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Reading Guide

This thesis is a �nal work for the Masters Programmes in Applied Mathematics (Computational Science and
Engineering) and Marine Technology (Ship and O�shore Structures) at Delft University of Technology. These
two programmes will both be �nished based on the assessment of this �nal work, under the regulations of the
Double Degree for Master Programmes at the Delft University of Technology. To facilitate the neutral, honest
and to-the-point assessment of both programmes, a reading guide is an obligatory part of this thesis.

For those with a strong interest and background in Applied Mathematics, the following chapters are advised:

Chapter 1 Introduction The introduction of this thesis de�ning motivation, the main question and main goals
of this research.

Chapter 2 Literature Review The literature study of this research, mainly for the part about Isogeometric
Analysis for Structural Mechanics.

Chapter 3 Structural Model This is the mathematical heart of the model that is used and developed in this
research. The chapter uses the basics of di�erential geometry (introduced in Section 3.1) and principles
from linear algebra and vector and tensor algebra. Reference works to the relevant topics are cited in the
chapter.

Chapter 4 Isogeometric Structural Analysis This chapter covers the routines from computational structural
mechanics that are used in this work. Basically, the chapter describes how static, modal, (post-)buckling
and dynamic problems are solved given a formulation of the (tangential) sti�ness matrix, the mass and
damping matrices and load and residual vectors.

Chapter 5 Benchmark Problems Benchmarks to the structural analysis routines are presented in this chapter.
Hence, models are veri�ed in this chapter and performance is assessed.

Chapter 7 Conclusions and Chapter 8 Further Research These chapters are advised as they answer, re�ect on
and provide future insights on the main question and main goals of this research.

Appendices A to D These appendices support the relevant chapters.

For those with a strong interest and background in Marine Technology, the following chapters are advised:

Chapter 1 Introduction The introduction of this thesis de�ning motivation, the main question and main goals
of this research'.

Chapter 2 Literature Review The literature study of this research, mainly for the part about the Response of
Very Large Floating Structures (VLFSs) in Waves and on the Wrinkling of Thin Sheets.

Chapter 4 Isogeometric Structural Analysis This chapter covers the routines from computational structural
mechanics that are used in this work. Basically, the chapter describes how static, modal, (post-)buckling
and dynamic problems are solved given a formulation of the (tangential) sti�ness matrix, the mass and
damping matrices and load and residual vectors.

Chapter 5 Benchmark Problems Benchmarks to the structural analysis routines are presented in this chapter.
Hence, models are veri�ed in this chapter and performance is assessed.
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Chapter 6 Application: Wrinkling of Thin Sheets In this chapter, the mathematical model is applied to a
few case studies to showcase the model on cases where wrinkling of thin sheets occurs. This chapter
also provides design considerations for the design of �oating solar platforms and some conclusions on the
applicability of the present model on these designs.

Chapter 7 Conclusions and Chapter 8 Further Research These chapters are advised as they answer, re�ect on
and provide future insights on the main question and main goals of this research.

Appendices C to E These appendices support the relevant chapters.

For those with a strong interest and background in Engineering Sciences, chapters related to Marine Technology
are advised. However, as the text is written for people with backgrounds in structural mechanics, in particular,
the reader should consult reference works that are cited in the chapters.
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Abstract

With increasing attention to climate change, renewable energy generation has become a major topic for research
and development. Wind and solar energy are generated on land, whereas wave, wind and tidal energy generators
are getting attention in the o�shore domain. A novel extension of onshore solar energy is the concept of o�shore
solar energy using �oating platforms. As little research has been performed on the concept of o�shore solar
energy generations, main challenges in the �eld are related to consequences to the marine ecology, economics
and production and structural design of the platforms. In this thesis, a numerical model to assess wrinkling
behaviour of thin, �oating sheets with application to the structural design of o�shore solar platforms is developed.

Since wrinkling of thin sheets, in general, is initiated by a structural instability (i.e. buckling), the developed
model consists of an arc-length method that is capable to deal with bifurcation points and to switch to bifur-
cation branches. In this way, buckling and post-buckling behaviour of thin sheets are modelled and wrinkled
shapes can be assessed without imposing a priori de�ned unbalancing imperfections or loads. The computa-
tional model is developed using a shell discretization with Isogeometric rotation-free Kirchho�-Love elements,
which are higher-order elements with a B-spline or NURBS basis with global support and global higher-order
continuity of the solution. For the illustrative purpose and future use, a similar Euler-Bernoulli beam model
was developed and numerical solvers for static, dynamic, modal and linear buckling analysis were implemented.

The model was veri�ed using various benchmark studies for static, modal, (post-)buckling and dynamic analy-
sis. In particular, the post-buckling solver was assessed by modelling the collapse of a spherical roof and using
buckling (post-)bucking of a cantilever strip. Both benchmarks have shown excellent agreement with previous
publications. Additional veri�cation was done on the approaching accuracy and prediction of bifurcation points.
It was found that this accuracy showed the accurate prediction of the bifurcation point.

Additionally, the model was applied to three cases where wrinkling is involved. In these cases, sheets with low
bending sti�ness were modelled such that their post-buckling shapes show multiple half-waves and thus wrinkles.
Based on the model of a �oating sheet subject to surface traction (e.g. wind or current), design parameters were
varied. From this case, it follows a decrease in foundation sti�ness or an increase in �exural rigidity (either by
varying Young's modulus or thickness) implies the number of wrinkles to decrease and the wrinkling instability
to occur for lower loads. Thirdly, based on the wrinkling geometries of a quarter disk, design consideration
for Very Large Floating Thin Structures (VLFTSs) for o�shore solar energy generation were given. These are:
(i) adding reinforcement to arrest wrinkles and to introduce structural hierarchy for structural reliability; (ii)
consider the e�ect of di�erent mooring system connections to the (reinforced) platform; and (iii) investigate the
e�ect of holes and point loads on local wrinkling behaviour.

Based on the results of the study, it is concluded that the isogeometric thin shell formulation is suitable for
di�erent structural analyses and that in particular that robustness and accuracy on a per-degree of freedom
basis is observed in the isogeometric post-buckling analysis. This adds post-buckling analysis to the seamless
integration of Computer Aided Design (CAD) and Analysis of Isogeometric Analysis. Suggestions for further
studies include several improvements of the current implementation (patch coupling, boundary condition imple-
mentation), utilization of nonlinear material models for modelling of rubber-like materials, adaptive re-meshing
using THB-splines to capture local wrinkling phenomena and Fluid-Structure Interaction computations with a
nonlinear structural and �uid description of VLFTS in large waves.
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Notations

In this thesis, derivations in various mathematical �elds are given. It is expected that the reader is familiar with
basic concepts in the �elds of vector calculus and linear algebra. Symbols used in the derivations are consistently
de�ned in the text. The following notations related to matrices, vectors and tensors are adopted in this work:

Scalar x ∈ R

Vector x ∈ Rm×1


x1
x2
...
xm



Matrix X ∈ Rm×n

X11 . . . Xn1
...

. . .
...

Xm1 . . . Xmn


Second-order tensor X ∈ Rm×n X =

[
X11 X12

X21 X22

]

Voight notation for 2 × 2
tensor

X ∈ R2×2 X =

X11

X22

X12


Fourth-order tensor X ∈ Rm×n×o×p

Vector inner-product x · y, xTy
[
x1 . . . xn

] y1. . .
yn

 =
n∑
j=1

xjyj

Matrix-vector product Xy

X11 . . . X1n

...
. . .

...
Xm1 . . . Xmn


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1 | Introduction

The attention for climate change and its e�ect on societies rapidly increased over the past decade. As a conse-
quence, worldwide political debate and investments changed towards renewable energies, letting the fossil fuels
behind. With the Paris Agreement [1] - rati�ed by 180 states and signed by 197 states - members agree that
the increase in global average temperature should stay below 2◦C above pre-industrial levels and persuading
e�orts to limit the increase to 1.5◦C above pre-industrial levels. As an addition, the submitted contribution of
the European Union to the agreement states that the greenhouse gas emissions should be cut by 40% in 2030
and with long-term goal 80-95% before 2050, all compared to the year 1990 [2].

In the run for cleaner energies to reduce greenhouse gas emissions, di�erent o�shore energy generation concepts
have been developed. Especially in Europe, o�shore wind energy is providing sustainable energy for countries
as Great Britain, The Netherlands, Germany and Denmark. Furthermore, investigations on wave and tidal
energies are ongoing [3]. Additionally, on-land photovoltaics (PV), i.e. solar panels, appear on rooftops and
land, providing societies solar-generated energy. A novel idea for the expansion of solar energy on land is
o�shore solar energy generation. Research on the potential and practicalities of this novel energy source is
however limited. This work is a contribution to the structural analysis of a �exible o�shore structure to be used
as a solar energy platform. Before going into details on the speci�c goals and the outline of the thesis, which
are given in Section 1.2 and Section 1.3, respectively, an introduction to o�shore energy solutions is given in
Section 1.1. Although this thesis is not a motivation for o�shore solar energy, the following section illustrates
a quick and dirty line of reasoning for o�shore solar energy as an alternative to o�shore wind and wave energy.

1.1 O�shore Solar Energy: A Motivation
In this section, a brief motivation for the use of o�shore solar energy compared to other renewable o�shore
energy alternatives is provided. Current renewable o�shore energy alternatives include �xed/�oating wind tur-
bines, wave energy converters and tidal energy converters.

In the past years, the attention for o�shore energy generation using wind turbines increased. According to the
data of the Global Wind Energy Council, 4.5 [GW ] of o�shore wind capacity was installed in the year 2018,
contributing to a total global capacity of 23.1 [GW ] o�shore. Key players in the o�shore wind market are the
United Kingdom (34% of the total, 29% of newly installed), Germany (28% of the total, 22% of new) and
China (20% of the total, 40% of new) [9]. These wind turbines are all located in shallow waters with depths
around 20 [m] [10]. For water bodies with signi�cant water depths (> 50 [m][11]), �oating wind turbines form
an alternative for the large supports of bottom-founded turbines. However, �oating turbines are less developed
compared to the bottom-founded wind turbines. Future work needs to be done on mooring system design and
testing [3]. As stated in the reviews by Pisacane et al. [12] and Soukissian et al. [13], current and future research
and development on �oating wind turbines are expected to have a large impact on the utilization of o�shore
wind energy in deeper seas such as the Mediterranean Sea.

An alternative to �oating wind turbines is wave energy. The principle of wave energy is to extract the energy that
is contained in a standing wave and transform it into electrical energy. Most wave energy converters discussed in
literature operate in shallow waters [14, 15] but the potential in deep waters (i.e. along the Scandinavian coast
[16] or the Brazilian coast [17]) allows for utilization of wave farms in the order of hundreds of megawatts up to
tenths of gigawatts. Kalogeri et al. [5] investigates a combined wind and wave energy farm which is optimized

1
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Figure 1.1: Map of the North Sea, Atlantic and Mediterranean coasts of Europe. In the map, the wave energy potential
in [W/m2], the wind energy potential in [kW/m], the solar radiation in [100kWh/m2/yr], the average cloud cover in [%]
and the bathymetry in [m] are depicted in a qualitative way. Data on tidal energy is not included since this is mostly
concentrated in the United Kingdom and the English Channel only [4]. Refs a and b) Kalogeri et al. [5], c) Huld et al. [6],
d) Meerkötter et al. [7] and e) data from EMODNET [8].

for a constant energy output from these two variable energy resources. Furthermore, Kalogeri et al. shows that
along the coast of North-Western Europe, the potential for wind and/or wave energy is the highest and that
mainly the wave energy potential decreases for waters where the fetch length is low (i.e. the Mediterranean
area). However, as mentioned by Lavidas [18] and Arena et al. [19], the low variability of waves due to the
basin-shape of the Mediterranean sea allows for smaller wave energy converters and relatively constant power
output compared to the Atlantic coast for instance, although the wave energy potential is substantially lower.

Besides wave and wind energy, tidal energy are a nearshore and o�shore energy resource that is mainly investi-
gated in the North-Western states of the European Union [20]. Within the concept of tidal energy, two methods
for power generation are identi�ed. On the one hand, tidal barrages are used to subtract tidal energy from
tidal amplitude di�erences and tidal turbines are used to generate tidal energy based on tidal currents. One
of the bene�ts of tidal energy compared to wave and wind energy is that power output is highly predictable,
as tides are least in�uenced by other environmental factors [21]. As seen from the number of concepts, current
power generation and R&D budgets [20] and as seen from the results of Campbell et al. [4], Guillou et al. [22]
and Segura et al. [23], tidal energy has high potential in the estuaries in the United Kingdom and the English
Channel. On the contrary, Pisacane et al. [12] and Soukissian et al. [13] mention that research on tidal energy
in the Mediterranean sea is very limited, but that the potential of tidal energy is considered low based on the
low tidal currents in the Mediterranean sea.

Another possible o�shore energy resource is solar energy as a novel extension of the land-based solar energy
generation (i.e. photovoltaics (PV)). O�shore solar energy is mainly bene�cial in areas where the wind and
wave energy potential is relatively low but where cloud cover and solar irradiance is particularly high [24, 7], e.g.
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in basins such as the Mediterranean area or near islands. Additionally, �oating PV has the advantage that the
panels are cooled by the sea water, achieving good e�ciencies of the panels [25, 26]. However, the motions and
possible deformation of the o�shore solar platform due to waves require �exible solar panels or hinged modules
and advanced tracking systems [27]. Similar to �oating wind turbines and wave energy converters, �oating solar
platforms require a mooring system which becomes more complicated as depths increase.

To assess the possibility and advantages of o�shore solar energy, potentially annual power generation is to be
computed and compared with other o�shore energy concepts in di�erent regions. As this is not within the
scope of this project, Figure 1.1 provides a qualitative comparison for the wave and wind energy potentials,
solar radiation and cloud cover and the bathymetry for the North Sea area, the European Atlantic Coast and
the Mediterranean Area, based on di�erent literature resources [5, 6, 8, 7]. Data about tidal energy was not
included since the success of this technology is highly location dependent and mainly concentrated in the United
Kingdom and the English Channel. It should be noted that computation of the o�shore solar energy potential
has not been done yet, but that the work of Huld et al. [6] can be used to compute the solar energy potential,
including the e�ects of for instance air temperature and wind speeds in the future.

As seen in Figure 1.1, relatively high solar radiation and low cloud cover are observed in the Mediterranean
sea. Additionally, due to the basin-shape of this sea, the wind and wave energy potentials are relatively low.
Hence, the combination of these factors in the Mediterranean sea motivate for more research and development
for �oating o�shore solar energy generation. Furthermore, it can also be seen that high wind energy potential
combined with the shallow water clari�es the observation of Gao et al. [3] of the large development in o�shore
wind on the North Sea.

A recently published paper by Patterson et al. [28] considers the use of large �exible circular �oating platforms
for o�shore solar energy generation for o�shore synthetic fuel production. As mentioned in this paper, water
on deck and slamming loads can be minimized by designing a structure that follows the waves up to a large
extent. However, a detailed design for the structure was not provided, leaving open challenges for structural
design and analysis and installation and maintenance of the platform. Another challenge for o�shore solar
energy generation is related to economics and the business model, i.e. if o�shore solar energy should be used
for fuel production or for direct power supply to coastal regions and the projected costs. Lastly, a point that
is not addressed by Patterson et al. [28] but which is considered important by the author of this thesis is the
e�ect of o�shore solar platforms on the marine ecosystem as it blocks sunlight on the ocean surface but could
provide shelter for animals. In the next section, the goal of this thesis related to structural design and analysis
of o�shore solar platforms is presented.

1.2 Thesis Goal
Inspired by the idea of o�shore solar energy generation, this thesis considers the structural analysis of large
�oating thin o�shore structures. More speci�cally, a numerical model is applied to study static, quasi-static
and dynamic characteristics of �oating thin o�shore structures. Without giving full detailed speci�cations for
the platform, the working characteristics of the platform that are adopted including their motivation are listed
below:

Circular & Large scale To generate a future-proof framework for the analysis of such structures, it is assumed
that the structure that is considered is very large, i.e. the surface area is of order O

(
km2

)
. The plat-

forms considered by Kashiwagi[29] amongst others, are of similar size and are referred to as Very Large
Floating Structures (VLFSs). With this assumption, it is reasonable that current and wind speeds are
non-uniform and have di�erent direction over the whole platform. Furthermore, it is assumed that the
in-plane characteristic length of the platform is larger than the wavelengths exciting the platform. The
geometry of the platform is considered to be circular, but analyses can be performed for other geometries
without loss of generality.

Continuum As concept designs are not yet available, it is assumed that the platform is a continuum. In other
words, the platform does not consist of modules, but rather can be seen as a continuous structure without
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hinges. This assumption is made since hinge forces are expected to be large1. Structures that have local
sti�ening or holes are not considered in the present study.

Low Payload: Lightweight Structure The main task of the platform is to carry the PV modules. Hence the
payload of the platform is several kilograms per square metre (kg/m2). Hence, the payload of the platform
is characterized to be low compared to other o�shore structures. This allows for a relatively light-weight
structure to carry the panels.

Flexible As brie�y motivated by Patterson et al. [28], �exible structures allow to follow waves to a large extent
and thus minimise water on deck and slamming loads. Therefore, the bending sti�ness of the structure is
considered to be low and hence structural response is governed by both bending and membrane sti�ness.

Based on the platform characteristics, a numerical model for Very Large Floating Thin Structures (VLFTSs)
is developed in this research, ultimately to be applied to the analysis of o�shore solar platforms. Because the
platform is assumed to be thin and �oating on a �uid, the phenomena of wrinkling (i.e. formation of multiple
half-waves as a result of structural instability) is expected to occur for (combinations of) in-plane loads on the
platform. Based on similarities with the physics of wrinkling for thin sheets and the use of a state-of-the-art
numerical modelling technique isogeometric analysis, a numerical mathematical is developed that to model
the wrinkling phenomenon and support structural design and analysis of VLFTSs for o�shore solar energy
generation. Hence, the main question of this research is:

How can wrinkling formation of �oating thin structures be numerically modelled with Isogeometric
Analysis?

Separating the development and application of the model, this thesis is based on two goals. The �rst goal,
focussing on the development of the nonlinear shell model for wrinkling of thin sheets, reads:

Develop a geometrically nonlinear shell model based on Kirchho�-Love shell theory and isogeometric
analysis for post-buckling analysis.

Whereas the second goal, based on applications of the mathematical model in structural analysis and on wrin-
kling patterns of (�oating) thin sheets, is:

Apply the model on selected structural analyses of wrinkling formation in �oating thin structures.

Moreover, in order to achieve the goal of this thesis, a number of subgoals are de�ned. They are described as
follows:

1. Identify governing equations for the structural model of a �oating thin sheet and motivate the assumptions.
To facilitate a background for the reader and to clarify limits of certain models, the governing equations
structural behaviour will be derived.

2. Discuss the use of Isogeometric Analysis and apply it in the model problem. Isogeometric Analysis is
a method that is similar to the Finite Element Method (FEM) to solve Partial Di�erential Equations
(PDEs). This method, its applications and its (dis)advantages compared to the FEM are of importance
to the justi�cation of the �nal model.

3. Develop and implement di�erent structural analyses in the Isogeometric structural model and discuss their
use on the model problem. Using the Isogeometric structural model, di�erent structural analysis (e.g.
static, dynamic, buckling) can be performed using computational mechanics procedures used in FEM.
Although post-buckling analysis will only be used in wrinkling analyses in this study, the other structural
analyses are of interest because they can be used in further studies. For instance, dynamic analysis relates
with Fluid-Structure Interaction (FSI) and modal analysis can be used to assess the eigenfrequencies and
mode shapes of VLFTSs with respect to di�erent wave frequencies.

4. Verify the model using benchmark cases and discuss improvements of (parts of) the model. The perfor-
mance of the present structural model will be assessed based on available benchmark results from the
literature. Based on these veri�cations, the model can be justi�ed for further application.

1Waals presented hinge loads of the concept of the H2020 project SPACE@SEA in March 2018 at MARIN's �The Floating Future
Seminar�. For their platform with interconnected triangles of sides with dimension 100m, hinge loads of 20,000t were measured in
waves with Hs = 15.5m. [30]



Chapter 1. Introduction 5

5. Apply the present model on the problem of wrinkling formation of thin sheets and discuss relevant physical
parameters. Based on the characteristics of the o�shore solar platform, a case-study of a �oating thin
sheet can be de�ned. Based on this case study, the e�ect of di�erent design parameters (e.g. sti�ness,
length scales) can be investigated and compared to known results from the literature.

6. Give design considerations and model improvements for membrane-like structures in the ocean environ-
ment. Based on the �ndings related to the previous subgoal, the last subgoal relates to design considera-
tions of VLFTSs in the ocean environment from wrinkling perspective. Additionally, model improvements
could be provided which will enhance in future research.

Subgoals 1 and 2 mainly correspond to the �rst objective (mathematical model development), subgoals 3 and 4
correspond to both objectives and subgoal 5 and 6 correspond to the second objective of this work (applications
on wrinkling of sheets). The conclusions and recommendations at the end of this thesis evaluate on the main
goals and main question and provide suggestions for future work.

1.3 Outline
The report is structured as follows. Firstly, in Chapter 2 a literature review of the state-of-the-art of research
disciplines related to the main goals of this thesis is given. This review includes the topics response of very
large �oating structures in waves, wrinkling of thin sheets and isogeometric structural analysis and provides
background knowledge for subgoals 2, 5 and 6.

After the background is provided in the literature study, Chapters 3 to 5 lay the foundation for the numerical
method that is developed and used in this thesis. Chapter 3 presents the justi�cation of the assumptions (sub-
goal 1), the mathematical derivation and the implementation aspects of the numerical shell models and a beam
model for illustrational purposes. This chapter does not make any assumptions for the Isogeometric Analysis
framework but covers general implementation aspects and hence relates to subgoal 3 as well. In Chapter 4, the
Isogeometric Analysis framework is introduced and the di�erent concepts for computational structural mechan-
ics are treated, relating this chapter to subgoal 3. Hereafter, Chapter 5 presents results of the present model
on di�erent benchmark problems, hence dealing as veri�cation (subgoal 4).

The model is applied to cases of �oating sheets in Chapter 6. Here, the benchmarked structural model is
applied on the phenomenon of wrinkling of thin sheets (subgoal 5), identifying the in�uence of di�erent design
parameters on the wrinkled shapes. Additionally, the chapter presents design considerations for VLFTSs based
on the wrinkling perspective, associated with subgoal 6.

Lastly, this thesis �nishes with conclusions and recommendations for further research in Chapter 7 and Chap-
ter 8, respectively.
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In this chapter, a literature review is presented for topics relating to the present research. Firstly, a brief
literature review on past research on Very Large Floating Structures (VLFSs) is presented to identify the state-
of-the-art of previously used analysis methods for such structures and to check their applicability on Very Large
Floating Thin Structures (VLFTSs). This provides background information related to the sixth subgoal of this
thesis. Secondly, the phenomena of wrinkling of thin membranes on substrates or �uid are investigated, relating
to subgoal 5 of this thesis. The mechanism of wrinkling of thin membranes is presented and state-of-the-art
experimental results, as well as numerical methods, are investigated. Thereafter, the state-of-the-art of Isogeo-
metric Analysis is presented, covering works from 2005 up to 2019. This section mainly emphasises isogeometric
structural analysis, but the general philosophy behind IGA, meshing techniques and a comparison between IGA
and Finite Element Analysis (FEA) are also presented. These aspects are used to motivate the use of IGA
in this research, which relates to the second subgoal of this thesis. The basics of IGA including examples are
discussed in Section 4.1. This chapter �nishes with concluding remarks where knowledge gaps for the present
research are identi�ed.

2.1 The Response of Very Large Floating Structures (VLFSs) inWaves
The available literature on the response of Very Large Floating Structures (VLFSs) is mainly based on structures
that have large cross-sections and sti�ness and hence have large bending sti�ness. The literature on Very Large
Floating Thin Structures (VLFTSs) was not found by the time of writing (2019). Therefore, focussing on Very
Large Floating Structures, research on their response started with the investigation of a near-shore �oating
airport in Japan in the early 2000s by Kashiwagi et al. [32, 31, 33]. These works cover various methods to
compute the response of VLFSs in waves. This includes a modal-expansion method where the pressure integral
is computed using a B-spline Galerkin method [32], modelling of an aeroplane landing on a �oating membrane
structure [33] and a general overview of the research on VLFSs before the 2000s [31].

Additionally, Andrianov [34] developed an analytical model for the response of VLFSs in waves. In this PhD
thesis, an extensive summary of existing VLFS projects is given (additionally, one can consult the work of
Lamas-Pardo et al. [35] for a more recent review of di�erent concepts of VLFSs). Andrianov provides an
overview of the assumptions that are made in the analysis of VLFSs. They are:

• VLFSs are modelled as thin, elastic (isotropic/orthotropic) plates with free edges,

• Potential �ow is used as a �uid model,

• The amplitude of the incident wave and the motions of the VLFS are small. Furthermore, the motions of
the VLFS are considered in the vertical direction only,

• There is no gap between the VLFS and the water surface, i.e. air entrainment e�ects are not considered,

• Bathymetry e�ects are not considered, i.e. the sea bottom is assumed to be �at.

Using these assumptions, an analytical model for the hydroelasticity of VLFSs was developed and applied for
di�erent shapes of the VLFS. The response of the VLFS for non-constant bathymetry was studied by Gerostathis
et al. [36].

6
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Other studies on the response of VLFSs in waves include the works of Hamamoto [37], Khabakhpasheva and
Korobkin [38], Riyansyah et al. [39], Wang and Tay [40] and Wei et al. [41]. Hamamoto [37] uses (wet) modal
superposition to obtain the response of a (moored) �oating beam subject to wave, wind or earthquake loading.
The works of Khabakhpasheva and Korobkin [38] and Riyansyah et al. [39] focus on �oating beams with a hinge
connection using a coupling of wet mode shapes [38] or using coupling of a Boundary Element Method (BEM)
for the �uid problem and the Finite Element Method (FEM) for the beam problem [39]. The coupling of the
BEM and the FEM has also been used by Wang and Tay [40] to model the response of a two-dimensional VLFS
in waves. The authors used a one-way coupling approach by applying the pressures from the velocity potential
of the �uid on the �nite element model. Lastly, the work of Wei et al. [41] investigates the hydroelastic response
of a VLFS in inhomogeneous waves using a time-domain approach, contrary to the spectral approach by Wang
and Tay [40] amongst others.

All studies which are presented in this section have in common that the structural models that are used are
linear models for beams or plates. Hence, the assumption of small (only vertical) de�ections is made. Ad-
ditionally, the models include the assumption of potential �ow (or ideal �ow) which implies that the �ow is
incompressible and irrotational [42], which is reasonably valid for small waves and thus small structural de�ec-
tions. However, as stressed by Andrianov [34], further research on VLFSs includes modelling of the structure
in large waves, modelling the structure with a non-�at hull and modelling of the response for di�erent mooring
solutions. Furthermore, Wang and Tay [40] recommend investigating the response of the VLFS due to nonlinear
wave impact and analysis using a Navier-Stokes �uid model. Additionally, the recommendations on the use of
nonlinear models (especially for the structure) are expected to be even more relevant in the case of Very Large
Floating Thin Structures (VLFTSs), as their bending sti�ness is low and therefore their response is expected
to be signi�cantly determined by nonlinear structural behaviour such as stretching.

2.2 Wrinkling of Thin Sheets
Wrinkling is the phenomena of out-of-plane pattern formation in thin sheets subject to in-plane loads. Due
to low Young's moduli and low thickness, soft membranes are sensitive to buckling, which initiates wrinkling
patterns on its turn. In the sequel, buckling will be referred to as a structural instability and post-buckling is
the behaviour of a structure after it buckled. Both buckling and post-buckling can be seen as types of structural
analyses. Wrinkling is considered as physical deformation pattern formation and propagation of a thin sheet,
and from a structural analysis perspective formed due to structural instability (buckling) and propagating as
post-buckling phenomena.

Figure 2.1 and Figure 2.2 show respectively wrinkles in a stretched thin sheet [43] and the wrinkle to fold
transition of a sheet on a foundation [44]. In both cases, wrinkles are formed as a buckling instability where
the number of wrinkles is determined by a balance between the membrane sti�ness and the tensional force
(Figure 2.1) or the foundation sti�ness (Figure 2.2).

In this section, a review on experimental (see Section 2.2.1), analytical (see Section 2.2.2) and numerical (see
Section 2.2.3) analyses of wrinkles of stretched thin sheets or sheets on an elastic foundation (e.g. �uid-supported
sheets) is given. A general review on wrinkling of sheets on elastic foundation has been written in 2012 by Li
et al. [45]. As shown in this paper, research interests from biological applications (e.g. growth induced wrinkles
of mucosa which is an organ class that includes airways [46]), in�ated membrane applications (e.g. wrinkles in
an in�ated beach ball studied by Vella et al. [47] and Ta�etani and Vella [48]) or �uid-supported nanomaterials
(e.g. wrinkles in graphene sheets studied by Androulidakis et al. [49]). Additionally, wrinkling formation as a
result of in-plane loads on sheets without elastic foundations is studied in the works of Wong and Pellegrino [50],
motivated by the application of solar sails for spacecraft. In ocean or marine engineering, wrinkling is hardly
considered as it is irrelevant for structures with high bending sti�ness. Instead, structures are often designed
far from structural instabilities. 1. When using sandwich materials, wrinkling is considered as a failure mode
of the material itself (see for instance the paper by Hadi [53]).

1For references about buckling in general or in marine structures the works of Brush et al. [51] or Hughes et al. [52].
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Figure 2.1: Wrinkling due to stretching of a thin
sheet. Experiment and image published by Cerda
et al. [43].

Figure 2.2: Wrinkle to fold transition of a sheet on
a substrate. Displacements in compressive direction
are applied in increasing order between �gures a, b
and c. Experiment and image published by Pocivavsek
et al. [44].

2.2.1 Phenomena and Experimental Work
Within research on the wrinkling phenomena, two set-ups can be identi�ed, which do not necessarily have to be
disjoint as will be illustrated later. In the �rst place, research has been performed on wrinkling of membranes
supported by a �uid or a solid (see Li et al. [45] for a review). This includes the application of �uid-supported
nano-materials and the pressurized membranes mentioned earlier. In the second place, research has been per-
formed on wrinkles occurring due to tension of a membrane.

Wrinkling of membranes on a foundation has been studied experimentally by Pocivavsek et al. [44] (see Fig-
ure 2.2) and was also elaborated by Cerda and Mahadevan [54]. In the latter paper, the authors note that
the foundation sti�ness penalises long wavelengths, similar to stretching sti�ness. In this paper, the authors
considered human skin resting on fat and wrinkles on the skin of an apple, induced by shrinkage of the �esh to
assess their scaling laws. Pocivavsek et al. [44] considered wrinkling of membranes supported by a �uid which
are compressed (uni-axially). Pocivavsek et al. considered the wrinkle-to-fold transition on di�erent scales by
using dimensionless scaling of the potential energy of the foundation (i.e. the hydrostatic contribution of the
supporting �uid) as well as dimensionless scaling of the potential energy due to bending of the membrane. In
this scaling analysis, it is assumed that the potential energy due to axial compression of the membrane is neg-
ligible, i.e. that the membrane is inextensible. In the paper by Pocivavsek et al., a formulation for the critical
compression for the initiation of wrinkles was also given. Lastly, similar experiments with a thin �lm between
two �uids with di�erent densities and a �lm with a mass were performed by Jambon-Puillet et al. [55]. These
authors identi�ed that the two-�uid situation and contact of the membrane a�ects wrinkle-to-fold transition
and the shape of the �nal fold.

In the work by Cerda et al. [43], wrinkling of an elastic sheet under tension is experimentally considered (see
Figure 2.1). According to the authors, the wrinkles are formed because of lateral contractions in the material
due to constraints at boundaries combined with pre-stress of the membrane and they occur when a critical
stretching strain (depending in the Poisson ratio) is exceeded. In the work, the authors use the bending and
stretching energies in the membrane to derive a scaling law for the wavelength and amplitude of the occurring
wrinkles. The physics, which are elaborated further by Cerda and Mahadevan [54] are described by a balance
between bending sti�ness that penalises short wavelengths and stretching which penalises large amplitudes and
hence large wavelengths. The balance between these two e�ects yields wrinkles of moderate length. For the
scaling laws, the reader is referred to the cited publications in this paragraph.

Two di�erent con�gurations tested by Wong and Pellegrino [50], which are depicted in Figure 2.3a and Fig-
ure 2.3. The former case depicts a thin square membrane subjected to two pairs of equal and opposite diagonal
forces at the corners and the latter case depicts a rectangular membrane under simple shear. In both cases, the
material was linear elastic and isotropic. Clearly, the cases in Figures 2.3 and 2.3a show wrinkles occurring in
the sheet. In two other papers by the same authors analytical [56] and numerical solutions [57] to the present
case were developed.
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(a) Thin sheet subject to tensional
corner loads. The force pair top left
and bottom right has 4 times the
magnitude of the force pair bottom
left and top right.

(b) Thin membrane subject to shear. The left and right edges are free, the top
edge is displacement controlled and the bottom edge is free.

Figure 2.3: Thin membrane subject to corner loads (left) and thin membrane subject to shear (right). Experiments
and �gures by Wong and Pellegrino [50].

As discussed in the previous paragraphs, wrinkles occur when a membrane is loaded under tension and ex-
ceeds certain tensional stress, or when a membrane supported by a foundation is loaded under compression.
As mentioned above, Cerda and Mahadevan [54] mentioned that in both cases, the wrinkle wavelengths and
amplitudes are governed by the balance between short and long wavelength penalising quantities, namely the
bending sti�ness and the stretch or foundation sti�ness respectively. For the sequel, it should be noted that the
tension and compression wrinkling phenomena are not necessarily distinct. For instance, when considering a
membrane on a foundation which is loaded under tension, wrinkles are formed by the balance between bending
sti�ness, axial sti�ness and foundation sti�ness.

Recommended further reading material out of the scope of this research includes the work of Evans et al. [58]
about the role of elastocapillary e�ects on buckling, wrinkling and folding instabilities. Also, Wagner [59] looked
at elastocapillary and its role in adhesion of thin sheets. Another work for further reading is the work of Wagner
and Vella [60] about delamination of elastic sheets resting on �uids. Lastly, the work of Abi Ghanem et al. [61]
about experimental and numerical investigation wave impacts on sheets resting on a �uid is an interesting work
for further research and reading.

2.2.2 Analytical Mathematical Modelling
Inspired by the work of Cerda et al. [43], Puntel et al. [62] developed a mathematical model for the case of the
stretched elastic sheet. The model includes the e�ects of stretching and the elastic foundation. Furthermore,
it provides an analytical expression for a sequence of stretches for which di�erent numbers of wrinkles appear.
Additionally, the mathematical model corresponds to the scaling laws for the wavelength and amplitude for the
wrinkled con�gurations observed by Cerda et al. [43] and Cerda and Mahadevan [54].

Based on the experiments of Pocivavsek et al. [44], analytical models for wrinkling and folding behaviour for a
�oating sheet under compression have been developed. In the works of Diamant and Witten [63] and Rivetti [64]
analytical solutions for a �oating rod (i.e. a 1D sheet) were given. Diamant and Witten presented a nonlinear
ordinary di�erential equation in terms of an unknown rotation of the rod, corresponding with Euler's elastica
problem. The analytical solutions given by the authors, however, contained both symmetrical, antisymmetrical
and non-symmetrical folds, with similar total energy levels. In the paper by Audoly [65] the work of Diamant
and Witten was extended since it was shown that their Ansatz for the solution is optimal. Furthermore, Audoly
also showed that the wrinkle-to-fold transition from the experiments of Pocivavsek et al. is an instance of a
series of localized buckling. As stressed by Rivetti based on the paper of Diamant and Witten, the unsolved
problem remained whether symmetric or antisymmetric folds are formed based on a certain perturbation. In
the paper by Rivetti and Neukirch [66], the so-called mode-branching (i.e. the localized buckling discussed by
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Audoly [65]) was further considered. From this paper, it was clear that this mode-branching route is a process
where the shape of the rod alternates between symmetric and anti-symmetric modes, with great dependence on
the non-dimensionalized foundation sti�ness and compression.

Lastly, Wong and Pellegrino [56] developed analytical solutions for the cases in Wong and Pellegrino [50]. The
authors use two-dimensional stress-�eld analysis to analytically determine bounds on the corner displacement
of the case in Figure 2.3a and to estimate the number of wrinkles that will occur in the sheet and in its corners.
For the membrane in shear (see Figure 2.3b), they also use stress-�eld analysis to identify locations where
wrinkles occur and subsequently they utilise stress and strain equilibria to obtain an estimate for the wrinkling
wavelength and amplitude. For both cases, scaling laws were derived based on the analytical formulations for
wrinkle wavelength and amplitude.

2.2.3 Numerical Modelling
Numerical modelling of wrinkles has been done by di�erent authors for di�erent applications. Here, some works
amongst others are highlighted, focussing on modelling approaches. Illustrations of the model problems are
given as examples for the applications of wrinkling models.

In the papers by Wong et al. [68, 67, 57], numerical simulations for thin membranes in space applications have
been performed. In the papers, the results of numerical models have been compared to analytical and exper-
imental solutions (see references [50] and [56], respectively and see Figures 2.3 and 2.3a for the set-up). The
numerical approach that has been used by Wong et al. is based on a general procedure for wrinkling compu-
tations in a �nite element code. This procedure is, in brief, explained by the following steps: (i) De�ne Finite
Element model including boundary conditions and material properties; (ii) Set initial conditions by applying a
pre-described stress �eld to enforce out-of-plane deformations using nonlinear computations; (iii) Apply initial
imperfections based on a linear combination of buckling modes of the pre-stressed membrane; (iv) Compute load
steps using nonlinear Newton iterations and solve singularities in the time domain using a dynamic analysis.
Important to note is that the superposition of the modes as initial imperfection is required to obtain wrinkles
as magni�cations in the forthcoming analysis. Additionally, the authors mention that the stabilization of the
dynamic step for wrinkle transition should be low enough to not in�uence the solution, but high enough to
stabilise the iterations. A similar analysis has been performed by Wang et al. [69], but initial forces were used
for generation of the buckling mode shape for the initial deformation. Bisagni [70] applied measured initial
imperfection to a composite cylinder (not a thin membrane) and performed a dynamic analysis to investigate
dynamic buckling loads. These were concluded to be signi�cantly higher than the static buckling load.

Inspired by the experimental work of Cerda et al. [43] (see Figure 2.1), numerical solutions were developed using
di�erent material models and considering the e�ects of Poisson's ratio and geometric ratios [71, 72, 73, 74, 75, 76].
Taylor et al. [73] additionally also considers the experiments of Wong and Pellegrino [50]. Firstly, Nayyar et al.
used levels of compressive stresses occurring due to a non-zero Poisson's ratio in the material as a pre-stress for
the buckling analysis. The post-buckling analysis is again started by imposing a number of eigenmodes from the
buckling analysis as initial imperfection, in order to initiate wrinkles. Contrary to the dynamic solution step for
singularities (or bifurcation points) used by Wong et al. [67], Nayyar et al. [72] use the arc-length-based Riks
method2. The �ndings of their work were that the numerical results corresponded to the experimental results of
Cerda and Mahadevan for the wrinkling wavelength, but that the wrinkling amplitude was not monotonically
increasing with the applied tensile strain. Additionally, the work of Taylor et al. [73] uses Koiter's nonlinear plate
theory combined with the dynamic relaxation method to solve the post-buckling phenomena of wrinkle forma-
tion. The dynamic relaxation method basically constructs an equilibrium problem into an arti�cially dynamic
system where the mass and damping parameters do not have a physical meaning but are tuning parameters [77].
The results showing excellent agreements with reference results. Although initial imperfections were applied,
the authors stress that the solution is not depending on a priori assumptions of the wrinkling shape, which is
a great advantage. In the work of Sipos and Fehér [74] experiments were performed for di�erent aspect ratios
and showed the existence of two packets of wrinkles for large aspect ratios. One of the recommendations based
on their �ndings is to use other material models (e.g. Neo-Hookean and Mooney-Rivlin) for the behaviour of

2More information on arc-length methods and singular points will follow later in this work in Section 4.4.



Chapter 2. Literature Review 11

rubber-like sheets. This work was done by Li and Healey [75], Fu et al. [78] and Wang et al. [76]. In the work of
Wang et al. [76], a three-dimensional phase-diagram for the characterization of wrinkles, including aspect ratio,
dimensionless thickness and strain was developed. Additionally, both Wang et al. [76] and Fu et al. [78] show
the in�uence of the Poisson's ratio on the formation or absence of wrinkles.

As inspired by the experimental work of Pocivavsek et al. [44] (see Figure 2.2), Cao et al. [79] and Ning et al. [80]
performed numerical studies of a sheet resting on a foundation. Cao et al. performed a numerical study of an
elastoplastic �lm on a soft substrate. In this study, the substrate was modelled as an elastic `foam' and the �lm
was modelled as a membrane with a certain yield strength. When the applied displacement on the boundaries
of the �lm was above a certain critical value, wrinkles occurred. Additionally, an increase of the displacements
resulted in localized creasing. According to the authors, creasing occurred due to plastic deformation of the
substrate. Analogous to the creasing de�nition of creasing of Li et al. [45], the crease is probably formed by
formation of a plastic hinge in the wrinkles. Period-doubling folds, however, were not observed in the work of
Cao et al.. In the work of Ning et al. [80] a beam model was used to model a rod on an elastic support. The rod
was modelled with a non-uniform sti�ness distribution. It was observed that on the places where the Young's
modulus is lowest, buckling and fold formation occurs.

The two papers by Javili et al. [81] and Dortdivanlioglu et al. [82] consider cases where wrinkles are formed
based on bifurcations due to internal growth of materials (i.e. biological membranes) rather than externally
applied forces or displacements. They model a growing sheet on an elastic foundation, which has similarities
with the case from Pocivavsek et al. [44]. In the �rst paper by Javili et al., the authors make a distinction
between prescribed perturbations and eigenvalue analysis to capture growth-induced instabilities. The former
method uses small perturbations in the residual of the Newton iterations such that instabilities occur. However,
as stressed by the authors, too small perturbations can cause instabilities not to occur whereas too large per-
turbations causes `subjective' perturbations, i.e. perturbations that overwrite the actual solution. The latter
method uses the eigenvalues of the sti�ness matrix of the system. If one of the eigenvalues becomes negative
for a certain growth value, a bi-section or secant method can be used to compute the eigenvalue for which the
matrix has a zero eigenvalue and the corresponding eigenvector then corresponds to the instability mode3. In
the paper of Dortdivanlioglu et al. [82], Isogeometric Analysis (IGA) has been used to model similar growth-
induced instabilities. Here, the eigenvalue approach as discussed in the paper of Javili et al. was used. The
�ndings of the paper were that the solutions from IGA were superior to those of FEM. Furthermore, the authors
concluded that arc-length methods were to be further discussed for modelling creases and ridges.

2.3 Isogeometric Analysis
Isogeometric Analysis is a computational framework introduced by Hughes et al. [83] in 20054 inspired to facil-
itate seamless integration between Computer Aided Design (CAD) and Finite Element Analysis (FEA). Using
CAD geometry representations (e.g. Non-Rational B-Splines (NURBS)) and additional routines for geometry
re�nement to reduce the computational costs of the meshing procedure required for FEA. Since isogeometric
analysis is based on a parametric domain description rather than parametric elements, higher-order continuity
properties of the basis functions are found over the complete domain resulting in accuracy and robustness on a
degree-of-freedom basis compared to conventional FEA.

Figure 2.4 presents an example of a CAD geometry and analysis based on this geometry is depicted as an ex-
ample. This �gure is taken from Hsu et al. [86], where a bioprosthetic heart valve was parametrically modelled
in CAD software and analysed by a Fluid-Structure Interaction solver in the Isogeometric Analysis framework.

In this section, an overview of the progress of isogeometric analysis for structural mechanics will be given.
Firstly, focussing on structural analysis, shell, beam and cable models will be investigated and afterwards,

3This method relates to the arc-length method which is used later on in this research, see Section 4.4
4Later, in 2009, a the �rst book on Isogeometric Analysis was published by Cottrell et al. [84]. This book is highly recommended

as an overview of the basics of IGA and its applications. Additionally, Nguyen et al. [85] published a paper in 2015, which gives
a general overview of the state-of-the-art in that time. This paper covers applications, alternative discretizations and notes on
computational aspects.
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(a) CAD geometry of the bioprosthetic heart valve
with re�nement using T-splines (see Section 2.3.3)

(b) Flow velocity and deformation of the arterial wall
and the heart valve on a time instance.

Figure 2.4: Dynamic �uid-stricture interaction model for a bioprosthetic heart valve. The left picture represents the
Computer Aided Design (CAD) geometry of the heart valve surrounded by an arterial wall. The right picture depicts
the deformation of the heart valve and the arterial wall with coloured �ow velocities. For details, the reader is referred
to the original work of Hsu et al. [86].

progress in di�erent structural analyses will be investigated. Secondly, comparisons of IGA and FEA from
the literature will be recalled for structural analysis speci�cally. Afterwards, meshing techniques for general
isogeometric analysis will be presented. This section closes with a brief overview of computational aspects.

2.3.1 Isogeometric Analysis for Structural Mechanics
Isogeometric Analysis for structural mechanics has been developed over the past years. The Kirchho�-Love
shell, the Reissner-Mindlin shell, solid, cable and beam elements have been developed. The range of applica-
tions of the di�erent structural models varies from thin or moderately thick shells (Kirchho�-Love shell and
Reissner-Mindlin shell, respectively) or solids to one-dimensional elements for cables and beams. The present
study mainly focusses on the use of Kirchho�-Love shell elements since the o�shore solar platform is assumed
to be thin. However, Reissner-Mindlin shell models or solid models for thicker parts of the platform might be
of interest in a later stadium. Furthermore, beam elements for reinforcement and cable elements for mooring
systems of o�shore solar platforms might be relevant in later stadia of development (see also Chapter 8).

A brief literature review is presented in the �rst part of this section. A review on isogeometric models for beam,
cable, and shell elements is presented �rst. Hereafter, a review on isogeometric structural analyses that have
been performed is given.

Isogeometric Shell, Beam and Cable Models

When structures are thin5, i.e. when cross-sectional shear can be neglected (this is the so-called Kirchho�
hypothesis, see Section 3.2), Kirchho�-Love shells can be used to model the structure. Kiendl et al. published
several papers on the Kirchho�-Love formulation in the Isogeometric Analysis framework [87, 88, 89]. In the
work of Kiendl et al. [87], the formulation was developed for thin shell structures with large deformations
and negligible through-thickness deformations induced by shear e�ects. Kirchho�-Love elements require C1

continuity between elements, which can be challenging with standard polynomial basis functions in FEA. How-
ever, using spline basis functions (e.g. B-splines), higher-order continuity between elements can be facilitated.

5 A shell is considered thin when the ratio between its (shortest) in-plane length dimension L over its thickness t is larger than
20, i.e. L/T > 20. In this case, Kirchho�-Love theory is applicable. If L/t > 1000, shells are considered very thin and geometric
nonlinearities are necessary. If L/t < 20, shells are considered moderately thick and Reissner-Mindlin shells need to be applied. [87]
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Therefore, this model is called rotation-free since rotational degrees of freedom are solved by derivatives of the
displacement. Later on, the Bending Strip Method was developed by Kiendl et al. [88] to couple multiple NURBS
patches. Additional work on shell coupling was performed by Coox et al.[90, 91] for non-conforming patches
(i.e. patches where the parametrization does not match). Lastly, Kiendl et al. [89] extends the Kirchho�-Love
shell formulation for hyperelastic materials, such as rubber-like materials and biological tissues. Applications
of di�erent material models on biological tissues are also given in Roohbakhshan and Sauer [92].

When shells are moderately thick6, shear deformation of the cross-section signi�cantly in�uences the defor-
mations of the shell. The so-called Reissner-Mindlin shell element for moderately thick shells was modelled
using isogeometric analysis by Benson et al. [93]. The derived elements were tested on one linear elastic case
(pinched cylinder) and four nonlinear elastoplastic cases, including the buckling of a cylinder and square tube.
The element is implemented as a user-de�ned element in LS-DYNA and the implementation shows the e�ective
use of quadratic and quartic shells. Furthermore, Beirão da Veiga et al. [94] presents an isogeometric method
for the Reissner-Mindlin shell formulation which is locking-free, i.e. preventing over-sti� solutions in the thin
plate limit [95]. Furthermore, they show for general boundary conditions that the method is uniformly stable
and that it satis�es optimal convergence estimates. The derivations are formally mathematical. In the paper of
Benson et al. [96], a method to combine Kirchho�-Love and Reissner-Mindlin shells to so-called blended shells
is proposed, combining the accuracy of the latter with the computational e�ciency of the former.

Cable elements are of special interest when modelling mooring systems in marine applications. Raknes et al. [97]
derive a cable element from 3D continuum mechanics equations. In their formulation, bending sti�ness is in-
cluded, under the Kirchho� hypothesis. Besides providing some interesting validation cases, such as the bow
and arrow problem to couple cables and beams, or the opening umbrella to couple a truss and a Kirchho�-plate,
they conclude that the bending term in the cable element formulation works as a stabilising factor in the com-
putations. This is especially the case when modelling beams under compression. Additionally, Thai et al. [98]
developed an isogeometric cable element under self-weight and elaborated on sagging cable nets using a penalty
technique to calculate the equilibrium con�guration.

As discussed in the previous paragraph, the work of Raknes et al. [97] also discusses the coupling of beam and
shell elements. For o�shore solar platform design, the structure might locally be reinforced by relatively sti�
beams. Therefore, Timoshenko beams (moderately thick) or Euler-Bernoulli beams (thin) might be of interest.
Firstly, Lee and Park [99] and Luu et al. [100] derive Timoshenko beam models with an isogeometric approach.
In the former paper, it is concluded that the beam model is very e�cient and robust with k re�nements. Fur-
thermore, they found that higher order elements do not show shear-locking e�ect and the mode shapes are
represented compared to FEA results. In the latter paper by Luu et al. [100], the focus is on the free-form
vibration of curved beams. They conclude that rotary inertia and shear are important for thick, elliptic rings
and that the use of NURBS allows for e�cient modelling of arbitrarily curved beams. Secondly, in the work
of Weeger et al. [101] a nonlinear non-rotational Euler-Bernoulli beam formulation using isogeometric analysis
is presented and applied to nonlinear structural vibration analysis. Lastly, the works of Cazzani et al.[103]
consider curved beams with IGA. Basically, this is an extension of the `regular' IGA beam elements. Besides
the formulations and implementation of the curved beam elements, both papers provide validation cases for
similar structures. In the conclusion of the paper by Cazzani et al. [103], the authors stress that the use of
`regular' IGA beam elements works for relatively small curved beams. When the initial curvature is present,
however, the need for their constitutive model for curved beams needs to be adopted.

Isogeometric Structural Analysis

Based on the isogeometric structural elements presented in the previous part of this section, di�erent applica-
tions in structural analysis have been presented in the literature. In this subsection, a brief overview is given
on the performed structural analyses in the Isogeometric Analysis framework. In Chapter 4, details about the
numerical procedures of di�erent structural analyses are given.

Firstly, the works of Weeger et al., Kolman et al., Luu et al., Qin et al.[101, 104, 100, 105] focus on structural

6See Footnote 5
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vibrations, i.e. modal analysis. Applications of IGA for structural vibrations is bene�cial for panels with curved
sti�eners (see [105]), curved geometries such as rings [100]. Additionally, several publications have shown that
IGA outperforms the Finite Element Method (FEM) for beam vibrations [101, 106], shell vibrations [107] or
simply shaped solids [104]. For more details on the comparison to the �nite element method, the reader is
referred to Section 2.3.2.

In the works of Valizadeh et al. [108], Thai et al. [109] and Shojaee et al. [110], buckling of isogeometric shell
elements (respectively the �rst with Kirchho�-Love elements and the second and third with Reissner-Mindlin
elements) is considered for isotropic and composite panels. Similarly to the modal analysis, buckling solutions
are obtained by solving an eigenvalue problem. From the study of Shojaee et al., it turns out that isogeometric
shell elements for buckling analysis (including meshing procedures) are e�cient, robust and accurate compared
to other available methods.

Guo et al. [111] presents an implementation of post-buckling methods, in particular arc-length or path-following
methods (see Section 4.4), on isogeometric Kirchho�-Love shell elements. In their work, the path-following
algorithm that is implemented is not capable of �nding bifurcation (i.e. buckling) points and hence initial
perturbations have to be applied. However, the paper does show that the results compare very well to reference
solutions in ABAQUS and that local e�ects are captured by the higher-order continuity of the NURBS basis.
A similar study was included in the work of Luo et al. [112].

Isogeometric shell discretizations have been applied in a various amount of dynamic problems. Besides applica-
tions in Fluid-Structure Interaction (FSI), which is out of the scope of this thesis but a suggestion for further
research (see Chapter 8), studies have been performed on dynamics of shells. In the work of Benson et al. [113],
a Reissner-Mindlin shell for large deformations was developed and benchmarked on di�erent cases with di�erent
mass matrix formulations. In the work of Wang et al. [114] more information can be found on mass-matrix
lumping to reduce the bandwidth but to remain accuracy in case of vibration (and subsequently dynamic)
analyses.

Lastly, recent developments that are relevant for isogeometric structural mechanics, but not necessarily for
this study, include dynamic contact models in general [115] and used for cloth modelling [116], the Kirchho�-
Love shell formulation including plasticity [117] and Spectral Stochastic Isogeometric Analysis (SSIGA) for the
analysis of the in�uence of stochastic parameter distributions in linear elasticity, vibration and buckling analyses
[118, 119, 120].

2.3.2 Comparison to Finite Element Analysis
As mentioned at the beginning of this section, Isogeometric Analysis originates from the idea of seamless inte-
gration between CAD and Finite Element Analysis (FEA). The fundamental di�erence between Isogeometric
Analysis and FEA, however, is that basis functions have a compact support (element-wise) in case of FEA,
whereas they have a global (patch-wise) support in Isogeometric Analysis. A domain can be subdivided into
multiple patches and per patch, there are usually multiple non-zero basis functions. More detail will be given
in Section 4.1.

Regarding the performance of FEA and Isogeometric Analysis, few comparing studies have been performed in
the past. Furthermore, most (dis)advantages of Isogeometric Analysis compared to FEA are shown by means of
application or hypothesis, rather than by formal mathematical proofs. First of all, Hughes et al. [121] compared
p-method �nite elements with a NURBS-based approach and concluded that for structural dynamics, the whole
frequency spectrum converges with p whereas in FEA the errors in the higher-order modes even diverge with p.
In the works of Auricchio et al. [122] and Morganti et al. [123] two applications comparing Isogeometric Analysis
with FEA were given. In the present studies, stunning accuracy and fast computing times were observed for
Isogeometric Analysis compared to FEA.

Regarding structural vibrations, Weeger et al. [101] studied nonlinear vibrations of an Euler-Bernoulli beam in
the IGA and FEA framework. The conclusions were that IGA outperforms FEA since IGA does not show so-
called optical branches (see Section 4.5) and that the number of degrees of freedom to reach a certain accuracy is



Chapter 2. Literature Review 15

ηl

ηl+1

ξk ξk+1

η

ξ

ηn

ηn+1

ξm ξm+1

Figure 2.5: Local re�nement of an element in an arbitrary piece of the parametric domain with knot vectors Ξ =
{ξ1, . . . , ξk, ξk+1, . . . , ξm, ξm+1, ξN} and H = {η1, . . . , ηl, ηl+1, . . . , ηn, ηn+1, ηM}. Regions to be re�ned are coloured.
Ordinary re�nement of the tensor product is depicted in green with additional re�ned elements lightly coloured. T-spline
re�nement is depicted in orange.

lower. Additionally, Kolman et al. [104] performed an analysis of free vibrations of simple-shaped elastic samples
using solid elements and also found that the number of degrees of freedom that is needed for IGA and FEM
for similar accuracy is signi�cantly smaller for IGA, and that the number of Gauss-evaluations for assembly of
the system is also smaller, although IGA has less-sparse systems. Qin et al. [105] considered sti�ened panels
with curved sti�eners and compared IGA to FEA. Besides the advantage that IGA can exactly describe curved
sti�eners, it was found that IGA outperformed FEA on accuracy for a smaller amount of degrees of freedom
compared to FEA.

2.3.3 Meshing Techniques
B-splines and NURBS are de�ned by a set of knots in a knot vector. A disadvantage of those is that they
are generally not able to represent topologies that contain holes. Furthermore, as they are de�ned by a tensor
product of knot vectors, local re�nements are ine�cient, as shown in Figure 5.6, since additional regions are
re�ned by the tensor product re�nement. A solution to this is the use of T-splines, which are introduced by
Sederberg et al. [124]. This technique prevents the use of global tensor product knot insertion by introducing
T-junctions in the parametric mesh (see Figure 5.6). As discussed by Bazilevs et al. [125], T-splines allow for
watertight merging of patches and e�cient local mesh re�nement, which is also discussed by Dörfel et al. [126].

Another re�nement strategy is based on so-called Hierarchical B-splines (HB-splines) and was introduced by
Vuong et al. [127]. The name hierarchical B-splines comes from the fact that the splines are re�ned based on
a �ner B-spline basis, i.e. a basis with another hierarchy in the re�nement. Within the tensor product basis of
arbitrary dimension, basis functions can be re�ned by replacing them with basis functions with a higher level
of re�nement. Another concept of re�nement is based on Truncated Hierarchical B-splines (THB-splines) [128].
In this case, the basis functions around the eliminated basis function are truncated to have smaller support
and conserve the partition of unity property (see Section 4.1 for properties of B-spline bases). In Figure 5.6
in Section 4.1, the concepts of uniform re�nement, HB-re�nement and THB-re�nement are illustrated for a
one-dimensional B-spline basis. Figure 2.6 depicts a THB-re�ned mesh in de bow of a vessel, used to increase
the number of control points to model a bulbous bow.

THB-splines can be used as the basis for adaptive mesh re�nements. These re�nements are of particular interest
when a certain part of the domain requires a high level of detail. For instance, when wrinkles with wavelengths of
a few centimetres occur in a platform with dimensions of hundreds of meters, multiple spatial scales are involved
and adaptive meshing can provide �ne meshes in wrinkled regions, but coarse meshes outside. This keeps
computational costs low for a certain level of accuracy in wrinkling prediction. Carraturo et al. [129] describe
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Figure 2.6: Application of THB-splines to increase the number of control points to shape a bulbous bow of a vessel.
Image from Giannelli et al. [130].

the application of THB-splines on adaptive re�nement with application to a heat equation on the problem of
a small laser beam on a plate. The adaptive meshing procedure from this paper is based on re�nement and
a coarsening scheme to re�ne regions where an a posteriori error estimation based on a previous time step or
iteration is used to indicate re�nement or coarsening regions. The paper concludes that the proposed method
provides an excellent trade-o� between accuracy and system degrees of freedom (i.e. computational costs).
Recommendations given by the authors are to look at three-dimensional, nonlinear or multi-physics problems.

2.3.4 Computational Aspects
Principally, Isogeometric Analysis is based on variational forms, similarly to FEA7. The integrals in the vari-
ational form are usually computed using quadrature rules (e.g. Gauss Quadrature) per element. In case of
NURBS and B-splines, such quadrature rules are far from e�cient, due to the fact that NURBS and B-splines
pose some degree of smoothness across element boundaries, as illustrated in the paper of Hughes et al. [132].
Hence, a computationally very expensive step in Isogeometric Analysis is the integration of the variational form
and hence assembly of the system. As this thesis will not further look into optimal quadrature for Isogeometric
Analysis, the reader is advised to read the papers of Hughes et al. [132] and Auricchio et al. [133] for improved
quadrature rules. In this work, Gauss quadrature is used for integration.

Collier et al. [134] discusses the computational costs that are associated with k-re�nements (i.e. re�nement of
the continuity) for direct solvers [134] and for iterative solvers [135]. Garcia et al. [136] provides the `re�ned
IGA' (rIGA) method which uses separators in the domain (lines of reduced continuity) that make the resulting
linear system more suitable to solve for direct solvers. In this work, considerations of computational costs asso-
ciated with re�nements and the resulting matrix structures are out of scope since the global structural response
will be modelled with a small number of elements and hence computational costs for solving linear systems are
assumed to be relatively small.

Lastly, as already mentioned in Section 2.3.1 an advantage of Isogeometric Analysis is the fact that the basis
functions provide higher-order continuity between elements. This property is utilized in the Kirchho�-Love shell
formulation and reduces the global system size since rotational degrees of freedom do not have to be solved.

2.4 Concluding Remarks
In this chapter, a review of three topics in literature (response of VLFSs in waves, Isogeometric Analysis and the
wrinkling phenomena) was given. Based on these three reviews, conclusions can be drawn for the (un)available
knowledge related to this study:

• The response of Very Large Floating Structures in waves using linear models for �uid and structure has
been computed by other authors. However, modelling of large, geometrically nonlinear, responses of these
structures in more severe conditions (e.g. large waves, but also wind and current) has not been done yet,
but it is recommended according to literature. Additionally, no literature was found for structural failure
mode analysis of VLFSs. Re�ecting subgoal 6, this gives a background on the development of (structural)

7See the work of Bischo� et al. [131] amongst others for an overview of the Finite Element Method.
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models for the response of VLFSs in di�erent loading conditions.

• In the �eld of wrinkling and folding of thin membranes, di�erent experiments have been performed.
Amongst these experiments are the �oating sheet by Pocivavsek et al. [44] and the stretched thin sheet
by Cerda et al. [43]. All applications and numerical models considered in this literature review, focussed
on small scales. Additionally, numerical studies use arc length methods with a priori user input (see the
previous bullet) or other methods to model the formation of wrinkles. Contributions in this �eld would
hence include numerical simulations based on arc length methods without a priori user input. Additionally,
scaling laws and parameter studies of sheets on foundations under di�erent loading conditions and on
large scales are sparse and would hence also contribute in the �eld. Considering subgoal 5, it can be
concluded that the relevant parameters in the physical mechanism of wrinkling formation are the sti�ness
of the membrane (governed by material parameters or thickness), the sti�ness of the elastic foundation
(determined by the density of the �uid and the gravitational acceleration), the material properties and
the shape or size. The numerous experiments and benchmarks that have been studied can be used for
validation or veri�cation of numerical models.

• The �eld of Isogeometric Analysis (IGA) has expanded since its origins in 2005. In particular, shell models
have been developed based on di�erent assumptions (e.g. rotation-free Kirchho�-Love shells, Reissner-
Mindlin shells, di�erent material models) and has shown its advantages over Finite Element Methods
(FEM) in di�erent structural analyses. Additionally, the fact that isogeometric bases provide higher-
order continuity over the whole domain implies that this technique is suitable for the Kirchho�-Love shell
implementation. This partially relates to the second subgoal of this thesis as implementation will be
presented in the next chapter. However, in the �eld of post-buckling analysis, arc-length methods have
yet only been applied based on initial perturbations, hence a priori user input. As will be shown in
Section 4.4, methods are available to prevent the use of these perturbations.

Based on the above, the goal of this study, which is to model wrinkling of �oating sheets (for failure mode anal-
ysis of VLFSs) in the Isogeometric Analysis framework using arc-length methods, contributes in di�erent �elds
of study. The Kirchho�-Love shell formulation will be used with the assumption that the considered shells are
thin (L/t > 20) or very thin (L/t > 1000) [87] and the isogeometric analysis framework is utilized to facilitate
higher-order continuity (minimal C1) between elements. As will be discussed in Chapter 8, Fluid-Structure
Interaction (FSI) simulations of VLFSs, corresponding to the �rst bullet, are out of the scope of this research.
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In this chapter, the foundations for the beam and shell models are laid. The goal of this chapter is to provide
a motivation for and an explanation of the structural models that are used in this research, hence related to
the �rst subgoal of this thesis. Additionally, the chapter provides implementation aspects of the model without
specifying the type of basis functions of the method, i.e. without making a distinction between Finite Element
Analysis (FEA) or Isogeometric Analysis (IGA). These implementation aspects are related to the third subgoal
of this thesis. The beam model is presented for illustrational purpose as the derivation implementation is more
straight-forward and thus requires less advanced coding procedures or mathematical procedures.

In the �rst section, relations from continuum mechanics are brie�y recalled. This includes the Kirchho� hy-
pothesis for thin shells and relations between displacements, stresses and strains. First, Section 3.1 gives the
basics of di�erential geometry, which is relevant for shell surface descriptions. In Section 3.2, the governing
equations for beam or shell models models are given. Thereafter, in Section 3.3 and Section 3.4 the equations
for respectively the beam and shell models are derived and discretized speci�cally.

3.1 Basics of Di�erential Geometry
Before the derivation of an isogeometric shell element is given, this section will brie�y cover the basics of
di�erential geometry of curved surfaces 1. Let S(θ) : R2 → R3 be a surface representation which maps between
normalized parametric coordinates (θ1, θ2) ∈ [0, 1]2 and physical space Ω. Then, the covariant curvilinear basis
vector aα, α = 1.2 is simply found by computing the partial derivatives of all three components of S with
respect to the parameters θ1 and θ2. That is,

aα =
∂S

∂θα
, or, element-wise, (aα)i =

∂Si
∂θα

with: α = 1, 2; i = 1, 2, 3.

Based on the covariant basis vector, the covariant basis is usually represented by aα ⊗ aβ where the indices
depend on the number of parametric dimensions 2 and where ⊗ represents the Kronecker product [138]. Some
geometric representations, i.e. Cartesian bases, spherical/cylindrical bases, have the property that the covariant
basis is orthogonal (see Appendix A.1), i.e. that ai · aj = 0 for i 6= j, however this is generally not true. Based
on the covariant basis, the covariant metric tensor gαβ can be derived. The elements of this second-order tensor
are de�ned as:

gαβ = aα · aβ , with: α, β = 1, 2.

The square root of the determinant of the covariant metric tensor,
√
det(gαβ), is referred to as the measure,

but is also known as the Jacobian when bases of integrals are changed3. Using this tensor, the second basis
of the geometry (in this case surface S) can be derived: the contravariant basis aα ⊗ aβ . This basis has the
property that aα · aβ = δαβ where δαβ is the Kronecker delta which is 1 for equal indices and 0 for unequal
indices. The contravariant basis can be derived from the covariant basis using the contravariant metric tensor

1For theoretical background on the content of this section, the reader is referred to the second chapter of the dissertation of
Kiendl [137] or the book of Holzapfel [138].

2In the latter sections, the basis will be represented by two surface coordinates θ1, θ2 and one out-of-plane normal coordinate
θ3. Hence, the indices will be i, j = 1, 2, 3.

3The reader is referred to basic calculus books such as Stewart [139] for the domain change of integrals
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Figure 3.1: Illustration of the covariant and contravariant (coloured orange and black, respectively) for the surface
with formula from Equation (3.1). The parametric points A and B are plotted in both parametric domain (left) and on
the surface (right). The surfaces are coloured by the measure of the mapping S : Ω∗ → Ω.

[gαβ ] = [gαβ ]−1 by taking the scalar product of the contravariant metric tensor coe�cients and a covariant
basis vector:

aα = gαβaβ = gα1a1 + gα2a2, for α, β = 1, 2.

To illustrate the meaning of contravariant and covariant bases, Figure 3.1 presents the surface with the formu-
lation from Equation (3.1) with the parametric domain Ω∗ and in the physical domain Ω = (x, y) such that
S : Ω∗ → Ω. The covariant and contravariant vectors on the points A and B are displayed and it can clearly
be seen that the covariant vector in `radial' (i.e. θ2) direction is orthogonal to the contravariant vector in the
`angular' (i.e. θ1) direction and vice versa. In Appendix A.2, the formulations of the covariant and contravariant
basis vectors are given.

S(θ1, θ2) =

[
(r(θ2) + 1) cos (φ(θ1))

(r(θ2)+1)3

4 sin (φ(θ2))

]
, where: φ(θ1) =

π

2
θ1 and r(θ2) = θ2. (3.1)

3.2 Fundamentals of ContinuumMechanics for Thin Beams and Shells
From continuum mechanics, general relations between displacements, strains and stresses are adopted for thin
shells speci�cally. In the sequel, the assumption is made that the dimension of the thickness of the shell is
smaller than any in-plane dimension, e.g. t� B and t� L where B and L are some length and width dimen-
sions of the geometry and t is the thickness of the shell.

3.2.1 Coordinate System
Suppose a piece of material is �rst in a reference state and due to deformation, it turns into a deformed state.
Suppose that any point in the material can be represented by the parametric coordinates θ = (θ1, θ2, θ3).
Figure 3.2 illustrates the coordinate system that is used using two-dimensional in-plane deformation, without
loss of generality. Then, any point in the undeformed con�guration is represented by X(θ) and any point in
the deformed con�guration is represented by x(θ). In the sequel, capitals will be used for quantities in the
undeformed state whereas lower-case letters will be used for quantities in the deformed state. As discussed in
Section 3.1, X and x are mappings from the coordinate system θ to a point in space, or from a parameter space
θ ∈ Ω̂ to a point in physical space x ∈ Ω̂∗.

The basis of Euler-Bernoulli beam theory and Kirchho�-Love shell theory is the Kirchho� Hypothesis. The
Kirchho� Hypothesis de�nes thin shell or beam coordinate systems relative to the mid-plane of the shell and
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Figure 3.2: Arbitrary physical domain Ω ∈ R2 (dashed) and its deformation (solid). The parametric domain Ω̂ ∈ R2 is
also plotted. The point a ∈ Ω̂ is mapped on the deformed and undeformed domains to A′ and A by mappings x(θ) and
X(θ), respectively. These mappings represent coordinate vectors and the di�erent between the vectors is u = x −X.
The same notations hold in the three-dimensional space Ω∗ = Ω ∪ [−t/2, t/2] using the coordinate system in 3.2.

beam and a director (i.e. a normal vector). The Kirchho� Hypothesis makes the following three assumptions
for the displacement �eld [140]:

1. Straight lines perpendicular to the mid-surface (i.e. transverse normals) before deformation, remain
straight after deformation,

2. The transverse normals rotate such that they remain perpendicular to the mid-surface after deformation.

3. The transverse normals do not experience elongation (i.e. they are inextensible),

Consequently, the �rst assumption implies that the through thickness strain distribution is linear, the second
assumption implies that the geometry can be represented by its mid-surface only and combined with the �rst
assumption it implies that the cross-section does not shear. Additionally, the second assumption implies that
the thickness of the cross-section does not change due to deformation. This does not necessarily mean that the
thickness of the cross-section cannot be variable over the mid-plane. [137]

Based on the Kirchho� Hypothesis, the coordinate system of the deformed (undeformed) shell can be de�ned
based on the mid-plane surface c(θ1, θ2) (C(θ1, θ2)) and the normal vector to this surface n̂ (N̂) as:

x(θ) = c(θ1, θ2) + θ3n̂ and X(θ) = C(θ1, θ2) + θ3N̂. (3.2)

The covariant basis (see Section 3.1) is de�ned by the covariant basis of a surface, i.e. the surface tangents
(subscripts 1 and 2), and the normal vector. The Greek indices α and β are used for the in-plane parameters,
i.e. α, β = 1, 2. The following de�nitions of the covariant and contravariant bases will be given for the deformed
con�guration only, but the the results are valid for any shell geometry and hence also the undeformed variant.
The covariant basis vectors gi i = 1, 2, 3 are de�ned as:

gα =
∂x

∂θα
and g3 = n̂ =

∂c
∂θ1
× ∂c

∂θ2∥∥∥ ∂c
∂θ1
× ∂c

∂θ2

∥∥∥ .
Using this basis, the coe�cients of the covariant metric tensor for the in-plane basis gαβ are

gαβ = gα · gβ =

(
∂c

∂θα
+ θ3

∂n̂

∂θα

)
·
(
∂c

∂θβ
+ θ3

∂n̂

∂θβ

)
=

∂c

∂θα
· ∂c

∂θβ
+ θ3

(
∂c

∂θα
· ∂n̂

∂θβ
+

∂c

∂θβ
· ∂n̂

∂θα

)
+ θ2

3

∂n̂

∂θα

∂n̂

∂θβ
.
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The terms of order θ2
3 are neglected in the sequel by the assumption of small thickness, i.e. a thin shell

assumption. Furthermore, the term of order θ3 can be simpli�ed using the following result from Kiendl [137]
amongst others:

∂c

∂θα
· ∂n̂

∂θβ
=

∂c

∂θβ
· ∂n̂

∂θα
= − ∂2c

∂θα∂θβ
· n̂.

The coe�cients of the covariant metric tensor related to the director coordinate θ3 are

gα3 = gα · g3 =

(
∂c

∂θα
+ θ3

∂n̂

∂θα

)
· n̂ = 0, (3.3)

g33 = g3 · g3 = n̂ · n̂ = 1. (3.4)

Where the �rst line is equal to zero because the product of the normal vector is orthogonal to the derivative of
the surface tangents and since the derivatives of n̂ with respect to the surface coordinates (θ1, θ2) is zero.

3.2.2 Shell Kinematics
In the previous section, the coordinate system for thin shells was derived together with the covariant metric
tensors. In this section, the shell kinematics are derived, which relate deformations between two con�gurations
of the shells using the covariant bases in the deformed and undeformed con�guration using the strain tensor.
The derivation of Kiendl is used as guideline in this section. The reader is referred to the works of Holzapfel [138]
and Ba³ar and Weichert [141] for further details. In the work of Goyal [142], a di�erent approach is used, but
the outcome of the strain tensor is equal.

When a shell is deforming, the di�erence between the undeformed con�guration X and the deformed con�gu-
ration x is denoted by the vector u. By de�nition, (see Figure 3.2)

x = X + u ⇐⇒ u = x−X.

Furthermore, consider a line segment dX in the undeformed con�guration. After deformation, the same line
segment is deformed to dx. The relation between both segments is described by the deformation gradient F as
follows

dx = F · dX.

Denoting the covariant and contravariant basis of the deformed and undeformed con�guration by gi, gi, Gi

and Gi, the following relations of the deformation gradient F hold [137, 141], where:

F = gi ⊗Gi, F T = Gi ⊗ gi,

F−1 = Gi ⊗ gi, F−T = gi ⊗Gi.

For index i = 1, 2, 3. The strain model that is used in the Kirchho�-Love shell model is the Green-Lagrange
strain tensor. This tensor describes a nonlinear relationship between deformations and strains and it is de�ned
as4

E =
1

2

(
F TF − I

)
(3.5)

Please note that the strain and identity tensors, E and I, are of second order. Substituting the relations of the
deformation gradient F and its transpose, gives the following de�nition of the Green-Lagrange strain tensor
with respect to the undeformed basis Gi ⊗Gj :

E =
1

2
(gij −Gij) Gi ⊗Gj . (3.6)

4For introductory strain de�nitions, the reader is directed to the works of Sadd [143] and Reddy [95]. In the book of Sadd the
derivation of simple linear strain is clearly derived from the typical deformations of a rectangular element. In the work of Reddy,
the formulation E = 1

2

(
(∇u)T +∇u+ (∇u)T∇u

)
is used and derived and used in Cartesian and polar coordinates.
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Substituting the relations of gij from Section 3.1 (which also hold for the deformed con�guration, giving Gij)
gives

E =
1

2


∂c
∂θ1
· ∂c∂θ1 −

∂C
∂θ1
· ∂C∂θ1

∂c
∂θ1
· ∂c∂θ2 −

∂C
∂θ1
· ∂C∂θ2 0

∂c
∂θ1
· ∂c∂θ2 −

∂C
∂θ1
· ∂C∂θ2

∂c
∂θ2
· ∂c∂θ2 −

∂C
∂θ2
· ∂C∂θ2 0

0 0 0

+ θ3


∂2C
∂θ21
· N̂− ∂2c

∂θ21
· n̂ ∂2C

∂θ1∂θ2
· N̂− ∂2c

∂θ1∂θ2
· n̂ 0

∂2C
∂θ1∂θ2

· N̂− ∂2c
∂θ1∂θ2

· n̂ ∂2C
∂θ22
· N̂− ∂2c

∂θ21
· n̂ 0

0 0 0


(3.7)

= ε+ θ3κ.

From these equations, it can be seen that the strain tensor for a Kirchho�-Love thin shell can be decomposed
in a normal strain component ε and a curvature component κ. In both components, the last column and rows
are zero by the results of Equations (3.3) and (3.4) (see Remark 3.4 of Goyal [142]).

3.2.3 Constitutive Equations
The constitutive relations describe the relations between stresses and strains. In this section, the constitutive
relations used in the Kirchho�-Love shell are presented. The formulations are adopted from Kiendl [137] and
Goyal [142]. The formulations given in these works are di�erent since Goyal uses the curvilinear basis of the
shell element in the analysis, whereas Kiendl uses a Cartesian transformation. In general, backgrounds on the
equations given in this section can be found in the books of Ba³ar and Weichert, Reddy [141, 95] amongst others.

Depending on the material law, di�erent constitutive relations are obtained. The energy conjugate to the
Green-Lagrange strain tensor is the second Piola-Kirchho� stress tensor S. From this tensor, physical stresses
can be obtained using the Cauchy stress tensor (de�ned in the deformed covariant basis gi⊗ gj) [95, 137, 141]:

σ = (detF)−1F S F T . (3.8)

In the Kirchho�-Love shell model, the Saint Venant-Kirchho� material model is used, which describes a linear
relation between the stress tensor S and strain tensor E by the fourth order material tensor C using the following
relation:

S = C : E. (3.9)

This quantity is de�ned in the covariant undeformed basis (Gi ⊗Gj). The : denote double contraction (see
Ba³ar and Weichert [141] or the notations of this thesis). For isotropic materials, i.e. materials where the
Young's modulus E and the Poisson ratio ν are constant in all directions, the Lamé parameters λ, µ are often
used in the de�nition of the material tensor. These parameters are de�ned by:

λ =
Eν

(1 + ν)(1− 2ν)
and µ =

E

2(1 + ν)
. (3.10)

In the curvilinear undeformed basis Gi ⊗Gj , the coe�cients of the fourth-order material tensor C is de�ned
by [142]:

Cαβστ = 2
λµ

λ+ 2µ
GαβGστ + µ(GασGβτ +GατGβσ). (3.11)

Here, Gαβ denotes the undeformed covariant metric tensor (see Section 3.1. It is more common to transform
the strain tensor to a local Cartesian basis (such that the Cartesian strain tensor is Ê) to obtain the a Saint
Venant-Kirchho� stress tensor of the following form [131, 137]5. The material tensorD in Cartesian coordinates
becomes:

D =

C̃1111 C̃1122 C̃1112

C̃2211 C̃2222 C̃2212

C̃1112 C̃2212 C̃1111

 =
E

1− ν2

1 ν 0
ν 1 0
0 0 1−ν

2

 . (3.12)

Theorem 1. The material tensor of Equation (3.12) on a local Cartesian basis and the material tensor from
Equation (3.11) on a curvilinear basis are equivalent.

5In this work, however, the model from Goyal [142] is adopted and therefore the material tensor from Equation (3.11) is used.
It should be noted that the strain energy used by Goyal [142] is multiplied by 1

2
and that Equation (3.11) is multiplied by 2.
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Proof. The proof is given in Section B.1.1.

Theorem 2. The material tensor C is symmetric, i.e. C = CT (note: in Section B.1.1, the notion of symmetry
for fourth-order tensors is re�ned and the theorem is slightly reformulated.)

Proof. The proof is given in Section B.1.1.

Up to the de�nition of the stress tensor S, no assumptions have been made regarding the thin shell. However, by
the Kirchho� Hypothesis, it is known that the thickness remains constant when the shell deforms. Therefore, the
stress tensor can be integrated over the thickness to reduce the domain of integration from the three-dimensional
physical domain Ω∗ = Ω∪ [−t/2, t/2] to the mid-plane surface Ω only. For later reference, the de�nitions of the
force and moment tensor of the shell are given by [137]:

n =

∫
[− t2 , t2 ]

S dθ3 =

∫
[− t2 , t2 ]

C : (ε+ θ3κ) dθ3 = tC : ε, (3.13)

m =

∫
[− t2 , t2 ]

θ3S dθ3 =

∫
[− t2 , t2 ]

C : (θ3ε+ θ2
3κ) dθ3 =

t3

12
C : κ. (3.14)

Or in Voight notation:N11

N22

N12

 = t

C1111 C1122 C1112

C2211 C2222 C2212

C1112 C2212 C1111

ε11

ε22

ε12

 and

M11

M22

M12

 =
t3

12

C1111 C1122 C1112

C2211 C2222 C2212

C1112 C2212 C1111

κ11

κ22

κ12

 . (3.15)

3.2.4 Energy Relations
In the previous section, the constitutive relation between stresses and strains has been de�ned. Numerical codes
such as Finite Element Methods (FEMs) or Isogeometric Analysis (IGA) rely on the minimization of energy in
a system [144]. In this section, the formulations for the internal, external and kinetic energies are given. In the
next section, these formulations will be used to derive the variational form of the shell equations, which is the
basis for the FEM or for IGA6.

The internal energy in a deformed body is de�ned by the stress and strains present in the body. In particular
[141, 138, 143],

Wint =
1

2

∫
Ω

S : E dΩ.

Here, S and E is depending on the displacements u. When the decomposition of the strain into membrane and
�exural elements and the de�nitions of the internal force and moment, the internal energy becomes:

Wint =
1

2

∫
Ω

n : ε+m : κ dΩ (3.16)

Note that the integral over the whole domain has been replaced by the integral over the surface mid-plane since
Ω∗ = Ω× [−t/2, t/2]. The external energy on the body is de�ned as [137, 142]:

Wext = −
∫

Ω

t · u dΩ. (3.17)

Where t is the surface traction tensor. In the book of Goyal [142], more expressions for the external energies are
given. These formulations will be used in Section 3.3, where the beam model is derived from the variational form.
In that case, boundary forces and moments will be multiplied with displacements and rotations on the boundary.

The kinetic energy of the body is given by:

K =
1

2

∫
Ω

ρẋ · ẋ dΩ.

6For more details, the reader is again referred to the books of Ba³ar and Weichert [141], Holzapfel [138] and Sadd [143] and for
thin shells in particular to the work of Kiendl [137]. The work of Goyal [142] will be used later. In this section, this work is not
used because the internal strain energy is not consistent with the other references (see Footnote 5)
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Where the dot represents the time-derivative. Using the shell coordinate system x = c + θ3n̂ and integration
over the thickness, this simpli�es to

K =
1

2

∫
Ω

ρ

[
tċ · ċ +

t3

12
˙̂n · ˙̂n

]
dΩ. (3.18)

Here, ρ is the density of the material and t is the thickness of the shell. The �rst term in this integral represents
the translational inertia of the shell, whereas the second term represents rotational inertia of the shell. In this
work, it is assumed that the rotary inertia of the shell is negligible compared to translational inertia.

3.2.5 Variational Form
The variational form of an energy equation is a form which describes the energy of a system due to small varia-
tions of a functional. For Finite Element Methods and Isogeometric Analysis, the variational form is often used
to derive an energy minimiser using Hamilton's principle to �nally �nd a system which minimises energy. In this
section, Hamilton's principle is de�ned and used to derive the variational formulation for the Kirchho�-Love
shell.7

Hamilton's principle states that [95]:

Of all possible paths that a material particle could travel from its position at time τ1 to its position
at time τ2, its actual path will be one for which the integral∫ τ2

τ1

L dτ (3.19)

is an extremum.

Here, L is the Lagrangian of the system, which is de�ned to be a functional of the di�erence between kinetic
and potential energy functions in terms of the displacements u and its time derivative u̇, i.e.

L = K(u̇)− (Wint(u) +Wext(u)).

Furthermore, the extremum in Hamilton's principle is found by the use of variations of the energies between the
time steps τ0 and τ1. The path for which Hamilton's principle results in an extremum is found by taking the
derivative of the energy integral with respect to the displacement vector, i.e. by applying calculus of variations.
Let us �rst de�ne the energy functional by [142]:

J(θ) =

∫ τ1

τ0

L(u + θv) dτ. (3.20)

Here, u is the displacement vector of the body and θv is a variation of the displacements by using the admissible
test function v. The variation θv is admissible if and only if u + θv satis�es the boundary conditions for all
θ ∈ R and for all times τ and such that u + θv = u for all θ ∈ R on times τ0 and τ1. This implies that the
variation should be zero on the boundary all time. Furthermore, for two times τ0 and τ1, the variation is zero
for all θ ∈ Ω. From this energy functional, energy variation can now be derived by �rst taking the Gateaux
derivative [145, 146], i.e.

dJ
dθ

∣∣∣∣
θ=0

= 0. (3.21)

This implies (see Equation (B.5))∫
Ω̂

ρc̈ · v dΩ̂ +

∫
Ω

n : ε′ +m : κ′ dΩ−
∫

Ω

t · v dΩ = 0. (3.22)

Here, ε′ and κ′ are the Gateaux derivatives of the strain and curvature. They will be determined for the beam
and shell element separately in the coming sections (see Section 3.3 and Section 3.4, respectively). From the
above form, the energy variations (i.e. generalized forces) are:

δK = −
∫

Ω

ρtü · v dΩ, δWint = −
∫

Ω

n : ε′ +m : κ′ dΩ and δWext =

∫
Ω

t · v dΩ. (3.23)

7For more details about variational calculus, the reader is referred to the books of Dacorogna [145] or Cassel [146]
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The variations δWint and δWext are in fact the partial derivatives of the internal and external energies with
respect to the displacement vectors, and thus by Castigliano's �rst theorem (see Reddy [95]), they are equal to
the generalized internal and external forces. Note that all quantities are scalar quantities by the de�nition of
the double contraction : for second-order tensors and the inner-product for vectors.

Since the generalized internal force δWint is nonlinear for the displacement vector u, Newton iterations will be
needed in the solution procedure (see Section 4.2). This method uses the Jacobian of the system to be solved to
iteratively solve for the solution of the system. To obtain the tangential sti�ness matrix, the second variation
of the internal sti�ness matrix needs to be derived [142, 137]. Taking the Gateaux derivative of the variation of
the internal energy yields (see Equation (B.6)):

j(u,v,w) =
dδWint

dθ
(u + θw,v)

∣∣∣∣
θ=0

= −
∫

Ω

n′ : ε′ + n : ε′′ +m′ : κ′ +m : κ′′ dΩ. (3.24)

Here, ε′′ and κ′′ are the second Gateaux derivatives of the strain and curvature and n′ andm′ are the Gateaux
derivatives of the internal force and moment. When the basis functions of the method are speci�ed, numerical
discretization of Equation (3.24) will result in the Jacobian matrix (see Section 3.2.7)

3.2.6 Follower (Hydrostatic) Pressures
In the special case when the load is depending on the solution, the expression for the external work becomes:

Wext =

∫
Ω

f(u) · u dΩ.

Where f(u) is a function depending on the displacements u. Suppose we have f = p̂n̂ where p̂ is a pressure
working in normal direction n̂ on the shell. Note that the normal depends on the solution u when it is evaluated
on the deformed con�guration x. The variation of the virtual work and the Jacobian contribution are then
de�ned as (see Kiendl et al. [89]):

δWext =

∫
Ω

f · v dΩ =

∫
Ω

p̂n̂ · v dΩ, (3.25)

jext = −
∫

Ω

f ′ · v dΩ =

∫
Ω

p̂n̂′ · v dΩ. (3.26)

Where n̂′ is the Gateaux derivative of the normal vector. Additionally, hydrostatic pressures can be modelled
by a spring foundation under a plate. By Bernoulli's law, hydrostatic pressure is de�ned by p = ρge3 ◦u where
e3 is a unit vector that is 1 for the vertical direction and 0 elsewhere and ◦ denotes and element-wise vector
product, i.e. the Hadamard-product (or Schur-product) [147]. Using the de�nitions in Equation (3.25) and
Equation (3.26), the variation of the external virtual work and the Jacobian contribution due to hydrostatic
pressure become:

δWext =

∫
Ω

ρge3 ◦ u · v dΩ, (3.27)

jext =

∫
Ω

ρge3 ◦w · v dΩ. (3.28)

3.2.7 Numerical Discretization
For discretization and �nally numerical implementation of the beam and shell models the Rayleigh-Ritz method,
an alternative to the commonly used Galerkin method, is used as a starting point. The Rayleigh-Ritz method
uses the variational formulation and imposes an approximation of the solution to �nd a system of equations
[146]. The choice of the basis functions in this approximation leads to the �nite element method or Isogeometric
analysis. Let us approximate the unknown, deformed con�guration using an in�nite series of basis functions
and weighting functions, i.e.

x =

∞∑
j=1

xj(τ)Ψj(θ) =

∞∑
j=1

(Xj(τ) + uj(τ))Ψj(θ) ≈
N∑
j=1

(Xj(τ) + uj(τ))Ψj(θ). (3.29)
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Here, N is a �nite number of degrees of freedom, hence the third equality is an approximation. Furthermore,
the coe�cients xj(τ) = Xj(τ) + uj(τ) are time-dependent coe�cients corresponding to basis functions Ψj and
are to be determined. Accordingly, Ψj is a tensor product basis to be chosen for the Finite Element Method
or Isogeometric Analysis. In Finite Element Methods, the tensor product basis is de�ned element-wise. In the
context of Isogeometric Analysis, the tensor product basis is the CAD basis of the undeformed geometry with
coe�cients Xj . Hence, the coe�cients uj are to be determined for both beam and shell models.

In case of a beam, the tensor basis Ψj has a one-dimensional domain Ω ∈ R and the solution consists of a
in-plane and out-of-plane deformations, thus the solution has two degrees of freedom. For the shell, the basis
is two-dimensional, i.e. Ω ∈ R2, and the dimensionality of the solution is three. In the sections Section 3.3 and
Section 3.4 the discretizations for the beam and shell models, respectively, are further derived.

When the bases are substituted in the variational formulations of the beam and shell models, respectively, the
analytical formulation for the Jacobian from Equation (3.24) becomes a matrix KT (uh) ∈ RN×N where N de-
notes the total number of degrees of freedom and the matrix KT is referred to as the tangential sti�ness matrix
depending on the discrete displacement vector uh. This matrix is obtained by substituting for the variation v
the basis functions Ψi and for the variation w the solution u in terms of the unknown coe�cients uj(τ) and basis
functions Ψj . When using the Newton-Raphson method to solve the nonlinear system of equations (see Sec-
tion 4.2), the residual vector R(uh) needs to be obtained together with the tangential sti�ness matrix KT . The
residual vector is the nonlinear equation to be solved, which in case of the beam and shell model is the di�erence
between the discretized generalized forces, i.e. R(uh) = δWint(uh)− δWext(uh) = N(uh)−Q(uh)−P. Here
δWint and δWext are obtained by substituting the discretized approximation in Equations (3.16) and (3.17)
and in Chapter 4 the notations N(u), Q(u) and P will be used to denote the internal forces, the external forces
depending on the displacements and the independent external forces, respectively.

Function space requirements for the basis functions Ψ follow from the derivatives of the mid-plane of the shell
(c) with respect to the parametric coordinates θ. As seen from the derivations in the previous section and in
Section B.3.1, it can be seen that derivatives of up to second order are occurring. Since these derivatives occur
in the variational form (see Equation (3.22)), they need to be integrable as well. Hence, the function space
requirements for the basis functions are:

Ψ ∈ H2(Ω̂) =

{
Ψ : Ω̂→ R2

∣∣∣∣Ψ(Ω̂),Ψ,α(Ω̂),Ψ,α,β(Ω̂) ∈ L2(Ω̂)

}
. (3.30)

Where Ω̂ is the parametric domain, Ψ(Ω̂) are the basis functions, Ψ,α(Ω̂) denotes the �rst partial derivative
of the basis with respect to θα and Ψ(Ω̂) denotes the second partial derivative of the basis with respect to
combinations of θα and θβ for α, β = 1, 2. Furthermore, L2(Ω̂) denotes the function space of all squared
integrable functions, i.e.

Ψ ∈ L2(Ω̂) =

{
Ψ : Ω̂→ R2

∣∣∣∣ ∫
Ω̂

∥∥∥Ψ(Ω̂)
∥∥∥2

dΩ̂ <∞
}
. (3.31)

Where ‖·‖2 denotes the Euclidean norm.

3.3 Euler-Bernoulli Beam Model
The �rst model that is derived from the equations from Section 3.2 is the Euler-Bernoulli beam model. This
beam model is a 1D version of the thin shell theory. By this means, the Euler-Bernoulli beam assumes that the
Kirchho� Hypothesis is valid, contrary to the Timoshenko beam theory. Furthermore, the beam model derived
in this section holds for a straight beam.8 Throughout the whole section, the domain of the beam is x ∈ Ω ⊂ R
and the de�nitions presented in Figure 3.3 is used.

8For derivations of the �nite element method for straight beams, the reader is referred to the book of Reddy [95]. Furthermore,
for derivation of an isogeometric beam model the reader is referred to the paper of Weeger et al. [101] and for linear curved beam
models, the reader is referred to the works of Cazzani et al.[102, 103]. The latter was implemented in this research but not considered
relevant for application.
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+

Figure 3.3: Coordinate system and de�nitions of the
displacements u = [u,w] and loads Fx, Fy and M .
A and A′ are coordinates in the deformed and unde-
formed con�guration, respectively.

Fxδw

z

x

+

Figure 3.4: Illustration of the imposed moment Fxδw
due to a horizontal force Fx and a virtual displacement
δw. The moment has positive magnitude according to
the coordinate system.

In the previous section, the generalized internal and external forces have been derived (see Equation (3.23)),
depending on the Gateaux derivatives of the strain and curvature tensors ε and κ, respectively. These tensors,
subsequently, are derived based on the de�nition of the strain which can be deduced from the deformation
gradient. For the Euler-Bernoulli beam, the derivation is started with the Von Kármán strain (see Section B.2.1
for a derivation):

E11 =
du
dx
− zd

2w

dx2
+

1

2

(
dw
dx

)2

+
dw∗

dx
dw
dx

. (3.32)

Additionally, a strain component due to an initial vertical de�ection �eld w∗(x) has been added in the derivation
to be optionally used to apply initial de�ections for buckling analysis in future studies. The terms coming from
this component will be boxed in the sequel. The strain and curvature components are:

ε11 =
du
dx

+
1

2

(
dw
dx

)2

+
dw∗

dx
dw
dx

and κ11 = −d
2w

dx2
. (3.33)

Here, w is the vertical de�ection of the beam, u is the horizontal de�ection and x is the length coordinate of
the beam. Since a straight beam is modelled, the Cartesian material matrix from Equation (3.12) can be used.
For a beam, Poisson's ratio is equal to zero, which simpli�es the non-zero component of the stress tensor to:

S11 = E(ε11 + zκ11). (3.34)

And the normal force and bending moment in the beam are, according to Equation (3.15)

N11 = tEε11 and M11 =
t3

12
Eκ11. (3.35)

In order to derive the variational formulation, the Gateaux derivatives of the strain and curvature have to
be derived. Let u = (u,w) and let v = (δw, δw). Then, the variation of the displacement �eld is u =
(u+ θδu,w + θδw) and the Gateaux derivative of the strain and curvature (denoted with a prime ′) become:

ε′11 =
d
dθ

[
du
dx

+ θ
dδu
dx

+
1

2

(
dw
dx

+ θ
dδw
dx

)2

+
dw∗

dx
dw
dx

+ θ
dw∗

dx
dδw
dx

] ∣∣∣∣
θ=0

=
dδu
dx

+
dw
dx

dδw
dx

+
dw∗

dx
dδw
dx

and

κ′11 =
d
dθ

(
−d

2w

dx2
− θd

2δw

dx2

) ∣∣∣∣
θ=0

= −d
2δw

dx2
.

(3.36)

Using the result from Equation (3.36) and Equation (3.35), the variational form from Equation (3.22) can be
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derived:

b

∫
Ω

−ρt (üδu+ ẅδw)− tE
(
du
dx

+
1

2

(
dw
dx

)2

+
dw∗

dx
dw
dx

)(
dδu
dx

+
dw
dx

dδw
dx

+
dw∗

dx
dδw
dx

)

− t3

12
E
d2w

dx2

d2δw

dx2
+ t · v dΩ = 0.

Where the integral has been evaluated over the width b of the beam since the solution is constant in this
direction. The external work, represented by the term t ·v is not speci�ed yet. For the beam, the external work
will be decomposed by a surface pressure p(x) working in vertical direction, a surface traction t(x) working
in horizontal direction, a pressure p̂(x)n̂ following the normal direction n̂ of the beam and a horizontal force
Fx(xi), a vertical force Fy(xi) and a moment M(xi) working on the end points xi of the beam. The work of
the moment is computed by multiplying the moment by the virtual rotation dδw

dx of the beam, whereas the
other force components are multiplied by the virtual displacements δu and δw (see Figure 3.4). Furthermore,
in the small angle approximation, the horizontal force also exerts work in the form of a moment. The following
variational form is obtained:

∫
Ω

ρA (üδu+ ẅδw) + EA

(
du
dx

+
1

2

(
dw
dx

)2

+
dw∗

dx
dw
dx

)(
dδu
dx

+
dw
dx

dδw
dx

+
dw∗

dx
dδw
dx

)

+ EI
d2w

dx2

d2δw

dx2
dΩ = b

∫
Ω

tδu+ pδw dΩ +

[
Fx

(
δu+ δw

dw
dx

)
+ Fyδw +M

dδw
dx

] ∣∣∣∣x2

x1

, (3.37)

Where

A = bt and I =
bt3

12
.

For nonlinear computations as brie�y mentioned in the end of Section 3.2, the Jacobian matrix from Equa-
tion (3.24) needs to be derived. Computation of this term requires the Gateaux derivatives of ε′11, κ

′
11, N11

and M11. These Gateaux derivatives are computed using the variations ∆u = (∆u,∆v) to which will later be
referred as the increments of the Newton iterations. The Gateaux derivatives are:

ε′′11 =
d
dθ

[
dδu
dx

+
dw
dx

dδw
dx

+ θ
d∆w

dx
dδw
dx

+
dw∗

dx
dδw
dx

] ∣∣∣∣
θ=0

=
d∆w

dx
dδw
dx

,

κ′′11 =
d
dθ

(
−d

2δw

dx2

) ∣∣∣∣
θ=0

= 0,

N ′11 = tEε′11 = tE

(
d∆u

dx
+

dw
dx

d∆w

dx
+

dw∗

dx
d∆w

dx

)
and

M ′11 =
t3

12
Eκ′11 = − t

3

12
E
d2∆w

dx2
.

Such that the Jacobian of the internal force becomes:

KT (u, δu,∆u) =

∫
Ω

N11ε
′′
11 +N ′11ε

′
11 +M11κ

′′
11 +M ′11κ

′
11 dΩ

=

∫
Ω

EA

(
du
dx

+
1

2

(
dw
dx

)2

+
dw∗

dx
dw
dx

)
d∆w

dx
dδw
dx

+ EA

(
d∆u

dx
+

dw
dx

d∆w

dx
+

dw∗

dx
d∆w

dx

)(
dδu
dx

+
dw
dx

dδw
dx

+
dw∗

dx
dδw
dx

)

+ EI
d2∆w

dx2

d2δw

dx2
dΩ.

(3.38)
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3.3.1 Numerical Discretization
Numerical discretization of the beam model is performed by using the Rayleigh-Ritz method on the variational
formulation of Equation (3.37). The tensor basis Ψj corresponding to the approximation from Equation (3.29)
is a vector of basis functions for the approximation of the in-plane and out-of-plane deformations u(x) and w(x)
with bases ψ(x) and ϕ(x), respectively, which can be of di�erent polynomial order. The tensor product basis is
de�ned by:

Ψj =

[
ψj
ϕj

]
◦ ej . (3.39)

Here, ◦ denotes and element-wise vector product, i.e. the Hadamard-product (or Schur-product) [147], and the
vector ej is the unit vector which is equal to [1 0]T for the �rst n degrees of freedom and [0 1]T for the last
m degrees of freedom. In other words, j = 0, . . . , n, n+ 1, . . . , n+m = N , where N denotes the total number of
degrees of freedom of the system, after implementation of Dirichlet boundaries (see Section 3.3.2). In this way,
the Rayleigh-Ritz approximation becomes:

u =

[
u
w

]
≈

N∑
j=1

αj

[
ψj
ϕj

]
◦ ej = uh. (3.40)

The coe�cients αj are to be determined and the unit vector ej switches on index n which is determined by the
number of basis functions for the in-plane and out-of-plane solutions u and w. Based on the weak formulation
of the beam equation in Equation (3.37), a splitting to a system of equations for the variations δu and δw
separately can be introduced since the variations are chosen arbitrarily from relevant function spaces. This
results in the weak formulation

Find u ∈ H1(Ω), w ∈ H2(Ω) with Ω = (x1, x2) ∈ R1 such that∫
Ω

ρAüδu+ EA

(
du
dx

+
1

2

(
dw
dx

)2

+
dw∗

dx
dw
dx

)
dδu
dx

dΩ = b

∫
Ω

tδu dΩ + Fxδu

∣∣∣∣x2

x1∫
Ω

ρAẅδw + EA

(
du
dx

+
1

2

(
dw
dx

)2

+
dw∗

dx
dw
dx

)(
dw
dx

dδw
dx

+
dw∗

dx
dδw
dx

)
+ EI

d2w

dx2

d2δw

dx2
dΩ

= b

∫
Ω

pδw dΩ +

[
Fxδw

dw
dx

+ Fyδw +M
dδw
dx

] ∣∣∣∣x2

x1

∀δu ∈ H1(Ω) and δw ∈ H2(Ω).

(3.41)

Now, suppose that the discretized solution uh ∈ Σ, where Σ(Ω) is a function space such that the solution vector
uh complies with the boundary conditions of the beam and for which (uh, wh) ∈ {u,w ∈ H1(Ω) × H2(Ω)}.
Then, the variations of u, δu are also in Σ(Ω). This means that we can let

δu =

[
ψj
ϕj

]
◦ ej ,

and combined with the other assumptions, the variational form becomes (see Equation (3.37))

Mα̈+ R(uh) = 0. (3.42)

Here, the mass matrix M is de�ned as:

M =

[
MA 0
0 MB

]
with MA,ij =

∫
Ω̂

ρAψiψj

√
det(gαβ)dΩ̂ and MB,ij =

∫
Ω̂

ρAϕiϕj

√
det(gαβ)dΩ̂

(3.43)
With

√
det(gαβ) the measure of the mapping between the parameter space and the physical space. For a

normalized knot vector with uniform spacing ∆ξ, this factor is equal to the length L of the beam. The residual
vector R(uh) is de�ned as:

R(uh) = [R1(uh)R2(uh)]T . (3.44)
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With:

R1(uh) =

∫
Ω̂

EA

(
du
dx

+
1

2

(
dw
dx

)2

+
dw∗

dx
dw
dx

)
dψi
dx

dΩ− b
∫

Ω

tψi

√
det(gαβ) dΩ̂− Fxδu

∣∣∣∣x2

x1

,

R2(uh) =

∫
Ω̂

[
EA

(
du
dx

+
1

2

(
dw
dx

)2

+
dw∗

dx
dw
dx

)(
dw
dx

dϕi
dx

+
dw∗

dx
dϕi
dx

)
+ EI

d2w

dx2

d2ϕi
dx2

]√
det(gαβ) dΩ̂

−b
∫

Ω̂

pδw
√
det(gαβ) dΩ̂−

[
Fxδw

dw
dx

+ Fyδw +M
dδw
dx

] ∣∣∣∣x2

x1

.

Since the basis functions are de�ned on the parametric domain Ω, the measure
√
det(gαβ) is again used for

integration of the basis functions in the domain Ω̂. Furthermore, the Jacobian matrix is constructed based on
the variations δu and ∆u. Here, the second variation represents the di�erentials of the Jacobian entries hence
these variations should be approximated using a �nite series analogously to Equation (3.29). Since both δu and
∆u are variations of the solution u, they have to be chosen from Σ(Ω). Therefore, the same basis functions ϕj
and ψj can be used in the Jacobian and thus

∆u =

N∑
j=1

αj

[
ψj
ϕj

]
◦ ej and δu =

[
ψi
ϕi

]
◦ ei. (3.45)

Such that the Jacobian from Equation (3.38) becomes:

KT =

[
KT,11 KT,12

KT,21 KT,22

]
, (3.46)

where:

KT,11,ij = KT,δu∆u =

∫
Ω̂

(
EA

dψi
dx

dψj
dx

)√
det(gαβ) dΩ̂,

KT,12,ij = KT,δu∆w =

∫
Ω̂

(
EA

dw
dx

dϕj
dx

dψi
dx

+
dw∗

dx
dϕj
dx

dψi
dx

)√
det(gαβ) dΩ̂,

KT,21,ij = KT,δw∆u =

∫
Ω̂

dψj
dx

dϕi
dx

(
dδw
dx

+
dw∗

dx

)√
det(gαβ) dΩ̂, and

KT,22,ij = KT,δw∆w =

∫
Ω̂

(
EA

(
du
dx

+
dw∗

dx
dw
dx

)
dϕi
dx

dϕj
dx

+
3

2

(
dw
dx

)2 dϕi
dx

dϕj
dx

+ 2EA
dw∗

dx
dw
dx

dϕi
dx

dϕj
dx

+ EA

(
dw∗

dx

)2 dϕi
dx

dϕj
dx

+ EI
d2ϕi
dx2

d2ϕj
dx2

)√
det(gαβ) dΩ̂.

(3.47)
Here,

√
det(gαβ) denotes the measure of the mapping from the parametric domain Ω̂ to the physical domain

Ω. For convenience of the derivation, the entry KT,11,δu∆u is the Jacobian entry that is derived by collecting all
terms of Equation (3.38) with the product ∆uδu and similar notations hold for other combinations of ∆u and
∆w with δu and δw. Furthermore, the present formulations are then obtained by replacing ∆u with ψj , ∆w
with ϕj , δu with ψi and δw with ϕi, according to Equation (3.45). The solution u will represent the solution
in a previous iteration later.

3.3.2 Implementation Aspects
Using the tangential sti�ness matrix from Equation (3.46) and the residual from Equation (3.44), the solution
for the nonlinear beam can almost be computed. In this section, numerical procedures for the beam will be
covered.
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Numerical Integration

In the formulation of the Jacobian matrix and residual, integrals over the domain x, or more speci�cally the
length of the beam, are yet to be computed. In the present analysis, the basis functions are chosen to be
B-splines (i.e. NURBS with weights 1). This means that no analytical quadrature rules are available. One
could for instance use the quadrature rules described by Hughes et al. [132] and Auricchio et al. [133]. Although
not optimal according to Hughes et al.[132] Gauss quadrature rules are used to evaluate the integrals for matrix
assembly. More speci�cally, Gauss-Lobatto quadrature, which includes end points of the interval, is used. This
integration rule is exact for polynomial functions with degree 2n− 3, n = p+ 1 for spline degree p and has the
advantage over Gauss integration since the end-points of the piece-wise polynomials overlap with other intervals,
but have to be calculated only once [148, 149]. Generally, Gauss and Gauss-Lobatto integration given weights
wi and quadrature points xi is given by (given that the order is su�ciently high that integration is exact):∫ 1

−1

f(x) dΩ =

N∑
j=1

wjf(xj). (3.48)

For some function f(x). Alternatively, for an interval [0, 1] which is typical for normalized knot vectors,∫ 1

0

f(x) dΩ =
1

2

N∑
j=1

wjf

(
xj + 1

2

)
. (3.49)

The weights and quadrature point of Gauss and Gauss-Lobatto rules can be found in many textbooks, including
the extensive work by Abramowitz et al.[150].

Boundary Conditions

For the beam boundary conditions, two types are distinguished: essential and natural boundary conditions.
Combining these boundary conditions gives the ability to model free end-points (zero force and moment), pinned
end-points (zero moment, zero vertical displacement and horizontal ), clamped end-points (zero rotations and
vertical and horizontal displacement), rolled end-points (zero rotations and vertical displacement, zero horizontal
force) or any combination of prescribed forces, moments, rotations and displacements.9

Essential Boundary Conditions
In case of essential boundary conditions, rotations or displacements on the beam end-points are pre-
scribed. In the present beam model, the boundary conditions are imposed by modifying the row of the
system matrix and the right-hand side vector corresponding to the end-point xi such that for an imposed
displacement δi

N∑
j=1

αjΨj(xi) = δi.

A similar procedure can be followed for the prescribed rotation. In case of homogeneous Dirichlet boundary
conditions, i.e. Dirichlet boundary conditions with value 0, the function space Σ(Ω) is restricted. Hereby,
when the horizontal or vertical displacements, u or w, are zero on an end-point, the basis functions are
zero here and hence these degrees of freedom are not taken into account. Similarly, zero rotations on the
end-point can be implemented.

Natural Boundary Conditions
In case of natural boundary conditions, forces and/or moments are applied on the end-points of the beam.
As can be seen in the weak formulation in Equation (3.41), forces and moments appear on the boundary
integrals and hence their implementation is rather straightforward and thus natural. For example, if a
horizontal load is applied on the beam end xk, then the boundary integrals in both equations in Equa-
tion (3.41) result in a right-hand side contribution of Fxψi(xk) for all ψi that are nonzero on xk for the
�rst equation and a matrix contribution of Fxϕi(xk)

dϕj
dx for the row corresponding to the control point

of the beam end at xk in case of the second equation. In the case of homogeneous natural boundary
conditions, i.e. zero forces or moments, the boundary terms simply vanish.

9For elementary details on beam boundary conditions, the reader is referred to textbooks of Hibbeler [151], amongst others.
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3.4 Kirchho�-Love Shell Model
The formulations for the strain tensors, the stress tensors and the normal force and moment tensors are presented
in Equations (3.7), (3.8), (3.13) and (3.14), respectively. Those formulations are valid for deforming surfaces,
i.e. shell elements and hence form the basis of Kirchho�-Love shell theory. In this section, the Gateaux deriva-
tives of the strain, stress and force and moment tensors are derived in order to complete the derivation of the
weak form using Equation (3.23) and Equation (3.22). Additionally, the relevant terms for computation of the
tangential sti�ness matrix from Equation (3.24) are derived.

Firstly, in order to formulate the variational formulation for the shell problem (see Equation (3.22)), the variation
of the strain and curvature tensors ε and κ are required. From Equations (B.18) and (B.19) in Section B.3.1
these terms are (in Voight notation)

ε′ =

 ε′11

ε′22

2ε′12

 =

 ∂v
∂θ1
· ∂c∂θ1

1
2
∂v
∂θ2
· ∂c∂θ1

∂v
∂θ1
· ∂c∂θ2 + ∂v

∂θ1
· ∂c∂θ2

 and κ′ =

κ′11

κ′22

κ′12

 =


−∂2v
∂θ21
· n̂− ∂2c

∂θ21
· n̂′(c)

−∂2v
∂θ22
· n̂− ∂2c

∂θ22
· n̂′(c)

− ∂2v
∂θ1∂θ2

· n̂− ∂2c
∂θ1∂θ2

· n̂′

 .
And the variation of the normal vector, n̂′ is given by Equation (B.20) (see also Section B.3.1)

n̂′(u,v) =
∂v
∂θ1 × ∂c

∂θ2 + ∂c
∂θ1 × ∂v

∂θ2∥∥ ∂c
∂θ1 × ∂c

∂θ2

∥∥ +

[
− 1∥∥ ∂c

∂θ1 × ∂c
∂θ2

∥∥2

∂c
∂θ1 × ∂c

∂θ2∥∥ ∂c
∂θ1 × ∂c

∂θ2

∥∥
(
∂v

∂θ1
× ∂c

∂θ2
+

∂c

∂θ1
× ∂v

∂θ2

)]
.

Using the formulations for the variation of the strain tensor, the curvature tensor and the normal vector, the
internal and external energies can be computed from Equation (3.23). Furthermore, for the Jacobian of the
variational form system from Equation (3.22) for a Kirchho�-Love shell requires computation of the second
variations of the strain and curvature tensors and the �rst variations of the normal and moment tensors. These
quantities are also derived in Section B.3.1 in Equations (B.22) to (B.25).

ε′′ =

 ε′′11

ε′′22

2ε′′12

 =

 ∂v
∂θ1
· ∂w∂θ1

∂v
∂θ2
· ∂w∂θ2

∂v
∂θ1
· ∂w∂θ2 + ∂v

∂θ1
· ∂w∂θ2

 , κ′(u,v) =

κ′′11

κ′′22

κ′′12

 =


−∂2v
∂θ21
· n̂′ −

(
∂2w
∂θ21
· n̂′ + ∂2w

∂θ21
· n̂′′

)
−∂2v
∂θ21
· n̂′ −

(
∂2w
∂θ21
· n̂′ + ∂2w

∂θ21
· n̂′′

)
− ∂2v
∂θ1∂θ2

· n̂−
(

∂2w
∂θ1∂θ2

· n̂′ + ∂2c
∂θ1∂θ2

· n̂′′
)
 ,

N ′ = tC : ε′(u,v), and M ′(u,v) =
t3

12
C : κ′(u,v).

3.4.1 Numerical Discretization
Numerical discretization of the shell model is also performed by using the Rayleigh-Ritz method on the vari-
ational formulation of Equation (3.22). Since the coordinate system is governed by Equation (3.2), the ap-
proximation of the displacement �eld uh should be substituted in the formulation of the deformed mid-plane
con�guration ch and the corresponding normal vector n̂h to discretize the Jacobian matrix from Equation (3.24)
and the generalised force residual. The approximation of the displacement �eld uh is again approximated by
the Rayleigh-Ritz method (see Equation (3.29)),

uh =

N∑
j=1

Ψjαj(τ). (3.50)

Here, αj(τ) are again time-dependent coe�cients to be determined and Ψj are the basis functions for the shell.
Analogously to the work of Goyal [142], the basis functions are (NUR)B-spline tensor products (see Section 4.1
for details) and the basis functions are the same for each displacement unknown, i.e.

Ψj = ejRkl,pq. (3.51)

Were ej is a unit vector which is used in a similar way as for the beam model, but then for three degrees
of freedom and Rkl,pq is the (NUR)B-spline tensor product with indices k and l in the �rst and second bases
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of orders p and q, respectively. Substituting the approximation from Equations (3.50) and (3.51) for the
displacements and substituting the basis from Equation (3.51) for the variation v in the weak formulation gives
the mass matrix for the kinetic energy contribution [142].

Mij =

∫
Ω

ρtΨ(x)j ·Ψ(x)i dΩ =

∫
Ω̂

ρtΨ(θ)j ·Ψ(θ)i

√
det(gαβ) dΩ̂. (3.52)

Here, the second equality represents the integral over the parametric domain Ω. Note that the use of the vector
ej in the de�nition of Ψj results in a per-degree of freedom block-structure of the mass matrix. Similar to the
beam model, we can use the Rayleigh-Ritz method to approximate the increment of the Newton iterations (see
Section 4.2 for details about Newton Iterations) and hence to substitute for the variation w in Equation (3.24).
Substituting for the variation v again the basis functions Ψi gives the Jacobian matrix or the Tangential Sti�ness
matrix of the shell. These quantities are computed per Gaussian integration point using the expressions in
Equations (B.18), (B.19) and (B.22) to (B.25).

3.4.2 Implementation Aspects
The implementation of the shell model is adopted from the work of Goyal [142], hence the reader is referred
to his work for more details10. When this research started, the implementation contained assembly of the
linear and tangential sti�ness matrices and the mass matrix. Hence, the routines discussed in this section were
already present in the model and are repeated for the sake of completeness. The section covers, numerical eval-
uation of the integrals in the variational form (see Equation (3.22)) and implementation of boundary conditions.

Evaluation of the integrals

The integrals that appear in the variational formulation (see Equation (3.22)) are evaluated using Gauss quadra-
ture. Consequently, the products between the strain tensor, the curvature tensor, their derivatives and the
material matrix are computed on each quadrature point and block matrices with the size of the number of
active basis functions. As an example, the membrane strain tensor ε on quadrature point xk is evaluated as
follows:

ε(xk) =

 ε11

ε22

2ε12

 =


∂Rkl,pq
∂θ1

· ∂c∂θ1 (xk)
∂Rkl,pq
∂θ2

· ∂c∂θ2 (xk)
∂Rkl,pq
∂θ1

· ∂c∂θ2 (xk) +
∂Rkl,pq
∂θ2

· ∂c∂θ1 (xk)

 . (3.53)

Where the surface coordinate c(xk) is computed based on the deformed surface in the previous Newton iteration.
For basis function Rkl,pq evaluated on xk. Here, the partial derivatives of the basis function Ψj are known from
the (NUR)B-splines and the partial derivatives of the mid-plane surface c are the covariant basis vectors, i.e.
ai = ∂c/∂θi. These quantities are implemented in the routines of G+smo. After evaluation on the quadrature
point, the result is weighted and summed according to Guass quadrature subsequently.

Treatment of Boundary Conditions

When forces are imposed on the boundary, the relevant terms of the external energy contribution from Equa-
tion (3.17) should be included in the assembly of the system. In the present shell model, point loads and
distributed line loads over the boundary of the mid-plane c are implemented in a similar way as in the beam
model, i.e. by evaluating the loads on the boundary and multiplying them by the active basis functions.

Imposed boundary displacements (Dirichlet boundary conditions) are imposed by elimination. This yields that
the prescribed unknowns are eliminated from the system and added to the solution later on. Note that for the
Jacobian matrix, the eliminated unknowns are not added to the update of the displacement vector. Additionally,
the current implementation does not support a changing residual vector when Dirichlet boundary conditions
are modi�ed during iterations. This is a major drawback since it does not support the arc length method with
Dirichlet boundary conditions (see Section 4.4).

10In the time of writing (July 2019), the shell library in G+smo is still under development and hence not made public.
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Lastly, in the derivation of the shell model, rotational degrees of freedom are not implemented. This means
that prescription of rotations on the boundaries is not as straightforward as for the beam model. In the present
model, rotations are restricted (e.g. in case of clamped boundaries) by the technique mentioned by Kiendl [137].
That is, the out-of-plane degrees of freedom of the nodes (hence control points) next to a clamped edge are
also restricted in the out-of-plane direction. Similar techniques have successfully been applied on multi-patch
coupling and arbitrary patch coupling, better known as the Bending Strip Method [88]. This technique, however,
is not yet available in the present shell model.

3.5 Remarks on Other Material Models
In the derivation of the current shell model, the strain-displacement relationship is governed by the Green-
Langrange strain tensor and the relation between stress and strain is assumed to be linear, governed by the
Saint Venant-Kirchho� constitutive relation. Depending on the application of the shell model, di�erent consti-
tutive models are proposed in literature. A brief description of the material models is given below. The Saint
Venant-Kirchho� model is discussed for completeness. Reference works include the books of Ogden [152] or
Ba³ar and Weichert [141].

For small strains, the Saint-Venant Kirchho� material model su�ces. In this case, a linear relationship between
stresses and strains is assumed. The material model can be used with a nonlinear Green-Lagrange strain tensor
to allow for large displacements but not necessarily large strains. [153]

For moderate strains (up to 40%) the Neo-Hookean material model can be used. This material model is com-
monly used for rubber-like materials (for a stretched sheet, recall the works of Li and Healey [75], Fu et al. [78]
and Wang et al. [76]) or biological tissues [92] and is a simpli�ed version of the Mooney-Rivlin material model.
The Neo-Hookean model is similar to the Saint-Venant Kirchho� model for small strains, but the stress-strain
relation �attens for larger strains. [153]

For strains up to 100%, the Mooney-Rivlin material model is suitable. This model was used for modelling
stretched thin sheets of rubber-like materials. However, the model was found to inadequately describe com-
pressions and to the stress-sti�ening e�ect. For larger strains, Ogden's material can be used, which has shown
acceptable accuracy with test results for strains up to 700%. [153]

3.6 Concluding Remarks
In this chapter, the derivation and implementation of isogeometric beam and shell models have been presented.
Re�ecting on the �rst subgoal of this thesis, the underlying assumptions in the model are:

• Low thickness compared to in-plane dimensions allows for using the Kirchho� Hypothesis (see Sec-
tion 3.2.1). Consequently, the shell is modelled by deformations of the mid-plane under the assumption
that its cross-section does not deform and that normals remain normal after deformation.

• Rotary inertia of the shell is ignored, based on the low thickness of the shell (see Section 3.2.4).

• The Saint Venant-Kirchho� material model was used, using a linear relationship between stress and strains
(see Section 3.2.3).

Additionally, subgoal 3 relates to the implementation of the shell model. Although no basis functions have been
speci�ed yet, the following can be concluded. The derivations are based on the Ritz method, rather than the
Galerkin method, since the Rayleigh-Ritz method allows for direct derivation of the weak formulation based on
the variational form. Hence, the strong form of the beam and shell equations was not used. The shell model
is based on the Isogeometric Kirchho�-Love shell model from the works of Goyal [142] and Kiendl [137]. The
beam model was derived in a similar way.
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In present structural analysis, numerical models play an important role. As structural analysis supports struc-
tural design, di�erent analysis tools are used to assess the structural failure and structural behaviour in general.
In this section, an overview of numerical structural analyses and their implementation used for this research is
given. This relates to subgoal 3 of this thesis. For the analyses, structural mass matrices damping and tangen-
tial sti�ness matrices M, C and KT (u) and the internal and external force vectors N(u) and P are relevant.
Without loss of generality, it is assumed in this section that these matrices are available for any element (e.g.
beam, shell, solid) using any method (e.g. FEM, IGA). In the following sections, however, these matrices will
be derived using IGA for beams and shells.

Static analysis is the analysis of structures involving only displacements and constant loading conditions, solving
for an equilibrium between internal and external forces. Quasi-static analysis is a type of analysis where
velocities and accelerations of the structure are not considered, but where loads change in load steps. This type
of analysis is often used with buckling and post-buckling analyses. Modal or spectral analysis is the analysis
of vibrations in the spectral, i.e. frequency, domain. This means that eigenfrequencies and vibration modes
are considered. This type of analysis can be used to solve dynamic problems under the assumption that the
dynamic response is a linear combination of the vibration modes. Lastly, temporal or dynamic analysis involves
the full dynamic simulation of structures, including structural velocities, optionally accelerations and dynamic
(i.e. time-dependent) forcing.

4.1 Basics of Isogeometric Analysis (IGA)
The concept of isogeometric (IGA) was introduced in Section 2.3 in a literature review focussing on structural
analysis. In this section, the basics of IGA are covered by providing one-dimensional examples of the construction
of B-spline and Non-Uniform Rational B-spline (NURBS) basis functions. That is, the concept of control points
to construct curves and surfaces as known from Computer Aided Design (CAD) is presented and the principle
of knot insertion (or so-called h-re�nement) is introduced. Thereafter, the concept of THB-splines for adaptive
mesh re�nement is illustrated. This section closes with an example of a one-dimensional linear elasticity problem
solved using B-spline basis functions.

4.1.1 B-splines and NURBS
By the time of the introduction of IGA, in 2005, the basis functions were B-splines or NURBS [83]. Later on,
T-splines and other splines that were developed in the CAD community (e.g. [124]) were also used as a basis for
IGA [125]. B-splines are curves that are de�ned by so-called knot vectors that are described by knot vectors. A
knot vector is a non-decreasing sequence of coordinates in the parameter space. Thus, Ξ = {ξ1, ξ2, . . . , ξn+p+1}
where ξi ≥ ξj for i > j and ξk ∈ R for all k. Here, n is the number of basis functions and p is the degree of the
basis functions that construct the B-spline.

Construction of B-splines is done recursively. Let Ni,p denote the ith basis function of order p. The 0th order
basis function in parametric coordinate ξ is de�ned by:

Ni,0(ξ) =

{
1 if ξi ≤ ξ < ξi+1

0 elsewhere
.

35
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Now, the higher-degree basis functions (p ≥ 1) are constructed with the Cox-De Boor recursion formula [154,
155]:

Ni,p(ξ) =
ξ − ξi

ξi+p − ξi
Ni,p−1(ξ) +

ξ − ξi+1

ξi+p+1 − ξi+1
Ni+1,p−1(ξ).

For repeated indices, so in case ξi = ξi+1, then the basis function is de�ned to be zero everywhere. Additionally,
the Cox-De Boor formula needs an assumption for the case that 0

0 , which is assumed to be equal to zero for the
construction of the basis function. Hence, one can see that all basis functions are zero between two identical
indices.Generally, properties of B-spline basis functions are [84, 137, 125]:

• Local support : A basis function with index i and order p, Ni,p(ξ), is non-zero everywhere, i.e.

Ni,p(ξ) ≥ 0 ∀ξ ∈ [ξi, ξi+p+1].

• Partition of unity : The basis functions form a partition of unity, i.e.

N∑
i=1

Ni,p(ξ) = 1 ∀ξ ∈ [ξ1, ξn+p+1].

• Non-negativity : All basis functions are non-negative, i.e.

Ni,p(ξ) ≥ 0 ∀ξ ∈ [ξ1, ξn+p+1].

• Linear independence: The basis functions are linearly independent, i.e.

N∑
i=1

αiNi,p(ξ) = 0 ⇐⇒ αj = 0 j = 1, 2, . . . , n ∀ξ ∈ [ξ1, ξn+p+1].

• Control of continuity : B-splines possess order p− k continuity on control points with multiplicity k.

Based on the �rst three properties, B-splines curves convey the so-called a�ne covariance property, the convex
hull property and the variation diminishing property. The a�ne covariance property means that transforma-
tions of B-splines are obtained by applying the transformations to the control points. The convex hull property
means that the B-spline of order p is completely contained in the convex hull de�ned by its p+ 1 control points
and that . The variation diminishing property means that curves cannot cross a line more times than its control
polygon does. The latter two properties make the method robust for oscillatory behaviour of the solutions since
for higher-order bases the e�ect of individual control points on the solution decreases and since basis functions
are not oscillating between two knots. The partition of unity property is furthermore bene�cial when using
row-sum mass-matrix lumping to reduce the degrees of freedom of the mass matrix for dynamic computations
[84]. The control of continuity property of the basis allows for �exibility in the use of derivatives for instance
for rotational degrees of freedom in the present beam and shell models.

The derivatives of the basis function Ni are determined in the following way:

d
dξ
Ni,p(ξ) =

p

ξi+p − ξi
Ni,p−1(ξ)− p

ξi+p+1 − ξi+1
Ni+1,p−1(ξ).

And obtaining higher-order derivatives is done iteratively by taking the derivative of this expression:

dk

dξk
Ni,p(ξ) =

p

ξi+p − ξi

(
dk−1

dξk−1
Ni,p−1(ξ)

)
− p

ξi+p+1 − ξi+1

(
dk−1

dξk−1
Ni+1,p−1(ξ)

)
.

As an extension for B-splines, Non-Uniform Rational B-splines are constructed by adding a weight for each
basis function. Then, the weighting function W (ξ) is de�ned by:

W (ξ) =

n∑
i=1

Ni,p(ξ)wi. (4.1)
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(a) Zeroth order basis functions with knot vector Ξ =
{0, 1, 2}

0
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(b) First order basis functions with knot vector Ξ =
{0, 0, 1, 2, 2}
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(c) Second order basis functions with knot vector Ξ =
{0, 0, 0, 1, 2, 2, 2}

Figure 4.1: Examples of basis functions of di�erent order and the same unique knots. As the order increases, the end
knots are repeated p+ 1 times. Furthermore, these examples also illustrate that the number of basis functions increases
as the order increases.

Where wi is the weight for spline Ni,p of order p. Then, the ith NURBS of order p is de�ned by:

Rpi =
Ni,p(ξ)wi
W (ξ)

. (4.2)

By introducing a weight per basis function, one is able to represent each geometry accurately. An example is
presented in Section 4.1.1.

In order to generate spline curves in 2D or 3D, the basis functions Ni based on one or more knot vectors Ξ,H can
be utilized. De�ne a curve l in 2D and let Si be control points in the 2D plane. Then, the curve is constructed
by (see Figure 4.2):

C(ξ) =

n∑
i=1

Rpi (ξ)Bi. (4.3)

Where Rpi can also be a B-spline if all weights are equal. Furthermore, Bi contains the coordinates of a control
point in 2 or 3 dimensions. Furthermore, for the generation of surfaces, or volumes, the parametric domain
ξ ∈ R1 is extended to (ξ, η) ∈ R2 or (ξ, η) ∈ R3. The formulations for surfaces (and similarly for solids) are
then (see Figure 4.3):

S(ξ, η) =

n∑
i=1

m∑
j=1

Rpi (ξ)P
q
j (η)Bi,j . (4.4)

Where Rpi , P
q
j and T rk are NURBS of orders p, q and r. Furthermore, with preservation of the exact geometry,

it is possible to insert a control point of a curve (or surface or volumes) for re�nement purposes. This is called
knot insertion (see Figure 4.4). The principle of knot insertion is based on rede�ning the control points such
that one is added but that the geometry remains the same. Let B̄ be the vector of new control points and let B
be the old control points and let the new knot ξ̄ be added between ξk and ξk+1. Then, the new control points
are determined by:

B̄i = αiBi + (1− αi)Bi−1.
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Figure 4.2: Curve generated with the control points
as shown in the �gure and with knot vector Ξ =
{0, 0, 0, 0.5, 1, 1, 1} (see Figure 4.4c).
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Figure 4.3: Surface generated with the control points
as shown in the �gure and with knot vectors Ξ =
{0, 0, 0, 0.5, 1, 1, 1} (horizontal, see Figure 4.4c) and
H = {0, 0, 0, 1, 1, 1} (vertical, see Figure 4.4a).

With

αi =


1, 1 ≤ i ≤ k − 1

ξ̄ − ξi
ξi+p − ξi

, k − p+ 1 ≤ i ≤ k

0, k + 1 ≤ i ≤ n+ p+ 2

.

Lastly, order elevation of B-splines is performed by increasing the multiplicity of each knot without adding
new knot values. In this way, the original basis functions are increased by order. When knot insertion is fol-
lowed by order elevation, the equivalence of a p-re�nement in FEA is constructed. In this way, the basis of
the basis functions does not increase, but their order does. When order elevation is followed by knot insertion
the so-called k re�nement is constructed, in which continuity of basis function on internal knots can be increased.

4.1.2 Adaptive Re�nement using THB-Splines
As discussed in Chapter 2, Truncated Hierarchical B-splines can be used for local re�nement of tensor prod-
uct bases. Contrary to ordinary re�nement of knot vectors in the spline tensor products, local re�nement of
bases reduce the number of auxiliary re�nements (see Figure 5.6). In Figure 4.6, re�nement using Hierarchical
B-splines (HP-splines) [127] and Truncated Hierarchical B-splines (THB-splines) [128] is illustrated.

As seen in Figure 4.6, the concept of Hierarchical B-splines is to replace one or more basis functions from the
original basis and replace it with a number of functions from a basis with one or more levels of re�nement.
In the case of HB-splines, the basis functions from the higher level are inserted in the re�ned basis function
without any modi�cations. This, however, violates the partition of unity property. Therefore, truncation of
neighbouring basis functions leads to THB-splines and to the preservation of the partition of unity property
such that the convex hull property and the a�ne transformation property are preserved. Additionally, the basis
forms a smaller support [128] which shows improvements related to matrix sparsity.

In this work, THB-splines will be used on a static case to show the potential of the re�nement with respect
to accuracy for a number of degrees of freedom. An adaptive re�nement strategy is presented in the works of
Giannelli et al. [130] and Carraturo et al. [129] and is suggested for further research in Chapter 8.

4.1.3 Isogeometric Analysis
As mentioned before, Isogeometric Analysis is similar to Finite Element Analysis. Basically, Isogeometric Anal-
ysis utilises spline basis functions that have global support. Hence, discretization according to the Isogeometric
Analysis framework is done in a similar way compared to FEA. Firstly, given a PDE (or a system of PDEs),
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Figure 4.4: Principle of knot insertion. On top, a B-spline of order 2 with three basis functions for the knot vector
Ξ = {0, 0, 0, 1, 1, 1} is presented. On the bottom, a B-spline of order 2 with four basis functions and modi�ed knot vector
Ξ = {0, 0, 0, 0.5, 1, 1, 1} is presented. Knot insertion moves the control point such that the B-spline remains the same.
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Figure 4.5: NURBS (weights {1, 1/
√

2, 1}) curve versus B-spline. On the left, the basis functions of the B-spline curve
are dotted and the basis functions of the NURBS are coloured. On the right, the B-spline is dotted and the NURBS
curve is coloured. With these weights, the NURBS exactly represents a quarter of a circle. [156]
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Figure 4.6: Principles of re�nement for di�erent spline bases. The top �gures represent the undeformed basis, optionally
with re�ned basis functions coloured green and truncated basis functions coloured orange. Bottom pictures represent
re�ned bases. a) uniform re�nement; b) HB-re�nement; c) THB-re�nement. Note that the basis functions used for
re�nement are derived from the uniform re�ned B-spline basis (�g. a, bottom). The unre�ned unique knot vector in all
cases is Ξ = {0, 1/8, 2/8, . . . , 7/8, 1} and the order of the splines is 2. The bases are generated in G+smo [157].

the weak form is determined by multiplying the PDE by a test function and integrating it over the domain.
Partial integration is applied to incorporate boundary conditions. Up to this point, there is no di�erence with
classical FEA. Secondly, when the weak form is known, the solution is approximated by a �nite number of the
product of a basis function and a weight. Here, in terms of the basis functions, di�erences come into play.

Given a weak form, denote by the following combination of a bi-linear operator a(·, ·) and an inner product
(·, ·),

a(u, ϕ) = (ϕ, f).

Here, ϕ is the basis function, u is the solution and f is the forcing term of the PDE. Using the Galerkin
approximation

u =

∞∑
j=1

αjϕj ≈
n∑
j=1

αjϕj ,

and substituting ϕ = ϕi, the weak form changes to (given linearity of a(·, ·)):

n∑
j=1

αja(ϕj , ϕi) = (ϕi, f), ∀i.

In case of classical FEA, the integrals in a(·, ·) and in the inner product can be simpli�ed to band matrices,
since the basis functions have a local support. When B-splines or NURBS are used as basis functions, this
simpli�cation cannot be made. Hence, the system to be solved cannot be simpli�ed further and domain integrals
have to be calculated for all combinations of basis functions ϕi, ϕj . In sequel, an example of Isogeometric
Analysis is given for the linear Euler beam equation. Here, the discretization procedure using B-splines is
brie�y explained, but it is applied in the models described in Chapter 3.

4.1.4 An Example: Clamped-Clamped Linear Euler Beam
Let us consider a linear Euler-Bernoulli beam with length 1, which is clamped at both ends and which is subject
to a uniform pressure load q = −1 N/m. As we have seen in Section B.2.2, Equation (B.15), the governing
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equation for a linear beam is:

EI
∂4w

∂x4
= q,

w(0) =
dw
dx

(0) = w(1) =
dw
dx

(1) = 0, i.e. clamped boundary conditions on both sides.

The weak form is, using:

Find w ∈ Σ(Ω) =

{
w ∈ H2(Ω)|w(0) =

dw
dx

(0) = w(1) =
dw
dx

(1) = 0

}
, Ω = (0, 1) ∈ R1 s.t.

∫ 1

0

EI
d2ϕ

dx2

d2w

dx2
dx =

∫ 1

0

ϕq dx

∀ϕ ∈ Σ(Ω).

(4.5)

Here, the boundary terms drop out because the clamped boundary conditions are essential boundary conditions.
The spatial discretization, which is also treated in Section 3.3, is done by the Galerkin method. Here, it is
assumed that the solution w can be approximated by the following:

u(x) =

∞∑
j=1

cjNj(x) ≈
n∑
j=1

cjNj(x).

With cj , j = 1, . . . , n unknown constants. Substituting this into the obtained weak formulation gives a linear
system (see Section 3.3 for the details):

Kc = f ,

Where,

Kij =

∫ 1

0

EI
d2ϕi
dx2

d2ϕj
dx2

dx,

fi =

∫ 1

0

ϕip dx,

c =
[
c1 c2 . . . cn

]T
.

Using this linear system, the coe�cients c can be calculated and an approximation of the solution un can be
constructed using the Galerkin method. In Figure 4.7 and Figure 4.8, the basis functions and their decomposition
to the solution of the problem, respectively, are presented. As seen in this �gure, the second-order basis with
unique knot vector Ξ = {0, 1} does not provide any basis functions that comply with the clamped boundary
conditions, hence no solution is available. Furthermore, the fourth order basis functions represent the analytical
solution since it is a fourth order polynomial. Another observation that can be made is that the basis functions
are indeed global, which is a property of the IGA framework. Since they have this global support, the basis
functions that overlap with others do not have the property that they represent the solution on nodes, as we
know from basic Finite Element Methods.
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Figure 4.7: Basis functions of order p 2 (left), 3 (mid) and 4 (right) for knot vectors Ξ = {0.0, 1.0} (top) and
Ξ = {0.0, 0.5, 1.0} (bottom). Note: Only unique knots are presented. The �rst and last knots are repeated p+ 1 times.
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Figure 4.8: Analytical solution (green), numerical solution (orange) and decomposition of the solution (black) for basis
function of order p 2 (left), 3 (mid) and 4 (right) for knot vectors Ξ = {0.0, 1.0} (top) and Ξ = {0.0, 0.5, 1.0} (bottom).
Note: No solution exists for p = 2 and the coarsest knot vector (top left), since there are no basis functions that comply
with the boundary conditions Ni(x) = dNi

dx
(x) = 0 for x ∈ {0, 1}.
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4.2 (Nonlinear) Static Analysis
In static analyses, kinetic energies are by de�nition assumed to be equal to zero. This implies that velocities
and accelerations of the structures are zero and hence that any e�ect of structural mass (material density ρ)
are not considered. Therefore, the di�erence G between internal and external forces, respectively N(u) and
Q(i) + P, needs to be zero for an unknown displacement vector u:

G(u) = N(u)−P = 0. (4.6)

When a linear problem is solved, the internal forces are described by a linear sti�ness matrix KL times the
displacement �eld u, so that a linear system needs to be solved:

KLu = P.

Here, KL is the linear sti�ness matrix, neglecting all terms depending on the solution vector u. In case of a
nonlinear system, a nonlinear solution strategy should be applied to solve Equation (4.6). When the sti�ness
matrix of the system, depending on the displacements u is known, Picard iterations (or �xed-point iterations)
can be used. This method is known to be robust, but slow converging. A commonly used alternative is to
exploit Newton-Raphson iterations 1. This method works by linearising the system in Equation (4.6) around
the displacement �eld u:

G(u + ∆u) ≈ G(u) +
∂G

∂u
(u)∆u +O (∆u) . (4.7)

Here, O (∆u) denotes an error of order ∆u. Note that this method is second-order accurate in ∆u by the
Taylor expansion (linearization) in Equation (4.7). Now, let us assume that the increment ∆u is such that
G(u + ∆u) = 0, the method simpli�es to:

∂G

∂u
(u)∆u = −G(u). (4.8)

The term ∂G
∂u (u) is the Jacobian or the tangential sti�ness matrix KT (u). Generally, evaluating the system

in Equation (4.8) does not yield a residual G(u + ∆u) = 0. Therefore, the method is in practice iterated
until the residual G(u) satis�es a certain error measure. Algorithm 1 presents the solution algorithm for the
Newton-Raphson method.

Algorithm 1 Newton-Raphson method for solving nonlinear system G(u) = 0

1: Initialise solution vector u0,
2: De�ne maximum number of iterations kmax and tolerance TOL,
3: Initialise iteration counter k and residual ε,
4: while ε <TOL and k < kmax do,
5: Compute G(uk) and ∂G

∂u (u),
6: Solve ∂G

∂u (u)∆uk+1 = −G(uk) for increment ∆uk+1,
7: Update solution uk+1 = uk + ∆uk+1,
8: Compute residual ε = G(uk+1).
9: end while

Alternatives to the Newton-Raphson method, such as the Quasi-Newton method or Broyden's method can be
used. The former method approximates the inverse of the Jacobian matrix based on this matrix in the previous
iterations and the latter method approximates the inverse of the Jacobian matrix and hence does not even need
an expression for the Jacobian matrix itself [159, 158]. However, in this study, the Newton-Raphson method is
used and hence the Jacobian or tangential sti�ness matrix should be required. These formulations were derived
in Chapter 3.

1The books of Wriggers[158] or de Borst et al.[159] can be used as reference for this widely-known method in nonlinear �nite
elements
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Figure 4.9: Buckling of a beam with length L and sti�ness EI, giving the critical buckling load P = Pc for di�erent
boundary conditions.

4.3 Buckling Analysis
Buckling is a structural instability that occurs when a critical load is exceeded. For example, consider the
beams as depicted in Figure 4.9. When the compressive load exceeds the value of P = Pc the initially straight
(dashed line) structure buckles in the shape represented by the solid line. For di�erent boundary conditions,
di�erent formulations for the critical buckling load (also referred to as the Euler critical load) are valid. In
Appendix C.2, the critical load is derived for a clamped-clamped beam on an elastic foundation, which will
be used in Section 5.2 for benchmarking of the numerical models. For other analytical solutions, the reader is
referred to the book of Roark et al. [160].

Wriggers [158] describes linear buckling analysis using the tangential sti�ness or Jacobian matrix of the internal
forces in a structure, referring to the work of Brendel and Ramm [161]. Mathematically speaking, the buckling
instability occurs when the determinant of the tangential sti�ness matrix is equal to zero, or equivalently, where

KT (φ)φ = 0.

Where φ is the mode shape corresponding to the buckling mode shape. To compute the critical buckling load
parameter λ such that buckling occurs for a load vector λP in mode shape φ, the method proposed by [161] is
to solve the eigenvalue problem with a splitting of the tangential sti�ness matrix into a linear and a nonlinear
part

KT (u) = KL + KNL(u).

Here, the linear part KL does not depend on the displacement vector u, whereas the nonlinear part KNL
does. Suppose now that the nonlinear sti�ness matrix is computed on a linearized (non-buckled) state uL, with
corresponding matrix KNLuL, the buckling eigenvalue problem becomes:

[KL + λKNL(uL)]φ = 0.

Here, the eigenvalue λ is the magni�cation factor of the load that was applied in the linearized case for obtaining
the solution uL. An algorithm for computing the critical buckling load and the corresponding mode shape is
given in Algorithm 2.

4.4 Quasi-Static Analysis: Arc-Length Methods
In order to assess the behaviour of structures that show unstable behaviour, arc-length methods are used. For
quasi-static analysis, zero velocities and accelerations of the structure are assumed. However, the loads on the
structure are varying. Therefore, quasi-static analyses can be considered as cases where structural damping
is large enough to damp all velocities and that are inertia forces are negligible. When quasi-static analysis is
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Algorithm 2 Algorithm for computing the critical buckling load Pc and the corresponding buckling mode
shape φ. From Wriggers [158]

1: De�ne problem, i.e. compute linear sti�ness matrix KL and load vector P according to applied boundary
conditions and forces.

2: Solve KLuL = P for uL,
3: Compute tangential sti�ness matrix KT (uL),
4: Compute nonlinear sti�ness matrix KNL(uL) = KT (uL)−KL,
5: Compute generalized eigenvalue problem KLφ = λcKNLφ,
6: Compute critical load Pc = λcP.
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Figure 4.10: Load (left), displacement (mid) and arc length (right) control on a load-response curve on which the sum
of internal and external forces is zero for a load factor λ and a resulting displacement vector u, i.e. G(u, λ) = 0. The
points L1 and L2 are limit points.

applied in combination with bucking, it is referred to as post-buckling analysis. In the sequel, let us assume that
the load is applied as a multiple of a reference load vector P. Introducing a load factor λ, the nonlinear system
Equation (4.6) is:

G(u, λ) = N(u)−Q(u)− λP = 0. (4.9)

Here, Q(u) is an external load vector which could be depending on the displacements u but not on the load
factor λ. In the sequel, this term is combined with N(u). For example, if P is a load vector corresponding
to an applied reference displacement, then λ = 1 would correspond to application of this displacement and
increasing λ would provide a larger applied displacement. Q(u) can, for example, represent a foundation which
is compressed as consequence of displacements u.

Quasi-static analysis can be performed in di�erent forms. For example, one can increase λ in steps and compute
for each step the response. If the reference load vector corresponds to end-point displacements, displacement
control is applied, whereas if the reference load vector corresponds to an applied surface load or load at the
endpoints, load control is applied. In both cases, the Newton-Raphson method can be applied in each load
step, using the converged solution from the previous load step as an initial guess. Displacement control and
load control are sketched in Figure 4.10c using so-called load-response curves. When buckling is involved, initial
imperfection can be applied to the structure to obtain a smooth curve and to avoid unstable branches (see
Figure 4.11). However, in the following, a method is presented where bifurcations can be modelled without the
need of initial imperfections.

4.4.1 Arc-Length Methods
Arc length methods, or path following methods, a system of nonlinear equations subject to a reference load or
condition is solved for both the solution u ∈ RN×1 as well as for the load factor λ with an additional constraint
equation (e.g. a circle in the u, λ-space, see Figure 4.10c). By this means, the solution w = [u, λ] consists of
N + 1 degrees of freedom, i.e. w ∈ R(N+1)×1. This means that besides the partial di�erential equations to
solve u, an additional equation is needed to solve for the scalar λ. This equation often works as a constraint
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equation on λ and u and di�erent variants have been proposed in the �eld of structural mechanics. Given any
constraint equation f(u, λ), linearization of the system in Equation (4.9) yields a Newton-Raphson method for
the constrained system [158]

G̃(w) =

[
G(w)
f(w)

]
= 0, with linearisation

[
KT P

∇uf df
dλ

]
∆w = −G̃. (4.10)

Here, ∇u denotes a gradient with respect to the displacement vector u and ∆w is the increment of the solution
vector. All entities are evaluated on iteration i and the incremental solution is computed as wk+1 = wk + ∆w.
Originally, this method was �rst published by Riks [162] who introduced a constraint equation that is linear
in u and λ and describes a normal plane perpendicular to the tangent of the last computed equilibrium point.
Later, Cris�eld [163] proposed a cylindrical or spherical constraint equation, where the solution w is bounded
by a circle with radius ∆l, i.e. the arc length.2 In this work, the constraint condition as proposed by Cris�eld
is used as basis. This method has the advantage over the method from Riks that it always �nds a solution, but
the disadvantage is that multiple solutions are often found and hence a choice should be made. The constraint
equation proposed by Cris�eld is:

∆uT∆u + Ψ2∆λ2PTP = ∆l2. (4.11)

Where ∆l is the arc length and ∆u and ∆λ are respectively the increment of the displacement and load
factor with respect to the previous load step. As the solved equations are nonlinear, ∆u and ∆λ are solved
incrementally with increments δu and δλ such that in iteration i, ∆ui = ∆ui−1 + δu and ∆λi = ∆λi−1 + δλ.
The parameter Ψ is a scaling parameter which was originally not present in the method of Cris�eld. In their
case, Ψ = 0, to which is referred as the spherical arc length method. Alternative choices have been proposed
by Schweizerhof and Wriggers [170] and Bellini and Chulya [171] amongst others. In this work, Ψ is de�ned as
follows (referred to as the elliptical arc length method [171]):

Ψ2 =
uT0 u0

λ2
0P

TP
. (4.12)

Where u0 and λ0 are the solutions of the arc length method on the previously converged point. In the origin,
i.e. at (u, λ) = (0, 0), a prediction using the results from Equation (4.22) will be used with Ψ2 = 0. Cris�eld
proposed to solve the equation in Equation (4.10) in a segregated way. To this end, the increment of the
displacement vector, δu is solved based on the unknown load increment δλ:

KT δu = G(u, λ) = N(u)−Q(u)− δλP. (4.13)
2An overview of arc-length methods is given by Wriggers [158], Cris�eld [164], Cris�eld [165] and de Borst et al. [159], who are

all great contributors to the arc length method applied in numerical structural bifurcation problems. The original works about the
arc-length method are cited in this chapter for reference. Further and reviews on arc-length methods include the ones of Fafard
and Massicotte [166] who gives a geometrical interpretation of various arc-length methods or Carrera [167] who assesses di�erent
methods with a simple example and Memon and Su [168] who describes the development of the method over time. Improvements
have been made by Hellweg and Cris�eld [169] and arc-length methods with Isogeometric Analysis have been combined in [112, 111]
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The iterative displacement increment δu can be split in to two parts such that δu = δū + δλδut. Here, the
increment from the standard load-controlled Newton-Raphson method δû and the increment δut due to the
iterative change of the load, which are solved by (k is the iteration counter)

KT δū = G(wk), and (4.14)

KT δut = P. (4.15)

Using this splitting, the factorization of the Jacobian has to be computed once, which is an advantage from
computational point of view. A disadvantage, is that no solutions can be found on limit points, since the
Jacobian is singular there [164]. In Section 4.4.5 solutions will be given to this problem. Using the constraint
equation from Equation (4.11) and using the fact that the iterative increment δu is depending on the unknown
δλ, the constraint equation can be written as a polynomial in δλ:

aδλ2 + bδλ+ c = 0. (4.16)

Here:
a = δuTt δut + Ψ2PTP,

b = 2
(
δuTt (∆uk−1 + δū) + ∆λk−1Ψ2PTP

)
,

c = (∆u + δū)T (∆u + δū) + ∆λ2Ψ2PTP−∆l2.

(4.17)

Based on the work of Schweizerhof and Wriggers [170], numerical relaxation is applied to accelerate convergence
behaviour. In particular, relaxation with factor α is applied when the load factor of iteration k, δλk is oscil-
lating with respect to the previous iteration k − 1, δλk−1. In that case, the load factor δλ̃ and corresponding
displacement update δũ are computed based on

δλkδλk−1 < 0 and
∣∣δλk∣∣ ≤ ∣∣δλk−1

∣∣ =⇒ δλ̃ = αδλk and δũ = α
(
δλ̃δut + δū

)
.

In the current research, the relaxation factor was chosen to be 0.5, similar to Schweizerhof and Wriggers [170].
Additionally, in the implemented arc length method, the error is determined by a relative norm of the residual
vector εR and the displacement vector εu, separately. Both norms and used tolerances are de�ned as [159]:

εR =
rTi ri
rT0 r0

≤ 10−3 and εu =
‖dai‖
‖da0‖

≤ 10−6. (4.18)

Lastly, the arc length ∆l is not necessarily constant but can be made adaptive. Suggestions given by for instance
Riks [172] are to rescale the new arc length ∆l∗ by the number of iterations of the previous load step:

∆li =

(
ktarget
ki−1

)α
∆li−1. (4.19)

Here, ∆li is the arc length in load step i, ktarget is the number of target iterations, ki−1 is the number of
iterations in load step i − 1 and α is a coe�cient that can be chosen. As mentioned by Riks [172], the main
disadvantage of adaptive arc lengths is that it does not work when there are sudden changes in the curvature
path. For this reason, the method is implemented but not used in this study.

4.4.2 Choice of roots
From the quadratic nature of Equation (4.16), two solutions for δλ and hence two solutions for δu will be
produced. Originally, Cris�eld [163] proposed to compute the angle between the current iterative correction
δuk and the previous iterative correction δuk−1 as follows:

α1,2 = (∆w1,2
k+1)T∆w1,2

k . (4.20)

If this number is positive, it means that the iterations are pointing in the same directions. Additionally, the
largest root for which αk is largest is the root for which the current correction and the correction in the previous
iteration point in the most similar direction. Therefore, the root of Equation (4.16) that is largest is chosen.
If both roots are positive, the root which is closest to the linear approximation δλ = −c/b is chosen. In other
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works, such as by de Borst et al. [159], it is proposed to use the predictor stage instead of the previous iteration
as reference. If both inner products are negative, it means that both corrections of the current iteration are
pointing in the opposite direction compared to the previous iteration. In this case, the `angle' αk that is the
smallest, i.e. the closest to zero, is chosen.

An alternative formulation is discussed in the work of Ritto-Corrêa and Camotim [173]. This formulation is
based on the fact that the minimal angle is to be found. Minimising the angle for the increment δλ, yields that
it su�ces to look at the following roots [173]:

ϑr = δλr
(
∆uTi−1δut + Ψ2∆λi−1

)
, r = 1, 2. (4.21)

And the root δλr for which ϑr is largest is the selected root. In the original work of Cris�eld [163] a di�erent
method was proposed, where the increment ∆u is computed for both values of δλr and the largest inner-product
is taken. In this research, both options have been implemented and di�erences in the behaviour of the algorithm
were not observed. The method proposed by Ritto-Corrêa and Camotim [173] was �nally used.

4.4.3 Initialization and the Predictor Phase
In case of the �rst iteration of the �rst load increment, no information about previous load steps ∆w is present,
and the residual of the previous load increment or iterations is zero. Therefore, initialization of the arc length
method from the origin (u, λ) = (0, 0) can only be based on the step δut and is done by letting [163, 173]:

δλ0 =
∆l

δuTt δut + Ψ2
. (4.22)

In the �rst iteration of a new load step, i.e. the predictor stage, information about the previous load step is
available, hence the predictor of the load increment δλ can be computed using Equation (4.22) where the sign
of the step is chosen based on Feng et al.[174, 175]:

sign(δλ0) = sign(∆uTi−1δut + ∆λi−1P
TP). (4.23)

Remarks that have been made by Feng et al. include that the determination of the sign using the sign of the
Jacobian matrix is a more conventional way, but only works before bifurcations are encountered, as shown in
Feng et al. [176]. Another remark that was illustrated in Feng et al. [174] is that the proposed methods on the
determination of the predictor step still require a proper selection of the size of the arc-length. Namely, if the
load-response curve is too sharp, the constraint equations can intersect more than two times and root selection
based on the quadratic equation in Equation (4.16) fails to cover all solutions.

4.4.4 Dealing With Complex Roots (Line Search)
In the case that b2 − 4ac < 0 in Equation (4.16), complex solutions are found for the incremental load step δλ.
Using a simpli�ed model, Carrera [167] motivates that complex roots occur when the solution path cannot be
found using the tangent plane of the constraint equation. This problem can be avoided by simply reducing the
arc length, e.g. bisecting it [171]. However, in the works of Lam and Morley [177] and Zhou and Murray [178],
a correction to Equation (4.16) is motivated using a pseudo line-search technique. In the following, the method
proposed by Zhou and Murray [178] is derived.

Let the update of the displacement increment be δu = βδū+δλδut where β is a line search parameter proposed
by Cris�eld [179]. Then, the new polynomial coe�cients of the constraint equation become

a′δλ2 + b′δλ+ c′ = 0.

Here,
a′ = δuTt δut + Ψ2PTP = a0,

b′ = 2
(
δuTt ∆ui−1 + ∆λi−1Ψ2PTP

)
+ 2βδuTt δū = b0 + βb1,

c′ = β2δūT δū + 2βδūT∆u + ∆uT∆u + ∆λ2Ψ2PTP−∆l2 = c0 + βc1 + β2c2.

(4.24)
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When we enforce that the discriminant b′2 − 4a′c′ = 0, to avoid complex roots, the coe�cients from Equa-
tion (4.24) can be substituted such that a quadratic equation in terms of β is found:

asβ
2 + bsβ + cs = 0.

Where (see 4.24 or Ritto-Corrêa and Camotim [173] for the de�nition of the coe�cients):

as = b21 − 4a0c2, bs = 2b0b1 − 4a0c1 and cs = b20 − 4a0c0. (4.25)

Such that β1,2 =
(
−bs ±

√
b2s − 4ascs

)
/2as. According to Zhou and Murray [178], the solutions β1,2 (β1 < β2)

are of opposite sign and if β is between those roots, the constraint equation is satis�ed. Zhou and Murray
propose to choose 0 < β ≤ βmax, where βmax = min(1, β2). If β is close to zero, the iterative method becomes
ine�cient and it is advised by to cut the arc length [178, 173]. The work of Lam and Morley [177] slightly
di�ers from the work of Zhou and Murray [178] in the sense that they use an out-of-balance load factor in their
method and that di�erent conditions for the choice of β are used. This method has also been implemented
in this study and showed similar results. Additionally, the work of Lam and Morley does show an illustrative
analysis on the in�uence of the pseudo-line search factor β.

Based on the results in this section and Section 4.4.2, Section 4.4.3 and the original method of Cris�eld [179],
Algorithm 3 can be used to follow load-displacement paths.

Algorithm 3 Arc-Length method based on the work of Cris�eld [163] combined with line search, for load step
i.
1: Initialise ∆l,

Predictor phase:
2: Compute δut from Equation (4.15),
3: Compute δλ from Equation (4.22),
4: Compute ε based on Equation (4.18) using δut and δλ,

Corrector phase:
5: while k < kmax, k ∈ N and ε < εtol do,
6: Compute δut from Equation (4.15) and δū from Equation (4.14),
7: Compute a, b and c from Equation (4.17) and solve Equation (4.16) to obtain δλ1 and δλ2.
8: if b2 − 4ac < 0 then
9: Compute coe�cients as, bs and cs from Equation (4.25) and compute and select the line-search

parameter β from:
β1,2 =

(
−bs ±

√
b2s − 4ascs

)
/2as

10: Compute a′, b′ and c′ from Equation (4.24). If b′2−4a′c′ < 0, bisect the arc-length or apply line-search
again. If b′2 − 4a′c′ ≥ 0, compute δλ1 and δλ2.

11: end if

12: Compute δu1 and δu2:
δuα = βδūα + δλαδut, α = 1, 2

13: Compute angles ϑ1 and ϑ2 from Equation (4.21) and choose the largest one,
14: Compute the error ε from Equation (4.18),
15: end while

16: Go to next load step.

4.4.5 Dealing with Singular Points
Singular points in structural analysis are associated with singularities in the tangential sti�ness matrix. As will
be discussed in this section, singular points are points where the structure is unstable and possibly, but not
necessarily, buckles. In the latter case, the eigenvector corresponding to the lowest eigenvalue of the tangential
sti�ness matrix is the buckling mode shape. From this principle, linear buckling analysis is also derived (see
Section 4.3)[158].
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Detection of Singular Points

Singular points are the points where the determinant of the tangential sti�ness matrix is equal to zero and hence
the matrix is singular. In the partitioning technique that is generally used in Cris�eld's method, this implies
that the corrections δut and δū cannot be computed. However, in general, the arc-length method does not pass
a singular point directly [158].

On singular points, two types of structural instabilities can be identi�ed. In the �rst place, the point can be a
limit point. These are points that are indicated by L1 and L2 in Figure 4.10. Secondly, the point can be a bifur-
cation point (see Figure 4.12, point B), i.e. the point where buckling occurs and hence a post-buckling branch
connects to the original path. Bifurcation points are the points of which the dot product of the eigenvector of
the corresponding tangential sti�ness matrix and the force vector is equal to zero, i.e. φTP or, in numerical
codes, within a certain tolerance ε from zero [180]. In other cases, the singular point is a limit point. As will
be discussed in the next subsection, the eigenvector is included in the algorithms that are used to approach
singular points.

As shown in Figures 4.10 and 4.12 bifurcation points form a connection between di�erent branches whereas
limit points denote local extremes in the equilibrium curve. In the case of bifurcation points, branch switching
is often of interest and hence there is a need to approach the point. This requires special algorithms to approach
bifurcation points (see next subsection) and to switch to another branch (see second next subsection). Hence,
it is essential to monitor whether buckling occurs in the system in each load step. As discussed in the books
of Wriggers [158] and de Borst et al. [159] amongst others, bifurcations are passed when the determinant of
the tangential sti�ness matrix changes sign. Equivalently, this means the minimum eigenvalue of the tangen-
tial sti�ness matrix is negative (hence the matrix is not positive-de�nite) or that the product of the entries of
the diagonal matrix of the LDLT Cholesky-decomposition of the tangential sti�ness matrix (which is equal to
determinant by Vieta's rule [159]) is negative. An alternative for the latter approach is to monitor the lowest
diagonal values resulting from the decomposition, since an even number of diagonal entries of the diagonal
matrix still gives a positive product, but corresponds to an unstable solution [158]. Generally, the last indicator
is most bene�cial as the Cholesky-decomposition can also be used to compute the equations in Equations (4.14)
and (4.15). Furthermore, for a large number of degrees of freedom, the determinant becomes very large and
could not even be represented by computer precision. Therefore, the minimal values of the Cholesky-diagonal
matrix are monitored in this study.

Approach of Bifurcation Points

When the exact determination of bifurcation points is desired, e.g. in case of computation of bifurcation
branches, further methods have to be utilized to approach the bifurcation points, i.e. the points where the
determinant of the tangential sti�ness matrix is zero.

The �rst option is to use the bisection method. The use of this method for approaching stability was presented
by Wagner and Wriggers [181]. This method is elementary, robust [182], but slowly converging [158]. In brief,
the algorithm for the method is given in Algorithm 4 and is slightly modi�ed compared to the version in Burden
et al. [182] to start from a point with a given step size. The method is then started at a certain load step (u, λ)k
when the next load step (u, λ)k+1 using arc-length ∆l corresponds to an unstable solution. When load steps
are too large, unstable branches might be overstepped, as illustrated in Figure 4.13 together with an example.
Note that the `error' ε for the loop of the algorithm can, for example, be a function value of the function for
which the root is found.

An alternative method to approach singular points is presented by Wriggers et al. [183], called the extended arc
length method. Basically, the method uses the fact that on a singular point, the determinant of the tangential
sti�ness matrix is equal to zero, which leads to solving KTφ = 0 for the non-trivial eigenvector φ. By this
means, Wriggers et al. solve

Ĝ(u, λ,φ) =

 G(u, λ)
KT (u, λ)φ

l(φ)

 = 0. (4.26)
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Algorithm 4 Bisection method to �nd a bifurcation point. w = (u, λ) and the error ε can be any measure to
monitor the stability of the system.

1: Start at load step w0 (stable),
2: Bisect arc length, ∆l0 = ∆l

2 ,
3: Initialise iteration counter k = 0 and de�ne tolerance εtol,
4: while ε > εtol do,
5: Compute next load step w′ using new arc length ∆lk starting from wk−1,
6: if w′ is stable then,
7: Set wk = w′ and ∆lk+1 = ∆lk,
8: else w′ is unstable,
9: Set wk = wk−1 and bisect the step ∆lk+1 = ∆lk

2 ,
10: end if

11: Compute error ε, i.e. determine the stability of the system.
12: end while
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Figure 4.13: Application of the bisection algorithm to �nd a zero of the function f(x) = exp(−x) sin(πx). The starting
point is on x = 1/3 and the initial step ∆l0 gives a zero function value on point 1. Following the bisection procedure,
the step length is halved to ∆l1 and point 2 (positive) is found. From this point, the step is again halved to ∆l2 and
point 3 is found (negative). Hence, the algorithm continues from point 2 again with a halved step length ∆l3 to �nd
point 4. In case the step between start and point 1' was initially taken, the negative part of the function would have
been overstepped.

Here, l(φ) is a constraint equation to prevent the trivial solution φ = 0 to be found. In the work of Wriggers
et al. [183], the equation l(φ) = ‖φ‖ − 1 = 0 is used and the same is adopted here. This constraint equation
enforces the approach of bifurcation points. Using similar derivations as for the ordinary arc length method, a
partitioned system of equations can be derived for the extended method. This yields the algorithm as presented
in Algorithm 5. It should be noted that in case of this algorithm and the one in Algorithm 3 that the tangential
sti�ness matrix KT (u) is computed every iteration, but that quasi-Newton or Broyden methods can also be
used to reduce computational e�ort.

Branch Switching

When a bifurcation point is found within a speci�ed tolerance ε of the extended arc-length method, the eigen-
vector φ is known from this method and the method can switch to the bifurcation branch by perturbation using
the buckling mode shape, i.e. using φ1. Branch switching is simply done by perturbing the bifurcation point
wB = (uP , λP ) by the eigenvector [158, 184]:

u = uP + ζφ̄ and λ = λP . (4.27)

Where φ̄1 is the normalized buckling mode shape. The factor ζ represents the magnitude of the perturbation
and can be chosen su�ciently small [158]. For all applications in the present study, this factor was of order
10−4 up to 10−3. Other methods for branch switching were proposed by Wriggers and Simo [180], where the
tangent of the branch is determined and the perturbation is applied accordingly. However, the authors of this
paper mention that the approach in Equation (4.27) su�ces for pitch-fork bifurcations, i.e. the type shown in
Figure 4.12. However, more advanced techniques can be used in future studies or for cases where the branch
switching algorithm fails.
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Algorithm 5 Computation of singular points using the extended method from Wriggers et al. [183].

When close to singular point ub, λb:
1: Initialise an approximation of the eigenvector φ0 of KT ,

Utilise the power method with kmax iterations to approximate φ,
2: Compute the Jacobian KT using displacement vector ub,
3: for k < kmax ∈ N do

4: Solve KTφk+1 = φk,
5: Normalise φk+1,
6: end for

Check if inner product of eigenvector and forcing is close to 0, i.e. if the singular point is a bifurcation
point.

7: if φTk+1f < etol then
8: while i < imax, i ∈ N and ε < εtol do,
9: Compute residual G(w) and Jacobian KT (w),
10: Compute δut from Equation (4.15) and δū from Equation (4.14),
11: Compute vectors h1 and h2 using directional derivatives of KT (see Wriggers et al. [183]) with

speci�ed step ε,

h1 =
1

ε
[(KT (u + εφ)δut)−P] ,

h2 = KTφ+
1

ε
[(KT (u + εφ)δū + G(w))] ,

12: Solve KT δφt = −h1 and KT δφ̄2 = −h2,
13: Compute the updates of ∆λ, ∆u and ∆φ,

δλ = − φ
T δφ̄

φT δφt
,

δu = δλut + ū,

δφ = δλφt + φ̄,

14: Update ∆λ, ∆u and ∆φ and λ, u and φ,

∆λ = ∆λ+ δλ λ = λ+ ∆λ,

∆u = ∆u + δu u = u + ∆u,

∆φ = ∆φ+ δφ φ = φ+ ∆φ,

15: end while

16: else

17: Continue.
18: end if
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4.5 Modal Analysis
Analysis of structural vibrations is useful when one is interested in the behaviour of a structure that is excited
by an oscillating load or by sudden pulse loads. With modal analysis, information about natural frequencies,
damping factors and mode shapes are inferred to use as a basis for dynamical analysis. Such dynamic analyses
use a linear superposition of vibration modes for temporal solutions. Hence, information about the modal prop-
erties of a system can be useful for further structural analysis. In this section, the basics of vibration theory
and the formulation for the linear vibration problem are given. Further information can be found in the book
of Zhi-Fang and Jimin [185].

Given the mass matrix M and sti�ness matrix KL of a dynamic system, free vibration is described by the
following:

Mü + KLu = 0.

Where u is a solution vector and the double dot denotes the second time-derivative, i.e. accelerations. In free
vibration, the non-trivial solution to the system is denoted by the complex vector:

u = ψ exp(iωt).

Here, ω is an eigenfrequency of the system and φ is an eigenmode of the system. Substituting this into the free
vibration equation Section 4.5 gives: (

−ω2M + KL
)
φ = 0.

Which is a generalized eigenvalue problem with eigenvalue ω2 and eigenvector φ. Since the mass matrix M
and the linear sti�ness matrix KL are associated with a �nite discretization, the number of eigenvalues and
eigenvectors is also �nite. When the spatial discretization step increases, the number of eigenfrequencies and
eigenmodes increases. Since the vibration modes form an orthogonal basis, modal analysis has attractive prop-
erties for solving dynamic systems. For further reading on this topic, the work of Zhi-Fang and Jimin [185]
serves as a good introductory reference.

In the year 2006 Cottrell et al. [186] published about modal analyses in the context of isogeometric analysis
and showed the advantage of being superior in accuracy compared to conventional �nite element methods.
Later Weeger et al.[101] published similar results for linear and nonlinear beams in 2013. Where �nite element
methods show so-called optical branches in the frequency spectrum when n/N > 0.5, i.e. for upper-half part of
the discrete eigenfrequency spectrum, IGA does not show these branches [106]. This leads to a more accurate
representation of the eigenvalues. The results of Weeger et al. will serve as a benchmark problem in Section 5.4.

4.6 Dynamic Analysis
Dynamic analysis of linear or nonlinear structures is widely used in various engineering sciences. Especially
when loads are time-depending or depending on the deformation of the structure (e.g. in case of Fluid-Structure
Interaction), dynamic analysis using superposition of linear modes is not su�cient to accurately describe the
transient solution of structures. In that case, dynamic analyses of structures come into place. Let us de�ne
the dynamic equation, or equation of motion, for a nonlinear dynamic system. The mass matrix M denotes
structural inertia. The linear damping matrix C does not follow from the discretization of the equations of
solid mechanics (see Chapter 3). However, in practice, structural damping is observed for example due to
viscous e�ects in the material, internal friction or friction in connections [158]. Furthermore, the nonlinear
sti�ness of the system will be denoted by N(u) and the external, time-dependent, force will be denoted by
P(t). Furthermore, the vectors ü, u̇,u denote the accelerations, velocities and displacements of the structure,
respectively. The dynamic equation then reads:

Mü + Cu̇ + N(u) = P(t). (4.28)

To solve this equation, several methods can be used. In this work, a distinction between two types of methods
is made, namely order reduction methods and direct methods for second order problems. In the following, a
selection of methods is given. The order reduction methods that are used in this study are the Euler methods
and the Runge-Kutta methods. The direct methods that are presented are the Newmark method, the Wilson-θ
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method and Bathe's method. More methods can be found in the works of Subbaraj and Dokainish[187, 188]
amongst others. Order reduction methods are generally de�ned based on the di�erential equation

ẏ = f(y, t). (4.29)

This is �rst order in time.

4.6.1 Implicit and Explicit Euler Methods
The implicit and Explicit Euler methods are simple methods for time integration and have been derived by
Leonard Euler in 1768 [189]. Basically, the time derivative of a �rst order initial value problem of Equation (4.29)
is approximated by a forward or backward di�erence step. This yields the Explicit and Implicit Euler methods,
respectively. The corresponding equations read [190]:

yt+∆t − yt
∆t

= f(yt, t) Explicit Euler Method, (4.30)

yt+∆t − yt
∆t

= f(yt+∆t, t+ ∆t) Implicit Euler Method. (4.31)

Using order reduction methods (see for instance [191]), the Explicit Euler method is derived as

[
u̇
v̇

]t+∆t

= ∆t

[ 0 I
−M−1K −M−1C

] [
u
v

]t
+

[
0

M−1P(t)

]
︸ ︷︷ ︸

A

− [uv
]t

Linear system, (4.32)

[
u̇
v̇

]t+∆t

= ∆t

[
0 I
0 −M−1C

] [
u
v

]t
+

[
0 + vt

M−1 (−Cvt −N(ut)P(t))

]
−
[
x
ẋ

]t
Nonlinear system. (4.33)

For the implicit Euler method, an implicit system needs to be solved in each time step, since the internal forces
in the term N(u) are evaluated for the displacements on time step t+ ∆t. In case of linear sti�ness, however,
the method simply requires one system solve, namely(

I−∆t

[
0 I

−M−1K −M−1C

])[
x
ẋ

]t+∆t

= ∆t

[
0

M−1P(t+ ∆t)

]
−
[
x
ẋ

]t
. (4.34)

In the nonlinear case, Newton iterations can be used to solve the nonlinear system in time. Felippa and
Park [192] presents a solution strategy for implicit systems that are used for the derivations of direct methods,
i.e. the Newmark, Wilson-θ and Bathe method. For the Implicit Euler method, it is convenient to solve us-
ing Newton iterations (see Appendix D for the derivation and the expressions for the Jacobian and the residual).

For the conditions of the Explicit Euler method with respect to stability (the Implicit Euler method is uncon-
ditionally stable) and for the Trapezoidal method as a linear combination of the Implicit and Explicit Euler
method, the reader is referred to the books of Hairer et al. [189], Butcher [190] and Vuik et al. [191] amongst
others.

4.6.2 Runge-Kutta Methods
The family of Runge-Kutta methods contains time integration schemes that are combinations of Explicit and
Implicit Euler method steps divided over di�erent stages, which are then combined to �nd an approximation of
the solution at time step t+∆t. From [189], an s-stage Explicit Runge-Kutta Method (ERK) for Equation (4.29)
is de�ned by:

k1 = f(yt, t),

k2 = f(yt + ∆ta21k1, t+ c2∆t),

k3 = f(yt + ∆t(a31k1 + a32k2), t+ c3∆t),

...

ks = f(yt + ∆t(as,1k1 + · · ·+ as,s−1ks−1), t+ cs∆t),

yt+∆t = yt + ∆t (b1k1 + · · ·+ bsks) .

(4.35)



Chapter 4. Isogeometric Structural Analysis 55

Where the coe�cients aij , bi and cj can be presented in a so-called Butcher Tableau [193]:

c1 a11

c2 a21 a22

c3 a31 a32 a32

...
...

...
. . .

cs as1 as,2 . . . as,s−1 as,s
b1 b2 . . . bs−1 bs

(4.36)

The most `famous' Runge-Kutta method, which is the Runge-Kutta 4 (RK4) method, is de�ned by the following
Butcher Tableau [194]:

0
1
2

1
2

1
2 0 1

2
1 0 0 1

1
6

2
6

2
6

1
6

(4.37)

In this work, the well-known fourth order Runge-Kutta method (RK4) will be used. However, variations on
the general Runge-Kutta methods are as follows. As an extension to the equations in Equation (4.35), the
`diagonal' coe�cients aii can be added. If at least one of these coe�cients is added to the method, the method
contains at least one implicit solution step, making it a Diagonal Implicit Runge Kutta Method (DIRK). If,
furthermore, all these diagonal elements are equal, the DIRK methods simplify to the Singly DIRK (SDIRK)
methods [189]. Lastly, if the �rst stage of the method is explicit and all the other steps are implicit with the
same diagonal coe�cients, so-called Explicit �rst stage, SDIRK (ESDIRK) schemes are obtained [195]. The
ESDIRK schemes that are used by van Zuijlen are unconditionally stable. ERK schemes are Explicit Runge
Kutta schemes, that contain the previously presented RK4 method. Kanevsky et al. [196] presents the stability
region of these methods. Butcher tableaus for the ESDIRK and the ERK scheme families are:

ESDIRK:

c1 0 0 0 0
c2 a21 a22 0 0
c3 a31 a32 a33 0
c4 a41 a42 a43 a44

b1 b2 b3 b4

ERK:

c1 0 0 0 0
c2 a21 0 0 0
c3 a31 a32 0 0
c4 a41 a42 a43 0

b1 b2 b3 b4

(4.38)

Note that the ESDIRKmethods require Newton iterations similar to the Implicit Euler method to solve nonlinear
structural dynamics. This is seen as a major drawback of the method, despite the fact that the ESDIRK methods
can be of high orders.

4.6.3 The Newmark and Wilson-θ Methods
The Newmark method was �rst published in 1959 by Newmark[197]. The method is widely known in the �eld of
structural dynamics. Derivation of the method is not necessarily based on the form as written in Equation (4.29)
but rather on the system in Equation (4.28). Namely, the method relies on the de�nition of the displacement
and velocity on time step t + ∆t in terms of the acceleration on this time instance. Let yt, ẏt and ÿt be the
displacement, velocity and accelerations at time step t. Then, the Newmark method is de�ned by solving(

1

α∆t2
M +

δ

α∆t
C + KL

)
ut+∆t = P(t+ ∆t)−M

[
1

α∆t2
(
−ut −∆tu̇t

)
− üt

]
− C

[
− δ

α∆t
ut − u̇t

]
. (4.39)

Or, for a nonlinear system [198](
1

α∆t2
M +

δ

α∆t
C + KT (ut+∆t

i )

)
∆u = P(t+ ∆t)−N(ut+∆t

i )−M
[

1

α∆t2
(
ut+∆t
i − ut −∆tu̇t

)
− üt

]
−C

[
ut+∆t
i − δ

α∆t
ut − u̇t

]
With ut+∆t

i+1 = ut+∆t
i + ∆u.

(4.40)
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In both cases, the accelerations and velocities on the time step t+ ∆t can be computed by:

üt+∆t =
1

α∆t2
(ut+∆t − ut −∆tu̇)− üt

u̇t+∆t =
δ

α∆t
(ut+∆t − ut)− u̇t.

(4.41)

For δ ≥ 1
2 and α ≥ (δ+ 1

2 )
2

4 , the method is unconditionally stable and for δ = 1
2 the method has second-order

accuracy. More variations of the tuning parameters are given in the work of Subbaraj and Dokainish [187].

TheWilson-θ method is a variation on the Newmark method and was �rst presented in 1973 byWilson et al.[199].
The method is a variation of the Newmark method since it computes the acceleration on time step t+ ∆t using
the following interpolation:

üt+∆t =

(
1− 1

θ

)
üt +

1

θ
üt+θ∆t. (4.42)

In the case where θ = 1, the method simpli�es to the original Newmark method. In case of θ > 1, the method
works as an interpolation between the solutions on time step t and on t+θ∆t. The latter is calculated using the
Newmark method with time step θ∆t. As mentioned by Wilson et al. [199], the method is unconditionally stable
for θ ≥ 1.37. Increasing θ yields an increase in numerical dissipation and accuracy is lost. Furthermore, the
method has the tendency to overshoot the exact solution in the �rst steps of a transient analysis and hence the
method is not suitable for impact loads [187]. Basically, this method can be seen as an extension of Newmark's
method, as it contains an extra tuning parameter θ.

Another implicit method that can be used is the Houbolt method. In this method, accelerations and velocities
are purely described by displacements at the present time step and the previous two time steps. The method
is unconditionally stable, but algorithmic damping is introduced and contrary to the Newmark and Wilson-θ
methods, this cannot be tuned [187]. Additionally, the method needs a starting procedure because it uses the
solution at more than one previous time step. Based on these two drawbacks of the method, it is not included
in this study.

4.6.4 The Bathe Method
A relatively new method in the �eld of time integration methods for structural dynamics is Bathe's metod, which
was introduced in 2005 by Bathe and Baig[198]. In later papers, Bathe investigated the method with co-authors
[200, 201, 202, 203]. The motivation behind the Bathe method is that for nonlinear dynamic systems, methods
such as the Trapezoidal method or the Wilson-θ method lose their property of being unconditionally stable.
This is especially the case when long time responses and very large deformations are considered [198]. The
method proposed by Bathe and Baig is a single step, double sub-step method. In the �rst substep a Newmark
method3 is used with time step γ∆t. In the second sub step, an Euler 3-point backward rule is adopted. Hence,
the method is speci�ed by the following equations [203] (only for a nonlinear system):

Step 1: (Newmark Method)
Use the substitutions for the Newmark method with time step γ∆t

üt+γ∆t =
1

αγ2∆t2
(ut+γ∆t − ut −∆tu̇)− üt,

u̇t+γ∆t =
δ

αγ∆t
(ut+γ∆t − ut)− u̇t.

(4.43)

To solve Equation (4.40) iteratively. Then compute ut+γ∆t and u̇t+γ∆t from Equation (4.43).

Step 2: (Euler 3-point backward rule)
With ut+γ∆t, u̇t+γ∆t and üt+γ∆t, compute (in terms of ut+∆t)

ut+∆t = c1u
t + c2u

t+γ∆t + c3u
t+∆t,

u̇t+∆t = c1u̇
t + c2u̇

t+γ∆t + c3u̇
t+∆t.

(4.44)

3Note: in [198, 200, 201, 202] the trapezoidal method is used as a �rst step. Basically, this is the Newmark method for α = 1
4

and δ = 1
2
. Furthermore, in [200, 201, 202], γ = 1

2
is adopted.
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Where:

c1 =
1− γ
γ∆t

, c2 =
−1

(1− γ)γ∆t
and c3 =

2− γ
(1− γ)∆t

.

Then, solve
Müt+∆t + Cu̇t+∆t + Ku̇t+∆t = P(t+ ∆t), (4.45)

to obtain üt+∆t and substitute this in Equation (4.44) to obtain ut+∆t and u̇t+∆t.

The Bathe method is of second order since both the Newmark method and the Euler 3-point backward rule
are of second order. Furthermore, the method is unconditionally stable, even in the case of nonlinear equations
with large time steps. The latter is a clear advantage compared to the trapezoidal method [200].

In the work of Bathe and Noh [202], the Bathe method is investigated for linear analyses. In this paper, the
method was investigated for γ > 1. As found in the paper, this choice of γ implies large amplitude decays.
Furthermore, they investigated the use of α = 1, δ = 3/4 and γ = 0.5 for the �rst time step, in order to
prevent overshoot in the acceleration of one degree of freedom in their test case. However, they recommend
to not use these coe�cients in the complete simulation, as the method becomes �rst order accurate and loses
its unconditional stability. Based on other analysis, it was concluded that the Bathe method is stable for large
time steps and that arti�cial high-frequency responses are damped out [198, 200, 201, 202].

4.7 Concluding Remarks
In this section, the concept of Isogeometric Analysis was presented and applied on a simple structural beam
equation. Additionally, the section presents the derivation of di�erent structural analyses given the linear and
tangential sti�ness matrices and the damping and mass matrices from a beam, a shell or any structural element.
This re�ects the third subgoal of this thesis. The main emphasis in this chapter was on dynamic and post-
buckling models. The former is not fully related to this research but is more relevant for further research on
dynamic simulations of �oating sheets (see Chapter 8). The post-buckling analysis, however, is relevant and will
be applied in the analysis of buckling and hence wrinkling of thin sheets. In particular, using the identi�cation
of singular points, the bisection method and the extended iterations from Wriggers et al. [183] allow to compute
the load factor and displacement vector on singular points, including the corresponding buckling modes in case
of bifurcations. To this extent, the arc-length method presented in Section 4.4 can be used for post-buckling
analysis without a priori selection of an initial perturbation, which was discussed in Chapter 2. In the following
chapter, the structural analyses using the model from the previous chapter with Isogeometric Analysis are
benchmarked using examples from literature.



5 | Benchmark Problems

In this section, benchmark examples for the numerical procedures from the previous section will be given to
assess the performance of the Isogeometric beam and shell models. This relates to subgoal 4 of this thesis.
Generally, numerical models can be veri�ed in two ways: by code veri�cation and calculation veri�cation. In
the former case, benchmark problems from literature or manufactured solutions1 are used to check if equations
are implemented correctly. In the latter case, consistency of the code is assessed, most commonly by doing a
grid convergence study [205, 206]. Throughout the whole section, benchmark problems, manufactured solutions
and grid convergence studies will be used to verify the numerical models. Throughout this section, the following
error measures will be used:

εΩ = ‖unum − uan‖2 =

(∫
Ω

(unum − uan)2

) 1
2

and ε =
|unum − uan|
|uan|

.

Where unum is the numerical approximation of the analytical solution uan (both vectors) and unum and uan are
representative scalar approximations and analytical solutions. εΩ is the integral L2-norm and ε is the scalar
L1-norm. In the discrete case, the integral sign in the de�nition of the norm is replaced by a summation.

5.1 Static Analysis
Static analysis for both beam and shell models is considered in the nonlinear cases only. This means that the
systems of equations are solved using Newton iterations and the Jacobian (see Section 4.2).

Beam model
Firstly, for the beam model a pinned-pinned beam with length L subject to a uniform load q = 1 [N/m] is
modelled. The bending sti�ness and axial sti�ness are chosen to be unity, i.e. EI = 1 [Nm2] and EA = 1 [N ].
The method of manufactured solution is used for veri�cation of the problem. Here, the analytical solution for
the linear beam is utilized as vertical displacements, while horizontal displacements are set to zero. Thus, for
the pinned-pinned case:

um(x) = 0,

wm(x) =
qx

24EI

(
L3 − 2Lx2 + x3

)
.

Substituting these manufactured solutions in the system of equations (strong form) for the nonlinear beam (see
Equation (B.13)) gives the forcings that need to be applied to simulate the manufactured solutions. For the
pinned-pinned case:

f(x) =
EAq2(4x3 − 6Lx2 + L3)x(x− L)

48EI2
,

g(x) =
(xEA(L− x)(L− 2x)2(L2 + 2Lx− 2x2)2q2 + 768EI3)q

768EI3
, x ∈ [0, L].

1The Method of Manufactured Solutions was introduced by Roache [204]. The method assumes a closed form expression u of
the solution, not necessarily a physical one. Subsequently, solution u is substituted in the (system of) partial di�erential equations
such that only right-hand side terms remain unknown. If these terms are applied to the numerical system, an approximation of u
should follow.

58
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Figure 5.1: Horizontal and vertical de�ections for the nonlinear beam for di�erent orders of the knot vector of the knot
vectors for the vertical de�ection (Ξ2, p2) and the horizontal de�ection (Ξ1, p1). ∆ξ is the step size in the knot vectors,
i.e. unique knot values are Ξi = {0,∆ξ, 2∆ξ, . . . , 1}. Furthermore, EI = 1 [Nm2], EA = 1 [N ], q = 1 [N/m], L = 1 [m].

Consequently, the convergence of the Isogeometric linear and nonlinear beam models with respect to the ana-
lytical and manufactured can be calculated to verify the computation as well as the code. The results for the
convergence analysis are depicted in Figure 5.1, where the error for the horizontal and vertical directions are
plotted for di�erent knot spacings ∆ξ. Furthermore, the order of the B-splines is di�erent for the bases of the
solution in these directions. The order of the B-splines that represent the vertical solution is varied between 2
and 4 keeping the horizontal basis of second order.

As can be seen in the �gure, second-order convergence is observed for second-order basis functions and the line
shows wiggles. From theoretical results, third order is expected since the basis functions are of second order and
polynomial. The discrepancy in the order of convergence might be due to the fact that the basis functions are
too coarse or that routines for the basis functions or their derivatives provide inaccurate results when knot spans
∆ξ decrease (e.g. the use of ≤ or < for basis function generation). This also holds for upcoming results for the
second-order beam model, where wiggles are also found. Furthermore, it can be seen that the basis functions of
third order converge with expected fourth order. The basis functions of fourth order are not plotted since they
represent the analytical solution since this is of fourth order polynomial form.

Shell model
For the shell model, the Shell Obstacle course as introduced by Belytschko et al. [207] is used for benchmarking.
The shell obstacle course consists of three component, namely the Scordelis-Lo roof, the pinched cylinder and
the hemispherical shell. In these cases, the linear shell model was used. The geometry de�nitions are presented
in Figure 5.2 together with the parameter values presented in Table 5.1. In Figure 5.3 the contour plots of the
deformed geometries are presented and Figure 5.4 presents convergence plots of the benchmarks. Similar to the
results of Goyal [142] and Kiendl [137] the numerical solutions are plotted since the shells do not converge to the
values of Belytschko et al. [207]. In Figure 5.4 the Richardson extrapolation[208] of the numerical results are
also plotted. Table 5.1 also presents the reference solutions of Belytschko et al. [207] (FEM) and Kiendl [137]
(IGA) together with the present model.

In the works of Kiendl et al. [87], Coox et al. [209] and Nguyen-Thanh et al. [210] amongst others similar
di�erences of the benchmark solutions from Belytschko et al. [207] were observed. According to Nguyen-Thanh
et al. [210] the di�erence for the Scordelis-Lo roof is explained by treatment of shear deformations in the refer-
ence solution and absence of this e�ect in the Kirchho�-Love shell. The di�erence between the obtained results
of the present model and the model of Kiendl et al. [87] for the pinched cylinder might be explained by the use
of a slightly di�erent basis or the use of the Richardson Extrapolation in the present study to �nd a converged
solution.

Additionally, a benchmark case for follower pressures is adopted from Bouzidi et al. [211]. In this case, a cir-
cular plate with simply supported boundary conditions is modelled with follower and non-follower pressures.
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Table 5.1: Parameters for the shell obstacle course Belytschko et al. [207]. In the last row, the terms in brackets denote
the percentual error between the reference solution and the present solution.

Scordelis-Lo Roof Pinched Cylinder Hemisphere

Boundary conditions
Solid ux, uz = 0 Fixed Free
Dashed Free Symm. Symm.

Material
E [MPa] 4.32 · 108 3.0 · 106 6.825 · 107

ν 0.0 0.3 0.3

Load p [N/m2]/P [N ] 90 1 ±2

Geometry

R [m] 25 600 10
L [m] 50 300 −
θ [◦] 40 − −
t [m] 0.25 3 0.04

Solution at A
uref [m] [207] 0.3024 (0.6%) 1.8248 · 10−5 (0.2%) 0.0924 (0.0%)
uref [m] [137] 0.3006 (0.0%) 1.8264 · 10−5 (0.1%) 0.0924 (0.0%)
unum [m] Present 0.30058 1.8281 · 10−5 0.0924

(a) Scordelis Lo roof subject to a uni-
form pressure.

(b) Pinched cylinder with dark-grey
model domain.

(c) Hemisphere subject to point loads
with dark-grey model domain.

Figure 5.2: Shell obstacle course, geometry de�nitions.

(a) Scordelis-Lo roof. Scaling magni-
tude: 10

(b) Pinched cylinder. Scaling magni-
tude: 3× 106

(c) Hemisphere subject to point loads.
Scaling magnitude: 20

Figure 5.3: Shell obstacle course, deformed geometries.
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Figure 5.4: Numerical solutions for di�erent mesh sizes for the three cases of the Shell Obstacle Course. The horizontal
axis represents the number of control points at the side of the geometry and the verical axis represents the solution at
the reference location A (see Figure 5.2). uref is the solution of Belytschko et al. [207] and unum is the solution of the
present model.

Figure 5.5 presents the radial deformation of the plate for pressure levels 100, 250 and 400 [kPa]. As seen in this
�gure, the present model for non-follower loads matches with the analytical solution of Hencky (see Fichter [212])
and the present model for follower loads corresponds with the model of Fichter [212]. The solution given by
Bouzidi et al. [211] shows less correspondence to the Fichter solutions for larger pressure levels, which is by the
author clari�ed by the fact that the Fichter solution is less accurate for large pressures. The proposed element
by Bouzidi et al. [211] uses direct minimization of potential energy as an improvement, which is the reason for
the di�erence in the results. For larger pressures, it should be noted that the area of the elements increases
signi�cantly due to stretching and hence the area on which the pressures act is larger. This is captured by the
�nite element formulation of Wu and Ting [213] and left out of scope in this research.

Lastly, a plate subject to pressure is computed with a THB-re�ned mesh. The re�nement procedure that was
applied is rather straight forward: (i) compute the deformation of the plate on a coarse mesh; (ii) check the
vertical displacements of the plate on the anchors, collocation points or Greville absissae of the element and tag
the element; (iii) re�ne the elements corresponding to the tags. In this case, elements were either re�ned if their
vertical displacement was below or above a certain tolerance, to which be referred to as bottom-up and top-down
in the sequel. Further adaptive re�nement procedures were considered out of the scope of this work and the
reader is referred to the work of Carraturo et al. [129] for an adaptive meshing strategy for time-dependent
problems.

The result for the THB-re�ned mesh is depicted in Figure 5.6a for selected meshes and convergence of the
meshes with respect to the total number of system degrees of freedom is plotted in Figure 5.6b. From these
results, it can be observed that re�nements in the boundary region are not e�ective since the slope of the curve
is low at the beginning of the bottom-up approach and at the end of the top-down approach. Furthermore,
it can be seen that slopes are higher when regions near the maximum displacement of the plate are re�ned.
However, a combination of the results shows that re�nement of the region where the curvature changes sign is
most e�ective (i.e., as the slopes halfway are relatively steep in both cases). Concluding, this benchmark illus-
trates that re�nement based on vertical displacement based on top-down re�nement is most e�ective. However,
re�nement based on curvature �elds or stress/strain is to be investigated.
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Figure 5.5: Simply supported circular plate subject to (follower) pressure. The analytical solutions of Hencky (non-
follower pressure) and Fichter (follower pressure) [212] and the numerical solution of Bouzidi et al. [211] are given as
reference solutions. The characteristics of the plate are E = 31.1488 [MPa], t = 0.01 [m], ν = 0.34, R = 0.1425 [m] and
pressure levels are 100, 250, 400 [kPa].

(a) Re�nement regions related to displacement lev-
els of 0.12, 0.08, 0.04, 0.0 (original mesh) with colours
�,�,�,�, respectively. In case of top-down re�nement,
adaptive meshing is performed for regions with a dis-
placement above certain levels, hence in the order �,
� and �. In case of bottom-up re�nement, adaptive
meshing is performed for regions with displacement
below certain levels, hence in the order �, � and �
when shifting the tolerance.
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(b) Displacement error ε on the plate mid-point with
respect to the solution of the �nest mesh for di�er-
ent number of degrees of freedom N . Explanation of
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Figure 5.6a. The point corresponding to the unre�ned
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Figure 5.6: Adaptive re�nement of a fully simply supported plate subject to a distributed load. The geometry has
unitary values, i.e. the length and width of the plate are 1 [m]. Furthermore, E = 1 [Pa], ν = 0 [−], t = 0.05 [m] and the
load q = 0.0003 [N/m2]. The left image provides di�erent re�nement regions whereas the right �gure provides the errors
w.r.t. the number of degrees of freedom of the discretised system for a top-down and bottom-up re�nement approach,
i.e. re�nement of regions where the vertical de�ection is above or below a certain tolerance, respectively.
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5.2 Buckling Analysis
In this section, veri�cation of the buckling solvers of the beam and shell model is performed. The beam model
is veri�ed with a case of a beam on a foundation and the shell model is veri�ed using a bi-axially loaded plate.

Beam Model
For the beam model, veri�cation of the linear buckling model is based on the comparison with analytical
solutions to the buckling problem. In this study, buckling veri�cation will be done for a beam on an elastic
foundation. The full derivation related to this problem is presented in Appendix C.2. Similar to the analysis
of Rivetti and Neukirch [66], the results are given for the non-dimensional foundation/bending sti�ness ratio
values of η = 0, 2, 7, 10 (see Equation (5.1)). For a beam with length L, bending sti�ness EI and foundation
sti�ness S, the following dimensionless ratio between the bending sti�ness and foundation sti�ness is de�ned.

η =
L

Leh
=

L(
EI
S

) 1
4

. (5.1)

Figure 5.7 presents convergence plots for the critical buckling load for di�erent values of the nonlinear sti�ness
ratio η for di�erent polynomial orders with respect to the analytically determined buckling load Pan based on
Appendix C.2. As can be seen in this �gure, coarse meshes provide inaccurate approximations of the buckling
load. Finer meshes, however, show convergence in the order of 2p − 2 up to 2p − 1 for bases of order p. How-
ever, for �ne meshes, oscillations in the convergence behaviour are seen. Although these oscillations occur at
relatively low errors (of order O

(
10−7

)
) and although the results from ANSYS (BEAM181 elements) also provide

similar oscillations, consistency of the method to lower orders is expected. The reason for the inconsistency can
be the fact that a linearized problem is solved and hence the solution used for the tangential sti�ness matrix is
not representative for the �nal solution. In literature, no theoretical orders of convergence were found for the
beam buckling problem.

Shell Model
Buckling of the thin shell model is veri�ed using a plate that is simply supported on all edges and constrained
in the in-plane directions (see Figure 5.9a) such that the plate is bi-axially loaded in case of a non-zero Poisson
ratio ν. The reference solution is obtained using formulations from the book of Hughes et al. [52] and is given in
Appendix C.3. For a plate with L = 1[m], B = 1[m], E = 200[GPa], ν = 0.3, t = 10[mm], the reference critical
stresses loads σc are 55.62 [MPa], 105.09 [MPa] and 194.36 [MPa] for buckling modes 1, 2 and 3, respectively.
The buckling modes corresponding to these loads are depicted in Figure 5.9.

In Figure 5.8, the relative errors between the numerically obtained buckling load and the analytically computed
buckling load for the case in Figure 5.9a for the �rst three buckling modes are given. As seen in these �gures,
the present model predicts the buckling loads for the square plate accurately and consistently for �ner meshes.
However, contrary to other analyses, the models do not show improvement in the order of convergence for
increasing polynomial order of the elements. Instead, convergences of order 2 up to 3 are observed, regardless
of the order of the basis. Thus, it can be concluded that further research is required on convergence of the
buckling solver.



64 Chapter 5. Benchmark Problems

10−4 10−3 10−2 10−1

1
2

∆ξ (ANSYS)

ANSYS

10−1 10−0.5
10−9

10−4

101

1
2

1
4

1
7

1
9

∆ξ

ε

(a) η = 0, Pan = 3947.84 [N ]. Note: the solution
from ANSYS is plotted on the top-horizontal axis.

10−1 10−0.5
10−9

10−4

101

1
2

1

4
1

7

1

9

∆ξ

ε

(b) η = 2, Pan = 4069.25 [N ]

10−1 10−0.5
10−9

10−4

101

1
2

1

4
1

7

1

9

∆ξ

ε

(c) η = 7, Pan = 12898.8 [N ]

10−1 10−0.5
10−9

10−4

101

1
2

1

4
1

7

1

9

∆ξ

ε p = 2
p = 3
p = 4
p = 5

(d) η = 10, Pan = 23378.5 [N ]

Figure 5.7: Convergence of the relative error for the �rst buckling load of the beam model, with respect to analytically
determined critical load Pan for di�erent values of the non-dimensional sti�ness paramteter η ∈ {0, 2, 7, 10}. The
parameters of the beam are: EA = 102 [N ], EI = 108 [Nm2], L = 1 [m] and the reference load was P = 10−4 [N ]. The
(unique) knot vector varies between Ξ = {0,∆ξ, 2∆ξ, . . . , 1} for ∆ξ = 1/n, n ∈ {1, 2, . . . , 20} and the orders of the knot
vector vary between 2 and 5. For the beam without a foundation (η = 0) reference computations were made with ANSYS

with similar parameters but a reference load of P = 102 [N ].
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Figure 5.8: Convergence of the �rst three buckling modes for the shell model for mesh size or knot span ∆ξ. The
error ε is an L2 error between the analytically and numerically obtained critical stress on the boundary. Orders of the
knot vectors range from 2 to 5.
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Figure 5.9: Model and normalised mode shapes for buckling of a simply supported plate which is restrained in the
normal direction of each boundary. In the present case, the plate has aspect ratio L = 1.0 [m], β = L/B = 1.0, Young's
modulus E = 200 [GPa], Poisson's ratio ν = 0.3, thickness t = 10 [mm] and applied line load σt.

5.3 Quasi-Static Analysis: Arc-Length Methods
Assessing the models for Quasi-Static and Post-Buckling Analyses implies that the algorithm for handling
bifurcation points, i.e. the bi-section method and extended arc length iterations, are considered (see Section 4.4).
In this section, bifurcation points are computed using the arc-length procedure for the cases presented in the
previous section. Furthermore, the results from benchmark problems for assessing the post-buckling behaviour
are given. In the present research, the related algorithms were only implemented for the shell model.

Shell Model
Veri�cation of the post-buckling arc-length model, as described in Section 4.4 for the shell model, is done by
considering three cases.

The �rst benchmark involves incremental loading of a (di�erently parameterized) Scordelis-Lo roof (see Fig-
ure 5.2a) by a point load in the middle, resulting in snap-back behaviour of the plate [214]. The reference
solution is taken from Sze et al. [214] based on a 16× 16 mesh of four-node shell elements in ABAQUS for a thick-
ness of 6.35 [mm] and 12.7 [mm]. Similar results have been obtained for more parameter combinations in Zhou
et al. [215], who also identi�ed secondary unstable paths. Furthermore, Guo et al. [111] used 16×16 and 12×12
isogeometric elements of order 2 for thickness 12.7 and 6.35 [mm]. In Figure 5.10 the applied force is plotted
against the mid-point displacement of the roof for both thicknesses. As seen in both �gures, excellent agreement
with the results of Sze et al. [214] is obtained for the isogeometric shell model. As basis function order increases,
the results shift more towards the reference results, which shows the model is consistent. Additionally, the results
for the order 2 mesh show higher correspondence with the results of Sze et al. [214] than those of Guo et al. [111].

A second benchmark problem that is considered is from, two benchmarks as presented by Pagani and Car-
rera [216] are considered. The �rst case represents a cantilever beam subject to a vertical end load. This
benchmark does not involve an instability, but it shows a continuous transition between the solution of a linear
beam model and the in�uence of the axial sti�ness for larger forces. The second case represents a cantilever
beam subject to a horizontal end force. This case involves an instability and the beam is loaded far in the
post-buckling regime, such that the beam's direction is `inverted'. In both cases, the beam has parameters
E = 75 [MPa], L = 1 [m] and a square cross-section with t = 0.01 [m].

The results of the benchmarks from Pagani and Carrera [216] are given in Figure 5.11 and Figure 5.12, respec-
tively. The insets in these �gures represent the undeformed (dashed) and deformed (solid) con�gurations. As
seen in these pictures, the present model shows good agreement with the results of Pagani and Carrera [216]
with a slight deviation in Figure 5.11 which might be due to the fact that their model uses a slightly di�erent
technique to eliminate rotational degrees of freedom, which mainly in�uences for large rotations.

Lastly, assessing the arc-length method on the ability to compute bifurcation points, the �rst buckling load of
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the constrained plate subject to an edge load is computed. The results are presented in Table 5.2. As seen in
this table, the �rst buckling load is computed accurately by the two-step method with the bisection method
and extended iterations. Only marginal underestimation is seen for the highest polynomial order with the �nest
mesh. This can be due to over�tting of the order of the basis function or due to the choice of the tolerance of
the extended arc-length method (10−6 here) on the singular point indicator (i.e. the minimal diagonal value of
the Cholesky Decomposition, see Section 4.4).
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Figure 5.10: Scordelis Lo roof subject to a load at the centre for thickness t = 6.35 [mm] and t = 12.7 [mm]. The
reference solutions are from Sze et al. [214] and Guo et al. [111] and the corresponding parameters of the roof (see
Figure 5.2a) are E = 3102.75 [N/mm2], ν = 0.3, L = 254 [mm], R = 2540 [mm], φ = 0.1 [rad]. The numerical results are
all computed with fourth order NURBS.
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5.4 Modal Analysis
Modal analysis was discussed in Section 4.5. Despite this technique is not used in the applications of this
research, benchmark results of the model are brie�y given here. This veri�es the model for future use.
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Table 5.2: Shooting accuracy of the bisection method and extended iterations implemented in the arc-length method.
The values in the table are the loads on the computed bifurcation point for di�erent knot spacings ∆ξ and di�erent
polynomial orders. The numbers in brackets are rounded percentage errors. The exact solution is σc = 55.62 [MPa]

p
∆ξ 2 3 4

1/2 58.56 (5.29%) 55.96 (0.60%) 55.76 (0.25%)
1/4 56.19 (1.02%) 55.78 (0.29%) 55.67 (0.10%)
1/8 55.80 (0.32%) 55.66 (0.08%) 55.63 (0.01%)

1/16 55.67 (0.09%) 55.62 (0.01%) 55.61 (0.02%)

Beam Model
As discussed in Section 4.5, isogeometric vibration analysis has the advantage over conventional Finite Ele-
ment Method that eigenfrequency and eigenmode computations are accurate and do not show optical branches
[186, 101]. As a benchmark, the spectrum of eigenfrequencies for a pinned-pinned beam is modelled here. The
present benchmark is performed for a beam with unit sti�ness EI = 1[Nm2], unit area A = 1[m2], unit density
ρ = 1 [kg/m3] and unit length L = 1 [m].
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In Figure 5.13, the ratio ωh,n/ωn − 1 is plotted on the vertical axis, where ωh,n are numerically obtained
eigenfrequencies and ωn are the analytical eigenfrequencies which are (nπ)2 for a pinned-pinned beam. On the
horizontal axis, the eigenfrequency number n over the number of degrees of freedom n is plotted. Although the
resolution is rather low, i.e. N is small, the same height of the curves is obtained as in the works of Cottrell
et al. [186] and Weeger et al. [101]. According to this paper, it should indeed not depend on the number of
discrete frequencies. Since the number of nodes that are used in the present work (N = 33-35) is signi�cantly
smaller than in the work of Cottrell et al. [186] (N = 2000), the outliers close to n/N = 1 are better visible,
although there were reported by Cottrell et al. [186] as well.

Furthermore, another result published by Cottrell et al. [186] is the convergence of the �rst three eigenfrequencies
with respect to the grid size, i.e. the knot vector re�nements. Figure 5.15 presents the convergence of the �rst
three eigenfrequencies for di�erent orders of B-splines. The corresponding mode shapes are governed by sin(nπ)
where n is the mode number. Analogous to the observations in Cottrell et al. [186] the frequencies indeed
converge in order 2(p − 1) for a pinned-pinned beam. However, the basis of order p = 2 shows wiggles which
were also observed in the static analysis for this basis.

Shell Model
For veri�cation of the modal analysis of the shell model, vibrations of a clamped circular plate are considered.
The analytical solution for this problem is derived in Appendix C.1. It should be noted that the eigenfrequencies
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Figure 5.15: Convergence of the �rst three eigenfrequencies ω1, ω2, ω3 for knot span ∆ξ for the beam model. The
error ε is an L1 error between the numerical eigenfrequency ωn and the analytical eigenfrequency ω = (nπ)2. Orders of
the knot vectors range from 2 to 4. The value of N is 33 up to 35 for orders 2 up to 4, respectively.

of the plate are approximated numerically due to the occurrence of Bessel functions in the analytical formula-
tions. In Figure 5.17 the �rst eight mode shapes of the plate resulting from the numerical model are depicted.
Furthermore, Figure 5.16 depicts the error of the �rst three eigenfrequencies over the re�nement of bases with
di�erent polynomial orders. From these results, one can see that modes 2 and 3 are axisymmetric and hence
for these modes the mode shape occurs twice, where the second one is a π

2 [rad] rotation of the second. Fur-
thermore, one can see that the �rst three eigenfrequencies converge with at least order 2(p− 1) for polynomial
order p, observing even 9th order convergence for a basis with p = 5. Since eigenfrequencies of the analytical
problem were numerically obtained, the theoretical order of convergence could not be estimated using similar
techniques as used by Cottrell et al. [186] for beam con�gurations since no analytical solution for the discrete
spectrum is known. Additionally, the accuracy of the root �nding algorithm used to obtain these solutions (see
Appendix C.1) can be the reason for a decrease of the convergence orders for errors of order O

(
10−13

)
.
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Figure 5.16: Convergence of the �rst three eigenfrequencies ω1, ω2, ω3 for knot span ∆ξ for the shell model. The
error ε is an L1 error between the numerical eigenfrequency ωi and the analytical eigenfrequency ω which is derived in
Appendix C.1 with the mode shapes depicted in Figure 5.17. Orders of the knot vectors range from 3 to 5. For the
lowest order, the error for the coarsest mesh is not plotted as the mode shapes were not identi�able with the selected
modes.
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(a) Mode 1 (b) Mode 2 (c) Mode 2 (d) Mode 3 (e) Mode 3 (f) Mode 4

Figure 5.17: First four mode shapes for a clamped circular plate.

5.5 Dynamic Analysis
In this section, the dynamic analysis of nonlinear structural models will be veri�ed. For the beam model, a va-
riety of time integration schemes is implemented to assess their performance. For the shell model, the Newmark
and Bathe method are implemented since these methods are not based on order reduction and hence system
size is not doubled.

From literature, orders of convergence for various time integration methods can be found, which are included
in the legends in the results in this section. Using these orders of convergence, the discretization errors for both
space and time can be made of the same order by the fact that:

O (ε) = O
(
∆ξp+1

)
+O (∆tq) , (5.2)

Where ∆t is the time step, ∆ξ is the knot spacing, p is the order of the B-splines or NURBS and q is the
expected order of the time integration method. To make the total error of the method purely depending on the
mesh size, the time step can be scaled according to:

∆t = (∆ξ)
p+1
q . (5.3)

Alternatively, ∆ξ can be chosen su�ciently large so that the discretization error is smaller than the temporal
discretization error in the considered domain for ∆t.

Beam Model
For veri�cation of the dynamic beam model, the method of manufactured solutions is used. To validate the
time integration method, it convenient to use a manufactured solution that is polynomial, such that the spatial
discretization error (and hence the error of the initial condition) is of the order of the machine precision. The
manufactured solution for the beam models is given by:

u(x) = 0 and w(x) =
x

24

(
1− 2x2 + x3

)
cos(ωπt)

Where ω is a frequency. This solution shows that for t = 0 the manufactured solution (thus the initial condition)
is equal to a pinned-pinned beam with a unitary distributed load. Substituting this in the (non)linear system
of equations in Equation (B.13) gives the following right-hand sides:

f(x) = − EA

48EI2
cos(ωπt)2(4x3 − 6x2 + 1)x(x− 1),

g(x) = −
1
2x(x2 − x− 1/2)2EA

(
x− 1

2

)2
(x− 1) cos2(ωπt)

24EI3

+

(
ρAπ2ω2x4 − 2ρAπ2ω2x3 + ρAπ2ω2x− 24EI

)
cos(ωπt)

24EI
.

The results for the linear and non-linear dynamic beams are given in Figure 5.18, where the mesh size was
taken constant, but small, and the time step was varied. The methods converge with orders that are equal
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Figure 5.18: Convergence plots (top: horizontal de�ection error, bottom: vertical de�ection error) with the L2-error ε
against the time step ∆t for di�erent time integration methods. EI = 1[Nm2], EA = 1[N ], ρA = 103 [kg/m] and t = 2[s]
and the frequency parameter for the manufactured solution is ω = 4 [rad/s]. The unique knot vector is Ξ = {0, 0.5, 1}
and the orders of the basis functions are 4 for the vertical de�ection and 2 for the horizontal de�ection solutions. The
numbers in brackets in the legend represent the theoretical order of convergence of each method.

to the theoretical orders of convergence of the methods. Furthermore, it can be seen that machine precision
around εΩ ∼ O

(
10−15

)
is obtained for higher-order methods. Only the ERK3 method shows an order of slightly

below 3, which could be due to inaccuracy in the implementation of the coe�cients of the method (see van
Zuijlen [195]). Additionally, the Explicit Euler, ERK3 and RK4 methods show inconsistencies in the order of
convergence for large time steps (see Figure 5.18a), which can be because these methods are of explicit nature.

Shell Model
For veri�cation of the dynamic nonlinear shell model, the benchmark case as proposed by Mondkar and Pow-
ell [217] is used. That is, a spherical cap is subject to a constant forcing on the centre, for details see Figure 5.19.
In the shell model, the Bathe and Newmark methods were implemented, motivated by the fact that these meth-
ods are direct and hence do not need order reduction (i.e. doubling of the system size).

Figure 5.20 presents the de�ection of the mid-point of the cap over time. The reference solution of Mondkar
and Powell [217] is based on a Newmark scheme with a time step of 2 [µs], 8-node axisymmetric elements and a
lumped mass matrix. The reference solution of Yang and Xia [218] is based on 20 3-node corotational triangular
shell elements and the presented energy-decaying/momentum-conserving algorithm with a time step of 2 [µs].
The results of Wang et al. [220] are based on 96 hexahedral quadratic 20-node solid-shell elements, and unknown
but explicit time integration scheme and unknown time step. Finally, the results of Filho and Awruch [219] are
based on 750 (2 through thickness) 8-node hexahedral elements, free of volumetric and shear locking, and an
explicit Taylor-Galerkin scheme with time step 2.7 · 10−3 [µs]. The present model is based on the Newmark and
Bathe methods with isogeometric meshes with 8×8, 16×16 or 32×32 elements with order 3 and corresponding
time steps of 1.875, 0.46875 and 0.1171875 [µs] the time step such that the time step scales with the spatial
discretization error according to Equation (5.3).

As seen in the �gure, the present models agree with the results of the reference papers. However, few observa-
tions are made. Firstly, it can be seen that the present method captures more local spikes due to re�nements
in space and time. Secondly, both methods over-predict the de�ections in the mid-point for times between 240
and 300 microseconds but a good agreement with the results of Filho and Awruch [219] were found over the rest
of the time signal. The di�erences with other methods can be explained by the fact that these authors use solid
elements [217] or shell element with di�erent or unknown time-integration schemes [218, 220]. Additionally,
di�erences can be clari�ed by the fact that isogeometric meshes represent the geometry exactly while FEA
meshes do not.
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Figure 5.20: Spherical Cap subject to instantaneous load on center (see
Figure 5.19) with reference solutions by Mondkar and Powell [217], Yang
and Xia [218], Filho and Awruch [219], Wang et al. [220] and present
solutions of the Isogeometric Kichho�-Love shell model for the Bathe
(Ba) and Newmark (NM) time integration schemes where N2 denotes
and N × N mesh. The vertical axis represents the de�ection w of the
center of the cap normalised with the vertical span and the horizontal
axis represents the time in micro-seconds (µs). Note: the solution of
Filho and Awruch [219] was only present up to t = 250 [µs].
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5.6 Concluding Remarks
In this chapter, veri�cation studies were presented for structural analyses implemented in the present isogeo-
metric beam and the thin shell model. Relating to subgoal 4 of this thesis, the following conclusions can be
drawn:

• Manufactured solutions and the Shell Obstacle Course were used to verify the results from the static beam
and shell model, respectively. The results for the beam model show convergence to the manufactured
solution. The solutions for the shell have shown good agreement with reference solutions from similar
isogeometric shell analyses. Minor di�erences were observed for the pinched cylinder case, which can
be due to slight di�erences in the geometry. Despite these di�erences, the errors with respect to the
isogeometric benchmark of Kiendl et al. [87] are 0.0% to 0.1% and for the cases of Belytschko et al. [207]
0.0% to 0.6%. Additionally, the benchmark on follower pressure has shown slight di�erences compared to
the model of Bouzidi et al. [211] as a di�erent model was used in their case. Lastly, a case on adaptive
re�nement showed the potential of adaptive re�nement, but an open question is which parameter (e.g.
curvature, displacement) should be used for adaptive re�nement.

• The buckling model for the beam has shown convergence to the analytical solution for moderately �ne
meshes, but oscillations in the convergence plots for �ne meshes. This was explained by the linearization
of the buckling problem that is used for linear buckling analysis. A similar observation was made when
using an ANSYS model. For shell buckling, such oscillations were not found within the present range of
knot vector re�nements. Although the solutions converged towards the analytical solution, it was found
that an increase of the order of the basis function did not necessarily increase the order of convergence.
Similar convergence plots as those presented in Section 5.2 were unavailable in similar works of Shojaee
et al. [110], Valizadeh et al. [108] and Thai et al. [109] to provide proper comparison of these orders.

• The post-buckling algorithm using the arc-length method, was veri�ed using three benchmarks. A shallow
roof subject to an increasing mid-point load showed excellent agreement and consistency with the results
of Sze et al. [214] and Guo et al. [111]. Additionally, similar results in the post-buckling behaviour of two
cases from the work of Pagani and Carrera [216] were observed. Here, the present model was used without
the use of initial perturbations. Lastly, a square plate subject to a compressive load was considered to
assess the shooting accuracy of the combination of the bisection method and the extended iterations.
This method showed that bifurcation points were accurately found although a slight underestimation was
found for a fourth order basis with the �nest mesh while other errors were overestimating. This is possibly
because of the tolerance used in the arc-length method.

• Both beam and shell models were considered in the framework of modal analysis. In case of the beam
model, the error in the discrete domain as well as the errors for the �rst three eigenfrequencies show
excellent agreement with the results of Cottrell et al. [186] in terms of convergence of the eigenfrequencies
as well as the spectrum of eigenvalues. The shell model was veri�ed using analytical solutions for a
clamped circular plate. In this case, the convergence of the �rst three eigenfrequencies with respect to the
analytical reference solutions showed excellent agreement.

• Lastly, the dynamic beam and shell models were considered. All time-integration techniques discussed
in Section 4.6 were implemented in the beam model and showed expected convergence with respect to
the manufactured solutions, which implies that the methods are correctly implemented. Bathe's and
Newmark's method were implemented for the shell model and showed comparable results to previously
published results for a spherical cap under an instantaneous load. Furthermore, the methods showed
consistency with respect to mesh re�nement, although mesh re�nement (and hence time-step re�nement)
showed additional vibrations due to the increased level of spatial and temporal detail.



6 | Application: Wrinkling of Thin Sheets

In this section, the benchmarked thin shell model for post-buckling analysis will be applied on two cases to
identify wrinkling behaviour, relating to subgoal 5 of this thesis. The �rst is the stretched thin sheet, inspired
by Cerda et al. [43] (see Figure 6.1), where the edge is incrementally stretched using the arc-length method.
The second is a thin membrane with in-plane dimensions in the order of kilometres (O (km)) �oating on a
�uid-foundation subject to a traction load which is incrementally using the arc-length method (see Figure 6.2).
This traction load can resemble a load by wind or current, for instance. The second case is used to illustrate
the e�ects of di�erent design parameters (e.g. material parameters, geometric dimensions) on the wrinkled
shape of the membrane. In both cases, the geometry is initially �at, but bifurcation points induce out-of-plane
deformations and hence wrinkling.

Based on the results of the parameter variations of the thin sheet subject to a traction load, design considerations
for the design of a Very Large Floating Thin Structure (e.g. for o�shore solar energy generation) are provided.
These design considerations are supported by the results of a �oating quarter disk to support the considerations
for circular VLFTSs. The design considerations relate to the sixth subgoal of this thesis.
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Figure 6.1: Stretched thin sheet modelled with a
symmetry axis on the right side. The domain length
is L/2 and the width is B. The sheet is loaded with
a distributed load on the left boundary. Wrinkling
pro�les are plotted over the red boundary. Strains are
measured in point A.
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Figure 6.2: Thin sheet with length L and width B
subject to traction vector (t). The traction is hori-
zontal in this case. The left edge is simply supported
and the other edges are free. The red edge is the edge
that is used for plotting of the wrinkling cross-sections.
Strains are measured in point A.

6.1 Wrinkling of a Stretched Thin Sheet
Based on the experiment of Cerda et al. [43], the wrinkling pattern of a stretched thin sheet will be investigated
here. Similar to the works of Fu et al. [78], Wang et al. [76] and Taylor et al. [77], the aspect ratio α = L/B
and the width over thickness ratio β = B/t of the plate are used in the analysis. All benchmarks on the thin
sheet are modelled as depicted in Figure 6.1. That is, only half of the sheet is modelled by using a symmetry
boundary condition on the mid-plane of the sheet. Additionally, the sheet is modelled using a distributed load
rather than a displacement since the displacements are applied with elimination in the present model, which
causes the residual vector to be unchanged after modifying the load factor in the arc length method. The
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end-point strain is measured on the mid-plane of the edge where the load is applied.

Taylor et al. [77] model the stretched thin sheet with length 254 [mm], width 101.6 [mm], Young's modulus
1 [MPa], Poisson's ratio ν = 0.5 and thickness t = 0.1 [mm], based on the experiments of Zheng [71]. The sheet
is stretched until the strain of the displaced edge is 30%. In this study, the stretched sheet is modelled with
the same parameters and with the con�guration from Figure 6.1. In Figure 6.3a the strain of the boundary
where the load is applied is plotted against the dimensionless maximal vertical displacement ζ = max(w)/t on
the symmetry axis for the isogeometric meshes of 16× 16, 32× 32 and 64× 64 elements with orders 4, 3 and 2,
respectively. Additionally, Figure 6.3b depicts a cross-section of the membrane at di�erent strains and contour
plots are presented in Figure E.2. Based on these results, four observations are made:

• Firstly, it can be seen from Figure 6.3a that the results show high mesh dependency. The meshes with
16×16 and 32×32 elements show kinks in the curve which corresponds to instantaneous redistribution of
the wrinkles, possibly due to an insu�cient of basis functions and hence a lack of detail. For the 64× 64
mesh, the number of wrinkles is continuously equal to 9.

• Secondly, the curves in Figure 6.3a show that after the sheet buckled and wrinkles appear, the amplitude
increases relatively quickly but stagnation is observed. This stagnation is due to the stretching e�ects in
the sheet, which eliminate the wrinkles for higher strains due to stretching forces. Zheng [71] refer to this
as restabilization.

• Thirdly, it can be seen that the amplitudes are over-estimated compared to the numerical results of Taylor
et al. [77] and the experimental results of Zheng [71]. It is expected that this is due to the fact that the
sheet in the present case is not modelled with a straight boundary (i.e. based on displacements) and
therefore the contraction of the sheet on the symmetry axis is higher. Additionally, the tensional force in
the middle axis of the sheet (point A) is expected to be higher, as it elongates more compared to other
edges. The e�ect is illustrated in Figure 6.4.

• To obtain the curve in Figure 6.3b for the �nest mesh, the solution was not always stable, i.e. the indicator
for buckling was negative in some intervals. In particular, this holds for the intervals ε ∈ [0.072, 0.161] and
ε ∈ [0.2529, 0.288] for the �nest mesh. The solution was forced to continue since for secondary bifurcations,
the bi-section algorithm did not converge for reasonable arc length steps and with limited computational
costs. It should be noted that imposing an initial imperfection might cause a stable track if the amplitude
is too large (and hence the imperfection is subjective). Combined with the previous bullet, it is highly
recommended to model the sheet with proper boundary conditions and if instabilities are present, to
identify the origin of the instabilities.

6.2 Large Floating Sheet Subject to Traction
In order to illustrate the e�ect of design parameters on wrinkling physics of a �oating thin structure, a test case
is presented in this section. The test case has similarities with the stretched thin sheet presented in the previous
section. However, the sheet is subject to traction (e.g. due to wind or current) and one edge is supported
and restrained in width direction. Figure 6.2 gives a schematic sketch. This case is presented since it can be
resembled with an experiment in a �ume tank.

The parameters that are varied are related to material choices (Young's modulus and Poisson's ratio), geometry
choices (thickness and aspect ratio) and the foundation sti�ness is varied for the sake of completeness, although
S = ρg can in practice not be in�uenced for o�shore solar platforms1. For the sake of comparison, the following
non-dimensional quantity is introduced, which represents the ratio between �exural rigidity D and foundation
sti�ness D. The ratio is a 2D equivalent of the one from Equation (C.7) and hence applicable to shells.

η =
B(
D
S

) 1
4

with: D =
Et3

12(1− ν2)
[Nm] and S = ρg [N/m3]. (6.1)

1When considering a sheet on water, the foundation sti�ness is the hydrostatic pressure and hence governed by S = ρg.
However, the present set-up allows for experimental veri�cation in a so-called �ume tank with optionally a di�erent �uid to obtain
representative values for non-dimensional quantities.
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(a) Strain-amplitude diagram.
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(b) Wrinkle pro�le diagram.

Figure 6.3: Strain-amplitude diagram (left) and wrinkle pro�le on the symmetry axis (right) for two isogeometric
meshes with 16 × 16 elementes and orders 4 and 5. The strains wrinkle pro�les are depicted for di�erent strain levels
(marked in the strain-amplitude diagram) and the experimental values from Zheng [71] are plotted in the wrinkle pro�le
diagram as well.

For the non-dimensional load, the expression in Equation (6.2) is taken. This expression is inspired by the
one-dimensional equivalent in Equation (C.6), taking B as the wrinkling length, replacing the reference load
Pref by the traction times the area of the sheet trefBL and replacing the bending sti�ness EI by the �exural
rigidity D times the length of the sheet L to incorporate for the aspect ratio of the sheet.

p =
PrefB

2

DL
=

(trefLB)B2

DL
. (6.2)

Lastly, the strain ε of the sheet is de�ned by the maximal horizontal elongation (max ∆) over the length of the
sheet. The non-dimensional amplitude ζ of the wrinkled sheet is de�ned by the maximum vertical amplitude
over the red edge of the sheet in Figure 6.2 divided by the length of the wrinkle in its initial state, i.e. B. This
gives:

ε =
max ∆

L
ζ =

maxw

B
. (6.3)

For the sake of comparison, a base case was de�ned. In this case, the membrane has a length and a width
of 103 [m], a thickness of 5 [m], a Young's modulus and Poisson's ratio of 0.5 [GPa] and 0.3 (corresponding
to Ethylene-Vinyl Acetate (EVA) [221]) and the foundation sti�ness corresponds to that of water, i.e. S =
104 [kgm]. In all presented results, an Isogeometric mesh of 16 × 16 elements with order 4 was used, unless
stated otherwise. Furthermore, the values corresponding to the base case will be underlined in the sequel. The
results are depicted in Section 6.2 and Figure 6.5.

6.2.1 Discussion of the Base Case
Throughout this section, the in�uence of di�erent parameters on the response of the thin sheet under traction
will be discussed based on three �gures. Before proceeding to the results of the parameter variations the plots
will be discussed for the base case.

In Figure 6.6a, two plots are depicted. In the sequel, these curves will be referred to as the and load diagram
(left) the strain-amplitude diagram (right). In the load diagram, the non-dimensional horizontal strain of the
sheet ε (dashed lines) and the non-dimensional maximal amplitude ζ (solid lines) are plotted against the non-
dimensional load p and referred to as load-strain and load amplitude curves. Based on the load-strain curve,
the strain for a certain load can be reconstructed and can be used in combination with the strain-amplitude
diagram. Based on the load-amplitude curve, the critical buckling load can be determined. The strain amplitude
diagram can be used to �nd the critical buckling strains.
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Figure 6.4: Illustration of the e�ect of imposing a distributed load on the edges compared to a forced displacement.
The contraction on the cross section B-B increases compared to that of A-A and hence amplitudes are larger.

Furthermore, Figure 6.5a shows the cross-sections of the free, wrinkled edge of the sheet on speci�c strain
values. Depending on the case, cross-sections will be plotted for 20% or 40% strain. For further reference of the
wrinkled con�guration, deformed geometries are plotted in the appendix Appendix E. Based on the available
data, few conclusions can be drawn:

• Both the strain-amplitude diagram and the load-amplitude diagram show the critical buckling strain and
load, respectively, by means of a bifurcation branch. Just after this branch, the slope of the curves
decreases over the strain/load.

• The load-strain does not show a bifurcation point since the sheets elongate also before wrinkles are
initiated. Furthermore, the slope of the curve decreases over the load, which is a consequence of tensional
forces in the sheet that penalises larger amplitudes. This e�ect also occurs for the thin sheet in Section 6.1
and was introduced by Cerda et al. [43].

6.2.2 The e�ect of Foundation Sti�ness
Based on experimental �ndings of Pocivavsek et al. [44], it is known that foundation sti�ness penalises large
wavelengths since these wavelengths are associated with large amplitudes and hence the potential energy in the
foundation increases. Although this quantity cannot be varied for designs of o�shore solar platforms, it can
be used to develop representative scalings for experiments using Equation (6.1). In this case, the foundation
sti�ness is varied between the values S ∈ {103, 5 · 103, 104} such that η = {204.4, 305.7, 363.6}.

In Figure 6.6b the strain versus the amplitude and the load versus the strain and amplitude are plotted and in
Figure 6.5b the cross-sections corresponding to a strain of around 20% are presented. The following observations
are made:
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Figure 6.5: Wrinkling cross-sections with non-dimensional amplitude ζ and non-dimensional width coordinate. The
cross-sections are plotted for strains as indicated in the captions of the �gures. The results are presented for (a) the base
case and parameter variations of (b) foundation sti�ness, (c) Young's modulus, (d) Poisson's ratio, (e) thickness and (f)
size. The results are obtained using a 16× 16 mesh of order 4
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Figure 6.6: Load diagram (left) presenting non-dimensional amplitude ζ and strain ε against the nondimensional load
p and strain diagram (right) presenting non-dimensional amplitude ζ against strain ε. The results are presented for (a)
the base case and parameter variations of (b) foundation sti�ness, (c) Young's modulus, (d) Poisson's ratio, (e) thickness
and (f) size. The results are obtained using a 16× 16 mesh of order 4.
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Figure 6.6: (Continued) Load diagram (left) presenting non-dimensional amplitude ζ and strain ε against the non-
dimensional load p and strain diagram (right) presenting non-dimensional amplitude ζ against strain ε. The results are
presented for (a) the base case and parameter variations of (b) foundation sti�ness, (c) Young's modulus, (d) Poisson's
ratio, (e) thickness and (f) size. The results are obtained using a 16× 16 mesh of order 4.

• As seen Figure 6.5b, the number of wrinkles increases gradually for increasing S, as seen on the sides of
the cross-sections.

• The load diagram in Figure 6.6b shows that for increasing foundation sti�ness, the buckling load (i.e. the
load when wrinkles initiate) increases, which is in line with the physics discussed by Pocivavsek et al. [44].
Additionally, it can be seen that load-strain curves are equal for all variations and that for large loads
the slopes of the amplitude-strain curves are also equal, which is both due to the fact that the foundation
sti�ness does not in�uence axial sti�ness.

• Considering the strain-amplitude diagram in Figure 6.6b it can hence be observed that wrinkle initiation
occurs for lower strains when the foundation sti�ness decreases.

6.2.3 The e�ect of Young's Modulus and Poisson's Ratio
The Young's Modulus and the Poisson's ratio are parameters that can be chosen in the design of a �oating
sheet for o�shore solar generation since it is closely related to material selection. For the base-case of this
case-study, the Young's Modulus was chosen to be equal to 0.5 [GPa] and the Poisson's ratio to be 0.3 which
are values common for polymers such as Ethylene-Vinyl Acetate (EVA) [221]. However, the choice of foam
polymers on the one side or sti�er materials such as non-metallic �bre materials can decrease or increase the
Young's modulus and Poisson's ratio. In this case, the e�ect of varying Young's modulus is assessed for values
of E ∈ {5.0, 1.0, 0.5} [GPa] such that η = {204.4, 305.7, 363.6} and varying Poisson's ratio is assessed for values
of ν ∈ {0.30, 0.35, 0.40}.
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Firstly, Figure 6.6c and Figure 6.5c present the wrinkling diagrams and the cross sections for changing Young's
modulus, respectively. The following observations are made:

• From the cross-sections of the wrinkles at a strain of 20%, it can be seen that the number gradually de-
creases on the sides of the cross-sections for increasing Young's modulus, which is in line with observations
of Pocivavsek et al. [44].

• Figure 6.6c shows an increasing Young's modulus implies an increased buckling load. This is in line with
the results from classical buckling theory. Additionally, it can be seen that the lines for in the load-strain
diagram overlap by the choice of p.

Secondly, Figure 6.6d and Figure 6.5d present the wrinkling diagrams and the cross sections for changing
Poisson's ratio, respectively. Generally, an increase in the Poisson's ratio implies an increase in the contraction
of the membrane orthogonal to the load direction. As seen in the sheet of Cerda et al. [43], this contraction
implies wrinkles parallel to the length direction of the sheet. The following observations are made:

• From Figure 6.5d it can be seen that the number of wrinkles for the base case is di�erent than for both
varied Poisson ratios. That is, for the base case the number of wrinkles is equal to 9 whereas, for the
other cases, this number is equal to 10 (taking into account the edges). This can be due to the fact
that a larger Poisson ratio causes the sheet's contraction to increase. Another reason for this di�erence
is that the solutions are not fully converged on the mesh (as also observed for the stretched thin sheet,
see Section 6.1), hence a re�nement study is recommended but not performed because of constraints in
computational time.

• Considering the load diagram in Figure 6.6d, it can be seen that the strains are equal ν ∈ {0.35, 0.40} and
di�erent for ν = 0.30 which is explained by the number of wrinkles. The critical buckling load initiates the
load-amplitude curves earlier for increasing Poisson's ratio. Contrary to the cases of the varying Young's
modulus or Foundation sti�ness, these curves are not overlapping for large loads. The observations can
be explained by the fact that an increased Poisson's ratio implies an increased contraction of the sheet
and hence compressive stresses in the material exceed the critical buckling values earlier.

• Considering the strain-amplitude diagram similar behaviour is observed but then related to critical strains.
The di�erences with the base case are lower because of the combination of large di�erences between
ν{0.35, 0.40} and ν = 0.30 for both plots in the load diagram.

6.2.4 The E�ect of Membrane Thickness
An important design parameter of �oating membrane structures is the thickness of the structure. In this work,
the Kirchho�-hypothesis was assumed, which requires that the structure is slender. The base case of the thin
sheet under traction has a length and width 1 [km] and a thickness of 5 [m]. This implies that the slenderness
of the plate is 200, which is considered thin2 [87]. An important note that should be made is that the thickness
of the sheet will be varied here, assuming that the sheet has a constant, solid, cross-section. A (concept) design,
however, might not have a cross-section that is constant and solid, but rather have outer-�bres and an empty,
but reinforced, mid-plane to make the structure lighter and cheaper. However, this cross section will have an
equivalent �exural rigidity and hence it is assumed here that the �exural rigidity D based on thickness t is equiv-
alent for a yet to be designed cross-section. The thickness parameter will be varied in t ∈ {10.772, 6.292, 5.00}
such that η = {204.4, 305.7, 363.6}.

In Figure 6.5e the cross-sectional pro�les for the sheet on di�erent thickness values are given. Furthermore,
Figure 6.6e presents the load diagram and the strain-amplitude plot. The following observations are made:

• As seen in Figure 6.5e, an increase of the thickness clearly implies a decrease in the number of extremes.
In this case, the base case consists of 9 extremes whereas the largest thickness value counts 7. For the
intermediate thickness, the number of extremes is also equal to 9. One additional interesting observation
is that the cross-sections are mainly di�erent towards the outer edges of the sheet.

2Kiendl et al. [87] states that the Kirchho�-Love shell theory is applicable for shells with L/t > 20 (thin) and that shells with
L/t > 1000 (very thin) the deformations cannot be described by geometrically linear behaviour for even small deformations.
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• A change of the thickness in�uences the �exural rigidity to the third power and the through-thickness area
of a shell element to the �rst power. By an increase of the �exural rigidity, the critical buckling that initiates
wrinkles increases to the third power. Additionally, axial sti�ness is increased due to an increase in the
thickness, but its e�ect is proportional. Considering Figure 6.6e, it is observed that the non-dimensional
critical buckling values are decreasing for increasing t, which is due to the non-dimensionalization of p.
For larger strains, the curves are not equal, contrary to the cases where Young's modulus and foundation
sti�ness were varied. The reason for this is the fact that the membrane sti�ness and the bending sti�ness
do not both increase proportionally due to the scaling chosen in p. Lastly, it can be seen that the line for
a thickness of 10.7 [m] is not fully �at for large p, which is possibly due to redistribution of the maximum
amplitude from the middle to the side of the wrinkle due to stretching e�ects.

• Considering the strain-amplitude diagram in Figure 6.6e, it can be seen that the critical strain is largest
for the largest thickness and that the curves have similar values for larger strains due to the fact that the
horizontal axis is scaled by the di�erent slopes in the load-strain diagram.

6.2.5 The E�ect of Size
From the theory of plate or beam buckling, it is well-known that length or span of a plate or a beam in�uences
the critical buckling load. When the length of a beam increases, the critical buckling load decreases. Considering
the present case, the wrinkles occur in the direction perpendicular to the length of the sheet. Hence, the width
B of the sheet is considered as a reference length for dimensionless quantities η and p. In the following, the
width of the sheet is hence varied with values B ∈ {562.34, 840.90, 1000} such that η = {204.4, 305.7, 363.6}.

In Figure 6.5f the cross-sectional pro�les for di�erent values of the thickness are presented and Figure 6.6f
presents the load diagram and the strain-amplitude plot. The strain is normalized with the length of the sheet
since this measures the elongation in length direction. The following observations are made:

• As seen in Figure 6.5f, the number of wrinkles for the lowest width of the sheet is equal to 7 whereas for
the base case and the intermediate width this number is 9. Similar to the case of a varying thickness there
is a preference for a symmetric mode shape which was also visible with a �ner mesh.

• Considering the load curves in Figure 6.6f a decrease of the width of the sheet implies a decrease in the
buckling load for the non-dimensionalization in Equation (6.2). Physically, a decrease of the width of
the sheet would increase the buckling load from the perspective of the span of the sheet that decreases.
However, the total load that is applied to the sheet also decreases since it is de�ned per unit area.
Regarding the load-strain curve, it can be seen that the slope of the curves increases with a decrease in
the thickness.

• An additional observation that can be made is that the plot for the lowest width B = 562.34 [m] shows
an amplitude increase around a load p of 0.55. This increase corresponds with a shift of the maximum
amplitude in the domain from the middle of the wrinkle to the side of the wrinkle. This is caused by the
fact that the amplitudes in the middle of the wrinkle decrease due to stretching and while ones at the
side keep increasing. However, it should be noted that this e�ect occurs for strains beyond 100% which is
considered highly inaccurate for Saint-Venant Kirchho� material models, see Section 3.5.

• Considering the strain-amplitude diagram in Figure 6.6f, it can be seen that the critical strain increases as
the width of the sheet decreases. Using the observations made in the previous bullet, this can be explained
by the fact that the increase in the slope of the load-strain is larger than the decrease of the critical load.
Additionally, it can be seen that the lines do not overlap for large strains, as was seen for Young's modulus
and foundation sti�ness variations. This is expected to b related to the parametrization of ζ.

• Comparing the results from Figures 6.5f and 6.6f with the diagrams for the foundation sti�ness and Young's
modulus variation, it can be seen that despite the values of η are the same, a di�erence in critical buckling
load and strain is observed. This is, again, expected to be related to the choice of the parametrization of
p.
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6.2.6 General Conclusions
Based on the parameter variations, some general conclusion can be drawn:

• The results of a varying foundation sti�ness or Young's modulus show equal results for similar values of η.
This implies that the scaling using η and p can be properly used in these cases. The results clearly show
the balancing physics between the foundation sti�ness and the material sti�ness, i.e. the �exural rigidity.

• When the thickness is increased according to the non-dimensional parameter η and thus when the �exural
rigidity D is changed by t instead of E, results are not equal to those generated by variations of foundation
sti�ness or Young's modulus. Possibly, the non-dimensional parameter p causes incorrect scaling of the
load for the present mechanism.

• Similar to the thickness, variations in the e�ective wrinkling length, i.e. the width of the sheet, result
in di�erent results compared to the cases of varying Young's modulus or foundation sti�ness for similar
values of η. These di�erences could be related to improper choice of the scaling p.

Concluding, the present results can be seen as a step towards veri�cation and possibly experimental validation
case for thin �oating membranes under tension. As mentioned above, the scaling laws presented in this case are
expected to be not fully correct as they are not consistent in the prediction of a non-dimensional buckling load
p for similar values of a non-dimensional sti�ness ratio η between foundation sti�ness S and �exural rigidity D.
Improvement of these scaling laws is left out of the scope of this present research but is highly recommended
for future research. The work of Cerda and Mahadevan [54] should be taken into account here, as it analogies
in the e�ects of foundation sti�ness and tensional forces in terms of energies.

Additionally, it is recommended to perform further convergence studies on the meshes that are used in the case
study. Implementation of Quasi-Newton or Broyden methods in the present arc-length method would decrease
the computational costs of the method such that �ner meshes can be used for the analysis. Additionally,
adaptive re�nement of the mesh using THB-splines might be bene�cial when the wrinkles have been formed.

6.3 Floating Quarter Disk
As an application to an o�shore solar platform, assuming that the platform is thin, has large in-plane dimensions
and a small thickness, the test-case as depicted in Figure 6.7 is speci�ed. That is, a thin, circular membrane
is modelled where the inner radius (R1) is contracted by a distributed load and the outer boundary at radius
R2 is free or constrained. The vertical displacements on the inner boundary are also either free or constrained.
The membrane is supported by a spring foundation with sti�ness S, representing �uid-pressure.

The domain of interest is a quarter disk rather than a full disk, due to unavailability of periodic basis functions
in the present model. The boundaries of the quarter disk are simply supported, i.e. the vertical displacement
on the radial boundaries is zero.

In the Figure 6.8, results for the quarter disk for di�erent boundary conditions are presented. The isogeometric
mesh is depicted to represent the undeformed disk. As can be seen in this �gure, the e�ect of constraints on
the inner and outer boundaries is that the critical load and strain for wrinkle formation increases, which is a
logical consequence of the fact that waves in radial dimension are halted on the outer and optionally the inner
boundary. Additionally, the results show that for (approximately) equal amplitudes of the wrinkles, the strains
of the constraint platforms are higher. All these observations provide background for design considerations of
for very large �oating sheets in Section 6.4.

6.4 Design Considerations for VLFTSs
Based on the result presented in Sections 6.2 and 6.3, this section intends to give some design considerations for
the design of Very Large Floating Thin Structures (VLFTSs) for o�shore solar power generation. The content
of this section is based on structural design and analysis thoughts of the author, as no references are available
on the design of VLFTSs. Therefore, the considerations in this section are conceptual and engineering details
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Figure 6.7: Floating disk with inner radius R1 and outer radius R2. The inner-boundary of the disk is loaded by a
distributed load in radial direction. The straight boundaries are (anti)symmetry boundaries and the outer boundary is
free. The disk is resting on a foundation with sti�ness S.

are to be investigated further. Hence, these considerations can be seen as guiding thoughts.

When designing a �oating platform for any reason, safe and reliable operation of and on the platform is desired
under speci�c circumstances. In this context, this is referred to as structural reliability. For o�shore solar
platforms, this means that the structure and its mooring system should be able to encounter wind, waves and
currents and even collisions with other structures in the ocean environment. When considering a ship hull, plates
are supported by sti�eners, webs and girders in longitudinal and/or transversal direction to resist global loads
(hull bending moments) and local loads (wave impacts) [52]. The structure is called hierarchical, since plates
are supported by sti�eners, sti�eners are on their turn supported by webs and girders support the complete ship
structure. In these structures, buckling of a plate with sti�eners between the system of webs and girders does
not necessarily imply sinking or malfunctioning of the complete vessel. In other words, structural reliability is
guaranteed when a plate fails.

Considering the �oating sheets presented in Sections 6.2 and 6.3, it can be seen that initiation of the wrinkles
(i.e buckling) and propagation of the wrinkles (i.e. post-buckling) a�ect the complete structure. Namely, as
load increases, out-of-plane deformations of the wrinkles increase globally. As a result, structural reliability
might be limited, as water can �ow over parts of the platform, or wrinkles transition to folds and solar panels
get covered, hence the platform loses its function. In worse cases, increased vertical deformations can lead to
structural failure due to fracture or yielding of the material. In the following, design considerations for very
large �oating thin o�shore solar platforms are given to indicate future challenges for the design of such structure
from the view of wrinkling.

6.4.1 Arresting Wrinkles
In the case studies covered in this research, wrinkling is a phenomenon that globally a�ects the shape of the
platform. To make wrinkling a local phenomenon and hence to ensure structural reliability, the platform should
be designed such that local wrinkle formation does not have a global e�ect. Hence, wrinkles should be arrested
to develop over the complete platform. Arresting wrinkles can be done by introducing local reinforcements.

In Figure 6.9 a circular o�shore structure is depicted, with reinforcements denoted by thick solid lines. The
reinforcements, in this case, can be locally thicker parts of the structure, or reinforcements using another ma-
terial with a higher Young's modulus. Wrinkles that are long in the radial direction, have to encounter for
instance tangential reinforcements (i.e. rings) which have large bending sti�ness. Reinforcements are therefore
expected to increase the buckling load by penalising long wrinkle wavelengths. It should be noted that from a
numerical point of view, modelling of smaller wrinkles requires �ner meshes. However, when the reinforcements
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(a) Γ1 vertically free, Γ2 free in all
directions.
The critical load is fc = 1.66 ·
102 [MN/m], with critical strain
εc = 0.0042[−]. The �gure is plotted
for ε = 0.0089 [−]

(b) Γ1 vertically free, Γ2 simply sup-
ported.
The critical load is fc = 2.87 ·
102 [MN/m], with critical strain
εc = 0.0077. The �gure is plotted
for ε = 0.0160

(c) Γ1 vertically constrained, Γ2

simply supported.
The critical load is fc = 5.65 ·
102 [MN/m], with critical strain
εc = 0.0107. The �gure is plotted
for ε = 0.0561

Figure 6.8: Wrinkling of a quarter annulus (see Figure 6.7 for the geometry) with dimensions R1 = 500 [m], R2 =
2000 [m] and thickness t = 10 [m], Young's modulus E = 0.5 [GPa], Poisson's ratio ν = 0.4 on a foundation with sti�ness
S = ρg = 104 [kgm]. The reference load is f(θ) = 0.5 [N/m] and the boundaries Γ3 and Γ4 are simply supported (u = 0)
the boundary Γ2 is either free or simply supported (u = 0) and the boundary Γ1 is free or constrained in vertical direction
uz = 0. Isogeometric meshes with 32× 32 elements and order 4 of the undeformed geometry are plotted in white.
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Figure 6.9: Original (continuous) o�shore solar platform (left) and reinforced o�shore solar platform (right). The
dashed reinforcements are optional reinforcements to decrease the tangential span (denoted with ∆l as an example)
and in blue a possible extracted model domain is depicted when assuming a hierarchical structure. The sketches of the
wrinkles are based on Figure 6.8.
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∆R ∆R

Figure 6.10: Three possible mooring solution for o�shore solar platforms. The distance ∆R represents the radial
distance between incident waves and the mooring connection. This distance can determine global buckling instability
and hence wrinkling patters, but is depending on the reinforcements applied.

are considered as (torsional) constraints, the model domain can be reduced to a single patch (as depicted in
Figure 6.9.

Reinforcement in radial and tangential direction implies that the distance between two radial reinforcements
is larger when moving further outward on the disk. As commonly known from buckling theory, a larger span
will reduce the wrinkling wavelength and hence wrinkling is more likely to occur on larger radii. A solution to
cope with this problem is to add additional radial sti�ening for larger radii (see Figure 6.9), or to distribute
the sti�ening less uniformly (e.g. according to the nerve structure of a leaf; c.f. the front page of this the-
sis). Additionally, reinforcement is drawn uniformly spaced in the tangential and radial direction, but the rings
(i.e. radial dimension) can be spaced non-uniformly as well, to improve buckling resistance of each of the patches.

An additional note that should be made is that the reinforcements can be combined with the attachment of
patches or modules of the platform and hence increase the manufacturability of the platform compared to a
continuous structure. Additionally, the reinforcements can also be used as a walkway to increase the accessibility
of the complete platform for inspection and maintenance purposes.

6.4.2 Mooring System Design

A design consideration that is not considered in this work, but that is essential in the future design of �oating
structures with low �exibility is mooring system design. In particular, interest is the connection of the platform
to a mooring system (e.g. an anchor chain). In Figure 6.10, three alternatives are presented for the connection
of a mooring system.

Firstly, a design where the mooring lines are connected to the outer ring (i.e. reinforced) is depicted. In this
case, it is expected that the mooring system restricts this ring in a vertical direction, which can be a problem
when large waves are encountering the platform.

Secondly, a design where the mooring system is connected between the centre and the outer ring of the platform
is presented. It should be noted that the mooring lines are still to be connected to a reinforcement. In these
cases, the edges are free to displace with the waves and the loads acting on the surface of the platform do not
have to be transferred over the full radius.

Lastly, a design where the mooring lines are connected to a central buoy is presented. In this design, the
buoy can be designed such that it has su�cient buoyancy to carry installations such as transformers. The
disadvantage of such a buoy connection, however, is that the loads have to be transferred throughout the whole
radius of the platform. Additionally, it should be noted that the buoyancy of the platform is depending on the
depth of the sea since the mooring system itself is expected to weigh more as the depth of the sea increases.
For future work, it is recommended to look into these concepts in more detail.
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6.4.3 Holes and Point Loads
The last design consideration is regarding local e�ects such as holes/gaps or point loads. Firstly, holes or gaps
in the structure might be required to increase the amount of solar radiation that is going through the platform
to provide sunlight to underlying aquaculture. Additionally, holes can also be functional for maintenance pur-
poses as the bottom of the platform can be made accessible for divers. However, the e�ect of the placement of
holes in the structure can in�uence the wrinkling resistance of the platform as local stress concentrations might
appear. It is expected that reinforcement of the structure will reduce the in�uence of holes on global structural
reliability, as wrinkles due to the holes can be arrested by the reinforcement.

Secondly, point loads can be in-plane loads (such as local cable connections), but also loads orthogonal to the
surface of the platform. In both cases, the e�ect of local disturbance of the structure on local structural stability
should be considered. It is expected that reinforcements will increase the structural reliability of the platform,
as was also the case for the holes. Examples of point loads can be humen or accidental placement of equipment
on the platform.

Assuming the dimensions of the platform or patches of the platform are in the order of 100 up to 1000 metres
and (man)holes and point loads have a small area (i.e. in the order of 1 metre), numerical challenges appear in
terms of the multiple scales of the problem. In these cases, the numerical analysis should be covered by adaptive
meshing techniques (see Carraturo et al. [129]) or multi-scale (post-)buckling analysis. No literature was found
about the latter topic for Isogeometric or Finite Element Analysis.

6.5 Concluding Remarks
In this section, three applications of the present model on modelling wrinkling phenomena have been presented,
relating to the �fth subgoal of this thesis. Additionally, based on the model results and the background infor-
mation on Very Large Floating Structures (VLFSs) from Chapter 2, design considerations were presented in
this section. This relates to the sixth subgoal of this thesis.

Firstly, the thin shell post-buckling model was applied to a derived case of the stretched thin sheet of Cerda
and Mahadevan [54] in Section 6.1. Due to the fact that the boundaries do not remain straight when the
sheet is elongated, the model results are not comparable to numerical studies from the literature. However, the
physics that were observed in these works show a qualitative comparison. The reason for not modelling straight
boundaries for this problem is, as mentioned earlier, due to a restriction in the implementation of Dirichlet
boundary conditions combined with the arc-length method. Hence, improvement of this implementation is one
of the recommendations for the current model as will be discussed in Chapter 8. Additionally, higher levels
of mesh re�nement or local re�nement would give insight into the post-buckling instabilities that were found.
However, �ner meshes were not considered because of high computational costs. Mesh re�nement and the ef-
fect of order increase or reduction, possibly using linear FEA, on computational costs are left for further research.

Secondly, a �oating sheet subject to a traction load was considered to mimic a possible con�guration of a Very
Large Floating Thin Structure subject to wind or current in Section 6.2. The foundation sti�ness was varied
as a model parameter and the Young's modulus, Poisson's ratio, the width and the thickness of the sheet were
varied as design parameters. In all parameter variations, the non-dimensional ratio between foundation sti�ness
and �exural rigidity η was similarly varied and the strain ε and non-dimensional amplitude ζ were plotted
against the non-dimensional load p. The main conclusion from this parameter study is that despite constant
variation of η and even the �exural rigidity D, di�erences in the strain and amplitudes were found. Hence, it is
recommended to investigate the use of di�erent scaling laws for this case.

Lastly, using the results of the parameter variations of the �oating sheet subject to traction and additional results
on the impact of di�erent boundary conditions on a �oating quarter disk subject to contraction on its inner
radius, design considerations for the development of thin o�shore structures were presented (see Section 6.4). In
brief, these are: (i) adding reinforcement to arrest wrinkles and to introduce structural hierarchy for structural
reliability; (ii) consider the e�ect of di�erent mooring system connections to the (reinforced) platform; and (iii)
investigate the e�ect of holes and point loads on local wrinkling behaviour.
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In this thesis, a model for the wrinkling analysis of thin sheets on substrates was presented. The main question
that will be answered in the conclusion of this thesis is:

How can wrinkling formation of thin, �oating sheets, numerically be modelled utilising the Isogeo-
metric Analysis framework?

The main objectives separate the development of a mathematical model and the application of this model on
the physics of wrinkling of thin sheets on foundations, hence this chapter evaluates these objectives separately
later on. In particular, the objectives are formulated as:

1. Extend the Kirchho�-Love shell implementation in the Isogeometric Analysis framework to be applied in
post-buckling analysis.

2. Apply the Isogeometric shell model on common structural analysis computations, and in particular on
post-buckling computations of wrinkling formation in �oating sheets.

In the remainder of this chapter, conclusions on the main aims and main question of this work are drawn.
Section 7.1 �rst provides the combined highlights of this work relating to the knowledge gaps identi�ed in
Chapter 2 and answering the research question of this thesis. Thereafter, Section 7.2 provides the conclusions
related to objective 1 of this research, and Section 7.3 provides conclusions related to objective 2 of this research.
All conclusions are constructed by re�ecting on the subgoals presented in Chapter 1.

7.1 Highlights
Based on the two objectives, the following highlights are the main conclusions from this research:

• Wrinkling formation of thin, �oating sheets is numerically modelled using an Isogeometric Kirchho�-Love
shell model combined with the extended arc-length method (see Section 4.4) for post-buckling analysis.
The extended arc-length method does not require initial perturbations of the solution, hence no a priori
modelling decisions are required. This adds post-buckling analyses to the seamless integration of Computer
Aided Design (CAD) and general structural analysis, which is the core idea of Isogeometric Analysis.

• Benchmark studies in Section 5.3 veri�ed the shell model and the arc-length method based on results from
the literature. Additionally, three case studies on wrinkling formation in were given in Chapter 6, namely
a thin sheet subject to tension, a �oating thin sheet subject to in-plane traction and a quarter disk subject
to a contraction on the inner radius. The case studies show that the present model predicts wrinkling
shapes, but the further implementation of Dirichlet boundary conditions in the arc length method will allow
for further veri�cation on wrinkling speci�cally. Furthermore, the implementation of adaptive meshing
techniques using THB-splines (see Section 4.1) is recommended to capture local wrinkling phenomena
without a large increase in computational costs.

• Application of the model on other structural analyses showed (static, buckling, modal and dynamic anal-
ysis) showed generally good agreement, although the linear buckling method should be veri�ed further
(see Section 5.2).
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7.2 Mathematical Model Development
The �rst aim of this thesis focusses on model development of a thin shell model for the post-buckling analysis
of thin sheets. In particular:

Extend the Kirchho�-Love shell implementation in the Isogeometric Analysis framework to be applied
in post-buckling analysis.

The �rst subgoal of this thesis relates to the governing equations and related assumptions for modelling thin,
�oating structures. The mathematical model that was used in this work is based on the Kirchho� hypothesis
for thin beams and shells (see Chapter 3). In particular, an Euler-Bernoulli beam model was developed and
the Kirchho�-Love shell model of Goyal [142] was further extended (see Chapter 3). The main assumptions in
the models are that the beams and shell are su�ciently thin such that their cross-sections do not deform under
deformations and hence that only the mid-plane can be modelled. Additionally, rotary inertia of the shell is
neglected and a linear relationship between stress and strain is assumed according to the Saint-Venant material
model.

The application of isogeometric is discussed in Section 4.1, relating to the second subgoal of this thesis. Both
the beam and shell implementation are based on rotation-free isogeometric analysis implementations. That is,
B-splines and NURBS are used as the basis for analysis, and rotational degrees of freedom are not solved for
but derivatives of the basis are used instead since their continuity is preserved and controllable across element
boundaries. By only solving for displacement degrees of freedom, system size is reduced for the Kirchho�-Love
formulation. Additional advantages of Isogeometric Analysis include the exact representation of the geometry
and high accuracy for a low number of degrees of freedom, as discussed in Section 2.3

Using the shell model, the arc-length method was implemented amongst other structural analyses. The present
implementation of this method for the shell model includes the Cris�eld arc-length method including bisection
methods, extended iterations and branch switching to compute bifurcation points and to switch branches after
these points (see Section 4.4). In Section 5.3 a series of three benchmark problems for the present arc-length
method implementation was given. On the �rst hand, a shallow roof subject to an incremental point load was
considered and similar results as published by other authors were obtained. Secondly, a clamped beam subject
to an in-plane or out-of-plane point load was considered, where the latter case involves a bifurcation. The results
of this benchmark showed that the results of the post-buckling branch are in agreement with the reference paper
of Pagani and Carrera [216], without imposing initial perturbations on the beam. Lastly, the shooting accuracy
of the model was assessed by means of a plate buckling problem. Here, the arc-length method was applied
and a bifurcation was found using extended arc-length iterations. The results show accurate prediction of the
bifurcation point with errors of 0.01% up to 0.10% for the �nest meshes. From these results it can be concluded
that the post-buckling method is veri�ed, which ful�ls the third and fourth subgoals of this thesis.

In Chapter 6 the model was applied to the cases of the stretching of a thin sheet and wrinkling of a �oating sheet.
Both cases contain conclusions that are noteworthy from a development point of view. Firstly, the stretched
sheet showed large deviations compared to measurements of Zheng [71] due to the fact that arc-length method
does not work for incremental displacements on the edges since Dirichlet boundary conditions are imposed by
elimination (see Section 6.1). Additionally, it was found that for small wrinkle wavelengths, �ne meshes (thus
leading to large computational costs) were used to obtain accurate displacement �elds and that instabilities had
to be suppressed to obtain the results. Therefore, it can be concluded that further consideration of the origin
of the instabilities of the stretched thin sheet is required by considering mesh re�nement or very low arc-length
steps. Both come with additional computational costs.
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7.3 Structural Analysis and Wrinkling of Floating Sheets
Focussing on the application of the Isogeometric Euler-Bernoulli beam and Kirchho�-Love shell models that
were developed under the �rst objective of this thesis, the second objective reads:

Apply the Isogeometric shell model on common structural analysis computations, and in particular
on post-buckling computations of wrinkling formation in �oating sheets.

Related to the third subgoal of this thesis, Chapter 4 presented di�erent numerical procedures for structural
analysis computations, given the (non)-linear sti�ness, the mass and a damping matrix from any beam or shell
discretization. The analyses that were covered here are static, modal, buckling, post-buckling and dynamic
analysis (see Sections 5.1 to 5.5). In case of the post-buckling solver, the Cris�eld arc-length method combined
with procedures to compute bifurcation points and to switch bifurcation branches. Furthermore, a number of
temporal integration schemes (see Section 4.6) were implemented for the beam model and based on the fact that
no order reduction has to be applied and hence system size is not doubled, the Newmark and Bathe method
were included for the shell model.

Based on the benchmark problems in Chapter 5, the beam and shell model presented in this thesis were veri�ed,
relating to subgoal 5. The models were veri�ed using manufactured solutions or benchmark studies from the
literature. The following is concluded:

• Firstly, for the beam model, the static analysis showed expected orders of convergence except for second
order basis functions. Buckling analysis showed that the beam model consistently predicts critical buckling
loads, although inaccuracies were found for the �nest meshes. The modal analysis showed expected orders
of convergence for a simply supported beam, based on theoretical analysis from literature. Dynamic
analysis with the beam model showed expected orders of temporal convergence for all implemented time
integration methods.

• Secondly, static analysis for the shell model showed good agreement with the results of other isogeometric
shell implementations, but slight di�erences with respect to Finite Element models. For buckling analysis,
the shell model showed convergence towards analytical critical buckling loads, although this convergence
did not improve for increasing orders of convergence. Post-buckling analysis benchmarks showed good
agreement with reference solutions for cases with and without bifurcations. Similar to the beam model,
a modal analysis benchmark showed a convergence of order 2(p − 1), but a theoretical estimate for this
order was absent. Lastly, a benchmark for nonlinear dynamic analysis showed that the present method
provides similar results compared to other studies, although di�erences in elements and time integration
methods were present. Additionally, the dynamic analysis showed that re�nements increase the prediction
of local spatial and temporal features

Although not all structural analyses have been used for application on wrinkling of (�oating) thin membranes,
the methods have been veri�ed for future use for the analysis of thin shell structures. Especially, the use of
the dynamic shell model can be useful for Fluid-Structure Interaction (FSI) computations (see Chapter 8) and
modal analysis can be used with the modal expansion method to construct linear dynamic models (see Sec-
tion 4.5).

Lastly, the phenomenon of wrinkling of thin (�oating) sheets is studied, relating to the sixth subgoal of this
thesis. The two cases that were presented in Chapter 6 are the stretched thin sheet and a �oating sheet subject
to traction. In both cases, wrinkles were modelled successfully. However, in the case of the stretched thin sheet,
a clear transition to a larger number of wrinkles was seen for coarse meshes. Additionally, this case was modelled
using di�erent boundary conditions compared to references from the literature. In case of the sheet subject to
traction, the physical mechanisms behind the wrinkling phenomena were identi�ed, but a proper scaling for the
non-dimensional load was not found. Based on the physics of wrinkling of a �oating sheet, design considerations
were presented for an annular o�shore solar platform. These considerations are: (i) adding reinforcement to
arrest wrinkles and to introduce structural hierarchy for structural reliability; (ii) consider the e�ect of di�erent
mooring system connections to the (reinforced) platform; and (iii) investigate the e�ect of holes and point loads
on local wrinkling behaviour.
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In this chapter, suggestions for further research are presented, based on the �ndings of this research and the
�ndings of the literature review. The mindmap in Figure 8.1 is provided to show interactions between di�erent
topics presented in this section.
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Figure 8.1: Mindmap with di�erent topics presented for further research in this section. Related topics are indicated
by connections and motivations can be found throughout this section.

8.1 Shell Model Features and Applications
Firstly, based on the results from this study and the use of the model in Chapter 6, the following future work
is recommended:

• The treatment of non-homogeneous Dirichlet boundary conditions is done by elimination in the model
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developed in this work. For most applications, this technique works correctly. However, in the current
implementation, the residual is not updated when Dirichlet boundary conditions are changed using the
load factor λ in the arc length method. This results in an unstable arc-length method with complex
roots. One way to overcome this problem is to implement the Dirichlet boundary conditions based on
L2-elimination. In this way, the force vector f contains non-zero entries. An alternative is to implement a
method similar to the implementation of clamped boundary conditions, where degrees of freedom on one
boundary can be coupled and hence rigid boundaries can be modelled (see Figure 6.4).

• Improvements for the post-buckling method that was used in this model are mostly based on robustness
and computational costs. Although the method was successfully benchmarked in this study, the case
where wrinkling of a thin sheet was investigated (see Section 6.1) showed that secondary bifurcations
can occur and that the current implementation was not able to �nd these points with the �nest meshes.
Hence, it is recommended to reduce the computational costs of the arc-length method by utilising quasi-
Newton or Broyden methods such that the results for �ner meshes can be considered. Alternatively, the
implementation of an existing and possibly optimized continuation method library can be considered, e.g.
using the LOCA package of Trilinos1.

• To capture local phenomena such as wrinkling without uniformly re�ning the complete domain and hence
increasing computational costs massively, re�nement using THB-splines is proposed. Although this con-
cept was proposed in a case in Section 5.1, future work can be done on adaptive mesh re�nement in
combination with time-integration and arc-length methods. The problem that arises, in this case, is that
with mesh re�nements the number of degrees of freedom (hence matrix and vector sizes) change and there-
fore time-integration and arc-length methods have to be modi�ed since they assume the same system size
every step. A solution for this problem, which shows the strength of Isogeometric Analysis, is to utilise
the property that the solution is continuous everywhere and hence can be re�ned accordingly without
making interpolation errors. In this way, the previous load or time steps can be re�ned to comply with
the system size of the new load step. The work of Carraturo et al. [129] can be used as inspiration here.

Additionally, a few recommendations for wider application of the model on engineering applications follow from
�ndings in the literature review of this study. Firstly, one of the goals of this research was to implement di�er-
ent structural analyses for the Kirchho�-Love shell model. For simple geometries, i.e. single patch geometries,
this goal is achieved as shown in the benchmark studies. However, when geometries become more complex,
there is the need to connect multiple patches or element types in-plane or out-of-plane. For example, when
the o�shore solar platform will be reinforced by sti�eners or when `airbags' are used, di�erent shell patches
should be connected out-of-plane. These connections can be implemented by the Bending Strip Method [88]
and non-conforming patch coupling can be done by the master-slave coupling from Coox et al.[90, 91] or using
interpolation matrices to transfer mass and sti�ness of arbitrarily curved sti�eners to a plate [105].

Secondly, when designing structures with local thickness changes beyond the thin-shell assumptions, implemen-
tation of blended elements [96] can be bene�cial. These elements account for combination or Reissner-Mindlin
and Kirchho�-Love theory. When the structure is reinforced with beams, the methodology from the work of
Raknes et al. [97] can be used to combine beam and shell elements. Lastly, implementation of material models
such as Neo-Hookean or Mooney-Rivlin would allow for more accurate modelling of rubber-like materials or
implementation of composite material models. This can be of particular interest if o�shore solar platforms will
be constructed from such materials.

Lastly, the thin shell model could be further developed to solve for Stochastic Partial Di�erential Equation
(SPDEs) to identify the occurrence of di�erent wrinkling and folding complexes based on a non-deterministic
distribution of thickness or sti�ness variations, which was done by Li et al. [118, 119, 120] recently.

1The Library of Continuation Algorithms (LOCA) is a library for performing large-scale bifurcation analysis developed by Sandia
National Laboratories. The website of LOCA is http://www.cs.sandia.gov/loca/. LOCA is a package of the Trilinos Project
(https://trilinos.github.io/). The webpages were accessed in July 2019.

http://www.cs.sandia.gov/loca/
https://trilinos.github.io/
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8.2 Physics of Wrinkling and Folding
Modelling of wrinkles in thin sheets is one of the main topics of this research. A lot of work has been performed
and published in other works and based on the �ndings of this study, the applications to o�shore solar platforms
and the available literature, some suggestions for further research in this topic are given here.

Firstly, with the implementations mentioned in Section 8.1, especially the Dirichlet boundary conditions im-
plementation, several experiments from literature can be resembled with the present model. As mentioned in
Section 2.2, the experiments from Wong and Pellegrino [50], Cerda et al. [43], Iwasa [222] (hence numerical
results similar to those of Nayyar et al. [72] and Taylor et al. [73]). Using periodic basis functions, an annular
sheet under torsion can also be modelled (see the work of Wang et al. [223]), which is expected to be a repre-
sentative case for the o�shore platform.

Furthermore, experiments by Wang and Zhao [224] and Pocivavsek et al. [44] explored the transition of wrin-
kled sheets on a substrate towards a folded con�guration. An extension of the current research would be to
investigate this phenomenon for sheets subject to bi-axial loading patterns and to further validate the model
using the scaling laws and experimental data from Wang and Zhao, Pocivavsek et al. [224, 44]. This can lead
to more complex structures of wrinkles and folds. Ultimately, a bi-axial version of the phase-diagram of Wang
and Zhao [224] can be derived for this kind of loading situations. Additionally, more applicable to the o�shore
solar platform, this can be done for annular geometries �oating on a substrate. One of the requirements of the
investigation of wrinkling and folding complexes is that the model should be capable of modelling delamination
or self-contact of the sheet in a far-developed fold as described for the �oating uni-directionally loaded sheet
by Jambon-Puillet et al. [55]. Regarding the experimental investigation of wrinkling for large �oating sheets is
that the e�ect of surface tension can be signi�cant in an experimental setting, but insigni�cant on full scale.
Hence, the Bond number should be taken into account in experimental scalings.

8.3 Development of O�shore Solar Platforms
Although the motivation for o�shore solar energy, as presented in Chapter 1 was only motivational in this
research, some suggestions for future developments based on the cited literature are presented here.

Thirdly, from a modelling perspective, the developed model combined with cable elements can be used to model
a �oating solar platform on an air-water interface to compute dynamic loads on the structure and mooring
system in the ocean environment. In this work, the whole study of Fluid-Structure Interaction was left out of
scope, but initially, the shell solver was coupled to a simple ideal �ow solver using a linear elasticity solver for
the domain deformations (using the solver and �ndings of Shamanskiy et al. [225]). When an isogeometric �ow
solver - whenever it considers real �ow, ideal �ow or turbulent �ow - is coupled to an isogeometric structural
solver in a partitioned way, the interface can be represented identically for both solvers (see Hosters et al. [226]
for details), utilising the isogeometric re�nement property that maintains the shape of the interface.

Secondly, this research has shown the development of a model to predict wrinkling of sheets �oating on water.
Additionally, background knowledge was given on the physics of wrinkling. The next step in the development of
o�shore solar platforms could be to develop a concept design. This design can bring new challenges in the mod-
elling of such structures. These concept designs, on their turn, can be used to develop the present isogeometric
model for wrinkling predictions towards a tool that is suitable to model for instance more complex cross-sections
(see Section 8.1 for the Bending Strip Method and combinations of elements), composite materlals, but also
considering hierarchy in the structure or the need to model local e�ects (which requires local re�nements using
THB splines).

Thirdly, based on the available literature sources on o�shore solar platforms and additional publications on
environmental analyses, it is recommended to perform a study on the potential of o�shore solar energy. For
this analysis, data on cloud cover [7], increased e�ciency of cooling and an increase of the albedo e�ect due to
sea water[25] and the methodology of Huld et al. [6] and Miglietta et al. [24] on the land-based solar energy
potential can be combined in a similar analysis to investigate the potential of o�shore solar energy.
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A | Di�erential Geometry Examples

In this section, the derivation of the covariant and contravariant bases of two surface descriptions will be given.
These are based on the formulations in Section 3.1.

A.1 Polar Coordinates
A circular surface can be described by polar coordinates. Here, we consider a quarter circle, which is described by
an angular coordinate φ and by a radial coordinate r (the parameters are also denoted by θ = (θ1, θ2) = (φ, r)):

S(θ1, θ2) =

[
r(θ2) cos (φ(θ1))
r(θ2) sin (φ(θ1))

]
r ∈ R+, φ ∈ [0, π/2] (A.1)

The covariant basis vectors are the vectors aα = ∂S
∂θα

. This gives:

a1 =

[
∂S1

∂θ1
∂S2

∂θ1

]
= a1 =

[
−r sin(φ)
r cos(φ)

]

a2 =

[
∂S1

∂θ2
∂S2

∂θ2

]
=

[
cos(φ)
sin(φ)

]
The covariant metric tensor [gαβ ] is a second-order tensor containing inner-products of the covariant basis
vectors:

g11 = a1 · a1 = r2

g12 = a1 · a2 = 0

g21 = a2 · a1 = 0

g22 = a2 · a2 = 1

From these values, it can be seen that the basis is orthogonal, i.e. that the cross-coe�cients of the metric tensor
are zero. The inverse of the covariant metric tensor yields the contravariant metric tensor [gαβ ]. The coe�cients
are:

g11 = 1/r2

g12 = 0

g21 = 0

g22 = 1

Hence, the contravariant basis is:

a1 = g11a1 + g12a2 =
1

r2

[
−r sin(φ)
r cos(φ)

]
+ 0 ·

[
cos(φ)
sin(φ)

]
=

1

r2

[
−r sin(φ)
r cos(φ)

]
a2 = g21a1 + g22a2 = 0 ·

[
−r sin(φ)
r cos(φ)

]
+

[
cos(φ)
sin(φ)

]
=

1

r2

[
cos(φ)
sin(φ)

]
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It can easily be checked that the products of the covariant and contravariant bases satisfy

aα · aβ = δβα =

{
1 if α = β

0 if α 6= β

A.2 Curvilinear Coordinates
A surface description which is non-orthogonal is given by the following formula:

S(θ1, θ2) =

[
(r(θ2) + 1) cos (φ(θ1))

(r(θ2)+1)3

4 sin (φ(θ2))

]
where φ(θ1) =

π

2
θ1 and r(θ2) = θ2 (See Equation (3.1))

Here, the coordinates φ(θ1) and r(θ2) are equivalents of the angular and radial coordinates of a polar coordinate
system and a function of parameters θ1 and θ2. The covariant basis vectors are the vectors aα = ∂S

∂θα
. This

gives:

a1 =

[
∂S1

∂θ1
∂S2

∂θ1

]
= a1 =

[
− 1

2 (θ2 + 1)π sin
(

1
2θ1π

)
1
8 (θ2 + 1)3π cos

(
1
2θ1π

)]

a2 =

[
∂S1

∂θ2
∂S2

∂θ2

]
=

[
cos
(

1
2θ1π

)
3
4 (θ2 + 1)2 sin

(
1
2θ1π

)]

The covariant metric tensor [gαβ ] is a second-order tensor containing inner-products of the covariant basis
vectors:

g11 = a1 · a1 =
1

4
(θ2 + 1)2π2 sin2

(
1

2
θ1π)

)
+

1

64
(θ2 + 1)6π2 cos2

(
1

2
θ1π

)
g12 = a1 · a2 = −1

2
(θ2 + 1)π sin

(
1

2
θ1π

)
cos

(
1

2
θ1π

)
+

3

32
(θ2 + 1)5π cos

(
1

2
θ1π

)
sin

(
1

2
θ1π

)
g21 = a2 · a1 = −1

2
(θ2 + 1)π sin

(
1

2
θ1π

)
cos

(
1

2
θ1π

)
+

3

32
(θ2 + 1)5π cos

(
1

2
θ1π

)
sin

(
1

2
θ1π

)
g22 = a2 · a2 = cos2

(
1

2
∗ θ1 ∗ π

)
+

9

16
(θ2 + 1)4 sin2

(
1

2
θ1π

)

The inverse of the covariant metric tensor yields the contravariant metric tensor [gαβ ]. The coe�cients are:

g11 =
π2

64
(θ2

2 + 2θ2 + 1)

(
cos2

(
1

2
θ1π

)
θ4

2 + 4 cos2

(
1

2
θ1π

)
θ3

2 + 6 cos2

(
1

2
θ1π

)
θ2

2 + 4 cos2

(
1

2
θ1π

)
θ2

+ 16 sin2

(
1

2
θ1π

)
+ cos2

(
1

2
θ1π

))
g12 =

π

32
(3θ4

2 + 12θ3
2 + 18θ2

2 + 12θ2 − 13)π sin

(
1

2
θ1π

)
cos

(
1

2
θ1π

)
(θ2 + 1)

g21 =
π

32
(3θ4

2 + 12θ3
2 + 18θ2

2 + 12θ2 − 13)π sin

(
1

2
θ1π

)
cos

(
1

2
θ1π

)
(θ2 + 1)

g22 =
9

16
sin2

(
θ1π

2

)
θ4

2 +
9

4
sin2

(
θ1π

2

)
θ3

2 +
27

8
sin2

(
θ1π

2

)
θ2

2 +
9

4
sin2

(
θ1π

2

)
θ2 +

9

16
sin2

(
θ1π

2

)
+ cos2

(
θ1π

2

)



110 Chapter A. Di�erential Geometry Examples

Based on the coe�cients of the contravariant metric tensor [gαβ ], the contravariant basis is (after simpli�cation):

a1 = g11a1 + g12a2 =

 6 sin( θ1π2 )
π(2 cos2( θ1π2 )−3)(θ2+1)

− 8 cos(
θ1π
2 )

π(θ2+1)3(2 cos2( θ1π2 )−3)



a2 = g21a1 + g22a2 =

 − cos( θ1π2 )
2 cos2( θ1π2 )−3

− 4 sin( θ1π2 )
(2 cos2( θ1π2 )−3)(θ2+1)2


It can be checked that the products of the covariant and contravariant bases satisfy

aα · aβ = δβα =

{
1 if α = β

0 if α 6= β



B | Structural Derivations

B.1 Continuum mechanics of the thin shell model

B.1.1 Proofs for the Material Tensor C
For the sake of completeness, Theorem 2 is recalled �rst.

Theorem 2. The material tensor of Equation (3.12) on a local Cartesian basis and the material tensor from
Equation (3.11) on a curvilinear basis are equivalent.

Proof. The goal of this proof is to prove that in Equation (3.12), C̃ is equal to C̄, which is the material tensor
from Equation (3.11) in Cartesian coordinates. Therefore, let us consider the de�nition of the material tensor
C from Equation (3.11). Furthermore, let ei, i = 1, 2, 3 denote a Cartesian basis vector. By construction,

eαβ = eαeβ =

{
1 if α = β

0 if α 6= β
.

Furthermore, a tensor in basis aα⊗aβ⊗aσ⊗aτ can in general be rewritten to a tensor in basis eα⊗eβ⊗eσ⊗eτ
[138, 141]. Hence,

C̄ = 2
λµ

λ+ 2µ
eαβeστeα ⊗ eβ ⊗ eσ ⊗ eτ + µ(eασeβτeα ⊗ eσ ⊗ eβ ⊗ eτ + eατeβσeα ⊗ eτ ⊗ eβ ⊗ eσ).

From this, it can be seen that the material tensor can be written in terms of the curvilinear basis with coe�cients
C or in terms of another basis, e.g. the Cartesian basis C̄. Using Equation (3.9), and the fact that the strain
tensor is two-dimensional, relevant components of the material tensor C are:

C̄1111 = C̄2222 = 2
λµ

λ+ 2µ
· (1 · 1) + µ(1 · 1 + 1 · 1) = 2

λµ

λ+ 2µ
+ µ,

C̄1122 = C̄2211 = 2
λµ

λ+ 2µ
· (0 · 0) + µ(0 · 0 + 0 · 0) = 2

λµ

λ+ 2µ
,

C̄1112 = 2
λµ

λ+ 2µ
· (1 · 1) + µ(1 · 0 + 0 · 1) = 2

λµ

λ+ 2µ
,

C̄2212 = 2
λµ

λ+ 2µ
· (1 · 1) + µ(0 · 1 + 1 · 0) = 2

λµ

λ+ 2µ

C̄1211 = 2
λµ

λ+ 2µ
· (0 · 1) + µ(1 · 0 + 1 · 0) = 0,

C̄1222 = 2
λµ

λ+ 2µ
· (1 · 0) + µ(0 · 1 + 0 · 1) = 0,

C̄1212 = 2
λµ

λ+ 2µ
· (0 · 0) + µ(1 · 1 + 0 · 0) = µ.
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The following simpli�cations �nish the proof.

2
λµ

λ+ 2µ
=

νE

1− ν2
,

2
λµ

λ+ 2µ
+ 2µ =

E

1− ν2
,

µ =
E

1− ν2

1− ν
2

.

Additionally, Theorem 2 will be proven here, which states that the material tensor C is symmetric. Let us de�ne
the properties minor and major symmetric �rst [141]:

De�nition 1. Any fourth-order order tensor A is said to be minor symmetrical or possesses minor symmetry
if and only if

Aαβστ = Aβαστ = Aαβτσ.

Additionally, A is said to be major symmetrical or possesses major symmetry if and only if

Aαβστ = Aσταβ .

From the book of Ba³ar and Weichert [141], it is known that any elastic material tensor possesses minor
symmetry. Hyperelastic elasticity tensors in general possesses also major symmetry. This is proven below for
the material tensor from Equation (3.11). Let us recall the theorem �rst

Theorem 3. The fourth-order material tensor C, de�ned by

Cαβστ = 2
λµ

λ+ 2µ
GαβGστ + µ(GασGβτ +GατGβσ). (See Equation (3.11))

Is minor and major symmetric.

Proof. The proof that the material tensor from Equation (3.11) is minor symmetrical, is rather straightforward.
Namely, since the covariant metric tensor has the property Gαβ = Gβα, we see that

Cαβστ = 2
λµ

λ+ 2µ
GαβGστ + µ(GασGβτ +GατGβσ)

= 2
λµ

λ+ 2µ
GβαGστ + µ(GβσGατ +GβτGασ) = Cβαστ

= 2
λµ

λ+ 2µ
GαβGτσ + µ(GατGβσ +GασGβτ ) = Cαβστ .

Which proves minor symmetry. To prove that the material tensor from Equation (3.11) also possesses major
symmetry, and thus represents a hyperelastic material, indices are again swapped

Cαβστ = 2
λµ

λ+ 2µ
GαβGστ + µ(GασGβτ +GατGβσ)

= 2
λµ

λ+ 2µ
GστGαβ + µ(GσαGτβ +GσβGτα).

Using symmetry of the metric tensor we indeed see that the equalities hold and hence major symmetry has
been proven.
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B.1.2 Variational form
As derived in Section 3.2.5 from the works of Goyal [142] and Kiendl [137], the internal, external and kinetic
energies Wint, Wext and K, respectively, are given by:

Wint =
1

2

∫
Ω

n : ε+m : κ dΩ,

Wext = −
∫

Ω

t · u dΩ,K =
1

2

∫
Ω

ρẋ · ẋ dΩ.

(B.1)

Accordingly, the Lagrangian L is used in Hamilton's principle (see Equation (3.19)) to obtain an energy func-
tional between two states or times τ0 and τ1 which should be stationary inbetween. Let us here recall the energy
functional from Equation (3.20):

J(θ) =

∫ τ1

τ0

L(u + θv) dt. (See Equation (3.20))

Consequently, the Gateaux derivative of this term (see Equation (3.21)) needs to be equal to zero to �nd the
path with minimal energy. In this appendix, the Gateaux derivative is evaluated such that Equation (3.22) is
obtained.

Firstly, let us start with the internal energy Wint. The Gateaux derivative of this term is

d
dθ
Wint(u + θv)

∣∣∣∣
θ=0

=
d
dθ

{
1

2

∫
Ω

n(u + θv) : ε(u + θv) +m(u + θv) : κ(u + θv) dΩ

} ∣∣∣∣
θ=0

=
d
dθ

{
1

2

∫
Ω

(
tC : ε(u + θv)

)
: ε(u + θv) +

(
t3

12
C : κ(u + θv)

)
: κ(u + θv) dΩ

} ∣∣∣∣
θ=0

=
d
dθ

{
1

2

∫
Ω

(
tC : ε(u + θv)

)
: ε(u + θv) +

(
t3

12
C : κ(u + θv)

)
: κ(u + θv) dΩ

} ∣∣∣∣
θ=0

=
d
dθ

{
1

2

∫
Ω

(
tε(u + θv) : CT

)
: ε(u + θv) +

(
t3

12
κ(u + θv) : CT

)
: κ(u + θv) dΩ

}
=

1

2

∫
Ω

(
tε′ : CT

)
: ε+

(
tε : CT

)
: ε′ +

(
t3

12
κ′ : CT

)
: κ+

(
t3

12
κ : CT

)
: κ′ dΩ

=
1

2

∫
Ω

(
tε : C

)
: ε′ +

(
tε : CT

)
: ε′ +

(
t3

12
κ : C

)
: κ′ +

(
t3

12
κ : CT

)
: κ′ dΩ

=

∫
Ω

n(u) : ε(u,v)′ +m(u) : κ′(u,v) dΩ.

Where the third equality holds by [138, eq. 1.157], the fourth equation is the product rule with the terms with
a prime (′) denote Gateaux derivatives and in the �fth equality, [138, eq. 1.157] is again used. In the sixth
equality the symmetry of C is used.

For the external energy, the following holds:

d
dθ
Wext(u + θv)

∣∣∣∣
θ=0

=
d
dθ

{∫
Ω

τ · (u + θv) dΩ

} ∣∣∣∣
θ=0

=

∫
Ω

τ · v dΩ.

(B.2)

Lastly, the Gateaux derivative of the kinetic energy is computed based on the assumption that rotational inertia
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is negligible (see Equation (3.18)).

d
dθ
K(u + θv)

∣∣∣∣
θ=0

=
d
dθ

{
1

2

∫
Ω

ρẋ(u + θv) · ẋ(u + θv) dΩ

} ∣∣∣∣
θ=0

≈ d
dθ

{
1

2

∫
Ω

ρċ(u + θv) · ċ(u + θv) dΩ

} ∣∣∣∣
θ=0

=
d
dθ

{
1

2

∫
Ω

ρċ0 + u + θv̇) · (ċ0 + u + θv̇) dΩ

} ∣∣∣∣
θ=0

=

∫
Ω

ρċ · v̇ dΩ.

Such that the minimal energy functional becomes∫ τ1

τ0

[∫
Ω

ρċ · v̇ dΩ−
∫

Ω

n(u) : ε(u,v)′ +m(u) : κ′(u,v) dΩ +

∫
Ω

p · v dΩ

]
dτ = 0. (B.3)

Using partial integration of the kinetic energy term and the fact that the variation v is zero on time steps τ0
and τ1, this term can be written as:∫ τ1

τ0

[∫
Ω

ρċ · v̇ dΩ

]
dτ =

[∫
Ω

ρċ · v dΩ

]τ1
τ0

−
∫

Ω

ρc̈ · v dΩ.

Where the �rst term is zero due to the fact that the variation is zero on τ0 and τ1. Substitution in Equation (B.3)
gives then ∫ τ1

τ0

[∫
Ω

ρc̈ · v dΩ−
∫

Ω

n(u) : ε(u,v)′ +m(u) : κ′(u,v) dΩ +

∫
Ω

p · v dΩ

]
dτ = 0. (B.4)

Since Equation (B.4) should be valid for all v on all times, the variational form is given by:∫
Ω

ρc̈ · v dΩ +

∫
Ω

n(u) : ε(u,v)′ +m(u) : κ′(u,v) dΩ−
∫

Ω

p · v dΩ = 0. (B.5)

For nonlinear computations, the Jacobian of Equation (B.5) is needed for Newton iterations. The Jacobian is
obtained by taking variations u + θw of Equation (B.5), where w is admissible.
The �rst term of Equation (B.5), corresponding to the kinetic energy variation, gives:

d
dθ
δK(u + θw,v)θ=0 =

d
dθ

{∫
Ω

ρ(c̈0 + ü + θẅ) · v dΩ

}
θ=0

=

∫
Ω

ρẅ · v dΩ.

The second term of Equation (B.5), corresponding to the internal energy variation, gives:

d
dθ
δWint(u + θw,v)θ=0 =

d
dθ

{∫
Ω

n(u + θw) : ε(u + θw,v)′ +m(u + θw) : κ′(u + θw,v) dΩ

}
θ=0

=

∫
Ω

n′(w) : ε(u,v)′ + n(u) : ε(w,v)′′ +m′(w) : κ′(u,v) +m(u) : κ′′(w,v) dΩ.

Such that the Jacobian becomes:

j(u,v,w) = −
∫

Ω

n′ : ε′ + n : ε′′ +m′ : κ′ +m : κ′′ dΩ. (B.6)

B.2 Euler-Bernoulli beam model
B.2.1 Derivation of Von Kármán strains
The Von Kármán strains in Cartesian coordinates are used for the derivation of the Euler-Bernoulli beam.
Throughout the whole section, the book of Reddy [140] is used. In the derivation of the strains, the Kirchho�
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Hypothesis is assumed to be true and the derivation is not limited to the one-dimensional case, for the sake of
generality. Hence, the displacements are governed by (using the bar for three-dimensional coordinate description
and quantities without a bar for the mid-plane):

ū(x, y, z, t) = u(x, y, t)− z ∂w
∂x

,

v̄(x, y, z, t) = v(x, y, t)− z ∂w
∂y

,

w̄(x, y, z, t) = w(x, y, t).

(B.7)

Furthermore, the derivation is continued by using the Green-Lagrange strain tensor, which, in terms of dis-
placements, is denoted by (using the strain and curvature tensors ε and κ)

εij =
dūi
dxj

+
dūj
dxi

+
dūi
dxj

dūj
dxi

=
1

2

(
∇ū + (∇ū)T + (∇ū)(∇ū)T

)
,

καβ =
dw̄
dxi

dw̄
dxj

.

Where ūT = [ū, v̄, w̄] and where the coordinates are expressed by xT = [x, y, z]. If the strains of a material
volume in normal directions are small, and for the vertical displacements even zero (see Equation (B.7))

du
dx
,
dv
dy
∼ O (ε) ,

dw
dz

= 0,

And if furthermore the in-plane shear e�ects are also small, i.e.

du
dy
,
dv
dx
∼ O (ε) ,

Then all terms with O
(
ε2
)
vanish from the formulations. Furthermore, for moderate rotations, the following

terms have a non-negligible contribution compared to O (ε):(
dw
dx

)2

,

(
dw
dx

)2

,

(
dw
dx

dw
dy

)
.

These orders have the following consequences for the Green strain tensor [140]:

ε11 =
du
dx

+
1

2

���
�>
O
(
ε2
)(

du
dx

)2

+
�
�
�
�>
O
(
ε2
)(

dv
dx

)2

+

(
dw
dx

)2

 ≈ du
dx

+
1

2

(
dw
dx

)2

+O
(
ε2
)

ε12 =
1

2

dudy +
dv
dx

+
�
�
���

O
(
ε2
)

du
dx

du
dy

+
�
�
��

O
(
ε2
)

dv
dx

dv
dy

+
dw
dx

dw
dy

 ≈ 1

2

[
du
dy

+
dv
dx

+
dw
dx

dw
dy

]
+O

(
ε2
)

ε13 =
1

2

dudz +
dw
dx

+
�
�
��>
O (ε)

du
dx

du
dz

+
�
�
��>
O (ε)

dv
dx

dv
dz

+
�
�
��>

0
dw
dx

dw
dz

 ≈ 1

2

[
du
dz

+
dw
dx

]
+O (ε)

ε22 =
dv
dy

+
1

2

���
�>
O
(
ε2
)(

du
dy

)2

+

�
�
�
��

O
(
ε2
)

(
dv
dy

)2

+

(
dw
dy

)2

 ≈ dv
dy

+
1

2

(
dw
dy

)2

+O
(
ε2
)
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ε23 =
1

2

dvdz +
dw
dy

+
�
�
���

O (ε)

du
dy

du
dz

+
�
�
��

O (ε)

dv
dy

dv
dz

+
�
�
��>

0
dw
dy

dw
dz

 ≈ 1

2

[
dv
dz

+
dw
dy

]
+O (ε)

ε33 =
�
�
�7

0
dw
dz

+
1

2

���
�>
O
(
ε2
)(

du
dz

)2

+

�
�
�
��

O
(
ε2
)

(
dv
dz

)2

+
�
�
�
�>

0(
dw
dz

)2

 ≈ O
(
ε2
)
.

Plugging in the expressions for u, v, w and performing some mathematical operations yields the Von Kármán
strains:

ε11 =
du
dx
− zd

2w

dx2
+

1

2

(
dw
dx

)2

,

ε12 =
1

2

[
du
dy
− z d2w

dxdy
+

dv
dx
− z d2w

dxdy
+

dw
dx

dw
dy

]
=

1

2

[
du
dy

+
dv
dx
− 2z

d2w

dxdy
+

dw
dx

dw
dy

]
,

ε13 =
1

2

[
−z d

dz

(
dw
dx

)
− dw

dx
+

dw
dx

]
=

1

2

−z d
dx


�
�
�7

0
dw
dz

− dw
dx

+
dw
dx

 = 0,

ε22 =
dv
dy
− zd

2w

dy2
+

1

2

(
dw
dy

)2

,

ε23 =
1

2

[
−z d

dz

(
dw
dy

)
− dw

dy
+

dw
dy

]
=

1

2

−z d
dy


�
�
�7

0
dw
dz

− dw
dy

+
dw
dy

 = 0,

ε33 =
dw
dz

= 0.

(B.8)

Note that the derivatives of u and v with respect to z are zero as these are the in-plane mid-plane displacements.
The derivatives of w with respect to z are zero since Furthermore, the boxed terms are the nonlinear strain
contributions.

B.2.2 Derivation of the Strong Form
For the derivation of the Euler-Bernoulli beam equation, only the xz-plane is considered and hence all derivatives
with respect to y are equal to zero. This implies that the Von Kármán strains from Equation (B.8) simplify to:

E11 =
du
dx
− zd

2w

dx2
+

1

2

(
dw
dx

)2

.

In Section 3.3, the Gateaux derivatives of the strain and curvature are derived in Equation (3.36). Furthermore,
expressions for the normal force and the moment in the beam were derived in Equation (3.35). Combining
these, variation of the the internal energy in the beam is (see Equation (3.23))

δWint = b

∫
x

N11

(
dδu
dx

+
dw
dx

dδw
dx

)
+M11

d2δw

dx2
dx

=

∫
x

N11
∂δu

∂x
−M11

∂2δw

∂x2
+N11

∂w

∂x

∂δw

∂x
dx. (B.9)

In order to derive the governing PDEs (Euler-Lagrange equations, see Reddy [95]) for the Euler-Bernoulli beam
with small deformations, the integral form of the internal work needs to be written as a product of δu and δw
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to. Hence, using partial integration on Equation (B.9) results in:

(. . . ) =

∫
x

d
dx

(N11δu)− dN11

dx
δu−

[
d
dx

(
M11

dδw
dx

)
− dM11

dx
dδw
dx

]
+

d
dx

(
N11

dw
dx

δw

)
+

− dN11

dx
dw
dx

δw −N11
d2w

dx2
δw dx,

=

∫ L

0

∫ b
2

− b2
−dN11

dx
δu+

[
d
dx

(
dM11

dx
δw

)
− d2M11

dx2
δw

]
− dN11

dx
dw
dx

δw −N11
d2w

dx2
δw dx

+

[∫ b
2

− b2
N11δu−M11

dδw
dx

+N11
dw
dx

δw dy

]L
0

,

=

∫ L

0

∫ b
2

− b2
−dN11

dx
δu− d2M11

dx2
δw − dN11

dx
dw
dx

δw −N11
d2w

dx2
δw dxdy

+

[∫ b
2

− b2
N11δu−M11

dδw
dx

+
dM11

dx
δw +N11

dw
dx

δw dy

]L
0

,

= b

∫ L

0

−dN11

dx
δu− d2M11

dx2
δw − dN11

dx
dw
dx

δw −N11
d2w

dx2
δw dx

+ b

[
N11δu−M11

dδw
dx

+
dM11

dx
δw +N11

dw
dx

δw

]L
0

.

Now, the virtual work of the external forces can be determined. Suppose the beam is subject to a transversal
pressure on the top (pt(x)) and on the bottom (pb(x)) and a longitudinal traction force on the top (tt(x)) and on
the bottom (tb(x)), as well. Furthermore, a hydrostatic foundation is applied on the beam, denoted by −ρgw.
Then, the virtual work of these loads becomes:

δWE = −b
∫ L

0

ptδw

(
x, y,

h

2

)
+ pbδw

(
x, y,−h

2

)
+ ttδu

(
x, y,

h

2

)
+ tbδu

(
x, y,

h

2

)
− ρgwδw(x, y, 0) dx

= −b
∫ L

0

ptδw + pbδw

+ tt

(
δu− h

2

dδw
dx

)
+ tb

(
δu+

h

2

dδw
dx

)
− bρgwδw dx

= −b
∫ L

0

(
pt + pb −

h

2

dtt
dx

+
h

2

dtb
dx

)
δw + (tt + tb) δu− bρgwδw dx

−
[(
−h

2
qt +

h

2
qb

)
δw

]L
0

.

Lastly, in order to get the dynamic equation of the Euler beam, the kinetic energy should also be involved. This
term was derived in the �rst term of Equation (B.4) and neglects rotary inertia.

δK = b

∫ L

0

ρt (üδu+ ẅδw) dx.
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Now, Hamilton's principle (see Equation (3.19)) becomes:∫ t2

t1

δK − (δWE + δWI) dt =

∫ t2

t1

{∫ L

0

−ρ
[
btü0δu+ btẅ0δw

]
+ b

dN11

dx
δu+ b

d2M11

dx2
δw

+ b
dN11

dx
dw
dx

δw + bN11
d2w

dx2
δw + b

(
pt + pb −

h

2

dtt
dx

+
h

2

dtb
dx

)
δw

+ b (tt + tb) δu− bρgwδw dx

+ ρ

[
I
dẅ0

dx
δw

]L
0

−
[
bN11δu− bM11

dδw
dx

+ b
dM11

dx
δw

]L
0

}
dt

= 0.

From this principle, the equations of motion follow by collecting the terms multiplied by δu and δw separately
from the domain integral.

b
dN11

dx
− ρAü0 + b(tt + tb) = 0,

b
d2M11

dx2
+ b

dN11

dx
dw
dx

+ bN11
d2w

dx2
= ρAẅ0 − b

(
pt + pb −

h

2

dtt
dx

+
h

2

dtb
dx

)
+ bρgw.

(B.10)

Or, combining derivatives:

b
dN11

dx
− ρAü0 + b(tt + tb) = 0,

b
d2M11

dx2
+ b

d
dx

(
N11

dw
dx

)
= ρAẅ0 − b

(
pt + pb −

h

2

dtt
dx

+
h

2

dtb
dx

)
+ bρgw.

(B.11)

Furthermore, N11 and M11 are de�ned by:

N11 =

∫ h
2

−h2
E

(
du
dx
− zd

2w

dx2
+

1

2

(
dw
dx

)2
)

dx = Eh

(
du
dx

+
1

2

(
dw
dx

)2
)
,

M11 =

∫ h
2

−h2
Ez

(
du
dx
− zd

2w

dx2
+

1

2

(
dw
dx

)2
)

dx = −Eh
3

12

d2w

dx2
.

As a result, the equations of motion become:

−EA
(
d2u

dx2
+

dw
dx

d2w

dx2

)
+ ρAü0 = b(tt + tb),

−EA
[
dw
dx

(
d2u

dx2
+

dw
dx

d2w

dx2

)
+

d2w

dx2

(
du
dx

+
1

2

(
dw
dx

)2
)]

+ EI
d4w

dx4

ρAẅ0 = b

(
pt + pb −

h

2

dtt
dx

+
h

2

dtb
dx

)
− bρgw.

Or, again, when combining derivatives:

−EA
(
d2u

dx2
+

dw
dx

d2w

dx2

)
+ ρAü0 = b(tt + tb),

−EA d
dx

[(
du
dx

+
1

2

(
dw
dx

)2
)
dw
dx

]
+ EI

d4w

dx4

ρAẅ0 = b

(
pt + pb −

h

2

dtt
dx

+
h

2

dtb
dx

)
− bρgw.

(B.12)
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Neglecting hydrostatic pressure bρgw, letting p = b(pt + pb) and t = b(tt + tb), this simpli�es to:

−EA
(
d2u

dx2
+

dw
dx

d2w

dx2

)
+ ρAü0 = t,

−EA d
dx

[(
du
dx

+
1

2

(
dw
dx

)2
)
dw
dx

]
+ EI

d4w

dx4
+ ρAẅ0 = p.

(B.13)

This is a result which can also be derived from the derivations by Reddy[140]. It represents the behaviour
of the nonlinear Euler-Bernoulli beam including membrane deformations, i.e. stretching. When horizontal
deformations are neglected, the following result is obtained:

− EA3

2

d2w

dx2

(
dw
dx

)2

+ EI
d4w

dx4
+ ρAẅ0 = p. (B.14)

From all of the above and in particular Equation (B.13), it is clear that neglecting membrane stresses, and hy-
drostatic pressure the �rst equation vanishes and that the second equation simpli�es to the ordinary di�erential
equation

EI
d4w

dx4
+ ρAẅ0 = p. (B.15)

Which is known from many elementary textbooks (Hibbeler [151] amongst others) as the Euler-Bernoulli beam
equation.

B.3 Kirchho�-Love shell model
B.3.1 Variations of the relevant tensors
The strain tensor ε is given by (see Equation (3.7))

ε =
1

2

[ ∂c
∂θ1
· ∂c∂θ1 −

∂C
∂θ1
· ∂C∂θ1

∂c
∂θ1
· ∂c∂θ2 −

∂C
∂θ1
· ∂C∂θ2

∂c
∂θ1
· ∂c∂θ2 −

∂C
∂θ1
· ∂C∂θ2

∂c
∂θ2
· ∂c∂θ2 −

∂C
∂θ2
· ∂C∂θ2

]
. (B.16)

Since c = C + u, the Gateaux derivative is

ε′(u,v) =
d
dθ
ε(u + θv)|θ=0 =

d
dθ

1

2

[ ∂
∂θ1

(C + u + θv) · ∂
∂θ1

(C + u + θv)− ∂C
∂θ1
· ∂C∂θ1

∂
∂θ1

(C + u + θv) · ∂
∂θ2

(C + u + θv)− ∂C
∂θ1
· ∂C∂θ2

∂
∂θ1

(C + u + θv) · ∂
∂θ2

(C + u + θv)− ∂C
∂θ1
· ∂C∂θ2

∂
∂θ2

(C + u + θv) · ∂
∂θ2

(C + u + θv)− ∂C
∂θ2
· ∂C∂θ2

] ∣∣∣∣∣
θ=0

.

Evaluating the derivatives with respect to θ and evaluating for θ = 0 gives.

ε′(u,v) =

[ ∂v
∂θ1
· ∂c∂θ1

1
2
∂v
∂θ1
· ∂c∂θ2 + 1

2
∂v
∂θ1
· ∂c∂θ2

1
2
∂v
∂θ2
· ∂c∂θ1 + 1

2
∂v
∂θ2
· ∂c∂θ1

∂v
∂θ2
· ∂c∂θ2

]
. (B.17)

Note that c = C+u, again. The o�-diagonal terms, i.e. the ε
12

and ε
21

terms are equal and in Voight-notation,
this tensor is usually written as

ε′(u,v) =

 ε′11

ε′22

2ε′12

 =

 ∂v
∂θ1
· ∂c∂θ1

1
2
∂v
∂θ2
· ∂c∂θ1

∂v
∂θ1
· ∂c∂θ2 + ∂v

∂θ1
· ∂c∂θ2

 . (B.18)

The curvature tensor is given by (see Equation (3.7))

κ =

[
∂2C
∂θ21
· N̂− ∂2c

∂θ21
· n̂ ∂2C

∂θ1∂θ2
· N̂− ∂2c

∂θ1∂θ2
· n̂

∂2C
∂θ1∂θ2

· N̂− ∂2c
∂θ1∂θ2

· n̂ ∂2C
∂θ22
· N̂− ∂2c

∂θ21
· n̂

]
.
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Using c = C + u, the Gateaux derivative is

κ′(u,v) =
d
dθ
κ(u + θv)|θ=0

=
d
dθ

[
∂2C
∂θ21
· N̂− ∂2

∂θ21
(C + u + θv) · n̂(C + u + θv) ∂2C

∂θ1∂θ2
· N̂− ∂2

∂θ1∂θ2
(C + u + θv) · n̂(C + u + θv)

∂2C
∂θ1∂θ2

· N̂− ∂2

∂θ1∂θ2
(C + u + θv) · n̂(C + u + θv) ∂2C

∂θ22
· N̂− ∂2

∂θ21
(C + u + θv) · n̂(C + u + θv)

] ∣∣∣∣∣
θ=0

.

Evaluating the Gateaux derivative gives

κ′(u,v) =

[
−∂2v
∂θ21
· n̂− ∂2c

∂θ21
· n̂′(c) − ∂2v

∂θ1∂θ2
· n̂− ∂2c

∂θ1∂θ2
· n̂′

− ∂2v
∂θ1∂θ2

· n̂− ∂2c
∂θ1∂θ2

· n̂′ · v −∂2v
∂θ22
− ∂2c

∂θ22
· n̂′(c)

]
.

Or, in Voight notation

κ′(u,v) =

 ε′11

ε′22

2ε′12

 =


−∂2v
∂θ21
· n̂− ∂2c

∂θ21
· n̂′(c)

−∂2v
∂θ22
· n̂− ∂2c

∂θ22
· n̂′(c)

− ∂2v
∂θ1∂θ2

· n̂− ∂2c
∂θ1∂θ2

· n̂′

 . (B.19)

Here, n̂′ denotes the Gateaux derivative of the normal vector n̂. This term is given by [142]

n̂′ =
d
dθ

[
∂
∂θ1 (C + u + θv)× ∂

∂θ2 (C + u + θv)∥∥ ∂
∂θ1 (C + u + θv)× ∂

∂θ2 (C + u + θv)
∥∥
]
θ=0

=
1∥∥ ∂c

∂θ1 × ∂c
∂θ2

∥∥ d
dθ

[
∂

∂θ1
(C + u + θv)× ∂

∂θ2
(C + u + θv)

]
θ=0

+(
∂c

∂θ1
× ∂c

∂θ2

)
d
dθ

[
1∥∥ ∂

∂θ1 (C + u + θv)× ∂
∂θ2 (C + u + θv)

∥∥
]
θ=0

=
∂v
∂θ1 × ∂c

∂θ2 + ∂c
∂θ1 × ∂v

∂θ2∥∥ ∂c
∂θ1 × ∂c

∂θ2

∥∥ +

[
− 1∥∥ ∂c

∂θ1 × ∂c
∂θ2

∥∥2

∂c
∂θ1 × ∂c

∂θ2∥∥ ∂c
∂θ1 × ∂c

∂θ2

∥∥
(
∂v

∂θ1
× ∂c

∂θ2
+

∂c

∂θ1
× ∂v

∂θ2

)]
= mv − (n̂ ·mv)n̂.

(B.20)

Here,

mv =
∂v
∂θ1 × ∂c

∂θ2 + ∂c
∂θ1 × ∂v

∂θ2∥∥ ∂c
∂θ1 × ∂c

∂θ2

∥∥ . (B.21)

For evaluation of the Jacobian matrix, alternatively the tangential sti�ness matrix, the Gateaux derivatives
of the force and moment tensors, n′ and m′, and the second Gateaux derivatives of the strain and curvature
tensors, ε′′ and κ′′ are required. Firstly, under the Kirchho� assumptions, the force and moment tensors are
de�ned by Equations (3.13) and (3.14), recalled here for the sake of completeness

n =

∫
[− t2 , t2 ]

S dθ3 =

∫
[− t2 , t2 ]

C : (ε+ θ3κ) dθ3 = tC : ε

m =

∫
[− t2 , t2 ]

θ3S dθ3 =

∫
[− t2 , t2 ]

C : (θ3ε+ θ3
3κ) dθ3 =

t3

12
C : κ.

Since the material tensor C does not depend on the solution, the Gateaux derivatives of the force and moment
tensors are simply given by

n′(u,v) = tC : ε′(u,v), (B.22)

m′(u,v) =
t3

12
C : κ′(u,v). (B.23)

The second Gateaux derivatives of the strain tensor is derived from the �rst derivative from Equation (B.17).
Applying a variation of the displacement u gives the following formulation. Note that the variation is expressed
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using the deformed mid-plane c since there is no need to express it using the displacement vector u and the
undeformed con�guration C.

ε′′ =
d
dθ
ε′(u + θw,v)|θ=0

=
d
dθ

[ ∂v
∂θ1
· ∂
∂θ1

(c + θw) 1
2
∂v
∂θ1
· ∂
∂θ2

(c + θw) + 1
2
∂v
∂θ1
· ∂
∂θ2

(c + θw)
1
2
∂v
∂θ2
· ∂
∂θ1

(c + θw) + 1
2
∂v
∂θ2
· ∂
∂θ1

(c + θw) ∂v
∂θ2
· ∂
∂θ2

(c + θw)

] ∣∣∣∣∣
θ=0

.

Elementary di�erentiation operations provide the second Gateaux derivative of the strain tensor:

ε′′ =

[ ∂v
∂θ1
· ∂w∂θ1

1
2
∂v
∂θ1
· ∂w∂θ2 + 1

2
∂v
∂θ1
· ∂w∂θ2

1
2
∂v
∂θ2
· ∂w∂θ1 + 1

2
∂v
∂θ2
· ∂w∂θ1

∂v
∂θ2
· ∂w∂θ2

]
.

In Voight notation:

ε′′ =

 ∂v
∂θ1
· ∂w∂θ1

∂v
∂θ2
· ∂w∂θ2

1
2
∂v
∂θ1
· ∂w∂θ2 + 1

2
∂v
∂θ1
· ∂w∂θ2

 . (B.24)

The second Gateaux derivative of the curvature tensor is derived from the �rst Gateaux derivative in a similar
way.

κ′′(u,v,w) =
d
dθ
κ′(u + θw,v)|θ=0

=

[
−∂2v
∂θ21
· n̂(c + θw,v)− ∂2

∂θ21
(c + θv) · n̂′(c + θv) − ∂2v

∂θ1∂θ2
· n̂− ∂2

∂θ1∂θ2
(c + θv) · n̂′(c + θv)

− ∂2v
∂θ1∂θ2

· n̂− ∂2

∂θ1∂θ2
(c + θv) · n̂′ −∂2v

∂θ22
· n̂− ∂2

∂θ22
(c + θv) · n̂′(c + θv)

] ∣∣∣∣∣
θ=0

.

Evaluating the derivatives with respect to θ and substituting θ = 0 gives:

κ′′(u,v,w) =
d
dθ
κ′(u + θw,v)|θ=0

=
d
dθ

 −∂2v
∂θ21
· n̂′ −

(
∂2w
∂θ21
· n̂′ + ∂2w

∂θ21
· n̂′′

)
− ∂2v
∂θ1∂θ2

· n̂−
(

∂2w
∂θ1∂θ2

· n̂′ + ∂2c
∂θ1∂θ2

· n̂′′
)

− ∂2v
∂θ1∂θ2

· n̂−
(

∂2w
∂θ1∂θ2

· n̂′ + ∂2c
∂θ1∂θ2

· n̂′′
)

−∂2v
∂θ21
· n̂′ −

(
∂2w
∂θ21
· n̂′ + ∂2w

∂θ21
· n̂′′

)  ∣∣∣∣∣
θ=0

.

Or in Voight notation:

κ′′ =


−∂2v
∂θ21
· n̂′ −

(
∂2w
∂θ21
· n̂′ + ∂2w

∂θ21
· n̂′′

)
−∂2v
∂θ21
· n̂′ −

(
∂2w
∂θ21
· n̂′ + ∂2w

∂θ21
· n̂′′

)
− ∂2v
∂θ1∂θ2

· n̂−
(

∂2w
∂θ1∂θ2

· n̂′ + ∂2c
∂θ1∂θ2

· n̂′′
)
 . (B.25)

As seen in this formulation, the last tensor to be obtained is the second Gateaux derivative of the normal vector.
Similar to the second derivatives of the strain and curvature tensors, the second derivative of the normal vector
is also obtained using the �rst derivative (applying product rules on Equation (B.20))

n̂′′ = mv − (n̂′ ·mv + n̂ ·m′v)n̂− (n̂ ·mv)n̂
′

Where all primes (′) denote Gateaux derivatives. The variation of the term mv is (recall the de�nition of this
term from Equation (B.21)) is:

m′v =
d
dθ

mv(u + θw,v)

∣∣∣∣
θ=0

=
d
dθ

[
1

‖n̂‖

(
∂v

∂θ1
× ∂

∂θ2
(c + θw) +

∂

∂θ1
(c + θw)× ∂v

∂θ2

)] ∣∣∣∣
θ=0

=
1

‖n̂‖

(
∂v

∂θ1
× ∂w

∂θ2
+
∂w

∂θ1
× ∂v

∂θ2

)
− 1

‖n̂‖2
n̂

(
∂c

∂θ1
× ∂w

∂θ2
+
∂w

∂θ1
× ∂c

∂θ2

)(
∂v

∂θ1
× ∂w

∂θ2
+
∂w

∂θ1
× ∂v

∂θ2

)
.

With this term, all necessary terms for the variational form of the Kirchho�-Love shell have been derived.



C | Analytical Solutions

C.1 Vibrations of a Circular Plate With Clamped Boundaries
In this section, the derivation of the mode shapes and the eigenfrequencies of a circular clamped plate will be
given. Derivations are based on general partial di�erential equations. The reader is referred to the book of
Haberman [227] for more details about this topic.

As discussed in many books on �nite elements for structures, for instance the books of Reddy[95, 228, 140], the
governing Partial Di�erential Equation (PDE) for a linear plate is:

ρt
∂2w

∂t2
+D∇2∇2w = p. (C.1)

Where ρ is the density of the material of the plate, t is the thickness of the plate, D is the �exural rigidity, w is
the vertical displacement of the plate and p is an externally distributed load. Furthermore, ∇2 is the Laplacian,
which reads in polar coordinates:

∇2w =
∂2w

∂r2
+

1

r

∂w

∂r
+

1

r2

∂2w

∂r∂θ
,

such that,

∇2∇2w =
1

r4

[
r4 ∂

4w

∂r4
+ 2r3 ∂

3w

∂r3
− r2 ∂

2w

∂r2
+ 2r2 ∂4w

∂r2∂θ2
r
∂w

∂r
− 2r

∂w

∂r∂θ2
+ 4

∂2w

∂θ2
+
∂4w

∂θ4

]
.

Since free vibrations are considered, the surface load p(x) is the zero functions. Then, Equation (C.1) becomes:

ρt
∂2w

∂t2
+

1

r4

[
r4 ∂

4w

∂r4
+ 2r3 ∂

3w

∂r3
− r2 ∂

2w

∂r2
+ 2r2 ∂4w

∂r2∂θ2
+ r

∂w

∂r
− 2r

∂w

∂r∂θ2
+ 4

∂2w

∂θ2
+
∂4w

∂θ4

]
= 0.

Now, let us assume that the solution in polar coordinates w(r, θ, t) is a product of the functions R(r), Θ(θ)
and T (t), i.e. we will solve the equation using separation of variables. Furthermore, we denote �rst and second
order derivatives by ′ and ′′, respectively, and higher order derivatives by the superscripts (3), (4) etc.

ρtRΘT ′′+D

[
R(4)ΘT +

2

r
R(3)ΘT − 1

r2
R′′ΘT +

2

r2
R′′Θ′′T +

1

r3
R′ΘT − 2

r3
R′Θ′′T +

4

r4
RΘ′′T +

1

r4
RΘ(4)T

]
= 0.

Moving the inertia term (�rst term) to the right-hand side and dividing both sides by RΘT gives:

D

RΘ

[
R(4)Θ +

2

r
R(3)Θ− 1

r2
R′′Θ +

2

r2
R′′Θ′′ +

1

r3
R′Θ− 2

r3
R′Θ′′ +

4

r4
RΘ′′ +

1

r4
RΘ(4)

]
= −ρtT

′′

T
= ω2.

Here, ω is the eigenfrequency. From the right equality sign, we see that

T = A exp(iωt) +B exp(−iωt).

Furthermore, we see that the left-hand side gives:

D

RΘ

[
R(4)Θ +

2

r
R(3)Θ− 1

r2
R′′Θ +

2

r2
R′′Θ′′ +

1

r3
R′Θ− 2

r3
R′Θ′′ +

4

r4
RΘ′′ +

1

r4
RΘ(4)

]
=
ω2ρt

D
RΘ = λ2RΘ.

122



Chapter C. Analytical Solutions 123

For the sake of brievety, de�ne v(rθ) = R(r)Θ(t). We see that λ is an eigenvalue of the system

(∇2∇2 − λ2)v = 0.

Or, when γ4 = λ2,
(∇2 + γ2)(∇2 − γ2)v = 0. (C.2)

Furthermore, by de�nition of the coordinate system, the coordinate θ is periodical. This implies that the
function Θ(θ) should also be periodical. Taking this into account, the solution of v has the form:

v(r, θ) = R(r) exp(imθ).

Where m ∈ N. Substituting this in Equation (C.2) gives:(
R′′ +

1

r
R′ +

(
γ2 − 1

r2
Rm2

))
exp(imθ)

(
R′′ +

1

r
R′ −

(
γ2 +

1

r2
Rm2

))
exp(imθ) = 0.

Now, let R = Am(r) +Bm(r). Then,

A′′m +
1

r
A′m +

(
γ2 − m2

r2

)
Am = 0,

B′′m +
1

r
B′m −

(
γ2 +

m2

r2

)
Bm = 0.

These functions correspond to the Bessel Di�erential Equations. Hence, their solutions are

Am = C1Jm(γr) + C3Ym(γr),

Bm = C2Im(γr) + C4Km(γr).

Where Jm(r) and Ym(r), Im(r) and Km(r) are the Bessel functions of the �rst and second kind and the Modi�ed
Bessel functions of the �rst and second kind, respectively. The functions Ym(r) and Km(r) have a singularity
for r = 0, which is in the middle of the plate, and therefore the coe�cients C3 and C4 must be equal to zero.
Therefore, the solution for R(r) becomes:

R(r) = C1Jm(γr) + C2Im(γr).

The coe�cients C1 and C2 have to be determined based on the boundary conditions of the plate. Suppose
the edge of the plate is fully clamped. If the plate has radius a, the following boundary conditions have to be
imposed:

R(a) = 0 R′(a) = 0.

This yields the following two equations:

R(a) = C1Jm(γa) + C2Im(γa) = 0,

R′(a) = C1J
′
m(γa) + C2I

′
m(γa) = 0.

Since there are two equations and two unknowns, the boundary conditions can be written as a linear system.
From the �rst equation, it can be seen that if C1 = Im(γa) and if C2 = −Jm(γa) the equation is satis�ed. The
solution of the system is the trivial solution, i.e. [C1, C2] = [0, 0]. Hence to �nd the non-trivial solutions, the
determinant of the system should be equal to zero.

I ′m(γa)Jm(γa)− Im(γa)J ′m(γa) = 0.

The derivatives of the Bessel function of the �rst kind Jm(r) and the modi�ed Bessel function of the �rst kind
Im(r) with respect to r are:

d
dr

(J ′m(r)) = Jm−1(r)− m

r
Jm(r),

d
dr

(I ′m(r)) = Im−1(r)− m

r
Im(r).
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Such that the determinant becomes:(
Im−1(γa)− m

a
Im(γa)

)
Jm(γa)− Im(γa)

(
Jm−1(γa)− m

a
Jm(γa)

)
= 0. (C.3)

The values of γ for which the determinant is zero are the roots of the equation. In the sequel, we denote the
nth of the determinant for m by γ(m,n). When a root γ(m,n) is known, the corresponding mode shape with
modal amplitude α can be computed by:

v(r, θ) = R(r)Θ(θ) with:

R(r) = α [Im(γa)Jm(γa)− Jm(γa)Im(γa)]

Θ(θ) = exp(imθ).

If there is a time-dependent forcing term p(r, θ, t), the equation for T (t) should be solved with the initial
condition, such that the transient solution w(r, θ, t) is obtained. In Table C.1, the roots of the determinant are
given for m ≤ 10 and n ≤ 10, obtained by an fsolve root �nder from the scipy optimization library in Python
[229]. Also note that by the de�nition of γ, the eigenfrequency ω can be computed:

γ4 =
ω2ρt

D
⇐⇒ ω2 =

γ4D

ρt
.

Mode shapes are given in Figure 5.17.

Table C.1: Roots γ(m,n) for the determinant in Equation (C.3)

3.1962206 6.3064370 9.4394991 12.5771306 15.7164385 18.8565455 21.9970952 25.1379154 28.2789131
4.6108999 7.7992738 10.9580672 14.1086278 17.2557270 20.4010449 23.5453255 26.6889492 29.8321305
5.9056782 9.1968826 12.4022210 15.5794915 18.7439581 21.9014852 25.0548222 28.2054329 31.3541694
7.1435310 10.5366699 13.7950636 17.0052902 20.1923130 23.3662797 26.5321431 29.6926210 32.8493338
8.3466059 11.8367185 15.1498701 18.3959570 21.6084483 24.8014922 27.9822017 31.1545724 34.3210315
9.5257014 13.1073637 16.4750776 19.7582766 22.9978725 26.2116599 29.4087899 32.5944981 35.7720140
10.6870259 14.3551563 17.7764338 21.0971208 24.3647017 27.6002808 30.8149050 34.0149892 37.2045403
11.8345302 15.5845519 19.0580584 22.4161248 25.7121058 28.9701175 32.2029641 35.4181720 38.6204917
12.9709087 16.7987406 20.3230213 23.7180843 27.0425856 30.3233960 33.5749494 36.8058163 40.0214542
14.0980935 18.0000979 21.5736808 25.0052035 28.3581549 31.6619408 34.9325100 38.1794134 41.4087796
15.2175251 19.1904478 22.8118947 26.2792554 29.6604629 32.9872688 36.2770346 39.5402338 42.7836305
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C.2 Buckling of a Double Clamped Beam on an Elastic Foundation
In this section, the analytical solution for a double clamped beam on an elastic foundation will be derived. The
derivation is based on the derivation given in the work of Rivetti and Neukirch [66]. Additional comments and
�gures are given when necessary.

The governing equation for a double clamped linear Euler-Bernoulli beam of length L on an elastic foundation
without surface forces is given by:

EI
d4w

dx4
+ Sw = 0,

w(0) = w(L) =
dw
dx

(0) =
dw
dx

(L) = 0.

(C.4)

Here, EI is the bending sti�ness of the beam and S = ρgb is the foundation sti�ness of the beam, optionally
decomposed by a �uid density ρ, a gravitational acceleration g and the beam width b. Lastly, w(x) denotes
the vertical de�ection of the beam. Note that the inertia contribution is neglected so that the problem is
considered static. Since the beam is linear, stretching e�ects are limited and hence horizontal forces in the
beam are constant. Applying a horizontal force P on the boundary adds a moment contribution in the beam,
proportional to the curvature of the beam. The governing ordinary di�erential equation becomes:

EI
d4w

dx4
+ P

d2w

dx2
+ Sw = 0,

w(0) = w(L) =
dw
dx

(0) =
dw
dx

(L) = 0.

(C.5)

This equation can be made non-dimensional for the applied axial force as well as the foundation sti�ness.
Let us introduce the non-dimensional parameters for the axial force and for the foundation sti�ness, p and η,
respectively [66]. Furthermore, the length coordinate is made dimensionless with the length of the beam.

p =
PL2

EI
, (C.6)

η =
L

Leh
=

L(
EI
S

) 1
4

. (C.7)

Then, the non-dimensional equation from Equation (C.5) becomes:

d4w

dx4
+ p

d2w

dx2
+ η4w = 0,

w(0) = w(1) =
dw
dx

(0) =
dw
dx

(1) = 0.

(C.8)

Now, let us make the Ansatz that the solution is of the form w = exp(ikx). Then, the characteristic polynomial
of the ODE in Equation (C.8) becomes:

k4 − pk2 + η4 = 0.

The solutions for k are:

± k+ = ±

√√(p
2

)2

− η4 +
p

2
and ± k− = ±

√
−
√(p

2

)2

− η4 +
p

2
. (C.9)

From these relations, it follows that k+k− = η2 and k2
+ + k2

− = p. Furthermore, the solution for w is:

w(x) = C1 sin

(
k+x

L

)
+ C2 cos

(
k+x

L

)
+ C3 sin

(
k−x
L

)
+ C4 cos

(
k−x
L

)
.

Substituting this in the boundary conditions of the end at x/L = 0 gives:

C2 = −C4 and k+C1 = −C3k−.
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Figure C.1: Relations between k+ and k− and between the dimensionless buckling load p and sti�ness ratio η.

So that,

w(x) = C1 sin

(
k+x

L

)
+ C2 cos

(
k+x

L

)
− k+

k−
C1 sin

(
k−x
L

)
− C2 cos

(
k−x
L

)
.

The boundary conditions at the end x/L = 1 give, when re-arranging terms and multiplying the condition
w(1) = 0 by k−,

w(1) = C1 (k− sin (k+)− k+ sin (k−)) + C2 (k− cos (k+)− k− cos (k−)) = 0,

dw
dx

(1) = (k+ cos (k+)− k+ cos (k−)) + C2 (−k+ sin (k+)− k− sin (k−)) = 0.
(C.10)

These equations can be written as a linear system in C1, C2 as follows 1:[
k− sin (k+)− k+ sin (k−) k− cos (k+)− k− cos (k−) ,
k+ cos (k+)− k+ cos (k−) k− sin (k−)− k+ sin (k+) .

]
Since solving the system would give the trivial solution, i.e. C1 = C2 = 0, the determinant of the system should
be zero to �nd non-trivial solutions. That is:

2k+k− (cos (k+) cos (k−)− 1) +
(
k2

+ + k2
−
)

sin (k+) sin (k−) = 0. (C.11)

From Equation (C.9) we know that k+, k− ≥ 0. Since the �rst part of the determinant is always less than or
equal to zero, it follows that (

k2
+ + k2

−
)

sin (k+) sin (k−) ≥ 0.

Which is either for k+, k− ∈ [2nπ, (2n + 1)π] × [(2n + 1)π, (2n + 2)π] or for k+, k− ∈ [(2n + 1)π, (2n + 2)π] ×
[2nπ, (2n + 1)π] for n ∈ N. Additionally, from Equation (C.10) it can be seen that the coe�cients for the
non-trivial solution should be equal to

C1 = −k− (cos (k+)− cos (k−)) ,

C2 = k− sin (k+)− k+ sin (k−) .

In order to satisfy the boundary conditions. For Equation (C.11) there is no closed-form solution known.
However, the roots of the equation can be found for di�erent values of k+ and k− or, using Equation (C.9) for
di�erent combinations of p and η. The results are given in Figure C.1. As seen in this �gure, an increase of the
ratio η implies an increase of the critical nondimensional buckling load since for a �xed η, the �rst curves are
higher.

1The bottom-left coe�cient is di�erent from the one given by [66] who give k+ cos (k+) − k+ cos (k−) which is equal to zero.
This is not in correspondence with the boundary conditions
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C.3 Buckling of a Fully Restrained, Simply Supported Plate with
Aspect Ratio 1

In this appendix, the reference solution for buckling of a plate that is restrained in horizontal directions on all
edges is considered. The problem is depicted in Figure C.2. The formulations are based on the book of Hughes
et al. [52].

σt

u
x

=
u
z

=
0

uy = uz = 0

uy = uz = 0

u
z

=
0

L

B
x

y

�z

Figure C.2: Model for buckling of a simply supported plate which is restrained in the normal direction of each boundary.

In the sequel, the loads are de�ned as stresses on the side of the plate. Such that,

f = σt

Where f is the line load and σ is a distributed load over the plate thickness t. According to Hughes et al. [52]
the stress for which the plate will buckle with one wave in transverse direction, i.e. in width direction, is given
by:

σxE1 =
π2D

L2t

(
m+

1

m

(
L

B

))2

= k
π2D

L2t

(
t

B

)2

. (C.12)

Where D = Et3/12(1 − ν2) is the �exural rigidity of the plate and m is the number of half-waves in length
direction. The second equality is a usual form in literature, where

k =

(
mB

L
+

L

mB

)2

. (C.13)

In case of a bi-axially loaded plate, a load is also applied on the side of the plate (along length-direction).
This load is referred to as σyE . In this case, Hughes et al. [52] presents a methodology to compute the critical
buckling loads σxE and σyE for which buckling occurs.

For the in-plane constrained plate, consider Figure C.3. In this plot, the normalised ratios between the ap-
plied horizontal and vertical loads, i.e. kx = σxE/σxE1 and ky = σyE/σyE1 is plotted on the axes. Based on
formulations of Hughes et al. [52], the lines for m = 1, m = 2 and m = 3 can be computed. The line with
slope 0.3 represents the line for a constrained plate with Poisson's ratio equal to 0.3, since this ratio de�nes the
compressive stresses in y direction (σyE) due to compressive stress in x direction (σxE). The intersection of this
line with the lines of m = 1, m = 2 and m = 3 are now denoted as (kx, ky)1, (kx, ky)2 and (kx, ky)3. The plot
in Figure C.3 is valid for L/B = 1.

As an example, for a plate with given D, L and t, the value of σxE1 can be computed. Since kx = σxE/σxE1,
the critical buckling loads for modes 1 up to 3 are obtained by

σxE = kxσxE1. (C.14)

And the loads σyE automatically follow via the Poisson's ratio. For the case discussed in Section 5.2, the
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parameters are:

D =
Et3

12(1− ν2)
=

200 · 109 · 10−2

12(1− 0.33)
= 18.315 · 103 [Nm],

L = 1 [m],

m = 1,

k = 4,

σxE1 = 72.3 [MPa].

The critical stresses σc are therefore:

Mode 1: σc = 0.769 · σxE1 = 55.62 [MPa] =⇒ fc = 0.5562 [MN/m],

Mode 2: σc = 1.453 · σxE1 = 105.09 [MPa] =⇒ fc = 1.0509 [MN/m],

Mode 3: σc = 2.688 · σxE1 = 194.37 [MPa] =⇒ fc = 1.9437 [MN/m].
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Figure C.3: Normalised buckling diagram for a bi-axially loaded plate with aspect ratio β = L/B = 1.0. The coloured
lines represent buckling mode shapes with 1 up to 3 half-sines in loading direction (m) and 1 half-sine orthogonal to
loading direction (n = 1). The intersections are marked for a line of ky = νkx, corresponding to a plate with ν = 0.3
loaded in x direction. See Figure 5.9a for the geometric de�nitions.
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For the Implicit Euler method, we solve

yt+∆t − yt
∆t

= f(yt+∆t, t+ ∆t)

Based on dy
dt = y(x, t). The reduced order system of the equations of motion (see Section 4.6) is

F =

[
F1

F2

]
=

[
ut+∆t − ut −∆tvt+∆t

vt+∆t − vt + ∆tM−1
(
N(ut+∆t) + Cvt+∆t − F(t+ ∆t)

)] = 0 (D.1)

Since

ut+∆t − ut

∆t
= vt+∆t

M
vt+∆t − vt

∆t
+ Cvt+∆t + N(ut+∆t) = F(t+ ∆t)

Here, F is the residual to be solved equal to the zero vector. Furthermore, all vectors on time t + ∆t are
unknown and all on time t are known. u denotes displacements and v denotes velocities. M is the mass matrix,
C the damping matrix and N(u) and F(t) the vectors of internal and external forces.

By the nonlinearity of the system, the vectors ut+∆t and vt+∆t are obtained iteratively using Newton's method.
Thus, let ut+∆t

i+1 = ut+∆t
i + ∆u and vt+∆t

i+1 = vt+∆t
i + ∆v. Furthermore, the Jacobian of Equation (D.1) is

(taking derivatives w.r.t. the variables on t+ ∆t):

JF =

[
∂F1

∂u
∂F1

∂v
∂F2

∂u
∂F2

∂v

]
=

[
I −∆tI

∆tM−1KT (u) I−∆tM−1C

]
(D.2)

And the residual is

Ri(u,v, t+ ∆t) =

[
ut+∆t
i − ut −∆tvt+∆t

i

vt+∆t
i − vt + ∆tM−1

(
N(ut+∆t

i ) + Cvt+∆t − Fi(t+ ∆t)
)]

Note that here, N(ut+∆t
i )−Fi(t+ ∆t) is the residual of internal and external forces on time t+ ∆t. Using the

residual and the Jacobian, the displacements and velocities at time t+ ∆t can be obtained using

JF∆y = −R(yi, t+ ∆t)

and yt+∆t
i+1 = yt+∆t

i + ∆y

y = [u,v]

(D.3)
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E.1 Stretched Thin Sheet

(a) ε = 0.0% (b) ε = 4.9%

Figure E.1: Shapes of the sheet for di�erent values of the end-point strain.
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(a) ε = 10.2% (b) ε = 14.8%

(c) ε = 20.4% (d) ε = 29.4%

Figure E.2: Shapes of the sheet for di�erent values of the end-point strain.
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E.2 Large Thin Sheet Subject to Traction

(a) ε = 19.15% (b) ε = 39.3%

Figure E.3: Base case.

(a) K = 103; ε = 18.9% (b) 5 · 103; ε = 21.4%

Figure E.4: Varying �uid foundation sti�ness. Unit [kgm].
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(a) 1.0; ε = 21.4% (b) 5.0; ε = 18.9%

Figure E.5: Varying Young's modulus. Unit [GPa].

(a) 0.35; ε = 22.0% (b) 0.40; ε = 21.1%

Figure E.6: Varying Poisson's ratio. Dimensionless.
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(a) 6.3; ε = 20.2% (b) 10.8; ε = 24.8%

Figure E.7: Varying thickness. Unit [m]

(a) 103; ε = 36.7% (b) 103; ε = 38.8%

Figure E.8: Varying size.
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