
1

Creating stable full body motion for a humanoid
robot using the Centroidal Momentum Matrix

Erik de Vries

Abstract—In this paper we show a way to create stable

full body motion for a humanoid robot without defining all

joint trajectories in advance. The full body motion is split

in a task and compensation motion. The task motion can

be generated in advance, while the compensation motion is

obtained during execution of the task. We show that the

compensation motion can be obtained by making use of the

linear relation between the joint velocities and the linear

momentum of the complete robot. A setpoint for the linear

momentum is generated by making use of the error between

the current Capture Point and the desired Capture Point

location. We have implemented the control algorithm in

simulation as well on a real humanoid robot. We were able

to create stable full body motion for a bending forward task.

It turns out that the control algorithm to create stable full

body motion is insensitive for model errors in the internal

model of the robot.

I. Introduction

Humans have the ability to maintain balanced, while
performing all kinds of task. However creating stabilising
control laws for humanoid robots which performs a task is
still a challenging job. But to be able to create a versa-
tile humanoid that can function in a human environment.
The humanoid should be able to remain balanced while
performing all kinds of tasks.

Why is creating stable full body motion for a humanoid
robot so difficult? When creating stable full body motion
for a humanoid robot we are facing three major control is-
sues. Firstly a humanoid robot is a highly unstable system,
it has a high center of mass (CoM) and a small support
area. Secondly a humanoid robot is an underactuated sys-
tem, which means the number of actuators is less then the
number of degrees of freedom. In a humanoid robot there
is no actuator between the foot and the floor, which creates
an unilateral constraint on the foot. For this reason the ac-
tuators in the robot cannot produce an arbitrary amount
of torque and also the reaction force acting on the foot is
constraint. Thirdly a humanoid robot is a complex system.
A typical humanoid robot has 14 degrees of freedom (dof),
which results in a redundant system.

Due to these control issues, online full body motion gen-
erating is challenging. That is the reason why most full
body motion are generated offline, for example by record-
ing motions generated by humans [1], [2], or by optimi-
sation. The offline generated joint trajectories are played
back on the robot. The stiff position controllers will try to
follow the pre-generated joint trajectories as close as pos-
sible. This method works if we assume small uncertainties
and disturbances. Furthermore, this method requires the
design of joint trajectories for many different tasks, which

Department of Mechanical Engineering
Delft University of Technology Delft, The Netherlands
Email: e.devries-wb@student.tudelft.nl

is a time consuming job. And it is impossible to design the
joint trajectories for all the situations a humanoid robot
will encounter in the real world.

But is there an other way to generate full body mo-
tions? Khatib et al. [3] mentioned that a full body motion
can be split into two parts, due to redundancy. The first
part of the motion is the task motion, this motion fullfills
the commanded task. The second part is the compensa-
tion motion, which compensates the task motion without
changing the task motion to avoid a fall. By splitting the
full body motion in a task and compensation motion, the
task motion will become independent from changes in the
environment and initial conditions. Which means changes
in the environment will not change the task motion, but
will affect the compensation motion. Imagine for example
bending forward while standing on one or two leg(s). The
task motion stays the same, namely bending the hip of the
stance leg(s), but the compensation motion will be totally
different, respectively swinging the free leg backwards and
bending the knees. This makes it possible to create the
task motion offline. The compensation motion should be
generated online while the task is executed.

Biomechanical research shows that humans try to reg-
ulate the momentum around their Center of Mass (CoM)
[4], [5]. When a human is performing a task motion, the
body segments used during this motion will disturb the
linear and angular momentum around the CoM. But by
moving the free body segments (body segments which are
not used during the task motion) the human is still able to
control the momentum around the CoM. This mechanism
can also be used to create a stable full body motion for
humanoid robots.

The main goal of this paper is to create stable full body
motion, for a humanoid robot, without defining all joint
trajectories in advance. Like [6], we will use the linear
relation between the joint velocity and the momentum of
the humanoid robot, like derived in [7]. However we will
extend this approach by using the task motion as input
and creating the reference momentum setpoint by using a
capture point [8] controller, instead of using a pre-planned
CoM trajectory. We show how joint limits can be imple-
mented in this famework and how we can implement this
on a real robot. We show that the framework is not sen-
sitive for model errors in the internal model of the robot,
which is used to derive the relation between the momen-
tum and joint velocities. This is a nice property because it
is often difficult and time consuming to determine an exact
internal model of a humanoid robot.

The remaining of this paper will be organised in the
following way. In section II we focus on the theoretical



2

Fig. 1. A free body diagram of a typical robot foot

background. Section III shows how this framework was
implemented in our soccer robot TUlip. In section IV the
results of the simulation and the experiments on the real
robot are shown. We end with the conclusion and future-
work in section V

II. Generating full body motions

In this section we will focus on how to create a stable
full body motion. We first show that the velocity of the
CoM can be used to determine if the full body motion is
stable. After that we show how we can use a momentum
controller to obtain a stable fullbody motion.

A. Balance

Before we can create a compensation motion which sta-
bilises the task motion. We should first focus on how we
can determine if the resulting full body motion is stable.
The fullbody motion will be stable if the robot does not fall.
But how can we determine if the robot does not fall while
perfroming a full body motion? The best known way to de-
termine if the robot will not fall, is to determine if the robot
is fully controlable. If the robot is fully controlable he will
be able to avoid a fall. Due to the unilateral constraints on
the foot, the robot is not directly connected to the ground,
and can become underactuated, which increases the risk of
falling. The robot will become underactuated if the foot
starts to rotate. The foot will start to rotate if the forces
and moments acting on the foot are not in equilibrium.
Figure 1 shows a free body diagram of a weightless robot
foot. The robot exerts a force Frobot and a torque Trobot at
the ankle. If there is ground contact, the ground will pro-
duce a reaction force at each contact point of the foot with
the ground. These forces can be represented by one force,
the ground reference force (Fgrf ). The place where this
ground reference force acts is called the center of pressure
(CoP). The distance of the CoP to the ankle is xCoP . The
foot is in static equilibrium if Trobot = Fgrf · xCoP while
xmin

CoP < xCoP < xmax
CoP , where xmin

CoP and xmax
CoP represents

the bounderies of the foot. Altough this is the best known
way to determin the stability of a humanoid robot, it is
not a sufficient condition to determine if a robot will fall
or not. A robot can still fall while keeping the CoP inside
the foot support polygon. Imagine a motion with zero an-
kle torque, this will put the CoP at the ankle (xCoP = 0)
even if the robot falls.

Fig. 2. Simple robot model which is used to calculate the CP position

A sufficient condition to determine if the robot does not
fall, is to determine if the robot is able to stop [8]. This can
be done by using the Capture Point (CP), which is a point
on the ground in which the CoP can be placed in order to
stop the robot. The robot is able to stop without stepping,
if the capture point is located inside the support polygon.
The position of the CP can be calculated by making use of
a simplified model of the robot (see figure 2). If we assume
that the Center of Mass (CoM) of the robot is moving in a
horizontal plane, the CP can be calculated in the following
way:

xCapture = xCoM + vx ·

√

h0

g
(1)

where xCoM is the position of the CoM, vx is the horizontal
velocity of the CoM, h0 is the height of the CoM and g

is the gravitational constant. The equation shows that
the position of the CP depends on the CoM position and
CoM velocity. As mentioned earlier we are interested in
a full body motion while the robot remains in his current
location, in other words it should not take a step. Which
means the CP should not move outside the foot support
polygon. Combining this information with equation 1 we
can determine the minimum and maximum allowed CoM
velocity which create a stable full body motion.

xmin
Capture − xCoM

√

h0

g

< vx <
xmax

Capture − xCoM
√

h0

g

(2)

If the CoM velocity of the full body motion stays within
these limits, the robot is able to stop and will not fall,
which means the fullbody motion is stable.

In the remaining of this section we will show how we can
control the velocity of the CoM of the robot by making use
of the linear momentum of the robot.



Erik de Vries: CREATING STABLE FULL BODY MOTION 3

B. Momentum

The velocity of the CoM of the robot is closely related
to the linear momentum of the complete robot. The linear
momentum of the CoM of the robot can be written down
in two different ways:

1. In terms of the CoM velocities.

hlin
g = m · vCoM (3)

where hlin
g is the linear momentum of the CoM, m the

total mass of the robot and vCoM a 3×1 vector which
contains the linear velocities along the x,y and z-axis.

2. In terms of the joint velocities

hlin
g = Ag (q) · q̇ (4)

where Ag is the so called Centroidal Momentum Ma-
trix [7] (appendix A), this matrix (6× n) shows how
the joint velocities change the linear momentum of the
system, q and q̇ are n× 1 vectors. They contain the
joint angle and velocities of the n joints.

If we combine the equations 3 and 4 we get a linear
relation between the momentum of the CoM and the joint
velocities, equation 5, because the mass of the robot will
not change, we have a linear relation between the joint
velocities and the CoM velocities. In other words if we
know the vCoM that creates a stable full body motion, we
can calculate the corresponding joint velocities.

m · vCoM = Ag (q) · q (5)

C. Momentum controller

The relation found in equation 5 forms the basis for the
momentum controller shown in figure 3. This controller
can derive the joint velocities which are needed to obtain a
stable full body motion. Based on the current CP position
and task motion.

As mentioned earlier a fullbody motion for a human-
like structure can be splitted into two independed parts.
The first part describes the task motion, the second part
describes the motion which is needed to compensate for
the task motion. The task motion for a humanoid robot is
usually described as a position profile. This task position
profile (qtaskref ) has to be converted into a task velocity
profile (q̇taskref ) before we can use equation 5 to determine
the stabilising joint velocities. To convert the task position
profile into a task velocity profile we use the following P-
controller:

q̇task
ref = Ktask ·

(

qtask
ref − q

)

(6)

where Ktask is the gain, qtask
ref the desired joint angle to

perform the task and q the current joint angle.
Besides the task velocity profile we need a reference ve-

locity for the CoM to solve equation 5. The desired CoM
velocity was determined by using the following controller,
which will guide the CP to a desired CP position.

vCoM
ref = Kp ·

1
√

zCoM

g

·
(

x
ref
CP − xCP

)

(7)

where Kp is the gain, zCoM the current height of the CoM,
g the gravitational constant,xCP the current CP position
and x

ref
CP the desired CP position. The gain Kp should

always be smaller then 1 to guide the CP to the reference
position.

We have to scale the v
ref
CP by the total mass of the robot

to obtain a reference for the linear momentum (hlin
ref ). This

results in the following KCP (see figure 3).

KCP =
Kp · m
√

zCoM

g

(8)

We do not have to create a setpoint for every momentum
in hlin

ref . For example in a 2d case we only create a setpoint
for the linear momentum in x direction to ensure a stable
full body motion. The linear momentum in the z-direction
is unconstraint. This means that it is allowed to change
the height of the CoM of the robot. To be able to solve
equation 5 we need at least one constraint momentum.

C.1 Obtaining the unknown joint velocities

The unknown joint velocities (the joint velocities which
stabilises the task motion) can be obtained by soling equa-
tion 5. However the task motion can be described in two
different ways, as a joint velocity profile of a constraint on
the joint velocities. To be able to solve equation 5 for the
unknown joint velocities we should rearrange it a little bit.

If the task motion is described in terms of joint velocity
profiles, the total joint velocity vector (q̇) of the system
can be split in a part which is needed to perform the task
(q̇task) and a free part(q̇free) which can be used to create
a compensation motion. The joint velocity vector can be
written in the following way:

q̇ =
[

q̇task q̇free
]T

(9)

Combining this with equation 4 will result in equation
10, which has two decoupled parts, the momentum pro-
duced by the task motion and the momentum produced
by the free joints to create the compensation motion.

hG = Atask
G · q̇task + A

free
G · q̇free (10)

The second way to describe a task motion is to formu-
late it as a constraint on the joint velocities. In this way it
is possible to formulate the task motion as a velocity tra-
jectory of a point on the robot. For example if we would
like to kick the ball, we prescribe the velocity profile for
the foot. This constraint can be formulated in the follow-
ing way. The position of a point C on the robot can be
written as :

xC = G(q) (11)

where xC is the position of point C in global coordinates
and G(q) is the position of point C described in terms of
the joint angles. The velocity of point C can be written in
the following way:

ẋC =
∂G(q)

∂q
· q̇ = JC(q) · q̇ (12)



4

Fig. 3. Overview of the momentum controller used to generate stable full body motions

where ẋC is the velocity of point C in the global coordinate
frame, JC(q) is the Jacobian of point C and q̇ the vector
with joint velocities. All the velocity constraints can be
written as:

ẋ = D(q) · q̇ (13)

where ẋ is a vector which contains the velocities in the
global coordinate frame and D contains the corresponding
Jacobians. These constraints can be added to the momen-
tum equation (equation 4):

[

hG

ẋ

]

=

[

AG(q)
D(q)

]

· q̇ (14)

in this equation the upper part will ensure the stability of
the robot and the lower part will create the task motion.

By combining equation 10 and 14, we get:

[

hG

ẋ

]

=

[

AG(q)
D(q)

]task

· q̇task +

[

AG(q)
D(q)

]free

· q̇free (15)

which describes the momentum around the CoM in two
decoupled vectors. By solving equation 15 for the q̇free we
find the compensation motion, which stabilises the robot
while it performs the task motion.

D. Compensation motion

There are two numbers which determine if equation 15
can be solved. These are the number of free joints (n)
and the number of constrained momenta plus the number
of velocity constraints(l). When solving equation 15 there
are 3 possible situations:

1. n < l , there is no compensation motion which satis-
fies equation 15. One can do two things:

(a) Release a momentum constraint.
(b) Redesign the task motion in such a way that it can

be created with fewer joints.
2. n = l, there is only one solution.
3. n > l, in this situation there are infinite many solu-

tions which means some kind of selection mechanism
should be used to select a compensation motion.

D.1 Selecting a compensation motion

A humanoid robot has many of degrees of freedom, for
this reason there is a high chance that we end up with
infinite many soloutions for equation 15. The pseudo in-
verse can be used to select the best soloution for equation
15. The pseudo tries to minimise ‖ q̇free ‖, it selects the
solution with the smallest joint speeds. But we favour to
keep the velocities of the joints which move the largest
mass/inertia as low as possible. We can give the pseudo
inverse some extra information by using weight factors, by
using the generalised inertia matrix (Igen) as weight matrix
the pseudo inverse will minimise ‖ Igenq̇free ‖. When the
weighted pseudo inverse is used the soloution to equation
15 becomes:

q̇free = WLS ·

(

hG −

[

Atask
G

Dtask

]T

· q̇task

)

(16)

WLS = W−1 ·

[

A
free
G

Dfree

]T

·

(

[

A
free
G

Dfree

]

·W−1 ·

[

A
free
G

Dfree

]T
)

−1

(17)

W =

[

Ifree
gen 0
0 I

]

(18)

where W is the weight matrix which contains Ifree
g en, the

entries from the generalised inertia matrix which corre-
sponds with q̇free and an n×n identity matrix I, where
n are the number of velocity constraints.

E. Handling joint and aquator speed limits

After we have used equation 16 to determine the un-
known joint velocities, we should check if we can produce
these velocities. The joint velocities which can be pro-
duced by the robot are bounded to certain limits, which
are created by motor performance and geometry of the
robot. These joint velocity limits are not incorporated in
equation 16. This equation assumes that every joint speed



Erik de Vries: CREATING STABLE FULL BODY MOTION 5

Fig. 4. The limits on the joint velocity at different joint angles

can be realized. Which means we have to check if the cal-
culated joint speeds are with in limits.

Due to velocity saturation the rotational velocity of the
motor is limited to q̇vs. If a joint is driven into a joint
limit the joint velocity will be equal to zero because it
is limited by some geometrical constraint. These velocity
limits can be plot in a graph, see figure 4. To prevent the
joint from reaching his joint limit with a high joint velocity
the maximal joint velocity near the joint limit is:

q̇lim = k · (qlim − q) (19)

where qlim the position of the joint limit and q the current
joint angle. The joint speed,q̇, for a certain joint is valid if
the following holds:

min(q̇low
lim ,−q̇vs) ≤ q̇ ≤ min(q̇upper

lim , q̇vs) (20)

where q̇low
lim and q̇

upper
lim are the maximal velocities which

corresponds with the lower and upper joint limits.
We have to check for each joint velocity in q̇free if it is a

valid joint speed. If it is valid it can be put in the velocity
controller. If not we have to perfrom the following steps
until we find a set of valid joint speeds:

1. Set the first invalid joint velocity to the maximal al-
lowed joint velocity.

2. Add the joint velocity to the joint velocity vector q̇lim

3. Recalculate q̇free by using equation 16, where q̇task =
[

q̇task q̇lim

]T
and check if the joint speeds are valid.

4. If we have found a set of valid joint velocities, the
joint velocities q̇lim are removed from q̇task

If q̇lim contains too much joint velocities so equation 16
can not be solved, we have to release a momentum or task
constraint. If this is done q̇lim should be removed from the
q̇task. And it can be tried to find a set of valid joint speeds.

This algorithm does not guarantee that we will find a set
of valid joint velocities. In the worst case scenario it has to

Fig. 5. The soccer robot TUlip

take a lot of steps before it finds a set of valid joint speeds,
which increases the computational load. At the moment
the computational load is not a problem, but if it becomes
a problem, the algorithm can be enhanced with a predictor
which predicts which joint limit constraints are active.

III. Implementation in TUlip

In this section it is shown how the momentum controller
was successfully implemented in our soccer robot TUlip
(figure 5).

A. TUlip

The soccer robot TUlip was build to participate in
RoboCup, an annual robot soccer competition. The final
goal of RoboCup is to develop a fully autonomous team of
humanoid robots that can play and win against the human
world champion soccer team, by 2050 [9].

TUlip is a 1.2m tall fully autonomous humanoid robot,
with a total mass of 20kg[10]. It has 12 degrees of freedom
(dof), 6 in each leg, all joints are electrically actuated.
Most of the joints are actuated by Series Elastic Actua-
tors (SEA) [11], where a spring is placed in the steel cable
connecting the motor with the joint. Two encoders are
used to measure the rotational difference between the mo-
tor and the joint, this determines the spring expansion and
thus the actuation torque. The advantage of SEA are low
output impedance, high shock tolerance and measurable
force output. However the main disadvantage is the low
force control bandwidth, around 15 Hz determined exper-
imentally. For this reason it is not possible to use stiff
PD-controllers incombination with the SEA.

There are two types of SEA implemented in TUlip. The
first type is a bidirectional SEA (figure 6(a)). This actua-
tot can exert an actuation torque in both directions. The
second type an unidirectional SEA (see figure 6(b)). This
actuator can only exert an actuation torque in one direc-
tion. A return spring is used to create a actuation torque



6

(a) Bidirectional SEA (b) Unidirectional SEA

Fig. 6. The different SEA types

TABLE I

Properties of the internal robot model without model

errors

Link Length Mass [kg] CoM (x,z)
x z x z

Torso 0.0 0.600 11.81 -0.010 0.278
Leg 0.0 0.550 7.17 (2 · 3.58) 0.010 0.364
Foot 0.1 0.000 0.87 (2 · 0.43) 0.027 -0.017

in the opposite direction. This type of SEA is only used
in the ankle joint. There are two difficulties controlling
the torque for this type of SEA, namely friction and non
linearities. The friction is induced by Bowden cables, they
are used to connect the motor, located in the torso, to the
ankle. A change in joint angle will induce non linearities,
because it changes the arm and the direction of the spring
forces.

The software system controlling TUlip is based on the
concept of independent modules each performing their own
specific task, such as motion, vision, communication, world
model and strategy. All these modules run on an on-
board computer (Diamond Poseidon SBC with 1GHz and
512MB ram) running Linux. The motion module is im-
plemented as a real-time process running at 1kHz.

B. Internal model of TUlip

Before we can use the momentum controller an internal
model of the robot is needed to derive the Centroidal Mo-
mentum Matrix, (Ag(q)). This model contains the masses,
locations of the CoM of the various links and how they
are linked together. Altough TUlip is a 3d robot, we will
use an 2d internal model to determine Ag in this research.
This is done to simplify the internal model and avoid 3d
rotations. Due to control problems of the knee in the real
robot the internal model of the robot (figure 7) consists of
3 links (namely a torso, leg and foot), connected by two
joints (hip and ankle). The mass of the legs is twice the
mass of the lowerleg and upperleg of the real robot and
the mass of the foot is twice the mass of the real foot. To
determine the properties of the different links of the real
robot. The robot was taken apart and the CoM and the
mass of each link was determined In table I the properties
of the internal model can be found.

Fig. 7. Internal model of TUlip

Fig. 8. Overview of the qd controllers

C. Joint Velocity Control

Now we have determined the Centroidal Momentum ma-
trix for TUlip, we can determine the velocities that real-
ize a stable full body motion. In this section we show
which controller was used to control the joint velocities of
TUlip. Figure 8 shows how the velocity controllers are im-
plemented in TUlip. Besides the velocity controller we use
a feedforward gravity compensator, to reduce the nonlinear
disturbance induced by the gravity. The torque controllers
are implemented as PD-controllers (see appendix B) and
convert joint torque into motor torques.

There is one problem controlling the joint velocities. The
joint velocity is not measured, but calculated by differen-
tiating the discrete position signal. This results in a very
noisy velocity signal and makes it hard to use as a control
input. However we can measure the joint position and cre-
ate a setpoint by intergrating the reference velocity. For
this reason the following PD controller was used;

T ref = Kp

(

qref − q
)

+ Kd

(

q̇ref − q̇
)

(21)

where Kp and Kd are the proportional and differential
gains, qref is the reference joint angle, q the current joint



Erik de Vries: CREATING STABLE FULL BODY MOTION 7

angle, q̇ref the reference joint velocity calculated by the
momentum controller described in section II and q̇ the cur-
rent joint velocity.

The reference joint position was estimated unsing an in-
tegration window. We can estimate the reference joint an-
gle at sample time k + 1 by using the joint position, qk,
the reference velocity q̇

ref
k and the sample time h in the

following way:

q
ref
k+1

= qk + q̇
ref
k · h (22)

Due to time delay, it takes a while before a control signal
results in a motion of the joint, we have to use some in-
formation from the past. The reference joint angle, q

ref
k+1

,
is determined by calculating the mean of N -estimates of
q

ref
k+1

each estimate started intergrating at a different qi

(i = [k−N + 1,k]):

q
ref
k+1

=
1

N

k
∑

i=k−N+1



qi +

k
∑

j=i

q̇
ref
i · h



 (23)

For our actuators we have chosen N = 1500

IV. Experiments

Experiments have been performed on a simulation model
(for 3d simulation see appendix C) and the real robot to
determine if an stable full body motion could be gener-
ated using the momentum controller described in section
II and how sensitive the method is for errors in the internal
model. This model is needed to generate the Centroidal
Momentum Matrix (Ag). But it is often a challenging and
time consuming job to determine the internal model. We
have investigated two kind of errors in the internal model.
The first error was induced by varying the torso mass of
the internal model. The second model error was induced
by changing the position of the torso mass in the inter-
nal model. It was chosen to induce an error on the torso
mass and the position of the torso mass, because it is the
heaviest mass in the robot. So it is likely that it affects
the performance of the robot the most. By varying the
torso mass and the location of this mass the calculation
of the CP and the Centroidal Momentum matrix are af-
fected. The gravity compensator is not affected because it
is likely one will tune the gravity compensator to give a
satisfactory result.

The performance of the robot was measured by the posi-
tion of the CP with model errors (CP 0), this CP is calcu-
lated using the internal model without model errors. The
closer the CP 0 stays to the setpoint, the better the result.
If the CP 0 moves outside the foot, the robot will fall. Dur-
ing the experiments it was tried to keep the CP with model
errors (CP ∗) in the middle of the foot. This position of
the CP leaves the largest room for errors and disturbances
with random directions.

During all experiments the hip was commanded to follow
the task motion shown in figure 9. The robot will bend
forward and move back to his initial position.

0 5 10 15 20 25 30 35
0

0.2

0.4

0.6

0.8

1

1.2

q hi
p [r

ad
]

Time [sec]

Fig. 9. The task motion for the hip joint

Fig. 10. The simulation model

A. Simulation

In the simulation TUlip was modeled as a double in-
verted pendulum (see figure 10). The links represents the
torso and legs. The connection between the ground an the
robot is modeled as a hinge at the ankle. It was assumed
that there is enough friction between the ground and the
foot (i.e the foot will not move in x-direction). The SEA
are not modeled, the actuators are modeled as ideal torque
sources. The properties of the links can be found in table
II

The ankle is located in the middle of the foot. For this
reason the simulation starts in a upright position, where
the CP is located at the ankle.

Two experiments where performed. In the first exper-
iment the torso mass (mtorso) in the internal model was
varied (see table III). Figure 11 shows the full body mo-



8

TABLE II

Properties of the simulation model

Link Length Mass [kg] CoM (x,z) Inertia
x z x z

Torso 0.0 0.600 11.81 -0.010 0.278 0.35
Leg 0.0 0.550 7.17 (2 · 3.58) 0.01 0.178 0.18

TABLE III

Different mtorso for the internal model during simulation

modelerror [%] -100 -75 -50 -20 0 20 50 75 1000

mtorso [kg] 0.0 2.95 5.9 9.4 11.8 14.2 17.7 20.7 118

tion for 3 cases, namely no model error, an model error
of −100% and an model error of +1000%. How the CP 0

changes can be seen in figure 12. This figure shows the
CP 0 stays in the middle of the foot if there is no model
error. If the internal model mass is decreased, the mass is
under estimated, the CP 0 will move away from the mid-
dle of the foot. The motion will become unstable if the
torso mass becomes close to zero. Notice that the motion
with a model error of −100% will cause a fall, because the
CP 0 moves out side the foot support polygon. If the torso
mass is over estimated, the CP 0 will also move away from
the middle of the foot, however it will not become unsta-
ble. The CP 0 will converge to the CP 0 calculated for a
internal model where all the mass is located at the torso.

In the second experiment the position of the torso mass
in the internal model was changed (see table IV). Figure 13
shows the screenshots of the full body motion for 3 cases,
namely if there is no model error, if there is a model error
of +100% and a model error of −100%. The postion of
the CP 0 can be seen in figure 14. If the model error is
−100%, the torso mass is located at the hip. The motion
will cause a fall, because the CP 0 will move outside the
foot support polygon. With a model error of +100%, the
torso mass is almost located at the top of the torso. The
controller is still able to create a stable full body motion,
however the CP 0 is located close to the edge of the foot,

0 5 10 15 20 25 30 35
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15
real CP position for torso mass error

Time [sec]

C
P

 p
os

iti
on

 [m
]

 

 

no error

+20 %

+50%

+75%

+1000%

−20%

−50%

−75%

−100%

Fig. 12. The position of the CP 0 with varying mtorso

TABLE IV

Change of the torso mass position during simulation

experiments

modelerror [%] -100 -75 -50 -20 0

ztorso
CoM

[m] 0.0 0.070 0.139 0.222 0.278

modelerror [%] 20 50 75 100

ztorso
CoM

[m] 0.334 0.417 0.487 0.556

0 5 10 15 20 25 30 35
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15
real CP position with CoM torso error

Time [sec]
C

P
 p

os
iti

on
 [m

]

 

 

no error

+20 %

+50%

+75%

+100%

−20%

−50%

−75%

−100%

Fig. 14. The position of the real CP model error CoM position torso

this leaves almost no room for disturbances.

A.1 Conclusion

The simulation shows that the internal model does not
have to be very accurate to create a stable full body mo-
tion using the momentum controller. The algorithm can
handle model error for the torso mass of −90% to ∞%
and a miss estimation of the torso mass location of −75%
to +100%. The simulation also shows that it is better to
over estimate the dominant mass (torso mass) in the in-
ternal model then to under estimate it. If the error in the
estimation of the location of the dominant mass is small
(< 20%), the effect of an over- and under estimation are
the same. The simulation shows that it is more important
to know the position of the mass then the exact mass.

B. Real Robot

During the experiments with the real robot it was as-
sumed that both ankle and hip joints move in the same
way, and that each leg carries half of the robot weight. The
joint angles of the left leg where used to calculate the A(q)

and q̇
ref
task. The momentum controller was used to calculate

the reference joint velocity for the ankle joint. Each joint
had his own velocity controller, but the reference velocity
for the left and right joint was the same.

At the beginning of the experiment TUlip was put in
an upright standing posture. In this posture the CP 0 was
located close to the middle of the foot. TUlip stood in this
position for at least 30 seconds, before the task motion
started. The torso mass of the internal model was varied
(see table V), which means A(q) and the calculation of CP



Erik de Vries: CREATING STABLE FULL BODY MOTION 9

Fig. 11. Screenshots of the bending motion calculated by the simulation with varying mtorso.

Fig. 13. Screenshots of the bending motion performed by the simulation, with error in the torso mass position.

changes. The task motion was performed at least 5 times
for each torso mass, except for the motion with a model
error of −75% because this motion was not stable. Figure
15 shows screenshots of the bending motion performed by
TUlip. In figure 16 the position of the CP ∗,the capture
point calculated with the model errors, is shown. The fig-
ure shows that almost all the CP ∗ are located close to the
middle of the foot, this indicates that the CP controller is
working well. The deviation of the CP ∗ from the middle of
the foot is mostly due to friction in the ankle joint. Figure

17 shows the position of CP 0 for the different model errors,
it has almost the same shape as figure 12. Except that in
the simulation the momentum controller can still generate
a stable full body motion with an model error of −75%
and in the real robot this error caused a fall. However this
is not strange, because in the simulation the under estima-
tion of the torso mass is the only error, while in the real
robot there are all kind of errors induced by for example
the controllers, friction, environment etc.



10

Fig. 15. Screenshots of the bending motion performed by the TUlip

TABLE V

Different mtorso for the internal model

moddel error [%] -75 -50 -20 0 20 50 75 100

mtorso [kg] 2.95 5.9 9.4 11.8 14.2 17.7 20.7 23.6

15 20 25 30 35 40 45 50
−0.2

−0.1

0

0.1

Time [sec]

C
P

 P
os

iti
on

 [m
]

CP position for torso mass error

 

 
setpoint
no error
20% error
50% error
75% error
−20% error
−50% error
−75% error

Fig. 16. The CP ∗ position during bending forward motion, with
different model errors

V. Conclusion

The main goal of this paper was to obtain stable full
body motion, for a humanoid robot, without defining all
joint trajectories in advance. To create stable full body
motion the motion was split in a task and compensation
part. The task motion was generated offline while the com-
pensation motion was created online, by using the linear

15 20 25 30 35 40 45 50
−0.2

−0.1

0

0.1

Time [sec]

C
P

 p
os

iti
on

 [m
]

real CP position for torso mass error

 

 
setpoint
no error
20% error
50% error
75% error
−20% error
−50% error
−75% error

Fig. 17. The CP 0 position during bending forward motion, with
different model errors

relation between joint velocities and the momentum of the
robot. In this way we where able to create stable full body
motion for a bending forward task, in simulation and on a
real humanoid robot.

We have also shown that the internal model of the robot
does not have to be very accurate to get good results. It
turned out that the controller can handle errors in the torso
mass and the location of the torso mass of 75 % and more.
An error in the position of the CoM of the torso mass
has a larger influence on the performance of the controller
then an error in the torso mass. So it is more important
to estimate the position of the CoM then to estimate the
exact weight.



Erik de Vries: CREATING STABLE FULL BODY MOTION 11

A. Future work

It has been shown that the momentum controller can be
used to create a full body motion for a robot in a 2d case.
Different steps need to be taken to make better use of the
frame work.

The first step is to make a 3d implementation. To do this
a 3d internal model of the robot is needed to derive the Ag

matrix which solves equation 16 for a 3d robot. In the 3d
case the CP controller (equation 8) should be implemented
twice to create a setpoint for the linear momentum in x and
y-direction. Before the compensation joint speeds can be
calculated in the 3d case, one have to be sure that the

matrix
[

AG D
]T

is not close to singularity. This can be
checked by calculating the singular value decompensation
of the matrix. If one of the singular values becomes close to
zero, the matrix is close to singularity. The singular values
give an indication of how easy it is to generate the specified
momentum or meet the constraint. For example if the
singular value which corresponds to the linear momentum
in x direction is close to 0, it means that it is hard to
change the momentum in x-direction [7].

The second step is how to deal with large disturbances.
The current implementation of the momentum controller
is able to handle small disturbances. But the disturbance
handling can be improved. For example by implementing a
stepping strategy if the CP moves outside the foot support
polygon. Or a so called hip strategy, which is observed by
humans. A human will bend forward if he is receives a
large push in the back. Which creates a moment around
the CoM that helps to remain balanced.

It is expected that the performance of the momentum
controller can be improved if it is implemented as a moddel
predictive controller especially if external disturbances in
the future are known. In this way information of the future
can already be used to generate a compensation motion.

The use of a weightmatrix to select the best free joint ve-
locities need some more investigation. This was not really
tested due to insufficient free joints. The selection mech-
anism will become more important in the 3d case, due to
more redundancy.

Appendices

A. Centroidal Momentum Matrix

The Centroidal Momentum Matrix is a projection of the
system momentum matrix (A) onto the centroidal coordi-
nate frame [7]. The system momentum matrix is a product
of the system inertia matrix (I) and the system Jacobian
(J). The system Jacobian gives the relation between the
system speeds and the joint velocity.

A = I · J (24)

The Centroidal Momentum Matrix can be expressed as
follows:

AG = XT
G · A (25)

where XG is the projection matrix from centroidal to link

coordinates. The matrix AG is the same as
[

Mθ̇ Hθ̇

]T

which is mentioned by Kajita [6].

B. Torque controllers

To control the torque in the SEA, digital PID-control[12]
is used. The input for the controller are the reference joint
torque (uc) and the current joint torque (y). The last
inputs is calculated in the following way:

y = 2 · Ks · rj · (φm · rm − φj · rj) (26)

where Ks is the spring constant of the spring in the SEA,
rm and rj are the motor and joint pulley radius and φm

and φj are the motor and joint angle

The proportional part of the controller is:

P (kh) = K (uc (kh) − y (kh)) (27)

where K is the gain, k sample number and h the sample
time.

The first part of the integral part of the controller ap-
proximates the integral term I (t) = K

Ti

∫ t
e(s)ds. The last

part resets the integrator to prevent integrator windup:

I (kh + h) = I (kh) +
Kh

Ti

· e (kh) +
h

Tt

(y − v) (28)

where Ti is the integration time, e is the error between
the commanded value uc and the process output y, Tt the
tracking time constant and v is the control torque. The
differentiation part of the controller is estimated by:

D (kh) =
Td

Td + Nh
D (kh − h)−

KTdN

Td + Nh
(y (kh) − y (kh − h))

(29)
where Td is the derivative time and N the maximum deriva-
tive gain. Calculating a derivative of a discrete signal will
introduce a lot of noise. The above approximation will ap-
proximate the derivative at low frequencies and will limit
the gain at high frequencies. The controller out put is
calculated in the following way:

v (kh) = P (kh) + I (kh) + D (kh) (30)

The parameters K, Ti, Td,Tt and N must be chosen for
the controller. The parameter N was given a fixed value for
all the joint controllers namely N = 1.5. Tt is realted to the
integration time for this reason Tt was set equal to Ti. The
values for K, Ti and Td were determined experimentally by
using the Ziegler and Nichols step response method [12].

The openloop step response of the SEA was determined
after the joint was locked. The tangent to the steepest
slope of the openloop response was drawn (see figure 18)
and the parameters R ,the slope of the tangent, and L,
the apparent dead time, were determined. The control
parameters are obtained by using the following formulas:

K =
1.2

R · L
Ti = 3 · L Td = 0.5 · L (31)



12

Fig. 18. Determination of the parameters R slope of the steepest
tangent and L,apparent deadtime

Fig. 19. Simulation model of TUlip

C. 20-Sim simulation

To speedup the implementation of the momentum con-
troller into the motion control software of TUlip and to
test the algorithm. The motion control software was used
in combination with the simulation package 20-sim. An 3d
multi-body simulation model of TUlip was already avail-
able in this simulation package [13]. This simulation model
can be controlled with the same software which is used to
control the real robot. This makes it possible to test the
motion control software in simulation (an ideal world )first
and if it works it can be adjusted for the real robot.

The 20-Sim simulation model of TUlip has also 14 dof,
see figure 19. All the dof are actuated. All tree types of
actuators are modeled in the simulation model. The direct
actuators are modeled as ideal inertia free motors, which
can deliver unlimited torque. The actuator model of the
SEA is more advanced. This model contains the springs
between the motor and the joint, see table VI for spring
properties, the motor model takes electrical resistance, in-
ductance, torque constant and speed constant into account.
The motor model data can be found in table VII.

The mass and the mass distribution of the simulation
model is different from the real robot. The mass of the
real robot is 20 kg while the mass of the simulation model

TABLE VI

Spring properties

Spring Stiffness Unit
Single pulley 14.5 [kN/m]
Single pulley return 32.16 [kN/m]
Double pulley 87.5 [kN/m]

TABLE VII

Motor model data based on maxon RE30

Parameter Value Unit
electrical resistance 0.611 [Ω]
inductance 0.119 [mH]
torque constant 25.9 [mNm/A]
speed constant 38.64 [rad/sV]

is 10 kg. In the simulation model it is assumed that the
mass is homogeneous distributed along the link which is
not true for the real robot. In table VIII the size of the
different masses and locations of the CoM can be found.
For this reason the simulation can be used to test the mo-
tion control software, but if we use it on the real robot we
have to re-tune the controllers.

A. Internal robot model

In the simulation the internal model of the robot con-
sisted out of 4 links, namely torso, upperleg, lowerleg and
a foot. The properties of these links can be found in table
IX.

B. results

At the start of the simulation experiment the robot was
put in a initial position, where the CP was located in the
middle of the foot. In stead of following a position task,
the hip joint was commanded to follow the velocity task
shown in figure 20. So the P-controller in figure 3 was not
needed to create q̇task

ref . It was tried to keep the CP in the
middle of the foot during the whole motion. Figure 21
shows snapshots of the resulting motion. Figure 20 shows
the desired joint velocities for all the joints which creates a
stable bending motion, as well as the real joint velocities.
We can see that the velocity controllers follow the desired

TABLE VIII

Masses of the simulation model and the real robot

Simulation Real Robot
link mass CoM mass CoM

x y z x y z

Trunk 5.40 0.00 0.10 0.30 11.81 -0.009 0.104 0.278
Upperleg 1.75 0.00 0.00 0.15 2.50 -0.001 -0.030 0.177
Lowerleg 0.25 0.00 0.00 0.15 1.08 0.038 0.000 0.160
Foot 0.30 0.05 0.00 0.00 0.43 0.027 0.000 -0.017

TABLE IX

Properties of the internal robot model used in simulation

Link Length Mass [kg] CoM (x,z)
x z x z

Torso 0 0.6 5.4 0 0.30
Upperleg 0 0.3 3.5 (2 · 1.75) 0 0.15
Lowerleg 0 0.3 0.5 (2 · 0.25) 0 0.15
Foot 0.1 0.0 0.6 (2 · 0.3) 0 0.05



Erik de Vries: CREATING STABLE FULL BODY MOTION 13

0 2 4 6 8 10
−0.5

0

0.5
Joint velocity

qd
hi

p [r
ad

/s
]

 

 
Setpoint
Joint velocity

0 2 4 6 8 10
−0.05

0

0.05

qd
kn

ee
 [r

ad
/s

]

0 2 4 6 8 10
−0.05

0

0.05

qd
an

kl
e [r

ad
/s

]

Time [s]

Fig. 20. The joint velocities which create a stable fullbody motion,
for the known hip velocity

0 2 4 6 8 10

0

20

40

60

80

100

Time [sec]

P
os

iti
on

 [%
 o

f f
oo

t]

Position of the Cp and CoP

 

 
CoP
CP
edge of foot

Fig. 22. The position of the CP while TUlip bend forward

joint velocities quite well. It can also been seen that the
knee and ankle joint are used during the compensation
motion. Figure 22 shows that the CP stays close to the
middle of the foot during the whole motion.

The simulation results show that the momentum con-
troller is able to create stable full body motion, even if we
have a redundant system. In this case we controlled only
the linear momentum in x-direction and two joint were
used to control this momentum.

References

[1] Nancy S. Pollard, Jessica K. Hodgins, Marcia J. Riley, and
Christopher G. Atkeson, “Adapting human motion for the con-

trol of a humanoid robot,” in Proceedings of International Con-
ference on Robotics and Automation, 2002, pp. 1390–1397.

[2] Anirvan Dasgupta and Yoshihiko Nakamura, “Making feasible
walking motion of humanoid robots from human motion capture
data,” in Robotics and Automation, 1999. Proceedings. 1999
IEEE International Conference on, 1999, vol. 2, pp. 1044–1049.

[3] O. Khatib, L. Sentis, J. Park, and J. Warren, “Whole-body dy-
namic behavior and control of human-like robots,” International
Journal of Humanoid Robotics, vol. 1, pp. 29–43, 2004.

[4] Marko Popovic, Andreas Hofmann, and Hugh Herr, “Angular
momentum regulation during human walking: biomechanics and
control,” in Proceedings of the IEEE International Conference
on Robotics and Automation, 2004, pp. 2405–2411.

[5] DA Winter, “Human balance and posture control during stand-
ing and walking,” Gait & Posture, vol. 3, pp. 193–214, 1995.

[6] S. Kajita, F. Kanehiro, K. Kaneko, K. Fujiwara, K. Harada,
K. Yokoi, and H. Hirukawa, “Resolved momentum control: hu-
manoid motion planning based on the linear and angular mo-
mentum,” in Proc. IEEE/RSJ International Conference on In-
telligent Robots and Systems (IROS 2003), 27–31 Oct. 2003,
vol. 2, pp. 1644–1650.

[7] D. E. Orin and A. Goswami, “Centroidal momentum matrix
of a humanoid robot: Structure and properties,” in Proc.
IEEE/RSJ International Conference on Intelligent Robots and
Systems IROS 2008, 22–26 Sept. 2008, pp. 653–659.

[8] J.E. Pratt and R. Tedrake, “Velocity-based stability margins
for fast bipedal walking,” in Fast Motions in Biomechanics and
Robotics. 2006, vol. 340 of Lecture Notes in Control and Infor-
mation Sciences, pp. 299–324, Springer Berlin / Heidelberg.

[9] “Robocup,” http://www.robocup.org.
[10] Philip Heijkoop, Tomas de Boer, Arjan Smorenberg, Eelko van

Breda, Guus Liqui Lung, Freerk Wilbers, Corne Plooij, Gijs
van der Hoorn, Edwin Dertien, Gijs van Oort, Martijn Wisse,
Pieter Jonker, Stefano Stramigioli, Henk Nijmeijer, and Thom
Warmerdam, “Dutch robotics 2008 teen-size team description,”
Humanoid League Team descriptions, 2008.

[11] G. A. Pratt and M. M. Williamson, “Series elastic actuators,”
in Proc. IEEE/RSJ Int Intelligent Robots and Systems 95. ’Hu-
man Robot Interaction and Cooperative Robots’ Conf, 1995,
vol. 1, pp. 399–406.

[12] Karl Johan Aström and Bjorn Wittenmark, Computer-
Controlled Systems: Theory and Design, LinkUpper Saddle
River : Prentice-Hall, 1997.

[13] Peter Daemen, “Zmp based control in 3d passive dynamic walk-
ing,” M.S. thesis, University of Twente, February 2008.



14

Fig. 21. Snapshots of TUlip bending forward motion in simulation


