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Introduction

Mechanical failures, bad weather conditions or crew absence are all causes for disruptions in airline sched-
ules. Almost 24% of all flights in Europe were delayed in the third quarter of 2017 as a result of disruptions
[15]. Associated costs are the result of additional fuel expenses, crew overtime and passenger monetary com-
pensation, which can have a significant impact on the airline business. Delay costs in the US airline industry
equalled approximately $32.9 billion in 2007. $8.3 billion of the total delay costs were expenses for additional
fuel, crew and maintenance [1]. In the event of a disruption, Airline Operations Control Centers (AOCC) must
ensure the resumption of operations by resolving the disruption through the appropriate interventions. In
the dynamic operational environment, any intervention is based on real-time decisions. Automated systems
that support the decision-making, are therefore only useful if they provide fast, realistic and high-quality re-
covery solutions. That means that the computational complexity must be limited, all important resources
should be considered and disruption costs need to be minimized.

In recent years, several studies on airline disruption management have been performed in the department
of Air Transport Operations at the faculty of Aerospace Engineering, TU Delft. Vos et al. [14] started with
developing a dynamic aircraft recovery model. Vink et al. [13] extended the work of Vos et al. [14] by us-
ing a heuristic to enable faster runtimes. Hassan [8] used machine learning classifiers instead of a heuristic
to reduce the computational complexity and enable faster runtimes. Hoeben [9] developed a crew recov-
ery model. Recently, Nikolajević [10] extended the work of Hassan [8] by adding the crew recovery model
sequentially with a machine learning classifier. The computational complexity of the integrated recovery
formulation and the lack of machine learning accuracy, forced the authors to use a sequential approach to
obtain fast recovery times.

The last goal in the series of projects on airline disruption management is to develop an integrated airline
recovery model, that is able to provide solutions in real-time. The use of machine learning in the previous
projects efficiently decreased the computational complexity and also has the potential to make an integrated
model tractable. The objective of this research is to develop a better-performing machine learning model in
combination with an integrated recovery approach to realize a fast and more efficient disruption manage-
ment model.

This project was carried out from September 2021 until July 2022 as a Master’s thesis for the Air Transport Op-
erations track at the Aerospace Engineering faculty. The main contributions of this research are the following:

• A tractable integrated airline recovery model, that recovers the aircraft and crew, and considers passen-
ger missed connections.

• Machine-learned ranking algorithms that efficiently reduce the computational complexity of the model,
resulting in real-time recovery solutions.

The thesis is divided into three main parts. Part I consists of the scientific article and is the main part of
the report, containing background information, the problem description, methodology and experimental
results. Part I ends with the conclusions and recommendations for future work. Part II consists of an extensive
literature study, which was performed at the start of the project in order to discover the state-of-the-art in the
context of airline disruption management and to find potential literature gaps. Part III contains supporting
work and provides additional information not given in the scientific article.

xiii
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A Real-Time Decision-Support Tool for the Integrated Airline
Recovery using a Machine Learning Approach

Berend Eikelenboom,∗

Delft University of Technology, Delft, The Netherlands

Abstract

Airlines frequently deal with unexpected disruptions, which have to be resolved in order to resume
their operations again. Decision-support tools help airlines with disruption management. However, long
computational times are associated with integrated recovery models that compute globally optimal solutions,
which makes these tools unfit for large airlines. Faster sequential approaches have been proposed, which
recover one resource at a time, but often only provide local optima. This paper presents a real-time decision-
support tool to solve the integrated airline recovery problem. The model simultaneously recovers the schedule
and allocates aircraft and pilot pairs to the flights, while minimizing additional incurred costs. Passengers
are implicitly recovered by considering missed connections. Recovery actions include delaying and cancelling
flights, swapping aircraft, and swapping, deadheading or using reserve crew. A machine-learned ranking
algorithm reduces the computational complexity of the problem by selecting a subset of the resources that
are likely to be involved in the recovery plan, such that only part of the network is considered. The
decision-support tool was evaluated on disruption scenarios of one of the largest airlines in the world: Delta
Airlines. The results show that the machine learning selection reduces the average computational time 15-
fold compared to the integrated recovery model that uses the complete network, increasing the percentage of
solutions computed under two minutes from 13% to 96%. The proposed model is able to find globally optimal
solutions in 58% of the cases and yields similar results in terms of delays, but more flight cancellations in
comparison with the globally optimal solutions. The proposed integrated model found a feasible solution to
all disruption instances, while a benchmarked sequential model returned infeasible solutions in 4.4% of the
cases. Besides, the sequential model produces 68% more flight cancellations, 4 times more aircraft sink node
violations and twice as many crew sink node violations in comparison with the proposed integrated airline
recovery model.

1 Introduction
Airline operations are often disturbed, which could damage the schedule in such a way that it becomes in-
feasible. Disruptions can have different causes, such as mechanical failures, bad weather conditions or crew
absence. Walker (2017) showed that almost 24% of all flights in Europe were delayed in the third quarter of
2017 as a result of disruptions. Associated costs are the result of additional fuel expenses, crew overtime and
passenger monetary compensation, which could have a significant impact on the airline business. Ball et al.
(2010) estimated that the delay costs in the US airline industry were $32.9 billion in 2007 of which $8.3 billion
were expenses for additional fuel, crew and maintenance. In order to resolve the disruption, the schedule should
be recovered such that all flights can be operated again with the goal of minimizing factors like flight delays,
flight cancellations and passengers missing their connection. As an airline possesses many resources that are
critical for airline operations, taking into account all the resources is preferred, but makes the recovery more
complex. Currently, Airlines Operations Control Center (AOCC) use fast, but not optimal, manual methods to
recover the disrupted operations. Human specialists each focus on one resource (aircraft, crew or passengers)
and combine the results to solve the problem sequentially (Castro and Ana Paula Rocha (2014)). However, since
resources are interdependent, the sequential approach may not always result in optimal and feasible solutions.
A resolved schedule may be optimal for one resource, while it might raise conflicts for other resources. The
approaches that integrate the resources into one model produce globally optimal recovery solutions. However,
these approaches have long computational times and are therefore too slow for real-time use. Generally, the
requirement of airlines is to have a recovery plan in under two minutes because of the fast-changing operational
environment in which operators are situated (Clausen et al. (2010)). The increase of combinations due to the
interdependencies of resources and the large amount of recovery options makes the traditional integrated ap-
proach therefore not suited for airlines with large networks.

∗Msc Student, Air Transport and Operations, Faculty of Aerospace Engineering, Delft University of Technology

1



This paper proposes a real-time integrated airline recover model, that makes use of a machine-learned ranker
in order to reach solutions in under two minutes. Often, only a limited number of resources are involved in the
optimal recovery plan of an airline. The purpose of using a machine learning model is to efficiently select the
resources likely to be involved in the recovery, such that a subnetwork can be constructed with these. By doing
so, the recovery model does not have to optimize the airlines’ whole network, which reduces the computational
complexity. The proposed integrated recovery model explicitly recovers the schedule and allocates aircraft and
pilots, and implicitly considers passenger flows to minimize avoidable missed connections.

The structure of the paper is as follows. In Section 2 a literature review is provided to give the reader background
information. In Section 3 the problem is described and the scope of the research is defined. In Section 4, the
methodology of the integrated recovery model is explained and a framework is provided. In Section 5, a case
study on a dataset of Delta Airlines is performed and the associated results are presented. Lastly, in Section 6
the conclusion and recommendations for future work are provided.

2 Literature Review
Airline disruption management (ADM) has been a researched field since the 80s, because of its potential to
ameliorate the service of airlines. Not only can an efficient disruption management strategy save airlines a lot
of money, also passenger dissatisfaction can be mitigated. Hence, in an increasingly competitive environment,
a decision-support tool for disruptions can be of real added value. Integrating aircraft, crew and passenger
recovery into one model is the most challenging, as the complexity and solution space increase drastically with
increasing networks. However, considering all these resources makes the recovery plan more accurate. Petersen
et al. (2012) were one of the first who proposed an integrated problem formulation considering aircraft, crew and
passengers. The authors used a Benders decomposition optimization technique to solve the problem. However,
the runtime of the model was 30 minutes for a network containing 800 flights. Maher (2015) proposed a column
and row generation technique to tackle the integrated airline recovery problem. The model required 45 minutes
for a network of 262 flights. Zhu et al. (2016) proposed a sequential approach to obtain faster solutions to the
airline recovery problem and also considered aircraft, crew and passengers. Although the authors mention that
the model is able to solve problems in real-time, the computational time equals 180 seconds per 5-minute time
stage. Hence, for longer recovery periods larger solution times should be expected. Arikan et al. (2017) tried to
solve the integrated airline recovery problem with a conic quadratic mixed-integer linear programming model,
such that the option of changing the cruise speed could be introduced (non-linear relationship with fuel and
costs). The model was tested on a network with 1254 flights, but runtimes of around 20 minutes were required.
Recently, Hassan (2018) and Nikolajević (2021) proposed a sequential model to obtain real-time solutions to the
airline recovery problem and considered the aircraft, crew and passenger recovery as well. The authors noticed
that only a few resources in the network were involved in the recovery. To reduce the computational complexity,
they implemented machine-learned classifiers to predict the relevant resources and constructed a subnetwork
with these resources. Although the model was able to solve disruptions of Delta Airlines in under two minutes,
the model was prone to local optima and returned infeasible solutions in some cases.

Machine learning techniques have the potential to narrow down the airline recovery problem, such that real-time
solutions can be obtained. However, the classifiers of Hassan (2018) and Nikolajević (2021) lacked accuracy
and therefore could not be efficiently used to solve the integrated airline recovery problem. Recently, a less
traditional machine learning technique has been proposed to tackle networked data. This technique is called
machine-learned ranking and takes into account the global structure of problems. Instead of predicting the
outcome of one data point, it takes a set of data points and ranks the data points within. This technique has
already been proven efficient in other domains. Liu et al. (2015) applied a machine-learned ranker to protein
remote homology detection and Ai et al. (2018) use the technique for information retrieval. However, to the
best of the author’s knowledge, these techniques have not been used in the airline industry yet. As the airline
recovery problem concerns networked data, a machine-learned ranking approach has the potential to leverage
this global structure and select the relevant resources more accurately.

3 Problem Description
The model proposed in this paper focuses on integrating the three most important resources, i.e. aircraft, pilots
and passengers, in one recovery model. Doing so makes the decision-support model considerably more aligned
with the real-life operational situation in comparison to models recovering only a single resource at a time. The
objective is to optimize the new schedule and allocate both aircraft and pilot pairs simultaneously. Passenger
flows are also considered, since the model penalizes decisions that result in passengers missing their connection.
The disruption types considered in this research are flight delays, flight cancellations, aircraft unavailability and
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airport unavailability. The model computes recovery solutions from these disruptions by using a combination
of several recovery actions. Related to the schedule, the model could delay or cancel flights if this is deemed
necessary. Besides, swapping aircraft (i.e. operating a flight with an unscheduled aircraft) is another possible
recovery option. Related to the pilots, swapping, deadheading (i.e. relocating pilots by flying crew to another
airport as a passenger) and the use of reserve crew are recovery actions that could be taken.

Aircraft, pilots and passengers are considered the most important resources of an airline, because the former
two are crucial for operating a flight and the latter experience the services of the airline. Additionally, pilots
must follow strict regulations regarding flight, duty and rest times, which makes it difficult to manually create
feasible schedules that meet all the labour constraints. Cabin crew are not considered in the model, as they
are much more readily available and are less subject to stringent regulations, which makes it easier to allocate
cabin crew to flights. Another reason for disregarding cabin crew is that they often propagate disruptions to
many more flights, which increases the computational complexity of the model. This is because the cabin crew
composition is likely to change during the duty, as the number of cabin crew depends on the number of passen-
gers in the aircraft. On the other hand, pilot pairs often follow the same aircraft during their duty, meaning
that disruptions affect a limited number of flights.

Furthermore, the operations of airlines also depend on maintenance availability, gate allocation, ground handling
and air traffic control. But since these are less constraining and decrease the computational speed of the decision-
support tool, these are not considered.

4 Methodology
This paper proposes an integrated airline recovery model that makes use of a machine learning technique to
reduce the computational complexity, such that solution times could be achieved in less than 2 minutes. The
disruption and the schedule with the aircraft and crew pairs are pre-processed and analysed by the machine-
learned model, which ranks the resources from most to least relevant (i.e. the likelihood of the resource being
involved in the optimal recovery solution). A subset consisting of the disrupted resources and the resources
selected by the machine-learned ranker is created, with which a subnetwork is constructed. Finally, a mixed-
integer linear programming model computes the optimal recovery solution to the disruption in the subnetwork.
During post-processing, a visualisation of the recovered schedule is generated and key performance indicators
(KPI’s) are computed. An overview of the methodology is depicted in Figure 1. In the next sections, each
module will be explained in more detail.

Figure 1: Methodology overview.

4.1 Pre-processing
In the pre-processing stage the schedule and disruptions are interpreted and all the associated costs are com-
puted. The delay costs are based on the work of Cook et al. (2012) and consist of both hard costs and soft
costs. The hard costs are defined as the legal compensation that the airline is obliged to return to the customer
in case of delays (depending on the duration of the delay). The soft costs, on the other hand, are defined as the
expenses not directly related to the repayment, but to the poor experience of the customer due to a delay or
cancellation.

During pre-processing, the recovery scope is also determined. The time window indicates the period in which
the recovery actions should take place. At the end of the time window, the disruptions should be resolved,
such that the airlines’ operations can be resumed again. The start of the time window is defined as the time
at which the first disruption became known. The end of the time window is defined by the user. Either the
airline chooses to specify the length of the time window or the end of the time window. The longer the time
window, the more recovery options become available, which increases the computational complexity of the model.

Furthermore, the network is grouped per aircraft family for large airlines to reduce the computational complex-
ity. Instead of recovering all aircraft and crew in the network, only the resources belonging to the same family
as the disrupted aircraft are being considered. This implies that aircraft swaps cannot be performed within
different families. However, this is not common, as the difference in characteristics of aircraft belonging to
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different families is often too large making it inefficient to swap. Similarly, crew swaps also become impossible
within different families. But as pilots are trained for a specific family, they are not even allowed to operate
other families. Examples of aircraft families are Boeing 737 and Airbus A320. Within aircraft families, typically
different aircraft types exist, such as the 737-800 and 737 MAX. It should be noted that the differentiation is
made between families and not between types.

Lastly, the connecting passenger matrix (CPM) is also constructed in this phase. The CPM is based on
the research performed by Vink et al. (2020), who aimed to include passenger considerations as well without
explicitly modelling them. Vink et al. (2020) developed a one-sided CPM, which computed the missed connection
costs in the case a flight delay caused passengers to miss their connection. Hassan (2018) further extended the
CPM, by allowing the connecting flights to be delayed as well if this does not disturb the downstream flights
after it. The CPM is generated per flight that has a connection.
Although the connecting passenger matrix implicitly models the flow of passengers and is a great addition to
the integrated recovery model, it also has a limitation. The CPM is one-sided in most cases. This means that it
only considers the delay of the first flight with respect to the scheduled departure time of the connecting flight
(i.e. it assumes that the connecting flight will not be delayed). However, it could happen that the second flight
is also delayed due to an upstream disruption. In these cases, the CPM does not consider the imposed delay
of the second flight and still counts with the initially scheduled departure time, potentially resulting in addi-
tional costs for no missed connection. The two-sided extension of Hassan (2018) fixes this by assigning negative
costs to downstream flights which have to be delayed in order to avoid passengers missing their connections.
However, this extension only applies to the cases where the first flight is the disrupted flight itself, as it is not
computationally feasible to implement this for all flights in the network.

4.2 Machine-learned Ranking
In order to increase the computational speed, a selection of the resources is made before starting with the
optimisation. The two-minute requirement of the AOCC cannot be satisfied for most airlines while considering
their full network in the integrated optimisation model. Both an aircraft and crew selection is made, with
two distinct machine-learned ranking models. These models aim to rank the resources from most relevant to
irrelevant in a supervised manner, based on the features describing them. In this context, relevancy means the
likelihood that the resource is involved in the recovery through a recovery action (e.g. delayed or swapped).
Hereafter, the most relevant resources are selected with which a subnetwork is constructed. The number of
resources in the subnetwork should be calibrated in such a way that the total recovery time is limited to under
120 seconds.

Several ranking approaches exist, including pointwise, pairwise and listwise approaches. The pointwise approach
reduces to a traditional classification problem. All the data points are independently given a score based on
their own features, after which the data points are sorted in a list from high to low scores. The group structure
of ranking is neglected in this approach as the data points are not compared to each other in one way or another.
In the pairwise approach, pairs of data points are compared with each other. This is done for all data points in
the group, such that a global ranking can be achieved at the end of the process. Lastly, the listwise approach
uses the complete group structure to rank the data points. The approach directly takes an entire list of data
points as an instance and tries to come up with the optimal ordering of it.

Algorithms
As pointwise ranking reduces to a traditional classification problem, the focus will be on the pairwise and
listwise approaches. A challenge organised by Yahoo was aimed to benchmark learning to rank algorithms
on real-world large datasets (Chapelle and Chang (2011)). The datasets consisted of a subset of the training
set used internally by Yahoo to train their own web search engines and included 883,000 data points and 700
features. Burges et al. (2011) won the challenge and used a linear combination of 12 learning to rank algorithms,
consisting of 8 LambdaMART, 2 LamdaRank neural networks and 2 logistic regression models. The former
two are well-known open-source algorithms developed by Microsoft (Burges (2010)). Next to LambdaRank and
LambdaMART, Microsoft first developed RankNet.

• RankNet: This model was first developed by Microsoft and makes use of neural networks. The loss
function tries to minimize the number of inversions in ranking, with an inversion meaning an incorrect
ordering among pairs. RankNet optimizes the loss function using a stochastic gradient descent in a neural
network system.

• LambdaRank: This model was developed based on RankNET, but only uses the gradient (λ, lambda)
of the loss, instead of the loss itself. These gradients are attached to the data points and indicate the
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direction where the data point has to go (more relevant or less relevant).

• LambdaMART: The last model combines LambdaRank and MART (Multiple Additive Regression Trees).
The result is a gradient boosted decision tree with a loss function derived from LambdaRank to perform
pairwise ranking. During tests performed by Microsoft, LambdaMART has shown better results than
both RankNet and LambdaRank.

Since LambdaMART is the most recently developed algorithm that has shown the best results and was used by
Burges et al. (2011) who won the Yahoo challenge, this research uses LambdaMART as a starting point.

Features
The potential of aircraft and crew to help resolve the disruption, depends on different pieces of information,
such as the characteristics of the disrupted aircraft, the characteristics of the candidate aircraft, the schedule
and information related to the disruption itself. The final feature set consists of 46 features for the aircraft
model and 126 for the crew model, and is based on the work of Hassan (2018) and Nikolajević (2021). The ten
most important aircraft features are depicted in Table 1. The feature importance is based on the usefulness of
the feature in predicting the outcome. All the remaining aircraft features used in the model are presented in
Table 10 in Appendix A.

AC Feature Description

c_ground_time_d_dest_airport The total time the candidate aircraft spends on the ground at the
destination airport of the disrupted aircraft.

c_ground_time_d_orig_airport The total time the candidate aircraft spends on the ground at the
origin airport of the disrupted aircraft.

d_dest_airport_min_after_min The minimum number of minutes the candidate aircraft is on the
destination airport of the disrupted flight after the STA of the
disrupted flight.

d_orig_airport_min_after_min The minimum number of minutes the candidate aircraft is on the
origin airport of the disrupted flight after the STD of the disrupted
flight.

disruption_duration The duration of the disruption in minutes.

c_range_vs_d_range_max Candidate aircraft range - disrupted aircraft range.

d_range_max Maximum flight distance of the flight string of the disrupted air-
craft.

c_flights_duration The sum of the flight durations for the flights scheduled for the
candidate aircraft.

c_econ_lf_mean The mean economy passenger load factor of all flights scheduled
for the candidate aircraft.

c_econ_lf_std The standard deviation of the economy passenger load factor of
all flights scheduled for the candidate aircraft.

Table 1: Most important aircraft features

The ten main crew features are depicted in Table 2. The remaining crew features are based upon the main
features below and are presented in Table 11 Appendix A. The critical time, embedded in many features,
represents the time and location where a flight’s originally scheduled crew will not be able to operate it due to
the disruption. A difference in structure can be noted between the two feature sets, as the aircraft features are
more comprised of integer and floating values, while many crew features are binary (i.e. true or false).
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Crew Feature Description
time_end_crew Duty start time.
time_start_crew Duty end time.
tw_start TW start time in minutes from midnight.
tw_end TW end time in minutes as sum of TW start time and TW length.
crit_time Critical time as measured in minutes after the start of the TW.
c_at_crit True if crew is at critical location at critical time.
c_at_org True if candidate crew is at origin of disrupted flight.
c_at_dest True if candidate crew is at destination of disrupted flight.
future_fl_end True if crew has future flight to end airport of disrupted crew.
future_fl_next True if crew has future flight to destination of disrupted flight.
reserve_crew True if candidate is reserve crew.

Table 2: Main crew features

Training and Evaluation
The learning to rank algorithms are trained with data from solved disruption instances. An aircraft recovery
model developed by Hassan (2018) and a crew recovery model developed by Nikolajević (2021) were used to
find the optimal solutions to many disruptions instances. The models determined which aircraft and crew pairs
were involved in the recovery and computed the features of each individual resource. Hence, with training data
containing the features and a binary label indicating the involvement of each resource, the machine learning
algorithm is able to learn what the relevant features are to identify helpful resources in disruption instances not
yet solved.

Choosing a specific model is realized by comparing their performance in terms of an evaluation metric that
fits the purpose of this research. Binary classification evaluation metrics are well-suited for this use case, as
the ranking model eventually returns two classes: the selected resources and the non-selected resources. Most
binary metrics consider combinations of the true positives (TP ), false positives (FP ), true negatives (TN) and
false negative (FN).

Metric Formula Description

Recall TP
TP+FN The fraction of relevant resources that are selected.

Precision TP
TP+FP The fraction of selected resources that are relevant.

Accuracy TP+TN
TP+TN+FP+FN The fraction of correct predictions for all the resources.

Specificity TN
TN+FP The fraction of irrelevant resources that are kept outside the selection.

Table 3: Evaluation Metrics for Binary Classification

As networks of larger airlines commonly consist of hundreds of aircraft and crew, and only a few resources will
be helpful in the recovery, the data will be imbalanced. Because of this, accuracy and specificity seem to be
inappropriate metrics. The large number of irrelevant resources will falsely insinuate the good performance of
the model. Besides, the changing number of irrelevant resources per disruption instance will give inconsistent
and meaningless results. Precision assesses the fraction of selected resources that are relevant, but since the
number of relevant resources changes per disruption instance, the metric will also be meaningless. Consider for
example a selection size of 20 aircraft, a disruption instance with only one relevant aircraft, correctly identified
and an instance with two relevant aircraft, also correctly identified. In both cases the model has done a per-
fect job, since all relevant aircraft are predicted correctly. However, the precision of the second will be higher
than the precision of the first. The recall evaluation metric only considers the relevant resources and is very
much suited for this use case. It assesses the fraction of all the relevant resources (i.e. the resources that are
involved in the recovery and are included in the selection). This evaluation metric will give a good indication
of the performance of the model, regardless of the number of relevant and irrelevant resources in the disruption
instances. The recall does increase with increasing selection sizes, thus the recall should always be evaluated at
a fixed group size when fairly comparing different models and parameters with each other.

Hyperparameter Optimisation
To increase the performance of the model, the hyperparameters (which define the construction of the model)
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of machine-learned ranker should also be optimized. Bayesian optimisation is one of the most structured and
efficient methods to optimise the hyperparameters. The technique applies a probabilistic surrogate model that
tries to approximate an objective function, based on known function values (i.e. the evaluations of models
with certain hyperparameters). From the probabilistic model, also called a prior, a posterior distribution is
created, which interpolates the known function values with the information gained from the prior. The posterior
constructs an acquisition function which provides an indication for the next sample to pick. This process is
repeated each time a new sample is evaluated, such that more information can be used to predict the objective
function. Generally, a Gaussian process is used for the prior and a method called Kriging, or Gaussian process
regression, is used to construct the posterior. The method uses the prior covariances from the Gaussian process
to perform the interpolation. The blue line in Figure 2 shows the Kriging method, while the red dashed line
depicts a smooth spline. The acquisition function commonly aims to maximise the expected improvement of
the evaluation of new samples f(x) in comparison to the best-evaluated sample thus far to find the best next
sample to pick.

EI(x) = E(max(f(x)− f̂ , 0)) with f̂ the maximum value of f thus far (1)

Figure 2: Kriging, creating the posterior from the prior.
Adapted from Huchet et al. (2019).

A good practice during hyperparameter optimisation is to use k-fold cross-validation. The initial training dataset
is split into k folds, where k−1 folds are used for training and 1 fold is used for validation. A model with certain
hyperparameters is trained and evaluated on all the different combinations of training and evaluation folds, such
that a more accurate, unbiased analysis can be done when comparing the different hyperparameters with each
other. The evaluations of the model with certain hyperparameters could be averaged to get an indication of its
performance, but one could also look at the standard deviation to assess its variance on varying datasets. An
example of a 3-fold cross validation is given in Figure 3.

Figure 3: 3-fold cross-validation

4.3 Subnetwork Construction
After the machine learning algorithm has selected the resources, flights should be selected as well in order to
create a time-space subnetwork. It is not sufficient to only include the flights operated by the initially selected
resources, as other flights could be relevant as well. Consider the schedule in Figure 4. If the initial selection
would comprise AC 1 and Crew 2, the flights operated by these resources would be the flights from and to
ATL and NY (i.e. the blue arcs). However, as Crew 1 has a second flight going to LA (i.e. the green arc),
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this next flight should also be considered. If not, the flight from ATL to NY has the freedom to be delayed
past the scheduled departure time of this second flight (e.g. the orange arc) and hence Crew 1 would not
make its connection. Therefore, it is crucial to consider all the downstream flights of all the resources operating
the initially selected flights. Besides, not only the additional flights, but also the additional resources, not yet
included, on these flights should be added to the selection. In the example given, not only the flight from NY
to LA should be considered, but also AC 2 operating this flight. If not, resource allocation could be infeasible
due to a shortage of aircraft and crew pairs.

Figure 4: Example incomplete selection

An iterative selection algorithm is implemented that includes all the relevant flights and additional resources
in the final selection, given the initial selection determined by the machine-learned ranker. A flowchart that
demonstrates this process is depicted in Figure 5.

Figure 5: Selection algorithm

The size of the final selection eventually determines the computational speed. If the final selection is too large,
the initial selection should be reduced and the iterative selection algorithm should be called again. This process
should be repeated until the size of the final selection is appropriate.

Parallel time-space networks, introduced by Thengvall et al. (2003), are constructed. In this way, each resource
can be tracked individually, making it easy to implement origin and sink node constraints, crew labour regula-
tions and maintenance activities. All nodes in the network correspond to a unique combination of airport and
time. Resources are able to get from one node to the other with the use of two different arcs: flight arcs and
ground arcs. Ground arcs connect nodes at the same airport and are used by aircraft and crew that stay on
the ground at a specific airport. Flight arcs, on the other hand, are the arcs that connect the nodes not at the
same airport and represent both the scheduled and delayed flights.

4.4 Integrated Disruption Solver
The integrated disruption solver (IDS) is a mixed-integer linear programming (MILP) optimisation model that
attempts to find the optimal solution to one or multiple disruptions in a given time window. The model opti-
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mises the recovery of the schedule and allocates aircraft and pilot pairs to flights simultaneously. Connecting
passengers are implicitly included by the connecting passenger matrix (CPM), which imposes an appropriate
cost in the objective if passengers cannot make their next flight.

The sets, indices, parameters and decision variables below are used to construct the objective function and the
constraints. The origin nodes represent the airport and time at which each resource starts in the time window.
From this node, the resources can proceed through the time window via the intermediate nodes until they reach
their sink node. The sink nodes are modelled differently for aircraft and crew. Each individual crew has its own
sink node, which should be respected. However, aircraft follow a more flexible approach and are not restricted
to a specific end airport. Having another aircraft tail of the same type at the sink node is also permitted. This
makes sure that more aircraft swap options are possible, which could reduce the disruption costs. Because of
the human factor of pilots, this is not allowed for the crew.

Sets and Indices
Sets Indices
F flights i flight index
K crews k crew index
A airports t delay time index
E aircraft types a airport index
P aircraft p aircraft index
P(e) aircraft p of type e e aircraft type index
N nodes = NO ∪NI ∪NS n node index
NO origin nodes j artificial variable index
NI intermediate nodes
NS sink nodes
T delay steps

Parameters
Aircraft Crew
COPp,i Operating cost of AC p on flight i COPk,i

Operating cost of crew k on flight i
CDi,t Delay cost of flight i for delay t CDHk,i

Deadhead cost of crew k on flight i
CCi

Cancellation cost for flight i COC Unscheduled crew operating penalty
CGn

Cost of ground arc from node n CCSVk
Sink node violation cost for crew k

he
n Number of AC of type e required at node n CFT Flight time exceeded penalty

CCSCH
Unscheduled AC operating penalty FTi Flight time of flight i

CASVk
Sink node violation cost for aircraft k FTLk Flight time remaining in TW for crew k

FTMk Maximum additional flight time for crew k

Decision Variables
Aircraft Crew
δFp,i

if flight i is flown by AC p without delay δKk,i
if crew k is allocated to flight i without delay

δFDp,i,t
if flight i is flown by AC p with delay t δKDk,i,t

if crew k is allocated to flight i with delay t
δCi

if flight i is cancelled δGKk,n
if crew k uses ground arc n

δGPp,n
if AC p uses ground arc n δK′

i
if flight i is flown by an unscheduled crew

δF ′
i

if flight i is flown by an unscheduled AC δDHk,i
if crew k is deadheaded on flight i without delay

sj slack variable for sink constraint violation δDHDk,i,t
if crew k is deadheaded on flight i with delay t

sk slack variable for sink constraint violation
sFTk

slack variable for exceeding scheduled flight time

Objective Function

Min
∑
p∈P

∑
i∈F

COPp,i
· δFp,i

+
∑
p∈P

∑
i∈F

∑
t∈T

(
COPp,i

+ CDi,t

)
· δFDp,i,t

+
∑
i∈F

CCi
· δCi

+
∑
p∈P

∑
n∈N

CGn
· δGPp,n

+
∑
i∈F

CCSCH
· δF ′

i

+
∑
k∈K

∑
i∈F

(
COPk,i

· δKk,i
+ CDHk,i

· δDHk,i
+
∑
t∈T

(
COPk,i

· δKDk,i,t
+ CDHk,i

· δDHDk,i,t

))
+
∑
k∈K

∑
n∈N

CGn · δGKk,n
+
∑
i∈F

COC · δK′
i

+
∑
j∈S

sj · CASV +
∑
k∈K

CCSV · sk +
∑
k∈K

CFT · sFTk
(2)
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The objective function is a minimisation problem and consists of reducing aircraft, crew and passenger related
costs. The first line represents the aircraft and passenger related costs, consisting of the direct operating costs
(DOC), delay costs, cancellation costs, the cost of operating a ground arc and the additional cost of operating
a flight with an unscheduled aircraft. The passenger missed connection costs are implicitly modelled in CPM,
which is incorporated in the delay costs. The second line represents the crew related costs, consisting of the
operating and deadheading cost, the cost of operating a ground arc and the additional cost of operating a flight
with unscheduled crew. The last line consists of slack variables to ensure feasibility. The first refers to the
aircraft sink node violation, the second to the crew sink node violation and the last one to the crew flight time
violation. If the aircraft and crew sink node constraints or the flight time constraints cannot be satisfied, these
slack variables are activated and impose a penalty in the objective function.

Constraints

δCi +
∑
p∈P

(
δFp,i +

∑
t∈T

δFDp,i,t

)
= 1 ∀i ∈ F (3)

∑
p∈P

δFp,i
=
∑
k∈K

δKk,i
∀i ∈ F (4)

∑
p∈P

δFDp,i,t
=
∑
k∈K

δKDk,i,t
∀i ∈ F, ∀t ∈ T (5)

∑
p∈P

δFp,i ≥
∑
k∈K

δDHk,i
∀i ∈ F (6)

∑
p∈P

δFDp,i,t
≥
∑
k∈K

δDHDk,i,t
∀i ∈ F, ∀t ∈ T (7)

δGFp,n
+
∑

i∈Fout

δFp,i
+

∑
i∈Fout ,t∈T

δFDp,i,t
= 1 ∀p ∈ P, n = scheduledNo of p (8)

δGp,n−1
+
∑
i∈Fin

δFp,i
+

∑
i∈Fin,t∈T

δFDp,i,t

−

δGp,n
+
∑

i∈Fout

δFp,i
+

∑
i∈Fout ,t∈T

δFDp,i,t

 = 0 ∀p ∈ P, n ∈ Ni

(9)

∑
p∈P (e)

δGFp,n−1 +
∑
i∈Fin

δFp,i +
∑

i∈Fin,t∈T

δFDp,i,t

+ sj ≥ he
n ∀e ∈ E, n ∈ Ns (10)

δGKk,n
+
∑

i∈Fout

(
δKk,i

+ δDHk,i

) ∑
i∈Fout ,t∈T

(
δKDk,i,t

+ δDHDk,i,t

)
= 1 ∀k ∈ K,n = scheduled No of k (11)

δGKk,n−1
+
∑
i∈Fin

(
δKk,i

+ δDHk,i

)
+

∑
i∈Fin,t∈T

(
δKDk,i,t

+ δDHDk,i,t

)−

δGKk,n
+
∑

i∈Fout

(
δKk,i

+ δDHk,i

)
+

∑
i∈Fout ,t∈T

δKDk,i,t
+ δDHDk,i,t

 = 0 ∀k ∈ K,n ∈ Ni (12)

δGKk,n−1
+
∑
i∈Fin

(
δKk,i

+ δDHk,i

)
+

∑
i∈Fin,t∈T

(
δKDk,i,t

+ δDHDk,i,t

)
+ sk = 1 ∀k ∈ K,n = scheduled Ns of k

(13)

δFp,i +
∑
t∈T

δFDp,i,t = 0 ∀p, i where (SeatsYp < PaxYi ∧SeatsJp < PaxJi) (14)

δFp,i
+
∑
t∈T

δFDp,i,t
= 0 ∀p, i where

(
rangep < disti

)
(15)
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δFp,i +
∑
t∈T

δFDp,i,t − δF ′
i
= 1 ∀i ∈ F, p = aircraft not scheduled for i (16)

δFp,i
+
∑
t∈T

δFDp,i,t
= 0 ∀p ∈ P, i where STDi − Tnow < Tswap and i ̸= flight for p (17)

δKk,i
+
∑
t∈T

δKDk,i,t
− δK′

i
= 1 ∀i ∈ F, k = crew not scheduled for i (18)

∑
i∈F

(
δKk,i

+
∑
t∈T

δKDk,i,t

)
· FTi ≤ FTLk + FTMk · sFTk

∀k ∈ K (19)

Constraints 3 ensure that all flights are either flown as scheduled, delayed or cancelled. Constraints 4 ensure that
all the on-time flights are allocated a crew pair and Constraints 5 ensure that all the delayed flights are operated
by a crew pair. Constraints 6 and 7 prohibit deadheading on cancelled flights and ensure that deadheading
can only happen on operated flights. Aircraft node continuity is ensured by the three expressions underneath.
Constraints 8 force all aircraft to leave the first node in the time window, either by flying a (delayed) flight
or by utilizing a ground arc. Constraints 9 demand all aircraft entering a node to also leave that node. Con-
straints 10 handle the inflow of the aircraft at the sink node in the time window by fixing the aircraft type at
a certain airport. To avoid model infeasibility, a slack variable with a large associated cost is activated in the
objective function whenever the constraints cannot be satisfied. The following three expressions manage the
crew continuity. Constraints 11 make sure that all crew pairs leave their starting node either by operating or
deadheading a (delayed) flight or by utilizing a ground arc. Similar to Constraints 9, Constraints 12 demand
all crew pairs entering a node to also leave that node. Lastly, Constraints 13 fix specific crew pairs at the
sink node. If this cannot be assured, the slack variable is activated and imposes a large additional cost in the
objective function. Again, this is done to avoid model infeasibility whenever the constraints cannot be satisfied.
Besides the constraints related to the time-space network, aircraft and airline constraints are also imposed.
Constraints 14 make sure that the aircraft that do not satisfy the seat capacity requirement cannot operate the
flight. Constraints 15 prohibit an aircraft from operating a flight when its range is less than the distance of the
flight. When a tail has been swapped and an unscheduled aircraft operates a flight, Constraints 16 ensure that
a penalty is incurred in the objective function. Constraints 17 make sure that aircraft p not scheduled for flight
i cannot operate the flight Tswap minutes before its time of departure. Constraints 18 impose a penalty in the
objective function when a flight is operated by a different crew pair. Lastly, Constraints 19 ensure that crew
pairs cannot exceed their maximum flight time during the recovery. If these constraints are violated, a slack
variable will be activated to enlarge the crew’s maximum flight time, such that the constraints become feasible
again. However, this leads to the addition of a penalty in the objective function.

Disruptions ∑
p∈P

δFp,i
+ δDp,i,t

= 0 ∀t ∈ T ≤ delay, i = delayed flight (20)

δCi = 1, i = cancelled flight (21)

δFp,i +
∑
i∈F

δDp,i,t
= 0

∀i ∈ F where (tstart ≤ STDi ≤ tend ∪ tstart ≤ STAi ≤ tend ) ,

∀t ∈ T where (tstart ≤ STDi + t ≤ tend ∪ tend ≤ STAi + t ≤ tend ) (22)

∑
p∈P

(
δFp,i +

∑
i∈F

δDp,i,t

)
= 0

∀i ∈ F (where (tstart ≤ STDi ≤ tend ∪ tstart ≤ STAi ≤ tend )) ∩ ( orig i ∪ dest i) = a

∀t ∈ T ( where (tstart ≤ STDi + t ≤ tend ∪ tend ≤ STAi + t ≤ tend )) ∩ ( orig i ∪ desti) = a

where a = unavailable airport (23)

The actual disruptions should also be included in the MILP model, as otherwise the schedule would be operated
as planned. Disruptions are added to the optimisation model in the form of constraints, which cancel the
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relevant decision variables. When a flight is delayed, Constraints 20 make sure that all flight arcs up until the
length of the delay cannot be flown. When a flight is cancelled, Constraints 21 set the cancellation decision
variable for that flight equal to one. Another type of disruption is the unavailability of an aircraft for a certain
period of time. This could be caused by a mechanical failure, for example. Constraints 22 ensure that all
flight arcs up until the duration of the unavailability for the specific aircraft cannot be flown. The last form of
disruption considered in this research is the unavailability of an airport. Constraints 23 prohibit the operation
of all flights from and to the unavailable airport in the time period.

4.5 Post-processing
After optimisation, the decision variables are interpreted to understand the recovery actions that should be
taken. A time-space network of the recovered schedule is created and visualised in a user-friendly interface,
displaying the changes with respect to the original schedule. All recovery actions are highlighted such that the
airline can quickly react to the disruption(s) that have taken place. Furthermore, KPI’s are calculated to get an
overview of how the model recovers the schedule and to be able to compare this model to other airline recovery
models. The list with KPI’s calculated is displayed in Table 4.

KPI Unit Description
Solution Time seconds The computational duration of the schedule recovery
Disruption Cost € The cost of the disruption(s)
Delayed Passengers # The number of passengers delayed
Average Delay minutes The average delay per delayed passenger
Passengers Cancelled Flights # The number of passengers on cancelled flights
Cancelled Flights # The number of cancelled flights
Passengers Missed Connections # The number of passengers that miss their connection
Aircraft Swaps # The number of aircraft swaps
Crew Swaps # The number of crew swaps
Crew Deadheads # The number of crew deadheads
Aircraft Sink Violations # The number of aircraft violating the sink node constraint
Crew Sink Violations # The number of crew pairs violating the sink node constraint
Crew Flight Hour Violations # The number of crew pairs violating the flight hour constraint
Reserve Crew Used # The number of reserve crew used

Table 4: KPI’s

5 Experimental Results
The airline tested in the case study is Delta Airlines, which is the biggest airline in the world by revenue, profit,
assets and market capitalization (Forbes (2022)). It is an American hub & spoke airline, with 8 hubs and a
total of 242 destinations in 52 countries, as of 2022. The dataset that is used in this research contains roughly
one month of operations in January 2015. In that year, the airline operated a fleet of 800 aircraft consisting
of Boeing 717, Boeing 757, Boeing 767, McDonnel Douglas MD-88 and McDonnel Douglas MD-90 (Both MD-
88 and MD-90 were phased out in 2020) and performed roughly 2,400 domestic flights per day. Since the
computational speed of recovery models are susceptible to large networks, Delta Airlines is a good candidate for
performing the analyses. Obtaining positive results for this airline means that the model is likely to perform well
on disruptions from other airlines as well. Part of the dataset was obtained and modified by Hassan (2018) and
included information about the schedule, aircraft and passengers. However, due to the competitive landscape
and difficulties in long-term crew scheduling, airlines generally do not publish their crew rosters. Nikolajević
(2021) generated this artificially and added the crew roster to the initial dataset created by Hassan (2018).

5.1 Machine-learned Ranker
A study is performed on the Delta Airlines case. In order to train the machine-learned ranking algorithms, an
aircraft recovery model developed by Hassan (2018) and a crew recovery model developed by Nikolajević (2021)
were used to find the optimal solutions to many disruptions instances. The integrated recovery model was
not used, since the large computational times and RAM size limitations made it impossible to obtain enough
globally optimal recovery solutions in the time-frame of this research. The dataset consists of 1,817 disruption
instances solved by the aircraft recovery model and 7,750 disruption instances solved by the crew recovery model,
with which the two machine learning algorithms are trained and evaluated. All features explained before are
included in the dataset and a binary label is given to resources denoting their involvement in the recovery. Two
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LambdaMART models are trained and optimized with the Bayesian method for both aircraft and crew. The
hyperparameters chosen for the models are depicted in Figure 5.

Parameter Aircraft Crew
Learning rate 0.013 0.055
N_estimators 245 310
Number of leaves 30 35
Maximum depth 30 44
Subsample 0.75 0.78
Truncation level 70 76

Table 5: Results hyperparameter optimization LambdaMART

With these hyperparameters, the models are tested on unseen data. The recall is evaluated at different selection
sizes both for aircraft and crew. The results are compared with the classifiers used in the SDSS, i.e. a random
forest classifier for the aircraft selection and XGBoost for the crew selection, and are depicted in Figure 6 and
Figure 7 respectively.

Figure 6: Recall comparison with increasing selection
sizes for aircraft machine learning models.

Figure 7: Recall comparison with increasing selection
sizes for crew machine learning models.

The results show that both the aircraft and crew LambdaMART models outperform the random forest and
XGBoost classifiers respectively. In terms of aircraft, the difference is more significant, since a recall increase
of 15− 25% is realized by using a learning to rank algorithm. The crew models perform more similar, but still
an increase of 4− 8% can be seen.

As the relevancy of resources is expressed in binary terms, recall is a well-suited evaluation metric. However, it
does not completely capture the overall performance of the models. This is because no differentiation is made
between the irrelevant resources, whilst these resources also have mutual differences. Some resources not in the
optimal solution could be a lot more helpful than others, whilst they are both classified with the over-simplified
binary label 0. Hence, a model picking the second-best resources or the worst are significantly different, but are
both evaluated as bad by the recall metric. To completely understand the performance of the machine-learned
ranker, the results of the airline recovery model, with the subnetwork created by the model, should be assessed.

5.2 Integrated Disruption Solver
The integrated disruption solver in combination with the machine-learned ranker will be called the ML IDS
and is the proposed model in this research. In order to assess the performance of this model, a compari-
son is made with the globally optimal solutions retrieved from the integrated disruption solver that considers
the full network (without the machine-learned ranker). The last-mentioned model will be referred to as the IDS.

Model Parameters
Several parameters have to be set to configure the model. These are not fixed and can be changed according
to the preferences of the airline. The parameters that are used in this case study are depicted in Table 6 and
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are broken down into three different categories, i.e. the schedule, aircraft and crew model parameters. The
delay costs are based on the work of Cook et al. (2012) and are equal to the costs used by Vink et al. (2020)
(shown in Figure 8). The names of the costs are defined in Section 4. Aircraft sink violations are a lot more
expensive than crew sink node violations, because of the scarcity of the resource. Furthermore, reserve crew
sink violations are cheaper, since the strategy of having reserve crew is that they can easily be used in case of
unavailable crew. Lastly, crew swapping is more expensive than aircraft swapping, because of the human factor.
The cost distribution is chosen in such a way that the most desired recovery actions are more incentivized by
the model.

Schedule Value
TW Length 10 hours
Time Step 10 minutes
Max Delay 4 hours
Swap Limit 3 hours
Business Multiplier 3×

Aircraft Value
Cc $250
Ccsch $1,000
CASV $1,000,000
Sink Constraint per AC Type
Selection ≤60

Crew Value
COC $2,000
CFT $20,000
CCSV $50,000
CSVR

$10,000
CDH $200
Sink Constraint Per Crew
Selection ≤65
FTM 2h

Table 6: Schedule, aircraft and crew model parameters.

Figure 8: The delay costs per passenger based on the work of Cook et al. (2012).

Results
The proposed integrated model (ML IDS) is compared to the globally optimal solutions from the IDS and to the
solutions produced by the sequential disruption set solver (SDSS) developed by Hassan (2018) and Nikolajević
(2021). The SDSS does not recover the resources simultaneously, but recovers one resource at a time. This
reduces the computational complexity, but does not always result in optimal solutions. The SDSS considers
the same recovery actions as the IDS and also makes use of the CPM to take into account passenger flows as well.

The results are gathered by providing the models with disruptions experienced on 05/01/2015 (one day of
operations, containing 365 disruptions instances) and analysing the recovery decisions taken using different
KPI’s. All KPI’s used are related either to solution time or solution quality and give a nuanced assessment of
the performance of the model. Table 7 depicts the aggregated results for all the 365 instances.

14



Optimal ML IDS SDSS
Solution Time (Avg.) 1092 70 67
<120s (%) 13% 96% 86%
Cancelled Flights (Sum) 15 25 ≥42
Cancelled Passengers (Sum) 1721 2825 ≥4937
Average Delay (Avg.) 30.5 31.5 32.1
Delayed Passengers (Avg.) 417.9 310.7 239.1
Aircraft Sink Violations (Sum) 1 3 ≥12
Crew Sink Violations (Sum) 57 92 187
Infeasibilities (Count) 0 0 16

Table 7: Results to 365 disruption instances.

Optimal ML IDS SDSS
Aircraft Swaps (Sum) 600 351 214
Crew Swaps (Sum) 220 169 371
Crew Deadheads (Sum) 99 38 105
Reserve Crew Used (Sum) 71 56 118

Table 8: Recovery actions to the 365 disruptions instances.

In terms of solution time, the ML IDS is able to retrieve a recovered schedule in under 120 seconds in 96% of the
cases when considering less than 60 aircraft and less than 65 crew pairs, whilst this is only true for 13% of the
cases when considering the full network. This shows that the machine-learned ranking model is able to realize
a significant computational time reduction. Besides, the memory required to solve the disruptions instances
drops from approximately 50 GB for the optimal solutions, to 2 GB for the ML IDS. The SDSS (which selects
50% of all the aircraft in the network and more than 100 crew pairs) is less likely to produce solutions in the
required timeframe, as it returns a recovered schedule within 120 seconds in 86% of the cases. Figure 9 depicts
the solution times of the disruption instances.

A lower computational runtime is only beneficial if the model still provides high-quality solutions. This is
investigated by comparing the solution quality KPI’s of the ML IDS with the KPI’s of the optimal solutions
provided by the IDS. In terms of cancelled flights, the IDS had a total of 15 cancellations, whereas the ML IDS
produced 25 cancellations. This increases the total number of passengers on a cancelled flight from 1721 for the
IDS to 2825 for the ML IDS. In many of the cases where the ML IDS produced cancellations and the IDS did
not, a lot of aircraft and crew swaps were necessary to prevent the cancellations. In these cases, the machine
learning algorithm in the ML IDS did not select the correct aircraft and crew in the network, hindering the
necessary swaps and resulting in avoidable cancellations. The SDSS produced more than 42 cancellations in
all the disruption instances. 17 cancellations occurred in the aircraft stage, but because of the crew allocation
infeasibilities in the second stage, more than 25 additional cancellations become inevitable. This comes down
to more than 4937 passengers on cancelled flights. Although the ML IDS produces more cancellations than the
optimal solutions (67% more cancellations), the SDSS performs significantly worse (280% more cancellations).

It is remarkable that the optimal solution (IDS) has the worst statistics in terms of delayed passengers and
average delay per delayed passenger. The SDSS, on the other hand, performs the best on these indicators. Most
probably, this depends on the cost factors that are given to the various decision variables in the objective func-
tion. The integrated models are more concerned with minimizing cancellations and sink node violations, as the
costs associated are much higher than delaying passengers. The model does not penalize short delays too much,
as the delay costs start relatively low and increase exponentially with longer waiting times. Since the average
delay per delayed passenger is limited to 30 minutes in this case study, these decisions are tolerated. However,
if airlines would like to have a more customer-friendly recovery model, this can be achieved by increasing the
costs associated with the passengers.

Sink node violations are costly, as this means that those resources are located at an airport not aligned with the
schedule. As it is easier to find alternative crew pairs than alternative aircraft to operate flights, aircraft sink
node violations are the most costly. The ML IDS is slightly more likely to cause aircraft and crew sink node
violations compared with the optimal solution. In the case study, 2 more aircraft sink node violations and 61%
more crew sink node violations were produced by the ML IDS. The SDSS performs worse, as it produced more
than 11 additional aircraft sink node violations and 228% more crew sink node violations. The reason for this
is the crew allocation infeasibilities in the second stage, which causes cancellations and leaves aircraft stranded
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at undesired airports.

The infeasibilities are a drawback of the SDSS. The reason for this is that the schedule is optimized at first,
without considering the crew pairs in the network. This may disturb the crew flow in the network, which requires
additional recovery actions in the crew stage to make the schedule feasible again. This phenomenon can also be
seen in Table 8, which shows that more crew recovery actions are taken by the SDSS in comparison with the
(ML) IDS. In some cases these recovery actions are not sufficient, resulting in crew allocation infeasibilities and
inoperable flights. Because of the simultaneous nature of the IDS and the fact that crew flows are considered
in the optimization of the schedule, the model is able to generate a feasible schedule in more disruption scenarios.

Figure 9: Computational times of the ML IDS, SDSS and optimal solutions, respectively.

Generalization
Table 7 shows the result of solved disruption instances from one day of operations (05/01/2015). However,
this is only a fraction of all the disruptions experienced by the airline. Moreover, disruptions may change in
duration and severity. Hence, in order to assess the generalization of the machine-learned ranker and to verify
the overall performance of the proposed model, disruptions from a whole month of operations are solved. Table
9 depicts the solutions generated by the ML IDS to the disruptions in January 2015, compared to the solutions
from disruptions on 05/01/2015.

ML IDS One Day One Month
Disruption Instances 365 7416
Solution Time (Avg.) 70 65
<120s (%) 96% 98%
Cancelled Flights (%) 4.4% 4.8%
Average Delay (Avg.) 31.5 36.1
Delayed Passengers (Avg.) 310.7 235.4
Aircraft Sink Node Violations (%) 0.8% 0.4%
Crew Sink Node Violations (%) 13% 14%

Table 9: Results to all disruptions instances in January 2015.

The results to all disruptions in January 2015 are similar to the disruptions on 05/01/2015. The average
solution time even dropped and the percentage of instances solved in under two minutes increased from 96%
to 98%. The disruption instances containing cancelled flights, aircraft sink node violations and crew sink node
violations remained approximately the same. The average delay experienced by passengers slightly increased to
36.1 minutes, but the average number of delayed passengers decreased to 235.4 passengers.
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6 Conclusion and Recommendations
The objective of this research was to develop a real-time and integrated airline recovery model that considers
the aircraft, crew and passenger recovery. The results show that the ML IDS is efficient both in terms of solu-
tion time and solution quality. The subnetwork construction using a machine learning model greatly reduces
the computational complexity, while still providing high-quality solutions. The average solution time decreases
fifteenfold and 96% of the instances are solved in under 120 seconds, while the model performs similar in terms
of delays and only slightly worse in terms of cancellations and sink node violations compared to the optimal
solutions. The ML IDS outperformed a sequential model, that recovers the aircraft first after which the crew
gets recovered. The sequential model produced more cancellations, sink node violations and returned infeasible
solutions in some cases. Furthermore, the ML IDS performs similarly to disruptions experienced during a whole
month of operations in comparison to disruptions on one day of operations.

Several limitations and recommendations for future work are provided below. In this research, the training data
for the machine learning algorithm was generated by a sequential aircraft and crew recovery model, while the
algorithm is implemented in an integrated recovery model. As these approaches differ, the resources involved
in the recovery plan may be different as well. This could implicate that a slight bias towards the results of
the sequential model will be embedded in the machine learning algorithm of the proposed model. To be more
accurate, optimal recovery solutions solved by the integrated recovery model should be used in the future to
train the models. Feature engineering could improve the performance of the machine learning models as well.
Besides, a careful evaluation and comparison of different machine-learned ranking algorithms and selecting the
best-performing in the context of airline recovery could also be useful.

Although passenger missed connections are considered with the use of the connecting passenger matrix, explicit
reaccomodation to alternative itineraries is not performed in this model. Furthermore, the recovery of cabin
crew is also not considered. Hence, the integrated recovery formulation can still be made more complete. How-
ever, limiting the computational complexity will remain a challenge.
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Appendices
A Aircraft and Crew Features

AC Feature Description

Group ID Group ID necessary for ranking

Iteration Disruption instance

Disruption_type The type of disruption

Disruption_cause The cause of the disruption

Disruption_duration The duration of the disruption in minutes

d_ac_type The aircraft type of the disrupted aircraft

d_ac_family The aircraft family of the disrupted aircraft

d_cap_pax_econ Economy passengers capacity of the disrupted aircraft

d_cap_pax_buss Business passengers capacity of the disrupted aircraft

d_pax_econ_fl Economy passengers on the disrupted flight

d_pax_buss_fl Business passengers on the disrupted flight

d_pax_econ_max Maximum No. Economy passengers on the flight string of the
disrupted aircraft

d_pax_buss_max Maximum No. Business passengers on the flight string of the
disrupted aircraft

d_range The range of the disrupted aircraft

d_range_flight The flight distance of the disrupted flight

d_range_max Maximum flight distance on the flight string of the disrupted air-
craft

d_DOC Direct Operating Cost per Hour of the disrupted aircraft

d_TAT Turn Around Time of the disrupted aircraft

c_no_flights The number of flights scheduled for the candidate aircraft

c_flights_duration The sum of the flight durations for the flights scheduled for the
candidate aircraft

c_ac_type The aircraft type of the candidate aircraft

c_ac_family The aircraft family of the candidate aircraft

c_cap_pax_econ Economy passengers capacity of the candidate aircraft

c_cap_pax_buss Business passengers capacity of the candidate aircraft

c_econ_lf_mean The mean economy passenger load factor of all flights scheduled
for the candidate aircraft

c_econ_lf_std The standard deviation of the economy passenger load factor of
all flights scheduled for the candidate aircraft

c_buss_lf_mean The mean business passenger load factor of all flights scheduled
for the candidate aircraft

c_buss_lf_std The standard deviation of the business passenger load factor of
all flights scheduled for the candidate aircraft

Table 10: Aircraft Features
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AC Feature Description

c_range The range of the candidate aircraft

c_DOC Direct Operating Cost per Hour of the candidate aircraft

c_TAT Turn Around Time of the candidate aircraft

c_ground_time_d_orig_airport The total time the candidate aircraft spends on the ground at the
origin airport of the disrupted aircraft

d_dest_airport_1_hr_before Indicates if the candidate aircraft is on the destination airport of
the disrupted flight 1 hour before the STA of the disrupted flight

d_dest_airport_2_hr_before Indicates if the candidate aircraft is on the destination airport of
the disrupted flight 2 hour before the STA of the disrupted flight

d_dest_airport_3_hr_before Indicates if the candidate aircraft is on the destination airport of
the disrupted flight 3 hour before the STA of the disrupted flight

d_dest_airport_1_hr_after Indicates if the candidate aircraft is on the destination airport of
the disrupted flight 1 hour after the STA of the disrupted flight

d_dest_airport_2_hr_after Indicates if the candidate aircraft is on the destination airport of
the disrupted flight 2 hour after the STA of the disrupted flight

d_dest_airport_3_hr_after Indicates if the candidate aircraft is on the destination airport of
the disrupted flight 3 hour after the STA of the disrupted flight

d_dest_airport_min_before_min The minimum number of minutes the candidate aircraft is on the
destination airport of the disrupted flight before the STA of the
disrupted flight

d_dest_airport_min_after_min The minimum number of minutes the candidate aircraft is on the
destination airport of the disrupted flight after the STA of the
disrupted flight

c_ground_time_d_dest_airport The total time the candidate aircraft spends on the ground at the
destination airport of the disrupted aircraft

d_orig_airport_1_hr_before Indicates if the candidate aircraft is on the origin airport of the
disrupted flight 1 hour before the STD of the disrupted flight

d_orig_airport_2_hr_before Indicates if the candidate aircraft is on the origin airport of the
disrupted flight 2 hour before the STD of the disrupted flight

d_orig_airport_3_hr_before Indicates if the candidate aircraft is on the origin airport of the
disrupted flight 3 hour before the STD of the disrupted flight

d_orig_airport_1_hr_after Indicates if the candidate aircraft is on the origin airport of the
disrupted flight 1 hour after the STD of the disrupted flight

d_orig_airport_2_hr_after Indicates if the candidate aircraft is on the origin airport of the
disrupted flight 2 hour after the STD of the disrupted flight

d_orig_airport_3_hr_after Indicates if the candidate aircraft is on the origin airport of the
disrupted flight 3 hour after the STD of the disrupted flight

d_orig_airport_min_before_min The minimum number of minutes the candidate aircraft is on the
origin airport of the disrupted flight before the STD of the dis-
rupted flight

d_orig_airport_min_after_min The minimum number of minutes the candidate aircraft is on the
origin airport of the disrupted flight after the STD of the disrupted
flight

Table 10: Aircraft Features
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AC Feature Description

c_DOC_vs_d_DOC d_DOC - c_DOC

c_TAT_vs_d_TAT d_TAT - c_TAT

c_range_vs_d_range c_range - d_range

c_range_vs_d_range_flight c_range - d_range_flight

c_range_vs_d_range_max c_range - d_range_max

c_pax_econ_vs_d_cap_econ c_cap_pax_econ - d_cap_pax_econ

c_pax_buss_vs_d_cap_buss c_cap_pax_buss - d_cap_pax_buss

c_pax_econ_vs_d_econ_fl c_cap_pax_econ - d_pax_econ_fl

c_pax_buss_vs_d_buss_fl c_cap_pax_buss - d_pax_buss_fl

c_pax_econ_vs_d_econ_max c_cap_pax_econ - d_pax_econ_max

c_pax_buss_vs_d_buss_max c_cap_pax_buss - d_pax_buss_max

conn_pax_econ_d_to_c The number of connecting economy passengers from the disrupted
aircraft to the candidate aircraft

conn_pax_buss_d_to_c The number of connecting business passengers from the disrupted
aircraft to the candidate aircraft

Result Indicates if the candidate aircraft was used to recover the disrup-
tion

Table 10: Aircraft Features
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Crew Feature Description

Group ID Group ID necessary for ranking

Iteration Disruption instance

c_time_start Duty start time of candidate crew as measured in minutes from
time window start time

c_time_end Duty end time of candidate crew as measured in minutes from
time window start time

tw_start Time window start time as measured in minutes from midnight
on day of first departure in time window

tw_end Time window start time as measured in minutes from midnight
on day of first departure in time window

ac_family Aircraft family, label encoded

type_canx_1* Represents whether first disruption is a cancellation

type_canx_6 Represents whether sixth or any subsequent disruption is a can-
cellation

t_del_1* Represents whether first disruption is a delay

t_del_6 Represents whether sixth or any subsequent disruption is a delay

d_dur_1* Delay duration in minutes for first disruption

d_dur_6 Maximum delay duration in minutes for sixth or any subsequent
disruption

c_at_org_1* Represents whether candidate is at origin airport of first disrupted
flight at time of disruption

c_at_org_6 Represents whether candidate is at origin airport of sixth or any
subsequent disrupted flight at time of disruption

c_at_org_1h_1* Represents whether candidate is at origin airport of first disrupted
flight within 1 hour prior to disruption

c_at_org_1h_6 Represents whether candidate is at origin airport of sixth or any
subsequent disrupted flight within 1 hour prior to disruption

c_at_org_2h_1* Represents whether candidate is at origin airport of first disrupted
flight within 2 hours prior to disruption

c_at_org_2h_6 Represents whether candidate is at origin airport of sixth or any
subsequent disrupted flight within 2 hours prior to disruption

c_at_org_3h_1* Represents whether candidate is at origin airport of first disrupted
flight within 3 hours prior to disruption

c_at_org_3h_6 Represents whether candidate is at origin airport of sixth or any
subsequent disrupted flight within 3 hours prior to disruption

c_at_org_before_1* Represents whether candidate is at origin airport of first disrupted
flight at any point prior to disruption

c_at_org_before_6 Represents whether candidate is at origin airport of sixth or any
subsequent disrupted flight at any point prior to disruption

c_at_dest_1* Represents whether candidate is at destination airport of first dis-
rupted flight at time of disruption

c_at_dest_6 Represents whether candidate is at destination airport of sixth or
any subsequent disrupted flight at time of disruption

Table 11: Crew Features
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Crew Feature Description

c_at_dest_1h_1* Represents whether candidate is at destination airport of first dis-
rupted flight within 1 hour prior to disruption

c_at_dest_1h_6 Represents whether candidate is at destination airport of sixth or
any subsequent disrupted flight within 1 hour prior to disruption

c_at_dest_2h_1* Represents whether candidate is at destination airport of first dis-
rupted flight within 2 hours prior to disruption

c_at_dest_2h_6 Represents whether candidate is at destination airport of sixth or
any subsequent disrupted flight within 2 hours prior to disruption

c_at_dest_3h_1* Represents whether candidate is at destination airport of first dis-
rupted flight within 3 hours prior to disruption

c_at_dest_3h_6 Represents whether candidate is at destination airport of sixth or
any subsequent disrupted flight within 3 hours prior to disruption

c_at_dest_before_1* Represents whether candidate is at destination airport of first dis-
rupted flight at any point prior to disruption

c_at_dest_before_6 Represents whether candidate is at destination airport of sixth or
any subsequent disrupted flight at any point prior to disruption

c_at_crit_1* Represents whether candidate is at critical location of first dis-
ruption at the critical time

c_at_crit_6 Represents whether candidate is at critical location of sixth or any
subsequent disruption at the critical time

c_at_crit_1h_1* Represents whether candidate is at critical location of first dis-
ruption within 1 hour prior to the critical time

c_at_crit_1h_6 Represents whether candidate is at critical location of sixth or any
subsequent disruption within 1 hour prior to the critical time

c_at_crit_2h_1 Represents whether candidate is at critical location of first dis-
ruption within 2 hours prior to the critical time

c_at_crit_2h_6 Represents whether candidate is at critical location of sixth or any
subsequent disruption within 2 hours prior to the critical time

c_at_crit_3h_1 Represents whether candidate is at critical location of first dis-
ruption within 3 hours prior to the critical time

c_at_crit_3h_6 Represents whether candidate is at critical location of sixth or any
subsequent disruption within 3 hours prior to the critical time

c_at_crit_before_1 Represents whether candidate is at critical location of first dis-
ruption at any time prior to the critical time

c_at_crit_before_6 Represents whether candidate is at critical location of sixth or any
subsequent disruption at any time prior to the critical time

future_fl_next_1 Represents whether candidate is scheduled to fly to the origin
airport of the disrupted crews next scheduled flight after STD of
first disrupted flight

future_fl_next_6 Represents whether candidate is scheduled to fly to the origin
airport of the disrupted crews next scheduled flight after STD of
sixth or any subsequent disrupted flight

Table 11: Crew Features
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Crew Feature Description

future_fl_end_1 Represents whether candidate is scheduled to fly to the end-of-
time-window airport of the disrupted crew after STD of first dis-
rupted flight

future_fl_end_6 Represents whether candidate is scheduled to fly to the end-of-
time-window airport of the disrupted crew after STD of sixth or
any subsequent disrupted flight

crit_time_1 Critical time of first disruption as measured in minutes from time
window start time

crit_time_6 Minimum critical time of sixth or any subsequent disruption as
measured in minutes from time window start time

reserve_crew Represents whether candidate is a reserve crew

Result Represents whether candidate has schedule changed in optimal
solution

Table 11: Crew Features
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Abstract

Airlines often deal with unexpected circumstances and require efficient recovery
strategies to minimize the impact of these disruptions. Various decision-support sys-
tems have been developed to help the Airline Operations Control Centers. Preferably,
these models should consider all the resources of an airline and should provide solu-
tions within a short period of time, for practical reasons. Different techniques to reach
this goal have been proposed. However, it remains a difficult problem, as the number
of combinations (and therefore solution time) increases drastically with the increase of
the problem size. Machine learning could play an important role, as it has the ability to
reduce problem complexities without deteriorating solutions significantly. This litera-
ture study reviews the existing decision-support tools, explores how machine learning
could be used to simplify the complex structure and aims to discover new promising
possibilities in airline disruption management.

1. Introduction
Unexpected events, such as bad weather conditions, mechanical failures or traffic conges-
tion, are unavoidable for airlines and may result in aircraft unavailabilities, delays and air-
port closure or reduced airflow. Original schedules created for the aircraft and crew, and
passenger itineraries may be broken as a consequence. Walker [2017] demonstrated that
almost 24% of all flights in Europe were delayed in the third quarter of 2017 as a result of
disruptions. Costs associated with these are the result of additional fuel expenses, crew
overtime and passenger monetary compensation, which could have a significant impact
on the airline business. Ball et al. [2010] estimated that the delay costs in the US airline in-
dustry were $32.9 billion of which $8.3 billion were of expenses for additional fuel, crew and
maintenance. The Airline Operations Control Center (AOCC) must take appropriate inter-
ventions to minimize the severity of the disruption. Currently, most of the airlines have
human specialists who monitor the operations of the airline and take action when neces-
sary. It is often too complex to make decisions regarding multiple resources at once, hence
the human specialists each focus on one resource (aircraft, crew or passengers) and solve
the problem sequentially (Castro and Ana Paula Rocha [2014]). This approach ensures a
solution within a short amount of time. However, since resources are interdependent, the
sequential approach may not always result in the most optimal solution. A resolved sched-
ule may be optimal for a certain resource, while it might raise conflicts for other resources.
Therefore, during the past years research is focused on finding integrated decision-support
tools that recover the schedules for the aircraft and crew, and the passenger itineraries al-
together. However, modern computers still require too much computational time to solve
the available models. This makes it unpractical to implement such systems for airlines in
their AOCC, who often require a solution at fleet level within 2 minutes (Vink et al. [2020]).
Recent advancements in machine learning technology show great potentials to solve large,
complex problems in a shorter period of time. It has the potential to exploit the vast amount
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of data available in order to make useful predictions that speed up the process. In combina-
tion with optimisation problems, it may be a promising direction towards finding a solution
to faster, practical models for recovering airline schedules in difficult circumstances.

2. The Airline Recovery Problem
Airline disruption management (ADM) has been a researched field since the 80s, because
of its potential to ameliorate the service of airlines. Not only can an efficient disruption
management strategy save the airlines a lot of money, also passenger dissatisfaction can be
mitigated. Hence, in an increasing competitive environment, a decision-support tool for
disruptions can be of real added value.

The first research that has been done on ADM was by Teodorović and Guberinić [1984], who
discussed the minimization of passenger delay caused by schedule disruptions. The model
allowed aircraft swaps and delaying flights as recovery options. Teodorović and Stojković
[1990] extended this work by adding airport curfew as a disruption type and allowing flight
cancellations. Later, Teodorović and Stojković [1995] added aircraft maintenance obliga-
tions and crew disruptions. During this literature study Google Scholar and Scopus were
used as search engines with the following keywords in combination with the terms ’AND’
and ’OR’ to find relevant articles: airline recovery, aircraft recovery, crew recovery, pairing
recovery, passenger recovery, schedule recovery, integrated recovery, disruption manage-
ment, irregular operations, airline, aircraft. The literature research on the airline recovery
problem is largely based on the work of Hassan et al. [2021]. For more details, the reader is
referred to their literature review.

The disruption types often considered in recovery models are flight delays (e.g. Aktürk et al.
[2014], Arias et al. [2013]), flight cancellations (e.g. Vos et al. [2015], Lee et al. [2020]), air-
craft unavailabilities (e.g. Zhu et al. [2015], Sousa et al. [2015]) or crew unavailabilities (e.g.
Castro and Oliveira [2009], Chen and Chou [2017]). To react to these, the following recov-
ery actions are frequently taken. For the aircraft recovery, delaying and cancelling flights
(e.g. Zhu et al. [2015], Wang et al. [2019]), as well as swapping (e.g. Liang et al. [2018],
Zhao and Chen [2018]) and ferrying aircraft (e.g. Zhu et al. [2016], Arikan et al. [2017]) are
decisions often taken. For the crew, deadheading (e.g. Petersen et al. [2012], Castro and
Ana Paula Rocha [2014]), swapping (e.g. Maher [2015], Zhu et al. [2016]) and using reserve
crew (e.g. Le and Wu [2013], Arikan et al. [2017]) are recovery actions that are taken. Lastly,
passengers could be re-assigned to another itinerary (e.g. Petersen et al. [2012], Zhu et al.
[2016]) if necessary. In the first years, a lot of attention has been placed on solely solving
the aircraft recovery problem, while eventually crew and passengers were included as well.
Nevertheless, combining all three resources into one model appeared to be a major chal-
lenge, both in the industry and in the academia. In order to develop an airline recovery
model, network representations are utilized to represent flights and activities during a cer-
tain time window.

Briefly, three different types of network representations are used most commonly: time-
space, time-band and connection networks. In time-space networks, arcs represent flights
and nodes represent activities. Delays of flights are made possible by copying flight arcs
and moving them to future time points. Thengvall et al. [2003] extended this method by
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creating parallel time-space networks to get a more detailed representation, which made
it possible to incorporate different fleet types in the model. In time-band networks, nodes
represent several activities at an airport during a certain time interval. The network can
be created in a dynamic way as disruptions occur. Argüello [1997] proposed this represen-
tation and was the first who used it in modelling airline disruptions. Connection network
representations use nodes to represent flights legs and arcs for connections between the
corresponding flight legs to model the problem. Many solution methodologies are used to
solve the model and recover the schedules for the airlines. Among others, exact optimiza-
tion, (meta-)heuristics, hybrid methods and multi-agents systems are techniques utilized.
Argüello [1997] was the first to implement a meta-heuristic and used the greedy random-
ized adaptive search procedure (GRASP) to solve the airline recovery problem. It is an iter-
ative process in which neighbouring solutions with a local-search procedure are ought to
be found from an initial solution. Another novel trend that has been observed in research is
the implementation of the dynamic nature of the problem in the modelling framework. Vos
et al. [2015] argued that disruptions occur in a dynamic way and are not all known before-
hand. Hence, the disruptions should be loaded in the model as soon as they are known by
the AOCC. The author concludes that the costs are underestimated by models that utilize
an approach in which all disruptions are known at a fixed time before the recovery (static
approach).

As mentioned before, it remains difficult to integrate the different resources into a single re-
covery model. Research has been done on combining aircraft and passengers (e.g. Bisaillon
et al. [2010], Jozefowiez et al. [2013]), aircraft and crew (e.g. Le and Wu [2013], Zhang et al.
[2015]) and all the three resources together (e.g. Petersen et al. [2012], Zhu et al. [2016]).
Generally speaking, two distinct approaches have been implemented in research to accom-
plish this integration. In the first approach, all resources are combined into one problem
formulation and solved with an optimization technique. As all the resources are optimized
at once, the solution space increases extremely with larger datasets and therefore the solu-
tion time as well. In the second approach, the problem is solved with the use of a sequen-
tial modelling framework in which the different resources are modelled in separate stages.
In most cases, the schedule recovery and aircraft allocation is done at first in the aircraft
stage. After this, the new schedule is fed forward to the crew stage, in which the crew re-
covery problem is solved. Lastly, the passenger itinerary recovery is performed. Without
a solid integration aspect, the schedule in the aircraft stage is recovered optimally solely
for the aircraft, without considering crew and passenger itineraries. This often results in
local optima and causes conflicts in the crew and passenger stages. In order to integrate
this system, the stages are linked with each other by considering the other resources as well
when recovering a certain resource or by iterating back to find better solutions. In this lit-
erature review the different integration methodologies will be reviewed in order to gain an
overview of the state-of-the-art, the difficulties and the promising trends. The datasets and
results will be discussed as well to retrieve insights from the different methods used.

2.1. Aircraft and Crew
First of all, the aircraft and crew integration will be discussed. The problem is defined as the
recovery of the schedule, and the re-allocation of aircraft and crew members. This section
is split up in two, to distinguish the integrated problem formulation from the sequential
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approach.

2.1.1 Integrated

Le and Wu [2013] used an integrated recovery approach for the aircraft and crew recovery
problem (ARP and CRP, respectively). In the objective function, both decision variables for
aircraft and crew are included, and the costs exists out of assigning flights to aircraft, as-
signing crew to flights and the recovery of aircraft (delay and cancellations). The authors
mention that the problem is too complex to be solved in real-time by a commercial solver
and hence use two approaches to speed up the process. The first one, called node aggrega-
tion, combines consecutive arrival nodes and subsequent consecutive departure nodes so
that a fewer number of nodes is used in the model. The second one, called island isolation,
eliminates unnecessary ground arcs. The model was tested on a Chinese airline with 170
aircraft. However, no solution times were provided.

Maher [2016] used a column and row generation algorithm to solve the aircraft recovery
problem and the crew recovery problem. This algorithm extends the column generation
algorithm to further reduce the problem complexity and improve runtimes. Next to in-
cluding more decision variables in the master problem, additional constraints are added
as well. This procedure reduces the problem size due to the initial lower number of con-
straints. In the case study, 441 flights, 123 aircraft, 1 fleet type and 182 crew members were
used. Although the column and row generation algorithm was implemented to reduce the
complexity, it took the model around 1200 seconds to find solutions.

2.1.2 Sequential

Aguiar et al. [2011] compares different meta-heuristic techniques (hill-climbing, simulated
annealing and genetic algorithm) to solve the aircraft and crew recovery separately. The
schedule of the ARP serves as an input for the CRP. In the ARP no crew considerations were
taken into account and vice versa, which leads to local optima and may cause allocation
infeasibilities (and therefore flight cancellations) in the CRP. The authors used 3.521 flights,
51 aircraft. 2 fleet types and 582 crew members in their study. The model was able to deter-
mine solutions in 13 seconds.

Zhang et al. [2015] also used a sequential approach to solve the aircraft and crew recovery.
The difference with Aguiar et al. [2011] is that crew consideration are taken into account in
the ARP by including additional decision variables and aircraft considerations in the CRP
by adding extra constraints. The approach that was taken is as follows. First, the sched-
ule is recovered in the ARP without disrupting crew too much. Then, in the CRP the result
is rescheduled to decrease costs associated with the crew members. The additional con-
straints were added in the CRP such that aircraft rotations are kept fixed. The authors used
351 flights, 70 aircraft, 1 fleet type and 134 crew members in their case study. The model
obtained solutions in less than 72 seconds.

2.2. Aircraft and Passengers
In this section, the aircraft and passenger recovery problem will be discussed. Like be-
fore, the section is split up in works using an integrated problem formulation approach and
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works using a sequential approach. The problem is defined as the recovery of the sched-
ule, the re-allocation of aircraft to the flights and the re-accommodation of the passengers
to itineraries. A lot of work has been done on this type of recovery, partly because of a
challenge initiated and organised by the French Operational Research Decision Support
Society (ROADEF) in 2009. Relevant and interesting works regarding the integration aspect
are discussed below.

2.2.1 Integrated

Hu et al. [2015] modelled the aircraft and passenger itinerary recovery problem with an
integer programming (IP) formulation. In this model, it is assumed that the passenger
itineraries are comprised of a single flight leg. Because of this assumption, missing con-
nections are disregarded and only passengers with cancelled flights are considered, which
simplifies the problem. Aircraft and passenger re-accommodation is integrated in the same
IP formulation, whilst using a time-band network to represent the problem. A novelty of
this work was that a feasibility study has been conducted. The authors tested the model
using a dataset of 188 aircraft, 13 different fleet types and 628 flights. The solutions were
found in 172 seconds.

Arıkan et al. [2016] added cruise speed control as a recovery action. By doing so, the model
changed to a non-linear type, since the fuel consumption and the aircraft velocity are not
linearly dependent. The authors reformulated their approach to a conic quadratic mixed-
integer model. The goal of the model was to minimize the passenger related costs and fuel
costs by employing recovery actions. The authors tested their approach on a dataset con-
taining 6 fleet types and 1249 passengers, and the model was able to solve it in under 142
seconds.

Vink et al. [2020] modelled the problem as a MILP with a heuristic aircraft selection proce-
dure. The author mentioned that disruptions have a dynamic nature, which means that all
the disruptions are most of the time not known up front. Hence, the author included this
dynamic nature in its model by allowing the user to input the disruptions as they become
known. Passengers were not explicitly re-accommodated, however, a so-called connect-
ing passenger matrix (CPM) was constructed to consider the connection of the passenger
itineraries. Additional costs were incurred if passengers would miss their connection in the
new schedule. As the problem was still too complex, the author added a heuristic aircraft
selection procedure to only consider aircraft that are likely to be chosen in the solution. The
model was tested using a dataset with 100 aircraft, 2 fleet types and 600 flights. Solutions
were obtained within 44 seconds. The author concluded that static models underestimate
the costs and that dynamic models are able to more accurately identify recovery actions
and their associated costs.

2.2.2 Sequential

In 2009, ROADEF was initiated to stimulate the development of decision-support tools re-
garding the simultaneous aircraft and passenger recovery. Bisaillon et al. [2010] won this
challenge by creating a large neighbourhood search heuristic. In their model, three stages
were considered. In the first one, a new schedule was constructed and was repaired in the
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second stage based on the constraints imposed. In the third stage, these new schedules
were improved by conducting a large neighbourhood search. The ROADEF dataset used
consisted of 256 aircraft, 1 fleet type and 1423 passengers. The authors were able to obtain
high-quality solutions within 10 minutes.

Mansi et al. [2012] won the second prize in the ROADEF challenge, by approaching the
problem with a 2-stage oscillation strategy. In the first stage, the authors attempts to ob-
tain a feasible solution close to the initial schedule by relaxing the model. If no feasible
solution could be found, a dynamic programming model would be initiated to find a feasi-
ble solution. In the second stage, the model tries to ameliorate the schedule by iteratively
destroying and constructing aircraft routes and passenger itineraries. The authors used a
dataset with 618 aircraft, 1 fleet type and 2178 flights to test their model. Solutions were
found within 10 minutes.

Jozefowiez et al. [2013] also took part in the ROADEF challenge and ended as one of the
finalists. The authors formulated a 3-stage heuristic approach. In the first phase, a first
feasible solution was obtained by incorporating the disruptions and removing all flight legs
and passenger itineraries that were affected. In the next stage, disrupted passengers are
re-accommodated in different itineraries. In the last stage, new flight legs were added to
potentially re-accommodate the remaining disrupted passengers to new itineraries and
hence obtain better solutions. The model was tested on the same dataset Mansi et al.
[2012]. The model did not perform as good as the model of the ROADEF winners, how-
ever, it could solve the problem instances in less than 4 minutes.

Hu et al. [2016] presented a GRASP meta-heuristic to solve the aircraft and passenger re-
covery problem. The authors consider both the cancellation of an itinerary and connec-
tion time between two flight legs. The procedure consists of three different iterative stages.
First, an initial solution, i.e. a schedule with aircraft allocated to the flight legs, has to be
generated to start the first iteration. Then, with a local search procedure, neighbouring bet-
ter solutions are ought to be found. Lastly, passengers are reassigned if their itinerary was
broken and had to be recovered. The model is partly integrated, as passenger itineraries
are considered in the aircraft recovery stage. The local search procedure consists of three
operations that can be carried out, namely inserting, crossing and deleting flights. During
the reassignment of passengers, the model considers all feasible itineraries and labels them
with seat capacity and delay cost. Next, a minimal cost flow problem is solved to reassign
the passengers. The authors tested their model on a dataset with 87 aircraft, 3 fleet types
and 340 flights. The model was able to find a solution in less than 100 seconds.

Zhang et al. [2016] used a three-stage math-heuristic to solve the aircraft and passenger
itinerary recovery problem. In the first stage the aircraft recovery is solved first, in which
the flight schedule and aircraft rotations are recovered without considering passengers with
the objective of minimizing delays and cancellations. In the second stage, the flights are
rescheduled based on the passenger itineraries, whilst keeping the aircraft rotations from
the first stage fixed. In the last stage, the passengers are re-accommodated in the new
schedule. The second and third stage are solved in an iterative manner. Costs for the pas-
sengers were added in case of a delay, a connection miss for passengers booked on a subse-
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quent flight and a downgrade to a lower class. The model was tested on a dataset provided
by ROADEF including 618 aircraft, 1 fleet type and 2178 flights. Solutions were found in 420
seconds. The authors concluded that their model performed the best amongst all bench-
marked algorithms tested on the ROADEF dataset.

Yetimoǧlu and Aktürk [2021] recently proposed a math-heuristic algorithm for the prob-
lem. The authors included cruise speed control as an additional recovery action, next to
swapping and cancelling aircraft. The model considers itineraries with a maximum of 2
flight legs, which represents airlines with a hub & spoke network. The algorithm is iterative
and consists of three stages. In the first stage, the flights are re-scheduled and aircraft are
re-allocated, without considering passengers. In the second stage, passenger itineraries are
recovered and passengers’ contribution to the objective function is taken into account (e.g.
first-class passengers are prioritized). Lastly, cancelled and must-operate flights are fixed
and the procedure starts again. The authors tested the model with a dataset consisting of
53 aircraft, 6 fleet types and 208 flights. Solutions were found within 60 seconds.

2.3. Aircraft, Crew and Passengers
Combining all the three resources into one model is the most challenging, as the complex-
ity and solution space increase drastically with increasing dataset sizes. In this section,
these complete integrated works will be discussed. Next to the integrated problem for-
mulation and the sequential approach, some have used multi-agent systems to model the
problem.

2.3.1 Integrated

Maher [2015] used an integrated problem formulation to solve the complete airline dis-
ruption problem and implemented a column and row generation algorithm. The author
stated that a Benders decomposition algorithm, an optimization technique often used in
large airline-related problems, does not guarantee integer optimality, whilst the column
and row generation model does. As stated before, the algorithm extends column gener-
ation by also adding additional constraints. Due to a smaller problem size at initiation,
the algorithm reduces the computational complexity and improves runtimes. Still, with a
dataset of 262 flights, 48 aircraft, 1 fleet type, 30.428 passengers and 85 crew members, the
model required around 45 minutes to obtain a solution.

Arikan et al. [2017] introduced the option of changing the cruise speed in the model. As the
cruise speed does not have a linear relationship with the fuel consumption and therefore
not with costs, the author modelled the problem as a conic quadratic mixed-integer lin-
ear program (MILP). In order to decrease the problem complexity and improve runtimes,
different methods were implemented. In the first method, partial networks are created for
each entity (aircraft, crew and passengers) with the goal of eliminating infeasible recovery
actions. The second one being entity aggregation, in which entities with the same partial
network are aggregated into one network. The author concluded that the problem size was
still too large with the first two methods and implemented a third method in which recov-
ery actions that are not likely to be used were eliminated as well. However, even with these
preprocessing methods, the model had to run for around 20 minutes with 1.254 flights, 402
aircraft, 150.118 passengers and 634 crew members.
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2.3.2 Sequential

Petersen et al. [2012] proposed a sequential integrated model which was highly related to
the model of Lettovsky [1997]. The author used a Benders decomposition optimization
technique to solve the problem. In such an approach, the variables are split up in differ-
ent stages, i.e. in a master problem and in sub-stages. The master problem is optimized
first, after which the solution to this problem is fed forward to the following stages. How-
ever, if these next stages determine infeasibilities, Benders cuts (additional constraints to
tighten the solution space) are generated and the master problem has to be solved again.
The author set the schedule recovery model (SRM) as the master problem, whose solution
was passed on to the itinerary recovery model (IRM). In this second stage, the problem was
solved again and the feasibility was checked, as well as the optimality for the passenger re-
covery model (PRM). If both of these were not guaranteed, Benders cuts would be added,
else the solution was given to the aircraft recovery model (ARM). Again, in this stage the
new problem was solved, the feasibility was checked and Benders cuts would be added if
an infeasibility was determined. Otherwise, the solution was fed forward to the crew re-
covery model (CRM). Once more, the problem was solved, the feasibility was checked and
Benders cuts would be added if the problem was not feasible. Lastly, the PRM obtained
the solution and solved the final problem. In the IRM, all the feasible passenger itineraries
that minimize the aggregated delay costs were yielded, and in the PRM the itineraries were
assigned to the passenger groups. The authors worked with these distinct passenger stages
(IRM and PRM) to reduce computational complexity. The runtime of this model was 30
minutes for a case of 800 flights and 2 fleet types. The number of aircraft, passengers and
crew members were not given.

Zhu et al. [2016] opted for a sequential approach to solve the integrated airline disrup-
tion management problem. The model uses a sampling-based construction and evalua-
tion approach. In the first stage, a multi-period integer programming (IP) model is used
to reconstruct the flight schedule and allocate the aircraft. All feasible solutions are stored.
In the second stage, crew schedules (pairings and rosters) and passenger itinerary recov-
ery models evaluate the new schedules of the first stage. Lower bound and upper bound
estimations are made for all the solutions in the time period and the non-promising solu-
tions are pruned. A full schedule is made by linking the schedules of all the time-periods
together, i.e. a path from start to end. However, the number of paths increase exponen-
tially with increasing time-periods, and the authors concluded that the problem would be
over-complex. Hence, random reconstruction path samples were generated to not con-
sider them all. Although the authors mention that the model is able to solve problems in
"real-time", it is stated that the computational time is 180 seconds per time stage (5 min-
utes). Hence, whenever the recovery period becomes longer, larger solution times should
be expected. The authors tested the model with 250 flights, 65 aircraft, 6 fleet types, 30.428
passengers and 85 crew members.

Hassan [2018] modelled the aircraft recovery problem with the use of machine learning
classifier (random forest) to include the most-promising aircraft in the solution space. Niko-
lajević [2021] extended this work, by adding the crew recovery problem. The CRP also used
a machine learning classifier (extreme gradient boosting) to determine the most-promising
crew members and add these to the solution space. The schedule determined by the ARP
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is used as an input in the CRP. In the ARP, some considerations of passengers and crew are
taken into account to integrate the model. With the use of a so-called connection passen-
ger matrix (CPM), the connection time of passengers and crew are examined and a penalty
is given if these connections are violated. However, even with the CPM it still occurs that
crew allocation is infeasible and flights have to be cancelled. Since the model is not itera-
tive, these cancelled flights will not be recovered. All of this can result in huge expenses that
could have been mitigated with a more integrated model. The authors also do not consider
passenger re-accommodation. An advantage is that the model could be used as an opera-
tional tool, as it was able to find solutions in under 2 minutes for most of the cases. This was
partly because the network could be greatly reduced by the machine-learned classifiers,
which limits the number of combinations during optimisation. A study of Delta Airlines
was used with 327 flights, 8 fleet types and 138 aircraft on average.

2.4. Discussion
Most airlines have an AOCC consisting of human specialists who monitor the operations
of the airline and take action in the case of a disruption. Each specialist often focuses on a
single resource, as it is too complex to consider all of them together. Then, the solutions are
combined and the problem is solved sequentially (Castro and Ana Paula Rocha [2014]). The
initial research on automating disruption recovery decision-making also focused on solely
one resource at a time. But, advancements in computing power and modelling techniques
have enabled new possibilities.

Research is recently focused on combining all the resources in a model and increasing the
levels of detail to create a more complete and accurate airline recovery model. However, the
added complexity makes it difficult to apply these models in an operational environment,
as AOCC controllers require solutions within 2 minutes (Vink et al. [2020]). Combining air-
craft and passengers in one model is still doable in terms of problem complexity, as many
works described before can obtain solutions in under 3 minutes (e.g. Arikan et al. [2017],
Hu et al. [2016] and Vink et al. [2020]). The problem gets more complicated when adding
crew, who are highly regulated and restricted by the government, union and airlines itself.
The models with an integrated problem formulation, i.e. with decision variables regard-
ing all resources in the objective function, require solution times of 20 minutes or more
(e.g. Arikan et al. [2017], Maher [2015]). These models provide a global optimal solution
to the problem, but the runtimes are too large and unfit for operational use. The sequen-
tial approaches are faster, but often fail at capturing the interdependencies between the
resources in the different stages. An overview of the recovery models considering aircraft,
passengers and crew are depicted in table 1. There is still a need for an integrated airline
recovery model that is able to recover all the resources efficiently and in real-time, usable
for operational implementation.

3. Machine Learning
Machine learning (ML), a subset of artificial intelligence (AI), is a technique that leverages
data to predict or make decisions without being explicitly programmed to do so. As data
is becoming more available nowadays, machine learning is gaining popularity and is used
for many complex problems that cannot easily be solved by human decision-makers. Gen-
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Table 1: Summary of recovery models considering aircraft, crew and passengers.

Paper Appr. Disruption Types Features Data Dimensions CPU
Delay Canx. AC U/A Airport Maint. MF AC Fleet Flights (sec)

Petersen et al. [2012] S N N N FR & C Y Y RL - 2 800 1080
Maher [2015] I N N N C Y Y G 48 1 262 <2700
Zhu et al. [2016] S N N N FR N Y RL 65 6 250 -
Arikan et al. [2017] I Y Y Y C Y Y RL 402 - 1254 <1212
Nikolajević [2021] S Y Y Y C N Y RL 138 8 327 <120

Abbreviations used in table. Y: Yes, N: No, S: Sequential, I: Integrated, Appr: Approach, Canx: Cancellation,
AC: Aircraft, U/A: Unavailable, FR: Flow Restriction, C: Closure, Maint: Maintenance, MF: Multi-Fleet, RL:

Real Life, G: Generated, CPU: Central Processing Unit

erally speaking, three types of machine learning exist. The first one is supervised machine
learning, which gets trained by using labelled data and learns the mapping from input to
output. This trained model can then be used for test data, i.e. data that is not labelled,
to estimate or predict its output. Most commonly, this type of machine learning is used
for regression and for classification. The second form is unsupervised machine learning.
This differs in the sense that it does not learn from labelled data, but instead tries to find
patterns and useful information in large, complex data sets that are difficult to analyse.
Unsupervised machine learning is often used for data clustering, feature extraction and
detecting anomalies. Lastly, reinforcement learning is a form that uses the concept of an
agent interacting in its environment, rewarding its desired behaviour and punishing its un-
desired behaviour, such that it learns a right policy during a training period. This type of
machine learning is often useful when one does not have a lot of training data, the ideal
end state cannot be clearly defined or when the only way to learn about the environment
is to interact with it.

In this chapter, the potential of machine learning in the context of airline disruption man-
agement is investigated. First of all, research on airline disruption management that have
used AI in their approach are discussed. After this, an overview of the state-of-the-art of
machine learning for combinatorial optimization will be provided. Lastly, as the research
of Hassan [2018] and Nikolajević [2021] on using machine-learned classifiers showed in-
teresting results, the last sections will be devoted to the investigation of machine learning
classification, collective classification and learning to rank. Regression techniques are not
considered in this literature study, since generating a sub-network involves labelling (i.e.
should this resource be included or not) and not a continuous quantity (which is the out-
put of a regression model).

3.1. AI for the Airline Recovery Problem
Castro and Ana Paula Rocha [2014] used a multi-agent approach to manage the integrated
airline disruption problem. The agents monitor the operations of the airline and decide
whether the AOCC should take recovery actions. The actions taken by the AOCC are used
as input to the system, such that it can learn from the information given. The authors used
a dataset of 7.931 flights and 3.028 crew members to test their approach. According to the
authors, the integrated approach provides balanced solutions that considers the resources
altogether.
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Ogunsina et al. [2019] also used a multi-agent approach with an automated learning ap-
proach. The authors use a multi-dimensional Markov chain to predict the effect of disrup-
tions on the scheduled airline operations. Two dimensionality reduction techniques for
the uncertainty Markov model were discussed afterwards. These techniques are required
for the data-driven agent-based approach that uses the uncertainty Markov model to form
effective recovery action recommendations to a human controller. The authors did not dis-
cuss a case study performed on data of an airline.

Ernst et al. [2020] provided an initial framework on a decision support system for airline
operation control hub centre (DiSpAtCH). In this framework, the AOCC gets supported by
three machine learning systems. The first one is a machine learning system that uses past
operational data to identify disruptions before they occur and their impact on cost and
time. The second ML system proposes the 3 most efficient recovery actions that should be
taken, based on past recovery actions and their recovery strategies. Lastly, a third ML sys-
tem tries to accurately predict the impact on cost and time, based on the chosen recovery
strategy, the disruption causes, current real prices, and past indications of cost and time
impact. The AOCC remains the full control over the decision-making process.

Hondet et al. [2018] implemented a reinforcement learning model for the aircraft recovery
problem with aircraft swapping being the single recovery option. A trained agent makes
the decision whether to swap certain aircraft with each other or not. The algorithm is even-
tually compared to the idle strategy, i.e. not swapping and doing nothing. It turned out that
the reinforcement learning algorithm was far from optimal and only produced a marginally
better solution than the idle strategy. However, the agents takes relevant decisions and the
authors mention that the reinforcement learning model might have potential when the
agent is trained more or when allowing other recovery options as well.

As discussed before, Hassan [2018] and Nikolajević [2021] used machine learning classifiers
in the pre-processing stage to speed up the solution time by making a selection of the re-
sources with the goal of reducing the number of combinations a computer has to evaluate.
In their experiments, they showed that in most cases less than 5% of all the aircraft and crew
members have a changed schedule in the proposed recovery solution. Hence, not taking all
the resources into account in the optimisation model could significantly increase the com-
putational speed. In the ARP, a trained random forest algorithm was used to select a subset
of aircraft whose schedule were likely to change. In the CRP, a trained XGBoost (a type of
boosted decision trees) was used to classify a subset of crew whose schedule were likely to
change. The authors used the Delta Airlines network to test their model. Although the idea
was promising, the classifiers were only effective when approximately 50% of all the air-
craft and crew members were selected (i.e. around 50% of the resources had to be selected
to make sure that the correct 5% of the resources were included as well). For their pur-
pose this was sufficient, as most of the disruption instances were still solved in under two
minutes due to their sequential airline recovery approach. However, it is expected that an
integrated airline recovery model will require a lot more time using the same ±50% propor-
tion of the resources. A machine learning algorithm should correctly select considerably
less resources to make the integrated model fast enough for operational implementation.
The authors have not done an extensive analysis on machine learning classifiers or other
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machine learning algorithms that could be promising for this application.

3.2. Machine Learning for Combinatorial Optimization
According to Bengio et al. [2020], ML can be combined with CO in three different ways.
In the pre-processing stage, ML can be used to evaluate the effectiveness of an optimiza-
tion technique for a problem instance, such as utilizing a certain decomposition scheme
to solve the problem. Alternatively, ML can be used to predict the solution time of an
optimization problem. Secondly, ML can be used during optimization to help the solver
with promising branching decisions during the branch and bound algorithm for a MILP in-
stance. Lastly, ML can be used as an end-to-end method, without the use of a CO solver to
optimize a certain problem. Though this has the potential of providing solutions in orders
of magnitude faster than traditional solvers, the algorithm does not provide guarantees on
optimality or feasibility at all. Most commonly, machine learning is used next to CO to gain
information about (how to tackle) a problem instance or to speed up the optimization so-
lution time.

Mazyavkina et al. [2020] have done a survey on the combination of reinforcement learning
(RL) with combinatorial optimization. Solving a CO problem with RL requires the formu-
lation of the Markov Decision Process, i.e. the environment, the states & rewards, and the
agent itself. The environment is defined by the CO problem instance. The states of the en-
vironment should be encoded such that the agents can use it to find a good policy, which
can be done by a neural network for example. Lastly, the actions of the agent are defined
by the RL algorithm, whose goal is to maximize the rewards. The authors have concluded
that RL could be helpful for combinatorial optimization problems in different manners. A
trained RL agent can be used to take direct actions, for example building the shortest path
from a set of vertices. It can also be used to help the solver internally, by selecting promis-
ing nodes in the branch and bound algorithm for example. Another way to categorize RL
approaches for CO is by methods that learn the construction heuristics to build a solution
incrementally and by methods starting from some arbitrary solution that try to improve the
initial solution.

Furthermore, Kenworthy et al. [2021] used reinforcement learning to optimize the assign-
ment of pilots to flight crew schedules with the goal of reducing the impact of disruptions.
NICE, abbreviation of Neural Network IP Coefficient Extraction, is the name the authors
gave to a model that uses a reinforcement learning algorithm to guide the integer program-
ming (IP) formulation by assigning coefficients weights to the decision variables. The co-
efficient weights get extracted by a reinforcement learning agent that assigns pilots to slots
with a certain probability which are shown in the output layer of the deep neural network.
This way, the IP model gets steered in the right direction and has to calculate far fewer
combinations to find the optimal solution to this new formulation. They mention that this
model could have great advantages over ordinary CO solvers in the case one has to solve
complex optimisation problems in a limited solution time for which approximate solutions
are sufficient.
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3.3. Classification
Classification is a problem that can be tackled by supervised machine-learned classifiers
that learn from labelled training data. The data consists of features (the information repre-
senting it) and is assigned to a class. During training, classifiers develop a self-built algo-
rithm that can be used to predict the classes of new, unlabelled data. Traditional classifiers
have a local nature, i.e. they only consider the features of the data point that is classified and
not information about other data points. Olson et al. [2017] benchmarked 13 state-of-the-
art machine-learned models in a study consisting of 165 publicly available classification
problems. The results showed that decision trees, gradient tree boosting, random forest,
support vector machine and neural network (stochastic gradient descent) models yield the
best performance. Hence, these models will be discussed in this section. For a more exten-
sive and detailed review of machine learning classifiers, the reader is referred to Akinsola
[2017].

3.3.1 Decision Tree

The decision tree algorithm is a popular method for supervised classification. It forms an
interpretable tree that splits data-feature values into branches and decision nodes. At each
node, a decision is made after which the data gets fed forward to the associated branch. The
model can deal with both linear and non-linear data. Trees work well with deterministic
data and are generally several orders of magnitude faster than support vector machines
and neural networks, according to Kotsiantis [2007].

3.3.2 Random Forest

Random forest form an extension of ordinary decision trees by generating multiple deci-
sion trees and taking the majority vote of them to predict the output. This is done by cre-
ating bootstrapped datasets, i.e. modifying the dataset by only allowing a subset of data
points and features, and making new different trees each time. The goal of using multiple
decision trees is to lower the risk of overfitting. However, this technique makes the tree
less interpretable. Like ordinary decision trees, random forest can handle non-linear data.
Hassan [2018] implemented a random forest classifier in his approach to make a selection
of the aircraft in the network likely to be involved in the disruption recovery. The author
showed that the model was able to include the relevant aircraft with a probability of 95% if
50% of all the aircraft would be removed.

3.3.3 Gradient-boosting Tree

Gradient-boosting trees also form an extension of decision trees. Decision trees are gen-
erated sequentially, where each tree focuses on correcting the errors coming from the pre-
vious model. The final result is a combination of the results of all trees. Inherent to or-
dinary decision trees, the model is able to handle non-linear data points. An example of a
gradient-boosting tree is the XGBoost algorithm, a regularized form of a boosted tree which
controls over-fitting to ameliorate its performance. Nikolajević [2021] used XGBoost to se-
lect a subset of crew during the recovery. The author uses a classifier that is able to correctly
identify relevant crew in 99& of the cases, however, this is associated to a selection that con-
tains 50-100% of all the crew in the network (depending on the problem size).
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3.3.4 Support Vector Machine

A support vector machine (SVM) is a type of machine learning classification model that
draws an optimal linear division between classes. By using a so-called kernel trick, SVM
can be generalised to solve non-linear problems as well. In short, kernel functions al-
low features to be mapped to a higher-dimensional space, such that linear functions are
able to classify non-linear data points. According to Jiang et al. [2020], SVM’s perform well
with unstructured and semi-structured data, and can manage high-dimensional and mul-
ticollinear data well, however, they are prone to overfitting. They perform better when the
feature data types are continuous, as reported by Kotsiantis [2007].

3.3.5 Neural Network

Neural networks (NN) mimic the behaviour of the human brain and can be trained to han-
dle large amount of complicated and unstructured data. Generally speaking, a NN has
three layers, i.e. the input layer, the hidden layer(s) and the output layers. In the input layer
the features of the data points get inserted, whilst in the output layer the classification of
the data will be shown. The hidden layers try to map the input to the output layers. Neural
networks can handle both linear and non-linear data points, depending on the activation
functions used and can handle unstructured data very well. NN are known for their ac-
curacy for complex problems, but require a lot of training data. They perform well with
multi-dimensional, multi-collinear data and continuous feature types, like SVM’s, accord-
ing to Kotsiantis [2007].

In table 2 an overview of the machine learning models discussed above is depicted. The
performance in terms of different criteria are rated with a score from one to five.

Table 2: Performance of machine-learned classifiers on a 1-5 scale. Adapted from Kotsiantis [2007].

Decision
Tree

Random
Forest

Boosted
Trees

SVM
Neural

Networks
Learning Speed 3 2 2 1 1
Classification Speed 4 4 4 4 4
Tolerance to Missing Values 3 2 2 2 1
Tolerance to Redundant Features 2 2 2 3 2
Handling Over-Fitting 2 3 3 2 1
Interpretability 4 2 2 1 1

3.4. Collective Classification
The problem that arises when using a traditional machine learning classifier to select a
subset of the resources is that the data is classified independently, without further infor-
mation about the other data in the problem instance. This is undesired, as the selection of
resources is dependent on the other resources in the problem instance as well. A resource
with some properties may be a top-candidate in one disruption instance, but may be one of
the worst resources in another instance with many other high-potential resources. Ignor-
ing this relational information can confuse a local classifier, as this opens the possibility
that a resource with a certain feature vector is selected in one instance, but is not selected
in the other. Using a global view to classify an individual data point is called collective
classification and may enhance the accuracy of traditional classifiers (Sen et al. [2008], Ag-
garwal [2014]). Most commonly, the collective classification of nodes depends on its own
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attributes, the attributes of neighbouring nodes and the labels of neighbouring nodes. Pri-
marily, the process is based on conditional dependence (a label is dependent on the label
of another node) or homophily (nodes that share various properties with each other). Sev-
eral techniques are developed to incorporate this relational information. Sen et al. [2008]
provide an overview of three widely used collective classification and inference algorithms.

3.4.1 Iterative Classification Algorithm

The Iterative Classification Algorithm (ICA) seeks to update and revise node attributes based
on the labels and features of neighbouring nodes until an equilibrium is reached. If the la-
bel of a certain node has to be determined and the labels and/or attributes of all its neigh-
bouring nodes are known, iterative classification work with a local classifier that uses the
labels of the neighbouring nodes as input for classification. This method is very flexible, as
it uses a local classifier which can be chosen by the user. Hence, anything from decision
trees to SVM’s would work in such an algorithm. Since it is rare that all labels or attributes
of neighbouring nodes are known beforehand, the algorithm iterates the process of clas-
sifying nodes using the best estimates of the information of neighbouring nodes. Neville
and Jensen [2002] proposed a simple Bayesian classifier, which dynamically updates the
attributes of the nodes as inferences are made about related objects. Inferences made with
high-confidence in the beginning of the classification process are embedded in the data
and used for subsequent inferences to other related nodes. The model has been tested and
evaluated on a corporate dataset which consists of data about the intrinsic and relational
data of publicly traded corporations. The authors conclude that the iterative approach
significantly increase the accuracy of the classification as opposed to traditional machine
learning classifiers.

3.4.2 Gibbs Sampling

Gibbs Sampling (GS) is regarded as one of the most accurate inference algorithms, but is
very slow in practice. The idea is similar to ICA, as it also estimates the labels of nodes based
on labels and attributes of neighbouring nodes. The difference is that GS maintains a count
statistic consisting of the number of times label l was given to node Y . After a predefined
number of iterations, the algorithm determines the best label for node Y by choosing the
label that was assigned the most to node Y . Macskassy and Provost [2007] developed a
modular toolkit, called NetKit, for collective classification based on the Gibbs Sampling
technique. The authors have tested their work on benchmarked machine learning data
sets and conclude that simple collective classification models perform well enough to be
used regularly on networked data.

3.4.3 Loopy Belief Propagation

Loopy Belief Propagation (LBP) is a global conditional message-passing classification algo-
rithm in which each node sends a message about its belief of what the message-receiving
node should be. The message-receiving node then updates its own beliefs with this ad-
ditional information. The algorithm differs from other message-passing algorithms in the
sense that it discounts the messages with the goal of nodes not receiving their self-generated
messages. It is designed to converge on tree graphs, hence does not always converge on
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non-tree graphs on which it is often used. Sheng et al. [2020] used a loopy belief propaga-
tion algorithm to deblur motion in images. The authors show that the deblurring process
is convergent and that the number of iterations necessary are acceptable.

More collective classification use cases differ from social network analyses, to document
classification and computer vision. Jaafor and Birregah [2017] implement a collective clas-
sification algorithm to classify nodes in a social network. In the past, most work that has
been done to classify users was done with a local classifier. However, since in practice
datasets are unbalanced and some classes have only a few entries, only considering at-
tribute data and neglecting interactions may lead to poor results. The authors propose an
iterative classification algorithm for social networks (ICA-SN), which is derived from the
traditional ICA. The model aims to detect Jihadi propagandists and malware distributors.
The research question of Burford et al. [2015] is how document classifiers can exploit inter-
document implicit semantic relationships to improve accuracy. Explicit inter-document
links (hyperlinks, name-references and citations) have already been explored, however,
documents often do not contain these explicit links. Hence, this research matches pairs
of documents based on mutual use of particular n-grams (a contiguous sequence of n
items). The authors implemented a dual classifiers approach and iterative classification
algorithm. They conclude that the simpler iterative classification algorithm performs bet-
ter and is suited for such an application.

3.5. Ranking
Collective classification is used to extract additional information about a node from its
neighbours. In the context of selecting a subset of resources for the airline disruption re-
covery, this information is required to determine the relevance of a resource in comparison
to the others in the network. Instead of using a collective classification approach, a learn-
ing to rank algorithm could also be used to achieve this goal. Learning to rank is a machine
learning approach, typically in a supervised setting, which differs from traditional classifi-
cation and regression in the sense that it does not predict the outcome of one data point,
but takes a set of data points (typically referred to as query) and ranks the data points.
Hence, if a data point gets a negative predicted score, it means and only means that it is
relatively less important than the other data points with a positive score in that group. For
a more detailed overview of ranking, the reader is referred to Liu [2011].

Several feature representations can be used to describe the data points in the group.

• Query-dependent: features only depend on data points.

• Query-dependent: features depend on data points and query.

• Query-level: features only depend on query.

Three different ranking methods exist, aiming to rank the data points in the query, as ex-
plained by Li [2011], and are discussed below. A fourth, less used method, is developed by
Google and is discussed after the three most common ones.
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3.5.1 Pointwise Approach

The pointwise approach reduces to a traditional classification problem. All the data points
are independently given a score based on their own features, after which the data points are
sorted in a list from high to low scores. Existing classification algorithms that output a score
or probability can be used, such as boosted decision trees and neural networks. The group
structure of ranking is neglected in this approach as the data points are not compared to
each other in one way or another (Liu [2009]).

3.5.2 Pairwise Approach

In the pairwise approach, pairs of data points are ranked with the use of a classifier. This
is done for all data points in the group, such that a global ranking is achieved at the end of
the process. Like the pointwise approach, the overall group structure is still ignored. How-
ever, some information regarding the relevance of data points in comparison to others is
captured as opposed to the pointwise approach. Some popular models include Ranknet,
LambdaRank and LambdaMART developed by Microsoft. As explained by Burges [2010],
RankNet was developed first and made use of neural networks. The loss function tries
to minimize the number of inversions in ranking, with an inversion meaning an incor-
rect ordering among pairs. RankNet optimizes the loss function using a stochastic gradi-
ent descent. Later, LambdaRank was developed which only uses the gradient (λ, lambda)
of the loss, instead of the loss itself (RankNet). These gradients are attached to the data
points and indicate the direction where the data point has to go to (more relevant or less
relevant). Testing has shown both better and faster results over the original RankNet al-
gorithm. LambdaMART combines LambdaRank and MART (Multiple Additive Regression
Trees). The result is a gradient boosted decision tree with a loss function derived from
LambdaRank to perform pairwise ranking. During testing, LambdaMART has shown better
results than both RankNet and LambdaRank. Furthermore, Ranking SVM (Herbrich et al.
[1999]), RankBoost (Freund et al. [2003]), GBRank (Zheng et al. [2008]) and IR SVM (Cao
et al. [2006]) are other renowned pairwise methods.

3.5.3 Listwise Approach

The listwise approach does use the overall group structure to rank the data points. The ap-
proach directly takes an entire list of data points as an instance and try to come up with the
optimal ordering of it. Because of the global view, ranking evaluation metrics can directly
be incorporated into the loss function during the training process. Cao et al. [2007] hy-
pothesize that learning to rank should use the listwise approach to increase accuracy. The
authors propose two probabilistic methods for a listwise loss function, use it in a neural
network with a stochastic gradient descent algorithm and called it ListNet. They conclude
that the listwise approach performs better than the pairwise approach. Other renowned
models include ListMLE (Xia et al. [2008]), AdaRank (Xu and Li [2007]), SVM MAP (Yue et al.
[2007]) and SoftRank (Taylor et al. [2008]).

3.5.4 Groupwise Approach

Pairwise and listwise approaches generally perform well on ranking problems, however,
they utilize univariate scoring functions, i.e. the relevance score of a document is com-
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puted based on the document itself. Researchers Ai et al. [2018] at Google argue that for
some problems a groupwise multivariate scoring function is more appropriate, which takes
information of other data points into account when giving relevance scores. The authors
evaluate the approach using click logs from one of the largest commercial email search en-
gines, as well as a public benchmark dataset. They conclude that the model leads to better
results, especially when the textual features are sparse. Such an approach may be very suit-
able whenever features of data points do not fully describe the entity and information is
missing.

Use cases of learning to rank algorithms differ from information retrieval, recommender
systems and machine translations to bio-informatics. Microsoft Research Asia released a
benchmark collection for research on learning to rank for information retrieval, as reported
by Qin et al. [2010]. Besides, the company has compared several state-of-the-art ranking al-
gorithms in terms of performance: ListNet, AdaRank-MAP, AdaRank-NDCG and SVMMAP.
Among those, ListNet produced the best results. Next to information retrieval, learning to
rank is also used in other domains. Liu et al. [2015] applied a learning to rank algorithm
to protein remote homology detection. This is a problem that requires finding protein se-
quences in a database that are evolutionarily related to a particular protein. Results on a
widely used benchmarked data set show that the learning to rank algorithm outperformed
other competing methods.

3.6. Discussion
Machine learning and artificial intelligence are techniques that are being used more often
for complex data-driven problems. In airline disruption management, these techniques
have also been proposed. Two multi-agent systems with learning capabilities have been
developed (Castro and Ana Paula Rocha [2014], Ogunsina et al. [2019]) and a general AI
framework for disruption management has been proposed by Ernst et al. [2020]. Besides,
Hondet et al. [2018] used reinforcement learning for the aircraft recovery problem, but did
not yield good results. Furthermore, machine learning has been proposed to help solve dif-
ficult combinatorial optimisation problems. Bengio et al. [2020] explained that ML could
be used during pre-processing, in-the-loop and even end-to-end to help solve these issues.
Hassan [2018] and Nikolajević [2021] implemented machine-learned classifiers in the pre-
processing stage to reduce the computational complexity in their sequential airline recov-
ery model. However, an increase in machine learning performance is necessary to develop
a recovery model with an integrated problem formulation that is fit for operational use.

Recently, less traditional machine learning techniques have been proposed to tackle net-
worked data. Collective classification and learning to rank algorithms take into account the
global structure of problems and could be of added value. These techniques have already
been used in bio-informatics and social networks (Liu et al. [2015] and Jaafor and Birregah
[2017]), among others. Table 3 depicts state-of-the-art research using collective classifica-
tion and learning to rank methods. To the best of the author’s knowledge, these techniques
have not been used in the airline industry yet. Since networked data is part of many airline
related problems, this could be an interesting field to explore. The airline recovery problem
is an example of an airline related problem, and could benefit from the use of the machine
learning techniques that take into account the global structure.

18



Table 3: Research using collective classification and learning to rank methods.

Paper Method Data Problem

Neville and Jensen [2002] ICA
Publicly Traded
Corporations

Classification Industry of
Company

Qin et al. [2010] LTR Documents Information Retrieval
Burford et al. [2015] ICA Inter-Document Links Document Classification
Liu et al. [2015] LTR Evolutionary Proteins Homology Detection

Jaafor and Birregah [2017] ICA Social Network
Detect Jihadi Propagandists
and Malware Distributors

Ai et al. [2018] LTR Click Logs E-mail Ranking
Sheng et al. [2020] LBP Pictures Motion Deblurring

Abbreviations used in table. ICA: Iterative Classification Algorithm, LBP: Loopy Belief Propagation, LTR:
Learning to Rank

4. Research Goal
Sequential approaches for the airline recovery problem have shown to be time-efficient,
but often ignore important interdependencies between aircraft, crew and passengers. This
results in solutions that might be optimal for one resource, but unacceptable for the other.
Integrated approaches do have a global view and optimise for all the resources in the model
at once, but have the drawback that they are computational intractable. Recent advance-
ments in machine learning could be a solution for this, as it has the ability to reduce the
complexity and therefore the solution time of large problems. More specifically, learning
to rank algorithms show great potential in selecting a small subset of the resources that
should be taken into account during optimisation. There is still a need for an integrated
recovery model, fit for operational use, and exploring the benefits of an efficient learning
to rank algorithm could be of added value to the field of airline disruption management.

At the faculty of Aerospace Engineering in the department Air Transport Operations, sev-
eral works on airline disruption management have been performed over the last years. Vos
et al. [2015] started with developing a dynamic aircraft recovery model. Vink et al. [2020]
and Hassan [2018] extended the work of Vos et al. [2015] by using a heuristic and machine
learning classifiers respectively to enable faster runtimes. Hoeben [2018] developed a crew
recovery model. Recently, Nikolajević [2021] extended the work of Hassan [2018] by adding
the crew recovery model sequentially with a machine learning classifier. The lack of accu-
racy of the machine-learned classifiers, forced the authors to use a sequential approach to
obtain fast recovery times. The objective of this research is to develop a better performing
machine learning model in combination with an integrated recovery approach to realize a
fast and more efficient disruption management model:

Development of a real-time and integrated airline recovery decision-support tool by
implementing a learning to rank algorithm that accurately reduces the complexity of the

combinatorial optimisation recovery model.

Research questions that indicate what type of knowledge and data is needed to steer the
project in the right direction are formulated. The higher-level questions further consist of
lower-level questions.

1. What type of machine-learned ranking algorithm is efficient to select the aircraft and
crew that should be considered in the integrated airline recovery model?
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(a) Is the pairwise, listwise or groupwise approach the most suitable for the prob-
lem?

(b) What underlying machine learning model is effective (e.g. neural network or
gradient boosted tree)?

2. How can one develop an efficient integrated combinatorial optimisation model?

(a) What is the most computational tractable way to incorporate multiple resources
into one problem formulation?

(b) Should the passenger itineraries be explicitly or implicitly modelled in the for-
mulation?

3. How can one further reduce the complexity to obtain real-time solutions?

(a) Which methods can be applied to simplify the problem formulation and speed
up the process.

(b) How should the two main performance metrics, solution time and solution qual-
ity, be balanced during the model assessment?

5. Conclusions
Literature has been more focused on integrating all the resources of airlines into a single
model to cover the complete recovery problem. As the Airline Operations Control Centers
require a solution within 2 minutes, the runtime of the decision-support tools are also re-
garded as one of the key criteria. Sequential approaches have been proposed as they may
solve the recovery problem in a faster period of time, but often fail in capturing the inter-
dependencies of the different resources. Models with an integrated problem formulation
do guarantee a global optimum, however, their computational complexity increases dras-
tically with larger networks. Selecting a subset of the resources that should be considered
in the optimisation model can reduce the computational complexity of the model. Tradi-
tional machine learning classifiers have been used in the past, but only solve a prediction
problem on a single instance at a time and are therefore not well-suited. The selection of
an aircraft or crew member is not only dependent on its own attributes, but also on its rel-
ative relevance compared to the other resources available. Hence, this research will focus
on implementing a machine-learned ranking algorithm, a method that looks at the relative
ordering among all the resources in a disruption instance, to select the resources prone to
schedule changes. The objective of the research is the development of a real-time and inte-
grated airline recovery decision-support tool by implementing a learning to rank algorithm
that accurately reduces the complexity of the combinatorial optimisation recovery model.
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1
Data Input and Pre-Processing

In this section, a more detailed overview of the required data and its pre-processing will be provided. In
Figure 1.1 a schematic overview is depicted, which shows what data should be loaded into the model and
what pre-processing steps are taken. In the following subsections, the diagram will be explained in detail.

Figure 1.1: Schematic overview of the pre-processing phase.

1.1. Data Input
The airline recovery model requires data regarding the schedule, disruptions, aircraft and crew in order to
come up with a recovery strategy. Besides, airline preferences can also be provided to tailor the model to
specific needs.

Schedule and Disruption Information
In terms of schedule information, the flight, aircraft and crew schedules are required. That is, each flight
should be described by an origin and destination, a scheduled departure time (STD) and scheduled arrival
time (STA), and the number of passengers (economy and business) should be given. Moreover, the distances
between the airports in the schedule should be provided. Lastly, the connecting passenger itineraries and the
minimum required time for passengers transferring on a new flight for each airport are necessary. In terms
of disruption(s), two pieces of information are necessary. The first one is the disruption type, which could be
a flight delay, a flight cancellation, an aircraft unavailability or an airport closure. Other types of disruptions
can not be handled by the proposed model (e.g. reduced flow at an airport). The second piece of information
contains the affected flight(s), aircraft, crew (and airport(s) in case of a closure).

Schedule Disruption(s)
Flight schedule Disruption type
Aircraft schedule Affected flight(s)
Crew schedule Affected aircraft
Distances between airports in the schedule Affected crew
Connecting passenger itineraries Affected airport(s)
Minimum required passenger connection time

Table 1.1: Schedule and disruption(s) information.
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Fleet and Crew Information
Next to the schedule and disruptions, fleet information is required. All the aircraft tail numbers, types and
families in the fleet should be provided. Besides, aircraft characteristics are also necessary. The direct oper-
ating cost (DOC), turn-around-time (TAT), range and passenger capacity in both the economy and business
class, should be given per aircraft type. Similarly to the fleet information, crew information should also be
given. All the crew and reserve crew in the network should be provided, but also the operating costs per crew
type, the aircraft families each crew is allowed to operate and the minimum required time for the crew to
transfer flights for each airport.

Fleet Crew
Aircraft in fleet Crew in network
DOC Crew operating cost
TAT Aircraft family of crew
Range Minimum required connection time
Passenger capacity

Table 1.2: Fleet and crew information.

User Defined Settings
User-defined settings consisting of airline preferences can be given, which tailor the model to the needs of
the airline. The length of the time window can be increased, resulting in more recovery options. The time
steps may also be increased, which enhances the accuracy of the recovery model. However, these come at
the expense of additional computational time. The tail swap time limit is another user-defined setting, which
defines a time block before departure in which aircraft may not be swapped anymore. This prohibits aircraft
from being swapped minutes before a flight, which is infeasible in reality as ground processes are required to
make the aircraft ready for their flight.

Costs
Different cost factors present in the objective function eventually determine what to optimize for. All the cost
factors are given in Table 1.3. First of all, local regulations determine the compensation that has to be given
to passengers in case of a cancelled flight. The cancellation fee should be set in such a way that it accurately
represents these costs. In terms of delay, both hard costs and soft costs are considered in this research. These
costs increase with longer delays. The hard costs are defined as the legal compensation that the airline is
obliged to return to the customer in case of delays (depending on the duration of the delay). The soft costs, on
the other hand, are defined as the expenses not directly related to the repayment, but to the bad experience
of the customer due to a delay or cancellation. In the case of a cancellation, the costs equal the soft costs
associated with a large delay (can be chosen by the airline), plus the additional cancellation fee.

Cost Factor Description

Cancellation fee Additional cost per passenger in case of a cancelled flight.

Delay fee Additional cost per passenger in case of a delay, which varies per de-
lay duration.

Business multiplier Business passengers have higher associated costs, which equal the
economy passenger costs multiplied by the business multiplier.

AC schedule penalty Penalty assigned when another aircraft than scheduled operates a
flight.

Crew schedule penalty Penalty assigned when another crew than scheduled operates a flight.

AC sink node penalty Penalty assigned when an aircraft ends at an undesired airport.

Crew sink node penalty Penalty assigned when crew ends at an undesired airport.

Reserve crew sink node penalty Penalty assigned when reserve crew ends at an undesired airport.

Crew deadheading Costs associated to deadheading crew on a flight.

Flight time penalty Penalty assigned when crew exceeds its maximum flight time.

Table 1.3: Cost factors used in the model.
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1.2. Pre-processing
The input data is then pre-processed, such that the information can be interpreted by the computer program.
The recovery scope is determined and is defined as the schedule and the known disruption(s) from the start
of the time window until the end of the time window. The start of the time window always equals the time
at which the first disruption became known. The end of the time window is based on the preference of the
airline and is either determined by the given length of the time window or the specific time at which the time
window should end. Furthermore, the connecting passenger matrix is constructed, and the aircraft and crew
features are generated. The last two steps will be explained in more detail below.

Connecting Passenger Matrix
The connecting passenger matrix (CPM) is based on the research performed by Vink et al. [13], who aimed
to include passenger considerations as well without explicitly modelling them. Vink et al. developed a one-
sided CPM, which computes the missed connection costs in the case a flight delay causes passengers to miss
their connection. The methodology of the CPM will be explained using Figure 1.2. Flight 1 from ATL to LA
has a connecting Flight 2 from LA to NY 10 minutes after the arrival of Flight 1. In the case of a 10-minute
delay, the passengers are still able to make the connection. However, if the delay is larger than 10 minutes,
the passengers will miss their connection. The next flight going to NY from LA is Flight 3, which departs 40
minutes after Flight 2 and is the first possible alternative for the passengers. As a result, if Flight 1 is delayed
by more than 10 minutes, the delay experienced at the end destination is equal to 40 minutes. If Flight 1 is
delayed by more than 50 minutes, the connection to Flight 3 will also be missed. As this is the last flight of
the day, the maximum delay costs will be assigned in this case. All connecting flights are evaluated according
to this methodology. The passenger delay at the end destination is calculated for every delay step and the
respective delay costs are added to the CPM. The CPM is a matrix of size F xT , with F being the number of
connecting flights in the schedule and T the number of delay steps the airline wants to consider.

Hassan [8] further extended the CPM, by allowing the connecting flights to be delayed as well if this does not
disturb the downstream flights after it. Again, consider Figure 1.2. If Flight 1 is delayed by 20 minutes, Flight 2
could be delayed by 10 minutes without causing problems. The result is a more optimal solution, as passen-
gers on the 20-minute delayed Flight 1 are able to make their connection to Flight 2, while the connection to
Flight 4 can also be made without any problems. Hassan [8] only made this option available for the outbound
connecting flights of disrupted inbound flights. The author noted that the computational complexity would
increase too much if all subsequent flights would be considered.

Figure 1.2: Connecting flights example.
Adapted from Hassan [8].
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Generation of Features
After pre-processing, the two machine learning algorithms predict which resources are likely to be involved in
the optimal recovery plan based on the features describing them. Hence, the last step during pre-processing
is to generate these features. The model iterates over all the resources in the network and determines the
values of the features, until all resources are considered. The feature values can be categorical (e.g. aircraft
type) or numerical (e.g. aircraft range). All features of the resources are determined by either their position
in the network (e.g. being at the same airport as the disrupted resources), schedule-related information (e.g.
same end-of-duty airport as disrupted crew) or the user-provided information (e.g. turn-around-time at a
specific airport). Table 1.4 shows the structure of the feature space. The most right column Y shows the ranks
that should be determined by the machine learning algorithms.

F1 F2 F3 ... Fn Y
C1 v1,1 v1,2 v1,3 ... v1,n y1

C2 v2,1 v2,2 v2,3 ... v2,n y2

C3 v3,1 v3,2 v3,3 ... v3,n y3

... ... ... ... ... ... ...
Cm vm,1 vm,2 vm,3 ... vm,n ym,n

Table 1.4: Structure feature space.
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Machine-learned Ranking

This section will provide additional information regarding the machine-learned ranking algorithms that are
used in the proposed integrated airline recovery model.

2.1. Motivation for Machine-learned Ranking
Learning to rank algorithms aim to retrieve an optimal ordering of items in a group, by training it with labelled
data. The labels provide information on the relevance of the data, which could be binary (i.e. 1 is relevant, and
0 is not relevant) or integer to differentiate between distinct levels of relevancy. The items are described by
features and belong to a certain group in which the ranking happens. Learning to rank differs from traditional
classification and regression in the sense that it does not predict the outcome of one data point, but takes a
group and ranks the data points within it. Previous research on airline disruption management has made
use of classification algorithms to make the selection of resources, however, these are not effective enough to
reduce the computational time for the integrated recovery to under two minutes. A reason for this could be
that the context of a disruption instance is not taken into account, whilst this could be realised in the learning
to rank algorithms by specifying the groups of resources. Without this context, it is difficult to understand the
potential of a resource. For example, an aircraft with certain features may be the most helpful in a particular
disruption instance, but that does not guarantee that it also is the most helpful in another instance. The
relevance of a resource in comparison to the others in the instance is actually the important information that
has to be predicted. Having other more helpful or less helpful resources in the network that could be used in
the recovery plan affects the helpfulness of a particular resource. This is why a learning to rank model could
be preferred over the traditional machine learning models.

2.2. Feature Manipulation
Some features do not apply to certain resources and are thus left blank. However, those missing values should
be carefully treated, as these could have a negative influence on the models. One option could be to delete
those resources, but this could remove valuable information from the data. Imputing missing values is in
most cases a better option, and could be done in several ways. For numerical data, statistical expressions
such as the mean, mode or median over all resources could be used. Another strategy is to assign values out-
side the range of the feature distribution, expecting that the machine learning model could easily filter these
out. The former strategy is chosen and is applied to the missing values in the datasets. Furthermore, another
technique was used to handle categorical features, as the open-source libraries for the machine learning
models generally do not accept categorical features. The most simple way to deal with this problem is to
assign numerical values for each distinct categorical feature, e.g. ’737’ becomes 1, ’A320’ becomes 2 and so
on. However, machine learning models could understand this as 2 being greater than 1, whilst nominal cate-
gorical features do not have an ordering between the distinct categories. Because of this, another technique
known as ’One-hot Encoding’ is used, which mitigates this problem by applying binarisation to the categor-
ical features. Table 2.1 shows this principle and, as can be seen, no ordering among the distinct categories is
created.
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Categorical Feature One-hot Encoding
A320-200 100
737-700 010
MD-88 001

Table 2.1: One-hot Encoding.

2.3. Evaluation Metrics
Many evaluation metrics are developed nowadays for ranking. Popular ranking metrics include the mean re-
ciprocal rank (MRR), mean average precision (MAP) and the normalized discounted cumulative gain (NDCG).
MRR only considers the highest ranked relevant data point in the list and is useful for targeted cases where
the lower ranked data points are not of importance.

MRR =
1

n

n∑
i =1

1

r anki
(2.1)

In Equation 2.1, n is the number of groups and r ank is the rank position of the first relevant item in group
i . MAP is determined by calculating the precision for increasing recall scores, after which the average is
calculated over all groups. The precision is the fraction of relevant items selected and the recall is the fraction
of selected items that are relevant.

MAP =

∑n
i =1 AveP(i )

n

AveP =
n∑

k=1
P (k)´r (k) (2.2)

NDCG incorporates the actual order of the data points in the ranked list and is able to distinguish the rele-
vance of the different data points in the list (i.e. more relevant data points placed higher in the list are valued
greater). The metric penalises relevant items ranked lower in the list. First, the discounted cumulative gain
(DCG) is calculated by summing the gain of each item with relevance r el at position i , up until a certain rank
position p. Then, the DCG is normalised by dividing it by the ideal discounted cumulative gain (IDCG), which
is the DCG for an ideally ranked list.

DCGp =
p∑

i−1

reli

log2(i + 1)

nDCGp =
DCGp

I DCGp
(2.3)

These metrics are relevant for some ranking or information retrieval use cases, however, the metrics do not
provide an accurate indication of the performance in the context of this research. This is because the actual
order of the relevant resources is not important, so the NDCG is not the most ideal metric. Besides, some
disruption instances will contain more than only one helpful resource for the recovery, while MRR only con-
siders the most relevant item. Lastly, precision isn’t a well-suited metric for the machine-learned ranker in
this context, as explained in part I of this thesis.

2.4. Hyperparameter Optimisation Techniques
Hyperparameters define the construction of the machine learning model and influence its performance.
They should be optimised to increase the effectiveness of making a selection before the airline recovery. Since
it is computationally expensive to test all the different hyperparameter settings, different techniques are de-
veloped to approach this in a structured manner. Grid search is the simplest technique, because it exhaus-
tively searches on a discrete subset of the hyperparameter space. Although simple, the method suffers from
the curse of dimensionality, which means that the computational speed greatly reduces with an increasing
number of hyperparameters. Random search does not search on a grid, but randomly picks combinations of
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hyperparameters and eventually chooses the set with the best performance according to an evaluation met-
ric. Bayesian optimisation is the most structured and efficient method to optimise the hyperparameters. The
technique applies a probabilistic surrogate model that tries to approximate an objective function, based on
known function values (i.e. the evaluations of models with certain hyperparameters). From the probabilistic
model, also called a prior, a posterior distribution is created, which interpolates the known function values
with the information gained from the prior. The posterior constructs an acquisition function which provides
an indication for the next sample to pick. This process is repeated each time a new sample is evaluated, such
that more information can be used to predict the objective function.

Bayesian optimisation is useful for finding optima on a continuous function of which the derivative is un-
known (gradient descent techniques remain more efficient, but require a derivative) and which is expensive
to evaluate at many points. The difference between Bayesian optimisation and random search or grid search
is that the first efficiently makes use of the information retrieved during the evaluation of the previous sample
points.

2.5. Results
Two LambdaMART models are trained and optimized for both aircraft and crew. The feature importance of
both models is depicted below and is based on the usefulness of the feature in predicting the outcome. The
description of the features are stated in the appendix in part I of this thesis.

Figure 2.1: Feature importance in the aircraft machine learning algorithm.

Figure 2.2: Feature importance in the crew machine learning algorithm.
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The results of the machine-learned ranking algorithms are compared with the classifiers used in the SDSS,
i.e. a random forest classifier for the aircraft selection and XGBoost for the crew selection, and are depicted
in Figure 2.3 and Figure 2.4 respectively.

Figure 2.3: Recall comparison with increasing
selection sizes for aircraft machine learning models.

Figure 2.4: Recall comparison with increasing
selection sizes for crew machine learning models.

The results show that both the aircraft and crew LambdaMART models outperform the random forest and
XGBoost classifiers respectively. In terms of aircraft, the difference is more significant, since a recall increase
of 15−25% is realized by using a learning to rank algorithm. The crew models perform more similar, but still
an increase of 4−8% can be seen.

The recall of the aircraft and crew machine-learned rankers, however, does decrease with an increasing num-
ber of involved resources in the recovery, as shown in Figure 2.5 and Figure 2.6 respectively. As most disrup-
tion instances are recovered by using only a few resources, the problem is not significant. But for more severe
disruptions with more resources involved, the models have difficulties identifying the optimal resources.

Figure 2.5: Recall for an increasing number of relevant
aircraft.

Figure 2.6: Recall for an increasing number of relevant
crew.



3
Integrated Recovery Model

This section will provide additional information regarding the mixed-integer linear programming (MILP) for-
mulation used in the integrated airline recovery model. The MILP attempts to find the optimal solution to
one or multiple disruptions in a given time window. The model optimises the recovery of the schedule and al-
locates aircraft and pilot pairs to flights simultaneously. Connecting passengers are implicitly included by the
connecting passenger matrix (CPM), which imposes an appropriate cost in the objective if passengers cannot
make their next flight. The model is based on a parallel time-space network for every aircraft and crew pair,
in which time is discretized on one axis and the airports are located on the second axis. The following sets,
indices, parameters and decision variables are used in the optimisation model and will be used throughout
this section.

Sets and Indices

Sets Indices
F flights i flight index
K crews k crew index
A airports t delay time index
E aircraft types a airport index
P aircraft p aircraft index
P(e) aircraft p of type e e aircraft type index
N nodes = NO ∪NI ∪NS n node index
NO origin nodes j artificial variable index
NI intermediate nodes
NS sink nodes
T delay steps

Parameters

Aircraft Crew
COPp,i Operating cost of AC p on flight i COPk,i Operating cost of crew k on flight i
CDi ,t Delay cost of flight i for delay t CD Hk,i Deadhead cost of crew k on flight i
CCi Cancellation cost for flight i COC Unscheduled crew operating penalty
CGn Cost of ground arc from node n CSVk Sink node violation cost for crew k
he

n Number of AC of type e required at node n CF T Flight time exceeded penalty
CCSC H Unscheduled AC operating penalty F Ti Flight time of flight i
C ASVk Sink node violation cost for crew k F T Lk Flight time remaining in TW for crew k

F T Mk Maximum additional flight time for crew k
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Decision Variables
Aircraft Crew
δFp,i if flight i is flown by AC p without delay δKk,i if crew k is allocated to flight i without delay
δF Dp,i ,t if flight i is flown by AC p with delay t δK Dk,i ,t if crew k is allocated to flight i with delay t
δCi if flight i is cancelled δGKk,n if crew k uses ground arc n
δGPp,n if AC p uses ground arc n δK ′

i
if flight i is flown by an unscheduled crew

δF ′
i

if flight i is flown by an unscheduled AC δD Hk,i if crew k is deadheaded on flight i without delay

s j slack variable for sink constraint violation δD HDk,i ,t if crew k is deadheaded on flight i with delay t
sk slack variable for sink constraint violation
sF Tk slack variable for exceeding scheduled flight time

3.1. Objective Function

Min
∑

p∈P

∑
i∈F

COPp,i ·δFp,i +
∑

p∈P

∑
i∈F

∑
t∈T

(
COPp,i +CDi ,t

)
·δF Dp,i ,t +

∑
i∈F

CCi ·δCi +
∑

p∈P

∑
n∈N

CGn ·δGPp,n +
∑
i∈F

CCSC H ·δF ′
i

+
∑

k∈K

∑
i∈F

(
COPk,i ·δKk,i +CD Hk,i ·δD Hk,i +

∑
t∈T

(
COPk,i ·δK Dk,i ,t +CD Hk,i ·δD HDk,i ,t

))
+

∑
k∈K

∑
n∈N

CGn ·δGKk,n +
∑
i∈F

COC ·δK ′
i

+
∑
j∈S

s j ·C ASV +
∑

k∈K
CC SV · sk +

∑
k∈K

CF T · sF Tk (3.1)

The objective function is a minimisation problem and consists of aircraft, crew and passenger related costs.
The former consists of the missed connection costs for passengers and is implicitly modeled in the delay cost
of a flight through the CPM.
The first line represents all the aircraft related costs, consisting of the direct operating cost (DOC) for the
flights operated as scheduled, the DOC and delay cost for the flights operated with a delay, the cancellation
cost for the cancelled flights, the cost of operating a ground arc for the aircraft that stay on the ground and
the additional cost for operating a flight with an unscheduled aircraft, respectively.
The second line represents all the crew related costs, consisting of the operating and deadheading cost for
crew on an on-time flight, the operating, deadheading cost for crew on a flight with a delay, the cost of oper-
ating a ground arc and the additional cost for operating a flight with unscheduled crew, respectively.
The last line consists of slack variables to ensure feasibility and prevent unwanted behaviour from the model.
The first refers to the aircraft sink node violation, the second to the crew sink node violation and the last one
to the crew flight time violation. If the constraints associated to the slack variables cannot be satisfied, the
slack variables are activated and a penalty is imposed in the objective function.

3.2. Time-space Network Constraints
The first set of constraints are related to the time-space network. These constraints ensure that all activities
in the network occur as expected.

Flight Coverage
Constraints 3.2 ensure that all flights are either flown as scheduled, delayed or cancelled. Without these
constraints the model would ground many aircraft, since the costs of staying on the ground are much lower.

δCi +
∑

p∈P

(
δFp,i +

∑
t∈T

δF Dp,i ,t

)
= 1 ∀i ∈ F (3.2)

Crew Coverage
All flights have to be flown by a crew pair. A differentiation is made between flights flown on time and flights
with a delay. Constraints 3.3 ensure that all the on-time flights are allocated a crew pair and Constraints 3.4
ensure that all the delayed flights are operated by a crew pair.∑

p∈P
δFp,i =

∑
k∈K

δKk,i ∀i ∈ F (3.3)

∑
p∈P

δF Dp,i ,t =
∑

k∈K
δK Dk,i ,t ∀i ∈ F,∀t ∈ T (3.4)
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Crew Deadheading
Deadheading may be of interest in some cases. Crew pairs could either fly with on-time flights or with delayed
flights. Constraints 3.5 and 3.6 prohibit deadheading on cancelled flights and ensure that deadheading can
only happen on operated flights. ∑

p∈P
δFp,i ≥

∑
k∈K

δD Hk,i ∀i ∈ F (3.5)

∑
p∈P

δF Dp,i ,t ≥
∑

k∈K
δD HDk,i ,t ∀i ∈ F,∀t ∈ T (3.6)

Aircraft Node Continuity
Aircraft node continuity is ensured by the following three constraints. Constraints 3.7 force all aircraft to leave
the first node in the time window, either by flying a (delayed) flight or by utilizing a ground arc. Constraints 3.8
demand all aircraft entering a node to also leave that node. Constraints 3.9 handle the inflow of the aircraft at
the last node in the time window. Generally this can be done in two ways, either by fixing the specific aircraft
or by fixing the aircraft type at a certain airport. In this model, the former is chosen in order to give the model
more flexibility, since tail swaps with aircraft of the same type could be performed in more cases this way. To
avoid model infeasibility, a slack variable with a large associated cost is activated in the objective function
whenever the constraints cannot be satisfied.

δGFp,n +
∑

i∈Fout

δFp,i +
∑

i∈Fout ,t∈T
δF Dp,i ,t = 1 ∀p ∈ P,n = scheduled No of p (3.7)

(
δGp,n−1 +

∑
i∈Fi n

δFp,i +
∑

i∈Fi n ,t∈T
δF Dp,i ,t

)
−

(
δGp,n +

∑
i∈Fout

δFp,i +
∑

i∈Fout ,t∈T
δF Dp,i ,t

)
= 0 ∀p ∈ P,n ∈ Ni (3.8)

∑
p∈P (e)

(
δGFp,n−1 +

∑
i∈Fi n

δFp,i +
∑

i∈Fi n ,t∈T
δF Dp,i ,t

)
+ s j ≥ he

n ∀e ∈ E ,n ∈ Ns (3.9)

Crew Node Continuity
Crew pairs also have three different constraints ensuring node continuity in the time space network. Con-
straints 3.10 make sure that all crew pairs leave their starting node either by operating or deadheading a
(delayed) flight or by utilizing a ground arc. Similar to Constraints 3.8, Constraints 3.11 demand all crew pairs
entering a node to also leave that node. Lastly, Constraints 3.12 fix specific crew pairs at the last node. If this
cannot be assured, the slack variable is activated and imposes a large additional cost in the objective function.
Again, this is done to avoid model infeasibility whenever the constraints cannot be satisfied.

δGKk,n +
∑

i∈Fout

(
δKk,i +δD Hk,i

) ∑
i∈Fout ,t∈T

(
δK Dk,i ,t +δD HDk,i ,t

)
= 1 ∀k ∈ K ,n = scheduled No of k (3.10)
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δKk,i +δD Hk,i

)
+

∑
i∈Fi n ,t∈T

(
δK Dk,i ,t +δD HDk,i ,t
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δGKk,n +

∑
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(
δKk,i +δD Hk,i

)
+

∑
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δK Dk,i ,t +δD HDk,i ,t

)
= 0 ∀k ∈ K ,n ∈ Ni (3.11)

δGKk,n−1 +
∑

i∈Fi n

(
δKk,i +δD Hk,i

)
+

∑
i∈Fi n ,t∈T

(
δK Dk,i ,t +δD HDk,i ,t

)
+ sk = 1 ∀k ∈ K ,n = scheduled Ns of k (3.12)

3.3. Aircraft and Airline Constraints
The second set of equations is related to aircraft properties, airline policy and regulations.

Aircraft Seat Capacity
When swapping planes, the seat capacity of the new aircraft should be large enough to accommodate all the
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passengers that booked the flight. Constraints 3.13 make sure that the aircraft that do not satisfy the seat
capacity requirement cannot operate the flight.

δFp,i +
∑
t∈T

δF Dp,i ,t = 0 ∀p, i where (SeatsYp < PaxYi ∧SeatsJp < PaxJi ) (3.13)

Aircraft Range
Constraints 3.14 prohibit an aircraft from operating a flight when its range is less than the distance of the
flight.

δFp,i +
∑
t∈T

δF Dp,i ,t = 0 ∀p, i where
(
rangep < disti

)
(3.14)

Penalty Unscheduled Aircraft
When a tail has been swapped and an unscheduled aircraft operates a flight, Constraints 3.15 ensure that
a penalty is incurred in the objective function. These constraints make sure that it should be desirable to
operate the flights according to the initial schedule. The penalty cost should equal the cost of performing a
tail swap.

δFp,i +
∑
t∈T

δF Dp,i ,t −δF ′
i

= 1 ∀i ∈ F, p = aircraft not scheduled for i (3.15)

Tail Swap Time Limit
Because of operational challenges such as turn-around processes and gate allocation, tail swaps cannot be
performed Tsw ap minutes before the time of departure of the flight anymore. Constraints 3.16 make sure that
aircraft p not scheduled for flight i cannot operate the flight Tsw ap minutes before its time of departure.

δFp,i +
∑
t∈T

δF Dp,i ,t = 0 ∀p ∈ P, i where ST Di −Tnow < Tsw ap and i ̸= flight for p (3.16)

Penalty Unscheduled Crew
Similar to Constraints 3.15, Constraints 3.17 impose a penalty in the objective function when a flight is oper-
ated by a different crew pair. This favours flights to be operated according to the initial schedule.

δKk,i +
∑
t∈T

δK Dk,i ,t −δK ′
i

= 1 ∀i ∈ F,k = crew not scheduled for i (3.17)

Flight Time Limit Crew
Strict regulations are imposed on pilots on duty. Constraints 3.18 ensure that crew pairs cannot exceed their
maximum flight time during the recovery. If these constraints are violated, a slack variable will be activated to
enlarge the crew’s maximum flight time, such that the constraints become feasible again. However, this leads
to the addition of a penalty in the objective function.

∑
i∈F

(
δKk,i +

∑
t∈T

δK Dk,i ,t

)
·F Ti ≤ F T Lk + F T Mk · sF Tk ∀k ∈ K (3.18)

3.4. Disruption Implementation
The actual disruptions should also be included in the MILP model, as otherwise the schedule would be op-
erated as planned. Disruptions are added to the optimisation model in the form of constraints, which cancel
the relevant decision variables. This makes sure that the disruptions are imposed correctly in the schedule.
Four different disruption types can be imposed.

Flight Delay
When a flight is delayed, Constraints 3.19 make sure that all flight arcs up until the length of the delay cannot
be flown. ∑

p∈P
δFp,i +δDp,i ,t = 0 ∀t ∈ T ≤ delay, i = delayed flight (3.19)

Flight Cancellation
When a flight is cancelled, Constraints 3.20 set the cancellation decision variable for that flight equal to one.

δCi = 1, i = cancelled flight (3.20)
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Aircraft Unavailability
Another type of disruption is the unavailability of an aircraft for a certain period of time. This could be caused
by a mechanical failure, for example. Constraints 3.21 ensure that all flight arcs up until the duration of the
unavailability for the specific aircraft cannot be flown.

δF p,i +
∑
i∈F

δDp,i ,t = 0

∀i ∈ F where (tstart ≤ STDi ≤ tend ∪ tstart ≤ STAi ≤ tend ) ,

∀t ∈ T where (tstart ≤ STDi + t ≤ tend ∪ tend ≤ STAi + t ≤ tend ) (3.21)

Airport Unavailability
The last form of disruption considered in this research is the unavailability of an airport. Constraints 3.22
prohibit the operation of all flights from and to the unavailable airport in the time period.

∑
p∈P

(
δF p,i +

∑
i∈F

δDp,i ,t

)
= 0

∀i ∈ F (where (tstart ≤ STDi ≤ tend ∪ tstart ≤ STAi ≤ tend ))∩ (
orig i ∪ dest i

)
= a

∀t ∈ T ( where (tstart ≤ STDi + t ≤ tend ∪ tend ≤ STAi + t ≤ tend ))∩ (
orig i ∪desti

)
= a

where a = unavailable airport (3.22)





4
Model Verification

Before performing the case study, it is important to verify the model in order to assess whether it works as
designed. Therefore, all the different recovery actions are tested. These are divided into different sections,
i.e. schedule, aircraft and crew recovery actions. In total, six scenarios are tested and information regarding
these scenarios are depicted in three tables below.

In Table 4.1 a cost overview is shown, which is used in the verification analysis. In the case study the delay
costs and the swapping costs differ, but for verification purposes, the values are simplified. Cancellation costs
are defined as the maximum delay costs plus an additional $250 per passenger.

Parameter Cost
Delay $1/(mi n ·pax)
Cancellations $250/pax
AC Swap $500
Crew Swap $1,000
Crew Deadhead $200
AC Sink Violation $1,000,000
Crew Sink Violation $50,000
Reserve Crew Sink Violation $10,000

Table 4.1: Overview of costs.

In Table 4.2 the number of resources in all the scenario’s is shown. The number of passengers is equal to 100
on all flights.

Scenario 1 2 3 4 5 6
AC 1 2 2 2 2 2
Crew 1 3 2 4 1 2
Reserve Crew 0 0 0 0 1 0
Passengers 100 100 100 100 100 100
Connecting Passengers 0 0 0 0 0 50

Table 4.2: Overview of resources in each scenario.

In Table 4.3, the results after recovery are shown in terms of costs. In each scenario, the sum of the individual
cost factors should equal the total disruption cost provided by the model.

4.1. Flight schedule recovery
In this section the schedule recovery actions are verified, which include flight delays and flight cancellations.
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Scenario 1 2 3 4 5 6
Delay $4,000 $1,000 $5,000 $2,000 $6,000 $4,000
Canx $0 $0 $0 $0 $0 $0
Missed Connection $0 $0 $0 $0 $0 $0
AC Swap $0 $1,000 $0 $0 $0 $0
Crew Swap $0 $0 $1,000 $1,000 $1,000 $0
Crew DH $0 $0 $0 $400 $0 $0
Reserve Crew $0 $0 $0 $0 $0 $0
AC Sink Viol. $0 $0 $0 $0 $0 $0
Crew Sink Viol. $0 $0 $0 $0 $0 $0
Disruption Cost $4,000 $2,000 $6,000 $3,400 $7,000 $4,000

Table 4.3: Overview of costs in each scenario.

Delay
First of all, the model is tested with a 20-minute delay, without having the opportunity to swap. In such a
situation the only available recovery action is to delay the downstream flights as well. Looking at the result of
the model in Figure 4.1, the second flight is indeed delayed with the same 20-minute delay.

Figure 4.1: 20-minute flight delay.

4.2. Aircraft recovery actions

The only aircraft recovery action considered in the proposed model is swapping, which will be verified in this
subsection.

Aircraft Swap
In this scenario, the disruption is a 10-minute delay at New Orleans (MSY). However, since there are no con-
necting passengers and since there is a swapping opportunity at Los Angeles (LAX), a 10-minute delay for the
second flight can be avoided and should be given as the best decision by the recovery model. Indeed, the
model uses AC 2 to take over the second flight of AC 1, such that this flight can be operated as scheduled.
Crew 3 was originally scheduled to operate this flight and is not disturbed because of the disruption, so in
terms of crew pairs no changes were made. The additional costs are $500 with the aircraft swap, whilst the
additional costs would equal $1000 if the flight would be delayed.
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Figure 4.2: Aircraft swap to prevent delay.

4.3. Crew recovery actions
Unlike aircraft, multiple crew recovery actions are considered in the model. Swapping remains an option for
crew pairs. Furthermore, deadheading (i.e. changing locations of crew by taking a flight, but not operating it)
and using reserve crew, located at strategic airports in case of severe disruptions, are also recovery options.

Crew Swap
In the scenario depicted in Figure 4.3, a flight is delayed by 50 minutes. The problem is that the crew pairs
are exceeding their maximum duty time if they would operate the delayed flights, which is not possible. The
model takes care of this by swapping the crew originally flying AC 2 with the disrupted crew. As the maximum
duty time of Crew 2 lies beyond the arrival time of the disrupted flight, this is a valid recovery action. Both
the implementation of the maximum duty time and the swapping recovery action are thereby verified in this
scenario.

Figure 4.3: Crew pair swap to prevent crossing maximum duty time.

Crew Deadheading
Besides swapping, deadheading is also verified. This case shows a 20-minute delay of the flight from Detroit
(DTW) to Orlando (MCO). As the downstream flight requires Crew 1 (but a different aircraft), it cannot be
flown as scheduled anymore. However, since a swapping opportunity exists, the model deadheads Crew 2
on the flight from Atlanta (ATL) to Orlando (MCO), such that in Orlando they could be swapped with Crew 1.
By doing this, the flight from Orlando (MCO) to Atlanta (ATL) can be flown as scheduled. As Crew 1 should
end at Atlanta, it is deadheaded on the last flight from Orlando to Atlanta, such that no crew sink violations
occur. The alternative of delaying the first flight from Orlando to Atlanta costs more, as in this case another
20-minute delay will be induced, causing additional costs of $2000. Instead, a crew swap ($1000) and two
deadheads ($400) are the actions taken, which results in additional costs of $1400.
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Figure 4.4: Crew deadheading to prevent delay.

Reserve Crew
Lastly, the use of reserve crew is tested. In this scenario depicted in Figure 4.5, a flight from Kansas (MCI)
to Atlanta (ATL) is delayed by an hour. This means that the second flight cannot be flown as scheduled, as it
requires the disrupted Crew 1 (but different aircraft). However, a reserve crew is located in Atlanta. The model
indeed makes this decision and reschedules Reserve Crew 1 on the flight from Atlanta to Fort Lauderdale
(FLL), such that this flight can be flown as scheduled. Fortunately, a last flight from Fort Lauderdale to Atlanta
is scheduled and operated by Reserve Crew 1 as well, bringing the reserve crew back to its original location.
The alternative is delaying two more flights with 20 minutes, resulting in additional costs of $4000, whilst
using reserve crew and swapping is limited to additional costs of $1000.

Figure 4.5: Operating reserve crew to prevent delay.

4.4. Connecting Passengers
The model is explicitly programmed to consider aircraft and crew, but it also implicitly considers passenger
flows by using the connecting passenger matrix (CPM). In this case, the first flight from New York (JFK) to
Atlanta (ATL) is delayed by 30 minutes. In terms of aircraft and crew, this does not have an effect on the
second flight shown in Figure 4.6, as this second flight is operated by different resources. However, since
many passengers have to take this connecting flight at the hub (ATL) to Tallahassee, the second flight is also
delayed. This way, all the connecting passengers could still take their second flight.

Figure 4.6: Recovering connecting passengers.
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Case Study

5.1. Delta Airlines Data Set
The airline tested in the case study is Delta Airlines, which is the biggest airline in the world by revenue,
profit, assets and market capitalization [7]. It is an American hub & spoke airline, with 8 hubs and a total of
242 destinations in 52 countries, as of 2022. The dataset that is used in this research contains roughly one
month of operations in January 2015. In that year, the airline operated a fleet of 800 aircraft consisting of
Boeing 717, Boeing 757, Boeing 767, McDonnel Douglas MD-88 and McDonnel Douglas MD-90 (Both MD-
88 and MD-90 were phased out in 2020) and performed roughly 2,400 domestic flights per day. Since the
computational speed of recovery models is susceptible to large networks, Delta Airlines is a good candidate
to perform analyses on. Obtaining positive results for this airline, means that the model is likely to perform
well on disruptions from other airlines as well. Part of the dataset was obtained and modified by Hassan
[8] and included information about the schedule, aircraft and passengers. However, due to the competitive
landscape and difficulties in long-term crew scheduling, airlines generally do not publish their crew rosters.
Nikolajević [10] generated this artificially and added the crew roster to the initial dataset created by Hassan.

Flight Schedule
The flight schedule information was downloaded from the ’Reporting Carrier On-Time Performance’ database
from the United States Department of Transportation [11]. Besides the schedule, the database also contained
information on the disruptions that have occurred. Both the consequence (e.g. cancelled and diverted flights)
and the causes (e.g. weather conditions) are provided. The complete flight schedule in Q1 2015 was down-
loaded and processed, which had to be done since the schedule contained timing errors and missing flights.
After processing, the schedule was divided in a schedule data set and a disruption data set. Delta Airlines
operated 197,000 flights in the first quarter of 2015, which comes down to an average of 2,164 flights per day.
Delta Airline has a total of 147 airports, which includes 8 hubs and mainly operates flights from hub to spoke
(83% of the flights). The next 13% of the flights are from hub to hub, and the remaining 1% of the flights are
between spokes.

Fleet
The flight schedule contains the tail numbers of the aircraft operating the flight, however, information re-
garding the specific aircraft type was not provided. Information from the N-Number Database of the United
States Federal Aviation Administration [6] was used to link tail number to aircraft type. Furthermore, the fleet
section on the Delta Website1 was used to collect data regarding the seat capacity and range of the different
aircraft. The direct operating cost (DOC) was computed by using information from the Financial Database of
the United States Department of Transportation - Bureau of Transportation Statistics [12]. In 2015, the fleet
of Delta Airlines consisted of 800 aircraft, from 8 different families. The distribution over the three largest
families is as follows: McDonnel Douglas (32%), Boeing 757 (17%) and Boeing 737 (17%).

Crew
As mentioned earlier, the crew rosters were not publicly available online due to confidentiality and had to

1https://www.delta.com/us/en/aircraft/overview
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be created by Nikolajević [10] for the purpose of his research. Both an initial crew schedule and a reserve
crew schedule were generated. First of all, regulations set by the FAA [5] are stringent and each airline has
the possibility to extend these regulations with its own stricter and airline-specific ones. The Delta Airlines
additional regulations were publicly available in a crew scheduling handbook [4]. This set of regulations was
used to generate a crew schedule, making use of an algorithm that allows flexibility when disruptions occur.
The algorithm first generates crew duties, after which a pairing generation algorithm is initiated to complete
the scheduling.

After the creation of the crew schedule, Nikolajevi also generated a reserve crew schedule as Delta Airlines
also makes use of this strategy to be able to allocate crew in the case of crew absence. Their role is crucial
to maintain a feasible flight schedule. The generation of the reserve crew schedule is based on the work of
Bayliss et al. [3]. In this work, the probability of scheduled crew being unavailable for a flight was determined,
such that a fixed number of reserve crew could be assigned to specific airports to minimize the probability of
crew unavailability. Similar to the scheduled crew generation, first the reserve crew duties are generated after
which they are combined into pairings.

Passenger
Modelling of the passengers on all flight legs was performed by using the research done by Barnhart et al.
[2], who developed methods to model travel for U.S. domestic passengers. Both passengers on direct flights
and connecting passengers could be modeled in this way. Moreover, a differentiation was made between
economy and business passengers. The average passenger load factor (i.e. the number of passengers divided
by the capacity on a flight) is equal to 75.9% and approximately 10% of the flights were full or overbooked.
Approximately 26% of all the passengers were passengers on connecting flights.

Disruption
As mentioned before, the flight schedule was divided into an original flight schedule data set and a disruption
data set. Only the root causes of disruptions were included and not the ones that were caused by an upstream
disruption, as finding a new schedule is the purpose of the integrated recovery model. The data set only
holds information on the duration of the delay in minutes (i.e. no cancellations) and the causes of the delays,
including carrier delay, late aircraft delay, national air system delay, security delay and weather delay. The
dataset does not contain information about the time found out (TFO) of the delays, and was generated by
Hassan [8] for the purpose of his research. Aircraft with a delay of more than 120 minutes were classified
as aircraft unavailabilities. In Q1 2015, 29,400 disruptions occurred in the Delta Airlines schedule. Aircraft
unavailabilities only represent 3% of the disruption in occurrence, but account for 20% of the delays in terms
of minutes.

5.2. Results
The proposed integrated model (ML IDS) is compared to the globally optimal solutions from the IDS and to
the solutions produced by the sequential disruption set solver (SDSS) developed by Hassan and Nikolajević.
The SDSS does not recover the resources simultaneously, but recovers one resource at a time. This reduces
the computational complexity, but does not always result in optimal solutions. The SDSS considers the same
recovery actions as the IDS and also makes use of the CPM to take into account passenger flows as well.

The results are gathered by providing the models with disruptions experienced on (one day of operations,
containing 365 disruptions instances) and analysing the recovery decisions taken using different KPI’s. All
KPI’s used are related either to solution time or solution quality and give a nuanced assessment of the perfor-
mance of the model. Table 5.2 depicts the aggregated results for all the 365 instances.

The average disruption cost in the optimal solution is equal to $11,638, which is three times less than the
average disruption cost of the ML IDS ($32552). This is mainly caused by the additional cancelled flights,
and aircraft & crew sink violations, which have the highest associated penalties ($550/Pax, $1,000,000 and
$50,000, respectively). Since the SDSS used a slightly different cost set, the disruption costs of the SDSS are
not comparable. However, the cost distribution in the objective function associated with all the decision vari-
ables is very much the same in all models, and hence a fair comparison can be made in terms of the other
KPI’s.



5.2. Results 79

IDS ML IDS SDSS
Time (Avg.) 1092 70 65
<120 (%) 13% 96% 85%
Optimal (%) 100% 58% 35%
Disruption Cost (Avg.) 11638 39855 N/A
Aircraft (Avg.) 138 46 70
Crew (Avg.) 196 56 99
Cancelled Flights (Sum) 15 25 ≥42
Cancelled Passengers (Sum) 1721 2825 ≥4937
Average Delay (Avg.) 30.5 31.5 32.1
Delayed Passengers (Avg.) 417.9 310.7 239.1
Missed Connections (Avg.) 12.1 12.5 11.9
Aircraft Sink Violations (Sum) 1 3 ≥12
Crew Sink Violations (Sum) 57 92 187
Crew Flight Time Violations (Sum) 0 0 0
Infeasibilities (Count) 0 0 16
Severe Infeasibilities (Count) 0 0 2

Table 5.1: Results to 365 disruptions instances.

IDS ML IDS SDSS
Aircraft Swaps (Sum) 600 351 214
Crew Swaps (Sum) 220 169 371
Crew Deadheads (Sum) 99 38 105
Reserve Crews used (Sum) 71 56 118

Table 5.2: Recovery actions to the 365 disruptions instances.

The ML IDS considered the fewest resources (around 30% of the network), which is required to compute so-
lutions in under two minutes. The sequential model considers approximately 50% of the network, which is
more than the ML IDS but acceptable in terms of computational runtime.

The number of passengers on cancelled flights is in line with the number of cancelled flights. The optimal
solution returns 15 cancelled flights and 1721 passengers on a cancelled flight, while the ML IDS returns 25
and 2825 passengers on a cancelled flight. Furthermore, the SDSS returns more than 42 cancellations and
more than 4937 passengers on cancelled flights.

On average, the number of passengers that missed their connection is almost the same for all three models.
All models use the same connecting passenger matrix (CPM), which induces a large cost whenever passen-
gers miss a connection. Hence, it is not a surprise that the models react the same in terms of passengers
that missed their connections. The slightly lower missed connections for the SDSS can be explained by the
fact that on average less passengers are delayed using this model, as can be seen by the delayed passengers
performance indicator.

Flight hour violations occur when the flight hours flown exceed the initial maximum flight hours. If this hap-
pens, a penalty is incurred ($20.000 in this case study) and an additional flight time is added (2 additional
hours in this case study) to the initial maximum flight time of the crew. This extended maximum flight time
is the stringent limit and cannot be exceeded. However, none of the three models uses this option in the 365
instances of the case study, as it is not deemed necessary.

Infeasibilities are a drawback of solving disruptions sequentially. The reason for this is that the schedule is
optimized at first, without considering the crew pairs in the network. This may disturb the crew flow in the
network, which requires additional recovery actions in the crew stage to make the schedule feasible again.
This phenomenon can also be seen in Table 5.2, which shows that more crew recovery actions are taken by
the SDSS in comparison with the (ML) IDS. However, in some cases these recovery actions are not sufficient
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resulting in crew allocation infeasibilities, meaning that the flight cannot be flown anymore. Moreover, if
downstream flights are scheduled to be operated by the aircraft and/or crew pairs scheduled for the now
cancelled flight, this will result in even more cancellations. A distinction has been made in terms of the
severity of the infeasible schedule, such that an estimate can be made on the additional cancelled flights,
passengers on cancelled flights and aircraft sink node violations. Three different types are created.

1. The infeasible crew allocation is related to the last flight of the aircraft in the time window. In this case
the result is one additional flight cancellation and one additional aircraft sink node violation.

2. The infeasible crew allocation is related to an aircraft that is scheduled to fly back directly to the air-
port where the infeasible crew allocation occurred. In this case the result is two additional flight can-
cellations and no aircraft sink node violation (as the aircraft returns to the airport where it already is
stationed).

3. The last case belongs to the rest of the scenarios, i.e. the aircraft related to the infeasible crew allocation
is scheduled to fly to other destinations after its first cancelled flight. In this case the result is three or
more cancellations and 0 or more aircraft sink node violations. These are the severe infeasibilities,
because it may happen that many flights will get cancelled as a result of infeasible aircraft allocations.

In terms of the case study, this resulted in the numbers shown in Table 5.3. These additional outcomes were
added to Table 5.1 in order to achieve the final KPI’s.

Additional consequences SDSS
Cancellations ≥23
Aircraft Sink Violations ≥9

Table 5.3: Additional consequences due to infeasible crew allocations.

Because of the simultaneous nature of the IDS and the fact that crew flows are considered in the optimization
of the schedule, the model is able to generate a feasible schedule in most cases (no infeasible schedules in the
case study).

5.3. Sensitivity Analysis
Two sensitivity analyses are performed. In the first analysis, the parameters regarding the delay costs are in-
creased to make the model more customer oriented. In the second analysis, the subnetwork size is increased
to assess the effect on disruption costs and solution time.

Customer-Oriented Model
The results in Section 5 are promising, as it shows that it is efficient in terms of computational time and
solution quality to use a subnetwork created by a machine-learned ranker. However, the sequential model
performs better on the delay indicators in comparison to the optimal solution and the ML IDS. This can be
explained by the fact that the decisions of the model depend on the cost factors in the objective function. The
IDS is more concerned with minimizing cancellations and sink node violations, as the costs associated are
much higher than delaying passengers. Moreover, the model does not penalize short delays too much, as the
delay costs increase faster with longer waiting times. Since the average delay per delayed passenger is limited
to 30 minutes after recovery in this case study, these decisions are tolerated. However, if airlines would like
to have a more customer-friendly recovery model, i.e. a model that considers cancellations and passenger
delays even more, this can be achieved by increasing the costs associated with the passengers.

In this sensitivity analysis, the passenger delay costs are increased to assess the change in the decision-
making process of the model. In the first study the delay costs are multiplied by five and in the second study
200$ is added to all the delay costs, as depicted in Figure 5.1.
It should be noted that both studies have a different focus. In the first study, the effect of the increased delay
costs is significant for the longer delays, whilst in the second study the increase is more significant for the
shorter delays. This difference is also visible in the results, which are depicted in Table 5.4. In the first study
the number of cancellations decreased from 25 to 22, since cancellation costs are based on the final delay
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Figure 5.1: Passenger delay cost increase.

costs plus an additional penalty. However, the combination of average delay per passenger and number of
delayed passengers has not decreased. This is because an average delay of 30 minutes is still considered short
and the costs associated with it are low, even with a delay cost multiplication of five. Airlines seeking fewer
cancellations could choose for this set-up, but the positive results regarding the number of cancelled flights
have gone at the expense of 2 more aircraft sink violations, 19 more crew sink violations and more recovery ac-
tions when compared with the standard configuration. In the second study, the number of cancellations has
remained the same, but the number of delayed passengers has decreased significantly, from 310.7 to 244.6.
This is great for airlines seeking fewer delays, but has gone at the expense of 10 more crew sink violations and
an increase of all recovery actions. As can be concluded from this sensitivity analysis, preventing cancella-
tions is more difficult and causes more airline operations difficulties than preventing delays. Lastly, airlines
seeking both fewer cancellations and fewer delays, should increase both the short and long passenger delay
costs.

Standard Delay Costs x5 Delay Costs +200
Cancelled Flights (Sum) 25 22 25
Cancelled Passengers (Sum) 2825 2233 2825
Average Delay (Avg.) 31.5 31.3 33.7
Delayed Passengers (Avg.) 310.7 309.1 244.6
Missed Connections (Avg.) 12.5 12.2 12.2
Aircraft Sink Violations (Sum) 3 5 3
Crew Sink Violations (Sum) 92 111 102
Crew Flight Time Violations (Sum) 0 0 0

Table 5.4: Standard and customer-oriented ML IDS comparison.

Standard Delay Costs x5 Delay Costs +200
Aircraft Swaps (Sum) 351 364 429
Crew Swaps (Sum) 169 185 196
Crew Deadheads (Sum) 38 36 40
Reserve Crews used (Sum) 56 61 64

Table 5.5: Standard and customer-oriented ML IDS recovery actions.

Increasing Subnetwork
A disruption instance with four disrupted flights is recovered with different subnetwork sizes to assess the
effect on solution time and disruption cost. Although this is only one disruption instance, Figure 5.2 shows
that the disruption costs decrease and the solution times increases with larger subnetworks. In this case, the
disruption costs have already decreased to near-optimal with less than 50 aircraft in the network, meaning
that a high-quality solution is realised with an acceptable runtime.
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Figure 5.2: Solution time and disruption costs with increasing subnetwork size.
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