higher fitness. 
 
In the boxplot, each box represents the interquartile range (IQR), which contains the middle 50% of 
the data. This range is defined by the first quartile (Q1) and the third quartile (Q3). Inside each box, a 
horizontal line indicates the median or the second quartile (Q2). For the Random Search algorithm, 
this median line is coloured blue, while for the Bayesian Search algorithm, it is coloured light blue. 
These median lines provide a clear visual indication of the central tendency of each dataset. The 
whiskers extend from the boxes to the smallest and largest value within 1.5 times the IQR from the 
lower and upper quartiles. These whiskers give a sense of the overall spread of the data, excluding 
any outliers. Outliers, data points that fall significantly outside the typical range, are plotted as 
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individual dots beyond the whiskers. This helps identify extreme values that might indicate unusual 
cases or potential errors in the data collection process.  
 
The means of the datasets are marked by triangles within the boxes. For the Random Search dataset, 
the mean marker is coloured blue, matching the colour of its median, while the marker for the 
Bayesian Search dataset is again light blue. These mean markers provide an additional measure of 
central tendency, offering insight into the average performance of each method. Furthermore, black 
dots are scattered to the left of each box, representing the individual data points of each dataset. 
These dots provide a more granular view of the data distribution. By showing each data point, the 
scatter plot complements the summary statistics provided by the box and whiskers.  
 
Note that the y-axis of the plot is set to a range from 0 to 30,000. This ensures that all data points 
from the municipalities, including the most extreme outliers, are clearly visible and comparable.  
 

 
Figure 17: Boxplot of the results of the inverse modelling process for the municipality of Bloemendaal 

 
Random Search Results: 
The inverse modelling process is first executed using the Random Search algorithm. The results from 
this process can be found in Appendix J. The run with the best fit and, therefore, greatest accuracy is 
a run with an error value of 788. This run is visualised in the boxplot as the lowest black dot for the 
Random Search boxplot. Furthermore, this run is presented in Figure 18, visualising both the real 
solar PV adoption values of the municipality and the adoption value predictions made by the Python 
model. The median (the blue line in the boxplot) has a value of 3090, and the mean (the blue triangle) 
has a value of 3458. One can see in the boxplot that the mean and the median are located relatively 
close to one another. When the mean and median are close to one another, it indicates that the data 
is symmetrically distributed and not heavily skewed, indicating robustness against outliers and 
consistent estimates of typical values. This can also be noticed in the plot: no outliers are identified. 
The whiskers of the boxplot are relatively short, which suggests a smaller spread with data points 
clustered closer to the median. The standard deviation is equal to 1933, as also presented in Table 
7. 
 
Table 7: Mean, median and standard deviation of the Random Search results for Bloemendaal 

Mean 3458 

Median 3090 

Standard deviation 1933 
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In Table 8, a summary of the data analysis for the Random Search algorithm for Bloemendaal is 
presented. When analysing these results, one can notice that the top 5 best performing runs have a 
significantly higher value for the comfort factor than the other runs, namely 0.52 compared to 0.30 on 
average. The environmental factor, on the other hand, is actually a lot lower. The social factor is 
always very high. This is an interesting observation because it indicates that the social factor ought 
to be high to be selected as the best performer within a run. However, it also indicates that between 
the runs, the comfort factor actually seems to be a determining factor when it comes to how good a 
prediction is.  
 
When looking at these results, one can see a discrepancy between the results for the best-scoring 
run and the average results. Whereas the best-scoring results suggest a high importance for the 
social and comfort factors, the average results suggest a high importance for the social and 
environmental factors. This presents a dilemma for data interpretation, which centres on prioritising 
top-performing results or considering overall consistency in an inverse modelling process. Should the 
focus be on top-performers’ specific strengths or on the average values for broader insights? This 
dilemma of handling the differences between performances during runs adds complexity. On the one 
hand, focusing on the top-performing results, one may uncover specific parameter combinations that 
lead to optimal outcomes. This approach allows for identifying promising scenarios that achieve low 
error values, potentially providing valuable insights into effective strategies or conditions for solar PV 
adoption. However, this approach may overlook the broader variability and dynamics present in the 
dataset. It may not fully capture the range of possible outcomes or the robustness of the model across 
different parameter settings. On the other hand, focusing on the average values of all results provides 
a more comprehensive perspective on the model's overall performance across different parameter 
settings. It considers the variability and distribution of outcomes, which offers insights into the general 
trends and patterns. However, while this approach offers a broader view, it may also obscure the 
specific parameter combinations that lead to optimal outcomes.  
 
To solve this dilemma, one ought to take in mind the general objective of the inverse modelling 
process, which is to uncover explanations for complex phenomena or residential solar PV adoption 
dynamics in this case. Considering this goal of inverse modelling, a more nuanced approach is 
necessary. Therefore, the more robust results coming forth from the second approach seem more 
appropriate for this research, and the average results seem more appropriate for data analysis. For 
that reason, the average results will be used mainly for the data analysis for the rest of the 
municipalities. To still make comparisons between good and bad runs, the top 5 best and worst runs 
will be considered.  
 
Table 8: Summarised data analysis for the Random Search algorithm for Bloemendaal 

 Weight_eco Weight_env Weight_cof Weight_soc Weight sum 

Top 5 best runs 

 0.26 0.36 0.52 0.68 1.82 

Top 5 worst runs 

 0.14 0.52 0.18 0.68 1.52 

Average values over all runs 

 0.33 0.49 0.30 0.68 1.8 

 
Bayesian Search Results:  
For the Bayesian Search algorithm, the best-scoring run has an error value of 863, surpassing that of 
the Random Search algorithm. Both the actual and the predicted solar PV adoption values for this 
best run are presented in Figure 18. Seeing the data interpretation discussion above, this would 
indicate an inferior performance to the Random Search algorithm if one would place emphasis on 
optimal outcomes. However, as also described above, this does not align with the objectives of 
inverse modelling in this research, and therefore, this higher error value does not yet indicate a better 
or worse performance of the model. The median (the light blue line in the boxplot) has a value of 
6057, and the mean (the light blue triangle) has a value of 8609 (see Table 9). When the mean and 
median in a boxplot are far apart, as is the case here, it indicates that the data is skewed. The mean 
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being greater than the median indicates that some large values in the dataset are pulling the mean 
upwards, suggesting the presence of outliers. These outliers can also be observed in the boxplot, 
where a total of 5 outliers can be seen. This suggests a reduced robustness compared to the Random 
Search results. Furthermore, one can notice the length of the whiskers in the boxplot, with the bottom 
whisker being significantly longer than the top whisker. Longer whiskers typically indicate a larger 
spread or variability in the data, suggesting that the range of values extends further from the median. 
When the whisker is shorter at the top than at the bottom, it therefore suggests asymmetry in the 
distribution of data. Specifically, it indicates that the dataset is right-skewed, meaning that there are 
more data points clustered towards the lower end of the distribution, resulting in a shorter upper 
whisker.   
 
Table 9: Mean, median and standard deviation of the Bayesian Search results for Bloemendaal 

Mean 8609 

Median 6057 

Standard deviation 7827 

 
When analysing the results of the Bayesian Search algorithm further, it can be noticed that the social 
factor again scores the highest when looking at the average values of all results, with a value of 0.65. 
When one would solely look at the top-performing runs (which is only one run in this case), this result 
is exaggerated with a value for the social factor of 0.9. For the top 5 best-performing runs, this social 
weight is 0.76, which is still higher than average. When considering the five worst-performing runs, 
on the other hand, the social factor is actually very low, with a value of 0.38. The comfort factor, on 
the other hand, seems to be the least important when considering the average values of all runs. This 
indicates that social utility is important in the decision-making process for residential solar PV in this 
municipality.   
 
Table 10: Summarised data analysis for the Bayesian Search algorithm for Bloemendaal 

 Weight_eco Weight_env Weight_cof Weight_soc Weight sum 

Top 5 best runs 

 0.56 0.54 0.34 0.76 2.20 

Top 5 worst runs 

 0.60 0.54 0.30 0.38 1.82 

Average values over all runs 

 0.45 0.47 0.29 0.65 1.86 

 

6.1.2. Added Value of Inverse Modelling for Bloemendaal 
Considering both the standard deviation and the minimum error value, the Random Search model 
performs better than the Bayesian Search model. Chapter 7 will discuss this observation more 
thoroughly.  
 
The inverse modelling process has provided valuable insights into the dynamics of solar PV adoption 
in the municipality of Bloemendaal. The traditional analyses, such as the Google Trends analysis, 
provide surface-level insights. However, the inverse modelling process offered additional explanatory 
power by uncovering some underlying mechanisms driving solar PV adoption in Bloemendaal. For 
instance, the observation that social factors significantly influence adoption decisions according to 
this model is the added value provided by the inverse modelling process. It highlights the importance 
of social networks and community dynamics in shaping residents' attitudes towards solar PV 
technology. This observation also resonates with the limited search data, indicating a preference of 
inhabitants for social utility over financial incentives (which are more often searched online). On top 
of that, despite the high income level of residents in Bloemendaal, the inverse modelling results 
suggest that economic factors do not play a predominant role in driving solar PV adoption. This implies 
that while residents may have the financial means to invest in solar PV systems, other factors, such 
as social dynamics and comfort, may influence their adoption decisions more.  
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When considering the actual adoption values for Bloemendaal, a pronounced increase in the number 
of solar PV installations over the years is evident. This trend suggests a likely continuation of rapid 
growth in the near future. However, predictions from the best runs of the two algorithms employed 
reveal some interesting differences.  
 
Future Projections: 
The Random Search algorithm’s best predictive run initially aligns closely with the actual adoption 
curve but begins to diverge slightly after 2019, although the growth rate remains steep. In contrast, 
the Bayesian Search algorithm predicts a more linear trajectory rather than an exponential one, 
leading to a higher error value in its predictions (see Figure 18).  
 
Considering these differences between the algorithms, future projections (so after 2022) could 
indicate that according to the Random Search algorithm, the number of solar PV installations in 
Bloemendaal will continue to grow stronger and more exponential compared to the predictions made 
by the Bayesian Search model. 
 
The summarised data analysis for each algorithm, presented in Tables 8 and 10, highlights the 
underlying reasons for these differences. The Random Search algorithm attributes more weight to 
the comfort factor in its best runs, while the Bayesian Search algorithm places greater emphasis on 
economic, environmental and social factors.  
 
Given that the Random Search algorithm predicts a sharper increase in solar PV adoption, it suggests 
that future policies to encourage residential solar PV adoption should focus more on enhancing the 
ease and convenience of purchasing and owning solar PV systems. By prioritising these comfort-
related factors, policies can better align with the drivers that lead to steeper adoption growth, as 
identified by the Random Search model.  

6.2 The Municipality of Dantumadiel 
The municipality of Dantumadiel in the province of Friesland emerges as a compelling case for the 
case study. In terms of demographics, Dantumadiel accommodates a population of 19.135 
inhabitants distributed across 8.016 households (AlleCijfers, 2024b). The solar PV adoption curve of 
this municipality can be found in Figures 9 and 10 in Chapter 4. Firstly, the curve depicts a pattern of 
sustained growth in solar PV installations over time, reaching 4.126 installations by 2022. It is also 
the municipality with the most solar PV installations out of all municipalities in the case study selection. 
The first acceleration in adoption rates can especially be observed from 2017 onwards, whereafter a 

Figure 18: Plot of the real and the predicted solar PV adoption values for Bloemendaal using the Random (left) and 
Bayesian (right) Search algorithm 
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second, even steeper, acceleration can be observed from 2019 onwards. While the exact reason for 
this timing is unknown, a confluence of factors such as policy incentives (e.g. SDE+ introduction in 
2013 (RVO, 2013)), technological advances and increasing public awareness. Noteworthy is the 
socio-economic backdrop against which this transition unfolds. The median income in the municipality 
is €34.650, marginally below the national median income of €39.100 (CBS, 2023a). The municipality 
has a relatively low population density, namely 227 inhabitants per km2 (CBS, 2023b). The 
demographic information on the municipality of Dantumadiel is also presented in the table in Appendix 
D. The search interest of inhabitants towards solar energy in the province of Friesland, as presented 
in Figure 19, is notable, with a score of 98 on Google Trends. Remarkable is the observation that the 
search interest increased significantly after hitting a low in the fall of 2016, before the start of the 
acceleration in adoption rates from 2017 onwards. This steep curve ends in 2018, before the start of 
the second acceleration in adoption rates in 2019.  
 

 
Figure 19: Google Trends scores for the province of Friesland 

 
When analysing news articles about solar PV in Dantumadiel, it is noticeable that the municipality is 
named as one of the municipalities in the country with the most solar panels three times. These 
articles, however, were published in 2022 or even later and, therefore, cannot be related to the 
adoption curve for explanatory purposes.  

6.2.1. Inverse Modelling Results for Dantumadiel 
This section provides the results of the inverse modelling process for the municipality of Dantumadiel 
for both the Random Search and the Bayesian Search algorithms. The boxplot of these results is 
presented in the figure below. Figures 31 and 32 in Chapter 6.7 show the boxplots of the municipality 
of Dantumadiel in combination with the boxplots of the other municipalities. Running the Dantumadiel 
Random Search model took 3 hours and 44 minutes. For the Bayesian Search model, running the 
model took 3 hours and 55 minutes.   
 



       

49 
 

 
Figure 20: Boxplot of the results of the inverse modelling process for the municipality of Dantumadiel 

 
Random Search Results: 
On the left side of the figure above, the boxplot of the results of the inverse modelling process for the 
Random Search model is visualised. The orange line represents the median, which is equal to 5327 
in this case. The mean, as represented by the orange triangle, is equal to 6497. This means that the 
mean of the dataset is noticeably higher than the median. This hints at a slight right-skew in the 
distribution, where a few higher values pull the mean upwards. These values, although not outliers, 
can be observed in the boxplot. It can be seen that between an error value of roughly 8000 and 9800, 
no individual data points are observed. The data points above 9800 are pulling the mean upwards. 
Despite this skew, the whiskers of the boxplot are about equally long, stretching from the edges of 
the box to the minimum and maximum values (1740 and 12236, respectively). This balance in the 
whiskers' length suggests that the data's spread is relatively even on both sides, even though the 
right skew is present. The standard deviation is equal to 3071, as can be seen in the table below.  
 
Table 11: Mean, median and standard deviation of the Random Search results for Dantumadiel 

Mean 6497 

Median 5327 

Standard deviation 3071 

 
When analysing the average values of the parameters in the runs in Table 12, the high value of 0.75 
for the social factor is noticeable, indicating that households place high importance on familiarity with 
solar PV systems within their social circle. The comfort and economic parameters seem to be the 
least important. However, when analysing the top 5 best scoring runs, one can notice that the values 
for the social parameter are relatively similar in all of the runs. The economic parameter, on the other 
hand, shows a much larger value for the top 5 best scoring runs than for the top 5 worst scoring runs 
or even the average values. Considering the fact that Dantumadiel is a municipality with high solar 
PV adoption rates, this indicates that the economic factor plays a significant role in households' 
decision to purchase solar PV systems. Because the social factor is high for each of the runs, it 
indicates that this factor is mostly important for deciding the best fit within a run.  
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Table 12: Summarised data analysis for the Random Search algorithm for Dantumadiel 
 Weight_eco Weight_env Weight_cof Weight_soc Weight sum 

Top 5 best runs 

 0.52 0.56 0.40 0.76 2.24 

Top 5 worst runs 

 0.24 0.36 0.28 0.84 1.72 

Average values over all runs 

 0.36 0.50 0.34 0.75 1.94 

 
Bayesian Search Results:  
For the Bayesian Search model results, one can first notice that the box in the boxplot is bigger. This 
indicates a more extensive interquartile range (IQR), which signifies greater variability or dispersion 
among the central 50% of the data points. Furthermore, one can notice the light orange line in the 
box, indicating the median with a value of 5694. The mean value, on the other hand, is equal to 6872. 
The difference between the mean and the median is still present, indicating a slight right skew in the 
data distribution (with a few higher values pulling the mean upwards). This right skew is, however, 
not as strong as for the Random Search model. The whiskers in the boxplot are relatively short, 
shorter than for the Random Search model. This indicates that, despite the inconsistency in the middle 
range, the values outside the IQR do not deviate much from the quartiles. Another interesting 
observation is the fact that three strong areas can be observed when looking at the individual data 
points. Firstly, there is an area between error values of roughly 1500 and 3200, then a small area with 
error values between roughly 4900 and 6600. Finally, there is a large area with error values between 
roughly 9000 and 12.000. The exact reason behind these areas is unknown. One can speculate, 
however, that it could be related to the algorithm's inherent ability to search in certain areas to look 
for the optimal solution (see Chapter 4.2). The standard deviation of this model is equal to 3754, which 
is higher than that of the Random Search model. The minimum error value of the model is 1534, 
which is, on the other hand, lower than that of the Random Search model. This best run is also visually 
presented in Figure 21, along with the municipality’s real solar PV adoption values and the adoption 
values predicted by the Python model.  
 
Table 13: Mean, median and standard deviation of the Bayesian Search results for Dantumadiel 

Mean 6872 

Median 5694 

Standard deviation 3754 

 
When looking at the top 5 best- and worst-scoring runs, as presented in Table 14, the most noticeable 
thing is the difference between the sum of the weights of each parameter value. For the top 5 best 
scoring runs, this sum equals 2.38, whereas this sum equals 1.62 for the five worst-scoring runs. 
Furthermore, one can notice that especially the economic parameter and the comfort parameter have 
a lot higher values compared to the five worst scoring runs, indicating that for this algorithm and this 
municipality, these two factors play an important role in the decision process for solar PV adoption 
between runs.  
 
When considering the average parameter values of all runs, one can notice how the social and 
environmental parameters especially have high values. This indicates that even though these two 
parameters are always considered the most important during the runs for this model, the economic 
and the comfort parameters make the most difference in determining a good run since these values 
differentiate significantly between the best- and worst-scoring runs. In contrast, the social and 
environmental factors always remain high.  
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Table 14: Summarised data analysis for the Bayesian Search algorithm for Dantumadiel 
 Weight_eco Weight_env Weight_cof Weight_soc Weight sum 

Top 5 best runs 

 0.5 0.6 0.54 0.74 2.38 

Top 5 worst runs 

 0.2 0.48 0.14 0.8 1.62 

Average values over all runs 

 0.33 0.55 0.34 0.76 1.97 

 

6.2.2. Added Value of Inverse Modelling for Dantumadiel 
The added value of inverse modelling for this municipality can be found in the fact that through inverse 
modelling, it can be identified that, according to this research, the model does a better job at predicting 
solar PV adoption when the weight of each of the parameters is higher. This indicates that, based on 
this model, solar PV adoption in this municipality is higher when inhabitants attribute high importance 
to each factor. On top of that, insight can be gained that even though the social and environmental 
factors might seemingly play the most important role for households when making adoption decisions, 
the economic and comfort parameters make the strongest difference in the decision whether or not 
to adopt solar PV. This insight can be gained when comparing the average values with the values for 
the best and worst scoring runs.  
 
At the same time, it should be said that these results have a very large room for improvement. When 
considering the standard deviation of either one of the models for this municipality, it can be said that 
the scatter of the results is still extremely high, presenting a lack of uniformity and high variability in 
the results. The scatter in this municipality is very high, especially when comparing the standard 
deviations of Dantumadiel with those of the previous municipality, Bloemendaal. The main goal of 
inverse modelling is to gain a deeper understanding of solar PV adoption dynamics, so robust results 
are extremely important. Therefore, as described above, the added value of inverse modelling for 
Dantumadiel is subject to validation and should be approached with caution. 
 
Future Projections:  
From the best runs of each algorithm presented in Figure 21 it can be noticed that the Random Search 
algorithm follows a more linear curve over the last years, whereas the Bayesian Search algorithm 
follows a slightly more exponential curve. This would indicate that if this curve were to be continued 
after 2022, the Bayesian Search model would result in higher adoption rates. As can be concluded 
from the error values, the Bayesian Search model also generates a more accurate prediction, closer 
resembling the exponential solar PV adoption curve of Dantumadiel.  
 
Considering Tables 12 and 14, it can be said that for the top 5 best runs for each of the algorithms, 
most parameter weights only differ by a few hundredths. The only factor that differs more strongly is 
again the comfort factor. This factor is higher for the Bayesian Search algorithm for Dantumadiel than 
for the Random Search algorithm.  
Given that the Bayesian Search algorithm predicts a sharper increase in solar PV adoption and more 
closely resembles the real values, it suggests that future policies to encourage residential solar PV 
adoption should focus more on enhancing the comfort behind purchasing and owning solar PV 
systems.  
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6.3 The Municipality of Laren 
Located in the province of Noord-Holland, the municipality of Laren distinguishes itself with a high 
median income of €48.250 (CBS, 2023a). The population density of the municipality is 944 inhabitants 
per km2 and is inhabited by 11.195 residents, distributed across 5.255 households (AlleCijfers (2024c) 
; CBS (2021)). In the context of solar PV adoption, the municipality demonstrates an adoption curve 
that can be described as “slow and steady”. Laren started with a relatively low number of solar PV 
installations compared to other municipalities in 2012, with only 10 installations registered. Over the 
years, there has been a steady increase in solar VP adoption in the municipality, with the only stronger 
acceleration taking place in 2021. Laren has fewer residential solar PV installations than the other 
municipalities in the case study, even when population size is considered.  
 
The acceleration in solar PV adoption in Laren can also be noticed in the search interest on Google 
Trends, as presented in Figure 22. Particularly noteworthy is the steep increase in the number of 
searches by residents of the province, notably starting in late 2020. Being situated in the province of 
Noord-Holland, Laren registers a relatively modest search score of 35.  
Notably, the news coverage concerning solar PV in Laren is relatively sparse, with only six articles 
related to solar panels published between 2012 and 2022. These articles, mostly only remotely related 
to solar PV adoption, offer limited insight. Notably, one article reported a significant house fire 
attributed to solar panels in 2021. However, this incident does not seem to have had an apparent 
impact on solar PV adoption within the municipality.  

Figure 21: Plot of the real and the predicted solar PV adoption values for Dantumadiel using the Random (left) and 
Bayesian (right) Search Algorithm 
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Figure 22: Google Trends score for the province of Noord-Holland 

6.3.1. Inverse Modelling Results for Laren 
In the boxplot below, the inverse modelling results for the municipality of Laren are presented. The 
Random Search model for the municipality of Laren took in total 2 hours and 26 minutes to run. For 
the Bayesian Search model, this time was equal to 2 hours and 36 minutes. One can note that it took 
a lot less time to run the models for Laren compared to the previous two municipalities. The reason 
for this lies in the amount of data that had to be reloaded for each run. Since Laren only has far fewer 
households, a lot less data ought to be loaded for every run. This process takes a lot of time, even in 
the original NetLogo model already.  
 

 
Figure 23: Boxplot of the results of the inverse modelling process for the municipality of Laren 

 
Random Search Results: 
The inverse modelling process for the Random Search algorithm provides fairly good results for 
Laren. As can be noticed in the graph above, the boxplot for the model is very narrow. This typically 
indicates that the data values in the results have low variability or dispersion. If the IQR is small, the 
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majority of the data points are clustered closely together. When analysing the median of the boxplot, 
one can notice that the line for the median is almost equal to the top end of the box and has a value 
of 1738. This indicates that the distribution of the data is negatively skewed because most of the data 
points are concentrated towards the lower end of the distribution. The fact that the median is close to 
the top end of the box indicates that there are very few high values and that the bulk of the results lie 
below the median. One can also notice that the mean is less than the median, with a value of 1668. 
This indicates again that the distribution is negatively skewed. Furthermore, the boxplot only shows 
one outlier, with a value of 5735. Compared to the previous two municipalities, even the outlier of this 
result has a relatively low value. The whiskers of the boxplot are short as well, which indicates that 
the range of the data is relatively small. The best result has an error value of 314, closely predicting 
the number of solar PV installations in the municipality in 2022 at 545, only 39 installations below the 
actual count. This best run is also visually presented in Figure 24. The combination of a small boxplot 
(a low scatter) and low error values indicates a robust prediction performance.  
 
Table 15: Mean, median and standard deviation of the Random Search results for Laren 

Mean 1668 

Median 1738 

Standard deviation 974 

 
When looking at the average values of the results in Table 16, one can notice that the social factor is 
again the most important, with a value of 0.8. The environmental factor is the second most important 
in the model, and the economic and comfort factors seem least important to inhabitants when 
considering the model results. Interestingly enough, when analysing the parameter values of the top 
5 best performing runs, one can notice that these deviate less from the average values than what was 
the case in the previous two municipalities. The only factor that deviates more is the economic 
parameter. This indicates that, indeed, the social and environmental parameters are important for 
households when deciding to adopt solar PV. However, this also indicates that the economic 
parameter is more important for households in the decision-making process for runs that are better 
at predicting the actual solar PV adoption curve.  
 
Table 16: Summarised data analysis for the Random Search algorithm for Laren 

 Weight_eco Weight_env Weight_cof Weight_soc Weight sum 

Top 5 best runs 

 0.42 0.48 0.4 0.78 2.08 

Top 5 worst runs 

 0.16 0.58 0.32 0.78 1.84 

Average values over all runs 

 0.36 0.42 0.31 0.8 1.89 

 
Bayesian Search Results:  
For the Bayesian Search model, it can be noticed that the box in the boxplot is slightly larger, 
indicating that there is slightly more variability within the middle 50% of the data compared to the box 
of the Random Search model. The median is 1578, which is slightly lower than that of the Random 
Search model. The mean, on the other hand, has a value of 2136, which is higher than that of the 
Random Search model. When looking closer at the boxplot, one can notice that the median is lower 
than the mean. This indicates a positively skewed distribution, suggesting that there are some high 
values pulling the mean upwards. The standard deviation is equal to 3359, which is relatively high 
compared to that of the Random Search model. This standard deviation is highly influenced by the 
two outliers that can be seen in the boxplot. The first outlier, with a value of 5111, is still considerable. 
However, the second outlier has an error value of 17903, which is very high. This extreme outlier pulls 
up not only the standard deviation but also the mean of the error values. Without these outliers, this 
model would actually perform better than the Random Search model. 
When looking at the best-performing run, with an error value of 316 (presented in Figure 24), it can 
be noticed that the final prediction of this run is less accurate (with 357 installations in 2022, compared 
to 545 installations for the Random Search algorithm). However, as can be observed in Figure 24, 



       

55 
 

the predicted solar PV adoption curve by the Bayesian Search model aligns better with the general 
trajectory of the actual solar PV adoption curve of the municipality. Therefore, the final error value of 
this model is actually very similar to that of the Random Search model.  
 
Table 17: Mean, median and standard deviation of the Bayesian Search results for Laren 

Mean 2136 

Median 1578 

Standard deviation 3359 

 
When looking at the parameter values of the results in Table 18, one can first notice that the social 
factor is again the most important when looking at the average parameter values. The environmental 
factor seems to be the least important, with a score of only 0.24. When comparing these average 
parameter results, however, to the top 5 best-performing results, one can notice a large difference in 
the parameter value of the comfort parameter. Whereas the comfort parameter value is equal to 0.37 
for the average of all runs, it is equal to 0.68 for the top 5 best-performing runs. This difference is a 
lot stronger in this municipality than in the previous two municipalities. The importance of the social 
parameter also increased for the top-performing runs compared to the average runs. 
 
Table 18: Summarised data analysis for the Bayesian Search algorithm for Laren 

 Weight_eco Weight_env Weight_cof Weight_soc Weight sum 

Top 5 best runs 

 0.38 0.24 0.68 0.82 2.12 

Top 5 worst runs 

 0.54 0.38 0.18 0.58 1.68 

Average values over all runs 

 0.39 0.24 0.37 0.69 1.68 

 

6.3.2. Added value of Inverse Modelling for Laren 
When assessing the value added by the inverse modelling process for Laren, valuable insights and 
potential areas for questions are encountered. This will be elaborated on below.  
 
Firstly, the traditional and inverse modelling analyses offer valuable insights into Laren's solar PV 
adoption dynamics. Firstly, analysing news articles about solar PVs in Laren revealed relatively 
sparse coverage. Despite the low media attention, the inverse modelling outcomes emphasise the 
importance of social considerations in adoption decisions, hinting at a disconnect between media 
discourse and the actual influencing factors. In the context of this specific ABM, this could also explain 
the low adoption of solar PV in the municipality. Moreover, the Google Trends analysis depicts 
residents' increasing interest in solar PVs, which has been particularly notable from late 2020 
onwards. However, the inverse modelling results in the context of the ABM by (Muelder & Filatova, 
2018) also unveil the prominence of social factors. This suggests that residents prioritise familiarity 
or shared experiences with PV systems within their social circles, a dimension not fully captured by 
the Google Trends analysis.  
 
However, the insights derived from the inverse modelling process for this municipality may also 
warrant scrutiny. Discrepancies exist between the results of the Random Search algorithm and the 
Bayesian Search algorithm. While both algorithms recognise the importance of the social factor, the 
Random Search algorithm assigns significantly greater importance to the economic factor than the 
Bayesian Search algorithm. Consequently, the reliability of these findings may be subject to 
questioning.  
 
It is important to note that so far, the municipality of Laren shows the most promising boxplot for the 
IM process due to its relatively low scatter and low minimum error values. Chapter 7 will discuss which 
of these two factors is more important for IM.  
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Future Projections:  
When looking at the best run of each of the algorithms in Figure 24, it can be noted that the Random 
Search algorithm follows a more linear curve, whereas the Bayesian Search model follows a more 
exponential curve. Due to their different strengths, the algorithms have relatively similar minimum 
error values for these runs. This means that when considering future projections, it is likely that in the 
near future, the Random Search algorithm will yield higher solar PV adoption rates. However, due to 
the exponential nature of the result of the Bayesian Search algorithm, this run might actually yield 
higher solar PV adoption rates after a few years.  
 
Considering the summarised data analyses for both algorithms in Table 16 and Table 18, it can be 
said that the top 5 best runs for the Random Search algorithm place a higher emphasis on the 
economic and environmental factors than the Bayesian Search algorithm. The top 5 best runs for the 
Bayesian search, on the other hand, place a higher emphasis on the comfort factor and the social 
factor. This would indicate that future policies aimed at increasing residential solar PV should focus 
on the economic and environmental factors in the short term, whereas the focus could shift to comfort 
and social factors in the long term.  
 

 

6.4 The Municipality of Oegstgeest 
The municipality of Oegstgeest, located in the province of Zuid-Holland, is home to 25.939 inhabitants 
distributed over 11.115 households (AlleCijfers, 2024d). The municipality has a median income of 
€47.750, which is higher than the national median income in the Netherlands (CBS, 2023a). Its 
population density is relatively high, namely 3530 residents per km2 (CBS, 2021).  
The solar PV adoption trend in Oegstgeest commenced with a moderate number of installations in 
2012. Since then, Oegstgeest has witnessed consistent growth in solar PV adoption, with installations 
increasing annually. Overall, the municipality’s adoption curve can be characterised as moderate to 
slightly above average compared to other municipalities. Notably, Oegstgeest experienced more 
pronounced growth, particularly from 2017 to 2018.  
 
When analysing Google Trends results, it should first be noted that the province of Zuid-Holland has 
the second-lowest search interest in solar PV, with a score of 53. Within the province, Oegstgeest 
gets a score of 37, which is relatively low. In terms of news articles, 23 news articles featuring solar 
panels in Oegstgeest were published on Google between 2012 and 2022. Most of the articles feature 
the installation of solar panels on various public buildings.  

Figure 24: Plot of the real and the predicted solar PV adoption values for Laren using the Random (left) and Bayesian 
(right) Search Algorithm 
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6.4.1. Inverse Modelling Results for Oegstgeest 
The inverse modelling results for the municipality of Oegstgeest are presented in the boxplot below. 
Due to the number of households (and, therefore, the increased amount of data), the models of this 
municipality took the longest to run. For the Random Search model, the running process took 5 hours 
and 11 minutes, whereas the Bayesian Search model took 5 hours and 21 minutes. Similarly to the 
runtimes of the models of the previous municipalities, the Bayesian Search model took around 25 
seconds per run longer. Appendix M presents the inverse modelling results for the municipality of 
Oegstgeest in more detail.  

 

Figure 25: Boxplot of the results of the inverse modelling process for the municipality of Oegstgeest 
 
Random Search Results: 
On the left side of the boxplot presented above, one can see the results of the Random Search model 
for the municipality of Oegstgeest. One can first notice the size of the box, which is relatively large, 
indicating that there is a wide IQR in the dataset. This suggests that there is a substantial variability 
in the data and that the central data points are spread out over a wide range of values. Furthermore, 
the mean value (indicated by the red triangle) is 7160, which is significantly higher than the median 
value of 4052. This discrepancy indicates a right-skewed (or positively skewed) distribution. A right-
skewed distribution occurs because the higher values pull the mean upward more than they affect 
the median. This implies that the majority of values are relatively low but that there are a few extremely 
high values that skew the distribution. This can also be noticed in the plot above. Three very strong 
outliers can be identified (note that two of them have almost the same value, so it looks as if there are 
only two outliers when there are, in fact, 3), with values of over 24.000. As a result, the standard 
deviation of the Random Search model is high, with a value of 7152. Without the three outliers, the 
standard deviation would have had a value of roughly 2700. The smallest error value that is measured 
for this model is equal to 1139. 
 
Table 19: Mean, median and standard deviation of the Random Search results for Oegstgeest 

Mean 7160 

Median 4052 

Standard deviation 7152 
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From the average parameter values, it can be noticed that the social parameter in the model is of the 
highest importance to households. Thereafter, the comfort factor is the most important, and the 
economic factor seems to be the least important in the model. When looking at the top 5 worst-scoring 
runs, one can notice that the environmental and social parameters differ, especially from the average 
values. On the one hand, the social parameter has a much lower value for the five worst-scoring runs 
than for the average. The environmental factor, on the other hand, scores a lot lower. For the top 5 
best-scoring runs, it can be noticed that the environmental factor is actually higher than average, 
indicating that environmental considerations are relatively important in this municipality for good 
predictions in the model.  
 
Table 20: Summarised data analysis for the Random Search algorithm for Oegstgeest 

 Weight_eco Weight_env Weight_cof Weight_soc Weight sum 

Top 5 best runs 

 0.32 0.46 0.38 0.54 1.7 

Top 5 worst runs 

 0.4 0.3 0.4 0.48 1.58 

Average values over all runs 

 0.33 0.42 0.47 0.66 1.88 

 
Bayesian Search Results: 
For the Bayesian Search model, one can first notice in the boxplot that the box is smaller than the 
box of the Random Search model. This indicates a smaller IQR and, thus, a smaller data variability. 
The standard deviation is equal to 3109, which is much lower than that of the Random Search model. 
The main reason for this is the outliers. For the Bayesian Search model, only one outlier can be 
identified, with a value of 12977. This means that this model does not only have fewer outliers than 
the Random Search model, but this outlier also is less strong. Therefore, the standard deviation is 
significantly lower. Furthermore, one can also notice that the mean and the median are much closer 
together. The mean has a value of 5165, and the median has a value of 4885, as presented in Table 
21. This still indicates a slight positive skew, but much less strong than for the Random Search model. 
This slight right skew can also be identified by looking at the whiskers of the boxplot. Since the top 
whisker is longer than the bottom, this indicates the existence of a few higher values in comparison 
to more concentrated data on the lower end. The minimum error value equals 904, which is better 
than that of the Random Search model. In Figure 26, the best runs of each of the models are plotted. 
In these graphs, one can nicely see the difference between the best runs. Even though the model’s 
predicted total amount of installed solar PV (3137 installations) in Oegstgeest is exceptionally close 
to the total amount of installed solar PV in the municipality in reality (3135 installations), this run still 
gets a higher error value (and therefore worse fitness) than the best run of the Bayesian Search 
model. This is all related to the fact that this last model follows the total solar PV adoption curve much 
better, generating a lower error value overall.  
 
Table 21: Mean, median and standard deviation of the Bayesian Search results for Oegstgeest 

Mean 5165 

Median 4885 

Standard deviation 3109 

 
When analysing the average parameter values of all runs, one can notice that, again, the social 
parameter is the most important, followed by the environmental factor (with values of 0.72 and 0.57, 
respectively). The economic factor is, on the other hand, the least important in this model. When 
considering only the top 5 best runs, the social and environmental factors are still the most important 
in the model. Their value is, however, lower than the average of the runs. This indicates that, even 
though these two factors are still considered the most important in this municipality, their significance 
becomes less for the better-performing runs.  
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Table 22: Summarised data analysis for the Bayesian Search algorithm for Oegstgeest 
 Weight_eco Weight_env Weight_cof Weight_soc Weight sum 

Top 5 best runs 

 0.40 0.52 0.32 0.56 1.80 

Top 5 worst runs 

 0.22 0.4 0.4 0.72 1.74 

Average values of all runs 

 0.36 0.57 0.39 0.72 2.04 

 

6.4.2. Added Value of Inverse Modelling for Oegstgeest 
When considering the inverse modelling results for the municipality of Oegstgeest, one can say that 
the Bayesian Search model outperforms the Random Search model since it has both a lower scatter 
and a lower minimum error value. When considering the average values of both models, it can be 
said that the social parameter is the most important in the model. On the other hand, the economic 
parameter is considered the least important parameter in each of the models. Because of the inverse 
modelling process, this finding could be identified. This is an interesting observation, especially 
because, as found in the demographic analysis, the municipality of Oegstgeest ranks 6th on the list of 
municipalities in the Netherlands with the highest median income. Based on these inverse modelling 
results, one could potentially see a relation between the income level of the municipality and the 
significance that households attribute to financial factors when making decisions about purchasing 
solar PV systems.  
 
Future Projections: 
In Figure 26, the best runs for both the Random Search algorithm and the Bayesian Search algorithm 
are presented. Both predictions follow a similar curve, with the Bayesian Search curve being slightly 
more exponential, indicating that this algorithm could result in higher adoption values in the future. 
When looking at the data analysis for this algorithm in Table 22 and comparing it to the data analysis 
for the Random Search algorithm in Table 20, it can be noticed that both algorithms have relatively 
similar values for each parameter for the top 5 runs. Generally, the values for the Bayesian Search 
algorithm are slightly higher, except for the comfort factor. The social and environmental factors score 
the highest in the best runs for the Bayesian Search algorithm, indicating that future policies aiming 
at increasing solar PV adoption rates should focus mostly on these two factors. These results are, 
however, still inconclusive.  

 

Figure 26: Plot of the real and the predicted solar PV adoption values for Oegstgeest using the Random (left) and 
Bayesian (right) Search Algorithm 
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6.5 The Municipality of Vaals 
Vaals is located in the south of the Netherlands in the province of Limburg. It is home to 10.092 
inhabitants distributed over 5.642 households (AlleCijfers, 2024e). The median income in the 
municipality is equal to €29.550, which is notably lower than the national median (CBS, 2023a). With 
427 inhabitants per km2, the municipality is sparsely populated by Dutch means. In 2012, Vaals had 
no recorded solar PV installations. However, starting in 2013, there has been a steady rise in solar 
PV adoption, with the number of installations increasing each year. A significant acceleration in 
adoption occurred in 2016 and persisted from 2018 onwards. Despite this, Vaals shows slightly lower 
solar PV adoption rates compared to the average of other municipalities.  
According to Google Trends, the province of Limburg scores average in terms of interest in solar PV, 
obtaining a score of 88. The municipality of Vaals scores, however, very low within the province, with 
a score of 0. In addition, only one article was published in 2021, and it was not related to residential 
solar PV.  

6.5.1. Inverse Modelling Results for Vaals 
The inverse modelling results for Vaals are presented in the boxplot below. Running the Random 
Search model took 2 hours and 38 minutes, and the Bayesian Search model took 2 hours and 49 
minutes.  

 
Figure 27: Boxplot of the results of the inverse modelling process for the municipality of Vaals 

 
Random Search Results:  
The inverse modelling process is again first executed using the Random Search algorithm. The 
results from this process can be found in Appendix N. The most prominent aspect of the boxplot of 
the Random Search model lies in the proportion between its upper and lower whiskers. The top 
whisker is significantly longer than the bottom whisker, indicating that the upper end of the data 
distribution is spread over a wider range of values than the lower end. This can also be noticed in the 
plot when looking at the individual data points. Most individual data points are located relatively close 
together at the lower end of the error value spectrum. This discrepancy suggests greater variability 
among the higher data points compared to the lower ones. The positive skew of the data can also be 
noticed when looking at the median and the mean of the data. The median is equal to a value of 2331, 
whereas the mean is equal to 3873. As elaborated before, a higher value of the mean compared to 
the median also indicates right-skewedness. One outlier can be identified, with a value of 14994. The 
best-performing run has an error value of 320. In Figure 28, the real and predicted adoption values 
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for this best run are presented. The standard deviation of this model is equal to 3358, presented in 
Table 23. 
 
Table 23: Mean, median and standard deviation of the Random Search results for Vaals 

Mean 3873 

Median 2331 

Standard deviation 3358 

 
When further analysing the average values of the run parameters, as presented in Table 24, the social 
parameter is again identified as the most important, with a value of 0.66, followed by the economic 
factor. When considering the top 5 best-performing runs, the economic factor becomes more 
important, indicating that financial factors play a significant role in prediction accuracy for this model 
and this municipality. 
 
Another striking observation is that out of 25 runs, nine runs have the same error value. The reason 
for this is that for each of these runs, the predicted amount of solar PV installations in the municipality 
is 0, meaning that no solar PV is adopted at all. This observation can, so far, only be made for this 
municipality. The average scores of each of the four parameters for these nine runs are further 
analysed to gain insight into why no solar PV is adopted for these runs. In doing so, it is very noticeable 
that the sum of all weights attributed to the four parameters is much lower than it would be when 
considering the average sum of all weights of all the other runs. For comparison: the sum of all weights 
attributed to the four parameters of the nine runs with the same error value is equal to 1.38, whereas 
the sum of all weights attributed to all the other runs (note that this is the same as the average of all 
runs, as presented in Appendix N, is equal to 2.1. For each of these nine runs, at least one of the 
parameters' values is equal to 0, meaning that no significance is attributed to this factor by households 
at all. When considering each of the parameter values individually, one can notice that only the social 
parameter does not have a lower value compared to the average. To sum up, solar PV adoption in 
the municipality of Vaals for the Random Search model is not present when households in the model 
place low importance on the different factors that influence solar PV adoption.  
 
Table 24: Summarised data analysis for the Random Search algorithm for Vaals 

 Weight_eco Weight_env Weight_cof Weight_soc Weight sum 

Top 5 best runs 

 0.68 0.48 0.3 0.74 2.2 

Top 5 worst runs 

 0.44 0.22 0.28 0.62 1.56 

Average values of all runs 

 0.51 0.45 0.21 0.66 1.84 

 
Bayesian Search Results: 
In the case of the Bayesian Search algorithm, the box of the boxplot is smaller than that of the Random 
Search algorithm, indicating a smaller variability in error values. The data is hardly skewed, as 
indicated by the mean and median values (4000 and 3958, respectively). Furthermore, a striking 
observation can be made when looking at the whiskers of the boxplot, namely the fact that no top 
whisker is visible. This indicates that the upper quartile range falls within the IQR, indicating a limited 
variability for the higher data points. One can, however, notice the presence of an outlier, with a value 
of 11.919. The value of this outlier is too extreme to be represented by the upper whisker in the boxplot 
because it is located too far from the upper quartile. The minimum error value equals 608, which is 
higher than that of the Random Search model. The real and predicted solar PV adoption values for 
this best run are presented in Figure 28. This difference can also be seen in the plots of the minimum 
error values of each model, as presented in Figure 28. In these graphs, it can be noticed that not only 
does the Bayesian Search model estimate the final amount of solar PV installations in the municipality 
less good, it also predicts the general solar PV adoption curve less accurately. However, the Bayesian 
Search model's standard deviation is lower than that of the Random Search model, with a value of 
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2490 (see Table 25). Chapter 7 will go into more detail about the importance of the scatter compared 
with the minimum error value for the IM process. 
 
Table 25: Mean, median and standard deviation of the Bayesian Search results for Vaals 

Mean 4000 

Median 3958 

Standard deviation 2490 

 
When analysing the parameter values of the average of all runs in Table 26, it can be noticed that 
again the social factor is the most important, followed by the environmental factor this time (with 
values of 0.68 and 0.5 respectively). This differs from the Random Search model, where the economic 
factor was more important. When comparing the top 5 best-performing runs with the average 
parameter values, it becomes clear that the environmental and economic parameters differ from the 
average values. This indicates that these two parameters significantly impact the accuracy of the 
predictions made by the model. 
 
For the Bayesian Search model, it can again be noticed that several runs (8 this time) result in the 
same error value of 5687, indicating no solar PV adoption at all. These runs have again in common 
that their sum of parameter weights is relatively low (1.49 compared to 2 for the average of the other 
runs). This time, however, the most predominant change exists for the environmental factor, which 
only has a value of 0.14 on average for these runs (compared to 0.66 for all other runs). The 
importance of the economic factor is also significantly lower.  
 
Table 26: Summarised data analysis for the Bayesian Search algorithm for Vaals 

 Weight_eco Weight_env Weight_cof Weight_soc Weight sum 

Top 5 best runs 

 0.54 0.7 0.2 0.66 2.1 

Top 5 worst runs 

 0.48 0.3 0.28 0.66 1.72 

Average values of all runs 

 0.38 0.5 0.28 0.68 1.84 

 

6.5.2. Added Value of Inverse Modelling for Vaals 
Several key insights emerge when examining the added value of inverse modelling for the 
municipality of Vaals. Firstly, both traditional analyses and inverse modelling offer valuable 
perspectives on solar PV adoption dynamics in Vaals. The sparse media coverage of solar PVs in 
Vaals, as revealed by news article analysis, contrasts with the prominence of social factors 
emphasised by inverse modelling. This suggests that while media attention may be limited, social 
considerations significantly influence adoption decisions, potentially contributing to the lower adoption 
rates observed in Vaals. 
 
However, the insights from inverse modelling also warrant scrutiny. While both Random Search and 
Bayesian Search algorithms identify social factors as significant, discrepancies arise in the 
importance attributed to economic factors. The Random Search algorithm underscores the 
importance of economics in decision-making. Conversely, the Bayesian Search algorithm places less 
emphasis on economic factors. This raises questions about the consistency and reliability of inverse 
modelling results, particularly in capturing the complex interplay of factors influencing solar PV 
adoption in Vaals.  
 
Moreover, an intriguing finding emerged from both models: the absence of solar PV installations in 
several runs. The analysis of the IM outcomes highlights that this phenomenon could be linked to 
instances where parameters were accorded lower weights. This suggests that when households 
assign diminished significance to each factor, solar PV adoption does not occur. However, it should 
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be noted that this observation could only be made for this municipality specifically. Thus, it 
underscores that the collective weighting of parameters is not the sole determinant. One plausible 
explanation is the municipality’s low-income levels, as revealed by the demographic analysis. It is 
conceivable that due to these low-income levels, numerous households initially fail to meet the income 
vs payback threshold outlined in Chapter 5, leading to the absence of solar PV adoption in these 
instances.  
 
Future Projections: 
When looking at the best predictions in Figure 28, it can be noticed that the Random Search algorithm 
performs significantly better than the Bayesian Search algorithm for Vaals. The Random Search 
algorithm follows a more exponential curve than the Bayesian Search algorithm. This indicates that 
in the future, solar PV adoption rates will continue to rise strongly in Vaals. Considering the top 5 best 
runs in the summarised data analysis for the Bayesian Search algorithm for Vaals, it can be argued 
that future policies aimed at increasing residential solar PV adoption rates should focus on 
environmental and social aspects rather than comfort factors. The economic factor also remains 
important.  
 

6.6 The Municipality of Westerveld 
Finally, the municipality of Westerveld is home to 19.348 inhabitants distributed over 8892 households 
(AlleCijfers, 2024f). The municipality is very lightly populated, with a population density of 71 persons 
per km2. The median income is equal to €38.750, which is very close to the Dutch national median. 
The municipality of Westerveld exhibits a compelling adoption trend, distinguished by a blend of rapid 
and sustained growth, setting it apart from neighbouring municipalities. The trajectory begins relatively 
early, with an initial surge in solar PV adoption evident in 2014. Subsequently, in 2015, the pace 
steadied for a year before undergoing another strong curve from 2016 onwards. This upward 
momentum remained stable until around mid-2017, after which a third acceleration occurred in 2021. 
Overall, it is evident that solar PV adoption in Westerveld is strong and shows a prominent upward 
trajectory.  
 
According to Google Trends, the province of Drenthe shows a very high interest in solar PV, with a 
score of 100. Unfortunately, no Google Trends data is available specifically for the municipality of 
Westerveld. Most news articles published on Google about solar PVs in Westerveld are related to 
public buildings. However, Westerveld also appears in the national news due to its high solar PV 
adoption per inhabitant.  

Figure 28: Plot of the real and the predicted solar PV adoption values for Vaals using the Random (left) and Bayesian 
(right) Search Algorithm 
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6.6.1. Inverse Modelling Results for Westerveld 
The Random Search model took 4 hours and 8 minutes to run, compared to 4 hours and 19 minutes 
compared to the Bayesian Search model. This again means that the Bayesian Search model required 
roughly 25 seconds of extra time per run, proving the consistency of the additional runtime of the 
Bayesian Search model for each of the municipalities. In the plot below, the inverse modelling results 
for the municipality of Westerveld are presented.  
 

 
Figure 29: Boxplot of the results of the inverse modelling process for the municipality of Westerveld 

 
Random Search Results: 
From the final Random Search boxplot, the first aspect that catches the eye is the length of the upper 
whisker. This indicates that the upper quartile of the dataset is spread over a wider range of values 
compared to the lower quartile, suggesting a greater variability among the higher data points. This 
can also be observed when looking at the data points individually. Up to an error value of roughly 
5000, the variability of the data points is significantly smaller than those above that. The data is, 
therefore, positively skewed. This positive skew can also be observed when comparing the mean 
value of 5135 with the median value of 3292. This shows that the mean value is higher than the 
median value, indicating a right skew. The standard deviation equals 4485, and one outlier with a 
value of 17.942 can be identified. The lowest error value is equal to 1075 and is presented in Figure 
30, along with its real and predicted adoption values.   
 
Table 27: Mean, median and standard deviation of the Random Search results for Westerveld 

Mean 5135 

Median 3292 

Standard deviation 4485 

 
From the summarised data analysis in Table 28, it becomes clear that the social parameter is, again, 
the most important, with a value of 0.69. It is followed by the environmental and economic parameters 
with values of 0.52 and 0.46, respectively. Furthermore, when looking at the five best-performing 
parameters, one can notice that the environmental parameter becomes slightly less important and 
has a value of 0.46, tied with the economic parameter. Comfort and social weight also become less 
important. 
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Table 28: Summarised data analysis for the Random Search algorithm for Westerveld 

 Weight_eco Weight_env Weight_cof Weight_soc Weight sum 

Top 5 best runs 

 0.46 0.46 0.26 0.6 1.78 

Top 5 worst runs 

 0.38 0.50 0.38 0.72 1.98 

Average values of all runs 

 0.46 0.52 0.38 0.69 2.05 

 
Bayesian Search Results: 
For the Bayesian Search model, the box size in the boxplot is very evident as it is significantly larger 
than that of the Random Search model. This indicates greater variability in the dataset. Again, The 
top whisker is larger than the bottom, indicating a positive skew. This positive skew can also be 
identified when looking at the individual data points, showing a much greater variability in the higher 
data points compared to the lower data points. Both the median, with a value of 4825, and the mean, 
with a value of 7089, are much larger for the Bayesian Search model than for the Random Search 
model. The standard deviation is also larger, with a value of 5746. This larger variability is caused by 
a greater number of high error values: a total of 8 runs (out of 25) have an error value larger than 
10.000. The minimum error value, on the other hand, is equal to 1011, which is smaller than that of 
the Random Search model and is presented in Figure 30.  
 
Table 29: Mean, median and standard deviation of the Bayesian Search results for Westerveld 

Mean 7098 

Median 4825 

Standard deviation 5746 

 
When analysing the average parameter values over all runs, as presented in Table 30, it becomes 
evident that the social and environmental parameters are the most important. The comfort factor is 
again of the least importance. An interesting observation can be made when considering the top 5 
best-performing runs: the environmental factor specifically becomes much more important with a 
value of 0.72. This indicates that predictions with higher accuracy are made when households value 
environmental aspects more in the model. This observation becomes even more evident when also 
considering the top 5 worst-performing runs. For these runs, the average environmental factor has a 
value of 0.2, significantly lower than the value observed for the average value of all runs.  
 
Table 30: Summarised data analysis for the Bayesian Search algorithm for Westerveld 

 Weight_eco Weight_env Weight_cof Weight_soc Weight sum 

Top 5 best runs 

 0.58 0.72 0.32 0.7 2.32 

Top 5 worst runs 

 0.32 0.2 0.18 0.64 1.34 

Average values of all runs 

 0.44 0.48 0.33 0.66 1.91 

 

6.6.2. Added Value of Inverse Modelling for Westerveld 
The inverse modelling process indicates that the social and environmental parameters are especially 
important for prediction accuracy in this municipality. Considering that the municipality of Westerveld 
has a relatively high solar PV adoption rate, it is especially interesting to see this relation between the 
adoption rates and the importance of the environmental parameter, which is considerably higher 
compared to its value in the other municipalities. It should be noted, though, that the relatively high 
scatter of data in this municipality raises questions about whether these IM results are conclusive. 
This discussion will continue in Chapter 7. 
 



       

66 
 

Future Projections: 
The best runs of each algorithm, as presented in Figure 30, show that the algorithms perform relatively 
similarly. The Bayesian algorithm shows a slightly more linear curve than the Random Search 
algorithm. These graphs indicate that even though solar PV adoption in Westerveld will continue to 
grow, this growth is not as exponential as in the other municipalities (e.g. Dantumadiel). It should also 
be noted that even though the Random Search and the Bayesian Search algorithms show very similar 
minimum error values for the best runs, their values for the top 5 best runs in the summarised data 
analysis in Tables 28 and 30 are quite different. Both algorithms present the environmental and social 
factors as the most influential in the decision-making process. However, the weights for the Bayesian 
Search algorithm are stronger. Due to the inconclusiveness of the results, it is difficult to provide 
information on the potential focus areas of future policymaking. 
 

 
 
 

6.7 Inter-Municipal Comparative Analysis 
In the inter-municipal analysis, the results from the six municipalities are compared. First, the boxplots 
of each municipality's results are compared. Thereafter, the actual parameter values of the outcomes 
are compared.  

6.7.1. Boxplot Comparison: 
In Figures 25 and 26 below, the boxplots of the municipalities are presented side by side so that they 
can be compared more easily. Firstly, the Random Search models and the Bayesian Search models 
are compared. In terms of scatter, the Random Search model performs better for 4 out of 6 
municipalities (namely Bloemendaal, Dantumadiel, Laren and Westerveld). This is evident from the 
size of the boxes in the boxplots: a smaller box indicates lower scatter and, therefore, less variability. 
The lower scatter of the Random Search model can also be proven by taking the average standard 
deviation of all municipalities for each of the algorithms. The average standard deviation for Random 
Search equals 3496 and 4381 for the Bayesian Search algorithm. Additionally, regarding the lowest 
minimum error value, both algorithms produce equally good outcomes. For 3 out of 6 municipalities, 
Random Search yields a lower minimum error value (for Bloemendaal, Laren and Vaals). In 
comparison, Bayesian Search achieves a lower minimum error value for the other three municipalities 
(Dantumadiel, Oegstgeest and Westerveld). The discussion on whether scatter or minimum error 
value is a more important determinant of the quality of the IM model is presented in Chapter 7. In 
Appendix Q, the mean, median and standard deviations of the results of the inter-municipal 
comparative analysis are presented. 
 

Figure 30: Plot of the real and the predicted solar PV adoption values for Westerveld using the Random (left) 
and Bayesian (right) Search Algorithm 



       

67 
 

Furthermore, it can be observed that the Bayesian Search model generally produces more outliers, 
with 9 in total compared to 6 outliers for the Random Search model. Additionally, the median error 
value for each municipality is lower with the Random Search algorithm than with the Bayesian Search 
algorithm, indicating that the Random Search algorithm more accurately predicts solar PV adoption 
curves. On the other hand, the mean values do not significantly favour either algorithm. This is 
because mean values are more sensitive to outliers and extreme values (both positive and negative), 
making them a less robust measure of performance. Interestingly enough, these observations indicate 
a slightly better performance of the Random Search algorithm compared to the Bayesian Search 
algorithm. This is surprising because the Bayesian Search algorithm should theoretically produce 
better outcomes. A discussion of the performance between the two algorithms is presented in Chapter 
7. An important note is that the minimum error values cannot be accurately compared across different 
municipalities. This is because the error value is based on the difference between the predicted and 
actual number of solar PV installations in a municipality. In larger municipalities, the absolute 
difference between predicted and actual installations is generally smaller compared to larger 
municipalities. This results in a distorted view of the results since the relative or percentage 
differences between the municipalities might be similar. This limitation arises from how the error value 
is calculated. Although theoretically, this error value could account for the size of the municipality, it 
is not desirable because the original ABM already factors in the number of households in the 
municipality, meaning this variable would be considered twice.  
 

 

  

Figure 31: Boxplots of the results for the municipality of Bloemendaal, Dantumadiel and Laren 
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6.7.2. Parameter Value Comparison  
The actual parameter values between the municipalities are differentiated between the two 
algorithms. This is because the two algorithms could potentially have different optimal parameter 
values for the municipalities, making it difficult to compare them.  
 
Random Search models: average values 
When analysing the average values of the parameters of the Random Search models in Table 31, 
the first parameter to consider is the economic factor or weight_eco. Within this parameter, Vaals 
emerges with the highest weighting (of 0.51) despite being associated with the lowest income among 
the municipalities. This suggests that, for this specific ABM, households in Vaals attribute high 
importance to financial considerations when deciding on solar PV system purchases. On the other 
hand, the weight_eco parameter exhibits its lowest values in Bloemendaal and Oegstgeest (with 
values of 0.33 each), two of the municipalities with the highest income levels. This observation hints 
at a pattern between income and the significance of financial factors in solar PV decision-making. 
However, this pattern does not hold for Dantumadiel and Westerveld, which share similar income 
levels but display notable differences in values for the economic parameter. 
 
Dantumadiel and Westerveld do, however, display the highest values for the environmental parameter 
(0.50 and 0.52, respectively). Interestingly enough, these two municipalities are also the two 
municipalities with the highest solar PV adoption rate, indicating that within this model, households in 
municipalities with high adoption rates place higher importance on the environmental impact of solar 
PV. This relation is, however, not evident for the other municipalities. The municipality of Laren, having 
the lowest adoption rates, also displays a low value for the weight _env parameter. The municipality 
of Oegstgeest also has a low value for the environmental parameter, but its scores are above average 
for solar PV adoption.  
 

Figure 32: Boxplots of the results for the municipalities of Oegstgeest, Vaals and Westerveld 
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The comfort parameter, or weight_cof, has the highest parameter value for the municipality of 
Oegstgeest. The lowest value can be observed for the municipality of Vaals. No specific patterns 
across municipalities for this parameter could be found. 
 
The social parameter has the highest value of all parameters, which indicates that it significantly 
impacts the model's performance. The social parameter is highest for the municipality of Laren and 
lowest for the municipalities of Oegstgeest and Vaals. No specific patterns across municipalities could 
be found for this parameter.   
 
Table 31: Average values of the parameters of the Random Search models 

Random Search Models: Average of All Runs 

 Weight_eco Weight_env Weight_cof Weight_soc Weight_sum 

Bloemendaal 0.33 0.49 0.30 0.68 1.80 

Dantumadiel 0.36 0.50 0.34 0.75 1.94 

Laren 0.36 0.42 0.31 0.80 1.89 

Oegstgeest 0.33 0.42 0.47 0.66 1.88 

Vaals 0.51 0.45 0.21 0.66 1.84 

Westerveld 0.46 0.52 0.38 0.69 2.05 

 
Random Search models: best scoring runs 
When considering the economic parameter of the top 5 best-scoring runs of the Random Search 
models, the municipality of Vaals displays the highest value again and Bloemendaal the lowest value. 
Furthermore, the weights are exaggerated because Vaals displays an even higher value of 0.68) than 
for the average of all runs, and Bloemendaal has an even lower value (0.26). However, the pattern 
between income and the economic parameter is much more visible for the five best-performing runs: 
the three wealthiest municipalities (Bloemendaal, Laren and Oegstgeest) display the three lowest 
values for the weight_eco parameter.  
 
For the environmental parameter, the values for most municipalities are actually in a very similar 
range (between 0.46 and 0.48). Only Dantumadiel (with a value of 0.56) and Bloemendaal (with a 
value of 0.36) display different values. Contrary to the results with the average values, no strong 
pattern can be recognised here for the environmental parameter. The same holds for the comfort 
parameter, where Bloemendaal displays the highest value of 0.52, and Westerveld displays the 
lowest value of 0.26. For this parameter, no specific patterns across municipalities could be found.  
 
Finally, the values of the social parameter are again the highest of all parameters, indicating a 
significant impact on the model's performance. The value of the social parameter is slightly higher 
and slightly lower for some municipalities than for the average runs. The parameter value remains 
the highest for Laren (0.78) and the lowest for Oegstgeest.  
 
Table 32: Top 5 best-performing result values of the Random Search models 

Random Search Models: Top 5 Best-Performing Runs 

 Weight_eco Weight_env Weight_cof Weight_soc Weight_sum 

Bloemendaal 0.26 0.36 0.52 0.68 1.82 

Dantumadiel 0.52 0.56 0.40 0.76 2.24 

Laren 0.42 0.48 0.40 0.78 2.08 

Oegstgeest 0.32 0.46 0.38 0.54 1.70 

Vaals 0.68 0.48 0.30 0.74 2.20 

Westerveld 0.46 0.46 0.26 0.60 1.78 

 
Bayesian Search models: average values 
For the Bayesian Search models, the average values for the economic parameters are quite different 
compared to the average values for this parameter in the Random Search model. Whereas for the 
Random Search model, a slight pattern between income and the weight of the economic parameter 
could be found, this pattern is not present for the Bayesian Search models. In this case, the economic 
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parameter has the highest values for the municipalities of Bloemendaal and Westerveld and the 
lowest for Dantumadiel and Oegstgeest.  
 
The municipality of Laren is the only municipality that attributes significantly less weight to the 
environmental parameter than the other municipalities. The municipality of Oegstgeest, on the other 
hand, attributes the most weight to this parameter. No specific patterns across municipalities for this 
parameter could be found. 
 
The comfort parameter holds relatively low weights across all municipalities. Interestingly, this 
characteristic is also evident in Random Search models. It suggests that while the comfort parameter 
has a relatively strong impact on the model's performance, its effect is inverse compared to the social 
parameter. Unlike the social parameter, which benefits from high values for optimal results (yielding 
low error values), the comfort parameter seems to require lower values, though not excessively low 
ones. The social parameter is again significantly higher for each of the municipalities compared to the 
other parameters. However, no specific patterns across the municipalities could be found.  
 
A final interesting remark can be made regarding the sum of all the parameter weights for each 
municipality. From this sum, a pattern can be recognised related to the solar PV adoption rate of each 
municipality. Interestingly, the three municipalities with the highest solar PV adoption rates also have 
the highest sum of parameter weights. On the other hand, the sum of parameter weights of the 
municipality with lower adoption rates is lower. This indicates that a pattern exists between the 
significance that households attribute to all different aspects that influence solar PV adoption and the 
actual adoption rates. 
 
Table 33: Average values of the parameters of the Bayesian Search models 

Bayesian Search Models: Average of All Runs 

 Weight_eco Weight_env Weight_cof Weight_soc Weight_sum 

Bloemendaal 0.45 0.47 0.29 0.65 1.86 

Dantumadiel 0.33 0.55 0.34 0.76 1.97 

Laren 0.39 0.24 0.37 0.69 1.68 

Oegstgeest 0.36 0.57 0.39 0.72 2.04 

Vaals 0.38 0.50 0.28 0.68 1.84 

Westerveld 0.44 0.48 0.33 0.66 1.91 

 
Bayesian Search models: best scoring runs 
Finally, the top 5 best-scoring runs for the Bayesian Search models are considered, as presented in 
Table 34. For the economic parameter, the highest value is displayed for the municipality of 
Westerveld and the lowest for Laren. This would initially suggest a pattern between the significance 
that households attribute to financial aspects in the decision-making process for solar PV and their 
actual adoption behaviour since Westerveld has one of the highest adoption rates and Laren has the 
lowest. However, when further analysing the values of the other municipalities for this parameter, one 
can notice that this pattern does not hold. One interesting observation, though, is that the average of 
the weight_eco values for the top 5 best-performing runs (an average value of 0.49) is significantly 
higher than for the average of all runs (an average value of 0.39). This would indicate that this 
parameter value seems to have quite an impact on the performance of the model, indicating that 
higher values for the economic parameter lead to better predictions.  
 
For the environmental parameter, the municipality of Westerveld displays the highest value, and the 
municipality of Laren portrays the lowest value. The low value for Laren should not be noticed, as was 
also already apparent for the average values. Again, no specific patterns across the municipalities 
could be found, though.  
 
For the comfort parameter, the highest value was found for the municipality of Laren (0.68) and the 
lowest for Vaals (0.20). However, the analysis does not indicate any patterns across the 
municipalities.  
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Finally, the social parameter is again the highest of all parameters on average. The highest value was 
found for Laren, and the lowest value was found for Oegstgeest. It should be noted that the previously 
mentioned pattern for the sum of all parameter weights for each municipality cannot be recognised 
for the top 5 best-performing runs.  
 
Table 34: Top 5 best-performing result values of the Bayesian Search models 

Bayesian Search Models: Top 5 Best-Performing Runs 

 Weight_eco Weight_env Weight_cof Weight_soc Weight_sum 

Bloemendaal 0.56 0.54 0.34 0.76 2.20 

Dantumadiel 0.50 0.60 0.54 0.74 2.38 

Laren 0.38 0.24 0.68 0.82 2.12 

Oegstgeest 0.40 0.52 0.32 0.56 1.80 

Vaals 0.54 0.70 0.20 0.66 2.10 

Westerveld 0.58 0.72 0.32 0.70 2.32 

 
Concluding remarks:  
When considering the results of the IM process of the different municipalities, the question of what 
predicts a good run and whether this is generic or municipality-specific can be raised. The IM process 
has shown that the social parameter values are consistently the highest for the top 5 best-performing 
runs, indicating that this parameter value seems to have the highest impact on the performance of 
the model. Furthermore, the IM process has shown that a high sum of weighted values consistently 
leads to better fits with the observed data. This indicates that for this ABM, a good run can generally 
be predicted by looking at the social parameter value and the sum of weighted values. This is true 
not just for a single municipality but for all of them, indicating that the social parameter and the sum 
of weighted values are generic indicators for the performance of a run.  
Several promising patterns emerge from the data, particularly regarding the influence of economic 
parameters and municipal income in the Random Search models. While varying across municipalities, 
these patterns suggest unique indicators for good runs specific to a particular area. This indicates 
that they are, contrary to the social parameter and the sum of weighted values, municipality-specific 
instead of generic. Although these findings currently show some variability and require cautious 
interpretation, they point to the strong potential of inverse modelling to deeply explore and understand 
the dynamics underlying solar PV adoption. Enhancing the robustness of these municipality-specific 
patterns will be key to fully harnessing this potential. Chapters 7 and 8 will discuss the factors 
contributing to this variability, including what factors predict a good run per municipality, and outline 
strategies for achieving more reliable results in future studies.  
 

6.8 The Municipality of Laren: Increased Splits and Iterations 
When considering the results of each municipality, one can distinguish differences between the 
results of all runs and the well-scoring runs (e.g. the top 5 highest-performing runs). This observation 
suggests that not all runs are created equal and that some configurations consistently yield better 
results. This insight leads to a critical question in the research: Does allowing the model to run for 
more iterations and splits increase the likelihood of identifying these high-quality runs, or is the 
occurrence of good runs more a matter of chance? If extending the search time leads to more frequent 
identification of high-performing runs, it would underscore the value of persistent and extended 
searches in optimising model outcomes in the IM process. Conversely, if good runs appear randomly, 
irrespective of the number of iterations, it might suggest a need for different optimisation strategies or 
model refinements.  
 
To explore this, an experiment using the municipality of Laren as a case study is proposed. The 
experiment involves increasing the number of runs and iterations significantly to observe whether a 
more extended search leads to the discovery of more good runs. Specifically, 30 iterations over five 
splits will be executed. The reason behind the number of splits lies in the search strategy behind the 
Bayesian Search algorithm: an increased number of splits increases the number of search areas for 
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the Bayesian algorithm. The number of iterations is doubled compared to before, resulting in a total 
of 150 fits per run instead of 30 fits before. The municipality of Laren is chosen for this experiment 
because its existing good results compared to the other municipalities (see Figure 31) make an 
excellent benchmark to test if extended search durations can uncover even better solutions. 
Furthermore, its small size requires less computational power, allowing for more efficient 
experimentation.  

6.8.1. Random Search Results: 
Figure 33 presents a comparative boxplot of the Random Search algorithm’s inverse modelling 
process results. On the left, one can find the outcomes from the experimental setup, where the model 
executed 30 iterations and five splits across 25 runs. The ‘original’ inverse modelling results are 
displayed on the right, as detailed in Chapter 6.3. These were obtained using 15 iterations and two 
splits over 25 runs. These results are plotted side by side to facilitate a clear comparison between the 
outcomes of the experiment and the initial results for the municipality of Laren.  
 
To better highlight the details of the data, the y-axis range has been adjusted to 0 to 6000, a narrower 
scale compared to the 0 to 30,000 range used in previous boxplots. This change enhances the 
visibility of the graphical details. The total time to run this experiment was 12 hours and 9 minutes, 
whereas the original setup took significantly less time, at 2 hours and 26 minutes. This stark contrast 
in time underscores the considerably higher computational effort required when running the model 
with more iterations and splits.  

 

Figure 33: Boxplot of the comparison between runs with the experimental (left) or original (right) setup for the 
inverse modelling process in Laren for the Random Search algorithm 

 
When analysing the boxplots of the experimental and original setups, several differences in the data 
distribution become apparent. Firstly, the median, represented by the horizontal line in the box, is 
noticeably lower for the experimental setup compared to the original setup, with median values of 979 
and 1738, respectively. This median line reflects the central value of the data. Similarly, the mean, 
indicated by the triangle, is also lower for the experimental setup, with a mean of 1016 versus 1668 
for the original setup, as detailed in Table 35. Furthermore, the differences in the size of the boxes 
can be noticed. The box for the experimental setup is larger, indicating a broader interquartile range 
(IQR). This suggests that the middle 50% of the data in the experimental setup is more spread out. 
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However, the whiskers for the experimental setup are shorter, implying that the data points beyond 
the quartiles are less spread out compared to the original setup. This indicates that the majority of the 
data is closer to the quartiles, with fewer extreme values or outliers. Consequently, with its larger box 
and shorter whiskers, the experimental setup exhibits greater variability within its central values but 
is more compact overall. This is corroborated by the standard deviation, which is 524 for the 
experimental setup, significantly lower than the 974 for the original setup, indicating less overall 
variability. Additionally, the original setup has an outlier, which is not present in the experimental 
setup.  
 
Table 35: Comparison of the descriptive statistics between runs with the experimental (left) or original setup (right) 

 30 iterations, five splits 15 iterations, two splits 

Mean 1016 1668 

Median 979 1738 

Standard deviation 524 974 

 
The best run for the experimental setup achieves an error value of 207, while the best run for the 
original setup has a higher error value of 314. In Figure 34, these best runs for each setup are 
displayed, showing how the fitted values from the experimental setup align more closely with the 
actual solar PV adoption values in the municipality of Laren.  
 
Overall, the experimental setup demonstrates superior performance in resembling the real solar PV 
adoption data. This is evidenced by its lower mean, median and standard deviation compared to the 
original setup, indicating more accurate and consistent results. Moreover, the experimental setup’s 
best-performing run not only achieves a lower error value but also delivers a more precise fit than the 
original model.  
 

 
When considering the weights of the different factors in the inverse modelling process for the 
environmental setup, it can first be noticed that social weight is still the most important overall. The 
environmental factor, on the other hand, appears to be the least important, with a value of 0.28. An 
interesting observation hereby is the fact that the average values of all runs (for instance, when 
looking at the sum of weights) always seem to score higher than either the best or the worst runs. 
This would indicate that the performance of the model does not necessarily depend as much on the 
strength of the weights themselves but more so on their relations to each other. 
 
When comparing the weights of the different parameters of the experimental setup to the original 
setup, it can be noticed that these weights are generally lower, except for the comfort factor. This 

Figure 34: : Plot of the real and the predicted solar PV adoption values for Laren for the experimental (left) and 
the original (right) setup 
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indicates that when increasing the performance of the model for Laren, the weight of the comfort 
factors becomes more important while the weight of the other parameters becomes less important. 
This trend appears to be the most apparent for the environmental factor.  
 
Table 36: Summarised data analysis of the experimental setup for the municipality of Laren 

 Weight_eco Weight_env Weight_cof Weight_soc Weight sum 

Top 5 best runs 

 0.34 0.34 0.40 0.68 1.76 

Top 5 worst runs 

 0.10 0.36 0.40 0.66 1.52 

Average values of all runs 

 0.45 0.28 0.34 0.72 1.78 

 

6.8.2. Bayesian Search Results 
In Figure 35, the comparative boxplot of the Bayesian Search algorithm’s IM results is presented. On 
the left, the outcomes from the experimental setup can be found, where the model executed 30 
iterations and five splits across 25 runs. The original results are displayed on the right. These original 
results can also be found in Chapter 6.3 and are obtained using 15 iterations and two splits over 25 
runs. These results are plotted side by side to facilitate a clear comparison of the outcomes of the 
experiment and the initial results. The y-axis range has again been adjusted, this time to 0 to 18000, 
due to the presence of an outlier in the original results. The total time to run this experiment was 12 
hours and 21 minutes, whereas the original setup took 2 hours and 36 minutes.  
 

 
Figure 35: Boxplot of the comparison between runs with the experimental (left) or original (right) setup for the 

inverse modelling process in Laren for the Bayesian Search algorithm 
 
When analysing the boxplots in the figure above, it can first be noticed that the original setup has two 
outliers that were not present in the experiment. The size of the boxes is relatively similar, indicating 
that the interquartile range did not change significantly in the experiment. The whiskers, on the other 
hand, are noticeably smaller for the experimental setup. All in all, this indicates that the data for the 
experimental setup is less spread out. Furthermore, one can notice how, in the experimental setup, 
the mean and median are relatively close to each other, with values of 999 and 907, respectively. For 
the original setup, these values were equal to 2136 and 1578, respectively (see Table 37). The 
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standard deviation of the experimental setup is equal to 516, which is significantly smaller than the 
standard deviation observed for the original setup, which was equal to 3359. All in all, this indicates 
that the experimental setup performs better than the original setup since it produces generally lower 
error values and a lower spread as well.  
 
When comparing the descriptive statistics of the experimental setup of the Bayesian Search algorithm 
(see Table 37) with the Random Search algorithm (see Table 35), it can be noticed how the Bayesian 
Search algorithm now performs better in every aspect than the Random Search algorithm. The mean, 
median and standard deviation are all lower in the experimental setup for the Bayesian Search 
algorithm. This is an interesting observation, especially considering the fact that for the original setup, 
the Random Search algorithm performed better than the Bayesian Search algorithm. This would 
indicate that the performance of the Bayesian Search algorithm strongly improves when the number 
of splits and iterations is increased.  
 
Table 37: Comparison of the descriptive statistics between runs with the experimental (left) or original setup (right) 

 30 iterations, five splits 15 iterations, two splits 

Mean 999 2136 

Median 907 1578 

Standard deviation 516 3359 

 
The best run for the experimental setup achieved a minimum error value of 304, while the best run 
for the original setup achieved a minimum error value of 316, again indicating superior performance 
for the experimental setup. In Figure 36, the plots of the real and predicted adoption values for Laren 
for both the experimental and the original setup for the Bayesian Search algorithm are presented. It 
should be noted, though, that the experimental setup for the Random Search algorithm resulted in a 
minimum error value of 207. This indicates that the Random Search algorithm still performs better 
than the Bayesian Search algorithm in the experiment when it comes to the best run. However, as 
presented by the boxplots and descriptive statistics, the Bayesian Search algorithm now performs 
better overall.  
  

 
Table 38 presents a summarised overview of the data analysis of the experimental setup for the 
municipality of Laren. When considering the average values of all runs, it should first be noted that 
the social weight is again very high, whereas the environmental weight is actually very low. Both 
economic and social weights score average. When considering the top 5 best runs, however, the 
weight for the environmental factor becomes even lower. This indicates that in the runs that resemble 
reality the closest, households attribute a low weight to the environmental factor. When considering 

Figure 36: Plot of the real and the predicted solar PV adoption values for Laren for the experimental (left) and the 
original (right) setup 
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the top 5 worst runs, on the other hand, the environmental weight becomes slightly higher. 
Furthermore, the economic weight strongly decreases for the top 5 worst runs, indicating that in the 
runs that resemble reality the least, households attribute a low weight to this factor. Finally, it should 
be noted that the best-performing runs have a higher sum of weights compared to the worst-
performing runs.  
 
When comparing the weights of the factors of the experimental setup with those of the original setup 
(as presented in Table 18), it can first be noted that the weighted sum of all factors is higher for the 
average values of all runs in the experimental setup. Furthermore, when considering the best-
performing runs, it can be noticed that the environmental factor has become less important in the 
experimental results. The same is true for the comfort factor, which now has a value of 0.46 compared 
to a value of 0.68 in the original setup. For the worst-performing runs, the opposite is true: the weights 
of the environmental and comfort factors have actually increased compared to the original setup.  
 
Table 38: Summarised data analysis of the experimental setup for the municipality of Laren 

 Weight_eco Weight_env Weight_cof Weight_soc Weight sum 

Top 5 best runs 

 0.50 0.16 0.46 0.70 1.82 

Top 5 worst runs 

 0.22 0.28 0.34 0.72 1.56 

Average values of all runs 

 0.46 0.22 0.40 0.73 1.80 

 

6.9 Chapter Summary 
This chapter details the results from running 12 different versions of the Python model, using both 
Random Search and Bayesian Search algorithms for each of the six municipalities. The chapter first 
provides a municipality-specific analysis, followed by a comparative inter-municipal analysis.  
 
For each municipality, the analysis begins with general demographic information, a Google Trends 
analysis, and a brief review of news articles concerning solar PVs in that municipality. This sets the 
stage for a discussion regarding the solar PV adoption curve within each municipality, addressing 
trends and adoption rates over time. Following this, the results of the inverse modelling process are 
presented, with a focus on the fitness and the scatter of the results. For the municipality of 
Bloemendaal, it was found that despite its high income levels, economic factors do not play a 
predominant role in solar PV adoption. Instead, social factors and community dynamics are more 
significant, indicating a preference for social utility over financial incentives. For Dantumadiel, the 
analysis presented a similar trend where social influences are more impactful than economic 
considerations in driving solar PV adoption. Laren and Oegstgeest also reflect the trend seen in 
Bloemendaal and Dantumadiel, with social dynamics playing a crucial role in adoption rates. For 
Vaals, however, the economic incentives are significantly more important than for the other 
municipalities. Finally, in Westerveld, a notable influence of environmental awareness on adoption 
decisions can be observed.  
 
The inter-municipal analysis compares the outcomes from each municipality to identify patterns and 
similarities. It was observed that social factors generally have the most significant impact across all 
municipalities. The patterns identified in the analysis were, however, not very strong, indicating that 
further research is needed to assess their reliability. This indicates that IM has strong potential to 
explore the dynamics of solar PV adoption and that continued research could yield more robust and 
conclusive insights.  
 
Lastly, an experiment is performed where the model for the municipality of Laren is run with five splits 
and 30 iterations instead of the two splits and 15 iterations in the original setups. The aim of this 
experiment is to determine if increasing the number of iterations and splits in the modelling process 
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leads to better results. Key findings show that extended runs yield better results with lower error 
values, more consistent results, and fewer outliers for both algorithms. Whereas the Random Search 
algorithm performed significantly better for the original setup, the Bayesian Search now performs 
often better in the experimental setup. The Random Search algorithm only performs better for the 
minimum error value of the best run.   
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7 
Research Implications 

 
This chapter discusses the research implications of the results obtained so far. Chapter 7 is an 
essential part of this research since this subchapter discusses the results, which is crucial for a topic 
as novel as inverse modelling. Various topics will be discussed, such as the performance dilemma, 
the results of both the Random Search and the Bayesian Search models, and the model's reliability. 
Finally, the potential implications of alternative approaches will be discussed. 
 

7.1 Performance Dilemma 
The inverse modelling process has provided valuable insights into the dynamics of solar PV adoption 
in the municipalities. On the other hand, it has also raised dilemmas. Firstly, the data analysis of the 
municipality of Bloemendaal revealed a discrepancy between the top-performing runs and the 
average results, posing a dilemma in data interpretation. Top-performing results, for instance, placed 
much higher weight on the economic factor compared to the average results. This dilemma questions 
whether to focus on the specific strengths of top performers or broader insights from average values. 
To solve this dilemma, the general objective of inverse modelling should be kept in mind: to uncover 
explanations for complex phenomena or residential solar PV adoption dynamics in this case. 
Considering this goal, a more nuanced approach is necessary. Therefore, the more robust results 
coming from the second approach (to focus on broader insights from average values) seem more 
appropriate for this research.  
 
However, this dilemma raises a second dilemma similar to the first, but on a different level. Whereas 
the first dilemma focuses on data interpretation, one can also pose this dilemma on a model level. 
For instance, when looking at the results of the municipality of Dantumadiel, one can notice how the 
standard deviation is lower for the Random Search model (namely, 3071 instead of 3754 for the 
Bayesian Search model). However, the minimum error value is lower for the Bayesian Search model 
(1534 instead of 1740 for the Random Search model). This would, on the one hand, indicate that the 
Random Search model performs better due to the lower standard deviation. On the other hand, it 
could indicate that the Bayesian Search model performs better since it can create predictions closer 
to reality.  
 
The decision between attaining one highly accurate prediction amidst higher scatter or achieving 
lower scatter with higher error values is highly dependent on the context of inverse modelling. On the 
one hand, having one highly accurate prediction amidst higher scatter demonstrates that the model 
can achieve highly accurate prediction under the right conditions. This can be useful for showcasing 
the potential of the model and demonstrating that the model can, in principle, capture the underlying 
dynamics very well. On top of that, the optimal run could serve as a benchmark for future 
improvements and for understanding the conditions under which the model performs best. However, 
a higher scatter indicates that the model’s performance is susceptible to parameter variation. This 
can imply that the model lacks robustness, which is problematic when trying to generalise findings or 
when the goal is to understand underlying dynamics reliably. Furthermore, suppose the model 
performs well in only one specific scenario. In that case, it may not be easy to interpret the result as 
representative of the broader phenomenon, which can limit the model's explanatory power.  
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A lower scatter with slightly higher error values, on the other hand, suggests that the model performs 
consistently across different parameter settings. This robustness is valuable for understanding the 
system's general behaviour and ensuring that the model’s insights are reliable. On top of that, a model 
with consistently good (even if not optimal) performance across various scenarios can provide more 
generalisable and actionable insights about solar PV adoption. This aligns well with the goal of inverse 
modelling to uncover underlying explanations. Disadvantages include, however, that consistently 
higher error values, even if they are only slightly higher, mean that the model is not performing at its 
best. Furthermore, by focusing on robustness, there might be a risk of not fully exploiting conditions 
under which the model can perform optimally.  
 
Considering the arguments for each side of the dilemma stated above, prioritising robustness and 
generalisability is more valuable, given the goal of inverse modelling (to understand and explain 
complex phenomena like solar PV adoption). By prioritising robustness, inverse modelling aims to 
capture the fundamental dynamics of the studied system. A model that performs consistently well 
across different scenarios indicates a deeper understanding of the underlying processes driving the 
observed phenomena, which is crucial in the inverse modelling process. Generalisability, on the other 
hand, is essential for extending the insights gained from inverse modelling to new situations or 
contexts, which is eventually the goal.  
 

7.2 Random Search vs Bayesian Search Performance 
When looking at the results of all of the municipalities (see Chapter 6.7), a general trend can be 
observed for the Random Search models to perform better in the municipalities of Bloemendaal, 
Dantumadiel, Laren and Westerveld, and Bayesian in Oegstgeest and Vaals in terms of scatter. On 
the other hand, when looking solely at the minimum error values, both algorithms seem to perform 
equally well, with Random Search performing better for Bloemendaal, Laren and Vaals, and Bayesian 
Search performing better for Dantumadiel, Oegstgeest and Westerveld.  
 
This initially seems surprising since Bayesian optimisation should logically perform better than 
Random Search algorithms because it intelligently explores the parameter space based on past 
evaluations instead of exploring randomly. This raises the question of why there is an oscillation in 
the search quality of the Bayesian Search models.   
 
The performance of the Bayesian Search algorithm can be explained by the low number of splits 
(folds) and iterations (2 and 15, respectively) due to computational limitations. Bayesian optimisation 
relies on prior knowledge or assumptions about the distribution of the objective function. However, 
with insufficient prior information, which is likely given the low number of splits and iterations, the 
effectiveness of Bayesian optimisation can be hindered. This limitation restricts the exploration of the 
parameter space, making it challenging to find the optimal parameter values. In fact, the low amount 
of splits can hinder finding the optimal parameter values.  
 
This explanation of the performance of the Bayesian Search algorithm can be supported by the results 
of Chapter 6.8, which performs an experiment where the number of splits and iterations is increased. 
From this experiment, it became clear that when the number of splits and iterations is increased, the 
performance of the Bayesian Search model does indeed significantly improve. Both the scatter and 
the minimum error values decreased significantly, and the Bayesian Search model even started to 
perform better than the Random Search model in some areas. This experiment, therefore, supports 
the hypothesis that the inferior performance of the Bayesian Search models is related to the number 
of splits and iterations.  
 
In conclusion, these findings suggest that the performance difference between the algorithms is not 
municipality-specific but rather a meta-level discussion that reflects broader methodological 
challenges. This underscores the importance of considering meta-level factors, such as the number 
of splits and iterations, when evaluating the algorithms' efficacy.   
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These results mean that for inverse modelling, Random Search would be a better algorithm for IM 
performance, considering the presented number of splits and iterations (two and 15, respectively). 
However, relying on randomly generated parameter configurations is inefficient and costly in the long 
term. Therefore, an adaptive strategy, such as a hybrid optimisation approach, could be considered. 
In such an approach, the process would start with a Random Search to explore a broad range of 
parameter space. Subsequently, leveraging the insights gained from the Random Search phase, a 
Bayesian Search process could be informed. Using this initial data, Bayesian Search can then make 
more informed decisions. Alternatively, augmenting the number of splits and iterations becomes 
viable with sufficient computational resources. This expansion would facilitate broader exploration of 
the parameter grid, enhancing the optimisation process. 
 

7.3 Conclusiveness of the Inverse Modelling Process 
This subchapter delves into the conclusiveness of the inverse modelling results and process within 
this study, a crucial aspect for accurately explaining the dynamics behind residential solar PV 
adoption. Conclusiveness in inverse modelling ensures that the findings are definitive, accurately 
reflecting the real-world phenomena they intend to model.  
 
The entire inverse modelling process begins with the model developed by Muelder & Filatova (2018). 
This agent-based model (ABM) relies heavily on survey data, which was unavailable due to privacy 
concerns. Consequently, modifications to the ABM in NetLogo were necessary. Initially, these 
adjustments pertained only to the geolocation of households, their incomes, and roof sizes. However, 
over time, additional components of the model were found to be malfunctioning. For example, the 
function describing the initial amount of solar PV systems in the municipality did not operate correctly. 
This function was critical for the research and required manual adjustments. Ultimately, numerous 
changes were necessary to ensure the ABM’s proper functionality. This necessity for modifications 
suggests potential issues with the reliability of the original ABM. It should also be noted that the 
original ABM had not been peer-reviewed, indicating that peer review could provide additional 
validation and support for its reliability. Moreover, as discussed in Chapter 2, a certain degree of 
uncertainty is inherent in ABMs. Despite this, repeated simulations can stabilise the model’s 
randomness, enhancing its conclusiveness by producing more consistent results.  
 
The next part of the inverse modelling process takes place in the Python model. By incrementally 
building up this model, validating and verifying every component, its clarity and reliability are 
improved. Although this approach may not yield a perfectly efficient model, it contributes significantly 
to the overall trustworthiness. Thus, this stage of the inverse modelling process is regarded as 
conclusive.   
 
The data analysis constitutes the final phase of the IM process. As discussed earlier in this chapter, 
comprehensive data analysis requires consideration of a wide variety of factors and dilemmas. By 
focusing on the mean, median, scatter and average values, some of the most critical aspects have 
been carefully examined, thereby enhancing the reliability of the data analysis process. However, this 
does not imply that the analysis is complete, as there is a risk that certain relations may have been 
overlooked. For instance, the patterns identified in the parameter value comparison analysis have 
been observed visually without any formal correlation analysis. Consequently, some patterns may 
have been overlooked.  
 
In summary, while the outcomes affirm the existence and viability of inverse modelling, they also 
underscore limitations within this specific study. The results from the IM process, while indicative, are 
still inconclusive with regard to the dynamics underlying solar PV adoption in these municipalities. 
This inconclusiveness can be addressed by the improvement of the original ABM or by running the 
model with more iterations. This study remains valuable as an exploratory inverse modelling 
framework for future research, suggesting areas for improvement such as refining modelling 
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techniques, enhancing data analysis methods and exploring alternative approaches as outlined in 
Chapter 7.5 and Chapter 8.  
 

7.4 Reproducibility and Replicability 
Reproducibility and replicability are cornerstone principles in scientific research, serving as the 
foundation upon which credible and reliable findings are built (National Academies of Sciences, 2019). 
Reproducibility refers to the capacity for others to duplicate the results of a study using the same 
methods and data (Boylan, 2016). It ensures that the research process is transparent and verifiable. 
Replicability, on the other hand, involves obtaining consistent results when the study is conducted 
with different datasets or slightly altered methodologies, thereby validating the robustness of the 
conclusions across varying conditions. This section delves into the reproducibility and replicability of 
this work and the specific application of the NetLogo model by Muelder and Filatova, a crucial 
component of this study.  
 
In this research, reproducibility is supported by the continuous documentation of every aspect of the 
research process. The first aspect of reproducibility relates to data availability. All of the data used in 
this research is drawn from publicly available sources. For instance, the residential solar PV adoption 
data on a municipal level in the Netherlands comes from CBS, a governmental institution that gathers 
statistical information about the Netherlands. Data on geolocations, roof sizes, electricity prices, etc., 
have all been acquired through publicly available sources. All preprocessing steps, from data cleaning 
and transformation to integration, are thoroughly documented to facilitate replication. This 
transparency extends to the methodological framework, where each phase of the IM process is 
elaborated upon, including the selection and calibration of parameters and the choice of ML 
algorithms for parameter space exploration. These detailed descriptions ensure that other 
researchers can follow the exact steps taken and achieve the same result.  
 
Software tools and computational codes are another vital aspect of reproducibility in this study. The 
agent-based model, developed by Muelder & Filatova (2018) in NetLogo, was initially not very 
reproducible due to its heavy reliance on survey data that was not publicly available. This NetLogo 
model has, however, been altered so that it now solely relies on publicly available data. To promote 
reproducibility, the altered NetLogo model, along with the steps that ought to be taken for data 
implementation, can be found on GitHub and in Appendix A and B. For conciseness reasons, only 
the code for the municipality of Laren is on GitHub. Additionally, the Python scripts used throughout 
the research process are provided, offering a clear blueprint of the computational workflow. To further 
ensure the model’s correctness and validity, extensive verification and validation techniques are 
employed. Cross-validation, sensitivity analysis, and comparisons with empirical data are conducted, 
reinforcing the credibility of the model’s outputs. These steps not only enhance the reproducibility of 
the research but also strengthen confidence in the reliability and accuracy of the results.  
 
Despite these efforts, certain challenges to reproducibility are recognised. The high computational 
resources required for running multiple simulations and parameter searches may pose a barrier to 
replication. The complexity of the modifications applied to the NetLogo model might also complicate 
replication despite extensive documentation. Furthermore, since the NetLogo model has a strong 
municipal focus, modelling every single household, it is less suitable for reproducibility on, for 
instance, a regional or national level.  
 
Replicability is equally crucial, ensuring that the findings of this study hold true for varying conditions 
and methodologies. Applying the research framework to different geographical areas or time periods 
would, for instance, test the study’s external validity. For instance, using the inverse modelling 
approach to analyse solar PV adoption in other countries or different periods can help confirm the 
robustness of the conclusions drawn in this study. The sensitivity of the NetLogo model, especially to 
different parameter settings, is, however, a crucial aspect of its replicability. The NetLogo model has 
specific random inputs (e.g. the exact income of a household), which means that no run is precisely 

https://github.com/nommering/Master-Thesis/tree/Vaals-Random-Search
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the same as the next. This problem of stochasticity is, however, inherent to ABMs, as elaborated in 
Chapter 2.3. This study attempts to address this issue by doing an as large number of runs of the 
model as possible and by experimenting with different model configurations. 
 

7.5 Alternative Approaches 
As this study aims to establish an exploratory inverse modelling framework, it is important to consider 
alternative approaches. Given the novelty of the topic of inverse modelling, the methodology outlined 
in this research is inherently innovative. However, this novelty also implies that the IM process 
delineated in this study may not represent the optimal approach. Therefore, this section also 
addresses alternative approaches. Exploring alternative approaches is essential for the question of 
how inverse modelling can contribute to uncovering plausible explanations for residential solar PV 
adoption dynamics in Dutch municipalities because it allows for refining and improving the IM process. 
These alternative approaches do not only serve as suggestions for future research but also as 
valuable suggestions for refining and enhancing the inverse modelling process.  
 
The first alternative approach originates in the dilemma presented in the previous subchapter 
regarding the reliability of the original ABM. Of course, initially, picking an ABM that is peer-reviewed 
and has a better setup will improve the trustworthiness of the IM process. However, the possibility still 
exists that this ABM does not contain the parameters that are actually relevant for the dynamics 
underlying solar PV adoption in the Netherlands. This presents a strong limitation for inverse 
modelling. One could consider the alternative approach of including multiple ABMs in the IM process 
to address this limitation. Including multiple ABMs in the inverse modelling process can offer several 
advantages. For instance, it could enhance the robustness of the analysis. Comparing the results 
across different models allows for the identification of more consistent patterns. Compared to using 
one ABM, the advantage is that it reduces reliance on the assumptions of a single model, which 
increases the credibility of the findings. On top of that, including multiple ABMs in the IM process 
allows for cross-validation, where one model can be used to validate the results obtained from 
another. This also enhances the trustworthiness of the results. Finally, different ABMs might capture 
different aspects of the system, leading to a more comprehensive understanding of the underlying 
dynamics, which is essential when considering the goal of inverse modelling. This diversity in 
modelling could reveal new insights and patterns that a single model might overlook. 
Incorporating multiple ABMs might seem like an appealing solution to enhance robustness and cross-
validate results. However, in reality it is more of an “easy fix”: while suggesting this approach may 
appear straightforward, its actual implementation is highly complex. Aligning various models involves 
significant challenges, such as ensuring that they share consistent assumptions, scales and inputs. 
Inconsistencies between the ABMs in terms of assumptions, structures and setups can complicate 
the interpretation of results. Furthermore, models might interpret data differently, leading to 
inconsistencies in results and increased computational demands. This means that including multiple 
ABMs comes with significantly increased complexity, which demands more sophisticated expertise 
and substantial computational resources. If one were to try this alternative approach, a systematic 
approach for comparing (and contrasting) the different ABMs is essential. However, by carefully 
managing these disadvantages, incorporating multiple ABMs can significantly enrich the inverse 
modelling process.  
 
A hybrid step between using a single model and deploying multiple ABMs could be gradually adding 
complexity. One could start with a simpler base model and progressively add complexity by 
introducing new modules. This method helps understand the incremental impact of each additional 
component and ensures manageability. Furthermore, one could think of implementing a modular 
design, whereby a single ABM is built with a flexible architecture where different modules or 
components can be swapped in and out. One could, for instance, have separate modules for different 
adoption behaviours, policy interventions, or market conditions.  
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The second alternative approach originates from the dilemma presented earlier regarding the 
performance of the Random Search versus the Bayesian Search model. This dilemma raises the 
question of what would happen if the focus in the IM process were either more or actually less on 
machine learning algorithms. Increasing the focus on machine learning (ML) could, on the one hand, 
increase the accuracy of the models, especially if better ML techniques, such as neural networks, are 
used. It could lead to more efficiently optimised model parameters and could uncover additional 
relationships between various factors that influence adoption rates that were previously overlooked. 
These factors could enrich the overall understanding of solar PV adoption dynamics. Focussing more 
strongly on ML can, on the other hand, also limit the exploration of other tools that could be used for 
the IM process. The potential benefits of other approaches (e.g., qualitative research and statistical 
modelling) may be overlooked by prioritising ML techniques. Therefore, this narrow focus on ML might 
result in a less comprehensive understanding of solar PV adoption dynamics. This means that less 
focus on ML techniques could be beneficial as well. Additionally, an overreliance on ML may lead to 
challenges with model interpretability and transparency. 
 
When looking at the different strengths and weaknesses of both the Random Search and the 
Bayesian Search models, one could also apply a hybrid form whereby the strengths of both algorithms 
are combined. Random Search, on the one hand, is more focused on exploration. It samples 
parameters randomly across the entire search space, which allows it to explore a wide range of 
possibilities. Bayesian Search, on the other hand, has a stronger emphasis on exploitation. It uses a 
probabilistic model to predict the performance of different parameter sets. It prioritises sampling in 
areas where it expects to find optimal solutions, thus focusing more on promising regions of the search 
space. Combining Random Search and Bayesian Search can efficiently optimise parameters by 
balancing exploration and exploitation. Initially, Random Search could be applied to explore the 
parameter space broadly. This phase samples a wide range of parameter combinations, providing 
diverse insights without bias. After a predefined number of iterations, one could transition to Bayesian 
Search. Using the data from the Random Search, Bayesian Search focuses on exploiting the 
promising regions identified earlier while occasionally exploring uncertain areas to avoid local optima. 
This hybrid approach leverages the wide-ranging exploration of Random Search and the focused 
sampling of Bayesian Search, leading to more efficient and reliable parameter optimisation.  
 

7.6 Chapter Summary 
This chapter explores the research implications that can be derived from the results of the IM process. 
This chapter is crucial as it discusses the noel aspects and potential of IM in understanding the 
dynamics of solar PV adoption while also addressing limitations and dilemmas encountered during 
the process.  
 
The first dilemma presented is the “performance dilemma”, highlighting the discrepancies between 
top-performing runs and the average results. These discrepancies raise a dilemma on whether to 
prioritise the specific strengths of top-performing runs or broader insights from average values. The 
goal of IM is to uncover explanations for complex phenomena, which suggests that a focus on broader 
insights is more appropriate.  
 
Another dilemma discusses the comparison of results between the Random Search and Bayesian 
Search models. The Random Search models showed lower standard deviations, while the Bayesian 
Search sometimes achieved lower minimum error values, suggesting it can produce highly accurate 
predictions under the right conditions. This trade-off between consistency and potential accuracy 
needs careful consideration. However, given the goal of IM of reliably understanding system 
dynamics, lower standard deviations (and therefore the Random Search model) appear more 
appropriate. It is also noted that the seemingly poorer results of the Bayesian Search models are 
likely the result of the low number of splits and iterations used.  
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The chapter also addresses the conclusiveness of the results. It concludes that while IM shows 
potential, the current findings remain inconclusive regarding the dynamics of solar PV adoption in 
these municipalities. To address this inconclusiveness, improvements to the original ABM or 
additional model iterations are necessary. The results do indicate that social factors significantly 
influence solar PV adoption, a valuable insight from the inverse modelling process.  
 
Lastly, alternative approaches to improve the inverse modelling framework are proposed. 
Incorporating multiple ABMs can enhance the robustness and cross-validate results, though it also 
introduces complexity and demands more (computational) resources. Furthermore, future IM 
research could either focus more or less on machine learning, each with its advantages and 
disadvantages. A hybrid approach could be conducted, using Random Search’s broad exploration of 
the parameter space and Bayesian Search’s focused exploitation of promising regions to efficiently 
optimise model parameters. All in all, these suggestions aim to refine and enhance the IM process 
for future studies, leading to more reliable and comprehensive insights. 
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8 
Conclusion 

 
This final chapter delves into the practical applications of the research findings, focusing on how 
inverse modelling can provide deeper insights into residential solar PV adoption dynamics in Dutch 
municipalities. Chapter 8.1 focuses on answering the main research question, as presented in 
Chapter 1. After that, the study's scientific and societal relevance is discussed. Finally, the limitations 
and recommendations for future research are considered. 
 

8.1 Answering the Research Question 
The research question guiding this study is:  
 

How can inverse modelling contribute to uncovering plausible explanations for residential 
solar PV adoption dynamics in Dutch municipalities? 

 
To address this question, the contributions of inverse modelling have been researched through the 
lens of agent-based modelling. Inverse modelling has shown considerable potential in exploring the 
complex dynamics of solar PV adoption. The methodology allows for estimating model input 
parameters based on observed outcomes, revealing new dynamics that may have been previously 
overlooked. The methodology is particularly valuable in the context of solar PV adoption, where many 
factors influence individual and collective decisions. In this thesis, inverse modelling was applied to 
six Dutch municipalities, revealing significant, though preliminary, patterns in the adoption dynamics.  
 
The key finding from the inverse modelling application is the substantial influence of social factors on 
solar PV adoption. Across all studied municipalities, social dynamics often outweighed economic 
incentives. For instance, in Bloemendaal, where economic factors were expected to be more 
dominant due to high-income levels, social influences proved to be more critical. This indicates that, 
based on the ABM used by Muelder & Filatova (2018), familiarity and shared experience with PV 
systems within social circles play a crucial role in the decision to adopt solar PV systems. The 
consistently high values of the social parameter also indicate that this parameter value significantly 
impacts the model's performance. Furthermore, the inverse modelling process has shown that a 
higher sum of weighted values consistently leads to better fits with the observed data and that the 
role of economic incentives, while significant, varies strongly in importance.  
 
The comparison of Random Search and Bayesian Search algorithms highlighted a trade-off between 
consistency and potential accuracy. While the Random Search algorithm showed lower standard 
deviations, indicating more consistent results, the Bayesian Search sometimes achieved lower 
minimum error values, suggesting it could produce highly accurate predictions under the right 
conditions. The discrepancy presents the need for careful consideration in future studies to balance 
these aspects. Furthermore, it can be concluded that the reliability of the findings can be improved by 
addressing data constraints and reducing the reliance on a single ABM that requires extensive 
modifications in future research. Despite these challenges, this thesis demonstrates that inverse 
modelling is a viable approach with significant potential for understanding solar PV adoption.  
 



       

86 
 

So, to answer the research question, inverse modelling can contribute to uncovering plausible 
explanations for residential solar PV adoption dynamics in Dutch municipalities by providing a 
systematic approach to understanding the underlying factors of the system and their intentions. 
Through IM, the key determinants that drive solar PV adoption can be inferred by analysing observed 
patterns and behaviours within the municipalities. This approach is additionally powerful because it 
does not rely solely on pre-existing theories or assumptions, as with forward modelling. Instead, it 
derives insights directly from the data.  
 
Through IM, the influence of model parameters could be revealed (in this case, mainly the influence 
of social factors over economic incentives, highlighting the importance of community engagement 
and peer effects). It allows for adjusting model parameters to match observed outcomes, thereby 
identifying the interplay between various factors (economic, social, environmental and comfort 
factors). Patterns between demographic data and these factors can be identified as well, though the 
patterns found in this research are not conclusive as a result of some challenges in the initial ABM. 
This indicates that inverse modelling has a strong potential to uncover plausible explanations for solar 
PV adoption, especially when the challenges mentioned in this work are addressed in future research.  
 

8.2 Scientific Relevance 
Though this thesis's scientific relevance is mostly methodological, it is pivotal in demonstrating the 
potential of inverse modelling for understanding residential solar PV adoption dynamics in Dutch 
municipalities. The relevance revolves around the application of IM, the comparison of search 
algorithms, and the critical assessment of model reliability.  
 
Firstly, inverse modelling has been innovatively applied to the socio-economic context of solar PV 
adoption. This methodology has so far not yet been applied. This thesis advances scientific methods 
within the social sciences domain by applying inverse modelling. By exploring a methodology that has 
not yet been employed, the gap identified in the literature review is (partially) filled, and the 
groundwork for future research on this topic has been laid.   
 
This thesis also contributes methodologically by comparing the effectiveness of Random Search and 
Bayesian Search algorithms in inverse modelling. The findings suggest that while Bayesian Search 
can achieve higher accuracy under optimal conditions, Random Search provides more consistent 
results, which is of higher importance considering the purpose of IM. The comparison of the algorithms 
demonstrates their potential in refining models to reflect real-world data better and provides a 
methodological basis for future research. This groundwork allows for further refinement and 
improvement of the application of these algorithms. In an initial experiment for the municipality of 
Laren, it was already shown that increasing the number of splits for the Bayesian Search algorithm 
significantly improves its results. Therefore, refinement and improvement of the application of these 
algorithms could focus on further exploration of increasing the number of splits and iterations. The 
insights gained from this comparison can guide future research on the topic in selecting and applying 
appropriate algorithms.  
 
Finally, this work critically addresses the limitations associated with data availability and model 
reliability. By acknowledging the constraints due to limited data points and the original ABM's lack of 
reliability, this thesis underscores the necessity for more high-quality data and robust models for future 
research. This transparency in the limitations is scientifically very relevant as it highlights areas for 
improvement and guides future research efforts towards IM.  
 
Importantly, the reproducibility and replicability of this study are addressed as well. Reproducibility in 
this work is ensured through comprehensive documentation of the research process, data availability 
from publicly accessible sources, and sharing of computational codes and model adjustments on 
GitHub. This transparency supports the reliability of findings and facilitates future replication in 
scientific work. 



       

87 
 

 
In conclusion, this study's methodological contributions are substantial. This study can serve as an 
initial exploratory framework for future inverse modelling research, improving the substantive 
contributions of future IM research.  
 

8.3 Societal Relevance 
For the assessment of the societal relevance of this work, the assessment criteria presented by 
Bornmann (2013) are used. These criteria are: social impact, cultural impact, environmental impact 
and economic impact.  
 
The first criterion refers to the social impacts of the work by contributing to challenges that address 
social issues that influence policymaking or enhance public debates. The social impact of this thesis 
can be found in its ability to address social issues, influence policymaking and enhance public debates 
regarding residential solar PV adoption. By employing inverse modelling, this thesis sheds light on 
the underlying social dynamics that drive solar PV adoption, such as the influence of community 
engagement and peer effects (the social parameter) or the influence of financial considerations (the 
economic parameter). These insights can inform policymakers about the importance of each of these 
factors in promoting solar PV adoption, potentially leading to more effective and socially inclusive 
energy policies. Moreover, this thesis’ findings on the importance of social dynamics in the decision-
making process can inspire a more community-driven approach towards solar PV adoption, 
contributing to the social impact.  
 
The second criterion refers to how the research enhances cultural capital. The cultural impact of this 
research lies in its potential to improve cultural capital by creating a greater understanding of the 
social and cultural dynamics related to solar PV adoption. By revealing how different factors play a 
role in the decision-making process of solar panels on a residential level, inverse modelling can 
contribute to broader cultural awareness of solar PV adoption. By highlighting the significance of 
municipal contexts, this research also promotes cultural preservation by valuing differences in the 
energy transition. Furthermore, this research relates to households in the Netherlands, which is quite 
advanced in residential solar PV adoption. Insights into the dynamics underlying this system in the 
Netherlands can contribute to the transition in countries with less advanced solar PV adoption 
dynamics.  
 
The environmental impact of this thesis lies in its aim to provide insights that can drive increased 
adoption of residential solar PV systems, thereby contributing to the energy transition. Of course, the 
research results alone are not reliable enough to make this contribution. However, this research lays 
the foundation for future IM research to create more robust insights. By understanding the factors 
influencing solar PV adoption, policymakers and stakeholders can develop more targeted strategies 
to promote solar PV adoption.  
 
Finally, the economic impact criterium refers to how the work contributes to a country's economic 
capital, encompassing cost-related and value-creating aspects. This impact is multifaceted for this 
thesis. By further uncovering the dynamics behind residential solar PV adoption, IM can provide 
valuable information to help optimise incentive programs and financial support mechanisms for solar 
PV, making the transition more cost-effective.   
 

8.4 Limitations of the Study 
The results of this research are subject to limitations. The first limitation is model dependence. This 
research relies heavily on one agent-based model, namely the ABM by Muelder & Filatova (2018). 
The need for extensive modifications to this ABM due to unavailable survey data and some 
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malfunctioning components raises concerns about the reliability of the original ABM. Additionally, this 
original ABM was not peer-reviewed, diminishing its trustworthiness.  
This first limitation also relates to a second limitation concerning the modelling approach applied in 
this research. While the modelling approach provides many advantages, it also inherently contains 
certain imperfections due to their inherent imperfection. This fundamental limitation means that the 
results will always be approximate and may not accurately reflect real-world dynamics.  
Another limitation is related to computational constraints. A balance had to be made between 
computational ability and the feasibility of the model results for the number of splits, iterations, and 
runs. In the end, it was decided to do two splits, 15 iterations, and 25 runs. However, these constraints 
limit the Bayesian Search models significantly. This restriction affects the exploration of the parameter 
space and, therefore, the effectiveness of the optimisation process. Chapter 6.8’s experiment, which 
focused on increasing splits and iterations for a single municipality, proves this effectiveness and 
underscores the significance of this limitation. On top of that, a limitation of this study lies in the data. 
The study faced significant data constraints, particularly the availability of training data. The limited 
number of data points (11 points) reduces the statistical power of the findings since IM relies heavily 
on high-quality and sufficient data. Insufficient data can lead to overfitting and unreliable parameter 
estimates, which impact the ability of the model to accurately represent the underlying system.  
 
Moreover, model incompleteness presents another challenge. Despite careful analysis, there is a risk 
that some relations were overlooked due to the lack of a formal correlation analysis. This could mean 
that certain dynamics underlying solar PV adoption remain unexplored.  
Furthermore, a limitation arises from the integration of machine learning. As mentioned in Chapter 7, 
ML can enhance model accuracy, but it may also complicate model interpretability and transparency. 
A seventh limitation can be found in the exclusion of parameters for simplicity. In the final IM process, 
only four different parameters were explored, even though more parameters were present in the ABM. 
The advantage of doing so is that it simplifies the optimisation process, reduces computational 
complexity and enhances interpretability since the focus is only on key parameters. However, it also 
risks oversimplification and overlooking interactions among fixed parameters that could influence 
model behaviour. This constraint leads to the final limitation of the study, namely the assumptions in 
the ABM concerning parameter values. The parameters not included in the IM process have been 
given a standard value. This also risks oversimplification and can make results less reliable.  
 

8.5 Future Directions and Applications of Inverse Modelling Research 
As inverse modelling emerges as a novel approach to understanding and predicting solar PV 
adoption, identifying the right next steps is crucial for advancing its methodological robustness and 
expanding its practical applications. This section aims to outline the future directions and practical 
uses of inverse modelling using the experience obtained during this work, alongside some final 
remarks about using inverse modelling as a toolkit. 

8.5.1. Methodological Advancements 
In order to draw strong implications, some methodological advancements can be made, as emerged 
from this research, to optimise the inverse modelling framework. As mentioned in Chapter 7.4, the 
methodology applied in this research is novel and experimental, indicating that improvements can be 
made. Chapter 7.4 presented some alternative approaches. These approaches can also be seen as 
recommendations for future research or potential methodological advancements for the inverse 
modelling framework. This section briefly presents different areas with potential for these 
methodological advancements. 
 
Hyperparameters 
Exploring the inverse modelling framework could, for instance, include experimentation with 
hyperparameters, such as the learning rate or the world size. The alternative approach from Chapter 
7.5, relating to the degree of focus on ML, is an example of this. Placing either a larger or a smaller 
emphasis on machine learning impacts model accuracy and understanding, highlighting the trade-
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offs between enhanced optimisation and potential limitations in comprehensiveness and 
interpretability.  
 
Furthermore, combining Random Search and Bayesian Search offers a hybrid approach that 
optimises parameters by balancing broad exploration with focused exploitation. This method would 
begin with a Random Search to explore the parameter space widely and then transition to a Bayesian 
Search, leveraging data to exploit promising regions, thereby enhancing efficiency and reliability in 
parameter optimisation.  
 
Structural Optimisation:  
Moreover, exploring the inverse modelling framework could also include structural optimisation, which 
focuses on refining the model's architecture or structure to improve its performance. Structural 
optimisation can be applied to both the original ABM and the Python model. One could, for instance, 
consider another type of implementation of the Theory of Planned Behaviour in the original ABM (e.g. 
MF or SE, as elaborated by Muelder & Filatova (2018)), consider different sequences of factors, or 
try different model architectures.  
 
Furthermore, integrating multiple agent-based models could significantly improve the robustness and 
generalisability of IM results. However, as described in Chapter 7.5, it also introduces significant 
complexities, such as aligning consistent assumptions, scales and inputs, which require expertise 
and substantial computational resources. Therefore, exploring hybrid approaches that combine 
different modelling techniques may also yield valuable insights.  
 
Computational Resources 
Another opportunity for future research is to optimise computational resources. Augmenting the 
number of splits and iterations, especially for the Bayesian Search models, would facilitate a broader 
exploration of the parameter grid, enhancing optimisation and accuracy. Essentially, this is part of 
exploring the hyperparameters. However, since it appeared to have such an impactful implication in 
this study, it is discussed in this separate section.  
 
The effectiveness of this opportunity is shown in Chapter 6.8, where the number of splits and iterations 
is increased for the municipality of Laren. This experiment presented significant improvement in the 
performance of both algorithms. Another recommendation lies in the expansion of training data. 
Increasing the training data is crucial for strengthening the robustness of the findings. More data 
would lead to better validation and more reliable conclusions. For this research, limited training data 
was available due to the scope (municipal) of the study and the fact that residential solar PV adoption 
only started mainly happening in the last 12 years.  
 
Parameters:  
Increasing the number of parameters in the inverse modelling process (currently four) can significantly 
enhance the model’s ability to capture complex dynamics and provide more nuanced insights into 
solar PV adoption patterns. This expansion allows for a more detailed representation of influencing 
factors. However, it also introduces pitfalls, such as increased computational demand, the potential 
for parameter redundancy and multicollinearity. Balancing parameter complexity and model 
performance is, therefore, crucial.   
 
In the image below, the graph (Figure 5, see Chapter 2.4) of the relationships between the different 
concepts is revisited. This time, areas for potential methodological advancements, as outlined in this 
section, are highlighted in red. These highlights indicate where these improvements can be 
implemented in the inverse modelling process.  
 
Structural optimisation is applicable to both the Agent-Based Model and the Python model. For the 
Python model, adjustments to the structural architecture can directly impact the hyperparameters, 
which in turn affect the model’s performance. Exploring these hyperparameters is crucial, as it allows 
for further methodological advancements that can refine the model’s accuracy and efficiency. 
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Additionally, enhancements in computational resources can significantly influence the machine 
learning components, facilitating more robust and comprehensive model optimisation.  
 
It is important to note that the red-highlighted areas in this figure represent only the specific areas 
discussed in this chapter. Methodological advancements, however, are not limited to these regions 
alone; they can arguably be applied to every step in the IM process. For instance, one might opt to 
change the machine learning algorithm used in the IM framework or substantially increase the number 
of data points for model validation. Such modifications can profoundly enhance the model's 
robustness and predictive capability. 
 

8.5.2. Inverse Modelling as a Toolkit 
When inverse modelling, it is crucial to maintain perspective and avoid getting lost in the process  
itself. Therefore, this section briefly outlines key considerations. 
 
Inverse modelling is a powerful methodology designed to delve deeply into the underlying 
mechanisms driving observed phenomena, such as the adoption of solar PV systems in this research. 
It seeks to understand the driving forces and dynamics shaping solar PV adoption. This means that 
solely optimising model parameters for prediction accuracy is not the end goal of the inverse modelling 
process; understanding is. Inverse modelling is, therefore, a tool that can help social scientists explain 
social phenomena. It provides a structured approach to understanding complexities and going beyond 
prediction. Most existing ABMs do forward modelling to produce explanations for certain phenomena 
involving the prediction of the outcome of a system based on known inputs or parameters. This 
process does, however, not explain the system or phenomenon. IM tries to address this challenge. It 
is important to note, though, that inverse modelling does not try to replace forward modelling. They 
can simply be seen as different methodologies.   
Several requirements must be met to effectively use inverse modelling. The model needs to replicate 
a well-defined outcome, a preliminary model structure representing the system being studied, and 
sufficient computational resources to handle the numerous simulations and adjustments required. 
Effective optimisation algorithms are also essential for exploring the parameter space. 
 
While social scientists are the primary audience of inverse modelling, this approach also appeals to 
other disciplines. Environmental scientists, for instance, could benefit from IM as it enables the 
exploration of complex interactions between human activities and environmental outcomes, such as 
carbon emissions. Interdisciplinary collaboration could, therefore, also be an interesting 
recommendation for future IM research. It could bring more diverse perspectives, enriching the 
research findings and creating a more profound understanding of, in this case, solar PV adoption 
dynamics.  
 
 

Figure 37: Overview of the relations between concepts in the inverse modelling process. Areas with potential for 
methodological advancements, as outlined in this chapter, are highlighted in red. 
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A             
1st Python Script for NetLogo 
Model 
 

A.1. Script for extraction of the geolocations 
import json 

import csv 

import geopandas as gpd 

from pyproj import Transformer 

from shapely.geometry import Point 

 

# Specify the path to your JSON file 

json_file_path = r'C:\Filepath\Patch 1.json' 

 

# Load JSON data from the file into a Python dictionary 

with open(json_file_path, 'r') as file: 

    data = json.load(file) 

 

# Extract x_max and y_max coordinates from "geographicalExtent" data for each city 

object 

geographical_extent_data_2d = [] 

 

for key, value in data['CityObjects'].items(): 

    # Access the 'geographicalExtent' field within each object 

    geographical_extent = value.get('geographicalExtent') 

    if geographical_extent is not None and len(geographical_extent) == 6: 

        # Extract x_max and y_max coordinates (ignoring z) 

        _, _, _, x_max, y_max, _ = geographical_extent 

        # Append the 2D geographical extent data to the list 

        geographical_extent_data_2d.append([x_max, y_max]) 

 

# Define the original CRS (RD New) and the target CRS (WGS84) 

original_crs = 'EPSG:28992' 

target_crs = 'EPSG:4326'  # WGS84 

 

# Initialise the transformer 

transformer = Transformer.from_crs(original_crs, target_crs) 
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# Transform the coordinates to WGS84 

household_coordinates_Patch1 = [transformer.transform(x, y) for x, y in 

geographical_extent_data_2d] 

 

# Define the CSV file path to save the transformed data 

csv_file_path_wgs84 = r'C:\Filepath\Patch 1. csv' 

 

# Write the WGS84 geographical extent data to a CSV file 

with open(csv_file_path_wgs84, 'w', newline='') as csvfile: 

    writer = csv.writer(csvfile) 

    # Write the header row 

    writer.writerow(['longitude', 'latitude']) 

    # Write the WGS84 geographical extent data 

    writer.writerows(household_coordinates_Patch1) 

 

print("Geographical extent data has been transformed to WGS84 and saved to CSV:", 

csv_file_path_wgs84) 

 

# Create a GeoDataFrame from the transformed coordinates 

geometry = [Point(lon, lat) for lon, lat in household_coordinates_Patch1] 

gdf = gpd.GeoDataFrame(geometry=geometry, columns=['geometry'], crs=target_crs) 

 

# Define the shapefile path to save the transformed data 

household_coordinates_Patch1 = r'C:\Filepath\Patch 1.shp’ 

 

# Save the GeoDataFrame as a shapefile 

gdf.to_file(household_coordinates_Patch1) 

 

print("Geographical extent data has been transformed to WGS84 and saved to 

Shapefile:", household_coordinates_Patch1) 

 
 

A.2. Script for extraction of roof sizes 
import json 

import csv 

import os 

 

# Specify the path to your JSON file 

json_file_path = r'C:\Filepath\Patch 1.json' 

 

# Load JSON data from the file into a Python dictionary 

with open(json_file_path, 'r') as file: 

    data = json.load(file) 

 

# Extract "b3_opp_dak_schuin" values as an array 

b3_opp_dak_schuin_values = [] 
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for key, value in data['CityObjects'].items(): 

    # Access the 'attributes' dictionary within each object 

    attributes = value.get('attributes', {}) 

     

    # Extract the value of 'b3_opp_dak_schuin' and append it to the list 

    b3_opp_dak_schuin = attributes.get('b3_opp_dak_schuin') 

    if b3_opp_dak_schuin is not None: 

        b3_opp_dak_schuin_values.append(b3_opp_dak_schuin) 

 

# Define the path for the CSV file 

csv_file_path = os.path.join(os.path.dirname(json_file_path), 

'b3_opp_dak_schuin_values.csv') 

 

# Write the b3_opp_dak_schuin_values array to a CSV file 

with open(csv_file_path, 'w', newline='') as csv_file: 

    writer = csv.writer(csv_file) 

    writer.writerow(['b3_opp_dak_schuin_values'])  # Write header 

    writer.writerows(map(lambda x: [x], b3_opp_dak_schuin_values)) 

 

print(f"CSV file saved at: {csv_file_path}") 
 
 
*Note that these Python scripts are for 1 of the total number of used patches. For conciseness 
purposes, the scripts of the other patches have not been included.  
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B            
2nd Python Script for NetLogo 
Model 

 

B.1. Script for patch combination for the geolocations 
import json 

import csv 

import geopandas as gpd 

from pyproj import Transformer 

from shapely.geometry import Point 

import random 

 

# List of paths to your JSON files 

json_file_paths = [ 

    r'C:\filepath\Patch 1.json', 

    r'C:\filepath\Patch 2.json', 

    r'C:\filepath\Patch 3.json', 

    r'C:\filepath\Patch 4.json' 

] 

 

# Initialise empty lists to store transformed data 

all_geographical_extent_data_2d = [] 

 

# Load and process each JSON file 

for json_file_path in json_file_paths: 

    with open(json_file_path, 'r') as file: 

        data = json.load(file) 

 

    # Extract x_max and y_max coordinates from "geographicalExtent" data for each 

city object 

    for key, value in data['CityObjects'].items(): 

        geographical_extent = value.get('geographicalExtent') 

        if geographical_extent is not None and len(geographical_extent) == 6: 

            _, _, _, x_max, y_max, _ = geographical_extent 

            all_geographical_extent_data_2d.append([x_max, y_max]) 

 

# Shuffle the list of geographical extent data 
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random.shuffle(all_geographical_extent_data_2d) 

 

# Select the first 9445 items from the shuffled list 

selected_coordinates = all_geographical_extent_data_2d[:9445] 

 

# Define the original CRS (RD New) and the target CRS (WGS84) 

original_crs = 'EPSG:28992' 

target_crs = 'EPSG:4326'  # WGS84 

 

# Initialise the transformer 

transformer = Transformer.from_crs(original_crs, target_crs) 

 

# Transform the coordinates to WGS84 

all_coordinates_wgs84 = [transformer.transform(x, y) for x, y in 

selected_coordinates] 

 

# Define the CSV file path to save the transformed data 

csv_file_path = r'C:\filepath\combined_household_coordinates.csv' 

 

# Write the WGS84 geographical extent data to a CSV file 

with open(csv_file_path, 'w', newline='') as csvfile: 

    writer = csv.writer(csvfile) 

    # Write the header row 

    writer.writerow(['longitude', 'latitude']) 

    # Write the WGS84 geographical extent data 

    writer.writerows(all_coordinates_wgs84) 

 

print("Geographical extent data has been transformed to WGS84 and saved to CSV:", 

csv_file_path) 

 

# Create a GeoDataFrame from the transformed coordinates 

geometry = [Point(lon, lat) for lon, lat in all_coordinates_wgs84] 

gdf = gpd.GeoDataFrame(geometry=geometry, columns=['geometry'], crs=target_crs) 

 

# Define the shapefile path to save the transformed data 

shapefile_path = r'C:\filepath\combined_household_coordinates.shp' 

 

# Save the GeoDataFrame as a shapefile 

gdf.to_file(shapefile_path) 

 

print("Geographical extent data has been transformed to WGS84 and saved to 

Shapefile:", shapefile_path) 

 

B.2. Script for patch combination for the roofsizes 
import json 

import csv 

import os 



       

104 
 

import random 

 

# List of paths to your JSON files 

json_file_paths = [ 

    r'C:\filepath\Patch 1.json', 

    r'C:\filepath\Patch 2.json', 

    r'C:\filepath\Patch 3.json', 

    r'C:\filepath\Patch 4.json' 

] 

 

# Initialise empty list to store all b3_opp_dak_schuin values 

all_b3_opp_dak_schuin_values = [] 

 

# Load and process each JSON file 

for json_file_path in json_file_paths: 

    with open(json_file_path, 'r') as file: 

        data = json.load(file) 

 

    # Extract "b3_opp_dak_schuin" values as an array 

    b3_opp_dak_schuin_values = [] 

    for key, value in data['CityObjects'].items(): 

        attributes = value.get('attributes', {}) 

        b3_opp_dak_schuin = attributes.get('b3_opp_dak_schuin') 

        if b3_opp_dak_schuin is not None: 

            b3_opp_dak_schuin_values.append(b3_opp_dak_schuin) 

 

    all_b3_opp_dak_schuin_values.extend(b3_opp_dak_schuin_values) 

 

# Shuffle the list of b3_opp_dak_schuin values 

random.shuffle(all_b3_opp_dak_schuin_values) 

 

# Select the first 9445 values from the shuffled list 

selected_values = all_b3_opp_dak_schuin_values[:9445] 

 

# Define the path for the CSV file 

csv_file_path = os.path.join(os.path.dirname(json_file_paths[0]), 

'combined_b3_opp_dak_schuin_values.csv') 

 

# Write the combined b3_opp_dak_schuin_values to a CSV file 

with open(csv_file_path, 'w', newline='') as csv_file: 

    writer = csv.writer(csv_file) 

    writer.writerow(['b3_opp_dak_schuin_values'])  # Write header 

    writer.writerows(map(lambda x: [x], selected_values)) 

 

print(f"CSV file saved at: {csv_file_path}") 

 
*Note that only the first 9445 items are selected. This is based on the municipality of Bloemendaal 
and its number of households. For each of the municipalities, this number will therefore be different.  
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C          
Income Distributions 
NetLogo  
C.1. Income Distribution Municipality 1 (Bloemendaal) 
 
Table 39: Income distribution for Bloemendaal (CBS, 2023a) 

Income range Percentage of households 

€0 - €10.000 5% 

€10.001 - €20.000 6% 

€20.001 - €30.000 6% 

€30.001 - €40.000 6% 

€40.001 - €50.000 6% 

€50.001 - €60.000 7% 

€60.001 - €70.000 8% 

€70.001 - €80.000 9% 

€80.001 - €90.000 13% 

€90.001 - €100.000 34% 

 

C.2. Income Distribution Municipality 2 (Dantumadiel) 
 
Table 40: Income distribution for Dantumadiel (CBS, 2023a) 

Income range Percentage of households 

€0 - €10.000 7% 

€10.001 - €20.000 13% 

€20.001 - €30.000 13% 

€30.001 - €40.000 13% 

€40.001 - €50.000 12% 

€50.001 - €60.000 11% 

€60.001 - €70.000 10% 

€70.001 - €80.000 8% 

€80.001 - €90.000 7% 

€90.001 - €100.000 5% 
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C.3. Income Distribution Municipality 3 (Laren) 
 
Table 41: Income distribution for  Laren (CBS, 2023a) 

Income range Percentage of households 

€0 - €10.000 7% 

€10.001 - €20.000 7% 

€20.001 - €30.000 6% 

€30.001 - €40.000 6% 

€40.001 - €50.000 7% 

€50.001 - €60.000 7% 

€60.001 - €70.000 7% 

€70.001 - €80.000 9% 

€80.001 - €90.000 12% 

€90.001 - €100.000 32% 

 

C.4. Income Distribution Municipality 4 (Oegstgeest) 
 
Table 42: Income distribution for Oegstgeest (CBS, 2023a) 

Income range Percentage of households 

€0 - €10.000 6% 

€10.001 - €20.000 5% 

€20.001 - €30.000 6% 

€30.001 - €40.000 6% 

€40.001 - €50.000 7% 

€50.001 - €60.000 8% 

€60.001 - €70.000 10% 

€70.001 - €80.000 11% 

€80.001 - €90.000 15% 

€90.001 - €100.000 25% 

 

C.5. Income Distribution Municipality 5 (Vaals) 
 
Table 43: Income distribution for  Vaals (CBS, 2023a) 

Income range Percentage of households 

€0 - €10.000 14% 

€10.001 - €20.000 15% 

€20.001 - €30.000 14% 

€30.001 - €40.000 12% 

€40.001 - €50.000 10% 

€50.001 - €60.000 8% 

€60.001 - €70.000 8% 

€70.001 - €80.000 7% 

€80.001 - €90.000 6% 

€90.001 - €100.000 6% 

 

  



       

107 
 

C.6. Income Distribution Municipality 6 (Westerveld) 
 
Table 44: Income distribution for Westerveld (CBS, 2023a) 

Income range Percentage of households 

€0 - €10.000 6% 

€10.001 - €20.000 9% 

€20.001 - €30.000 9% 

€30.001 - €40.000 12% 

€40.001 - €50.000 11% 

€50.001 - €60.000 11% 

€60.001 - €70.000 11% 

€70.001 - €80.000 11% 

€80.001 - €90.000 11% 

€90.001 - €100.000 10% 

 
 
*The data does not include incomes over €100.000. This is a limitation of this study, especially for the 
municipalities with a higher income.   
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D              
Initial PV share NetLogo 
 
Table 45: The initial PV share per municipality, as used in the NetLogo model (CBS, 2020) 

Municipality Number of 
households 

Initial number of 
PV installations 

Initial PV 
share 

Median 
income  

Population density (# 
inhabitants per km2) 

Bloemendaal 9.445 75 0.008 €51.400 602 

Dantumadiel 8.016 187 0.023 €34.650 227 

Laren 5.255 10 0.002 €48.250 944 

Oegstgeest 11.115 134 0.012 €47.750 3530 

Vaals 5.642 0 0.000 €29.550 427 

Westerveld 8.892 141 0.016 €38.750 71 
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E              
Agent State Variables 
NetLogo 
 
 
Table 46: State variables of the agents of the ABM, modified to fit the case of this research 

Name Description Domain Static?  

General 

Esystem The energy system of the household. The 
list item equals 1 if the household has PV 
installed and 0 if not.  

{0, 1} No 

Income The income of the household. Distribution 
based on CBS (2023a). See Appendix C.  

[0, 100.000]. Depends 
on municipality. 

No 

Income class Household income class. It is equal to 1 
when household income is less than 
€40.000 / year, 2 when it is between 
€40.000 and €60.000, and 3 when it is 
higher than €60.000. 

{1, 2, 3} No 

Roof size  The roof size of a household. Based on 
TUDelft3d (2024). 

[0, 10.000]. Depends 
on municipality. 

Yes 

Number of neighbours Relates to the size of the social network of 
the household. Depends on the number of 
links that a household forms, which is an 
interface parameter.  

[0, 10] Yes 

Weight economic utility Determines consumer preferences utility 
function  

[0, 1] Yes 

Weight of comfort utility Determines consumer preferences utility 
function 

{0, -1} Yes 

Weight of social utility Determines consumer preferences on 
social norm 

[0, 1] No 

Weight environmental 
utility 

Determines consumer preferences on 
environmental attitude 

[0, 1] Yes 

Comfort utility Aesthetics of PV per household {0, 1} Yes 

Economic utility Payback utility {0, 1} No 

Environmental utility Environmental utility, dependent on social 
network 

{0, 1} No 

Social utility Utility for influencing social network {0, 1} No 
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F             
Environmental State 
Variables NetLogo 
 
Table 47: State variables of the environment of the ABM,  modified to fit the case of this research 

Name Description Domain Static?  

General 

PV share Percentage of households that installed 
solar PV 

[0, 1] No 

PV-no, PV-yes Values used to calculate both utility for 
and against PV 

{0, 1} No 

Household fields Variable related to the geographical 
positioning of households 

- Yes 

PV costs per m2 External constant for PV utility 
calculations related to the costs of PV 
panels per m2 

€ / m2 Yes 

PV peak power External constant for PV utility calculation 
related to the peak power 

kW/m2 Yes 

Sunshine hours External constant for PV utility calculation 
related to the peak power 

hours Yes 

Performance ratio External constant for PV utility calculation 
related to the performance ratio of the 
solar panels 

% Yes 

PV lifetime External constant for PV utility calculation 
related to the assumed lifetime of PV in 
years 

years Yes 

Grid electricity costs External constant for PV utility calculation 
related to the electricity price 

€/kWh Yes 

Avoided cost per kWh Variable calculated from external 
constants for PV utility calculations 

€ Yes 

CO2 per kWh Variable calculated from external 
constants for PV utility calculations 

kg/kWh Yes 

Average CO2  Variable calculated from external 
constants for PV utility calculations 

kg/kWh Yes 

Visibility value Variable calculated from external 
constants for PV utility calculations 

[0, 1] No 

Number of turtles Total number of turtles (households) Depends on municipality Yes 

Initial PV share The initial PV share at t=0 [0, 1] Depends on 
municipality. 

Yes 
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G              
Pseudo-Code Main 
Simulation NetLogo 
 
 

Initialisation 

 Load household data and setup social network links 

 Initialise financial, environmental and social variables 

 Calculate utilities and barriers for each household 

 Determine visibility and income barriers for PV installations 

 

For each timestep  

Update price 

Update life-cycle  

Update Greenhouse gas emissions 

Update age of solar panels 

 

 For each agent  

  Evaluate adoption decision for solar panels 

  Check for adoption barriers 

  Adopt technology if decision meets the threshold 

  Set opinion on adopted technology and share with neighbours 

  Update emotions on technology for each neighbour 
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H              
Excluded Parameters for the 
IM process 
 
Table 48: Excluded parameters for the IM process, including default value in the NetLogo model 

Parameter Description Distribution Default  

True / False Parameters 

MF_Income Includes income as a measure of 
PBC as a probabilistic barrier, 
giving households with a higher 
income a higher chance to 
consider solar PV than 
households with a lower income. 

[True, False] N / A 

MF_Income_Barrier It includes income as a measure, 
but it is attached to a threshold 
instead of probabilistic behaviour.  

[True, False] N / A 

Financial_Information Switch on whether households 
are informed on the finances by 
the installer.  

[True, False] [“False”] 

Visibility  Switch of the visibility barrier of 
the technology, dependent on 
market share and advertisement 

[True, False] [“True”] 

Sparking_Events Switch for making the visibility 
barrier dependent on the social 
network as well 

[True, False] [“True”] 

Info_Costs Switch on the implementation of 
the information on financial 
aspects, as this will increase the 
initial investment costs dependent 
on the amount of time spent 
searching for information and the 
probability of information on 
economics already provided by 
the installers.  

[True, False] [“True”] 

Info_Costs_Revenue Switch to including PV's potential 
revenue in the calculation of the 
costs of the time spent on 
information search. 

[True, False] [“True”] 

Info_Costs_Income Switch to include the household’s 
income in the calculation of the 
costs of the time that is spent on 
information search. 

[True, False] [“True”] 

Information_Threshold Switch whether or not households 
who did not invest a certain 
amount of time in searching for 

[True, False] [“False”] 
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information is not continuing the 
decision-making process.  

Uncertainty Switch on the implementation of 
the information on financial 
aspects as inaccuracy of the 
calculation of the economic utility.  

[True, False] [“True”] 

Option Parameters 

Weight_distribution The weight distribution for the 
household, which can be set to 
either homogenous or 
heterogenous. 

[“heterogenous”, 
“homogenous”] 

[“homogenous”] 

Information_distribution The probability distribution of the 
costs/inaccuracy of information 
over all households for 
Uncertainty and Info_Costs.  

["empirical", 
"uniform", 
"normal", 
"poisson"] 

[“normal”] 

TPB_operationalisation Determine the model (MF, SE or 
RR) used for the Theory of 
Planned Behaviour. Due to 
computational limitations 
(overload errors), his parameter is 
fixed to the MF model.  

[“MF”, “SE”, 
“RR”] 

[“RR”] 

Ajadv The strength of influence of 
advertisement on the visibility 

[“0.02”, “0”] [“0.02””] 

Ajsoc The strength of influence of social 
networks on the visibility 

[“0.02”, “0”] [“0.02””] 

Discrete Parameters 

Random_links The probability for an agent to 
have a link based on the 
geographical distance between 
two agents 

(0, 0.1, 0.01) 0 

Close_links The number of links an agent’s 
social network can have is set 
depending on an agent’s income 
class. 

(0, 5, 1) 2 

MF_income_barrier_value The threshold value that 
MF_Income_barrier is attached to.  

(0, 1, 0.01) N / A 

Probability_financial_information The percentage of households 
that are informed on the finances 
by the installer. 

(0, 1, 0.01) N / A 

SE_importance_control The importance of the control 
parameter in the utility function for 
the SE model.  

(0, 1, 0.01) N / A 

SE_importance_attitide The importance of the attitude 
parameter in the utility function for 
the SE model.  

(0, 1, 0.01) N / A 

RR_sensitivity_barrier Can be included in case one 
wants to test the PBC barrier, 
comparing payback to income.  

(0, 1 0.01) N/A 

RR_sia The threshold value against which 
a household’s utility for the PV 
installation is compared. If the 
threshold is smaller than the 
utility, PV is installed.  

(0, 0.25, 0.01) 0.15 

InputRandomSeed Random seed for all stochastic 
variables in this model 

(0,100,10) 10 

Influence_cost_time The percentage of monthly 
revenue and/or monthly income 
that is used to calculate the costs 

(0, 1, 0.01) 0.25 
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of information of financial aspects 
of solar PV. 

Information_threshold_value The value for the information 
threshold is as mentioned above. 

(0, 1, 0.01) 0.25 

Interest rate The interest rate of the solar PV 
investment 

(0, 0.1, 0.02) 0.06 

PV_SDE_premium Subsidy by the government is to 
be used for the financing of solar 
panels.  

(0, 0.3, 0.05) 0.10 
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I              
Pseudo-code 
I.1. Pseudo-code for the model file 
Import necessary libraries 

 

Start a NetLogo instance 

 

Load the model 

 

Define function run_model_with_parameters: 

 Set the input parameters. Do not give them an initial value.  

 Setup the model 

 Double-check that the model stops after 11 ticks  

 Run the model 

  Count the number of solar PV installations per tick 

 Create a data frame with data per tick 

 Convert the data frame to the right data format 

 Return the data frame 

  
 

I.2. Pseudo-code for the generate_data file 
Import necessary libraries 

 

Load the data from the Excel file 

 

Filter out the header rows 

 

Extract the years from the first row 

 

Extract the municipalities and corresponding installation data 

 

Create a dictionary to store the installation data for each municipality 

 

Convert the dictionary to a data frame 

 

Save the data frame to a CSV file called “solar_pv_training_data” 
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I.3. Pseudo-code for the plot_fit file 
Import necessary libraries 

 

Define function plot_fit: 

 Calculate predictions 

 Convert predictions to the right data format 

 Plot the results 

 Add error to plot (if provided) 

 Add parameters to plot (if provided) 

 Present the legend 

 Show the plot 

 

I.4. Pseudo-code for the error file 
Import necessary libraries 

 

Read the “solar_pv_training_data.csv” file 

 

Extract the data from the municipality 

 

Define the custom distance metric function 

 Calculate model statistics (median and mean) 

Check if any of the values fall within 10% of the model_std 

 Within the range? Return 0 

 Not within the range? Return absolute difference 

 

Define the error function, using the predictions and real municipality solar pv 

adoption data 

 Convert municipality data to a 1D array if it is a DataFrame 

 Define model_std as the standard deviation of the predictions array 

 Calculate the distance using fastdtw with the custom metric.  

 Return the distance 

 

I.5. Pseudo-code for the optimise file 
Import necessary libraries 

 

Define a custom estimator class 

 Initialise the class with default parameters 

  Set the parameters 

   Store the parameters in a dictionary 

Define the fit method 

Define the prediction method 

 Run the model with the stored parameters 

Define the score method to evaluate model performance 

 If predictions are already? Use them 

 Predictions not yet available? Generate them 
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 Calculate the error using the error function 

Make sure to use a negative sign because RandomisedSearchCV tries 

to maximise the score! 

I.6. Pseudo-code for the custom_cv file 
Import necessary libraries 

 

Define a custom cross-validator class 

 Initialise the class with the number of splits 

 Return the number of splits 

 Generate indices to split data into training and test sets 

  Calculate the number of samples 

  Iterate over fold sizes to yield training and test indices 

   Test indices for the current fold 

   Training indices are everything else 

 
 

I.7. Pseudo-code for the main file 
Import necessary libraries 

 

State the number of runs 

 

Define a function to load data from the CSV file 

 Load the training data 

 

Define a custom discrete function for generating search spaces 

 

Define a function to save error values and parameter values to a CSV file 

 Write data for each run 

 

Load the training data 

 

Extract the years from the data 

 

Extract the solar PV adoption data for all municipalities 

 

Transpose the original matrix of the solar PV adoption data for all municipalities 

 

Extract the data for only the municipality 

 

Initialise the model 

 

Define the parameter distributions 

 

Create lists to store error values and corresponding parameter values for each run 

 

For each run: 
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 Perform randomised search or bayesian search for hyperparameter tuning 

 Apply the fit method defined in the optimise file 

 

Use the best model to make predictions on the training data 

 

Compute the error value between the predictions and the actual values 

 

Append error value and corresponding parameters to the lists 

 

Save the error values and parameter values to a CSV file 

 

Plot the fit of the best estimator for the last run 

 
 

I.8. Pseudo-code for the validation_curve file 
Import necessary libraries 

 

Load the data 

 

Define the custom_cross_validation_score function 

 Initialise custom cross-validation object 

Iterate over train-test splits 

 Split data into training and testing sets 

 Set model parameters 

 Train the model 

 Generate predictions 

 Compute error if municipality data is available 

Return the scores 

 

Define the main script 

 Define the file path 

 Set working directory 

 Load the data 

 Initialise the model object 

 Define the range for number of splits in cross validation 

 Create lists to store the mean cross-valiated score for each number of splits 

 Define default model parameters 

 Loop over the range for the number of splits 

 Plot the validation curve 

 Find the optimal number of splits  

 
 
The actual code for this thesis can be found here.   

https://github.com/nommering/Master-Thesis/tree/Vaals-Random-Search
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J                       
Data Analysis Bloemendaal 
 
The table below presents the results of the data analysis conducted for the municipality of Bloemendaal. Each row corresponds to a single run 
in the model. A run consists of 30 fits comprising 2 splits and 15 iterations each. The values provided in each row represent the outcome of the 
best-performing fit within that run. Consequently, the lowest error values in the table signify the highest fitness. In summary, each row contains 
the optimal performance achieved in a single run, showcasting the predictions generated by this best fit, the associated parameter values and 
the error value that comes forth from these predictions.  

J.1. Results using the Random Search Algorithm  
 
Table 49: Data analysis results of the municipality of Bloemendaal for the Random Search algorithm 

Error Weight_eco Weight_env Weight_cof Weight_soc Predictions 

Real Data [ 75.  136.  203.  300.  378.  453.  612.  794.  1047.  1447.  1879   ] 

788 0.2 0 0.7 0.7 [  79.  120.  190.  266.  349.  461.  590.  767.  977. 1223. 1538.] 

972 0.2 0.8 0.4 0.7 [  79.  225.  390.  559.  745.  908. 1105. 1270. 1438. 1621. 1774.] 

1031 0.7 0.1 0.6 0.9 [  79.  121.  172.  245.  342.  429.  562.  731.  912. 1144. 1394.] 

1085 0.1 0 0.4 0.4 [  79.  114.  169.  218.  309.  383.  479.  628.  810.  980. 1227.] 

1712 0.1 0.9 0.5 0.7 [  79.  288.  550.  785. 1068. 1295. 1518. 1753. 1977. 2188. 2398.] 

1715 0.1 0.8 0.1 0.5 [  79.  203.  316.  412.  507.  613.  709.  804.  880.  949. 1028.] 

1753 0.9 0.5 0 0.8 [ 79. 132. 206. 285. 378. 463. 551. 638. 751. 843. 945.] 

1787 0.4 0.1 0.3 0.5 [ 79. 117. 157. 195. 261. 326. 402. 498. 620. 775. 933.] 

1921 0.5 0.5 0.5 0.9 [ 79. 144. 215. 286. 349. 417. 484. 586. 671. 783. 894.] 

2344 0.3 0.7 0.1 0.6 [ 79. 149. 230. 320. 395. 475. 550. 607. 677. 730. 776.] 

2967 0.7 0.3 0.6 0.9 [  79.  214.  407.  611.  854. 1126. 1463. 1847. 2257. 2738. 3188.] 
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3072 0.3 0.9 0.2 0.8 [ 79. 125. 179. 220. 271. 329. 372. 422. 487. 540. 588.] 

3090 0 0.9 0 0.3 [  79.  774. 1261. 1595. 1785. 1955. 2055. 2119. 2168. 2193. 2210.] 

3511 0.2 0.9 0.2 0.4 [  79.  416.  722. 1070. 1324. 1627. 1892. 2167. 2433. 2659. 2871.] 

3755 0.6 0.4 0 0.5 [  79.  301.  555.  828. 1091. 1388. 1720. 2069. 2448. 2828. 3234.] 

3840 0.6 0.3 0.4 0.8 [ 79.  99. 133. 162. 189. 217. 257. 288. 326. 374. 427.] 

3855 0.3 0.2 0.6 0.8 [ 79. 108. 127. 154. 181. 204. 248. 285. 321. 368. 425.] 

4231 0.8 0.4 0.3 0.9 [ 79.  96. 127. 152. 175. 197. 227. 256. 291. 322. 366.] 

5426 0.4 0.3 0.3 0.7 [ 79.  89. 107. 124. 137. 149. 160. 173. 183. 194. 205.] 

6018 0.2 0.7 0.3 0.8 [ 79.  88.  92.  98. 104. 113. 119. 126. 128. 133. 138.] 

6071 0.2 0.9 0.2 0.9 [ 79.  88.  94. 100. 107. 109. 114. 117. 125. 131. 134.] 

6162 0.1 0 0.4 0.9 [ 79.  90.  96. 103. 104. 108. 111. 114. 115. 118. 118.] 

6189 0.1 0.7 0.1 0.7 [ 79.  90.  93.  96. 100. 105. 109. 111. 112. 113. 117.] 

6219 0.2 0.2 0 0.6 [ 79.  88.  91.  94.  97. 103. 106. 106. 110. 111. 112.] 

6928 0.1 0.8 0.2 0.3 [  79.  513.  978. 1364. 1737. 2106. 2422. 2717. 3005. 3265. 3517.] 

 

J.2. Results using the Bayesian Search Algorithm  
 
Table 50: Data analysis results of the municipality of Bloemendaal for the Bayesian Search algorithm 

Error Weight_eco Weight_env Weight_cof Weight_soc Predictions 

Real Data [ 75.  136.  203.  300.  378.  453.  612.  794.  1047.  1447.  1879   ] 

863 0.4 0.6 0.6 0.9 [  79.  185.  283.  396.  531.  673.  850. 1028. 1194. 1378. 1552.] 

1080 0.5 0.7 0.1 0.6 [  79.  216.  335.  466.  589.  730.  858.  996. 1159. 1294. 1431.] 

1133 0.2 0.5 0.5 0.7 [  79.  164.  256.  370.  508.  648.  776.  921. 1072. 1211. 1365.] 

1917 0.9 0.7 0.3 0.9 [  79.  267.  448.  654.  883. 1113. 1364. 1652. 1977. 2284. 2575.] 

2560 0.8 0.2 0.2 0.7 [ 79. 111. 148. 194. 244. 295. 360. 434. 524. 603. 705.] 

3333 0.1 0.5 0.3 0.4 [  79.  341.  580.  835. 1111. 1420. 1730. 2065. 2402. 2693. 3001.] 

3932 0.2 0.2 0.8 0.9 [ 79. 110. 135. 168. 192. 231. 266. 298. 337. 375. 413.] 

4362 0.4 0.1 0.2 0.5 [ 79.  99. 119. 141. 164. 188. 223. 255. 287. 317. 348.] 

4621 0.6 0.6 0.1 0.5 [  79.  343.  608.  919. 1210. 1538. 1914. 2288. 2652. 3023. 3383.] 

4808 0.4 0.5 0.5 0.9 [ 79.  95. 122. 143. 167. 188. 206. 223. 246. 260. 285.] 

5717 0.6 0.3 0.1 0.8 [ 79.  93. 103. 114. 126. 132. 145. 150. 155. 160. 170.] 
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5986 0.4 0 0 0.6 [ 79.  97. 112. 120. 125. 129. 130. 133. 135. 135. 135.] 

6057 0.2 0.2 0.2 0.6 [ 79.  85.  93.  98. 106. 110. 116. 121. 125. 129. 135.] 

6078 0.2 0.6 0 0.6 [ 79.  89. 100. 104. 112. 115. 119. 122. 124. 128. 130.] 

6116 0.5 0.5 0 0.9 [ 79.  86.  94.  97.  99. 108. 116. 120. 121. 123. 125.] 

6206 0.2 0.5 0.1 0.8 [ 79.  84.  89.  94.  95. 102. 107. 109. 112. 112. 113.] 

6463 0 0 0.1 0.9 [79. 79. 79. 79. 79. 79. 79. 79. 79. 79. 79.] 

6498 0.7 0.8 0.6 0.9 [  79.  330.  601.  953. 1293. 1693. 2101. 2503. 2997. 3432. 3870.] 

10040 0.3 0.8 0.3 0.4 [  79.  541. 1030. 1471. 1919. 2387. 2810. 3204. 3588. 3968. 4312.] 

10867 0.7 0.7 0.7 0.9 [  79.  410.  779. 1195. 1660. 2176. 2715. 3292. 3816. 4361. 4868.] 

19738 0.9 0.5 0.7 0.9 [  79.  627. 1238. 1922. 2636. 3301. 3913. 4542. 5141. 5703. 6201.] 

21054 0.4 0.5 0.1 0.2 [  79.  792. 1489. 2267. 2923. 3549. 4118. 4689. 5208. 5668. 6141.] 

22423 0.9 0.6 0.2 0.5 [  79.  769. 1473. 2206. 2914. 3577. 4225. 4885. 5481. 6089. 6571.] 

26365 0 0.9 0.1 0 [  79. 1729. 2773. 3521. 4055. 4456. 4715. 4909. 5062. 5201. 5293.] 

27000 0.8 0.2 0.4 0.3 [  79. 1034. 1894. 2680. 3519. 4184. 4795. 5399. 5938. 6450. 6885.] 
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K                       
Data Analysis Dantumadiel 
 
In the table below, the results of the data analysis conducted for the municipality of Dantumadiel are presented. Each row corresponds to a single 
run in the model. A run consists of 30 fits comprising two splits and 15 iterations each. The values provided in each row represent the outcome 
of the best-performing fit within that run. Consequently, the lowest error values in the table signify the highest fitness. In summary, each row 
contains the optimal performance achieved in a single run, showcasting the predictions generated by this best fit, the associated parameter 
values and the error value that comes forth from these predictions.  

K.1. Results using the Random Search Algorithm  
 
Table 51: Data analysis results of the municipality of Dantumadiel for the Random Search algorithm 

Error Weight_eco Weight_env Weight_cof Weight_soc Predictions 

Real Data [ 187.  322.  417.  503.  591.  715.  977.  1360.  2344.  3228.  4126. ] 

1740 0.4 0.3 0.7 0.8 [ 184.  417.  656.  967. 1350. 1740. 2171. 2577. 3043. 3537. 3994.] 

2901 0.3 0.9 0.3 0.6 [ 184.  466.  739. 1018. 1342. 1631. 1926. 2227. 2509. 2797. 3062.] 

3258 0.9 0.4 0.2 0.8 [ 184.  334.  526.  707.  910. 1139. 1422. 1694. 1999. 2316. 2644.] 

3330 0.9 0.8 0.2 0.9 [ 184.  382.  597.  826. 1061. 1306. 1582. 1865. 2131. 2449. 2745.] 

3592 0.1 0.4 0.6 0.7 [ 184.  308.  444.  630.  784.  980. 1209. 1488. 1769. 2106. 2451.] 

3709 0.8 0.4 0.1 0.7 [ 184.  315.  479.  659.  850. 1070. 1319. 1591. 1864. 2173. 2480.] 

4200 0.4 0.6 0.1 0.5 [ 184.  396.  606.  794.  994. 1218. 1418. 1640. 1865. 2111. 2314.] 

4341 0.5 0.6 0 0.6 [ 184.  386.  584.  791.  986. 1185. 1367. 1567. 1784. 2005. 2218.] 

4638 0.1 0.8 0.5 0.8 [ 184.  322.  510.  683.  869. 1043. 1236. 1438. 1652. 1856. 2044.] 

4691 0.7 0.5 0.7 0.8 [ 184.  722. 1252. 1821. 2377. 2992. 3542. 4071. 4538. 4996. 5430.] 

4866 0.2 0.6 0 0.4 [ 184.  434.  694.  922. 1123. 1317. 1498. 1671. 1827. 1944. 2079.] 
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5090 0.1 0.7 0 0.4 [ 184.  446.  705.  936. 1128. 1315. 1467. 1616. 1741. 1861. 1943.] 

5327 0 0.5 0.6 0.6 [ 184.  612. 1166. 1729. 2343. 2970. 3573. 4200. 4779. 5316. 5805.] 

6063 0.2 0.2 0.7 0.8 [ 184.  246.  315.  406.  490.  594.  716.  834.  981. 1150. 1347.] 

6468 0.5 0.6 0.4 0.9 [ 184.  270.  354.  445.  540.  647.  785.  903. 1018. 1140. 1281.] 

6490 0 0.6 0.7 0.9 [ 184.  258.  338.  432.  525.  634.  741.  864.  987. 1118. 1254.] 

7625 0.8 0.3 0.3 0.9 [184. 243. 309. 352. 432. 493. 568. 647. 726. 835. 948.] 

8090 0.2 0.8 0.4 0.9 [184. 256. 314. 372. 439. 505. 562. 635. 708. 779. 847.] 

9767 0 0.1 0.5 0.7 [184. 241. 289. 335. 374. 414. 448. 470. 501. 522. 544.] 

10388 0.6 0.5 0.1 0.8 [184. 219. 256. 279. 308. 336. 362. 389. 413. 437. 465.] 

10673 0.1 0.6 0.2 0.6 [184. 218. 241. 262. 292. 316. 340. 364. 384. 409. 432.] 

10738 0.3 0 0.4 0.9 [184. 218. 247. 269. 301. 321. 349. 367. 389. 408. 423.] 

10904 0.3 0.6 0.3 0.9 [184. 211. 230. 252. 276. 291. 316. 343. 369. 385. 406.] 

11308 0.3 0.1 0.4 0.9 [184. 206. 228. 251. 265. 288. 301. 316. 329. 341. 358.] 

12236 0.2 0.5 0.1 0.9 [184. 196. 205. 212. 222. 226. 232. 238. 240. 244. 250.] 

 

K.2. Results using the Bayesian Search Algorithm  
 
Table 52: Data analysis results of the municipality of Dantumadiel for the Bayesian Search algorithm 

Error Weight_eco Weight_env Weight_cof Weight_soc Predictions 

Real Data [ 187.  322.  417.  503.  591.  715.  977.  1360.  2344.  3228.  4126. ] 

1534 0.2 0.1 0.9 0.8 [ 184.  310.  491.  720. 1066. 1417. 1828. 2362. 2913. 3541. 4194.] 

2203 0.7 0.8 0.4 0.7 [ 184.  566.  958. 1363. 1794. 2211. 2632. 3084. 3491. 3899. 4291.] 

2253 0.8 0.5 0.4 0.8 [ 184.  461.  791. 1145. 1515. 1899. 2309. 2727. 3100. 3526. 3918.] 

2323 0.6 0.8 0.5 0.8 [ 184.  513.  860. 1241. 1602. 1956. 2335. 2728. 3127. 3510. 3915.] 

2397 0.2 0.8 0.5 0.6 [ 184.  593. 1021. 1419. 1854. 2343. 2792. 3236. 3686. 4118. 4506.] 

2693 0.3 0.9 0.7 0.8 [ 184.  533.  947. 1371. 1845. 2363. 2862. 3365. 3861. 4350. 4755.] 

2726 0.7 0.8 0.2 0.7 [ 184.  445.  709.  974. 1262. 1601. 1886. 2211. 2519. 2856. 3216.] 

3263 0.1 0.2 0.7 0.7 [ 184.  287.  399.  533.  694.  900. 1165. 1445. 1772. 2142. 2610.] 

4951 0.1 0.9 0.2 0.6 [ 184.  385.  565.  760.  951. 1124. 1305. 1475. 1612. 1761. 1906.] 

5204 0.1 0.9 0.6 0.6 [ 184.  755. 1327. 1960. 2564. 3119. 3688. 4182. 4648. 5115. 5527.] 

5533 0 0 0.9 0.9 [ 184.  288.  397.  508.  622.  732.  856. 1003. 1147. 1323. 1543.] 
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5552 0.2 0.9 0.1 0.6 [ 184.  343.  494.  642.  790.  941. 1081. 1216. 1343. 1462. 1594.] 

5694 0.7 0.9 0.1 0.9 [ 184.  297.  410.  546.  677.  813.  950. 1083. 1242. 1403. 1519.] 

6623 0.1 0.4 0.3 0.5 [ 184.  266.  351.  450.  578.  684.  786.  886.  997. 1124. 1237.] 

9043 0.6 0.2 0.4 0.9 [184. 223. 260. 315. 356. 405. 450. 499. 549. 617. 661.] 

9686 0.7 0 0 0.8 [184. 254. 303. 340. 368. 405. 446. 478. 503. 528. 557.] 

10049 0 0.6 0.5 0.9 [184. 237. 283. 321. 357. 397. 425. 444. 466. 487. 504.] 

10144 0.5 0.8 0 0.9 [184. 225. 263. 299. 331. 365. 391. 421. 446. 476. 494.] 

10400 0.6 0.1 0.1 0.7 [184. 223. 245. 272. 308. 338. 365. 384. 412. 435. 465.] 

10819 0 0.8 0.2 0.7 [184. 213. 245. 280. 311. 336. 355. 374. 386. 397. 412.] 

11223 0.3 0.7 0.2 0.9 [184. 208. 233. 250. 267. 285. 298. 322. 336. 357. 368.] 

11479 0.2 0.7 0.2 0.9 [184. 204. 225. 251. 267. 281. 291. 303. 316. 326. 340.] 

11644 0.1 0.7 0.2 0.8 [184. 203. 229. 251. 266. 282. 297. 301. 307. 314. 323.] 

12156 0.1 0 0.1 0.5 [184. 194. 206. 215. 219. 230. 243. 247. 250. 256. 258.] 

12215 0.3 0.3 0 0.9 [184. 196. 208. 213. 221. 229. 238. 240. 247. 248. 251.] 
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L                         
Data Analysis Laren 
 
The table below presents the results of the data analysis conducted for the municipality of Laren. Each row corresponds to a single run in the 
model. A run consists of 30 fits comprising two splits and 15 iterations each. The values provided in each row represent the outcome of the best-
performing fit within that run. Consequently, the lowest error values in the table signify the highest fitness. In summary, each row contains the 
optimal performance achieved in a single run, showcasting the predictions generated by this best fit, the associated parameter values and the 
error value that comes forth from these predictions.  

L.1. Results using the Random Search Algorithm  
 
Table 53: Data analysis results of the municipality of Laren for the Random Search algorithm 

Error Weight_eco Weight_env Weight_cof Weight_soc Predictions 

Real Data [ 10.  36.  64.  84.  93.  127.  152.  191.  284.  360.  584. ] 

314 0.9 0.6 0.1 0.9 [ 10.  45.  84. 132. 189. 236. 290. 350. 404. 478. 545.] 

456 0.3 0.3 0.4 0.6 [ 10.  53.  94. 153. 214. 275. 347. 430. 538. 641. 756.] 

779 0.5 0.2 0.7 0.9 [ 10.  16.  25.  30.  38.  55.  69.  89. 108. 147. 178.] 

826 0.2 0.7 0.5 0.8 [ 10.  70. 132. 195. 282. 375. 466. 554. 659. 777. 891.] 

918 0.2 0.6 0.3 0.7 [ 10.  24.  35.  49.  59.  72.  83.  99. 109. 127. 143.] 

989 0.7 0 0.2 0.6 [ 10.  11.  13.  21.  25.  36.  49.  65.  82.  98. 126.] 

1091 0.1 0.1 0.9 0.9 [ 10.  16.  25.  32.  38.  47.  54.  67.  83.  98. 110.] 

1564 0.5 0.9 0.1 0.7 [  10.  116.  219.  320.  417.  517.  619.  727.  826.  915. 1029.] 

1602 0.4 0.3 0.6 0.9 [10. 11. 14. 18. 20. 23. 23. 30. 35. 39. 44.] 

1642 0.8 0.4 0 0.8 [10. 15. 19. 22. 26. 27. 31. 33. 36. 37. 39.] 

1645 0.7 0.6 0 0.8 [10. 10. 12. 14. 19. 24. 27. 30. 31. 35. 38.] 
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1733 0.5 0 0.4 0.8 [10. 13. 16. 17. 19. 21. 21. 24. 25. 26. 30.] 

1738 0.7 0.1 0.1 0.9 [10. 13. 18. 19. 21. 22. 25. 26. 27. 27. 27.] 

1751 0.2 0.2 0.7 0.9 [10. 12. 14. 15. 16. 17. 18. 21. 22. 24. 27.] 

1773 0 0.9 0 0.7 [10. 16. 18. 19. 20. 21. 21. 21. 22. 22. 22.] 

1780 0 0.3 0.5 0.8 [10. 10. 12. 16. 16. 17. 19. 20. 21. 22. 22.] 

1791 0.7 0.5 0 0.9 [10. 10. 12. 15. 16. 16. 19. 20. 20. 20. 20.] 

1811 0 0.5 0.4 0.8 [10. 13. 15. 16. 17. 17. 17. 17. 17. 17. 17.] 

1830 0.2 0.5 0.2 0.8 [10. 12. 12. 12. 12. 13. 14. 15. 15. 16. 16.] 

1844 0.6 0 0 0.9 [10. 11. 11. 11. 11. 12. 13. 13. 13. 14. 14.] 

1845 0 0.7 0.2 0.9 [10. 11. 11. 12. 12. 13. 13. 13. 13. 14. 14.] 

1849 0 0.6 0.1 0.7 [10. 11. 11. 11. 12. 13. 13. 13. 13. 13. 13.] 

1859 0.3 0 0.1 0.6 [10. 10. 11. 11. 11. 11. 12. 12. 12. 12. 12.] 

2542 0 0.7 0.6 0.8 [  10.  122.  232.  349.  479.  627.  747.  876. 1008. 1129. 1268.] 

5735 0.5 0.9 0.6 0.9 [  10.  163.  335.  505.  704.  903. 1136. 1330. 1533. 1775. 1988.] 

 

L.2. Results using the Bayesian Search Algorithm  
 
Table 54: Data analysis results of the municipality of Laren for the Bayesian Search algorithm 

Error Weight_eco Weight_env Weight_cof Weight_soc Predictions 

Real Data [ 10.  36.  64.  84.  93.  127.  152.  191.  284.  360.  584. ] 

316 0.3 0.1 0.7 0.7 [ 10.  19.  28.  47.  67.  91. 118. 160. 199. 263. 357.] 

336 0.4 0 0.8 0.8 [ 10.  12.  21.  34.  46.  71. 102. 147. 225. 315. 437.] 

342 0.1 0.9 0.5 0.9 [ 10.  46.  88. 146. 214. 270. 322. 388. 438. 502. 567.] 

583 0.4 0.2 0.8 0.9 [ 10.  13.  22.  32.  44.  59.  80. 105. 139. 183. 242.] 

591 0.7 0 0.6 0.8 [ 10.  14.  16.  21.  27.  43.  66.  96. 133. 175. 244.] 

690 0.5 0 0.1 0.4 [ 10.  15.  19.  25.  38.  56.  78. 103. 126. 151. 200.] 

943 0 0.2 0.9 0.9 [ 10.  16.  32.  41.  45.  53.  66.  81. 103. 120. 137.] 

989 0.6 0.2 0.1 0.5 [ 10.  42.  90. 166. 249. 346. 446. 584. 691. 826. 976.] 

1026 0 0 0.6 0.5 [  10.   17.   30.   56.   94.  146.  218.  346.  527.  822. 1155.] 

1137 0.1 0.4 0.7 0.8 [ 10.  13.  21.  27.  38.  47.  51.  66.  79.  92. 103.] 

1203 0.5 0 0.5 0.8 [10. 15. 21. 25. 31. 39. 50. 56. 67. 76. 94.] 



       

127 
 

1575 0.2 0 0.7 0.8 [10. 15. 17. 18. 21. 23. 28. 35. 41. 46. 47.] 

1578 0.7 0.1 0.1 0.6 [10. 11. 12. 15. 16. 20. 25. 27. 30. 33. 46.] 

1647 0.9 0.2 0.2 0.9 [10. 13. 15. 18. 20. 22. 24. 25. 29. 36. 40.] 

1683 0.4 0.1 0.2 0.5 [10. 10. 14. 16. 19. 20. 23. 24. 27. 31. 36.] 

1761 0.3 0.2 0.4 0.8 [10. 15. 15. 17. 18. 20. 21. 21. 23. 24. 26.] 

1800 0.2 0.4 0.1 0.6 [10. 11. 14. 14. 14. 16. 17. 18. 18. 19. 20.] 

1801 0.2 0.6 0.1 0.8 [10. 12. 14. 16. 16. 17. 17. 19. 19. 19. 19.] 

1811 0.2 0 0.3 0.6 [10. 10. 11. 12. 14. 14. 16. 16. 17. 18. 18.] 

1834 0.3 0.4 0 0.7 [10. 10. 11. 13. 14. 14. 14. 14. 14. 14. 15.] 

1856 0.3 0.4 0 0.6 [10. 10. 10. 10. 11. 12. 12. 12. 12. 12. 12.] 

2151 0.6 0.7 0 0.7 [  10.  124.  246.  352.  476.  578.  692.  813.  941. 1056. 1172.] 

2726 0.7 0.2 0.2 0.6 [  10.   64.  148.  257.  391.  540.  694.  880. 1051. 1281. 1495.] 

5111 0.4 0.5 0.5 0.7 [  10.  134.  287.  447.  602.  809. 1000. 1228. 1474. 1732. 2011.] 

17903 0.7 0.1 0.2 0.3 [  10.  544. 1036. 1458. 1842. 2197. 2554. 2836. 3113. 3392. 3610.] 

 

 
  



       

128 
 

M                       
Data Analysis Oegstgeest 
 
The table below presents the results of the data analysis conducted for the municipality of Oegstgeest. Each row corresponds to a single run in 
the model. A run consists of 30 fits comprising two splits and 15 iterations each. The values provided in each row represent the outcome of the 
best-performing fit within that run. Consequently, the lowest error values in the table signify the highest fitness. In summary, each row contains 
the optimal performance achieved in a single run, showcasting the predictions generated by this best fit, the associated parameter values and 
the error value that comes forth from these predictions.  

M.1. Results using the Random Search Algorithm  
  
Table 55: Data analysis results of the municipality of Oegstgeest for the Random Search algorithm 

Error Weight_eco Weight_env Weight_cof Weight_soc Predictions 

Real Data [ 134.  240.  346.  445.  545.  667.  902.  1407.  1971.  2461.  3135. ] 

1139 0.3 0.4 0.5 0.6 [ 133.  304.  485.  709.  970. 1199. 1559. 1912. 2293. 2694. 3137.] 

1376 0.1 0.3 0.5 0.5 [ 133.  278.  456.  691.  967. 1278. 1650. 2058. 2510. 2976. 3548.] 

1462 0.3 0.9 0.3 0.5 [ 133.  394.  659.  945. 1219. 1486. 1775. 2061. 2318. 2622. 2902.] 

1916 0.6 0 0.1 0.4 [ 133.  184.  258.  366.  494.  678.  917. 1180. 1477. 1801. 2181.] 

2307 0.3 0.7 0.5 0.7 [ 133.  273.  442.  615.  792.  980. 1162. 1405. 1627. 1874. 2118.] 

2431 0.4 0.8 0.4 0.7 [ 133.  281.  431.  618.  789.  979. 1177. 1382. 1600. 1851. 2063.] 

2652 0.2 0 0.9 0.9 [ 133.  191.  270.  380.  497.  641.  798. 1001. 1271. 1547. 1878.] 

2781 0.3 0.8 0.1 0.4 [ 133.  334.  533.  715.  888. 1060. 1242. 1412. 1595. 1749. 1911.] 

3039 0 0.9 0.4 0.6 [ 133.  329.  531.  712.  889. 1067. 1231. 1404. 1534. 1672. 1796.] 

3447 0.3 0 0.6 0.7 [ 133.  189.  261.  348.  457.  570.  715.  872. 1065. 1275. 1535.] 

3471 0.3 0.5 0.5 0.7 [ 133.  221.  317.  438.  553.  698.  844. 1002. 1169. 1359. 1545.] 
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4043 0.4 0.5 0.4 0.7 [ 133.  224.  312.  414.  524.  636.  768.  906. 1050. 1208. 1370.] 

4052 0 0.2 0.6 0.6 [ 133.  197.  276.  348.  451.  570.  703.  836.  972. 1151. 1352.] 

4513 0.3 0.3 0.8 0.9 [ 133.  181.  229.  308.  378.  463.  581.  708.  864. 1035. 1214.] 

6787 0.3 0.1 0.6 0.8 [133. 179. 215. 261. 323. 372. 417. 472. 537. 605. 671.] 

7081 0.3 0.9 0.7 0.7 [ 133.  507.  961. 1407. 1939. 2549. 3185. 3793. 4399. 5031. 5640.] 

7400 0.6 0.8 0.2 0.9 [133. 176. 219. 261. 301. 348. 408. 452. 490. 531. 563.] 

7708 0.5 0.3 0.5 0.9 [133. 162. 194. 222. 259. 295. 341. 380. 420. 471. 519.] 

8091 0.3 0.4 0.6 0.9 [133. 168. 211. 237. 270. 302. 348. 374. 402. 429. 461.] 

8234 0.5 0.2 0.5 0.9 [133. 166. 192. 227. 259. 290. 320. 347. 375. 403. 445.] 

9776 0.3 0.1 0.2 0.6 [133. 149. 164. 175. 194. 209. 214. 230. 238. 248. 257.] 

9821 0 0.2 0.4 0.7 [133. 156. 182. 194. 206. 214. 227. 236. 242. 246. 251.] 

24234 0.9 0.8 0.3 0.1 [ 133. 1374. 2496. 3433. 4251. 5020. 5737. 6350. 6844. 7319. 7716.] 

24335 0.6 0.4 0.8 0.7 [ 133. 1125. 2109. 3075. 3954. 4836. 5615. 6372. 7046. 7658. 8241.] 

26904 0.2 0 0.3 0.3 [ 133. 1253. 2344. 3313. 4265. 5152. 5975. 6751. 7408. 8038. 8508.] 

 

M.2. Results using the Bayesian Search Algorithm  
 
Table 56: Data analysis results of the municipality of Oegstgeest for the Bayesian Search algorithm 

Error Weight_eco Weight_env Weight_cof Weight_soc Predictions 

Real Data [ 134.  240.  346.  445.  545.  667.  902.  1407.  1971.  2461.  3135. ] 

904 0.7 0.2 0.5 0.8 [ 133.  241.  389.  556.  759. 1003. 1331. 1631. 2038. 2453. 2911.] 

1458 0.4 0.1 0.2 0.4 [ 133.  227.  345.  485.  667.  888. 1144. 1438. 1776. 2158. 2553.] 

1594 0.6 0.7 0.4 0.7 [ 133.  364.  642.  898. 1211. 1536. 1880. 2269. 2685. 3096. 3525.] 

1697 0 0.7 0.5 0.6 [ 133.  366.  622.  874. 1137. 1386. 1611. 1872. 2095. 2353. 2586.] 

1972 0.3 0.9 0 0.3 [ 133.  601. 1053. 1438. 1814. 2159. 2446. 2725. 2955. 3203. 3454.] 

2041 0.9 0.3 0.4 0.9 [ 133.  228.  327.  445.  613.  761.  967. 1218. 1494. 1789. 2136.] 

2266 0.2 0.4 0.5 0.6 [ 133.  243.  359.  510.  653.  830. 1014. 1207. 1475. 1754. 2065.] 

3816 0.3 0.9 0.6 0.9 [ 133.  258.  363.  478.  606.  741.  888. 1024. 1186. 1321. 1466.] 

3889 0.5 0.9 0.3 0.5 [ 133.  496.  904. 1304. 1733. 2172. 2639. 3087. 3555. 4013. 4427.] 

4151 0.6 0.7 0.2 0.7 [ 133.  249.  365.  479.  594.  713.  840.  958. 1101. 1230. 1356.] 

4320 0.8 0 0.2 0.7 [ 133.  177.  230.  313.  400.  491.  603.  747.  911. 1083. 1290.] 



       

130 
 

4755 0.7 0.1 0.5 0.9 [ 133.  170.  223.  278.  366.  473.  586.  682.  816.  957. 1139.] 

4885 0 0.9 0.4 0.7 [ 133.  271.  405.  522.  638.  734.  851.  946. 1030. 1094. 1155.] 

4907 0 0.9 0.4 0.7 [ 133.  286.  426.  560.  682.  777.  865.  955. 1026. 1094. 1151.] 

4971 0 0.7 0.6 0.8 [ 133.  245.  334.  434.  552.  651.  767.  850.  948. 1013. 1080.] 

5033 0.3 0.7 0.5 0.8 [ 133.  209.  303.  399.  498.  600.  727.  806.  910. 1002. 1107.] 

5299 0 0.9 0.6 0.6 [ 133.  520.  935. 1399. 1925. 2407. 2903. 3417. 3950. 4512. 5058.] 

5960 0.9 0.7 0.1 0.9 [133. 204. 273. 342. 402. 481. 550. 623. 705. 780. 844.] 

6350 0.5 0.9 0.3 0.9 [133. 193. 259. 313. 382. 450. 506. 569. 633. 688. 757.] 

7212 0.3 0.7 0.5 0.9 [133. 186. 238. 293. 332. 376. 418. 469. 518. 560. 596.] 

8252 0.2 0.4 0.9 0.8 [ 133.  424.  746. 1104. 1573. 2155. 2860. 3624. 4461. 5272. 6077.] 

10090 0.1 0.3 0.3 0.6 [133. 149. 164. 174. 180. 192. 200. 205. 209. 220. 227.] 

10167 0.5 0.7 0 0.9 [133. 149. 165. 173. 180. 191. 199. 203. 207. 210. 212.] 

10170 0.3 0.6 0.2 0.8 [133. 141. 151. 170. 177. 189. 196. 201. 205. 206. 209.] 

12977 0 0 0.6 0.5 [ 133.  307.  579.  974. 1555. 2363. 3359. 4468. 5617. 6638. 7497.] 
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N                       
Data Analysis Vaals 
 
The table below presents the results of the data analysis conducted for the Vaals municipality. Each row corresponds to a single run in the model. 
A run consists of 30 fits comprising two splits and 15 iterations each. The values provided in each row represent the outcome of the best-
performing fit within that run. Consequently, the lowest error values in the table signify the highest fitness. In summary, each row contains the 
optimal performance achieved in a single run, showcasting the predictions generated by this best fit, the associated parameter values and the 
error value that comes forth from these predictions.  

N.1. Results using the Random Search Algorithm  
 
Table 57: Data analysis results of the municipality of Vaals for the Random Search algorithm 

Error Weight_eco Weight_env Weight_cof Weight_soc Predictions 

Real Data [ 0. 108.  173.  217.  255.  439.  534.  734.  916.  1073.  1238. ] 

320 0.9 0.3 0.3 0.8 [   0.   62.  130.  219.  307.  412.  548.  689.  863. 1048. 1251.] 

409 0.3 0.6 0.4 0.6 [   0.   92.  178.  281.  391.  533.  688.  818.  971. 1123. 1277.] 

410 0.8 0.3 0 0.6 [   0.   51.  126.  202.  298.  395.  516.  666.  849. 1060. 1282.] 

544 0.8 0.6 0.4 0.9 [   0.   67.  148.  236.  328.  450.  570.  683.  813.  960. 1119.] 

760 0.6 0.6 0.4 0.8 [  0.  61. 139. 219. 301. 384. 486. 589. 718. 843. 963.] 

1050 0.2 0.5 0.3 0.5 [  0.  60. 138. 219. 288. 371. 447. 527. 645. 726. 825.] 

1063 0.4 0.5 0.3 0.6 [  0.  56. 120. 198. 272. 342. 434. 513. 620. 717. 835.] 

1252 0.9 0.6 0.1 0.7 [   0.  118.  233.  360.  500.  671.  858. 1061. 1302. 1520. 1795.] 

1999 0.6 0.7 0 0.7 [  0.  77. 142. 190. 248. 306. 356. 399. 442. 517. 563.] 

2006 0.2 0.9 0.2 0.6 [  0.  69. 129. 174. 233. 295. 348. 394. 466. 517. 563.] 

2035 0.5 0.7 0.2 0.7 [  0.  43.  82. 130. 194. 246. 310. 369. 436. 493. 559.] 
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2160 0.9 0.8 0.1 0.7 [   0.  146.  307.  494.  685.  868. 1085. 1331. 1561. 1786. 2042.] 

2331 0.3 0.2 0.2 0.4 [  0.  24.  53.  87. 123. 177. 221. 279. 331. 409. 483.] 

4786 0.9 0.9 0.3 0.7 [   0.  221.  451.  702.  969. 1241. 1518. 1801. 2119. 2380. 2677.] 

5687 0.8 0.5 0 0.9 [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] 

5687 0.5 0.8 0 0.9 [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] 

5687 0.7 0 0.5 0.8 [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] 

5687 0 0.7 0.2 0.9 [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] 

5687 0.1 0 0 0.2 [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] 

5687 0.2 0 0 0.5 [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] 

5687 0.8 0 0 0.6 [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] 

5687 0 0.1 0.1 0.9 [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] 

5687 0.3 0 0.1 0.3 [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] 

9531 0.8 0.8 0.5 0.7 [   0.  340.  687. 1084. 1454. 1811. 2170. 2500. 2807. 3095. 3399.] 

14994 0.3 0.2 0.7 0.6 [   0.  442.  883. 1377. 1866. 2378. 2860. 3302. 3671. 4007. 4310.] 

 

N.2. Results using the Bayesian Search Algorithm  
 
Table 58: Data analysis results of the municipality of Vaals for the Bayesian Search algorithm 

Error Weight_eco Weight_env Weight_cof Weight_soc Predictions 

Real Data [ 0. 108.  173.  217.  255.  439.  534.  734.  916.  1073.  1238. ] 

608 0.7 0.6 0.2 0.7 [   0.   82.  157.  241.  338.  433.  517.  628.  756.  879. 1014.] 

621 0.9 0.5 0.2 0.8 [   0.   55.  134.  201.  290.  403.  498.  613.  748.  880. 1017.] 

704 0.7 0.8 0.1 0.7 [  0.  79. 152. 228. 312. 400. 497. 620. 734. 853. 975.] 

1194 0.4 0.7 0.1 0.4 [   0.  148.  312.  480.  620.  808.  961. 1144. 1301. 1462. 1637.] 

1572 0 0.9 0.4 0.7 [  0.  72. 157. 233. 309. 377. 436. 509. 570. 627. 670.] 

1914 0.7 0.4 0.2 0.7 [  0.  45.  81. 131. 186. 240. 300. 373. 440. 508. 579.] 

1970 0.6 0.5 0 0.6 [  0.  49.  87. 140. 194. 246. 302. 378. 437. 498. 568.] 

2350 0.1 0.9 0.2 0.6 [  0.  58. 113. 177. 229. 268. 312. 363. 409. 452. 481.] 

2379 0.7 0.5 0.4 0.9 [  0.  29.  55. 100. 143. 192. 240. 295. 357. 412. 485.] 

2565 0.2 0.5 0.5 0.7 [  0.  30.  63. 105. 154. 208. 248. 299. 347. 398. 444.] 

3156 0.1 0.7 0.4 0.7 [  0.  30.  56.  82. 117. 148. 187. 226. 262. 291. 331.] 
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3794 0.3 0.9 0 0.7 [  0.  29.  60.  89. 114. 137. 162. 178. 200. 215. 223.] 

3958 0.2 0.8 0 0.6 [  0.  31.  65.  96. 118. 144. 166. 176. 185. 195. 200.] 

4654 0.4 0.8 0.5 0.6 [   0.  205.  433.  707.  991. 1275. 1531. 1798. 2061. 2338. 2597.] 

5474 0 0.3 0.9 0.8 [ 0.  0.  0.  3.  4.  5.  6. 12. 16. 26. 31.] 

5662 0.1 0.8 0.5 0.5 [   0.  240.  483.  774. 1069. 1349. 1647. 1937. 2253. 2559. 2851.] 

5687 0.5 0 0.1 0.8 [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] 

5687 0 0 0.7 0.9 [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] 

5687 0.3 0.1 0.3 0.9 [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] 

5687 0.1 0.3 0 0.5 [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] 

5687 0.2 0.1 0.6 0.8 [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] 

5687 0.2 0.4 0.2 0.6 [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] 

5687 0.9 0.2 0.2 0.8 [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] 

5687 0.3 0 0.2 0.7 [0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.] 

11919 0.8 0.8 0.2 0.4 [   0.  424.  848. 1278. 1722. 2076. 2498. 2834. 3158. 3431. 3697.] 
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O                       
Data Analysis Westerveld 
 
The table below presents the results of the data analysis conducted for the Westerveld municipality. Each row corresponds to a single run in the 
model. A run consists of 30 fits comprising two splits and 15 iterations each. The values provided in each row represent the outcome of the best-
performing fit within that run. Consequently, the lowest error values in the table signify the highest fitness. In summary, each row contains the 
optimal performance achieved in a single run, showcasting the predictions generated by this best fit, the associated parameter values and the 
error value that comes forth from these predictions.  

O.1. Results using the Random Search Algorithm  
 
Table 59: Data analysis results of the municipality of Westerveld for the Random Search algorithm 

Error Weight_eco Weight_env Weight_cof Weight_soc Predictions 

Real Data [ 141.  296.  427.  920.  1138.  1706.  2263.  2717.  3045.  3440.  4023. ] 

1075 0.4 0.4 0.6 0.8 [ 142.  369.  620.  939. 1264. 1608. 2035. 2510. 3013. 3469. 3954.] 

1401 0.6 0.4 0.4 0.7 [ 142.  464.  786. 1167. 1591. 2038. 2515. 2989. 3435. 3909. 4352.] 

1549 0.4 0.8 0 0.6 [ 142.  561.  990. 1396. 1750. 2114. 2422. 2764. 3061. 3347. 3599.] 

1606 0.8 0.3 0.2 0.7 [ 142.  363.  599.  862. 1182. 1515. 1918. 2345. 2778. 3180. 3618.] 

1651 0.1 0.4 0.1 0.2 [ 142.  688. 1208. 1708. 2191. 2608. 3014. 3395. 3762. 4068. 4391.] 

1736 0.6 0.1 0 0.4 [ 142.  234.  364.  577.  855. 1238. 1729. 2349. 3062. 3770. 4517.] 

1812 0.1 0.6 0.8 0.9 [ 142.  386.  704. 1062. 1436. 1863. 2323. 2851. 3432. 3970. 4535.] 

1908 0.8 0.7 0.2 0.8 [ 142.  417.  739. 1054. 1385. 1731. 2086. 2461. 2831. 3212. 3607.] 

2242 0.2 0.5 0.5 0.7 [ 142.  370.  591.  839. 1122. 1438. 1767. 2097. 2450. 2844. 3260.] 

2366 0.9 0.4 0.5 0.9 [ 142.  535.  939. 1367. 1840. 2336. 2855. 3354. 3820. 4307. 4770.] 

2647 0.8 0.3 0.6 0.9 [ 142.  531.  943. 1411. 1947. 2443. 2946. 3438. 3974. 4446. 4892.] 
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2722 0.2 0.5 0.6 0.8 [ 142.  325.  519.  732.  973. 1237. 1519. 1815. 2185. 2567. 2924.] 

3292 0.9 0.6 0.3 0.7 [ 142.  628. 1150. 1673. 2216. 2747. 3243. 3750. 4258. 4736. 5151.] 

4125 0.8 0.7 0.1 0.6 [ 142.  651. 1163. 1730. 2285. 2838. 3440. 4007. 4537. 5041. 5579.] 

4419 0 0.6 0.2 0.5 [ 142.  412.  672.  926. 1183. 1409. 1636. 1880. 2111. 2317. 2485.] 

4441 0.6 0.2 0.7 0.8 [ 142.  617. 1150. 1721. 2316. 2915. 3492. 4035. 4606. 5179. 5678.] 

4902 0.2 0.9 0.5 0.6 [ 142.  750. 1332. 1913. 2535. 3097. 3611. 4118. 4606. 5076. 5506.] 

5005 0.4 0.7 0.5 0.6 [ 142.  682. 1226. 1816. 2380. 2951. 3547. 4121. 4686. 5196. 5696.] 

6660 0.5 0.6 0.4 0.5 [ 142.  735. 1359. 1978. 2610. 3225. 3835. 4428. 4948. 5440. 5851.] 

6831 0.2 0.9 0.4 0.9 [ 142.  280.  446.  617.  791.  954. 1145. 1347. 1516. 1719. 1893.] 

9271 0.9 0.8 0.4 0.4 [ 142. 1046. 1885. 2647. 3381. 4024. 4602. 5165. 5595. 5988. 6355.] 

12750 0.2 0.3 0.7 0.9 [142. 193. 242. 305. 375. 453. 518. 603. 702. 807. 909.] 

12840 0.6 0.1 0.2 0.6 [142. 189. 243. 289. 347. 413. 495. 572. 677. 764. 893.] 

13186 0 0.7 0.6 0.9 [142. 191. 249. 327. 394. 456. 527. 609. 686. 765. 848.] 

17942 0.2 0.6 0 0.8 [142. 168. 180. 192. 198. 204. 208. 210. 216. 217. 218.] 

 

O.2. Results using the Bayesian Search Algorithm  
 
Table 60: Data analysis results of the municipality of Westerveld for the Bayesian Search algorithm 

Error Weight_eco Weight_env Weight_cof Weight_soc Predictions 

Real Data [ 141.  296.  427.  920.  1138.  1706.  2263.  2717.  3045.  3440.  4023. ] 

1011 0.5 0.9 0.4 0.8 [ 142.  485.  802. 1164. 1534. 1919. 2303. 2706. 3070. 3501. 3891.] 

1262 0.7 0.7 0.2 0.7 [ 142.  492.  823. 1188. 1554. 1976. 2357. 2772. 3188. 3600. 4002.] 

1338 0.7 0.4 0.6 0.9 [ 142.  453.  825. 1205. 1625. 2075. 2543. 3021. 3476. 3942. 4434.] 

1376 0.7 0.8 0.2 0.7 [ 142.  497.  854. 1245. 1606. 2017. 2425. 2837. 3225. 3609. 4022.] 

1865 0.3 0.8 0.2 0.4 [ 142.  699. 1164. 1669. 2174. 2625. 3032. 3428. 3863. 4241. 4593.] 

2161 0.4 0.5 0 0.5 [ 142.  415.  730. 1029. 1348. 1667. 2007. 2329. 2644. 2958. 3232.] 

2168 0.6 0.3 0 0.5 [ 142.  435.  781. 1180. 1563. 2056. 2553. 3104. 3677. 4262. 4813.] 

2545 0.1 0.9 0.1 0.5 [ 142.  563.  969. 1333. 1665. 1959. 2221. 2469. 2689. 2888. 3090.] 

3047 0.8 0.8 0.1 0.9 [ 142.  366.  592.  856. 1117. 1388. 1659. 1951. 2238. 2528. 2846.] 

3450 0.6 0.5 0.2 0.7 [ 142.  337.  552.  793. 1027. 1314. 1584. 1835. 2126. 2421. 2732.] 

3953 0.6 0.6 0.4 0.6 [ 142.  649. 1190. 1740. 2322. 2899. 3432. 3980. 4479. 4958. 5414.] 
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4792 0.4 0.7 0.6 0.7 [ 142.  620. 1122. 1709. 2309. 2924. 3566. 4163. 4706. 5232. 5714.] 

4825 0.1 0.2 0.8 0.8 [ 52.  208.  305.  453.  626.  804.  990. 1247. 1544. 1899. 2363.] 

4863 0.2 0.1 0.4 0.4 [ 142.  563. 1057. 1601. 2174. 2797. 3439. 4094. 4716. 5276. 5837.] 

5148 0.4 0.8 0.4 0.5 [ 142.  714. 1278. 1921. 2527. 3079. 3639. 4170. 4687. 5133. 5562.] 

6956 0.5 0.7 0.2 0.8 [ 142.  302.  443.  618.  788.  955. 1141. 1316. 1502. 1694. 1862.] 

8198 0.1 0.4 0.7 0.8 [ 142.  226.  316.  424.  525.  649.  804.  973. 1161. 1388. 1642.] 

10382 0.4 0 0.5 0.7 [ 142.  197.  261.  321.  398.  483.  582.  704.  868. 1033. 1257.] 

12726 0.4 0.3 0.5 0.8 [142. 198. 246. 315. 375. 443. 513. 596. 690. 802. 914.] 

13082 0.8 0.7 0.9 0.5 [ 142. 1123. 2059. 2974. 3760. 4480. 5148. 5755. 6235. 6683. 7056.] 

13381 0.3 0.1 0.6 0.8 [142. 209. 243. 285. 333. 401. 469. 549. 618. 717. 815.] 

15910 0.7 0.5 0 0.9 [142. 192. 236. 263. 293. 325. 353. 381. 415. 441. 456.] 

16900 0.4 0.1 0.1 0.5 [142. 167. 187. 210. 226. 240. 261. 279. 297. 319. 347.] 

17979 0.2 0.1 0.1 0.5 [142. 147. 156. 173. 176. 185. 191. 196. 205. 213. 219.] 

18129 0 0.2 0.1 0.5 [142. 154. 167. 177. 182. 185. 187. 190. 191. 192. 194.] 

 
Mean 7098 

Median 4825 

Standard deviation 5746 
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P                       
Laren Increased Splits and Iterations 
 
The table below presents the results of the data analysis conducted for the Laren municipality. Each row corresponds to a single run in the model. 
A run consists of 150 fits comprising five splits and 30 iterations each. The values provided in each row represent the outcome of the best-
performing fit within that run. Consequently, the lowest error values in the table signify the highest fitness. In summary, each row contains the 
optimal performance achieved in a single run, showcasting the predictions generated by this best fit, the associated parameter values and the 
error value that comes forth from these predictions.  

P.1. Results using the Random Search Algorithm  
 
Table 61: Data analysis results of the municipality of Laren for the Random Search algorithm 

Error Weight_eco Weight_env Weight_cof Weight_soc Predictions 

Real Data [ 10.  36.  64.  84.  93.  127.  152.  191.  284.  360.  584. ] 

207 0.4 0 0.7 0.7 [ 10.  14.  23.  34.  56.  92. 142. 223. 311. 426. 563.] 

343 0.3 0.6 0.4 0.8 [ 10.  43.  72.  95. 125. 167. 202. 237. 281. 333. 373.] 

390 0.8 0 0.3 0.7 [ 10.  16.  25.  36.  50.  65. 101. 141. 190. 249. 336.] 

448 0.1 0.6 0.4 0.7 [ 10.  39.  68.  93. 125. 152. 177. 201. 240. 260. 303.] 

450 0.1 0.5 0.2 0.5 [ 10.  44.  70. 104. 144. 163. 193. 215. 247. 282. 313.] 

512 0.6 0.7 0.2 0.9 [ 10.  31.  47.  77.  98. 127. 154. 178. 207. 239. 271.] 

550 0.7 0 0.6 0.8 [ 10.  19.  29.  35.  49.  66.  91. 112. 141. 199. 251.] 

552 0 0 0.9 0.8 [ 10.  15.  27.  35.  46.  62.  77. 107. 142. 190. 250.] 

647 0.7 0 0.6 0.9 [ 10.  14.  19.  32.  44.  59.  77. 100. 135. 172. 223.] 

697 0.7 0.5 0.3 0.9 [ 10.  34.  49.  61.  76.  96. 112. 137. 154. 178. 200.] 

767 0.5 0 0.4 0.6 [ 10.  14.  22.  26.  33.  46.  61.  79. 109. 133. 185.] 
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850 0.7 0.1 0 0.5 [ 10.  12.  19.  27.  30.  41.  55.  68.  89. 117. 160.] 

979 0.6 0.2 0.5 0.8 [ 10.  13.  17.  22.  29.  38.  46.  59.  79.  97. 130.] 

983 0.7 0.7 0.1 0.9 [ 10.  20.  31.  39.  54.  63.  73.  89. 101. 116. 130.] 

1112 0.5 0.2 0.4 0.7 [ 10.  15.  22.  27.  35.  44.  52.  66.  74.  84. 109.] 

1245 0.7 0 0.1 0.6 [10. 19. 27. 33. 39. 44. 50. 56. 64. 75. 87.] 

1312 0.9 0.4 0 0.8 [10. 15. 22. 23. 28. 38. 45. 54. 67. 72. 79.] 

1400 0.6 0.2 0.3 0.7 [10. 14. 18. 21. 24. 26. 29. 36. 47. 58. 68.] 

1579 0.9 0 0.1 0.8 [10. 12. 15. 16. 22. 27. 30. 33. 37. 37. 45.] 

1625 0.2 0.5 0 0.5 [10. 11. 15. 21. 24. 29. 30. 33. 35. 36. 40.] 

1634 0.1 0.4 0.6 0.8 [10. 11. 12. 15. 19. 22. 24. 26. 28. 31. 41.] 

1707 0.3 0.2 0.7 0.9 [10. 13. 15. 21. 22. 24. 26. 28. 29. 30. 32.] 

1789 0.1 0.3 0 0.3 [10. 11. 15. 17. 18. 19. 19. 19. 20. 20. 20.] 

1813 0 0.5 0.4 0.7 [10. 11. 12. 13. 15. 17. 17. 17. 17. 17. 17.] 

1816 0 0.4 0.3 0.6 [10. 10. 11. 11. 13. 14. 16. 16. 16. 17. 17.] 

 

P.2. Results using the Bayesian Search Algorithm  
 
Table 62: Data analysis results of the municipality of Laren for the Bayesian Search algorithm 

Error Weight_eco Weight_env Weight_cof Weight_soc Predictions 

Real Data [ 10.  36.  64.  84.  93.  127.  152.  191.  284.  360.  584. ] 

304 0.5 0 0.9 0.9 [ 10.  22.  34.  50.  64.  91. 112. 147. 196. 274. 356.] 

307 0.7 0.1 0.5 0.8 [ 10.  16.  27.  40.  61.  86. 109. 151. 217. 291. 371.] 

324 0.3 0 0 0.2 [ 10.  20.  34.  51.  78. 116. 174. 245. 343. 477. 649.] 

326 0.5 0.7 0.3 0.9 [ 10.  32.  61.  90. 120. 156. 197. 243. 282. 324. 370.] 

333 0.5 0 0.6 0.7 [ 10.  16.  25.  48.  68.  95. 127. 160. 228. 302. 389.] 

558 0.3 0.8 0.2 0.8 [ 10.  34.  63.  90. 116. 135. 154. 175. 197. 227. 249.] 

624 0.7 0 0.4 0.7 [ 10.  15.  22.  29.  35.  51.  63.  86. 133. 172. 232.] 

670 0.4 0 0.6 0.7 [ 10.  17.  27.  32.  43.  60.  81. 102. 125. 172. 214.] 

731 0.4 0.8 0.1 0.8 [ 10.  34.  47.  62.  82.  95. 116. 128. 146. 159. 183.] 

745 0.5 0.2 0.7 0.9 [ 10.  17.  20.  28.  39.  51.  70.  93. 117. 157. 186.] 

748 0.7 0 0.1 0.5 [ 10.  12.  14.  17.  24.  34.  47.  59.  87. 130. 187.] 
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855 0.8 0 0.1 0.6 [ 10.  16.  24.  30.  33.  36.  53.  66.  86. 117. 157.] 

907 0.7 0.1 0.5 0.8 [ 10.  11.  14.  21.  29.  36.  49.  67.  94. 116. 145.] 

921 0.1 0.3 0.9 0.9 [ 10.  14.  21.  29.  38.  47.  54.  71.  95. 117. 144.] 

938 0.7 0 0.6 0.9 [ 10.  12.  17.  23.  36.  41.  50.  62.  78.  98. 140.] 

1123 0.6 0.2 0.3 0.7 [ 10.  17.  19.  24.  33.  42.  52.  57.  72.  87. 108.] 

1364 0.2 0.1 0.5 0.6 [10. 11. 14. 19. 26. 27. 33. 41. 50. 62. 71.] 

1415 0.3 0.1 0.4 0.6 [10. 13. 18. 29. 30. 31. 39. 43. 49. 56. 65.] 

1444 0.5 0.2 0.5 0.8 [10. 16. 19. 21. 26. 27. 33. 38. 48. 53. 63.] 

1696 0.9 0.4 0 0.8 [10. 13. 16. 18. 20. 21. 24. 26. 30. 33. 34.] 

1704 0.6 0.1 0.4 0.9 [10. 11. 12. 13. 17. 20. 22. 23. 27. 30. 32.] 

1712 0 0 0.4 0.5 [10. 13. 14. 19. 20. 21. 25. 26. 27. 30. 32.] 

1714 0 0.6 0.4 0.7 [10. 12. 16. 21. 24. 26. 26. 28. 28. 29. 29.] 

1731 0 0.6 0.3 0.6 [10. 12. 15. 16. 17. 19. 20. 22. 25. 26. 30.] 

1782 0.5 0.1 0.2 0.9 [10. 15. 16. 17. 17. 20. 21. 21. 21. 21. 22.] 
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Q                                 
Inter-Municipal Analysis 
 
Table 63: Mean, median and standard deviations of the results for the Random Search algorithm 

Random Search Models 

 Mean Median Standard deviation 

Bloemendaal 3458 3090 1933 

Dantumadiel 6497 5327 3071 

Laren 1668 1738 974 

Oegstgeest 7160 4052 7152 

Vaals 3873 2331 3358 

Westerveld 5135 3292 4485 

 

Average 4632 3305 3496 

 
 
Table 64: Mean, median and standard deviations of the results for the Bayesian Search algorithm 

Bayesian Search Models 

 Mean Median Standard deviation 

Bloemendaal 8609 6057 7827 

Dantumadiel 6872 5694 3754 

Laren 2136 1578 3359 

Oegstgeest 5165 4885 3109 

Vaals 4000 3958 2490 

Westerveld 7098 4825 5746 

 

Average 5647 4500 4381 

 


