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Summary

Fatigue is often a governing design factor for offshore wind turbines. Since the de-
sign of offshore wind turbines includes conservatism, the actual accumulated fatigue
damage can be lower than what the turbine is designed for. In this case, the opera-
tor can make a decision on life time extension of existing wind turbines. Therefore,
it is important to estimate the actual accumulated fatigue damage to support deci-
sion making on life time extension, and for optimization of support structure design.
However, fatigue critical locations are located near mudline where it is unfeasible to
install strain gauges to measure the accumulated fatigue damage.

The first purpose of this thesis is to investigate if data-driven approaches (linear
regression and feed-forward neural network) can be applied to estimate the accumu-
lated fatigue damage both in individual turbines and farm-wide levels. The second
purpose is to determine the minimum number of sensors and quantity of data re-
quired for accurate estimation.

Towards this goal, real measurement data of two offshore turbines in the same
wind farm have been used. Specifically, the data-driven approaches have been ap-
plied with real measurement data from the SCADA system, measurements at the top
and bottom of the tower, and data from a wave measurement system. This data
was used to estimate the accumulated fatigue damage at multiple locations (tower
bottom, transition piece and two levels on the monopile) in the form of damage
equivalent loads. Throughout the study, 10 min. statistical properties of the mea-
surement data have been used as input to the learning algorithms. One remark is
that the estimation has not been performed for the fatigue critical location near mud-
line itself, but it is expected that estimation with these approaches can be expanded
to the fatigue critical location if accurate response estimation at multiple locations
on the support structure is possible.
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The results of this thesis show that the data-driven approaches can give accurate
estimates damage equivalent loads on individual turbine level at multiple locations
on the support structure when moment or inclination signals at tower bottom is used.

For farm-wide level load estimation as well, it has been proven that the data-
driven approaches can give quite accurate estimates the damage equivalent load.
However, it should be noted that the turbines used in this study have similar dynamic
properties. Therefore, the farm-wide level load estimation with the data-driven ap-
proaches should be further investigated in the future.
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Chapter 1

Introduction

This chapter gives a general introduction to the research performed in this study. In
Section 1.1, the research motivation is described. In Section 1.2, results of literature
study is explained. The research question and methodology are given in Section 1.3
and 1.4 respectively. Lastly, the software used for this study and the outline of this
thesis are presented in section 1.5 and 1.6 respectively.

1.1 Motivation

The wind energy industry is growing quickly around the world. Especially, offshore
wind energy industry is growing at a remarkable rate. In 2018, Europe solely in-
stalled offshore wind farms with overall capacity of 2.6 GW and the next 4 years,
as shown in Figure 1.1, foresees over 2 GW of newly installed offshore wind farms
[9, 10]. The two most widely used support structure types are monopile and jacket.
Especially, when the water depth is shallow, monopile is a preferred option due to
the fact that it is simpler and has fewer weld joints compared to jacket. As a result,
of all offshore wind turbines installed in 2018 in Europe, 66% has monopile support
structure while 33% uses jacket type support structure [10].

In addition, offshore wind turbines are exposed to various sources of loads in-
cluding hydrodynamic loads, aerodynamic loads, load from rotating blades and
sometimes ice loads. Moreover, all the sources have interaction with the structural
dynamics of the turbines. As a result, high dynamic excitation forces are applied
to the turbines. Consequently, fatigue is one of the most governing design factors
in offshore wind turbines. Especially, for the monopile support structure, high level
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2 1. INTRODUCTION

Figure 1.1: Offshore wind outlook

of bending moment is acting at a section near mudline location and this location is
where the fatigue damage is accumulated the most rapidly.

In general, the lifetime of offshore wind farm is 20 years. At the end of its life-
time, turbines can either be decommissioned or be used for a longer period. Obvi-
ously, it is economically beneficial to extend the lifetime of a wind turbine. However,
from a technical point of view, to justify the decision making on a lifetime extension
of wind turbines, all of the aspects shown in Table 1.1 should be assessed [8]. Espe-
cially, assessment of accumulated fatigue damage at fatigue critical location is crucial
for foundation assessment to support decision making on the lifetime extension. In
addition to that, by estimating accumulated damage at the end of lifetime, applied
design safety factor for fatigue limit state (FLS) can be assessed by comparing actual
accumulated damage with design value. In other words, support structure design
can be optimized.

To be able to estimate the accumulated damage at fatigue critical location, strain
gauges can be installed. However, as explained above, fatigue critical location is
near mudline location where it is unfeasible to install strain gauges. Therefore, it
is desirable to use remote sensing technique. The remote sensing technique uses
measurements at some locations where it is feasible to install sensors and estimate
response at other locations.

1.2 Literature study

To estimate response with the remote sensing techniques, either the physics-based
approach and data-based approach can be applied. The physics-based approach uses
the laws of physics to describe and solve a problem based on it. On the other hand,
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1.2. LITERATURE STUDY 3

Table 1.1: Assessment scopes for lifetime extension

Component System Parts

Rotor Blade Blade

Machinery components

Hub
Main shaft
Torque arm
· · ·
Yaw system

Tower
Tower segments
Tower connections
Door opening

Foundation

Anchor bolt connection
· · ·
Jacket structure (offshore)
Monopile structure (offshore)

Control and protection system
Sensors
Braking systems
Control software

Electrical Equipment
Generator
Lightning protection

the data-based approach uses input and target data and solves a problem by finding
a relationship between the input and output data. For remote sensing, Kalman fil-
ter and modal decomposition and expansion can be regarded as the physics-based
approach. For wind turbines, studies have been performed and remote sensing can
capture well the response of wind turbine [13, 35]. In addition to that, the data-
based approach has also been performed and it shows the data-based approach can
also be used for remote sensing [36].

Especially, a neural network has been applied for some studies and it shows that
the feed-forward neural network can be used for remote sensing.

Specifically, in the previous study from Cosack [7], regression, neural networks,
and physics-based models have been applied to estimate damage equivalent load at
different locations with standard signals (from Supervisory Control And Data Acqui-
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4 1. INTRODUCTION

sition system (SCADA)) for onshore wind turbines.
In detail, onshore variable-speed pitch-controlled wind turbines with a rated

power of 1.5 MW has been considered to validate if the feed-forward neural net-
work can be used for the estimation. For the turbine, simulation data have been
generated with Flex5 for varying turbulence intensity and mean wind speeds. With
the simulation data, damage equivalent load (hereinafter, DEL) of rotor torque has
been estimated with the feed-forward neural network with one hidden layer. As in-
put data, statistical properties such as mean, standard deviation and one to fourth
spectral moments of standard signals have been used. The standard signals include
generator rotational speed, electrical power, tower top acceleration and so on. As
a result, it has been proven that the feed-forward neural network with one hidden
layer can give an accurate estimation with mean percentage error (hereinafter, MPE)
of less than 4%.

Then, the feed-forward neural network with a single hidden layer has been ap-
plied with real measurement data of onshore wind turbines including one Multib-
rid M5000 turbine and two Nordex N80 turbines. For both types of turbines, the
feed-forward neural network has been trained on around 120 hours of data and
tested with around 30 hours of data in which the turbines are in normal operating
condition. For individual turbine level load estimation, it has been found that the
feed-forward neural network gives an accurate estimation of DEL of tower bottom
moment, blade root bending moment, rotor torque and thrust force for both types
of turbines with MPE of less than 4%.

For two Nordex N80 turbines, farm-wide estimation has been performed. Specif-
ically, the feed-forward neural network trained on one turbine (T8) has been applied
to another turbine (T6). The estimation accuracy was not as accurate as individual
turbine level load estimation with MPE of around 8% even though two turbines are
only 600 m away from each other, and both turbines (T6 and T8) have the same de-
sign. However, no clear explanation has been made for the inaccuracy in farm-wide
level load estimation.

In addition to that, the study from M.Souliotis [28] found that the feed-forward
neural network can be applied to offshore wind turbines as well.

Concretely, total 11232 simulation data for normal operating condition and 2304
simulation data for idling condition have been generated with a simulation software
Bonus Horizontal Axis Wind turbine Code (BhawC). Each simulation data includes
10 min. averaged statistical properties of signals, such as mean, standard deviation,
equivalent value and negative second to positive second spectral moments. In the
study, not only the standard signals (from SCADA), but also acceleration at tower
bottom have been used as input data. As a target value, moment DEL at mudline
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has been used.
As a result, it has been found the feed-forward neural network with a single

hidden layer can accurately estimate DEL at mudline of offshore wind turbines with
mean absolute percentage error (hereinafer, MAPE) of less than 4%.

In addition to that, linear regression has been applied to estimate moment DEL
at mudline with inclination at tower bottom. The result shows that linear regression
can also give accurate estimation with MAPE of less than 3% if the inclination at the
tower bottom has been used as input data. The estimation accuracy of the linear
regression was comparable to that of the feed-forward neural network.

In summary, for both onshore and offshore wind turbines, estimation of moment
DEL with the feed-forward neural network has been proven to be accurate. For
offshore wind turbines, estimation with the feed-forward neural network can be ac-
curate and it has been validated with simulation data. For onshore wind turbines,
the feed-forward neural network has been validated both with simulation and real
measurement data and the estimation was accurate for individual turbine level load
estimation. However, for farm-wide level load estimation, it has been found that the
feed-forward neural network gives relatively inaccurate result compared to individ-
ual turbine level.

As a result of the literature study, it has been found that the following remaining
researches need to be done:

• Validation of feed forward neural network for offshore wind turbine with real
measurement data

• Validation of farm-wide level load estimation

In this study, studies have been made for those items. In addition, not only the
linear regression and feed-forward neural network, but the recurrent neural network
has also been applied since it has not been researched.

1.3 Research questions

As explained in the previous section, neural networks have not been proved for
offshore wind turbines with real measurement data. Therefore, in this study, neu-
ral networks have been applied with real measurement data with the first research
question of ‘Can the neural network technique be applied to accurately estimate
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6 1. INTRODUCTION

moment DEL at already known fatigue critical locations for offshore wind tur-
bines with real measurement data?’. The research question addresses first the
potential for load estimation on an individual turbine level. That is, the input (mea-
surements at tower and RNA) and target (moment DEL at already known fatigue
critical location - near mudline) both are from the same turbine and are all taken
from real measurement data. In addition, it also needs to be answered ‘What is the
required number of data to train a neural network?.

Expanded to the first and second research question, the following third research
question can be asked: ‘Can the machine learning technique (neural network)
be expanded to farm-wide fatigue assessment?’.

In addition, for both individual turbine and farm-wide level fatigue assessment,
the following question needs to be answered: ‘What is the minimum number of
sensors that gives accurate DEL estimation?’.

1.4 Methodology

In this study, real measurement data from two offshore wind turbines have been
used. Specifically, measurement data from SCADA and distributed sensors installed
at the tower have been used as input data, and the strain signals installed at bottom
of the tower, transition piece and monopile have been used as target data for neural
networks. For strain signal at monopile, it should be noted that there are no strain
gauges at mudline location but the strain gauges are installed at two levels above
mudline. If neural networks can estimate DEL at those two locations at monopile,
it is expected that the technique can also be used to estimate response at mudline.
The detailed description of measurement data is shown in Chapter 2.

1.4.1 Individual turbine load estimation

Firstly, linear regression has been applied to estimate moment DEL for specific op-
erating conditions where the number of data is not enough for training of neural
networks. Secondly, the feed-forward neural network has been applied. In this
approach, different neural network structures have been compared in terms of accu-
racy.

Thirdly, the recurrent neural network has been applied. Specifically, of all differ-
ent types of recurrent neural networks, long short-term memory (LSTM) has been
applied. Then, accuracy has been compared between feed-forward neural network
and recurrent neural network.
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Then, with the feed-forward neural network, case studies have been made to
answer the research question of ‘what is the minimum number of sensors that give
accurate DEL estimation?. In addition, different approaches have been examined
to figure out if any improvement can be achieved.

Finally, the size of training data has been varied and the accuracy level has been
evaluated to answer the research question of ‘what is the required number of data
to train a neural network?.

1.4.2 Farm-wide load estimation

To answer the research question ‘Can the neural network be expanded to obtain a
farm-wide fatigue assessment?, the feed-forward neural network has been trained
on one turbine, and applied to the other turbine.

First of all, linear regression has also been applied in farm-wide level.
Secondly, the same feed-forward neural network used in individual turbine level

has been applied with different input combinations to answer the research question
of ‘what is the minimum number of sensors that give accurate DEL estimation?.

Thirdly, to include different dynamic properties and wake effect between two
turbines, case studies have been performed to figure out if any improvement can be
achieved.

1.5 Software

Throughout the study, two main software have been used.

• MATLAB R2018b

• Python

Specifically, MATLAB has been used to pre-process the data and build up neural
networks (both feed-forward neural network and recurrent neural network) with
Deep Learning Tooldbox.

Python has been used to apply random forest regression with pandas and scikit-
learn library.

1.6 Outline

Chapter 1 presents general introduction of this study. Firstly, the motivation for this
study is explained. Then, research questions and objectives are described. Lastly, the
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8 1. INTRODUCTION

methodology used to answer the research questions is presented.

Chapter 2 introduces sensor configurations and data pre-processing procedures
taken in this study. Firstly, a general description of the turbines is given. Then, the
sensor configuration and detailed description of each sensor are given. In addition,
a summary of all the pre-processed data is shown. Then, correlation between differ-
ent features and moment DEL is presented. Lastly, plots of pre-processed data are
presented.

In Chapter 3, theories of feed-forward neural network and recurrent neural net-
work are described. Firstly, a basic description of the feed-forward neural network is
given. Then, the gradient descent and learning process of the neural network (for-
ward and backward propagation) are given. In addition, a general description of the
recurrent neural network is presented focusing on long short-term memory (LSTM).

In Chapter 4, fatigue assessment on individual turbine level is shown. Firstly,
the base case is described. Then, results with linear regression, feed-forward neural
network, and recurrent neural network are shown and comparison of their accuracy
comparison is made. Lastly, the results of various case studies are shown.

In Chapter 5, fatigue assessment on farm-wide level is shown. Firstly, result with
linear regression is explained. Then, the result of the feed-forward neural network
application on the base case is described followed by the result of case studies with
different input combinations. Lastly, results are shown for explicit inclusion of dy-
namic property differences and wake effect.

In Chapter 6, conclusion is given together with recommended future work.
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Chapter 2

Data overview and
preprocessing

In this chapter, the measurement data that have been used in this study is described.
Firstly, the installed sensor configurations and the form of measurement data from
SCADA and the vibration sensors are introduced in Section 2.1. Then, a summary
of processed measurement data is shown in Section 2.2. In Section 2.3, correlation
between different features and moment DEL at tower bottom is presented. Lastly,
important plots of pre-processed measurement signals are presented in Section 2.4.
Especially, all the measurement data shown in this chapter have been pre-processed
into statistical properties. The detailed description is not shown in this chapter, but
it can be found in Appendix A.

2.1 Sensor configuration and format of data

The two offshore wind turbines examined in this study have the same configuration
of sensors. There are two accelerometers at the top and bottom of the tower, two
calibrated moment signals converted from strain gauges at the top and bottom of
the tower, one inclinometer at bottom of the tower. In addition, raw strain signals
at one transition piece level and two different monopile levels are available. At each
level, the strain gauges are installed equidistantly along the circumference as shown
in Figure 2.1. The subscript E, N, W and S in the figure stand for East, North, West,
and South respectively. In addition, the strain gauges measure the axial strain (along
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10 2. DATA OVERVIEW AND PREPROCESSING

with local z-axis of the tower in Figure 2.1). The overall sensor configurations are
shown in Figure 2.2.

In addition to the sensors described above, there is SCADA in Rotor-Nacelle As-
sembly (RNA). Since SCADA is a default system that is installed in all turbines, data
from SCADA will be denoted as ‘Standard signal’ while data from the other sensors
will be denoted as ‘Non-standard signal’ since the sensors attached at the tower,
transition piece and monopile are not installed on every turbine by default.

Figure 2.1: Configuration of strain gauges

Figure 2.2: Overall configuration of sensors
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2.1. SENSOR CONFIGURATION AND FORMAT OF DATA 11

2.1.1 Data from SCADA system (Standard signals)

SCADA system records high-frequent data. Firstly, the data provided for this study
are based on 10 min. statistical properties of the signals by default. Specifically,
all the 10 min. statistical properties shown in Table 2.1 of all the data shown in
Table 2.2 are recorded in SCADA with time stamp. However, it should be noted
that time series for all the SCADA data except acceleration are also available with
the sampling frequency of 0.04 sec. (25 Hz) in addition to the statistical data. For
acceleration signal, time series has been recorded with varying sampling frequencies
(event-driven sampling frequency).

Table 2.1: Standard statistical properties recorded in SCADA

Number Statistical Properties Symbol
1 Mean µ
2 Standard deviation σstd
3 Max. -
4 Min. -

Table 2.2: Data from SCADA

Number Signal Symbol
1 Acceleration AccFA, AccSS

2 Blade Pitch angle θpb
3 Wind Speed Uw

4 Active Power Pact

5 Rotational Speed Ωgen

6 Yaw Direction θyaw
7 Operating Condition -

Operating condition recorded in SCADA system consists of multiple different con-
ditions which are divided according to wind speed, pitch angle, active power and so
on. Four different operating conditions are found within the one-month data. Specif-
ically, three operating conditions and parked condition are in the dataset.
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12 2. DATA OVERVIEW AND PREPROCESSING

2.1.2 Data from Sensors (Non-standard signal)

All the data from sensors are recorded as 0.04 sec. time series. The sampling
frequency is fixed as 25 Hz in all sensors and the one-month time series are available.

As depicted in Figure 2.2, a number of sensors are installed at different levels.
The strain gauges at transition piece and monopile are installed with the configura-
tion shown in Figure 2.1.

For top and bottom of the tower, moment signals are available. The moment sig-
nals had been pre-processed from strain signals by SGRE. Both the moment signals
at top and bottom of the tower consist of Mx and My which stand for the moment
based on measurement coordinate system (lower case x and y). For turbine 1, the
axis x and y are located along with East-West and South-North directions respec-
tively as shown in Figure 2.3a. However, for turbine 2, the strain gauges at top and
bottom of the tower are installed with the offset of 23 deg. as shown in Figure 2.3b.
As a result, the moment Mx and My of turbine 1 and 2 are based on the different
coordinate systems.

(a) Moment coord. (Turbine 1) (b) Moment coord. (Turbine 2)

Figure 2.3: Moment measurement coordinate system

At transition piece and monopile, strain signals are available. Therefore, it has
been converted into moment so that it can be further processed into moment DEL.
The detailed description is shown in Appendix A. One remark here is that the strain
gauges are not calibrated and the information about the calibration is not available.
Accordingly, MWE and MSN (hereinafter, MX and MY respectively) have been used
instead of MFA and MSS for those locations.

For accelerometer, the sensor records x and y directional acceleration Accx and
Accy, and its coordinate system is shown in Figure 2.4. For acceleration, the same
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2.1. SENSOR CONFIGURATION AND FORMAT OF DATA 13

measurement coordinate system is applied for both turbine 1 and 2. The summary
of non-standard signals is tabulated in Table 2.3.

Figure 2.4: Acceleration coord. (Both turbines)

Table 2.3: Data from Sensors

Number Signal Symbol
1 Acceleration at Tower Top AccFA,Top, AccSS,Top

2 Moment at Tower Top MFA,Top, MSS,Top

3 Acceleration at Tower Bottom AccFA,Btm, AccSS,Btm

4 Moment at Tower Bottom MFA,Btm, MSS,Btm

5 Inclination at Tower Bottom φFA,Btm, φSS,Btm

6 Moment at Transition Piece MX,TP , MY,TP

7 Moment at Monopile (Upper level) MX,MP1, MY,MP1

8 Moment at Monopile (Lower level) MY,MP2, MX,MP2

2.1.3 Wave data

In addition to the standard and non-standard signals, wave data have also been
recorded. Wave has been measured at one location in the wind farm and it has been
assumed that the same wave data is applicable to all the wind turbines.

The wave data includes multiple wave statistics such as Hs, Tp, Wave direction
and spectral moments.
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14 2. DATA OVERVIEW AND PREPROCESSING

2.2 Summary of measurement data

For two turbines, all the data have been pre-processed into 10 min. statistical data
as explained in previous sections. The total number of 10 min. time window within
1 month is 4644. However, the actual number of data available is less than that
since measurements stop recording in some cases. Therefore, a total of 3791 and
1868 data points are available for turbine 1 and 2 respectively. The plot of mean
wind speed and rotational speed for different operating conditions in both turbines is
shown with the number of data points in Figure 2.6. The total number of data points
according to its operating condition is tabulated in Table 2.4. One remark here is
that sometimes the power generation is limited below its rated power for turbine 2
as shown in Figure 2.5. In Figure 2.5a, normalized value of 1.0 is corresponding to
rated power and -1.0 is corresponding to 0. In Figure 2.5b, the normalized value of
1.0 and -1.0 is corresponding to rated power and 0 respectively, and the normalized
value of around -0.7 is corresponding to the case when it generates below-rated
power.

Table 2.4: Summary of data

Turbine 1
Operating

Parked Total
Cond. 1 Cond.2 Cond.3

No. of data 3523 0 117 151 3791
Portion 92.9% 0.0% 3.1% 4.0% 100.0%

Turbine 2
Operating

Parked Total
Cond. 1 Cond.2 Cond.3

No. of data 1529 1 64 274 1868
Portion 81.8% 0.1% 3.4% 14.7% 100.0%

In addition, total 6 standard signals (Number 1-6 in Table 2.2) have been pre-
processed and total 8 non-standard signals (Number 1-8 in Table 2.3) have been
pre-processed.

2.3 Correlation between different features and mo-
ment DEL at tower bottom

In this section, linear correlation between different statistical properties and moment
DEL at tower bottom are investigated. By comparing correlation factors between
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(b) Turbine 2

Figure 2.5: Mean power generation vs mean wind speed

different features and moment DEL, features that have a large effect on moment DEL
can be recognized. In addition, only the correlation in between different features
and moment DEL at tower bottom is shown in this section.

Especially, the Pearson´s correlation coefficient shown in Equation (2.1) has been
used to find the correlation.

R =
cov(X̂, Ŷ )

σX̂σŶ
=

E[(X̂ − µX̂)(Ŷ − µŶ )]

σX̂σŶ
(2.1)

Where R is Pearson´s correlation coefficient, X̂ and Ŷ are different datasets, µX̂

and µŶ are mean of X̂ and Ŷ respectively, σX̂ and σŶ are standard deviation of X̂
and X̂ respectively. Pearson´s correlation coefficient R has a value between −1 and
1. The more the absolute value of R is close to 1, the larger the correlation is in
between X̂ and Ŷ .

For all the pre-processed statistical properties, the Pearson´s correlation coeffi-
cient R has been calculated. However, Pearson´s correlation coefficient R has not
been calculated for moment signal at tower bottom itself since it is obvious that it
will have the largest correlation and it is meaningless to investigate. As a result,
the top 15 most correlated features are tabulated in Table 2.5 to 2.7 with Pearson´s
correlation coefficient R.
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16 2. DATA OVERVIEW AND PREPROCESSING

Table 2.5: Pearson’s correlation coefficient, w.r.t. Tower bottom moment DEL, Oper-
ating Cond. 1

Rank
Turbine 1
FA (Tower Bottom) SS (Tower Bottom)
R value Features R value Features

1 0.924 Tower Top Mom FA Eq. value 0.972 RNA Accel SS σstd
2 0.918 RNA Accel FA σstd 0.970 RNA Accel SS λ−1

3 0.916 RNA Accel FA Eq. value 0.945 Tower Top Accel SS λ−1

4 0.914 Tower Top Accel FA σstd 0.944 Tower Top Mom SS Eq. value
5 0.910 Tower Top Mom FA Range 0.940 RNA Accel SS λ0
6 0.900 RNA Accel FA Range 0.903 Tower Top Mom SS λ1
7 0.895 RNA Accel FA λ0 0.903 RNA Accel SS Eq. value
8 0.889 Tower Top Accel FA λ0 0.893 RNA Accel SS Range
9 0.887 Tower Top Accel FA Range 0.880 RNA Accel SS Max
10 0.887 RNA Accel FA Max 0.798 Tower Top Accel SS σstd
11 0.886 Tower Top Accel FA Eq. value 0.785 RNA Accel SS λ1
12 0.882 RNA Accel FA λ−1 0.769 Tower Top Accel SS λ0
13 0.868 RNA Accel FA λ1 0.765 Tower Top Mom SS Range
14 0.855 Tower Top Accel FA Max 0.693 Tower Top Accel SS Range
15 0.854 Tower Top Mom FA λ1 0.686 RNA Accel SS λ−2

Rank
Turbine 2
FA (Tower Bottom) SS (Tower Bottom)
R value Features R value Features

1 0.881 RNA Accel FA σstd 0.982 Tower Top Mom SS Eq. value
2 0.854 RNA Accel FA λ0 0.974 RNA Accel SS σstd
3 0.850 RNA Accel FA Eq. value 0.966 RNA Accel SS λ−1

4 0.844 RNA Accel FA Range 0.960 Tower Top Mom SS λ1
5 0.843 RNA Accel FA λ−1 0.958 RNA Accel SS λ0
6 0.833 RNA Accel FA Max 0.890 RNA Accel SS Eq. value
7 0.815 Tower Top Mom FA Range 0.880 RNA Accel SS Range
8 0.798 Tower Top Accel FA σstd 0.867 RNA Accel SS Max
9 0.776 Tower Top Mom FA σstd 0.832 Tower Top Mom SS Range
10 0.770 RNA Accel FA λ1 0.789 Tower Top Mom SS σstd
11 0.765 Tower Top Mom FA Eq. value 0.789 Tower Top Accel SS σstd
12 0.763 Tower Top Accel FA λ0 0.782 Tower Top Accel SS λ0
13 0.721 Tower Top Accel FA Range 0.773 RNA Accel SS λ1
14 0.708 Tower Top Accel FA Eq. value 0.687 RNA Accel SS λ−2

15 0.703 Tower Top Mom FA λ0 0.678 Tower Top Mom SS λ2
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Table 2.6: Pearson’s correlation coefficient, w.r.t. Tower bottom moment DEL, Oper-
ating Cond. 3

Rank
Turbine 1
FA (Tower Bottom) SS (Tower Bottom)
R value Features R value Features

1 0.999 RNA Accel FA Eq. value 0.999 Tower Top Mom SS Eq. value
2 0.999 Tower Top Mom FA Eq. value 0.998 RNA Accel SS σstd
3 0.998 RNA Accel FA σstd 0.997 Tower Top Mom SS σstd
4 0.994 Tower Top Mom FA σstd 0.990 RNA Accel SS Eq. value
5 0.991 Tower Top Accel FA σstd 0.975 Tower Top Mom SS Range
6 0.980 Tower Bottom Incli. FA Eq. value 0.974 Tower Top Accel SS σstd
7 0.980 RNA Accel FA Range 0.964 Tower Top Mom SS λ1
8 0.977 RNA Accel FA Max 0.963 RNA Accel SS λ0
9 0.964 Tower Top Mom FA Range 0.963 RNA Accel SS λ−1

10 0.947 RNA Accel FA λ−1 0.960 RNA Accel SS λ1
11 0.946 RNA Accel FA λ0 0.959 Tower Top Mom SS λ2
12 0.943 RNA Accel FA λ1 0.942 Tower Top Accel SS λ0
13 0.939 Tower Top Accel FA λ0 0.940 Tower Top Mom SS λ0
14 0.936 Tower Top Mom FA λ1 0.925 RNA Accel SS Range
15 0.931 Tower Top Mom FA λ0 0.923 RNA Accel SS Max

Rank
Turbine 2
FA (Tower Bottom) SS (Tower Bottom)
R value Features R value Features

1 0.998 RNA Accel FA Eq. value 0.998 Tower Top Mom SS Eq. value
2 0.995 RNA Accel FA σstd 0.998 RNA Accel SS σstd
3 0.981 Tower Top Mom FA σstd 0.985 Tower Top Mom SS σstd
4 0.977 RNA Accel FA λ0 0.983 RNA Accel SS Eq. value
5 0.977 RNA Accel FA λ−1 0.983 RNA Accel SS λ0
6 0.976 RNA Accel FA λ1 0.982 RNA Accel SS λ−1

7 0.968 RNA Accel FA Max 0.980 RNA Accel SS λ1
8 0.967 Tower Top Mom FA Top λ0 0.975 Tower Top Mom SS λ1
9 0.966 RNA Accel FA Range 0.972 Tower Top Accel SS σstd
10 0.942 Tower Top Mom FA Eq. value 0.966 Tower Top Mom SS Range
11 0.931 Tower Top Mom FA Range 0.958 Tower Top Accel SS λ0
12 0.929 Tower Top Accel FA σstd 0.938 Tower Top Mom SS λ0
13 0.923 Tower Top Accel FA Var 0.903 Tower Top Mom SS Max
14 0.923 Tower Top Accel FA λ0 0.899 Tower Bottom Accel SS σstd
15 0.922 RNA Accel FA λ2 0.885 Tower Top Accel FA σstd
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18 2. DATA OVERVIEW AND PREPROCESSING

Table 2.7: Pearson’s correlation coefficient, w.r.t. Tower bottom moment DEL, Parked
Condition

Rank
Turbine 1
FA (Tower Bottom) SS (Tower Bottom)
R value Features R value Features

1 0.999 RNA Accel FA Eq. value 0.999 Tower Top Mom SS Eq. value
2 0.999 Tower Top Mom FA Eq. value 0.997 RNA Accel SS Eq. value
3 0.997 RNA Accel FA σstd 0.989 Tower Top Accel SS σstd
4 0.996 Tower Top Accel FA σstd 0.988 RNA Accel SS σstd
5 0.996 Tower Top Mom FA σstd 0.987 Tower Top Accel SS Eq. value
6 0.988 Tower Top Accel FA Eq. value 0.985 Tower Top Mom SS σstd
7 0.971 Tower Top Accel FA λ0 0.971 Tower Top Accel SS λ0
8 0.971 Tower Top Mom FA λ1 0.969 Tower Top Mom SS λ1
9 0.971 RNA Accel FA Range 0.968 RNA Accel SS λ1
10 0.971 Tower Top Mom FA λ0 0.968 RNA Accel SS λ0
11 0.971 RNA Accel FA λ−1 0.968 RNA Accel SS λ−1

12 0.970 RNA Accel FA λ1 0.967 Tower Top Mom SS λ0
13 0.970 RNA Accel FA Max 0.949 Tower Top Mom SS λ2
14 0.970 RNA Accel FA λ0 0.937 Tower Top Mom SS Range
15 0.970 Tower Top Mom FA Range 0.935 RNA Accel SS λ2

Rank
Turbine 2
FA (Tower Bottom) SS (Tower Bottom)
R value Features R value Features

1 0.999 Tower Top Mom FA Eq. value 0.998 RNA Accel SS Eq. value
2 0.999 RNA Accel FA Eq. value 0.995 Tower Top Accel SS σstd
3 0.996 Tower Top Accel FA Eq. value 0.995 RNA Accel SS σstd
4 0.996 Tower Top Accel FA σstd 0.992 Tower Top Mom SS σstd
5 0.996 Tower Top Mom FA σstd 0.989 Tower Top Mom SS Eq. value
6 0.995 RNA Accel FA σstd 0.978 Tower Top Accel SS λ0
7 0.987 Tower Bottom IncliFA σstd 0.978 RNA Accel SS λ1
8 0.981 Tower Bottom Accel FA σstd 0.978 RNA Accel SS λ−1

9 0.973 Tower Top Mom FA λ2 0.977 RNA Accel SS λ0
10 0.969 RNA Accel FA Range 0.977 Tower Top Accel SS λ−1

11 0.968 RNA Accel FA Max 0.975 Tower Top Accel SS Eq. value
12 0.966 Tower Top Mom FA λ1 0.973 Tower Top Mom SS λ0
13 0.965 Tower Top Mom FA λ0 0.971 Tower Top Mom SS λ1
14 0.963 RNA Accel FA λ1 0.964 RNA Accel SS λ2
15 0.963 Tower Top Accel FA λ0 0.952 Tower Bottom Accel SS σstd
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As shown in the tables, for all conditions, acceleration at RNA, acceleration and
moment at top of the tower have the highest correlation with moment DEL at bottom
of the tower. Especially, standard deviation, range, and equivalent value are the most
relevant statistical properties.

In addition, for operating condition 1, the highest R values are smaller compared
to operating condition 3 and parked condition. As shown in Figure 2.6, operating
condition 1 is corresponding to the condition where the turbine is rotating in its
rated rotational speed while rotational speed is low in operating condition 3 and
parked condition. Therefore, the more complicated relationship exists in operating
condition 1 than other conditions. Accordingly, the relationship between different
features and moment DEL at the tower bottom is more complex in operating condi-
tion 1.

In summary, it is expected that moment DEL at tower bottom can be estimated
even with linear regression with standard signal (RNA acceleration) in operating
condition 3 and parked condition, but it may not be applicable in operating condition
1. The result of linear regression is shown in Section 4.3.

For transition piece and monopile locations, the same analysis has been done and
the results are shown in Appendix E. For transition piece and monopile, moment DEL
is not expected to be estimated with linear regression with the standard signal for all
conditions. However, the moment and inclination signals at the tower bottom have
large R values.

Lastly, similar studies have been performed to find the most important features to
estimate moment DEL. For this study, random forest with decision tree algorithm and
principal component analysis (hereinafter, PCA) have been performed. The studies
are shown in Appendix F.
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20 2. DATA OVERVIEW AND PREPROCESSING

2.4 Plots of the measured signals

As described in previous sections, total 14 signals (6 standard signals and 8 non-
standard signals) are measured and each signal has its statistical properties as shown
in Table A.1. Accordingly, it is impossible to plot all the data into one 2D or 3D plot.
Therefore, in this section, only some of the data are selected and put into a 2D plot
to visualize the relationship between them.

2.4.1 Mean wind speed vs rotational speed

The mean rotational speed varies according to the turbine’s operating conditions.
Especially, when the rotational speed is plotted with mean wind speed, it can be used
to give an overview of the distribution of dataset in term of operating condition. The
mean wind speed versus rotational speed is shown in Figure 2.6.
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Figure 2.6: Mean wind speed versus rotational speed

As shown in Figure 2.6, in operating condition 1 (Blue in the figure), most of
the data points have high wind speed and rotational speed which indicates it is cor-
responding to normal operating condition. For operating condition 3 (Green in the
figure), it has low wind speed and low rotational speed. For parked condition (Pink
in the figure), obviously, the rotational speed is at its lowest value. For operating
condition 2, it only has one data point and it has not been investigated.

One remark here is that there are two different trends in turbine 2 in operating

CONFIDENTIAL



2.4. PLOTS OF THE MEASURED SIGNALS 21

condition 1 in Figure 2.6. This is induced by different generations. As mentioned
above, turbine 2 sometimes generates power below its rated power in which the
rotational speed is different from its normal operating case.

2.4.2 Standard deviation of acceleration vs moment DEL at tower
bottom

As described in Section 2.3, one of the most linearly correlated features with moment
DEL at bottom of the tower is standard deviation of acceleration at top of the tower.
In this section, only FA direction is shown. In Appendix D, moment DEL at the tower
bottom and standard deviation of acceleration in SS direction are shown.

-1 -0.5 0 0.5 1

Norm. Std. of Acc at Top [-]

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

N
o
rm

. 
M

o
m

e
n
t 
D

E
L
 a

t 
T

o
w

e
r 

B
o
tt
o
m

 [
-]

Turbine 1

Oper. Cond. 1

Oper. Cond. 3

Parked

-1 -0.5 0 0.5 1

Norm. Std. of Acc at Top [-]

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

N
o
rm

. 
M

o
m

e
n
t 
D

E
L
 a

t 
T

o
w

e
r 

B
o
tt
o
m

 [
-]

Turbine 2

Oper. Cond. 1

Oper. Cond. 3

Parked

Std. of FA Acc at Top vs FA Moment DEL at Tower Bottom

Figure 2.7: Std. of Acc at tower top vs Moment DEL at tower bottom (FA Direction)

As shown in Figure 2.7, standard deviation of acceleration at tower top is highly
correlated with moment DEL at tower bottom in operating 3 and parked condition.

2.4.3 Moment DEL at tower top vs moment DEL at tower bottom

Moment DEL at tower top is obviously highly correlated with moment DEL at the
tower bottom. In this section, only FA direction is shown in Figure 2.8. SS direction
is shown in Appendix D.

Similar to the standard deviation of acceleration at the tower top, moment DEL
at tower top has linear relationship with moment DEL at tower bottom in operating
condition 3 and parked condition. The correlation is smaller in operating condition
1.
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Figure 2.8: Moment DEL at tower top vs Moment DEL at tower bottom (FA Direction)

2.4.4 Mean yaw angle vs moment DEL at tower bottom

In a wind farm, there are multiple wind turbines. Therefore, larger wake turbulence
is induced in downstream turbines as a result of wake effect from upstream turbines.
Consequently, downstream wind turbines have higher fatigue loads (which is equiv-
alent to moment DEL) than upstream wind turbines [4, 18]. Therefore, mean yaw
angle versus moment DEL at the tower bottom plot can give an indication of wake
effect from other turbines. Specifically, it is expected that larger moment DEL is in-
duced when wind direction is corresponding to the direction where the effect from
other turbines exists.

Here, it should be noted that the strength of the wake turbulence is affected by
different sources such as distance in between turbines, operating conditions of the
upstream turbines, turbulence intensity of atmosphere and so on. Therefore, it is
possible that wake direction cannot be recognized by simply comparing mean yaw
direction and moment DEL.

In this section, only operating condition 1 is considered since there is not enough
data exists for other conditions. The plot is shown in Figure 2.9 and 2.10.

From Figure 2.9 and 2.10, it is clearly seen that near 150, 180, 250 and 320 deg.,
turbine 1 is in wake. For turbine 2, though it is not as clear as turbine 1, turbine 2 is
in wake effect when yaw direction is 180, 240 and 350 deg..

CONFIDENTIAL



2.4. PLOTS OF THE MEASURED SIGNALS 23

(a) Turbine 1 (b) Turbine 2

Figure 2.9: Mean yaw angle versus moment DEL at tower bottom (FA Direction)

(a) Turbine 1 (b) Turbine 2

Figure 2.10: Mean yaw angle versus moment DEL at tower bottom (SS Direction)

2.4.5 Comparison of moment DEL at tower bottom

In this section, moment DEL at the tower bottom is compared to figure out the wake
directions. As shown in Section 2.4.4, at a specific yaw angle, the turbines are in the
wake effect where the moment DEL is measured higher than free stream condition.
To specify wake directions, Figure 2.9 and 2.10 have been used. As a result, the four
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regions shown in Figure 2.11 and Table 2.8 are specified as directions where there is
wake effect. In addition to the moment DEL comparison, the wake directions have
been found from layout information. As a result, the same wake directions have
been recognized except for one case. The one case is that turbine 2 is also in wake
when the yaw direction is in 300∼320 deg..

Figure 2.11: Definition of wake regions

Table 2.8: Definition of wake regions

Region Yaw direction [deg.] Turbines in wake

1 140 ∼160 Turbine 1
2 180 ∼200 Turbine 1 & 2
3 240 ∼270 Turbine 1 & 2
4 300 ∼320 Turbine 1 & 2
5 340 ∼360 Turbine 2

In addition, only when both turbines are in operating condition 1 has been con-
sidered in comparison since there are not enough number of data in which both
turbines are in operating condition 3 or parked condition. As a result, a comparison
of moment DEL at the tower bottom can be made as shown in Figure 2.12. It should
be noted that there is no data point in wake region 1 since turbine 2 has only one
data point in this region, and turbine 1 is not in operating condition 1 for that case.

From Figure 2.12, it is clearly visualized that normalized moment DEL is different
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Figure 2.12: Tower bottom moment DEL comparison

when only one of the two turbines is in wake (corresponding to wake region 5). In
addition, even when both turbines are in wake (corresponding to wake regions 2, 3
and 4), moment DEL is quite different. The reason for this is that the distances from
upstream turbines are different, and operating conditions of upstream turbines also
affect the wake. Lastly, when both turbines are in free stream, both turbines have
similar normalized moment DEL compared to the other cases.

When both turbines are in free stream, the comparison presented in Figure 2.13 is
obtained. Obviously, moment DEL is correlated, but they are scattered a lot. Accord-
ingly, pearson’s correlation coefficient R has been calculated as 0.7939 and 0.8366
for FA and SS direction respectively.
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Figure 2.13: Tower bottom moment DEL comparison (only free stream condition)

CONFIDENTIAL



Chapter 3

Neural Network

In this chapter, theories behind the feed-forward neural network and recurrent neu-
ral network are described. Firstly, a description of the feed-forward neural network
are given in Section 3.1. Description of the recurrent neural network is shown in
Section 3.2.

3.1 Feed forward neural network

One of the most widely used machine learning techniques is neural network. As the
name ‘neural network’ suggests, it mimics neural network in the human brain. The
similarity of biological neural network and neural network in machine learning is
not discussed here but it can be found in many literature [1, 12].

The feed-forward neural network is a neural network with layer-wise architecture
as shown in Figure 3.1. As the name suggests, data flow into forward direction from
the input layer toward the output layer through all the hidden layers. In this section,
the basic architecture and training process of the feed-forward neural network will
be discussed.

3.1.1 Basic architecture & concept

The basic architecture of a neural network is shown in Figure 3.1.
First of all, a neural network consists of different layers. Basically, there are three

categories in layers: input layer, hidden layer, and output layer. As shown in Figure
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28 3. NEURAL NETWORK

Figure 3.1: Basic structure of neural network

3.1, the number of input and output layers is 1 while there are multiple hidden
layers.

Secondly, each layer consists of a number of neurons. In Figure 3.1, each circle
where the arrows are connected is a neuron. Each neuron in hidden layers (de-
noted with letter ‘H’) has input and output signals while neurons in the input layer
(denoted with letter ‘I’) only have output signals and neurons in the output layer
(denoted with letter ‘O’) only have input signals. Neurons in hidden layers and out-
put layer process the input signals to generate output signals. In addition, the role
of neurons in the input layer just transfers the input values into neurons in the first
hidden layer.

In addition, the notation needs to be clarified. In each layer, there are different
number of neurons. In Figure 3.1, the number of neurons are m in input layer, n, p
and q in hidden layer 1,2 and N respectively, and l in output layer. For neurons, the
subscript stands for neuron’s number and superscript stands for layer’s number. For
example, H1

2 means 2nd neuron in 1st hidden layer. In addition, y and w stand for
output signal and weight factor respectively. Specifically, yji stands for output signal
from i′th neuron in j′th layer, and wk

ij stands for weight factor for output signal from
i′th neuron in (k − 1)′th layer toward j′th neuron in k′th layer.

The fundamental idea of neural network is that the relationship between input
and output can be expressed as a combination of basic signals between a number
of neurons. The basic signal is a signal processed with the basic function called
activation function. The activation function is described in Section 3.1.2.

In addition, the goal of neural network is to find optimized weights w. To achieve
the goal, training of neural network is required in which the optimized weights w
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3.1. FEED FORWARD NEURAL NETWORK 29

can be found. Specifically, during the training, weights w that give minimum error
between output values (from neural network) and target values (known values)
should be found. This process is described in Section 3.1.4.

3.1.2 Activation function

As explained, the activation function is used to process the input signal. The most
frequently used activation functions are sigmoid, hyperbolic tangent, rectified lin-
ear unit (RELU) and pure linear functions. Each activation functions are shown in
Equations (3.1) to (3.4).

Sigmoid function

asigmoid(z) =
1

1 + exp (−z)
(3.1)

hyperbolic tangent function

ahyper−tan(z) = tanh z (3.2)

Rectified linear unit (RELU)

aRELU (z) = max (0, z) (3.3)

Linear function
alinear(z) = z (3.4)

Where z is input signal which will be processed with the activation function. The
plot of activation function is shown in Figure 3.2.

3.1.3 Forward propagation

Forward propagation is a process to calculate the final outputs at the output layer.
As shown in Figure 3.1, output signals from the previous layer are processed with
activation function and generate a new output signal.

Specifically, when the output value at a i′th neuron of layer j is written as yji =

a(zji ) (where a(z) is a result of the pre-determined activation function), zji can be
calculated as shown in Equation (3.5).

zji =

n∑
k=1

(wj
kiy

j−1
k )− θji (3.5)
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30 3. NEURAL NETWORK

Figure 3.2: Activation functions

Where j is a layer in consideration, i is index of a neuron of layer j, k is index of
a neuron of layer j − 1 and θji is i′th bias term of layer j. By using Equation (3.5),
all the output yji for all layers can be calculated. Eventually, the output signals at the
output layer can be calculated.

As shown in Equation 3.5, weights should be known to perform the forward prop-
agation. However, the first forward propagation stage, all the weights are unknown
and therefore output yji cannot be calculated. Accordingly, random initialization is
used in which all the weights are randomly initialized.

3.1.4 Backward propagation

As described in Section 3.1.1, weights that give the minimum error in between out-
put values and target values should be found by training a neural network. Backward
propagation is a process to optimize the weights so that the error in between output
signals at the output layer and target values can be minimized.

There are many different algorithms for training including gradient descent, gra-
dient descent with momentum, conjugate gradient, Levenberg-Marquardt and so
on. Of all the algorithms, gradient descent can be said to be the basic algorithm.
In addition, the Levenberg-Marquardt algorithm is one of the most efficient training
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3.1. FEED FORWARD NEURAL NETWORK 31

algorithms and it has been applied in this study. Accordingly, gradient descent and
Levenberg-Marquardt algorithms [22, 34] are explained.

- Gradient descent back propagation
When a vector containing target values is denoted as ŷ and the output vector

from neural network is denoted as y, the error vector E can be expressed as written
in Equation (3.6).

E =
1

2
· (y − ŷ)2 (3.6)

It should be noted that the element-wise square should be taken. Then, the error
vector E is containing E = (E1, E2, . . . , El). Now, let’s consider the output layer. To
find the weights wO

ml that makes error E minimum, gradient of error vector E with
respect to wO

ml should be calculated. In here, chain rule can be applied as follows:

∂El

∂wO
ml

=
∂El

∂yOl

∂yOl
∂zOl

∂zOl
∂wO

ml

= (t1 − yOl ) · a′(zOl ) · yHm (3.7)

where a′(z) is derivative of activation function.
Then, the updated weight wO

ml from gradient descent can be expressed as follows:

wO
ml = wO

ml − αO ∂El

∂wO
ml

= wO
ml − αO · (t1 − yOl ) · yHma′(zOl )

= wO
ml − αO · δl · yHm (3.8)

where αO is learning late at output layer (layer O) and δl is:

δl = (t1 − yOl ) · a′(zOl ) (3.9)

Similarly, in the hidden layer, the weight can be updated as follows:

wH
nm = wH

nm − αH ∂El

∂wH
nm

= wH
nm − αH · δm · yIn (3.10)
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where αH is learning late at hidden layer (layer H) and δm is:

δm =

l∑
k=1

(wO
mkδk) · a′(zHm) (3.11)

In short, the weights of all layers can be updated by using gradient descent. And
the gradient can be calculated by using the chain rule.

- Levenberg-Marquardt back propagation
Levenberg-Marquardt algorithm is one of the second-order backpropagation al-

gorithms. To explain Levenberg-Marquardt algorithm, Newton’s method should be
discussed first.

In Newton’s method, for simplicity, the weights are expressed with a single index
such that w1, w2, ..., wN where N is the total number of weights. In Levenberg-
Marquardt algorithm, gradient components g1, g2, ..., gN are assumed to be the func-
tions of weights as shown in Equation (3.12).

g1 = F1(w1, w2, ..., wN )

g2 = F2(w1, w2, ..., wN )

...

gN = FN (w1, w2, ..., wN ) (3.12)

where F1, F2, ..., FN are nonlinear functions connecting weights and gradients.
Equation (3.12) can be expanded with first order Taylor expansion as shown in

Equation (3.13).

g1 ≈ g1,0 +
∂g1
∂w1

∆w1 +
∂g1
∂w2

∆w2 + ...+
∂g1
∂wN

∆wN

g2 ≈ g2,0 +
∂g2
∂w1

∆w1 +
∂g2
∂w2

∆w2 + ...+
∂g2
∂wN

∆wN

...

gN ≈ gN,0 +
∂gN
∂w1

∆w1 +
∂gN
∂w2

∆w2 + ...+
∂gN
∂wN

∆wN (3.13)

In addition, by using the definition of gradient g, second-order term in Equation
(3.13) can be written as follows:

∂gi
∂wj

=
∂(
∂E

∂wi
)

∂wj
=

∂2E

∂wi∂wj
(3.14)
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By using (3.14), Equation (3.13) can be rewritten as follows:

g1 ≈ g1,0 +
∂2E

∂w2
1

∆w1 +
∂2E

∂w1∂w2
∆w2 + ...+

∂2E

∂w1∂wN
∆wN

g2 ≈ g2,0 +
∂E

∂w2∂w1
∆w1 +

∂2E

∂2w2
∆w2 + ...+

∂2E

∂w2∂wN
∆wN

...

gN ≈ gN,0 +
∂2E

∂wN∂w1
∆w1 +

∂2E

∂wN∂w2
∆w2 + ...+

∂2E

∂wN
∆wN (3.15)

When the error is minimum, the gradients should be zero. Therefore, when
the error is minimum, the relationship in between gradient vector g and ∆w can
be written as shown in Equation (3.16) by setting g1, g2, ...gN = 0 from Equation
(3.15).

−g = H∆w

→ ∆w = −H−1g (3.16)

where H is Hessian matrix shown in Equation (3.17).

H =



∂2E

∂w2
1

∂2E

∂w1∂w2
. . .

∂2E

∂w1∂wN

∂2E

∂w2∂w1

∂2E

∂2w2
. . .

∂2E

∂w2∂wN
...

...
. . .

...
∂2E

∂wN∂w1

∂2E

∂wN∂w2
. . .

∂2E

∂2wN


(3.17)

As a result, weight should be updated with the amount of ∆w and it can be
expressed as follows:

wk+1 = wk −H−1g (3.18)

In Newton’s method, to calculateH, second-order derivative of total error should
be calculated but it is very complicated. Accordingly, Jacobian matrix J is introduced
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in Gauss-Newton Algorithm. The Jacobian matrix J is shown in Equation (3.19).

J =



∂e1
∂w1

∂e1
∂w2

. . .
∂e1
∂wN

∂e2
∂w1

∂e2
∂w2

. . .
∂e2
∂wN

...
...

. . .
...

∂el
∂w1

∂el
∂w2

. . .
∂el
∂wN


(3.19)

where l is the number of outputs. Then, the gradient vector g can be expressed
as follows:

g = Je (3.20)

where e is error vector shown in Equation (3.21).

e =


e1
e2
...
el

 (3.21)

In addition, the Hessian matrix H and Jacobian matrix J have the following
relationship:

H ≈ JTJ (3.22)

As a result, Equation (3.18) can be expressed with Jacobian matrix J as follows:

wk+1 = wk − (JT
k Jk)−1Jkek (3.23)

In Equation (3.23), matrix JTJ can be not invertible. In that case, weights can-
not be updated. To solve the problem, In Levenberg-Marquardt algorithm, Hessian
matrix is assumed as shown in Equation (3.24).

H ≈ JTJ + µcI (3.24)

where µc is combination coefficient which is always positive, I is identity ma-
trix. With this approach, the approximated Hessian matrix H is always invertible.
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Eventually, weight update rule in Levenberg-Marquardt algorithm can be expressed
as follows:

wk+1 = wk − (JT
k Jk + µI)−1Jkek (3.25)

The advantage of Levenberg-Marquardt algorithm is that it is stable since the
approximated Hessian matrix H is always invertible. In addition, it converges very
fast compared to other algorithms [34].

3.1.5 Cross validation

After train the neural network, the trained network should be validated with cross-
validation data set to see if it is under/over fitted. During cross-validation, so-called
Learning curve is used. The learning curve is a graph showing a relationship between
the size of the training set m and resultant training and cross-validation error. The
learning curve for those two cases are shown as follows [3]:

(a) Learning curve - underfitting (b) Learning curve - overfitting

The term ‘high bias’ and ‘high variance’ are corresponding to underfitting and
overfitting respectively. In Figure above, JV AL is an error with the cross-validation
set and JTR is an error with the training set.

In the case of underfitting, both JV AL and JTR are large even though the size of
the training set m is large. It is corresponding to the case where the trained neural
network gives inaccurate results. In this case, the number of hidden layers or neu-
rons should be increased so that the neural network can capture a more complicated
relationship between input and output.

In the case of overfitting, JTR is quite low while JV AL is large when the size of
the training set m is large. In other words, the result can represent the training set
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very well while it cannot be used for generalized data set. In this case, the number
of layers or neurons can be decreased. In this case, an increase in the size of the
training set m can solve the overfitting problem.

In summary, to apply the trained neural network for general data with which
the neural network is not trained on, the neural network should be validated with
cross-validation data set and both JTR and JV AL should be reasonably small.

After all these cross-validation is done, the test data set is used to calculate the
accuracy of the estimation. It should be noted that the test set is a different data
set from the cross-validation data set. One important remark is that the training,
cross-validation and test data set is randomly decided. Therefore, accuracy can be
different for different divisions of the training, cross-validation, and test data set. As
a result, multiple divisions of training, cross-validation and test set should be applied
for appropriate accuracy calculation.

3.1.6 Vanishing and exploding of gradient

As explained above, weights are updated during the training process with gradient.
When the neural network is deep, during the weight update process, these gradients
are multiplied multiple times. It causes a problem called vanishing or exploding of
gradient.

Specifically, when the gradient is smaller than 1, the multiple multiplications of
gradient causes vanishing of gradients. On the other hand, when the gradient is
larger than 1, the gradient is exploding. In either case, the updated weights will not
converge into optimized points where the error is minimum.

When vanishing and exploding occur, the neural network would give very inac-
curate results. Especially, the error would not converge in the process of training.
Therefore, it is easily be captured.

To solve the vanishing and exploding, many different approaches can be taken
[11, p. 60]. First of all, one can restructure a neural network to have shallower archi-
tecture. Secondly, for a recurrent neural network, long short-term memory (LSTM)
architecture can be used. In addition, dropout can be used to prevent overfitting
[29]. Lastly, gradient clipping can be applied to prevent exploding. With gradient
clipping, gradients are limited during the training process if the gradients exceed a
threshold value.
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3.2 Recurrent neural network (LSTM)

When the data contain sequential dependency, the recurrent neural network can be
used to include this sequential dependency. There are many different recurrent neu-
ral network structures including fully-recurrent neural network, echo-state neural
network, gated recurrent unit (GRU) and long short-term memory (LSTM).

The biggest challenge to train the recurrent neural network is vanishing and ex-
ploding gradient problem. It is briefly explained in Section 3.1.6. Especially when the
recurrent neural network deals with long-term memory, it can be regarded as deep
neural network as shown in Figure 3.4. Specifically, Input1 and Outputt in Figure
3.4 are connected through a lot of neural network structures, and it can be regarded
as deep neural network. In this process, vanishing and exploding gradient problem is
frequently taken place.

Figure 3.4: Expanded basic RNN

To solve the problem, different kinds of recurrent neural networks have been
developed. Of all the structures, LSTM has been applied in this study and it will be
described in this section.

3.2.1 Basic architecture & concept

First of all, The main idea of LSTM is to prevent the vanishing problem by allowing
long-term memory to flow without being changed. To achieve it, LSTM uses cell
state c. The basic structure of LSTM is shown in Figure 3.5 [37].

In Figure 3.5, ‘×’ and ‘+’ in green circle is multiplication and summation process
respectively. In addition, ‘σ’ and ‘tanh’ in gray rectangular is sigmoid and hyperbolic
tangent activation function shown in Section 3.1.2 respectively. Added to that, c is
cell state applied to prevent vanishing problem. In addition, ht is hidden state and
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Figure 3.5: LSTM architecture

xt is input. After calculating hidden state ht, output yt can be calculated by applying
weight into the hidden state as shown in Equation 3.26.

yt = whyht (3.26)

As described, the main idea of LSTM is to use cell state c to prevent vanishing
problem. As shown in Figure 3.5, this cell state c is flowing through the whole layer
with one multiplication and summation process. It is also flowing from the start of
the sequence to the end. In this process, LSTM can add or remove information to
cell state. To decide what to be added or removed, LSTM uses three gates; forget
gate, input gate and output gate and it is explained in Section 3.2.2.

3.2.2 Gates

In LSTM, there are three gates: forget gate, input gate, and output gate. The role
of these gates is to decide what to add, what to remove and what to transfer to cell
state.

First of all, forget gate is shown in Figure 3.6.
As its name suggests, forget gate decides how much information it forgets from

cell states. As a result of sigmoid function denoted as ‘σ’ in Figure 3.6, ft has a value
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Figure 3.6: Forget gate

in between 0 to 1. If it is 1, that means it will keep the full data while it forgets full
data if it is 0. The process can be expressed as shown in Equation (3.27).

ft = σ(wfxt + ufht−1 + θf ) (3.27)

where xt is input at time step t, ht−1 is hidden state at time step t − 1, wf is
forget weight matrix for input xt, uf is forget weight matrix for hidden state ht−1
and θf is forget bias.

Secondly, input gate is shown in Figure 3.7.
Input gate decides what will be added to cell state. In consists of sigmoid acti-

vation function and hyperbolic tangent activation function. Through the hyperbolic
tangent activation function, new candidate c̃t is calculated. Then, through the sig-
moid activation function, it decides how much of the new candidate c̃t will be added
to cell state with the portion of it. It can be expressed as shown in Equation (3.28)
and (3.29).

it = σ(wixt + uiht−1 + θi) (3.28)

c̃t = tanh (wcxt + ucht−1 + θc) (3.29)

where subscript i is for it calculation through sigmoid activation function and
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Figure 3.7: Input gate

subscript c for new candidate calculation through hyperbolic tangent activation func-
tion.

With the values calculated from forget gate and input gate, new cell state ct can
be calculated. This process is shown in Figure 3.8.

With the calculated forget rate ft, input rate it and new candidate c̃t, new cell
state ct can be calculated as shown in Equation (3.30).

ct = ftct−1 + itc̃t (3.30)

The first term in Equation (3.30) is a process to forget the data by multiplying
forget ratio ft with ct−1. The second term is a process to add new candidate c̃t with
ratio of it.

The last gate of LSTM is output gate and it is shown in Figure 3.9.
Output gate decides how much data will be transferred to the next sequence. It

also consists of sigmoid activation function and hyperbolic tangent activation func-
tion. Similar to input gate, sigmoid activation function gives an output ratio ot and
hyperbolic tangent activation function processes the updated cell state ct to be in
a range of -1 to 1. As a result, the hidden state ht can be calculated as shown in
Equation (3.31).

ht = ot tanh (ct) (3.31)
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Figure 3.8: Update cell state

Figure 3.9: Output gate

In summary, through forget, input and output gates, cell state and hidden state
can be updated. In this process, all the weights in all gates are variables required to
be optimized by training.
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3.2.3 Forward & Backward propagation

Training (Forward & backward propagation) of the recurrent neural network is the
same as the feed-forward neural network. The only difference is in the backpropa-
gation algorithm. As explained in Section 1.5, Deep Learning Toolbox in MATLAB
has been used to build both the feed-forward neural network and recurrent neural
network. In Deep Learning Toolbox in MATLAB, only three optimization algorithms
are available for the recurrent neural network which are stochastic gradient descent
with momentum (SGDM), RMSProp and ADAM. Of the three algorithms, ADAM
optimizer has been applied in this study.
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Chapter 4

Individual turbine level load
estimation

In this chapter, individual turbine level load estimation is described. First of all, the
introduction to the dataset used in individual turbine load estimation and description
of the base case are shown in Section 4.1. The accuracy measurement method is
introduced in Section 4.2. The linear regression analysis for operating condition
3 and parked condition is shown in Section 4.3. Then, the result with the feed-
forward neural network is described in Section 4.4. The result with the recurrent
neural network is shown in Section 4.5. In addition, various case studies have been
performed to answer one of the research questions: ‘what is the minimum number
of sensors for accurate estimation?’. The case study results are presented in Section
4.6. Additionally, it has been investigated if any improvement can be achieved with
the division of operating condition 1 and PCA. these applications are explained in
Section 4.7. In addition, to answer the research question of ‘what is the required
number of data for accurate estimation?’, accuracy level has been compared with
respect to the size of training data. It is described in Section 4.8. Lastly, conclusion
is given in Section 4.9.

4.1 Applied dataset

For individual turbine load estimation, the base case has been applied to decide
hyperparameters of the neural network including the number of hidden layers and
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neurons. In Section 4.1.1, input and target data are described. Then, the base case
is described in Section 4.1.2.

4.1.1 Input and target signals

For individual turbine level load estimation, the pre-processed data described in
Chapter 2 have been applied. It is shown in Table 4.1.

Table 4.1: Base case

Input
Category Number Signal Statistical properties

Standard

1 Acceleration All (1-5 in Table A.1)
2 Blade Pitch angle All (1-5 in Table A.1)
3 Wind Speed All (1-5 in Table A.1)
4 Active Power All (1-5 in Table A.1)
5 Rotational Speed All (1-5 in Table A.1)
6 Yaw Direction All (1-5 in Table A.1)

Non-standard

1 Acceleration at Tower Top All (1-5 in Table A.1)
2 Moment at Tower Top All (1-5 in Table A.1)
3 Acceleration at Tower Bottom All (1-5 in Table A.1)
5 Inclination at Tower Bottom All (1-5 in Table A.1)

Target
Category Number Signal Statistical properties

Non-standard

4 Moment at Tower Bottom DEL (4 in Table A.1)
6 Moment at Transition Piece DEL (4 in Table A.1)
7 Moment at Monopile (Upper level) DEL (4 in Table A.1)
8 Moment at Monopile (Lower level) DEL (4 in Table A.1)

4.1.2 Base case

As a base case, all the input and target shown in Table 4.1 have been used. Basically,
the base case uses all the measurements as input. Therefore, it is expected that the
results would be quite accurate with the base case.
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4.2 Accuracy measurement

To evaluate the accuracy of estimation from neural networks, two methods have
been used in this study.

Firstly, Pearson’s correlation coefficient has been applied. As described in Section
2.3, Pearson’s correlation coefficient R measures the linear correlation between two
data.

In addition, the mean absolute percentage error (MAPE) has been used. MAPE
can be calculated as shown in Equation (4.1).

MAPE = 100%× 1

n

∑
i

yi − ŷi
ŷi

(4.1)

4.3 Linear regression (for subsets of operating condi-
tions)

As explained in Section 2.2, for parked condition and operating condition 3 where
the turbine is operating with low rotational speed and low wind speed, Pearson’s
correlation coefficient in between moment DEL at tower bottom and some standard
signals were found to be almost 1. It means moment DEL at the tower bottom
can be accurately estimated with linear regression. However, for transition piece
and monopile, Pearson’s correlation coefficient is quite off from 1 with standard
signals. However, Pearson’s coefficient is close to 1 with some non-standard signals
such as moment DEL and a standard deviation of inclination at the tower bottom.
Accordingly, to investigate if linear regression can be applied for operating condition
3 and parked condition, linear regression has been applied to estimate moment DEL
with features with Pearson’s correlation coefficient of almost 1.

From Table 2.6, 2.7 and Tables in Appendix E, the features which have Pearson’s
coefficient close to 1.0 are extracted and tabulated in Table 4.2.

Table 4.2: Linearly correlated features with moment DEL at tower bottom

Category At tower bottom At transition piece and monopile

Standard
RNA Accel Eq. value -
RNA Accel σstd -

Non-standard Tower Top Mom σstd Tower Bottom Mom Eq. value
- Tower Bottom Inclination σstd
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For tower bottom, the results of linear regression are shown in Table 4.3 and Ta-
ble 4.4 for FA direction. In addition, comparison between estimation and measure-
ment is shown in Figure 4.1 and 4.2 for operating condition 3 and parked condition
respectively.

For transition piece and monopile, the results are shown in Table 4.5 and Table
4.6 for X direction.
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Figure 4.1: Results for linear regression in between FA directional tower bottom mo-
ment DEL and different features, Operating condition 3, Turbine 1
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Table 4.3: Results for linear regression in between FA directional tower bottom mo-
ment DEL and different features, Operating condition 3

Location Feature
Turbine 1 Turbine 2

R value MAPE R value MAPE

Tower Bottom
RNA Accel Eq. value 0.999 1.86% 0.999 1.71%
RNA Accel σstd 0.998 2.64% 0.996 3.33%
Tower Top Mom σstd 0.998 2.67% 0.997 3.83%

Table 4.4: Results for linear regression in between FA directional tower bottom mo-
ment DEL and different features, Parked condition

Location Feature
Turbine 1 Turbine 2

R value MAPE R value MAPE

Tower Bottom
RNA Accel Eq. value 0.999 1.39% 0.999 2.60%
RNA Accel σstd 0.997 2.21% 0.995 3.55%
Tower Top Mom σstd 0.996 2.38% 0.996 2.39%
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Figure 4.2: Results for linear regression in between FA directional tower bottom mo-
ment DEL and different features, Parked condition, Turbine 1
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Table 4.5: Results for linear regression in between X directional transition piece and
monopile moment DEL and different features, Operating condition 3

Location Feature
Turbine 1 Turbine 2

R value MAPE R value MAPE

Transition piece
Tower Bottom Eq. value 0.998 1.13% 0.987 4.89%
Tower Bottom Mom Incli. σstd 0.995 3.45% 0.971 5.35%

Upper Monopile
Tower Bottom Eq. value 0.995 4.18% 0.979 5.01%
Tower Bottom Mom Incli. σstd 0.996 2.73% 0.972 6.97%

Lower Monopile
Tower Bottom Eq. value 0.977 6.12% 0.973 5.69%
Tower Bottom Mom Incli. σstd 0.968 9.19% 0.964 8.99%

Table 4.6: Results for linear regression in between X directional transition piece and
monopile moment DEL and different features, Parked condition

Location Feature
Turbine 1 Turbine 2

R value MAPE R value MAPE

Transition piece
Tower Bottom Eq. value 0.997 0.91% 0.999 0.90%
Tower Bottom Mom Incli. σstd 0.946 6.82% 0.988 4.57%

Upper Monopile
Tower Bottom Eq. value 0.993 2.86% 0.998 2.57%
Tower Bottom Mom Incli. σstd 0.953 6.96% 0.988 4.64%

Lower Monopile
Tower Bottom Eq. value 0.979 4.55% 0.993 5.02%
Tower Bottom Mom Incli. σstd 0.958 6.50% 0.986 6.01%
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As shown in the results, linear regression gives quite accurate estimation at the
tower bottom for both operating condition 3 and parked condition. The same result
has been found for SS direction.Specifically, only with standard signals, the estima-
tion is accurate with MAPE of less than 4%. Especially, when the equivalent value of
RNA acceleration has been used, MAPE of less than 3% can be achieved.

For transition piece and monopile, linear regression gives less accurate results.
Especially, when the standard deviation of inclination has been used, estimation was
not so accurate. However, when moment DEL at the tower bottom has been used,
estimation was quite accurate. Specifically, linear regression gives MAPE of less than
about 5% for operating condition 3 and 3% for parked condition at transition piece
and upper monopile level. However, at lower monopile level, the accuracy level is
lower than that with MAPE of around 6% for operating condition 3 and around 5%
for parked condition. In addition, the higher error is expected at the fatigue critical
location near mudline.

4.4 Feed forward artificial neural network

First of all, as described in Section 1.5, Deep learning toolbox in MATLAB 2018b
has been used for the feed-forward neural network application. Throughout this
study, Levenberg-Marquardt backpropagation algorithm explained in Section 3.1.4
has been used. Its related parameters are tabulated in Table 4.7.

Table 4.7: Parameters used for feed forward neural network training

Parameter Value
Max. number of epoch 1000
Min. gradient 10−7

Max. validation check 10

In addition, all the features and targets have been normalized in a range of -1∼1
with min-max normalization. About the activation function, the tangent-sigmoid
activation function has been applied for the hidden layer and output layer.

Lastly, 70% of the total data set has been used for training and 15% has been
used as cross-validation and test data set respectively.

For all cases, ten (10) different divisions of training, cross-validation and test set
have been made. Then, the averages of the accuracy measurements have been taken
as the representative accuracy measurements.
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In addition to that, for each division of training, cross-validation and test set, ten
(10) different random weights initialization have been applied. Then, the accuracy
measurements of averaged estimation have been calculated and used as the repre-
sentative value. It has been done to prevent the feed-forward neural network being
optimized for local minimum, instead of the global minimum.

4.4.1 Decision of hyper parameters

With the base case described in Section 4.1.2, hyperparameters including the num-
ber of hidden layers and neurons of the feed-forward neural network have been
decided. To decide the hyperparameters, only the moment DEL at the tower bottom
has been used.

Specifically, five different number of neurons (4,8,12,16 and 20) and two differ-
ent number of hidden layers (1 and 2) are compared. The comparison is based on
Pearson’s correlation coefficient R and MAPE of the test data set.

As a result, the following Pearson’s correlation coefficient R and MAPE have been
calculated for Turbine 1.

As shown in Figure 4.3, the accuracy level has no significant difference. In de-
tail, the accuracy measurements for the simplest (smallest number of neurons and
number of layers) and the most complex architecture (largest number of neurons
and number of layers) have almost the same values as tabulated in Table 4.8. As a
result, the simplest feed-forward neural network architecture with 4 neurons in one
hidden layer has been used for further studies.

Table 4.8: Comparison of accuracy between simplest and the most complex structures

Turbine 1 Turbine 2
R value MAPE R value MAPE

1 Layer, 4 neurons 0.988 3.19% 0.983 3.40%
2 Layers, 20 neurons 0.990 2.85% 0.980 3.34%

4.4.2 Estimation result for base case

For the base case, moment DEL estimations for all locations have been made. The
purpose of the base case application is to investigate if the feed-forward neural net-
work can give accurate estimation, and the achievable level of estimation accuracy.
As briefly mentioned in Section 4.1.2, the base case application is expected to give
quite accurate estimation since all the measurement data have been used.
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(a) R comparison (Turbine 1) (b) MAPE comparison (Turbine 1)

(c) R comparison (Turbine 2) (d) MAPE comparison (Turbine 2)

Figure 4.3: Accuracy comparison for different number of neurons and layers

In Figure 4.4, FA directional moment DEL at tower bottom and X directional
moment DEL at transition piece and monopile for operating condition 1 of turbine
1 are shown. In Figure 4.5, the same results for operating condition 3 are shown.
It should be noted that the results for all the different sets including training/cross
validation and test sets are shown in both figures. However, to explain the overfitting
problem, distinction in between three sets has been made on Figure 4.5.

In Table 4.9, 4.10, 4.11 and 4.12, all the accuracy measurements are shown for
tower bottom, transition piece, monopile (upper level) and monopile (lower level)
estimations respectively.

From the results, it is found that the estimation is accurate for operating con-
dition 1 in all locations. Specifically, MAPE is less than 4% for all locations except
lower monopile location where MAPE is about 5%. In addition, as shown in Figure
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Figure 4.4: Results of individual turbine level load estimation, FA and X directions,
Operating Condition 0, Turbine 1, Base Case, Feed forward neural network

Table 4.9: Results of individual turbine level load estimation, Tower bottom, Base
Case, Feed forward neural network

Turbine 1 (Tower bottom) Turbine 2 (Tower bottom)
FA SS FA SS

R value MAPE R value MAPE R value MAPE R value MAPE

Oper. Cond. 1 0.988 3.19% 0.997 1.52% 0.983 3.40% 0.995 1.55%
Oper. Cond. 3 0.946 7.80% 0.972 7.64% 0.933 11.65% 0.751 15.82%
Parked Cond. 0.945 7.19% 0.977 3.39% 0.984 2.69% 0.991 1.48%
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Figure 4.5: Results of individual turbine level load estimation, X directions, Operating
Condition 3, Turbine 1, Base Case, Feed forward neural network

Table 4.10: Results of individual turbine level load estimation, Transition piece, Base
Case, Feed forward neural network

Turbine 1 (Transition piece) Turbine 2 (Transition piece)
X Y X Y

R value MAPE R value MAPE R value MAPE R value MAPE

Oper. Cond. 1 0.990 3.24% 0.988 3.02% 0.982 3.45% 0.982 3.68%
Oper. Cond. 3 0.957 8.23% 0.903 9.50% 0.923 16.20% 0.951 11.87%
Parked Cond. 0.972 6.81% 0.986 4.89% 0.990 3.30% 0.990 3.23%
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Table 4.11: Results of individual turbine level load estimation, Monopile (upper),
Base Case, Feed forward neural network

Turbine 1 (Monopile (upper)) Turbine 2 (Monopile (upper))
X Y X Y

R value MAPE R value MAPE R value MAPE R value MAPE

Oper. Cond. 1 0.992 3.37% 0.989 3.00% 0.993 2.88% 0.988 3.19%
Oper. Cond. 3 0.881 8.17% 0.823 11.77% 0.903 16.88% 0.953 11.09%
Parked Cond. 0.975 5.74% 0.972 5.43% 0.975 4.40% 0.990 3.55%

Table 4.12: Results of individual turbine level load estimation, Monopile (lower), Base
Case, Feed forward neural network

Turbine 1 (Monopile (lower)) Turbine 2 (Monopile (lower))
X Y X Y

R value MAPE R value MAPE R value MAPE R value MAPE

Oper. Cond. 1 0.984 5.22% 0.987 4.48% 0.985 3.96% 0.985 4.90%
Oper. Cond. 3 0.916 7.72% 0.924 14.68% 0.869 14.88% 0.913 19.11%
Parked Cond. 0.981 5.37% 0.950 6.93% 0.980 3.74% 0.990 3.39%

4.4, results are not biased. At the lower monopile location, moment is induced by
wind as well as wave, and the wave-induced moment is larger at the lower monopile
location. As a result, higher inaccuracy is expected at the lower monopile location
since the base case does not include any information about wave as its input.

In addition, accuracy is low in operating condition 3 with MAPE of above 8% for
turbine 1 and MAPE of above 11% for turbine 2. This inaccuracy is induced by the
small number of the training set. Concretely, overfitting problem caused by the small
number of training set induces the inaccuracy. As shown in Table 2.4, only 117 and
64 data points exist for turbine 1 and turbine2 respectively for operating condition
3. Among them, only 70% (82 and 45 for turbine 1 and turbine 2 respectively) have
been used for training and it is not enough to train the neural network. Therefore,
as shown in Figure 4.5, results are well matched only for the training set, but for
cross-validation and test set, the result is not well matched since the neural network
has overfitting problem.

A similar trend is found in parked condition. For parked condition, MAPE has
been calculated as above 5% for turbine 1 and about 4% for turbine 2. As shown in
Table 2.4, the number of data points is 151 and 274 and 70% of those data points
(106 and 192 respectively) have been used for training. Since the number of data
points is larger than operating condition 3, the results are more accurate for parked
condition. Especially, for turbine 2 with 192 data points, the result is quite accurate
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with MAPE of about 4%.

4.5 Recurrent neural network (LSTM)

In addition to the feed-forward artificial neural network, the recurrent neural net-
work has also been applied. The idea behind applying recurrent neural network is to
investigate if more accurate estimation can be achieved. Specifically, the estimation
accuracy would be increased if the moment DELs from previous time stamps have
a relationship with moment DEL at time stamp in question since recurrent neural
network gives accurate estimation when the data has a sequential dependency.

Of all the recurrent neural network structures, LSTM has been used for this study.
By trial and error, the neural network architecture that gives minimum MAPE has
been decided. The recurrent neural network architecture is shown in Figure 4.6.

Figure 4.6: RNN architecture

The number in the bracket in ‘LSTM layer’ box indicates the number of hidden
units in LSTM layer. In other words, 20 LSTM units shown in Figure 3.5 are stacked
up inside the LSTM layer. After the LSTM layer, a fully connected layer and dropout

CONFIDENTIAL



4.5. RECURRENT NEURAL NETWORK (LSTM) 57

layer are connected. The fully connected layer is the same as one hidden layer of the
feed-forward neural network. The number in the bracket of ‘Fully connected layer’
box indicates the number of neurons in the layer. Dropout layer is added to prevent
overfitting problem and the number in the bracket of ‘Dropout layer’ box indicates
dropout rate. At the end of the architecture, the fully connected layer and regression
layer are connected. The fully connected layer is added to estimate output data (In
this study, moment DEL). The regression layer is added to calculate mean squared
error for training.

For LSTM application, only the operating condition 1 has been considered. Es-
pecially, data points where the operating condition is constantly the same have been
extracted since sequential dependency is expected to disappear when operating con-
dition is changed. As a result, the number of data points which consecutively are
corresponding to operating condition 1 has been obtained as shown in Table 4.13.

Table 4.13: Number of data points used for RNN

Turbine 1 Turbine 2

No. of Data 1665 439

4.5.1 Estimation result for base case

Moment DEL estimation for all locations has been made with the recurrent neural
network. In Figure 4.7, FA and X directional estimation of turbine 1 is shown only
for test set. In Table 4.14, accuracy measurements for all the results are tabulated.

Table 4.14: Results of individual turbine level load estimation, Operating condition 1,
All locations, Base Case, RNN

Case Location
Turbine 1 Turbine 2
R value MAPE R value MAPE

Base Case

Tower Bottom (FA) 0.933 15.80% 0.916 15.73%
Tower Bottom (SS) 0.890 13.01% 0.785 38.23%
Transition Piece (X) 0.938 12.85% 0.909 30.45%
Transition Piece (Y) 0.942 11.33% 0.981 6.70%
Monopile (upper) (X) 0.929 13.00% 0.758 37.44%
Monopile (upper) (Y) 0.942 11.76% 0.988 15.92%
Monopile (lower) (X) 0.849 19.24% 0.401 47.66%
Monopile (lower) (Y) 0.893 21.26% 0.973 13.80%
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(a) Tower bottom, FA moment DEL (b) Transition piece, X moment DEL

(c) Monopile (upper), X moment DEL (d) Monopile (lower), X moment DEL

Figure 4.7: Results of individual turbine level load estimation, FA and X directions,
Operating Condition 0, Turbine 1, Base Case, RNN

As shown in the results, the recurrent neural network gives poor estimation.
Specifically, MAPE has been calculated above 10% for all cases except Y directional
moment DEL estimation at transition piece. This might be due to the fact that mo-
ment DELs have no sequential dependency, or the number of training data is not
enough for training but it is difficult to make a conclusion of what causes the inaccu-
racy. However, it can be concluded that the feed-forward neural network fits better
than the recurrent neural network for this study with one-month data.
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4.6 Case study with different input combination

To answer the research question of ‘what is the minimum number of sensors that
gives accurate DEL estimation?, case studies have been performed. Since it has
been found from Section 4.4 and 4.5 that the feed-forward neural network performs
better than recurrent neural network for this study, the feed-forward neural network
has been applied for case studies. In addition, for all case studies, only operating
condition 1 has been considered since the number of data points is not enough in
operating condition 3 and parked condition as shown in Section 4.4.

In Section 4.6.1, accuracy measurement comparison for different input combi-
nation is shown. In Section 4.6.2, estimation result with only the standard signals
as input is presented. Then, effect of wave data is explained in Section 4.6.3. In
Section 4.6.4, estimation with non-standard signals is described. Summary of es-
timation results for different input combination is shown in Section 4.6.5. Lastly,
weights comparison is described in Section 4.6.6.

Two remarks here are that, firstly all the comparisons between measurement and
estimation are shown for all the different sets including training/cross validation
and test sets. Secondly, the name of each case study is abbreviated to ‘CS’ with case
number at the end.

4.6.1 Accuracy measurements for different input combinations

To figure out the minimum number of sensors that gives a reasonably accurate esti-
mation, the accuracy measurements have been compared for different input combi-
nations. The same feed-forward neural network used in Section 4.4 (with 1 hidden
layer and 4 neurons) has been applied. For this study, different combinations of in-
put features shown in Table 4.1 have been made. As a result, a total of 255 different
input combinations have been generated. For all the features, all the statistical prop-
erties have been applied as input. In addition, FA moment DEL at the tower bottom
of turbine 1 has been used as the target value for this study. The resultant accuracy
measurements are shown in Figure 4.8.

About index number of input combination in Figure 4.8, smaller index number
indicates the input combination is simpler and containing a small number of input
features while it contains a larger number of input features when index number is
larger. As a result, it has been found that the input combination with the smaller
number of input features gives almost the same level of accuracy with the input
combination with the larger number of input features.

The same accuracy measurement comparison has been made for input combina-
tions which include only the standard input signals as shown in Figure 4.9.
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Figure 4.8: Accuracy comparison for different input combinations, all input combina-
tions
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Figure 4.9: Accuracy comparison for different input combinations, input combinations
only with standard signals

As shown in Figure 4.9, it can be concluded that the estimation can be accurate
only with the standard signals with R value of almost 0.994 and MAPE of around
4%.
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4.6.2 Estimation with standard signals

As shown in Section 4.6.1, FA directional moment DEL estimation at tower bottom
of turbine 1 can be accurately estimated with the feed-forward neural network only
with standard signals as its input.

Therefore, the feed-forward neural network only with standard signals has been
applied to estimate moment DEL at other locations (transition piece and monopile)
to investigate if only the standard signals are enough for accurate estimation.

The input signals and statistical properties used for this study are tabulated in
Table 4.15 and the results for FA and X directional moment DEL estimation of turbine
1 are shown in Figure 4.10. The accuracy measurements are presented in Table 4.16.

Table 4.15: Input data, only with standard signals with all statistical properties, CS1

Input (CS1)
Category Number Signal Statistical properties

Standard

1 Acceleration All (1-5 in Table A.1)
2 Blade Pitch angle All (1-5 in Table A.1)
3 Wind Speed All (1-5 in Table A.1)
4 Active Power All (1-5 in Table A.1)
5 Rotational Speed All (1-5 in Table A.1)
6 Yaw Direction All (1-5 in Table A.1)

Table 4.16: Results of individual turbine level load estimation, Operating condition 1,
All locations, Only with standard signals, All statistical properties, Feed forward neural
network, CS1

Case Location
Turbine 1 Turbine 2
R value MAPE R value MAPE

CS1

Tower Bottom (FA) 0.965 3.17% 0.976 3.62%
Tower Bottom (SS) 0.996 1.77% 0.994 1.92%
Transition Piece (X) 0.972 6.14% 0.957 5.95%
Transition Piece (Y) 0.963 5.61% 0.943 5.56%
Monopile (upper) (X) 0.977 5.79% 0.934 5.67%
Monopile (upper) (Y) 0.967 5.23% 0.962 5.45%
Monopile (lower) (X) 0.963 7.91% 0.957 6.68%
Monopile (lower) (Y) 0.953 6.66% 0.959 6.26%

From the results, it is concluded that the moment DEL at the tower bottom can

CONFIDENTIAL



62 4. INDIVIDUAL TURBINE LEVEL LOAD ESTIMATION

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

Estimation [-]

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

M
e
a
s
u
re

m
e
n
t 
[-

]

DEL of FA Moment at Tower bottom - CS1

(a) Tower bottom, FA moment DEL

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

Estimation [-]

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

M
e
a
s
u
re

m
e
n
t 
[-

]

DEL of X Moment at Transition piece - CS1

(b) Transition piece, X moment DEL

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

Estimation [-]

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

M
e

a
s
u

re
m

e
n

t 
[-

]

DEL of X Moment at Monopile (Upper) - CS1

(c) Monopile (upper), X moment DEL

-1.5 -1 -0.5 0 0.5 1

Estimation [-]

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

M
e
a
s
u
re

m
e
n
t 
[-

]
DEL of X Moment at Monopile (Lower) - CS1

(d) Monopile (lower), X moment DEL

Figure 4.10: Results of individual turbine level load estimation, FA and X directions,
Operating Condition 0, Turbine 1, Only with standard signals, All statistical properties,
Feed forward neural network, CS1

be accurately estimated only with standard signals with MAPE of less than 4%. How-
ever, for transition piece and monopile, MAPE of higher than 5% has been obtained.
Especially, at the lower monopile level, the result is the most inaccurate with MAPE
of higher than 6%. Added to that, from Figure 4.10, it has been found that the
estimations are not biased for all locations.

One remark is that there is a larger error in FA directional estimation than SS
directional at tower bottom. This is due to the larger range of input features and
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target moment DEL in FA direction compared to that of SS direction. Specifically,
the thrust force is larger than other forces in offshore wind turbines and it is acting
in FA direction. Accordingly, ranges of input features and target moment DEL in
FA direction is larger than SS direction. In other words, the feed-forward neural
network should be trained with more data in FA direction to cover all these larger
ranges of input features and target moment DEL compared to SS direction. However,
the one-month data seems not enough to train the feed-forward neural network
thoroughly.

In addition to that, all the standard signals only with standard statistical prop-
erties have been applied. Specifically, among all the statistical properties, some of
the statistical properties can only be calculated when time series is available. Such
statistical properties are damage equivalent value and spectral moments.

However, default SCADA system does not provide those statistical properties. In
other words, to calculate those statistical properties, additional effort should be put.
Therefore, it has been investigated if estimation without those statistical properties
can give accurate estimation.

The input data used for this study is shown in Table 4.17. The results for FA and
X directional moment DEL estimation of turbine 1 are shown in Figure 4.11. The
accuracy measurements are presented in Table 4.18.

Table 4.17: Input data, only with standard signals, with standard statistical properties,
CS2

Input (CS2)
Category Number Signal Statistical properties

Standard

1 Acceleration 1-3 in Table A.1
2 Blade Pitch angle 1-3 in Table A.1
3 Wind Speed 1-3 in Table A.1
4 Active Power 1-3 in Table A.1
5 Rotational Speed 1-3 in Table A.1
6 Yaw Direction 1-3 in Table A.1

As shown in the results, overall accuracy is decreased compared to the results
when all statistical properties have been used. Specifically, for all locations, MAPE
of higher than 5% has been obtained except SS directional moment DEL estimation
at tower bottom.

In summary, it has been found that standard signals can give accurate estimation
for tower bottom location with MAPE of less than 5%. However, estimation has been
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Figure 4.11: Results of individual turbine level load estimation, FA and X directions,
Operating Condition 0, Turbine 1, Only with standard signals, with standard statistical
properties, Feed forward neural network, CS2

relatively inaccurate at transition piece and monopile with MAPE of less than 10%.
With only the standard statistical properties, the results have been even worse.

Furthermore, given that the fatigue critical location is located near mudline,
higher inaccuracy is expected in estimation at the fatigue critical location.

The possible explanation of the inaccuracy in estimation at transition piece and
monopile is that standard signals do not include any information about waves. The
wave induced moment is getting larger along with the depth. Accordingly, it is ex-
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Table 4.18: Results of individual turbine level load estimation, Operating condition
1, All locations, Only with standard signals, with standard statistical properties, Feed
forward neural network, CS2

Case Location
Turbine 1 Turbine 2
R value MAPE R value MAPE

CS2

Tower Bottom (FA) 0.981 4.68% 0.976 4.88%
Tower Bottom (SS) 0.993 2.70% 0.993 3.01%
Transition Piece (X) 0.959 7.38% 0.954 7.62%
Transition Piece (Y) 0.952 6.99% 0.946 6.39%
Monopile (upper) (X) 0.967 7.06% 0.963 6.79%
Monopile (upper) (Y) 0.959 6.79% 0.957 6.31%
Monopile (lower) (X) 0.942 9.64% 0.956 7.81%
Monopile (lower) (Y) 0.956 8.51% 0.957 6.92%

pected that wave effect is higher at lower level.

Lastly, for turbine 1, MAPE of CS1 and CS2 are shown together with its variance
in Figure 4.12 for clear comparison in between CS1 and CS2.
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Figure 4.12: MAPE Comparison in between CS1 and CS2, Turbine 1

CONFIDENTIAL



66 4. INDIVIDUAL TURBINE LEVEL LOAD ESTIMATION

4.6.3 Estimation with standard signals and wave data

In Section 4.6.2, it has been found that the feed-forward neural network only with
standard signals is expected to give inaccurate estimation at the fatigue critical lo-
cation. In this section, wave effect has been included to investigate standard signals
and wave data are enough for moment DEL estimation.

As shown in Section A.1, wave data has also been pre-processed into 10 min.
basis. For this study, Hs, Tp and spectral moments (from -2 to 2) of wave have been
applied.

First of all, standard signals with all the statistical properties have been applied
with the wave statistics. The input signals and statistical properties are tabulated
in Table 4.19 and the results for FA and X directional moment DEL estimation of
turbine 1 are shown in Figure 4.13. The accuracy measurements are presented in
Table 4.20.

Table 4.19: Input data, only with standard signals, with all statistical properties, with
wave data, CS3

Input (CS3)
Category Number Signal Statistical properties

Standard

1 Acceleration All (1-5 in Table A.1)
2 Blade Pitch angle All (1-5 in Table A.1)
3 Wind Speed All (1-5 in Table A.1)
4 Active Power All (1-5 in Table A.1)
5 Rotational Speed All (1-5 in Table A.1)
6 Yaw Direction All (1-5 in Table A.1)

Wave - Wave data
Hs

Tp

λ−2∼2

From the results, it is clearly seen that the wave data improve accuracy. Espe-
cially, there is a relatively larger improvement in accuracy at the lower monopile
level where the wave-induced moment is higher compared to other locations. As a
result, even at the lower monopile level, MAPE of about 6% can be achieved. How-
ever, the improvement is not so significant at the tower bottom and transition piece.

The same study has been done for standard signals only with standard statistical
properties to investigate if additional process with time series can be disregarded
(that is, additional effort to calculate equivalent value and spectral moments). The
input signals and statistical properties applied for this case study are tabulated in
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Figure 4.13: Results of individual turbine level load estimation, FA and X directions,
Operating Condition 0, Turbine 1, Only with standard signals, All statistical properties,
With wave data, Feed forward neural network, CS3

Table 4.21 and the results for FA and X directional moment DEL estimation of turbine
1 are shown in Figure 4.14. The accuracy measurements are presented in Table 4.22.

From the results, a similar conclusion can be made. Specifically, the inclusion of
wave improves the accuracy of the estimation. Especially, at monopile locations, the
accuracy is improved the most and MAPE of around 7% can be achieved even only
with standard statistical properties. Compared to the case where all the statistical
properties of standard signals have been used, the results are less accurate for all
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Table 4.20: Results of individual turbine level load estimation, Operating condition
1, All locations, Only with standard signals, All statistical properties, With wave data,
Feed forward neural network, CS3

Case Location
Turbine 1 Turbine 2
R value MAPE R value MAPE

CS3

Tower Bottom (FA) 0.991 3.17% 0.949 3.69%
Tower Bottom (SS) 0.997 1.73% 0.988 2.04%
Transition Piece (X) 0.974 6.15% 0.946 5.80%
Transition Piece (Y) 0.959 5.43% 0.950 5.43%
Monopile (upper) (X) 0.967 5.40% 0.966 5.30%
Monopile (upper) (Y) 0.978 4.98% 0.969 5.12%
Monopile (lower) (X) 0.982 5.79% 0.970 5.73%
Monopile (lower) (Y) 0.967 5.73% 0.964 5.68%

Table 4.21: Input data, only with standard signals, with standard statistical properties,
with wave data, CS4

Input (CS4)
Category Number Signal Statistical properties

Standard

1 Acceleration 1-3 in Table A.1
2 Blade Pitch angle 1-3 in Table A.1
3 Wind Speed 1-3 in Table A.1
4 Active Power 1-3 in Table A.1
5 Rotational Speed 1-3 in Table A.1
6 Yaw Direction 1-3 in Table A.1

Wave - Wave data
Hs

Tp

λ−2∼2

locations.

In summary, it has been found that the inclusion of wave improves accuracy.
However, the estimation at the lower monopile level (closest to the fatigue critical
location) is still not so accurate with MAPE of higher than 5%.

Lastly, for turbine 1, MAPE of CS3 and CS4 are shown together with its variance
in Figure 4.15.
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Figure 4.14: Results of individual turbine level load estimation, FA and X directions,
Operating Condition 0, Turbine 1, Only with standard signals, Standard statistical
properties, With wave data, Feed forward neural network, CS4
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Table 4.22: Results of individual turbine level load estimation, Operating condition
1, All locations, Only with standard signals, Standard statistical properties, With wave
data, Feed forward neural network, CS4

Case Location
Turbine 1 Turbine 2
R value MAPE R value MAPE

CS4

Tower Bottom (FA) 0.983 4.73% 0.956 5.00%
Tower Bottom (SS) 0.993 2.62% 0.993 2.97%
Transition Piece (X) 0.963 7.24% 0.952 7.72%
Transition Piece (Y) 0.956 6.81% 0.944 6.21%
Monopile (upper) (X) 0.975 6.29% 0.967 6.27%
Monopile (upper) (Y) 0.960 6.46% 0.961 5.67%
Monopile (lower) (X) 0.977 6.79% 0.970 6.52%
Monopile (lower) (Y) 0.964 7.09% 0.966 5.86%
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Figure 4.15: MAPE Comparison in between CS3 and CS4, Turbine 1
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4.6.4 Estimation with non-standard signals

From previous sections, only with the standard signals and wave data, it has been
found that estimation accuracy at transition piece and monopile levels are not so
accurate with MAPE of higher than 5%. Therefore, not only the standard signals
and wave data, some of the non-standard signals have been applied in this section.

As shown in Appendix E, moment DEL at monopile levels are closely correlated
with moment and inclination at tower bottom. In addition, inclinometer and strain
gauges can relatively easily be installed at tower bottom. Accordingly, among all the
non-standard signals, inclination and moment at tower bottom have been applied to
increase estimation accuracy at transition piece and monopile.

In this section, only the accuracy measurements of the lower monopile level are
compared in between different cases since lower monopile level is where the closest
to the fatigue critical location near mudline, and the lowest accuracy has been found
from the previous case studies. In the end, accuracy measurements of all locations
are shown for the best case together with plots showing X directional moment DEL
comparison between measurement and estimation.

For this study, a total of eight (8) cases have been made as shown in Table 4.23.
From CS5 to CS10, it includes both standard and non-standard signals while CS11
and CS12 only include non-standard signals. Since the mean of the non-standard
signals is expected to have no influence on moment DEL estimation, it has not been
used.

As a result, accuracy measurements have been obtained as shown in Table 4.24.
For a clear comparison, MAPE of all case studies are shown in Figure 4.16 together
with its variance.

From the results, it is clearly seen that the accuracy increased even at the lower
monopile level. Specifically, in some cases, MAPE is as low as around 3%.

In detail, when CS5 (Standard signal with standard statistical properties as well
as moment signal at tower bottom) and CS7 (Standard signal with standard sta-
tistical properties as well as inclination signal at tower bottom) are compared, the
inclusion of inclination signal give the larger increase in accuracy. Concretely, the
inclusion of the inclination signal gives MAPE of around 4.5%.

From CS6 (Standard signal with standard statistical properties as well as moment
signal at tower bottom with wave data) and CS8 (Standard signal with standard
statistical properties as well as inclination signal at tower bottom with wave data),
it is shown that the accuracy level is increased in both cases. In detail, when wave
data is included in addition to moment or inclination signal at tower bottom, MAPE
of less than 5% and 4% can be achieved respectively.
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Table 4.23: Input data, CS5∼CS12

Input (CS5∼CS12)
Case Category Number Signal Statistical properties

CS5∼10 Standard

1 Acceleration 1-3 in Table A.1
2 Blade Pitch angle 1-3 in Table A.1
3 Wind Speed 1-3 in Table A.1
4 Active Power 1-3 in Table A.1
5 Rotational Speed 1-3 in Table A.1
6 Yaw Direction 1-3 in Table A.1

CS5 Non-standard 6 Moment at Tower Bottom 2-5 in Table A.1

CS6
Non-standard 6 Moment at Tower Bottom 2-5 in Table A.1
Wave - Wave data Hs, Tp and λ−3∼3

CS7 Non-standard 5 Inclination at Tower Bottom 2-5 in Table A.1

CS8
Non-standard 5 Inclination at Tower Bottom 2-5 in Table A.1
Wave - Wave data Hs, Tp and λ−3∼3

CS9, CS11 Non-standard
5 Inclination at Tower Bottom 2-5 in Table A.1
6 Moment at Tower Bottom 2-5 in Table A.1

CS10, CS12
Non-standard

5 Inclination at Tower Bottom 2-5 in Table A.1
6 Moment at Tower Bottom 2-5 in Table A.1

Wave - Wave data Hs, Tp and λ−3∼3
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Figure 4.16: MAPE Comparison in between CS5∼CS12, Turbine 1
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Table 4.24: Results of individual turbine level load estimation, Operating condition 1,
At lower monopile, Feed forward neural network, CS5∼CS12

Case Direction
Turbine 1 Turbine 2
R MAPE R MAPE

CS5
X 0.971 6.86% 0.975 5.37%
Y 0.975 6.11% 0.979 4.70%

CS6
X 0.987 4.59% 0.984 3.86%
Y 0.990 4.12% 0.986 3.82%

CS7
X 0.980 4.50% 0.986 3.93%
Y 0.988 4.10% 0.986 3.70%

CS8
X 0.993 3.66% 0.990 3.43%
Y 0.992 3.66% 0.986 3.55%

CS9
X 0.993 3.13% 0.990 3.09%
Y 0.995 2.68% 0.988 2.72%

CS10
X 0.996 2.57% 0.990 2.66%
Y 0.996 2.32% 0.992 2.41%

CS11
X 0.992 3.41% 0.993 2.72%
Y 0.995 2.95% 0.992 2.74%

CS12
X 0.996 2.65% 0.985 2.67%
Y 0.995 2.50% 0.995 2.47%

CS9 (Standard signal with standard statistical properties as well as moment and
inclination signals at tower bottom) and CS10 (Standard signal with standard statis-
tical properties as well as moment and inclination signals at tower bottom with wave
data) include the standard signals as well as both moment and inclination signals at
tower bottom. Without wave data (CS9), it gives an accurate estimation with MAPE
of around 3% which outperforms all the previous cases (CS5∼CS8). When the wave
data is added (CS10), the accuracy level increases further with MAPE of less than
3%.

Lastly, without standard signals, only the moment and inclination signals have
been applied with or without wave data for CS11 (Moment and inclination signals
at tower bottom) and CS12 (Moment and inclination signals at tower bottom with
wave data). In both cases, the accuracy level is almost the same as that of CS9 and
CS10 respectively.

From all the observations, the best accuracy can be obtained at CS10 and CS12
with MAPE of less than 3% in both cases. Accordingly, the estimation of all the
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locations has been made for CS10. The results are shown in Table 4.25 and Figure
4.17.
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Figure 4.17: Results of individual turbine level load estimation, Operating condition
1, All locations, With standard and non-standard (moment and inclination at tower
bottom) signals, Standard statistical properties, With wave data, Feed forward neural
network, CS10

As expected, estimation on transition piece and upper monopile level locations
are more accurate than lower monopile location. With CS10, MAPE of less than 3%
can be obtained for all locations.

In summary, the number of sensors required for accurate estimation of moment
DEL is dependent on the level of accuracy. If MAPE of 5% needs to be achieved at
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Table 4.25: Results of individual turbine level load estimation, Operating condition
1, All locations, With standard and non-standard (moment and inclination at tower
bottom) signals, Standard statistical properties, With wave data, Feed forward neural
network, CS10

Case Location
Turbine 1 Turbine 2
R value MAPE R value MAPE

CS10

Transition Piece (X) 0.999 0.87% 0.999 0.85%
Transition Piece (Y) 0.999 0.76% 0.999 0.81%
Monopile (upper) (X) 0.998 1.53% 0.997 1.39%
Monopile (upper) (Y) 0.998 1.26% 0.998 1.30%
Monopile (lower) (X) 0.992 2.57% 0.990 2.66%
Monopile (lower) (Y) 0.996 2.32% 0.992 2.41%

lower monopile location, strain gauges or inclinometers should be installed at tower
bottom in addition to the standard signals from SCADA and wave data (correspond-
ing to CS6 and CS8). Especially, when wave measurement data is available, the in-
clusion of wave measurement data gives an increase in accuracy. However, it should
be noted that the accuracy level calculated in this section is for lower monopile level
which is located upper than the fatigue critical location near mudline. Therefore,
higher MAPE is expected at the fatigue critical location located near mudline.

4.6.5 Summary of the results

The estimation results shown in previous sections are summarized to clearly distin-
guish the accuracy level according to different input combinations. In this section, a
summary of the estimation results at the lower monopile level is shown.

The summarized results are shown in Table 4.26.

4.6.6 Combined weights for CS10, Oper. cond. 1

To investigate which features have a high effect on estimation, the combined weights
have been compared. The combined weights can be calculated as explained in Ap-
pendix G.

In this study, for both turbines in operating condition 1, the feed-forward neural
network trained with input features of CS10 estimating X directional moment DEL
at lower monopile level has been considered since CS10 gives the highest accuracy.
It should be noted that the trained weights can be different according to different
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Table 4.26: Summary of results

Standard signals? Additional features Case number MAPE

O None CS1 <8%
O Wave CS3 <6%

O Moment at tower bottom CS5 <7%
O Inclination at tower bottom CS7 <4.5%
O Moment and Inclination at tower bottom CS9 <3.5%

O
Moment at tower bottom
+ Wave

CS6 <5%

O
Inclination at tower bottom
+ Wave

CS8 <4%

O
Moment and Inclination at tower bottom
+ Wave

CS10 <3%

X Moment and inclination at tower bottom CS11 <3.5%

X
Moment and Inclination at tower bottom
+ Wave

CS12 <3%

divisions of training, cross-validation and test set.
As a result, the features shown in Table 4.27 have been found as the top ten the

most influencing features.

Table 4.27: Combined weight comparison for both turbines

Rank Turbine 1 Turbine 2

1 Tower Incli. Bottom Back λ0 Tower Incli. Bottom Back λ−1

2 Tower Incli. Bottom Back λ−1 Tower Incli. Bottom Back λ0

3 Tower Incli. Bottom Back λ−2 Tower Incli. Bottom Back λ−2

4 Tower Incli. Bottom Back λ−3 Tower Incli. Bottom Back λ−3

5 Tower Incli. Bottom Back λ2 Tower Mom Bottom λ2

6 Tower Mom Bottom λ−1 Tower Incli. Bottom Back λ3

7 Tower Mom Bottom λ2 Tower Mom Bottom λ0

8 Tower Incli. Bottom λ3 Wave spectrum λ1

9 Tower Incli. Bottom Back λ3 Tower Mom Bottom DEL
10 Tower Mom Bottom DEL Tower Incli. Bottom λ1

From the result, it is clearly seen that the important features are somewhat dif-
ferent from the results obtained from Pearson’s correlation coefficient comparison in
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Section 2.3. Given that the feed-forward neural network finds a nonlinear relation-
ship in between input features and targets, while Pearson’s correlation coefficient
finds a linear relationship in between one feature and target, the important features
can be obtained differently.

In addition, spectral moments of inclination, moment and wave spectrum have
been found to be the important features. The result can be interpreted that vary-
ing dynamic properties have a high effect on moment DEL estimation for operating
condition 1. Specifically, the dynamic properties of wind turbines are highly affected
by aerodynamic damping (especially, FA directional dynamic property). The aero-
dynamic damping is changed according to wind speed, pitch angle and rotational
speed of wind turbine. Accordingly, the response frequency is changed and moment
DEL would be affected since the number of cycles would be affected by the changed
response frequency (i.e. the number of cycles would be higher when response fre-
quency gets higher and vice versa).

Secondly, it is shown that 0 th and negative spectral moments of inclination
signals have the highest combined weights for both turbines. Given that negative
spectral moments are related to low-frequency components in PSD, it can be in-
terpreted that low-frequency components such as wind, blade passing and lowest
natural frequency have a higher effect on estimation compared to higher frequency
components.

4.7 Case study for improvement

In addition to the different input combinations, case studies have been performed
to investigate if any improvement can be achieved. In Section 4.7.1, division of
operating condition 1 is explained. In Section 4.7.2, principal component analysis is
described.

4.7.1 Division of operating condition

As shown in Figure 2.6, operating condition 1 can be divided into two parts: above
and below the wind speed where the generator speed keeps constant, which is 10
m/s. The reason for that is since the aerodynamic damping is expected to be dif-
ferent for these two regions [26]. The divided regions of operating condition 1 are
shown in Figure 4.18. The number of data points for each region is shown in Table
4.28.

As shown in Table 4.28, Turbine 2 has only 435 data points with wind speed
higher than 10 m/s which may not be enough for training.
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Figure 4.18: Mean wind speed versus rotational speed, Division of operating condition
1

Table 4.28: Summary of data

Turbine 1
Operating 1

Total
Above 10 m/s Below 10 m/s

No. of data 1597 1926 3523
Portion 45.3% 54.7% 100%

Turbine 2
Operating 1

Total
Above 10 m/s Below 10 m/s

No. of data 435 1094 1529
Portion 28.4% 71.6% 100%

For this study, the feed-forward neural network has been trained separately for
Region 1 and Region 2 in Figure 4.18a. In addition, only the accuracy level at the
lower monopile level has been compared for CS9∼CS12. The results are shown in
Table 4.29.

From the results, it is shown that the estimation is more accurate when the wind
speed is above 10 m/s than the case where wind speed is below 10 m/s. For turbine
1, the result is compared with the results shown in Table 4.24 where the operating
condition has not been divided as shown in Figure 4.19.

Specifically, when the wind speed is above 10 m/s, the estimation accuracy is
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Table 4.29: Results of individual turbine level load estimation, Operating condition
1, Divided based on wind speed, At lower monopile, Feed forward neural network,
CS9∼CS12

Case Direction
Turbine 1 Turbine 2
Above 10 m/s Below 10 m/s Above 10 m/s Below 10 m/s
R MAPE R MAPE R MAPE R MAPE

CS9
X 0.963 3.54% 0.985 4.25% 0.974 3.61% 0.990 3.46%
Y 0.982 2.92% 0.986 3.36% 0.968 2.77% 0.991 3.11%

CS10
X 0.989 2.40% 0.990 3.74% 0.977 2.44% 0.992 2.90%
Y 0.988 2.58% 0.984 2.92% 0.983 2.25% 0.987 2.87%

CS11
X 0.991 2.98% 0.982 4.23% 0.984 2.66% 0.992 3.46%
Y 0.992 2.52% 0.986 3.38% 0.985 2.36% 0.988 3.02%

CS12
X 0.994 2.31% 0.992 3.26% 0.991 2.20% 0.988 2.97%
Y 0.994 2.20% 0.990 2.98% 0.978 2.12% 0.994 2.72%
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Figure 4.19: Accuracy comparison in between estimation with full operating condition
1 and divided operating condition 1

sometimes higher than that of the case where full operating condition 1 is consid-
ered. On the other hand, when the wind speed is below 10 m/s, the result is always
less accurate.

In addition to that, the combined MAPE can be calculated as shown in Equation
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(4.2). The combined MAPE has been tabulated in Table 4.30.

MAPEcombined =
MAPE1 · n1 + MAPE2 · n2

n1 + n2
(4.2)

Table 4.30: Combined MAPE

Case Direction Turbine 1 Turbine 2

CS9
X 3.93% 3.50%
Y 3.16% 3.01%

CS10
X 3.13% 2.77%
Y 2.77% 2.69%

CS11
X 3.66% 3.23%
Y 2.99% 2.83%

CS12
X 2.83% 2.75%
Y 2.63% 2.55%

The comparison of accuracy level in between estimations with full operating con-
dition 1 and divided operating condition 1 is shown in Figure 4.20.
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Figure 4.20: Accuracy comparison in between estimation with full operating condition
1 and divided operating condition 1, Combined MAPE

From the Figure, it is found that the accuracy level is always lower when the
operating condition 1 is divided into two parts. In detail, for CS9 and CS10, the
accuracy level decreases more than CS11 and CS12. The reason for that is since the
CS9 and CS10 have included SCADA data as its input (i.e. wind speed, rotational
speed, pitch angle and so on). Specifically, since the feed-forward neural network
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trained for the different wind speed as well, the neural network can capture the
different relationship between when the wind speed is below and above 10 m/s.
However, for CS11 and CS12 where wind speed has not been included as its input,
different behavior below and above the specific wind speed cannot be captured. That
is why there is a smaller decrease in accuracy in CS11 and CS12.

In summary, with one-month data, division of operating condition 1 gives the
lower accuracy level compared to the case when full operating condition 1 has been
used.

Theoretically, when operating condition is divided into two parts, it is expected
that the accuracy level would be almost the same in CS9 and CS10 since wind speed
is included as input, and would be higher in CS11 and CS12 since wind speed is not
used as input. However, the results show that the separation of operating condition
1 gives the lower accuracy level when operating condition 1 is divided. The lower
accuracy level might be caused by the small number of data for training since two
separate training has been done for around 1000∼2000 data points while 3520 data
points have been used when operating condition 1 is not divided.

4.7.2 Estimation with principal components

All the studies explained previously based on the original dataset, and it is possible
that some of the features are redundant. When there are these irrelevant features,
the result can be inaccurate [2, 25]. Accordingly, it is necessary to select important
features so that the irrelevant features can be removed from training. However,
it is difficult to know beforehand which features are irrelevant features. Therefore,
instead of removing the irrelevant features, Principal Component Analysis (PCA) can
be applied. The main idea of PCA is to find low dimensional axes that can represent
the original data accurately. Specifically, it uses an orthogonal transformation to
convert the original data into the low dimensional axes [16], and the converted data
is called principal component. As a result of PCA, if there are irrelevant features, its
contribution factor in the conversion process would be negligible and the converted
principal component would have small influence from the irrelevant features.

However, it is not true that PCA gives better results compared to the cases where
all the original features are applied. From the various studies, it has been found that
PCA can give either better or worse results [14, 17, 31] and it is difficult to know
beforehand if PCA would give a better or worse result. In addition, it has also been
discussed that principal components with small variance can also be important in
the regression problem [21, pp. 244–246], or only the principal components with
high variance are important [23, pp. 397–398]. Therefore, in this section, it has
been investigated if PCA gives improvement for moment DEL estimation of offshore
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wind turbines, and the effect of principal components with small variance has also
been studied.

For this study, CS10 has been investigated since it includes the largest number of
input features which indicates there is the highest possibility of including irrelevant
features. In addition, X directional moment DEL at the lower monopile location of
turbine 1 has been studied.

The total of three different cases shown in Table 4.31 have been compared. The
percentage variance limit shown in Table 4.31 represents how well the original data
points can be expressed with the low dimensional axes as a result of PCA. PCA Case
1 has a percentage variance limit of 99% and it only extracts the first few principal
axes so that the accumulated percentage variance is above 99%. In short, PCA Case
1 will have a smaller number of features compared to CS10. Similarly, PCA Case
2 will have the same number of converted features with CS10 since the percentage
variance limit has been set to be 100%.

Table 4.31: Different cases applied in PCA study

Case Percentage variance limit No. of features

CS10 (with original features) - 88
PCA Case 1 99% 25
PCA Case 2 100% 88

The accuracy comparison is shown in Table 4.32. The estimation and measure-
ment comparison for PCA Case 1 and 2 are shown in Figure 4.21.

Table 4.32: Accuracy comparison in between original features, PCA Case 1 (99% of
percentage variance) and PCA Case 2 (100% of percentage variance)

Case R value MAPE

CS10 (with original features) 0.994 2.57%
PCA Case 1 0.983 5.28%
PCA Case 2 0.996 2.80%

From the result, it is found that PCA with 99% percentage variance limit gives
less accurate result compared to the original case (CS10) while almost the same
level of accuracy can be achieved when PCA with 100% percentage variance limit
applied. In addition, from Figure 4.21, it is found that the results are not biased for
both cases.
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Figure 4.21: Results of individual turbine level load estimation, Turbine 1, Operat-
ing condition 1, Lower monopile, Feed forward neural network, PCA Case 1 (99% of
percentage variance) and PCA Case 2 (100% of percentage variance)

In addition, it has also been found that estimation with a few principal compo-
nents (PCA Case 1) can give less accurate estimation compared to the original case
(CS10). In other words, even though principal components have small percentage
variance (with percentage variance smaller than 1%), it cannot be disregarded in
moment DEL estimation.

4.8 Required number of data points for accurate esti-
mation

In this section, the number of data points required for accurate estimation is de-
scribed. For this study, for operating condition 1 and turbine 1, X directional mo-
ment has been estimated at lower monopile level with input data of CS10 since this
case has been proven to be the most accurate. Specifically, the number of training
set has been varied from 5% to 100% with 5% steps of total data. During the study,
the portion in between training, cross-validation and test set has been constant as
70%, 15%, and 15% respectively. Since the total number of data is 3523 as shown
in Table 2.2, 100% of the total number of training data is 2466 (70% of the total
data). Lastly, MAPE has been plotted with respect to the number of training data to
find the required number of training data. The result is shown in Figure 4.22.
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Figure 4.22: MAPE versus size of training set, Operating condition 1, Lower monopile,
Feed forward neural network, CS10

First of all, as shown in Figure 4.22, both cross-validation and training errors are
in the similar level and both are low when all the data is used, which indicates the
feed-forward neural network trained on the full data has no overfitting/underfitting
problem.

Secondly, the error is expected to be lower when there is more data available
given that the error is not converged completely. In addition, the required number
of data is dependent on the target level of accuracy. For CS10, if the target level of
accuracy is 5%, the required number of data points is about 700 where the test set
error (colored with magenta) is below 5%. The 700 data points are corresponding
to 7000 min. since each data point stands for a statistical property based on 10 min.
time series. Therefore, with input data of CS10 for operating condition 1, at least 5
days (∼116.67 hours) of measurement data is required to train the neural network
with less than 5% MAPE. However, it should be noted that these 5 days of mea-
surement data should cover all the different ranges of features (i.e. different wind
speed, different pitch angles, different standard deviation of acceleration and so on).

In addition to that, the result has been linearly extrapolated to investigate how
much data is required to achieve MAPE of less than 1%. It is shown in Figure 4.23.

It has been found that at least around 7300 data points are required. It is corre-
sponding to 51 days (∼1216.67 hours). However, it should be noted that the MAPE
can converge at some point. In other words, the lowest MAPE that the feed-forward
neural network is able to achieve can be higher than 1%.

CONFIDENTIAL



4.9. CONCLUSION 85

0 1000 2000 3000 4000 5000 6000 7000 8000

Training set size [EA]

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

M
A

P
E

 [
1
/1

0
0
%

]

Error versus size of training set

MAPE
Training

MAPE
CV

MAPE
Test

Extrapolation

1% MAPE

Figure 4.23: MAPE versus size of training set with extrapolation, Operating condition
1, Lower monopile, Feed forward neural network, CS10

4.9 Conclusion

In this chapter, individual turbine load estimation of moment DEL at four different
levels has been made: tower bottom, transition piece and two different levels at
monopile.

Firstly, with the base case including all the standard and non-standard signals,
both the feed-forward neural network and recurrent neural network have been ap-
plied. For moment DEL estimation, it has been found that the feed-forward neural
network outperforms recurrent neural network. The inaccuracy in recurrent neural
network might be caused by small sequential dependency of moment DEL, or the
small number of training data. Accordingly, the feed-forward neural network has
been used for case studies.

Secondly, different case studies have been performed with the feed-forward neu-
ral network to find out the minimum required number of sensors for accurate estima-
tion. Specifically, only the standard signals with and without non-standard statisti-
cal properties (damage equivalent values and spectral moments) have been applied.
Only with the standard signals with all the statistical properties, estimation has been
proved to be accurate with MAPE of around 3.5% at tower bottom, and less accurate
with MAPE of around 7% at lower monopile level. When only the standard statistical
properties have been applied, accuracy level decreases.
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In addition, wave data has also been included as input. When the wave data is
included, improvement in accuracy can be achieved for monopile locations. Espe-
cially at monopile locations, MAPE of around 6% could be achieved with standard
signals. However, for the tower bottom and transition piece, the inclusion of wave
data gives no significant improvement.

Added to that, non-standard signals at the tower bottom have been used as in-
puts. Specifically, moment and inclination signals at the tower bottom have been
used. When all the standard signals and non-standard signals have been applied
together with wave data, estimation is accurate with MAPE of less than 3%. When
only the moment signal at the tower bottom is used together with standard signals
and wave measurement data, MAPE of less than 5% can be achieved. Lastly, only
the inclination signal at the tower bottom is used together with standard signals and
wave measurement data, MAPE of less than 4% can be achieved.

As a result, the answer to one of the research question of the minimum required
number of sensors has been found: it depends on target accuracy level. For exam-
ple, to achieve MAPE of 5% for all locations, in addition to the standard signal from
SCADA and wave measurement data, either strain gauges or inclinometers needs to
be installed at tower bottom. If MAPE of less than 3% is target accuracy level, both
strain gauges and inclinometers need to be installed at tower bottom.

In addition to the case studies, two more studies have been done to figure out if
more improvement can be achieved.

First of all, operating condition 1 has been divided into two parts based on the
mean wind speed of 10 m/s. For the divided operating condition 1, the accuracy
level is increased when the mean wind speed is above 10 m/s while it decreases
when the mean wind speed is below 10 m/s. When that estimation errors were
combined, it has been found the accuracy level is worse than the case where full
operating condition 1 has been used. That inaccuracy might be caused by the small
number of training data since there were only around 1500 data points for training
when operating condition 1 was divided into two parts, while there were around
3500 data points when full operating condition is considered.

Secondly, PCA has been applied to remove a possible negative effect from irrele-
vant features. As a result, it has been found that PCA with 99% percentage variance
gave less accurate results. However, when PCA with 100% percentage variance has
been applied, almost the same level of accuracy can be achieved with the case where
original features are used.

Lastly, the required number of training data has been investigated with CS10 for
the estimation of moment DEL at the lower monopile level. First of all, the required

CONFIDENTIAL



4.9. CONCLUSION 87

number of data was dependent on the level of accuracy. If the target level of accuracy
level is 5%, the required number of training data has been found as 700, which is
corresponding to 5 days of measurements. However, it should be noted that the 5
days of measurement should include all the variation of input features (wind speed,
rotational speed and so on). Therefore, the actual measurement period could be
longer than 5 days.
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Chapter 5

Farm-wide level load
estimation

In this chapter, farm-wide level load estimation is described. First of all, the method-
ology applied for this study is described in Section 5.1. The applied dataset is ex-
plained in Section 5.2 followed by linear regression analysis for operating condition
3 and parked condition in Section 5.3. In Section 5.4 and 5.5, base case application
and case studies with different input combinations are explained. Then, case stud-
ies with explicit inclusion of dynamic properties and wake effect are explained in
Section 5.6. Lastly, conclusions are shown in Section 5.7.

5.1 Methodology

For farm-wide level load estimation, the same data used in individual turbine level
load estimation have been applied. Since it has been proved that the feed-forward
neural network gives better results than the recurrent neural network, the feed-
forward artificial neural network has been used for farm-wide level load estimation
as well.

Specifically, the feed-forward neural network has been trained for one turbine.
Then, it has been applied for the other turbine and estimation accuracy has been cal-
culated. If it can accurately estimate the response of the other turbine, it is expected
that the trained neural network can be applied to all the turbines in the same wind
farm. It is depicted in Figure 5.1.
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Figure 5.1: Farm-wide estimation, neural network application scheme

For farm-wide level load estimation, the following two additional aspects should
be considered; different dynamic property and different wake directions.

In a wind farm, all the turbines are installed far from each other to minimize
wake effect. Accordingly, water depth and soil condition can be different from tur-
bine to turbine even though they are in the same wind farm. As a result, dynamic
properties such as natural frequency and mode shapes can be different from turbine
to turbine.

Specifically, natural frequency difference generates a difference in structural re-
sponse frequency that causes a difference in fatigue damage accumulation at the
end. Therefore, it is important to include this aspect in farm-wide level load estima-
tion.

The difference in response frequency is expected to be included in spectral mo-
ments, and the spectral moments have already been included as input data for a
neural network. Specifically, in PSD, peak points appear not only at the frequencies
of excitation forces (i.e. wind, wave, 1P, 3P frequencies and so on), but also at struc-
tural response frequency. One example is shown in Figure 5.2 for moment signal. In
the figure, the biggest peak is corresponding to the first damped natural frequency,
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and the other frequencies are corresponding to frequencies of excitation forces.
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Figure 5.2: Example of PSD

As explained in Equation (A.7), a spectral moment is a function of frequency and
PSD. Therefore, it is expected that the difference in dynamic properties is included
in spectral moments. Especially, as shown in Equation (A.7), negative spectral mo-
ments can be thought to represent the effect of lower frequency components and
positive spectral moments represent that of higher frequency components.

In addition to the spectral moments, different case studies have been performed
to explicitly include the response frequency differences. In this chapter, it will be
discussed.

In addition, according to a layout of a wind farm, wake direction and wake
turbulence can be different from turbine to turbine. When a turbine is in wake,
moment DEL tends to be higher compared to the case when the turbine is in free-
stream condition [32, 33]. Therefore, the different wake turbulence effect should be
included for farm-wide level load estimation.

In addition, It is expected that wake turbulence affects not only moment DEL, but
also input features. Concretely, when there is higher wake turbulence, it is expected
that there is higher fluctuation of moment, as well as acceleration. Therefore, a neu-
ral network is expected to be able to learn those different relationships in-between
moment DEL and input features even though the wake direction and strength of
turbulence are not explicitly put into the neural network.

Accordingly, multiple case studies have been performed with and without explicit
inclusion of the wake effect.
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Lastly, all the studies shown in this chapter is based on training with turbine 1
and application to turbine 2 (which will be denoted as T1A2: Training with turbine
1, Applied to turbine 2). The first reason for this is the number of data. As shown
in Table 2.4, the number of data is not enough to train the feed-forward neural
network when data of turbine 2 is used. Secondly, the range of input features and
target moment DEL is larger in the turbine 1. Therefore, if a neural network is
trained on turbine 1, the error which can be caused by the extrapolation problem
shown in Section 5.2.1 can be minimized.

5.2 Applied dataset

For farm-wide level load estimation, the same one-month data used for individual
turbine level load estimation has been used. The summary of data points is shown
in Table 2.4. As already discussed in the individual turbine level load estimation,
for operating condition 1,3 and parked condition, the number of data points is not
enough for neural network training. For these cases, linear regression has been
applied and the results are shown in Section 5.3. Only for operating condition 1, the
feed-forward neural network has been applied. For the feed-forward neural network
application, data points are sub-divided to differentiate extrapolation. It is described
in Section 5.2.1. In addition, change of response frequency near structural natural
frequency is explained in Section 5.2.2

5.2.1 Extrapolation with neural network

A neural network can give inaccurate result for extrapolation problem. In other
words, a neural network is expected to be inaccurate for the data points in which the
neural network is not trained on [30]. For individual turbine level load estimation,
the possibility of extrapolation problem is low. However, In farm-wide level load
estimation, all the turbines can have different ranges of input and target values (i.e.
acceleration, wind speed, wind direction, moment DEL and so on). Therefore, there
is a high chance of the extrapolation problem in farm-wide level load estimation.
The two turbines used in this study also have different ranges of input and target
values.

To investigate the effect of extrapolation, the feed-forward neural network has
been trained on turbine 1 and applied to turbine 2 (T1A2). Input data for CS10
in Table 4.23 has been applied and X directional moment DEL at lower monopile
location has been estimated. The result is shown in Figure 5.3.

CONFIDENTIAL



5.2. APPLIED DATASET 93

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

Estimation [-]

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

M
e
a
s
u
re

m
e
n
t 
[-

]

DEL of X Moment at monopile (Lower) - T1A2, CS10, Extrapolation

Extrapolation

For data in trained range

Figure 5.3: Result of Farm-wide level load estimation with effect of extrapolation,
Operating condition 1, Lower monopile, With standard and non-standard (moment
and inclination at tower bottom)signals, Standard statistical properties, With wave
data, Feed forward neural network, T1A2, CS10

From Figure 5.3, it is found that the estimation for data located within the train-
ing range (colored with red) is closely gathered along with the linear line which
means estimation is quite accurate. However, when the data points are located
outside the training range (extrapolation, colored with blue), it is shown that the
estimation is scattered and off from the linear line which indicates the estimation is
inaccurate.

As a result, data points located outside the training range have been separately
marked so that the error can be separately evaluated in extrapolation region. In
addition, it should be noted that the number of data points located outside the
training range can be different case by case since different combinations of input
and target has been used for training.

5.2.2 Response frequency changes

During the one month, it has been found that the first damped natural frequency
kept changing. The reason for this is that the aerodynamic damping is changed ac-
cording to wind speed and rotational speed, and the effect of aerodynamic damping
is large in offshore wind turbine [26]. From PSD of FA directional acceleration at
RNA (from SCADA system), the first damped natural frequency has been extracted
and compared in between two turbines. The result is shown in figure 5.4. The figure
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on the left-hand side shows the difference for the full one month, and the figure on
the right-hand side shows the difference for one day to clearly see the difference.
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Figure 5.4: Peak response frequency comparisons

As shown in the figure, two turbines have similar ranges of the first damped
natural frequency changes.

5.3 Linear regression (for subset of operating condi-
tions)

For individual turbine level load estimation, it has been found that linear regression
can give the accurate estimation of moment DEL at the tower bottom, transition
piece and upper monopile level for operating condition 3 and parked condition with
MAPE of less than 5%. Additionally, It is expected that the linear regression for
one turbine can be applied to other turbines in a wind farm if the design is the
same. Therefore, in this section, linear regression has been applied for farm-wide
estimation.

For this study, linear regression analysis has been performed on turbine 1, and
it has been applied to the turbine 2. For linear regression, the equivalent value of
acceleration at RNA has been used to estimate moment DEL at tower bottom, and
moment DEL at tower bottom has been used for estimation at transition piece and
monopile since those features have given the best results as shown in Section 4.3.

The results of X directional moment DEL estimation are shown in Table 5.1.
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Table 5.1: Results for linear regression for farm-wide estimation, X directional mo-
ment DEL estimation, T1A2, Operating condition 3 and parked condition

Location Feature
Oper. Cond. 3 Parked Cond.
R value MAPE R value MAPE

Tower Bottom RNA Acc Eq. value 0.996 1.84% 0.999 1.76%
Transition Piece Tower Bottom Mom Eq. value 0.997 3.77% 0.993 1.30%
Monopile (upper) Tower Bottom Mom Eq. value 0.996 3.60% 0.997 2.84%
Monopile (lower) Tower Bottom Mom Eq. value 0.966 7.96% 0.950 3.93%

As shown in the results, linear regression gives almost the same accuracy in esti-
mation compared to individual turbine level load estimation. For parked condition,
linear regression gives less than 4% MAPE for all locations. For operating condition
3, it gives MAPE of less than 4% except for the lower monopile level where there is
a relatively large MAPE of around 8%.

As a result, given that almost the same level of accuracy can be achieved with
individual turbine level load estimation, it can be concluded that almost the same
linear relationship exists between two turbines.

5.4 Feed forward neural network for base case

For farm-wide level load estimation, the same feed-forward neural network archi-
tecture used in individual turbine level load estimation has been applied. As a first
study, the same base case used for individual turbine level load estimation has been
applied to figure out if the feed-forward neural network can be used for farm-wide
level load estimation. The base case is shown in Table 4.1. For this study, only op-
erating condition 1 has been considered since the number of data is not enough for
training as explained in Section 4.4.2.

As explained in Section 5.1, the difference in dynamic properties and wake effect
should be included in farm-wide level load estimation. For the base case application,
it should be noted that those effects have not been included explicitly.

5.4.1 Estimation result for base case

As a result of the base case application, the accuracy measurement comparison
shown in Table 5.2 has been obtained. In addition, estimation of FA directional
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moment DEL at tower bottom and X directional moment DEL at transition piece and
monopile are shown in Figure 5.5.

Table 5.2: Results of farm-wide estimation, All locations, Operating condition 1, T1A2,
Feed forward neural network, Base Case

Location
within Train Range Extrapolation Full
R value MAPE R value MAPE R value MAPE

Tower Bottom (FA) 0.899 10.97% 0.793 21.93% 0.841 17.47%
Tower Bottom (SS) 0.991 5.34% 0.972 6.85% 0.977 6.23%

Transition Piece (X) 0.983 5.26% 0.904 11.19% 0.932 8.79%
Transition Piece (Y) 0.960 7.46% 0.843 11.30% 0.896 9.75%

Monopile (upper) (X) 0.978 6.80% 0.893 16.09% 0.919 12.34%
Monopile (upper) (Y) 0.975 5.76% 0.876 8.99% 0.915 7.69%

Monopile (lower) (X) 0.954 8.72% 0.749 21.63% 0.802 16.41%
Monopile (lower) (Y) 0.957 12.23% 0.877 17.93% 0.903 15.63%

First of all, it has been found that the feed-forward neural network can be used
for farm-wide level load estimation. In detail, from Table 5.2, it is shown that MAPE
is above 5% for all locations. When the MAPE is compared between the results
from estimation with data within the training range and outside the training range
(extrapolation), it is obvious that there is a higher error in extrapolation. From
Figure 5.5, it can be seen that extrapolation (blue-colored) has higher scatter. Added
to that, when the error at tower bottom is compared, it is seen that there is a higher
error in FA direction. In addition, similar to individual turbine level load estimation,
the error tends to increase as going down deeper.

From Figure 5.5, it is shown that there is higher scatter compared to individual
turbine level load estimation. Especially, for FA directional moment DEL estimation
at tower bottom shown in Figure 5.5a, when moment DEL is higher, there is bias
and estimation is higher than measurement. On the other hand, At upper and lower
monopile in Figure 5.5c and 5.5d, the results tend to underestimate moment DEL
regardless of the magnitude of moment DEL. At the transition piece, the estimation is
not biased. At all locations, even when the data within the training range is applied
(red-colored), there are some outliers that indicate there is a large difference in
between estimation and measurement. This large error is caused by the different
operating conditions in two turbines. Specifically, as mentioned in Section 2.2, the
power generation of turbine 2 is sometimes limited to below its rated power even
when the wind speed is high enough. However, for turbine 1, it always generates
power along with its power curve. In other words, the neural network trained on
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Figure 5.5: Results of farm-wide level load estimation, FA and X directions, Operating
Condition 1, T1A2, Feed forward neural network, Base Case

turbine 1 cannot fully capture the different behavior when the turbine generates
below its rated power when wind speed is high enough.

In Section 5.4.2, estimation result without these data points from turbine 2 is
shown.
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5.4.2 Estimation without power generation below rated

After removing all the data points corresponding to the case where power generation
is below its rated power for turbine 2, the total number of data has been found to be
647. The power generation versus wind speed with removed data points are shown
in Figure 5.6.
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Figure 5.6: Mean power generation vs mean wind speed (turbine 2), with removed
data points

With the base case, the results shown in Table 5.3 and Figure 5.7 have been
obtained.

First of all, from Table 5.3, it is found that the accuracy level is increased when
data points which the neural network is trained on have been applied. However,
for extrapolation, it gives worse results. Overall, the accuracy level is increased.
Especially at tower bottom level, the difference between FA and SS directional esti-
mation is reduced. It can be interpreted that the different operating condition affects
FA directional features more than SS directional features. For example, if the turbine
2 is operating with different pitch angle and rotational speed compared to turbine
1, thrust force would be affected largely, which causes the large difference in in-
put features such as acceleration and moments. However, there are still differences
in estimation accuracy between FA and SS direction. It can be explained with the
larger range of input features and target moment DEL in FA direction as described
in Section 4.6.2.

From Figure 5.7, it is found that the estimation is less scattered compared to the
case before. However, there is still under or overestimation of moment DEL.
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Table 5.3: Results of farm-wide level load estimation, moment DEL estimation for
all locations, Operating condition 1, T1A2, Feed forward neural network, Base Case
without some data points below rated power

Location
within Train Range Extrapolation Full
R value MAPE R value MAPE R value MAPE

Tower Bottom (FA) 0.971 6.82% 0.886 26.28% 0.946 10.64%
Tower Bottom (SS) 0.994 4.59% 0.913 6.58% 0.980 4.83%

Transition Piece (X) 0.986 4.90% 0.934 11.20% 0.976 5.87%
Transition Piece (Y) 0.968 7.60% 0.929 18.43% 0.955 9.27%

Monopile (upper) (X) 0.990 5.92% 0.979 8.69% 0.989 6.35%
Monopile (upper) (Y) 0.984 5.07% 0.950 12.79% 0.977 6.27%

Monopile (lower) (X) 0.972 7.18% 0.891 15.31% 0.959 8.43%
Monopile (lower) (Y) 0.966 12.50% 0.912 30.51% 0.956 15.28%

From the results, again, it has been found that neural network should be applied
on dataset which the neural network is trained on. Therefore, for further studies,
the data points corresponding to the case where turbine 2 is generating less than its
rated power have been disregarded.

5.5 Case study for different input combinations

5.5.1 Estimation results

For farm-wide level load estimation, multiple case studies have been performed.
Specifically, case studies with different combinations of input features have been

performed to answer the research question of ‘What is the minimum number of
sensors that gives accurate DEL estimation?’. For this study, CS1∼CS12 in Section
4.6 have been considered excluding the mean yaw angle. The reason for that is
since the mean yaw angle can cause an error in estimation. For instance, if a neural
network is trained on mean yaw angle as well, it is expected that the neural network
would give the wrong estimation at the specific yaw angles where turbine 1 (with
which the neural network is trained on) is in wake, but turbine 2 is not in wake since
the neural network would make estimation as if turbine 2 is also in wake.

The result is shown only for the lower monopile level. Then, for the best case, all
the results are shown.

The accuracy measurement comparison is shown in Table 5.4 and Figure 5.8.
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(c) Monopile (upper), X moment DEL
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Figure 5.7: Results of farm-wide level load estimation, FA and X directions, Operating
Condition 1, T1A2, Feed forward neural network, Base Case without some data points
below rated power
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Figure 5.8: MAPE Comparison in between CS1∼CS12, T1A2
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Table 5.4: Results of farm-wide estimation, Lower monopile, Operating condition 1,
T1A2, Feed forward neural network, CS1∼CS12

Direction
within Train Range Extrapolation Full
R value MAPE R value MAPE R value MAPE

CS1
X 0.908 18.01% 0.810 33.18% 0.895 19.20%
Y 0.875 23.14% 0.774 42.85% 0.815 24.69%

CS2
X 0.911 15.70% 0.849 21.14% 0.905 15.97%
Y 0.933 14.50% 0.915 26.99% 0.932 15.14%

CS3
X 0.930 11.04% 0.730 27.94% 0.894 12.37%
Y 0.952 13.30% 0.872 19.81% 0.935 13.81%

CS4
X 0.952 10.97% 0.935 17.46% 0.950 11.29%
Y 0.944 13.08% 0.856 27.47% 0.936 13.82%

CS5
X 0.915 12.45% 0.943 12.42% 0.954 12.44%
Y 0.912 12.85% 0.957 27.03% 0.956 17.08%

CS6
X 0.955 7.67% 0.962 8.80% 0.975 8.00%
Y 0.966 8.33% 0.978 18.98% 0.982 11.50%

CS7
X 0.970 8.18% 0.981 6.76% 0.971 8.09%
Y 0.946 10.86% 0.976 15.65% 0.950 11.17%

CS8
X 0.978 7.53% 0.981 12.72% 0.979 7.87%
Y 0.958 10.01% 0.972 16.10% 0.960 10.41%

CS9
X 0.958 6.82% 0.975 6.88% 0.977 6.84%
Y 0.949 7.20% 0.982 14.38% 0.976 9.34%

CS10
X 0.962 6.52% 0.978 6.92% 0.980 6.67%
Y 0.961 6.35% 0.984 13.41% 0.981 8.46%

CS11
X 0.968 7.27% 0.975 6.65% 0.984 7.11%
Y 0.950 6.76% 0.979 14.10% 0.977 8.71%

CS12
X 0.968 6.55% 0.968 6.62% 0.984 6.57%
Y 0.956 7.00% 0.972 14.21% 0.979 8.58%
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In general, the results are similar to that of individual turbine level load estima-
tion. However, the overall accuracy level is decreased. Specifically, when only the
standard signals have been used (CS1∼CS4), MAPE of higher than 10% has been
obtained. When either moment or inclination signal has been used (CS5∼CS8), the
accuracy level is higher than 7%, and the best accuracy level has been obtained when
moment signal at tower bottom location is used together with wave data in addition
to standard signals (CS6).

When both moment and inclination signals have been used, the accuracy level
increased with MAPE of around 7%. The best accuracy level has been found when
both moment and inclination signals have been used together with wave data in
addition to standard signals (CS10).

Since the best case is CS10, accuracy measurements are calculated for all loca-
tions as shown in Table 5.5. The comparisons in between estimation and measure-
ment are shown not only for both X, but also for Y direction since it needs to be
discussed. It is shown in Figure 5.10.

Table 5.5: Results of farm-wide estimation, All locations, Operating condition 1, T1A2,
Feed forward neural network, CS10

within Train Range Extrapolation Full
R value MAPE R value MAPE R value MAPE

Transition Piece (X) 0.998 1.21% 0.999 1.11% 0.999 1.18%
Transition Piece (Y) 0.998 4.60% 0.999 4.18% 0.999 4.48%

Monopile (upper) (X) 0.996 5.10% 0.997 3.97% 0.998 4.76%
Monopile (upper) (Y) 0.984 5.84% 0.994 4.12% 0.992 5.32%

Monopile (lower) (X) 0.962 6.42% 0.978 6.92% 0.980 6.57%
Monopile (lower) (Y) 0.961 6.35% 0.984 13.41% 0.981 8.46%

From table 5.5, it can be found that the accuracy level is the worst at the lower
monopile level and gets better as the level is higher. At the transition piece level, es-
timation is accurate with MAPE of less than 5%. Especially, Y directional estimation
is less accurate than X directional estimation.

As shown in figure 5.10, X directional moment DEL estimation at transition piece
level is not biased, while Y directional estimation is biased and it overestimates the
response. At the lower and upper monopile levels, both X and Y directional moment
DEL estimation are biased. In opposite to that, estimation at the upper monopile
level tends to underestimate the response.
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In this study, since there is not enough data for strain gauges at transition piece
and monopile, the root cause of the different trends could not be found. Further-
more, since X and Y directional moment have been used instead of FA and SS direc-
tional for transition piece and monopile, it is difficult to interpret the result. If FA
and SS directional moment had been used, it is expected that FA directional estima-
tion would not be biased, but SS directional estimation would be biased. The reason
for this is that aerodynamic damping is similar in both turbines, while soil condition
and water depth are different. For FA direction, aerodynamic damping would be
dominant compared to the other effects such as soil damping and drag damping.
However, for SS direction, soil damping and drag damping are the governing factors
and the different soil condition and water depth would affect the response. There-
fore, if structural dynamic properties are similar in both turbines, a similar dynamic
response is expected in FA direction while there would be a difference in SS direc-
tion.

To explain the different trends with the given data, some hypotheses have been
made.

Firstly, it is possible that strain gauges are not installed equidistantly. Since the
moment calculated from the strain assumes equidistant installation of strain gauges,
the actual moment can be different. Especially at transition piece, the overestimation
only in Y directional moment DEL estimation can be explained in this way.

Secondly, it is possible that the strain gauges are installed at different elevations.
In other words, the ‘transition piece’, ‘upper monopile’ and ‘lower monopile’ level
can be different in two turbines. If that is the case, the different bias in between
upper monopile level and lower monopile & transition piece can be explained. For
example, if the ‘upper monopile’ level of turbine 1 is higher than the turbine 2 and
the feed-forward neural network is trained on turbine 1, moment DEL can be under-
estimated since moment is lower at a higher level.

Thirdly, different mode shapes in higher mode could affect the estimation. Specif-
ically, turbine 1 has deeper water depth than turbine 2. When the typical second
mode shape of fixed type wind turbines is considered, it is possible that the upper
monopile level is located near the node for turbine 1, while it is located far from
the node. It is shown in Figure 5.9. In that case, moment induced by the second
mode would be higher in turbine 2, which indicates the feed-forward neural network
trained on turbine 1 would underestimate moment from the second mode. In this
way, the underestimation in the upper monopile level can be explained.

Lastly, the answer to the research question of the required number of sensors
has been found. Similar to the individual turbine level load estimation, the required
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Figure 5.9: Different second mode shapes in two turbines

number of sensors for accurate estimation is dependent on the level of accuracy. For
example, to achieve MAPE of less than 7%, it can be concluded that both inclina-
tion and moment signals should be applied in addition to wave measurement and
standard signals. However, it should be noted that estimation accuracy can change.
Specifically, two turbines used in this study have a very similar range of first damped
natural frequencies as shown in Section 5.2.2. Therefore, if the feed-forward neural
network is used for a turbine which has a significantly different range of damped
natural frequency, the different estimation accuracy can be obtained.
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Figure 5.10: Results of farm-wide estimation, All locations, Operating condition 1,
T1A2, Feed forward neural network, CS10, X direction
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5.5.2 Summary of the results

For a clear distinction, the estimation results are summarized. Similar to the indi-
vidual turbine level, a summary of the estimation results at the lower monopile level
are shown in this section.

The summarized results are shown in Table 5.6.

Table 5.6: Summary of results

Standard signals? Additional features Case number MAPE

O None CS1 <23.5%
O Wave CS3 <13.5%

O Moment at tower bottom CS5 <13%
O Inclination at tower bottom CS7 <11%
O Moment and Inclination at tower bottom CS9 <7.5%

O
Moment at tower bottom
+ Wave

CS6 <8.5%

O
Inclination at tower bottom
+ Wave

CS8 <10.5%

O
Moment and Inclination at tower bottom
+ Wave

CS10 <7%

X Moment and inclination at tower bottom CS11 <7.5%

X
Moment and Inclination at tower bottom
+ Wave

CS12 <7%

5.6 Case study for improvement

First of all, to figure out if the different wake in both turbines affects the results,
resultant estimation shown in Figure 5.10 has been labeled with ‘free stream’ and
‘in wake’ by comparing mean yaw direction with the wake directions shown in table
2.8. As shown in the figure, the level of accuracy is almost the same in both ‘free
stream’ and ‘in wake’ conditions, which indicates wake effect can be captured by the
feed-forward neural network.

However, both dynamic properties and wake effect have been included explic-
itly in the feed-forward neural network to investigate if any improvement can be
achieved.

In Section 5.6.1 and Section 5.6.2, explicit inclusion of dynamic properties and
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Figure 5.11: Results of farm-wide level load estimation with wake direction, All loca-
tions, Operating condition 1, T1A2, Feed forward neural network, CS10

its results are explained. In Section 5.6.3, normalization of signals and its results are
described. Lastly, in Section 5.6.4, wake effect inclusion is shown.

5.6.1 Inclusion of peak frequencies and values

To include dynamic property as input, peak frequencies and its PSD values are di-
rectly used as input. Since two turbines have similar changes in the first damped
natural frequency, it is expected that the feed-forward neural network trained for
turbine 1 can differentiate the different behavior according to its first damped natu-
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ral frequency change, and can be applied to turbine 2.
For this study, two cases have been investigated:

• Case 1: 1 peak near structural natural frequency is included with correspond-
ing frequency

• Case 2: Highest 4 peaks and its frequencies are included

The first case has been performed to include the first damped natural frequency, and
the second case has been performed to include peak wind frequency, 1P, and 3P
frequencies as well. In Figure 5.12, an example of moment PSD with four peaks is
shown.
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PSD of moment signal(example)

Figure 5.12: Example of PSD with 4 peaks

As a result, accuracy measurements have been calculated as shown in Table 5.7
and 5.8. It has been fount the result is almost the same and sometimes worse.
Furthermore, the estimation has still been biased as shown in Figure 5.13 and 5.14.

The result can be interpreted with spectral moments. As already explained in
Section 5.1, spectral moments already include dynamic properties. From the result,
it can be concluded that the explicit inclusion of PSD peaks and its corresponding
frequencies give no additional information to the feed-forward neural network.
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Table 5.7: Results of farm-wide level load estimation, All locations, Operating condi-
tion 1, T1A2, Feed forward neural network, CS10 with 4 peaks from PSD

within Train Range Extrapolation Full
R value MAPE R value MAPE R value MAPE

Transition Piece (X) 0.999 1.21% 0.999 1.18% 0.999 1.20%
Transition Piece (Y) 0.998 4.78% 0.999 4.29% 0.999 4.63%

Monopile (upper) (X) 0.996 5.06% 0.997 3.71% 0.998 4.65%
Monopile (upper) (Y) 0.980 5.30% 0.994 4.16% 0.991 4.95%

Monopile (lower) (X) 0.963 6.38% 0.980 7.36% 0.980 6.68%
Monopile (lower) (Y) 0.962 6.93% 0.983 15.38% 0.982 9.53%

Table 5.8: Results of farm-wide level load estimation, All locations, Operating condi-
tion 1, T1A2, Feed forward neural network, CS10 with 1 peak from PSD

within Train Range Extrapolation Full
R value MAPE R value MAPE R value MAPE

Transition Piece (X) 0.999 1.20% 0.998 1.11% 0.999 1.17%
Transition Piece (Y) 0.998 4.73% 0.999 4.25% 0.999 4.58%

Monopile (upper) (X) 0.997 5.10% 0.997 4.04% 0.998 4.78%
Monopile (upper) (Y) 0.984 5.77% 0.995 4.13% 0.993 5.28%

Monopile (lower) (X) 0.962 6.63% 0.980 6.91% 0.980 6.71%
Monopile (lower) (Y) 0.959 6.56% 0.982 14.08% 0.980 8.80%
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Figure 5.13: Results of farm-wide level load estimation with wake direction, All loca-
tions, Operating condition 1, T1A2, Feed forward neural network, CS10 with 4 peaks
from PSD
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Figure 5.14: Results of farm-wide level load estimation with wake direction, All loca-
tions, Operating condition 1, T1A2, Feed forward neural network, CS10 with 1 peak
from PSD
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5.6.2 Inclusion of filtered signals

To include dynamic property, original signals (i.e. acceleration, moment, inclination
and so on) have been filtered. For the filtered signals, all the statistical properties
have been calculated and it has been applied to the feed-forward neural network.

Specifically, original signals have been divided into two filtered signals; bandpass
and bandstop filtered for its first damped natural frequency. Example PSDs of the
two filtered signals are shown in Figure 5.15.
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Figure 5.15: Example PSDs of filtered signals

The idea behind this approach is that the bandpass filtered signal represents re-
sponse related to the structural natural frequency and the bandstop filtered signal
represents response related to the others (i.e. excitation forces). Here, the bandstop
filtered signal is expected to be almost the same for both turbines since the excitation
forces are the same for both turbines, while the bandpass filtered signal is expected
to be different since two turbines have different dynamic properties. However, as
explained in Section 5.2.2, peak frequency near structural natural frequency keeps
changing during the one month. Therefore, it might be possible to capture how the
different combinations of the bandstop filtered signal and the bandpass filtered sig-
nal (with the changing peak response frequency near structural natural frequency)
are related to moment DEL with the feed-forward neural network. One remark is
that higher structural modes are not filtered and it has been included in bandstop
filtered signals. However, even though filtering is based only on the first mode,
it is expected that the results would not be affected significantly by higher mode
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components since the contribution of higher modes is lower than other frequency
components as shown in the PSDs.

For this study, the 4th order Butterworth filter has been applied. The bandpass
and bandstop filtered signals have been applied in addition to the input features of
CS10. The result is shown in Table 5.9 and Figure 5.16.

Table 5.9: Results of farm-wide level load estimation, All locations, Operating condi-
tion 1, T1A2, Feed forward neural network, CS10 with filtered signals

within Train Range Extrapolation Full
R value MAPE R value MAPE R value MAPE

Transition Piece (X) 0.999 1.21% 0.939 1.72% 0.978 1.36%
Transition Piece (Y) 0.998 4.49% 0.998 3.36% 0.999 4.15%

Monopile (upper) (X) 0.994 4.59% 0.979 4.54% 0.994 4.58%
Monopile (upper) (Y) 0.987 3.96% 0.917 9.86% 0.974 5.72%

Monopile (lower) (X) 0.957 7.02% 0.919 10.44% 0.969 8.04%
Monopile (lower) (Y) 0.962 8.45% 0.894 28.56% 0.958 14.45%

As shown in the table, the estimation accuracy has been decreased. In addition,
the results have been still biased as shown in the figure.

From the result, it could be concluded that the explicit inclusion of dynamic
properties in a form of filtered signals is not beneficial to estimate moment DEL.
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Figure 5.16: Results of farm-wide level load estimation with wake direction, All loca-
tions, Operating condition 1, T1A2, Feed forward neural network, CS10 with filtered
signals
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5.6.3 Normalization of signals

To include dynamic property, explicit inclusions have been performed as explained
in previous sections. In addition to that, normalization of signals has also been
investigated and it is explained in this section.

Specifically, acceleration, moment and inclination signals have been normalized
with respect to its frequency component which is corresponding to the response
peak frequency near the first structural natural frequency. The idea behind this
approach is that the normalized signals might not include effect from structural dy-
namics. Therefore, if the statistical properties of the normalized signals can be used
to estimate the normalized moment DEL, it is expected that the feed-forward neural
network can be used to estimate normalized moment DEL regardless of different
dynamic properties of different turbines.

One remark here is that both input features and target moment DEL should be
normalized to be able to remove the effect from structural dynamics. In this case,
even though the feed-forward neural network can accurately estimate the normal-
ized target moment DEL, it is difficult to convert the normalized target moment DEL
back into the original target moment DEL. Even though there is a difficulty, it has
been investigated since it might also be possible to apply a neural network technique
to convert the normalized moment DEL into the original moment DEL.

For this normalization, the following approaches have been taken.

• Multiplication : Snorm = Soriginal × Sfiltered

• Division : Snorm = Soriginal/Sfiltered

Where Snorm is the normalized signal in the time domain, Soriginal is the original
signal in the time domain, Sfiltered is bandpass filtered signal around response peak
frequency near structural natural frequency and µoriginal is mean of Soriginal. In
this section, only the results of normalization with multiplication are shown. Results
with the division are in Appendix H.

Concretely, 10 min. time series of original signal Soriginal has been used for the
normalization. Example PSD of Soriginal and Sfiltered are shown in blue and brown
line in Figure 5.15a respectively.

For this study, input features in CS10 have been used. Among all the input fea-
tures, acceleration and moment and inclination signals have been normalized first,
and then applied to the feed-forward neural network. The results for normalization
with multiplication are shown in Table 5.10 and Figure 5.17.

From the results, it has been found the normalized signals give the completely
wrong estimation even though the target moment DEL has also been normalized in
the same way. For normalization with division, it has given similar results.
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Table 5.10: Results of farm-wide level load estimation, All locations, Operating condi-
tion 1, T1A2, Feed forward neural network, CS10 with normalization (multiplication)

within Train Range Extrapolation Full
R value MAPE R value MAPE R value MAPE

Transition Piece (X) 0.309 >100% 0.253 >100% 0.620 >100%
Transition Piece (Y) -0.923 >100% -0.571 >100% -0.376 >100%

Monopile (upper) (X) 0.842 >100% 0.832 >100% 0.849 >100%
Monopile (upper) (Y) -0.643 >100% -0.178 >100% -0.606 >100%

Monopile (lower) (X) 0.770 >100% 0.759 >100% 0.756 >100%
Monopile (lower) (Y) 0.161 >100% 0.796 >100% 0.659 >100%

From the results, it can be concluded that the statistical properties from the nor-
malized signals with multiplication and division cannot be used. In other words, the
hypothesis that the statistical properties of the normalized signals can be used for
estimation is not correct. Given that the estimation has been scattered largely, it can
be concluded that there is no clear relationship between input features and moment
DEL calculated from normalized signals.

CONFIDENTIAL



118 5. FARM-WIDE LEVEL LOAD ESTIMATION

-2.5 -2 -1.5 -1 -0.5 0 0.5 1

Estimation [-]

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

M
e
a
s
u
re

m
e
n
t 
[-

]

DEL of X Moment at Transition piece - CS10, with Norm

Extrapolation

For data in trained range

(a) Transition piece, X moment DEL

-6 -5 -4 -3 -2 -1 0 1

Estimation [-]

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

M
e
a
s
u
re

m
e
n
t 
[-

]

DEL of X Moment at Monopile (Upper) - CS10, with Norm

Extrapolation

For data in trained range

(b) Monopile(upper), X moment DEL

-2 -1 0 1 2 3 4

Estimation [-]

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

M
e

a
s
u

re
m

e
n

t 
[-

]

DEL of X Moment at Monopile (Lower) - CS10, with Norm

Extrapolation

For data in trained range

(c) Monopile(lower), X moment DEL

Figure 5.17: Results of farm-wide level load estimation with wake direction, All loca-
tions, Operating condition 1, T1A2, Feed forward neural network, CS10 with normal-
ization (multiplication)
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5.6.4 Inclusion of wake effect

To explicitly include wake effect, wake regions shown in Table 2.8 have been used.
Specifically, two more features have been added. The first additional feature is ‘wake
switch’. When the mean yaw angle is corresponding to one of the wake regions
shown in Table 2.8, the ‘wake switch’ has been set as 1, otherwise, it has been set as
0. The second additional feature is ‘wake distance’. The distance has been calculated
from layout information, The ‘wake distance’ is different for different wake regions.

The idea behind this approach is that the feed-forward neural network would
clearly recognize the different behavior when the turbine is in wake. To be able
to make the feed-forward neural network recognize the turbine is in wake, ‘wake
switch’ has been used. Specifically, weights related to ‘wake switch’ would affect the
estimation only when the ‘wake switch’ is set as 1 since weights would be multiplied
with 0 when ‘wake switch’ is set as 0. In other words, according to ‘wake switch’, the
feed-forward neural network is expected to use different relationships. In addition,
the strength of wake turbulence would be affected by many factors; distance to the
upstream wind turbine, operating condition of the upstream wind turbine, turbu-
lence intensity of the region and so on. Of all the factors, only the distance data
could be obtained and it has been used. Specifically, wake turbulence is stronger
when the distance to the upstream turbine is shorter. Therefore, it is expected that
the feed-forward neural network can capture the strength of wake turbulence by
using distance to the upstream turbine.

For this study, input features of CS10 have been used in addition to the two new
features related to wake effect. As a result, accuracy measurements shown in Table
5.11 and Figure 5.18 has been found.

Table 5.11: Results of farm-wide level load estimation, All locations, Operating con-
dition 1, T1A2, Feed forward neural network, CS10 with wake effect

within Train Range Extrapolation Full
R value MAPE R value MAPE R value MAPE

Transition Piece (X) 0.999 1.11% 0.999 1.24% 0.999 1.17%
Transition Piece (Y) 0.998 4.65% 0.999 4.24% 0.999 4.47%

Monopile (upper) (X) 0.996 5.06% 0.997 4.38% 0.997 4.75%
Monopile (upper) (Y) 0.983 5.52% 0.995 4.90% 0.992 5.24%

Monopile (lower) (X) 0.964 6.92% 0.986 8.13% 0.980 7.46%
Monopile (lower) (Y) 0.939 7.33% 0.978 12.31% 0.968 9.58%

As a result, a similar level of accuracy has been calculated compared to the case

CONFIDENTIAL



120 5. FARM-WIDE LEVEL LOAD ESTIMATION

without explicit inclusion of wake effect. When the combined weights of the trained
neural network have been compared, it has been found that the combined weights
for the additional two features are small compared to the other features as shown in
Figure 5.19.
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Figure 5.18: Results of farm-wide level load estimation with wake direction, All lo-
cations, Operating condition 1, T1A2, Feed forward neural network, CS10 with wake
inclusion

As already explained in Section 5.1, wake not only affects target moment DEL,
but also input features such as moment DEL at the tower bottom. In Section 5.6, it is
shown that MAPE of ‘free stream’ and ‘in wake’ conditions have been almost the same
which indicates both target moment DEL and input features are affected by wake,
and the feed-forward neural network can capture it. From the study in this section,
the same conclusion could be made. In addition, given that the combined weights
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Figure 5.19: Combined weights comparison, CS10 with wake effect

of the additional features are very small compared to the other features, it has also
been concluded that explicit inclusion of wake effect in a form of ‘wake switch’ and
‘wake distance’ gives no important information to the feed-forward network.
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5.7 Conclusion

In this chapter, farm-wide level load estimation of moment DEL has been performed.
Specifically, the feed-forward neural network has been trained on turbine 1, and ap-
plied to turbine 2 since turbine 1 has more data points.

Firstly, with the base case application, it has been found that the feed-forward
neural network can be used in farm-wide level load estimation for the two turbines
used in this study, but the accuracy level is lower than individual turbine level load
estimation. Especially, since turbine 2 has the different operating condition in which
it generates below rated power even though the wind speed is high enough. Since
the feed-forward neural network trained on turbine 1 has not been trained on this
operating condition, it gives inaccurate estimation.

Secondly, as a result of case studies with different input combinations, it has been
found that CS10 which includes moment and inclination at tower bottom in addi-
tion to standard signals and wave measurement data gives the best estimation with
MAPE of around 7%. Either moment or inclination signal at tower bottom has been
used with standard signals and wave measurement data, it gives MAPE of around
10%. Moreover, not like the individual turbine level load estimation, the results
have been biased. Specifically, the feed-forward neural network tends to overesti-
mate moment DEL at transition piece (only Y-directional) and lower monopile level
(both direction). However, at the upper monopile level, it tends to underestimate.

As a result of the case studies, the answer to the research question of ‘what is the
minimum number of sensors that gives accurate DEL estimation? can be found.
Basically, it depends on the target level of accuracy. For example, to achieve MAPE of
less than 7%, both strain gauges and inclinometers should be installed at the tower
bottom. However, the number ‘7%’ is only valid for the specific two turbines used in
this study, which have a similar first damped natural frequency. Therefore, it should
be noted that different accuracy can be obtained if the feed-forward neural network
is applied for other turbines which have a quite different first damped natural fre-
quency.

Added to that, the case studies performed to explicitly include dynamic proper-
ties; inclusion of peak frequencies and filtered signals. It has been found that there is
no improvement in estimation. One possible explanation of the result is that spectral
moments already include dynamic property.

In addition to that, to remove the effect from the difference in the dynamic prop-
erty, inclination, moment and acceleration signals have been normalized with re-
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spect to the bandpass filtered signal by multiplying or dividing the filtered signals
from the original signals. From the result, it has been concluded that the normalized
signals give the completely wrong estimation.

Lastly, wake effect has been included in the form of wake switch and distance. It
has been found the explicit inclusion of wake effect is not giving any difference in
estimation. This is due to the fact that wake effect not only affects target moment
DEL, but also other input features. Therefore, the feed-forward neural network could
learn the relationship between input features and target moment DEL even without
the explicit inclusion of wake effect.
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Chapter 6

Conclusions and future work

This chapter summarizes conclusion and suggested future work. In Section 6.1, con-
clusions obtained from Chapter 4 and 5 are summarized for individual turbine and
farm-wide level load estimation respectively. In Section 6.2, recommended imple-
mentation procedures are explained. Lastly, in Section 6.3, recommended future
work is described.

6.1 Conclusions

In this study, one-month real measurement data of two turbines in the same wind
farm has been used. The measurement data has been categorized into two parts;
standard signals and non-standard signals. The standard signals include data from
the SCADA system, and the non-standard signals include acceleration and moment
signals at the tower top, acceleration, moment and inclination signals at the tower
bottom and strain signals at the transition piece, upper and lower monopile levels.
In addition to that, wave measurement data has also been used.

Throughout the study, 10 min. statistical properties have been used as inputs.
Except for the wave measurement data, the statistical properties include mean, stan-
dard deviation, range, the equivalent value and spectral moments. Here, the equiv-
alent value is the value which is calculated in the same way with DEL. For wave
measurement data, the statistical properties include significant wave height, peak
period and spectral moments.

As a target, 10 min. moment DEL at different levels (The tower bottom, transi-
tion piece and two levels at monopile) have been used.
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First of all, individual turbine level load estimation has been performed. For indi-
vidual turbine level load estimation, a neural network is trained on a wind turbine.
Then, the trained neural network is applied to the same wind turbine it is trained on.

Firstly, it has been found that linear regression gives an accurate estimation at
tower bottom when the turbine is operating in low wind speed or not operating
(parked condition) with MAPE of less than 3%. Concretely, accurate estimation has
been obtained for linear regression with measurements from the SCADA system and
tower top. The signals include standard deviation, the equivalent value of accelera-
tion from the SCADA system, and standard deviation of the tower top moment.

With non-standard signals at tower bottom, linear regression can give quite ac-
curate estimations for the transition piece and upper monopile level with MAPE of
less than 5%. Specifically, linear regression with moment DEL at the tower bottom
or inclination can give quite accurate estimations for the transition piece and up-
per monopile level. However, at the lower monopile level, estimation was not so
accurate with MAPE of higher than 5%. Furthermore, given that the accuracy level
is decreased along with its depth, it is expected that there is higher inaccuracy in
estimation at the fatigue critical location near mudline.

In addition, both the feed-forward neural network and recurrent neural network
have been applied for the normal operating condition. It has been found that the
feed-forward neural network gives a better estimation than the recurrent neural
network.

Then, the answer to the research question of ‘Can the neural network tech-
nique be applied to accurately estimate moment DEL at already known fatigue
critical locations for offshore wind turbines with real measurement data?’ be
found. It is found that the feed-forward neural network can be used and it gives an
accurate estimation. Specifically, at the lower monopile level, MAPE of less than 5%
can be achieved when either moment or inclination signals at the tower bottom is
used together with standard signals and wave measurement data. However, when
wave measurement data is not included, the accuracy level is decreased. When both
moment and inclination signals are used, MAPE of less than 3% can be achieved.

In addition, the answer to the research question of ‘What is the minimum num-
ber of sensors that gives accurate DEL estimation?’ is also found. Basically, it
depends on the level of target accuracy. For example, to achieve MAPE of less than
5% at the lower monopile, either inclinometer or strain gauges need to be installed at
tower bottom together with the wave measurement system. Both inclinometer and
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strain gauges need to be installed with the wave measurement system to achieve
MAPE of 3% at the same location.

As a result of case studies performed to see if any improvement can be achieved,
two conclusions can be found. Firstly, Operating condition 1 (normal operating con-
dition) has been divided into two parts based on a wind speed where generator speed
and pitch angle start to change. However, there is no improvement in estimation.
Secondly, When principal components with 100% accumulated percentage variance
from PCA are applied, almost the same accuracy level can be obtained compared to
the accuracy level obtained by using all the original features. However, estimation
with principal components with an accumulated percentage variance of 99% lower
the estimation accuracy from MAPE of around 3% to 5%. From the result, it can be
concluded that the principal component with very small percentage variance cannot
be ignored in the regression problem.

Then, the answer to the research question of ‘What is the required number of
data to train a neural network? is found. The required number of training data
is dependent on the level of accuracy. When moment and inclination signals at the
tower bottom are used together with standard signals and wave measurement data
to estimate moment DEL at the lower monopile level, at least 700 data points are
required to achieve MAPE of less than 5%. Given that each data point stands for
statistical properties of 10 min. time series, it is corresponding to 5 days of measure-
ment period. However, it should be noted that those 700 data points should cover a
wide range of input features such as wind speed, generator speed, pitch angle and
so on to get an accurate estimation.

Then, farm-wide level load estimation has been performed. For farm-wide level
load estimation, a neural network is trained for a wind turbine. Then, the trained
neural network is applied to the other wind turbine it is not trained on. Here, it
should be noted that the two turbines used in this study have similar first damped
natural frequency ranges. Therefore, the results found in this study are very specific
for those two turbines.

Firstly, linear regression has been performed for the same operating conditions
(when the wind turbine is operating in low wind speed or in parked condition) and
with the same input features used in individual turbine level load estimation. As a
result, the same conclusions have been obtained. Specifically, it is found that linear
regression can give accurate estimation at the tower bottom, transition piece and up-
per monopile level with MAPE of less than 5%. However, the linear regression gives
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a quite inaccurate estimation at the lower monopile level with MAPE of around 8%
(when the wind turbine is operating in low wind speed).

Secondly, the answer to the research question of ‘Can the machine learning
technique (neural network) be expanded to farm-wide fatigue assessment?’ is
found; the feed-forward neural network can be used for farm-wide level load esti-
mation for the two turbines used in this study. However, it is also found that the
feed-forward neural network can be inaccurate when data that the feed-forward
neural network is not trained on is fed into (Extrapolation).

Then, as a result of the multiple case studies, the answer to the research question
of ‘What is the minimum number of sensors that gives accurate DEL estimation?’
is found. Similar to individual turbine level load estimation, it depends on the level
of target accuracy. For instance, either inclinometer or strain gauges need to be in-
stalled at tower bottom with the wave measurement system to achieve MAPE of less
than 13% at lower monopile, and both inclinometer and strain gauges need to be
installed with the wave measurement system to achieve MAPE of 7% at the same
location. Again, it should be noted this conclusion is very specific for the turbines
used in this study.

Lastly, multiple case studies have been performed to see if any improvement
can be achieved. Specifically, two studies have been performed to explicitly include
dynamic property differences. As a first study, peak information of PSD has been
additionally fed into the feed-forward neural network. As a second study, signals
have been filtered near its first damped natural frequency. Then, the filtered sig-
nals have been additionally fed into the feed-forward neural network. However, no
improvement can be achieved. The reason for this is that dynamic properties are
already included in spectral moments. In addition to that, signals have been nor-
malized with the bandpass filtered signal. Then, the normalized signals have been
used as additional features. However, it has been found that the estimation with the
normalized signals is completely wrong. Lastly, one case study has been performed
to explicitly include wake effect. In this study, wake switch and wake distance have
been additionally used as inputs to the feed-forward neural network. However, no
improvement can be achieved as well. The reason for this is that the wake effects
affect not only the moment DEL but also input features.
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6.2 Recommended implementation procedure

From this study, the feed-forward neural network has been proven to accurately esti-
mate the moment DEL. However, to be able to use the feed-forward neural network
in practice, some cares should be taken. Accordingly, the recommended implemen-
tation procedures are described in this section. In Section 6.2.1, data pre-processing
is described. In Section 6.2.2, estimation with the feed-forward neural network is
explained.

6.2.1 Data pre-processing

Overall procedure of data pre-processing is shown in Figure 6.1.

Is there offsets?

Time stamp checks

Modify the time 

stamps

Separation based 

on operating 

conditions

Data pre-

processing

START

END

Figure 6.1: Data pre-processing procedure

First of all, it is essential to make sure that time stamps are the same for all
the signals. In other words, one needs to make sure that each set of the inputs
and target are from the same time stamp. Fortunately, all the measurement signals
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used in this study have the same time stamps. However, it is possible that the time
stamps are differently recorded in some of the measurement signals. For example,
time stamp 0 in a measurement signal can be corresponding to time stamp 600 in
the other measurement signal. In this case, one needs to apply offset so that all the
measurement signals are at the same time stamps.

To check if the time stamps are correctly recorded, manual checks should be
performed. In this check, all the measurement signals are tuned to be matched with
standard signals from the SCADA system. For example, the following manual checks
can be performed for moment and acceleration:

Moment signal: Moment signals can be checked by plotting the mean moment
versus mean wind speed graph for the normal operating condition. Specifically, FA
directional mean moment should follow the thrust curve which has the maximum
value at rated wind speed and getting smaller when the mean wind speed is far
from the rated wind speed. On the other hand, SS directional mean moment should
increase while the mean wind speed increases. The example plot is shown in Figure
6.2a. If there is an offset in time stamps, the graph will not follow the trends. In that
case, time stamps in the moment signals should be modified.

Acceleration signal: Acceleration signal can be checked by comparing its standard
deviation with that of acceleration at RNA (from the SCADA system) for the normal
operating condition. Specifically, the first mode has the biggest contribution when
the fixed offshore wind turbine is taken into account. The typical first mode shape is
shown as the blue line in Figure 6.3. Accordingly, the standard deviation of acceler-
ation is the highest at the top (RNA) and it is decreasing along with its length from
the top. Therefore, the standard deviation of acceleration should be decreasing, but
overall changes along with time axis should be the same as shown in Figure 6.2b.
If there is offset in time stamps, there will be offset in the graph. In that case, time
stamps of acceleration at tower locations should be modified.

Secondly, after all the data preprocessing is done, it is important to make sure
that the different operating conditions are separated. For example, the normal op-
erating condition can be separated from the parked condition. It can be easily done
by using operating condition information recorded in the SCADA system.
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Figure 6.2: Manual checks of pre-processed data

Mode 1

Figure 6.3: Typical first mode shape of a fixed offshore wind turbine

6.2.2 Neural network application

The overall procedure of training of the feed-forward neural network is shown in
Figure 6.4.

As shown in the procedure, the feed-forward neural network can be evaluated by
comparing the error level. If the error level is small enough so that the target error
level is achieved, the trained neural network can be extracted. Specifically, all the
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Figure 6.4: Training of the feed-forward neural network procedure

optimized weights and neural network architecture need to be extracted to apply
the trained neural network for further use.

However, if the error level is higher than the target level, some actions need to
be taken to increase the accuracy level.

For this task, a learning curve should be investigated. The learning curve is ex-
plained in Section 3.1.5. According to the learning curve, one can decide whether
the feed-forward neural network has an underfitting or overfitting problem. If the
feed-forward neural network has an underfitting problem, the complexity of the
feed-forward neural network needs to be increased. Specifically, the number of hid-
den layers or the number of hidden neurons can be increased. If there is an overfit-
ting problem, two actions can be taken; increase the number of training data, and
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decrease the complexity of the feed-forward neural network. However, when the
decreased complexity gives no improvement and it is not possible to increase the
number of training data, different techniques (for example, linear regression) can
be considered.

In addition, it is possible that the error is not caused by underfitting or overfit-
ting but caused by something else. For example, if the normalization setting of the
training is turned off, the large error can be caused since there is a high possibility
that the gradient descent cannot be converged. Therefore, in that case, the training
settings should be investigated. From the author’s point of view, the following items
can affect the performance of the feed-forward neural network the most:

• Normalization (min-max normalization has been used in this study)

• Activation function (Tangent-sigmoid function for hidden layer, pure-linear
function for output layer have been used in this study)

• Learning method (Levenberg-marquardt algorithm has been used in this study)

When the trained feed-forward neural network is applied in practice, there are
some recommendations.

First of all, extrapolation should be carefully evaluated. As explained in Section
5.2.1, extrapolation can give inaccurate estimation. Ideally, the feed-forward neural
network should be trained on all the different cases so that the feed-forward neural
network can avoid being applied to the extrapolation problem. However, if the feed-
forward neural network is trained on a limited dataset, and it is the only option to
estimate the moment DEL, the following methods can be used:

Firstly, to distinguish the extrapolation, ranges of input features and the target
can be recorded during the training. Then, in the real application, the input features
and the target can be compared with the recorded values. If the trained feed-forward
neural network is used for extrapolation, a factor (larger than 1) can be multiplied
to the estimated moment DEL to apply conservatism for extrapolation.

Furthermore, the operating condition recorded in the SCADA system is not enough
to distinguish all the different conditions. Specifically, as explained in Section 2.2,
even though the operating condition is recorded the same as the normal operating
condition, power generation can be limited in some cases. In this case, the power
curve can be used to distinguish the different conditions. Specifically, the power
curve (a plot of mean wind speed versus mean grid power) can be made for the data
points used in training. Then, the new data points used in the real application can
be added to the power curve. If the new data points are far from the power curve,
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the new data points can be recognized as extrapolation.

Secondly, one of the sensors can fail. In that case, the feed-forward neural net-
work which is using the signal from the failed sensor can give inaccurate estimation.
To deal with the situation, a back-up feed-forward neural network that is not us-
ing the signal from the failed sensor can be prepared. Specifically, two (or more)
feed-forward neural networks can be used to estimate moment DEL. For example,
one of the feed-forward neural networks is designed to use all the available signals
including moment and inclination signals at the tower bottom, while the other (back
up) is designed to use all the signals except for the inclination signal at the tower
bottom. In that case, even when the inclinometer at the tower bottom is failed, the
back-up feed-forward neural network can be used to estimate the moment DEL even
though the accuracy level can be lower.

6.3 Future work

6.3.1 Training with larger dataset

As explained in Section 4.8, the one-month data used in this study was not enough
to make test set MAPE converged. In addition, for operating condition 3 and parked
condition, the number of data was not enough for training as shown in Section
4.4.2 and linear regression has been applied instead of neural network. However,
at the lower monopile level in operating condition 3, linear regression has given a
somewhat inaccurate estimation, but it is expected that the neural network can give
accurate estimation if the number of data is enough for operating condition 3.

Therefore, it is recommended to apply the neural network with more than one-
month data that covers various operating condition and broader ranges of features
(i.e. wind direction, wind speed and so on). From the study, it can be investigated
if the neural network gives an accurate estimation for all the different operating
conditions. In addition, it can also be investigated how much data (how long the
measurement period) is required for error convergence.

For farm-wide level load estimation, it has been found that the feed-forward neu-
ral network can give inaccurate estimation if it is applied to extrapolation. Specifi-
cally, two turbines had the different operating conditions in which one turbine gener-
ates limited power even when the wind speed is high enough, and the other turbine
generates power along with its power curve. However, it has not been investigated if
the feed-forward neural network can make an accurate estimation for this operating
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condition.
Therefore, it is recommended to study further if the neural network can cap-

ture that different behavior if the feed-forward neural network is trained with large
enough training data that cover all those cases.

6.3.2 Application of different machine learning techniques

Throughout this study, the feed-forward neural network and recurrent neural net-
work (LSTM) have been applied with 10 min. statistics. As a result, it has been
found that feed-forward neural network outperforms recurrent neural network for
moment DEL estimation.

However, for the training of recurrent neural network (LSTM), only 1665 and
439 data points have been applied for turbine 1 and 2 respectively as shown in
Section 4.5. Added to that, the recurrent neural network has more complicated
architecture than the feed-forward neural network which indicates more number of
data might be necessary for training.

Therefore, it is recommended to train the recurrent neural network (LSTM) with
more number of data.

Additionally, it is also recommended to apply other recurrent neural networks.
Specifically, gated recurrent unit (GRU) can be applied.

In addition, instead of 10 min. statistics, time series itself can be estimated
with neural networks. If time series itself can be accurately estimated with neural
networks, not only the fatigue load (i.e. moment DEL), but also the extreme load
can be estimated.

Especially, a higher sequential dependency is expected when the time series itself
is considered. Therefore, it is recommended to apply both the feed-forward neural
network and recurrent neural network.

6.3.3 Training with simulation

As explained in Section 5.2.1, if the data which a neural network is not trained for
is applied, the result can be inaccurate.

One way to train the neural network is to use larger dataset as explained above.
However, it takes a lot of time for the measurement to cover all the different cases.

Therefore, it is recommended to train a neural network with simulation data.
Specifically, multiple simulations with different water depth and different dynamic
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properties can be performed. Then, the results of the simulations can be used to
train the neural network.

In addition, more complicated feed-forward neural network architecture needs
to be investigated. The reason for this is that a more complicated relationship is
expected when all the different dynamic properties and water depths are used as
input.

However, it should be noted that the real turbine can be different from the sim-
ulation models. For example, soil condition is frequently different between the sim-
ulation model and the real turbine. In addition, the actual mode shape can also be
different between the simulation model and the real turbine. In that case, the neural
network trained with simulation models can give inaccurate estimation.

To deal with the problem, transfer learning can be applied.
Specifically, the following procedure can be applied; Firstly, pre-train the feed-

forward neural network with simulation data. It will be called pre-trained feed-
forward neural network. Secondly, extract the weights of the pre-trained feed-
forward neural network. Then, set the extracted weights as a starting point of
further training of the feed-forward neural network. Lastly, tune the pre-trained
feed-forward neural network with the real measurement data.

With the transfer learning, it is expected that the feed-forward neural network
can give accurate estimation for the real turbine even though the simulation model
is quite different from the real turbine since it will be tuned with real measurement
data.

Furthermore, since the pre-trained feed-forward neural network will be trained
to cover all the different cases with simulation data, it is expected that the feed-
forward neural network will give quite accurate estimation for extrapolation prob-
lems as well. Concretely, even though the real measurement data used for the tuning
cannot cover some of the conditions, the pre-trained feed-forward neural network
already know how to deal with the conditions since the simulation data used in the
pre-training already cover the conditions as well.

6.3.4 Farm-wide level load estimation with more than two tur-
bines

For farm-wide level load estimation, it has been found the two turbines used in
this study have a similar range of first damped natural frequency. However, it is
expected that the estimation can be inaccurate if the feed-forward neural network is
applied to a wind turbine which has a quite different first damped natural frequency.
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Therefore, it is recommended to apply the feed-forward neural network in farm-
wide level load estimation more than two turbines so that the effect of the different
dynamic property can be clearly investigated.

6.3.5 Explicit wake effect inclusion in farm-wide level load esti-
mation

In Section 5.6.4, the explicit inclusion of wake effect as a form of ‘wake switch’ and
‘wake distance’ has not given a significant increase in estimation accuracy. However,
as briefly mentioned in Section 2.4.4, the strength of wake turbulence is affected
by multiple sources. For example, the number of upstream turbines and operating
conditions of upstream turbines can additionally affect the strength of wake turbu-
lence. Therefore, it is recommended to perform the farm-wide level load estimation
including those aspects in addition to the ‘wake switch’ and ‘wake distance’.

Specifically, when the upstream turbine is in normal operating condition, wake
turbulence would be stronger compared to the case where the upstream turbine is
in parked condition. To include those effects, additional features that designate the
operating status of the upstream turbine can be added. Similar to the ‘wake switch’,
the feature can be set as 1 when the upstream turbine is in normal operation, and
0 when it is in parked condition so that the feed-forward neural network can learn
the different relationships.
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Appendix A

Detailed procedure of data
preprocessing

First of all, time series of acceleration signal in SCADA system has varying sampling
frequencies. However, it should have fixed sampling frequency to calculate spectral
moments. Accordingly, the time series of acceleration signal in SCADA system has
been pre-processed and it is explained in Section A.2. In addition, Wind turbine
shows different behavior for fore-aft (FA) and side-by-side (SS) direction. The main
cause of this difference is large thrust force which is acting on FA direction. In
addition, yaw angle keeps changing according to wind direction so that the wind
turbine generate the maximum energy. In other words, FA and SS directions keeps
changing. Therefore, the moment and acceleration signals need to be converted into
FA and SS directions. It is described in Section A.3.

In addition, strain signals from strain gauges at transition piece and monopile
need to be converted into moment. The moment conversion is explained in Section
A.4. As briefly explained in Section 2.1.2, the strain signals at transition piece and
monopile have not been calibrated, and there is no information about the calibra-
tion. As a result the non-calibration, when the strain signals are converted into FA
and SS directional moment, large error is caused. Accordingly, for transition piece
and monopile, MWE and MSN have been used for estimation without being con-
verted into FA and SS direction.

In Section A.5 and A.6, handling of measurement errors and damage equivalent
load calculation are explained respectively.

Lastly, since all the sensors record time series, it needs to be pre-processed to
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calculate statistical properties and it is described in Section A.7.

A.1 Pre-processing of wave data

As mentioned above, wave statistics have been recorded at different time lengths.
Specifically, sometimes for 2 min. and sometimes for 3 min.. Therefore, the wave
data should be pre-processed into 10 min. basis. To calculate the 10 min. statistics
from the 2 or 3 min. data, wave data have been grouped into 10 min.. Then, the
mean of all the statistical properties has been calculated as shown in Figure A.1.

Figure A.1: Wave pre-processing

A.2 Time series of acceleration in SCADA system

The time series of acceleration signal in SCADA system has varying sampling fre-
quencies. However, as shown in Section A.7, spectral moments have been used for
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estimation. To calculate spectral moments, Fourier transform has been used and the
fixed sampling frequency is required to apply the Fourier transform. Accordingly,
the re-sampling of the acceleration signal in SCADA system has been performed by
interpolating the original signal with the re-sampling time series. Since all the other
continuous time series have fixed sampling frequency of 25 Hz (0.04 sec.), The re-
sampling of the acceleration in SCADA system has also been performed based on
the fixed sampling frequency of 25 Hz. A simple example of re-sampling is shown
in Figure A.2 in which the red and green line is the original and re-sampled signal
respectively.

Figure A.2: Example of re-sampling

A.3 Conversion into FA & SS directional components

As explained in Section 2.1.2, moment and acceleration measurement data have
different measurement coordinate system. In addition, FA and SS direction keep
changing as its yaw direction changed.

Accordingly, yaw direction at each time step has been used to obtain FA & SS
directional coordinate system. Then, moment and acceleration components which
are corresponding to the pre-calculated FA & SS directional coordinate system have
been calculated to obtain FA & SS directional moment and acceleration.

The yaw direction signal is recorded by setting 0 deg. yaw angle as when the
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wind is coming from North and positive to the clock-wise direction. For example,
when the wind is coming from the East, then the yaw angle is recorded as 90 deg.. By
combining the yaw direction system with the moment and acceleration coordinate
system shown in Figure 2.3 and 2.4, FA and SS directional moment and acceleration
can easily be drawn as depicted in Figure A.3.

According to Figure A.3, FA & SS moment and acceleration at each time step can
be calculated by Equation (A.1) and (A.2) where θoffset is an offset angle which is
0 deg. and 23 deg. for moment calculation of turbine 1 and 2 respectively.

MFA = −Mx cos (θyaw − θoffset)−My sin (θyaw − θoffset)
MSS = Mx sin (θyaw − θoffset)−My cos (θyaw − θoffset) (A.1)

AccFA = −Accx sin (θyaw)−Accy cos (θyaw)

AccSS = Accx cos (θyaw)−Accy sin (θyaw) (A.2)
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(a) Moment coord. with yaw coord.

(b) Acceleration coord. with yaw coord.

Figure A.3: Moment and acceleration coord. with yaw coord.
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A.4 Conversion of strain into moment

Strain gauges are installed as shown in Figure 2.1. As described above, each strain
gauge measures axial strain. As a result, to calculate moment from strain, the re-
lationship shown in Equation (A.3) needs to be used. The relationship has been
derived by using strain-forces relationship shown in Appendix B.εEεN

εW

 =
1

E
·

1/A −xu/I 0
1/A 0 −yu/I
1/A xu/I 0

 ·
PAxial

MSN

MWE

 (A.3)

Where A, I, and E are area, second moment of inertia and young’s modulus
respectively. xu, yu are distance between neutral axis and sensors as shown in Figure
A.4. Lastly, PAxial, MSN and MWE are axial force, moment along the South-North
axis and moment along the West-East axis respectively.

Figure A.4: Strain to moment conversion

A.5 Measurement error

In a real measurement system, there can be an unexpected error for several reasons.
The causes of the measurement error include input signal error, sensor error, signal
transmission error, transducer error, converter error, and computer error. It is found
that the measured signals used in this study also include some errors.
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Firstly, there is an error in yaw angle measurement in SCADA system. Specifi-
cally, when the yaw angle is increased from below 0 deg. (corresponding to below
360 deg.) to above 0 deg., the measured signal drops to around -10 deg. first
and then stabilized afterward. In addition, the opposite case in which yaw angle
changes from above 0 deg. to below 0 deg. exists as well. In that case, the yaw
angle increases to around 10 deg. and then stabilized. One of the examples is
shown in Figure A.5a. Accordingly, the MFA and MSS moment converted by Equa-
tion (A.1) has abrupt peak as shown in Figure A.5b. It causes unrealistically high
moment DEL (Damage Equivalent Load) since the abrupt peak will be counted by
the cycle counting method. Accordingly, the abrupt peak in the converted moment is
disregarded in moment DEL calculation so that reasonable moment DEL can be ob-
tained. Specifically, if the ratio between the absolute difference of signals in between
two consecutive time step and standard deviation of the absolute differences of the
whole 10 min. time series was higher than 30, the data point has been removed
from the time series. One example of this modification is shown in Figure A.6 which
is corresponding to the moment time series in Figure A.5b after modification.

(a) Yaw angle error (b) Converted moment error

Figure A.5: Example of error in yaw angle measurement and converted moment

The second measurement error found in this study is moment calibration error.
At top and bottom of the tower, strain signals have been calibrated into Mx and My

at each level. In the calibration process, an error occurred and there are some abrupt
peaks in Mx and My signals which are similar to Figure A.5b. For this type of mea-
surement error, the same approach described above in yaw angle error modification
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Figure A.6: Example of modified moment

has been taken to remove the abrupt peaks in Mx and My signals.

A.6 Damage equivalent load

The definition of damage equivalent load is that “the load that gives same fatigue
damage for a given equivalent number of cycles Neq”. For fatigue damage calcu-
lation, the most widely used approach is to use “S-N curve”. Specifically, stress
range-number of cycles histogram can be made by counting the number of cycles in
stress range histogram. In this study, rainflow counting has been applied to count the
number of cycles. The example stress range-number of cycles histogram is shown in
Figure A.7. In the figure, the total number of cycles is 1090 including 7 from residual
half-cycles (meaning total 14 residual half-cycles = 7 full cycles).

With the stress range-number of cycles histogram, the damage equivalent load
can be calculated as shown in Equation (A.4). (Derivation can be found in Appendix
C)

Meq =
[∑

i

ni
Neq

Mm
i

]1/m
(A.4)
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Figure A.7: Example stress range - number of cycles histogram

A.7 Statistical properties

From the time series of signals, statistical properties can be calculated. In this study,
the statistical properties shown in Table A.1 have been calculated.

Table A.1: Statistical properties

Number Statistical Properties Symbol Remark
1 Mean µ -
2 Standard deviation σstd -
3 Max. Range - -
4 Equivalent value - Calculated in the same way of DEL
5 Spectral moment λn n = -3, -2, -1, 0, 1, 2, 3

Mean and standard deviation can be calculated by Equation (A.5) and (A.6)
where N is the total number of data and xi is i th data in a dataset.

µ =
1

N

N∑
i=1

xi (A.5)

σstd =

√√√√ 1

N

N∑
i=1

(xi − µ)2 (A.6)

The maximum range is simply the difference between maximum and minimum
values in a dataset.
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The equivalent value is a value which is calculated in the same way with DEL.
Specifically, count the cycles of all the signals, and obtain Si and ni where Si is i th
range of a signal, ni is the corresponding cycles. Then, the equivalent value Seq can
be calculated by putting the Si instead of Mi, and ni in Equation (A.4). In this study,
slope m of 3.5 and the equivalent number of cycles Neq of 107 have been used.

Lastly, spectral moment λ has been calculated from PSD (power spectral density)
by using Equation (A.7) where fi is i th frequency and S(fi) is PSD corresponding
to fi.

λn =
∑
i

fni S(fi) (A.7)
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Appendix B

Derivation of strain-forces
relationship

For a beam shown in Figure B.1, θy is rotation along with y axis, wz is displacement
along with z axis, and u0 is axial displacement along with x axis.

Figure B.1: Beam deformation

First of all, axial displacement in beam can be calculated by Equation (B.1).

u = u0 − zθy (B.1)

Where u is total axial displacement located at z from neutral axis, z is the distance
from neutral axis.
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Secondly, strain can be calculated from Equation (B.1) by taking x directional
derivative as shown in Equation (B.2).

εxx =
du

dx
=
du0
dx
− z dθy

dx
(B.2)

Where εxx is total axial strain.
Lastly, by applying Hooke’s law, stress-forces relationship can be obtained as

shown in Equation (B.3).

σxx = Eεxx = E
du0
dx
− Ezdθy

dx
(B.3)

The first and second terms can be expressed by axial force P and moment M .
For the first term, it can easily be expressed with axial force P as shown in

Equation (B.4).

E
du0
dx

= Eεxx,0 =
P

A
(B.4)

Where E is young’s modulus, εxx,0 is strain induced by axial force, and A is cross
sectional area.

Next, the second term can be expressed with respect to moment M by using
moment-curvature relationship as shown in Equation (B.5).

My = EIyy
dθy
dx

(B.5)

Where My is moment along with y axis and Iyy is second moment of inertia of
cross section along with y axis.

Then, the second term of Equation (B.3) can be expressed as shown in Equation
(B.6).

Ez
dθy
dx

= Ez
My

EIyy
=
Myz

Iyy
(B.6)

As a result, the following strain-forces relationship can be obtained:

εxx =
P

EA
− Myz

EIyy
(B.7)
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Appendix C

Derivation of damage
equivalent load

By using Palmgren-Miner rule, the fatigue damage can be calculated as shown in
Equation (C.1).

D =
∑
i=1

ni
Ni

(C.1)

Where Ni is the total number of cycles at a given stress range ∆σi which can be
calculated with “S-N curve” and ni is the actual number of cycle for a given stress
range ∆σi.

In addition to that, the relationship shown in Equation (C.2) holds in “S-N curve”
approach.

Ni

Nref
=
(∆σref

∆σi

)m
(C.2)

Where Nref and ∆σref are reference number of cycles and reference stress range
represents a given “S-N curve”. In addition, m is the slope of a given “S-N curve”.
Then, by combining Equation (C.1) and (C.2), the damage in Equation (C.1) can be
rewritten as shown in Equation (C.3).

D =
∑
i

ni
Nref

( ∆σi
∆σref

)m
(C.3)
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Lastly, for a given equivalent number of cycles Neq, damage can be expressed
simply as a ratio between the equivalent number of cycles Neq and total number of
cycles at the equivalent stress range ∆σeq as shown in Equation (C.4).

Deq =
Neq

N(∆σeq)
(C.4)

Consequently, the damage equivalent load can be derived as shown in Equation
(C.5) by equating damage D in Equation (C.3) and equivalent damage Deq in Equa-
tion (C.4).

∆σeq =
[∑

i

ni
Neq

∆σm
i

]1/m
(C.5)

Especially, by using the relationship in between stress - moment using beam the-
ory, the moment equivalent load can also simply be calculated in the same way as
shown in Equation (C.6)

Meq =
[∑

i

ni
Neq

Mm
i

]1/m
(C.6)
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Appendix D

Moment DEL at tower top vs
moment DEL at tower bottom
(SS Direction)

Standard deviation of acceleration vs moment DEL at tower bottom, SS direc-
tion :
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Figure D.1: Std. of Acc. at tower top vs Moment DEL at tower bottom (SS Direction)
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D. MOMENT DEL AT TOWER TOP VS MOMENT DEL AT TOWER BOTTOM (SS

DIRECTION)

Moment DEL at tower top vs moment DEL at tower bottom, SS direction :
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Figure D.2: Moment DEL at tower top vs Moment DEL at tower bottom (SS Direction)
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Appendix E

Pearson’s correlation
coefficient for transition piece
and monopile
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E. PEARSON’S CORRELATION COEFFICIENT FOR TRANSITION PIECE AND

MONOPILE

Transition piece moment DEL, Operating Condition 1

Table E.1: Pearson’s correlation coefficient, w.r.t. Transition piece moment DEL, Op-
erating Condition 1

Rank Turbine 1
X (Transition piece) Y (Transition piece)
R value Features R value Features

1 0.998 Tower Bottom Mom X Eq. value 0.998 Tower Bottom Mom Y Eq. value
2 0.953 Tower Bottom Mom X λ1 0.940 Tower Bottom Mom Y λ1
3 0.898 RNA Accel Y σstd 0.910 RNA Accel X σstd
4 0.892 Tower Top Mom X Eq. value 0.889 RNA Accel X Eq. value
5 0.882 Tower Top Accel Y σstd 0.888 Tower Bottom Mom Y λ2
6 0.877 RNA Accel Y λ0 0.879 RNA Accel X λ0
7 0.875 RNA Accel Y λ−1 0.878 Tower Top Mom Y Eq. value
8 0.873 Tower Bottom Mom X λ2 0.875 RNA Accel X λ−1

9 0.871 RNA Accel Y Eq. value 0.869 RNA Accel X Range
10 0.869 RNA Accel Y Range 0.868 Tower Top Accel X σstd
11 0.865 Tower Top Accel Y λ0 0.856 RNA Accel X Max
12 0.865 Tower Top Accel Y Var 0.846 Tower Top Accel X λ0
13 0.861 RNA Accel Y Max 0.819 RNA Accel X λ1
14 0.849 Tower Bottom Mom X Range 0.811 Tower Top Mom Y λ1
15 0.835 Tower Accel Y Top Range 0.810 Tower Top Accel X Range

Rank Turbine 2
X (Transition piece) Y (Transition piece)
R value Features R value Features

1 0.998 Tower Bottom Mom X Eq. value 0.998 Tower Bottom Mom Y Eq. value
2 0.952 Tower Bottom Mom X λ1 0.948 Tower Bottom Mom Y λ1
3 0.917 RNA Accel Y σstd 0.876 Tower Bottom Mom Y λ2
4 0.913 RNA Accel Y λ−1 0.847 RNA Accel X σstd
5 0.905 RNA Accel Y λ0 0.822 RNA Accel X λ0
6 0.880 Tower Bottom Mom X λ2 0.820 RNA Accel FA λ0
7 0.836 RNA Accel Y Eq. value 0.819 RNA Accel FA Eq. value
8 0.822 RNA Accel Y Range 0.813 RNA Accel X λ−1

9 0.813 RNA Accel Y Max 0.809 Tower Top Accel X σstd
10 0.778 Tower Bottom Mom X Range 0.804 RNA Accel X Eq. value
11 0.773 Tower Top Accel Y σstd 0.788 RNA Accel X Range
12 0.766 Tower Top Accel Y λ0 0.782 Tower Top Accel X λ0
13 0.765 RNA Accel X λ−1 0.779 Tower Top Accel FA σstd
14 0.757 Tower Top Mom X Eq. value 0.776 RNA Accel Y Eq. value
15 0.727 RNA Accel Y λ1 0.776 RNA Accel X Max
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Transition piece moment DEL, Operating Condition 3

Table E.2: Pearson’s correlation coefficient, w.r.t. Transition piece moment DEL, Op-
erating Condition 3

Rank Turbine 1
X (Transition piece) Y (Transition piece)
R value Features R value Features

1 0.998 Tower Bottom Mom X Eq. value 0.999 Tower Bottom Mom Y Eq. value
2 0.995 Tower Bottom Incli. Y σstd 0.988 Tower Top Accel X σstd
3 0.994 Tower Bottom Incli. X Back σstd 0.987 Tower Bottom Incli. Y Back σstd
4 0.986 Tower Bottom Accel Y σstd 0.987 Tower Bottom Incli. X σstd
5 0.983 Tower Accel Y Top σstd 0.953 RNA Accel X σstd
6 0.968 RNA Accel Y σstd 0.953 RNA Accel X Eq. value
7 0.964 RNA Accel Y Eq. value 0.952 Tower Bottom Accel X σstd
8 0.960 Tower Bottom Incli. Y Eq. value 0.936 Tower Top Accel X λ0
9 0.954 Tower Bottom Incli. Y λ0 0.936 RNA Accel Y Eq. value
10 0.954 Tower Bottom Incli. X Back λ0 0.936 RNA Accel Y σstd
11 0.953 Tower Top Accel Y λ0 0.929 Tower Bottom Mom Y λ1
12 0.951 Tower Bottom Incli. X Back Eq. value 0.922 RNA Accel X λ1
13 0.948 RNA Accel X σstd 0.920 RNA Accel X λ0
14 0.945 Tower Bottom Mom X λ1 0.920 Tower Bottom Incli. Y Back λ0
15 0.944 Tower Bottom Accel Y λ0 0.920 RNA Accel X λ−1

Rank Turbine 2
X (Transition piece) Y (Transition piece)
R value Features R value Features

1 0.987 Tower Bottom Mom X Eq. value 0.994 Tower Bottom Mom Y Eq. value
2 0.975 RNA Accel X λ1 0.992 Tower Top Accel X σstd
3 0.972 RNA Accel X λ−1 0.985 Tower Bottom Back Incli. Y σstd
4 0.971 Tower Bottom Incli. Y λ0 0.984 Tower Bottom Incli. X σstd
5 0.971 Tower Bottom Incli. Y σstd 0.984 Tower Bottom Mom Y λ1
6 0.970 Tower Bottom Back Incli. X λ0 0.983 RNA Accel Y σstd
7 0.970 RNA Accel X λ0 0.983 Tower Top Accel X λ0
8 0.969 Tower Bottom Back Incli. X σstd 0.977 RNA Accel Y Eq. value
9 0.968 RNA Accel X σstd 0.976 RNA Accel Y λ0
10 0.964 RNA Accel X Eq. value 0.974 RNA Accel Y λ−1

11 0.937 Tower Bottom Accel Y λ0 0.973 RNA Accel Y λ1
12 0.932 Tower Bottom Accel Y σstd 0.963 Tower Bottom Back Incli. Y λ0
13 0.925 Tower Bottom Back Incli. Y λ0 0.961 Tower Bottom Incli. X λ0
14 0.925 Tower Bottom Incli. X λ0 0.929 Tower Bottom Accel X σstd
15 0.923 RNA Accel Y λ−1 0.915 RNA Accel Y Max
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E. PEARSON’S CORRELATION COEFFICIENT FOR TRANSITION PIECE AND

MONOPILE

Transition piece moment DEL, Parked Condition

Table E.3: Pearson’s correlation coefficient, w.r.t. Transition piece moment DEL,
Parked Condition

Rank Turbine 1
X (Transition piece) Y (Transition piece)
R value Features R value Features

1 0.997 Tower Bottom Mom X Eq. value 0.998 Tower Bottom Mom Y Eq. value
2 0.993 Tower Accel Y Top σstd 0.992 Tower Top Accel X σstd
3 0.976 Tower Accel Y Top λ0 0.989 Tower Top Accel X Eq. value
4 0.974 Tower Bottom Mom X λ1 0.971 Tower Top Accel X λ0
5 0.968 Tower Top Accel Y Eq. value 0.971 RNA Accel Y Eq. value
6 0.949 Tower Top Accel Y Range 0.969 Tower Bottom Mom Y λ1
7 0.949 Tower Top Accel Y Max 0.967 RNA Accel Y σstd
8 0.946 Tower Bottom Incli. Y σstd 0.953 Tower Top Accel X Range
9 0.946 Tower Bottom Incli. Y λ0 0.950 Tower Bottom Incli. X σstd
10 0.945 Tower Bottom Incli. X Back λ0 0.950 Tower Bottom Incli. Y Back σstd
11 0.945 Tower Bottom Incli. X Back σstd 0.946 Tower Top Accel X Max
12 0.914 Tower Bottom Mom X λ2 0.945 Tower Top Accel X λ1
13 0.910 Tower Bottom Accel Y λ0 0.944 RNA Accel Y Range
14 0.909 Tower Bottom Accel Y σstd 0.943 RNA Accel Y Max
15 0.899 RNA Accel Y Eq. value 0.937 RNA Accel Y λ1

Rank Turbine 2
X (Transition piece) Y (Transition piece)
R value Features R value Features

1 1.000 Tower Bottom Mom X Eq. value 1.000 Tower Bottom Mom Y Eq. value
2 0.996 Tower Top Mom X Eq. value 0.995 Tower Top Accel X σstd
3 0.996 Tower Bottom Mom X σstd 0.994 Tower Top Accel X Eq. value
4 0.995 Tower Top Accel Y σstd 0.979 Tower Bottom Incli. X σstd
5 0.987 Tower Bottom Incli. Y σstd 0.979 Tower Bottom Back Incli. Y σstd
6 0.987 Tower Bottom Back Incli. X σstd 0.970 Tower Bottom Accel X σstd
7 0.986 Tower Top Accel Y Eq. value 0.968 Tower Top Accel X λ0
8 0.981 Tower Top Mom X σstd 0.967 Tower Bottom Mom Y λ1
9 0.980 Tower Bottom Accel Y σstd 0.963 Tower Bottom Mom Y λ2
10 0.976 Tower Bottom Incli. Y λ0 0.958 Tower Top Accel X λ1
11 0.976 Tower Bottom Back Incli. X Var 0.957 RNA Accel Y Eq. value
12 0.976 Tower Bottom Back Incli. X λ0 0.955 Tower Top Mom Y Eq. value
13 0.974 Tower Top Mom X λ2 0.954 Tower Bottom Back Incli. Y λ0
14 0.973 Tower Bottom Back Incli. X λ−1 0.953 Tower Bottom Incli. X λ0
15 0.973 Tower Bottom Incli. Y λ−1 0.952 RNA Accel Y σstd
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Monopile (Upper level) moment DEL, Operating Condition 1

Table E.4: Pearson’s correlation coefficient, w.r.t. Monopile (Upper level) moment
DEL, Operating Condition 1

Rank Turbine 1
X (Monopile (Upper level)) Y (Monopile (Upper level))
R value Features R value Features

1 0.979 Tower Bottom Mom X Eq. value 0.985 Tower Bottom Mom Y Eq. value
2 0.946 Tower Bottom Mom X λ1 0.941 Tower Bottom Mom Y λ1
3 0.881 Tower Top Accel Y σstd 0.922 RNA Accel X σstd
4 0.875 RNA Accel Y σstd 0.905 RNA Accel X Eq. value
5 0.869 Tower Top Mom X Eq. value 0.895 Tower Top Mom Y Eq. value
6 0.866 Tower Top Accel Y λ0 0.893 RNA Accel X λ0
7 0.856 RNA Accel Y λ−1 0.889 RNA Accel X λ−1

8 0.853 RNA Accel Y λ0 0.889 Tower Bottom Mom Y λ2
9 0.851 RNA Accel Y Eq. value 0.883 Tower Top Accel X σstd
10 0.850 Tower Bottom Mom X λ2 0.883 RNA Accel X Range
11 0.847 RNA Accel Y Range 0.868 RNA Accel X Max
12 0.840 RNA Accel Y Max 0.863 Tower Top Accel X λ0
13 0.840 Tower Top Accel Y Max 0.843 Tower Top Mom Y λ1
14 0.835 Tower Top Accel Y Range 0.838 RNA Accel X λ1
15 0.833 RNA Accel X σstd 0.828 Tower Top Accel X Range

Rank Turbine 2
X (Monopile (Upper level)) Y (Monopile (Upper level))
R value Features R value Features

1 0.990 Tower Bottom Mom X Eq. value 0.985 Tower Bottom Mom Y Eq. value
2 0.940 Tower Bottom Mom X λ1 0.957 Tower Bottom Mom Y λ1
3 0.936 RNA Accel Y σstd 0.899 Tower Bottom Mom Y λ2
4 0.915 RNA Accel Y λ0 0.881 RNA Accel X σstd
5 0.912 RNA Accel Y λ−1 0.863 RNA Accel X λ0
6 0.884 Tower Bottom Mom X λ2 0.861 Tower Top Accel X σstd
7 0.867 RNA Accel Y Eq. value 0.852 RNA Accel X Eq. value
8 0.849 MP Mom X MP16 λ2 0.841 Tower Top Accel X λ0
9 0.848 RNA Accel Y Range 0.838 RNA Accel X λ−1

10 0.838 RNA Accel Y Max 0.830 RNA Accel X Range
11 0.808 Tower Top Accel Y σstd 0.829 RNA Accel Y Eq. value
12 0.794 Tower Top Accel Y λ0 0.816 RNA Accel X Max
13 0.788 RNA Accel X λ−1 0.812 RNA Accel Y σstd
14 0.773 Tower Top Mom X Eq. value 0.792 RNA Accel Y Range
15 0.762 Tower Bottom Mom X Range 0.786 RNA Accel X λ1
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MONOPILE

Monopile (Upper level) moment DEL, Operating Condition 3

Table E.5: Pearson’s correlation coefficient, w.r.t. Monopile (Upper level) moment
DEL, Operating Condition 3

Rank Turbine 1
X (Monopile (Upper level)) Y (Monopile (Upper level))
R value Features R value Features

1 0.996 Tower Bottom Incli. Y σstd 0.996 Tower Bottom Mom Y Eq. value
2 0.996 Tower Bottom Back Incli. X σstd 0.988 Tower Bottom Back Incli. Y σstd
3 0.995 Tower Bottom Mom X Eq. value 0.987 Tower Bottom Incli. X σstd
4 0.987 Tower Bottom Accel Y σstd 0.984 Tower Top Accel X σstd
5 0.980 Tower Top Accel Y σstd 0.959 RNA Accel X σstd
6 0.970 RNA Accel Y σstd 0.956 RNA Accel X Eq. value
7 0.966 RNA Accel Y Eq. value 0.950 Tower Bottom Accel X σstd
8 0.964 Tower Bottom IncliSS Eq. value 0.945 RNA Accel Y σstd
9 0.962 Tower Bottom Incli. Y Eq. value 0.944 RNA Accel Y Eq. value
10 0.953 Tower Bottom Back Incli. X Eq. value 0.933 Tower Top Accel X λ0
11 0.952 RNA Accel X σstd 0.930 Tower Top Accel SS λ0
12 0.950 Tower Bottom Incli. Y λ0 0.926 RNA Accel X λ−1

13 0.950 Tower Bottom Back Incli. X λ0 0.925 RNA Accel X λ0
14 0.944 Tower Top Accel Y λ0 0.925 Tower Bottom Mom Y λ1
15 0.939 Tower Bottom Accel Y λ0 0.925 RNA Accel X λ1

Rank Turbine 2
X (Monopile (Upper level)) Y (Monopile (Upper level))
R value Features R value Features

1 0.979 Tower Bottom Mom X Eq. value 0.992 Tower Top Accel X σstd
2 0.973 RNA Accel X λ1 0.990 Tower Bottom Mom Y Eq. value
3 0.972 RNA Accel X σstd 0.986 Tower Bottom Back Incli. Y σstd
4 0.972 Tower Bottom Incli. Y σstd 0.985 Tower Bottom Incli. X σstd
5 0.971 Tower Bottom Back Incli. X σstd 0.982 Tower Top Accel X λ0
6 0.970 RNA Accel X λ−1 0.982 RNA Accel Y σstd
7 0.969 RNA Accel X λ0 0.977 Tower Bottom Mom Y λ1
8 0.968 RNA Accel X Eq. value 0.976 RNA Accel Y Eq. value
9 0.964 Tower Bottom Back Incli. X λ0 0.973 RNA Accel Y λ0
10 0.964 Tower Bottom Incli. Y λ0 0.972 RNA Accel Y λ−1

11 0.929 Tower Bottom Accel Y σstd 0.971 RNA Accel Y λ1
12 0.928 Tower Bottom Accel Y λ0 0.963 Tower Bottom Back Incli. Y λ0
13 0.922 Tower Bottom Back Incli. Y σstd 0.962 Tower Bottom Incli. X λ0
14 0.921 Tower Bottom Incli. X σstd 0.934 Tower Bottom Accel X σstd
15 0.921 RNA Accel Y λ−1 0.914 Tower Bottom Accel X λ0
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Monopile (Upper level) moment DEL, Parked Condition

Table E.6: Pearson’s correlation coefficient, w.r.t. Monopile (Upper level) moment
DEL, Parked Condition

Rank Turbine 1
X (Monopile (Upper level)) Y (Monopile (Upper level))
R value Features R value Features

1 0.993 Tower Bottom Mom X Eq. value 0.992 Tower Top Accel X σstd
2 0.993 Tower Top Accel Y σstd 0.992 Tower Bottom Mom Y Eq. value
3 0.973 Tower Top Accel Y λ0 0.990 Tower Top Accel X Eq. value
4 0.971 Tower Top Accel Y Eq. value 0.976 RNA Accel Y Eq. value
5 0.968 Tower Bottom Mom X λ1 0.974 RNA Accel Y σstd
6 0.953 Tower Bottom Incli. Y σstd 0.968 Tower Bottom Incli. X σstd
7 0.952 Tower Bottom Incli. Y λ0 0.968 Tower Bottom Back Incli. Y σstd
8 0.952 Tower Bottom Back Incli. X σstd 0.967 Tower Top Accel X λ0
9 0.952 Tower Top Accel Y Range 0.962 Tower Bottom Mom Y λ1
10 0.951 Tower Bottom Back Incli. X λ0 0.952 Tower Bottom Back Incli. Y λ0
11 0.951 Tower Top Accel Y Max 0.952 Tower Bottom Incli. X λ0
12 0.919 Tower Bottom Accel Y λ0 0.952 Tower Bottom Accel X σstd
13 0.918 Tower Bottom Accel Y σstd 0.947 Tower Top Accel X Range
14 0.910 RNA Accel Y Eq. value 0.947 RNA Accel Y Range
15 0.907 RNA Accel Y σstd 0.947 Tower Top Accel X λ1

Rank Turbine 2
X (Monopile (Upper level)) Y (Monopile (Upper level))
R value Features R value Features

1 0.998 Tower Bottom Mom X Eq. value 0.997 Tower Bottom Mom Y Eq. value
2 0.995 Tower Top Mom X Eq. value 0.995 Tower Top Accel X σstd
3 0.994 Tower Top Accel Y σstd 0.994 Tower Top Accel X Eq. value
4 0.994 Tower Bottom Mom X σstd 0.985 Tower Bottom Incli. X σstd
5 0.988 Tower Bottom Incli. Y σstd 0.984 Tower Bottom Back Incli. Y σstd
6 0.988 Tower Bottom Back Incli. X σstd 0.975 Tower Bottom Accel X σstd
7 0.986 Tower Top Accel Y Eq. value 0.968 Tower Top Accel X λ0
8 0.980 Tower Bottom Accel Y σstd 0.966 Tower Bottom Mom Y λ1
9 0.979 Tower Top Mom X σstd 0.962 RNA Accel Y Eq. value
10 0.976 Tower Bottom Incli. Y λ0 0.962 Tower Top Accel X λ1
11 0.975 Tower Bottom Back Incli. X λ0 0.961 Tower Bottom Mom Y λ2
12 0.974 Tower Bottom Incli. Y λ−1 0.960 Tower Bottom Back Incli. Y λ0
13 0.973 Tower Bottom Back Incli. X λ−1 0.960 Tower Bottom Incli. X λ0
14 0.972 Tower Bottom Accel Y λ0 0.959 RNA Accel Y σstd
15 0.970 Tower Top Mom X λ2 0.951 Tower Bottom Accel X λ0
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Monopile (Lower level) moment DEL, Operating Condition 1

Table E.7: Pearson’s correlation coefficient, w.r.t. Monopile (Lower level) moment
DEL, Operating Condition 1

Rank Turbine 1
X (Monopile (Lower level)) Y (Monopile (Lower level))
R value Features R value Features

1 0.928 Tower Bottom Mom X Eq. value 0.914 Tower Bottom Mom Y Eq. value
2 0.905 Tower Bottom Mom X λ1 0.900 Tower Bottom Mom Y λ1
3 0.858 Tower Top Mom X Eq. value 0.889 RNA Accel X σstd
4 0.848 Tower Top Accel Y σstd 0.878 RNA Accel X Eq. value
5 0.834 Tower Top Accel Y λ0 0.869 RNA Accel X λ−1

6 0.823 RNA Accel Y σstd 0.868 RNA Accel X λ0
7 0.813 Tower Top Accel Y Max 0.863 Tower Top Mom Y Eq. value
8 0.811 RNA Accel X Eq. value 0.854 RNA Accel X Range
9 0.809 RNA Accel Y λ−1 0.852 Tower Top Accel X σstd
10 0.808 Tower Top Accel Y Range 0.841 Tower Bottom Mom Y λ2
11 0.808 RNA Accel X σstd 0.841 Tower Top Mom Y λ1
12 0.804 RNA Accel Y Eq. value 0.841 Tower Top Accel X λ0
13 0.804 RNA Accel Y λ0 0.839 RNA Accel X Max
14 0.802 Tower Bottom Mom X λ2 0.821 RNA Accel X λ1
15 0.800 RNA Accel Y Range 0.814 Tower Top Accel Y σstd

Rank Turbine 2
X (Monopile (Lower level)) Y (Monopile (Lower level))
R value Features R value Features

1 0.952 Tower Bottom Mom X Eq. value 0.937 Tower Bottom Mom Y λ1
2 0.914 RNA Accel Y σstd 0.936 Tower Bottom Mom Y Eq. value
3 0.899 Tower Bottom Mom X λ1 0.893 Tower Bottom Mom Y λ2
4 0.889 RNA Accel Y λ0 0.892 RNA Accel X σstd
5 0.876 RNA Accel Y λ−1 0.887 Tower Top Accel X σstd
6 0.856 RNA Accel Y Eq. value 0.883 RNA Accel X λ0
7 0.847 Tower Bottom Mom X λ2 0.877 Tower Top Accel X λ0
8 0.832 RNA Accel Y Range 0.876 RNA Accel X Eq. value
9 0.824 RNA Accel Y Max 0.867 RNA Accel Y Eq. value
10 0.810 Tower Top Accel Y σstd 0.846 RNA Accel X Range
11 0.794 Tower Top Accel Y λ0 0.845 RNA Accel X λ−1

12 0.775 Tower Top Mom X Eq. value 0.842 RNA Accel Y σstd
13 0.771 RNA Accel X λ−1 0.833 RNA Accel Y λ1
14 0.758 RNA Accel Y λ1 0.833 RNA Accel X λ1
15 0.746 RNA Accel X σstd 0.831 RNA Accel X Max
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Monopile (Lower level) moment DEL, Operating Condition 3

Table E.8: Pearson’s correlation coefficient, w.r.t. Monopile (Lower level) moment
DEL, Operating Condition 3

Rank Turbine 1
X (Monopile (Lower level)) Y (Monopile (Lower level))
R value Features R value Features

1 0.977 Tower Bottom Incli. Y σstd 0.978 Tower Bottom Mom Y Eq. value
2 0.976 Tower Bottom Back Incli. X σstd 0.975 Tower Bottom Incli. X σstd
3 0.968 Tower Bottom Mom X Eq. value 0.975 Tower Bottom Back Incli. Y σstd
4 0.966 Tower Bottom Accel Y σstd 0.967 Tower Top Accel X σstd
5 0.956 Tower Top Accel Y σstd 0.957 RNA Accel X σstd
6 0.950 RNA Accel Y σstd 0.953 RNA Accel X Eq. value
7 0.944 RNA Accel Y Eq. value 0.948 RNA Accel Y σstd
8 0.932 RNA Accel X σstd 0.944 RNA Accel Y Eq. value
9 0.931 Tower Bottom Incli. Y Eq. value 0.936 Tower Bottom Accel X σstd
10 0.923 Tower Bottom Incli. Y λ0 0.931 Tower Bottom Back Incli. X σstd
11 0.923 Tower Bottom Back Incli. X λ0 0.931 Tower Bottom Incli. Y σstd
12 0.923 Tower Bottom Back Incli. X Eq. value 0.928 Tower Bottom Mom X Eq. value
13 0.915 RNA Accel X Eq. value 0.925 Tower Bottom Accel Y σstd
14 0.912 Tower Top Accel Y λ0 0.922 RNA Accel X λ−1

15 0.910 Tower Bottom Accel Y λ0 0.921 RNA Accel X λ0

Rank Turbine 2
X (Monopile (Lower level)) Y (Monopile (Lower level))
R value Features R value Features

1 0.973 Tower Bottom Mom X Eq. value 0.988 Tower Top Accel X σstd
2 0.970 RNA Accel X σstd 0.986 Tower Bottom Back Incli. Y σstd
3 0.964 Tower Bottom Incli. Y σstd 0.986 Tower Bottom Mom Y Eq. value
4 0.963 RNA Accel X λ−1 0.985 Tower Bottom Incli. X σstd
5 0.963 RNA Accel X λ1 0.983 Tower Top Accel X λ0
6 0.963 Tower Bottom Back Incli. X σstd 0.978 RNA Accel Y σstd
7 0.963 RNA Accel X Eq. value 0.974 Tower Bottom Mom Y λ1
8 0.961 RNA Accel X λ0 0.974 RNA Accel Y λ−1

9 0.952 Tower Bottom Incli. Y λ0 0.974 RNA Accel Y λ0
10 0.951 Tower Bottom Back Incli. X λ0 0.970 RNA Accel Y Eq. value
11 0.930 Tower Bottom Back Incli. Y σstd 0.970 RNA Accel Y λ1
12 0.929 Tower Bottom Incli. X σstd 0.969 Tower Bottom Back Incli. Y λ0
13 0.925 Tower Bottom Back Incli. Y λ0 0.967 Tower Bottom Incli. X λ0
14 0.924 Tower Bottom Incli. X λ0 0.937 Tower Bottom Accel X σstd
15 0.922 RNA Accel Y λ−1 0.924 Tower Bottom Accel X λ0
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MONOPILE

Monopile (Lower level) moment DEL, Parked Condition

Table E.9: Pearson’s correlation coefficient, w.r.t. Monopile (Lower level) moment
DEL, Parked Condition

Rank Turbine 1
X (Monopile (Lower level)) Y (Monopile (Lower level))
R value Features R value Features

1 0.986 Tower Top Accel Y σstd 0.980 Tower Bottom Incli. X σstd
2 0.979 Tower Bottom Mom X Eq. value 0.980 Tower Bottom Back Incli. Y σstd
3 0.970 Tower Top Accel Y Eq. value 0.976 Tower Top Accel X σstd
4 0.961 Tower Top Accel Y λ0 0.975 Tower Top Accel X Eq. value
5 0.958 Tower Bottom Incli. Y σstd 0.970 RNA Accel Y Eq. value
6 0.957 Tower Bottom Back Incli. X σstd 0.970 RNA Accel Y σstd
7 0.954 Tower Bottom Incli. Y λ0 0.968 Tower Bottom Accel X σstd
8 0.953 Tower Bottom Back Incli. X λ0 0.968 Tower Bottom Mom Y Eq. value
9 0.951 Tower Bottom Mom X λ1 0.962 Tower Bottom Back Incli. Y λ0
10 0.949 Tower Top Accel Y Range 0.962 Tower Bottom Incli. X λ0
11 0.943 Tower Top Accel Y Max 0.949 Tower Bottom Accel X λ0
12 0.925 Tower Bottom Accel Y σstd 0.947 Tower Top Accel X λ0
13 0.924 Tower Bottom Accel Y λ0 0.942 Tower Bottom Back Incli. Y Eq. value
14 0.906 RNA Accel Y Eq. value 0.941 Tower Bottom Incli. X Eq. value
15 0.905 RNA Accel Y σstd 0.940 RNA Accel Y Range

Rank Turbine 2
X (Monopile (Lower level)) Y (Monopile (Lower level))
R value Features R value Features

1 0.993 Tower Bottom Mom X Eq. value 0.989 Tower Top Accel X Eq. value
2 0.990 Tower Top Mom X Eq. value 0.989 Tower Top Accel X σstd
3 0.990 Tower Top Accel Y σstd 0.987 Tower Bottom Mom Y Eq. value
4 0.989 Tower Bottom Mom X σstd 0.986 Tower Bottom Incli. X σstd
5 0.986 Tower Bottom Incli. Y σstd 0.986 Tower Bottom Back Incli. Y σstd
6 0.985 Tower Bottom Back Incli. X σstd 0.979 Tower Bottom Accel X σstd
7 0.981 Tower Top Accel Y Eq. value 0.963 Tower Bottom Back Incli. Y λ0
8 0.979 Tower Bottom Accel Y σstd 0.962 Tower Bottom Incli. X λ0
9 0.975 Tower Bottom Incli. Y λ0 0.961 Tower Top Accel X λ1
10 0.974 Tower Bottom Back Incli. X λ0 0.960 Tower Top Accel X λ0
11 0.974 Tower Top Mom X σstd 0.957 Tower Bottom Mom Y λ1
12 0.973 Tower Bottom Incli. Y λ−1 0.956 Tower Bottom Accel X λ0
13 0.972 Tower Bottom Back Incli. X λ−1 0.954 RNA Accel Y Eq. value
14 0.971 Tower Bottom Accel Y λ0 0.951 RNA Accel Y σstd
15 0.964 Tower Top Mom X λ2 0.950 Tower Bottom Mom Y λ2
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Appendix F

Important features to estimate
moment DEL

F.1 Feature selection with random forest algorithm

To figure out the most important features, random forest regression algorithm has
been applied [6, 15]. In random forest regression application, all the signals and all
the statistical properties have been used to estimate FA directional moment DEL at
tower bottom.

Random forest regression algorithm uses multiple decision trees. The decision
tree uses successive recursive binary splits on all the features and generate multiple
area which is called ‘leaf’. After generating all these ‘leaves’, take average of target
values of each leaf as a resultant output estimation of the leaf. In random forest
regression, all the estimations from multiple decision trees are gathered and the
final estimation can be made by taking average of all these estimations. Detailed
explanation can be found in [5, 15, 19].

To calculate feature importance, binary split is taken to all the features iteratively.
Then, the resultant squared error can be calculated for each split. As a result, feature
importance can be calculated by comparing how the squared error be affected by
each split.

As a result of the random forest regression application, feature importance has
been calculated as shown in Table F.1.
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166 F. IMPORTANT FEATURES TO ESTIMATE MOMENT DEL

Table F.1: Top 10 important features, from random forest algorithm

No. Features

1 SCADA Accel Eq. value
2 Tower Top Mom range
3 Tower Top Accel. λ0

4 Tower Top Accel. σstd

5 Tower Top Mom Eq. value
6 RNA Accel. λ−1

7 RNA Accel. σstd

8 RNA Accel. λ0

9 Tower Top Accel. λ−1

10 Tower Top Mom λ1

F.2 Feature selection with PCA

In addition to random forest, feature selection has also been performed with PCA.
Feature selection with PCA has been applied to multiple different machine learning
problems such as classification, object recognition and so on [20, 24, 27]. In this
study, the same methodology has been applied.

Specifically, it uses principal components to select important features. As a result
of PCA, percentage variance and eigen vectors (which is corresponding to principal
component) can be obtained. Then, firstly, from the percentage variance, only the
components corresponding to 99% of total accumulated percentage variance have
been extracted. For example, if there is total m principal components exist, from
the percentage variance, only p (p < m) components can be selected with which the
summation of the p component’s percentage variance is higher than 99%.

Secondly, from the selected principal components, the contribution of original
features can be obtained by reading the absolute value of eigen vector components.
Concretely, if an eigen vector (a principal component) consists of linear combination
of total n original features, i th component of the eigen vector stands for the contri-
bution of i th original feature. In this process, only the original features which have
the contribution of higher than ε (ε is threshold value which has been set as 0.1 in
this study) have been selected.

For this study, input features corresponding to CS10 in Table 4.23 has been ap-
plied. It should be noted that target data is irrelevant in feature selection with PCA.

As a result, the features shown in Table F.2 have been recognized as top 10 the
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F.2. FEATURE SELECTION WITH PCA 167

most important features.
It should be noted that the results are different from that of Pearson’s correlation

coefficient comparison and random forest algorithm. The reason for this is that PCA
uses contribution of the input features on principal axes, while Pearson’s correla-
tion coefficient comparison and random forest algorithm find contribution of input
features on moment DEL estimation.

Table F.2: Top 10 important features, CS10, from PCA

No. Features

1 Tower Bottom Mom Eq. value
2 Tower Bottom Incli. Back Range
3 Tower Bottom Incli. Back σstd

4 Tower Bottom Incli. Back Eq. value
5 Tower Bottom Incli. Eq. value
6 Tower Bottom Incli. σstd

7 Tower Bottom Mom λ2

8 Tower Bottom Incli. Back λ−1

9 SCADA Accel Range
10 Tower Bottom Incli. Range
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Appendix G

Combined weight calculation
after training

After train the feed-forward neural network, weights can be extracted. By comparing
the weights, it can be investigated which features have the highest effect on estima-
tion. Specifically, combined weight of i th feature can be calculated by multiplying
all the weights connecting i th input neuron to output neuron. It is shown in Figure
G.1.

Figure G.1: Combined weight calculation

As shown in Figure G.1, the combined weight of i th feature can be calculated by
Equation (G.1). It should be noted that the Equation is only valid for feed forward
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170 G. COMBINED WEIGHT CALCULATION AFTER TRAINING

neural network with one hidden layer and one output neuron.

wi,combined =

n∑
k=1

w1
ikw

O
k1 (G.1)

If all the features are normalized in the same scale, the higher combined weight
can be interpreted as higher effect on output value.

CONFIDENTIAL



Appendix H

Farm-wide level load
estimation - results of
normalization

Farm-wide level load estimation results with normailzation (division) :

Table H.1: Results of farm-wide level load estimation, All locations, Operating condi-
tion 1, T1A2, Feed forward neural network, CS10 with normalization (division)

within Train Range Extrapolation Full
R value MAPE R value MAPE R value MAPE

Transition Piece (X) -0.014 >100% 0.056 >100% 0.001 >100%
Transition Piece (Y) 0.013 >100% 0.190 >100% 0.031 >100%

Monopile (upper) (X) 0.007 >100% 0.092 >100% 0.016 >100%
Monopile (upper) (Y) 0.013 >100% -0.037 >100% 0.003 >100%

Monopile (lower) (X) 0.022 >100% -0.029 >100% 0.014 >100%
Monopile (lower) (Y) -0.016 >100% 0.006 >100% -0.015 >100%
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172 H. FARM-WIDE LEVEL LOAD ESTIMATION - RESULTS OF NORMALIZATION
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Figure H.1: Results of farm-wide level load estimation with wake direction, All loca-
tions, Operating condition 1, T1A2, Feed forward neural network, CS10 with normal-
ization (division)
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huber. Recurrent highway networks. In Proceedings of the 34th International
Conference on Machine Learning-Volume 70, pages 4189–4198. JMLR. org,
2017. Cited at P. 37

CONFIDENTIAL






	Summary
	Acknowledgements
	List of Figures
	List of Tables
	Nomenclature
	Introduction
	Motivation
	Literature study
	Research questions
	Methodology
	Individual turbine load estimation
	Farm-wide load estimation

	Software
	Outline

	Data overview and preprocessing
	Sensor configuration and format of data
	Data from SCADA system (Standard signals)
	Data from Sensors (Non-standard signal)
	Wave data

	Summary of measurement data
	Correlation between different features and moment DEL at tower bottom
	Plots of the measured signals
	Mean wind speed vs rotational speed
	Standard deviation of acceleration vs moment DEL at tower bottom
	Moment DEL at tower top vs moment DEL at tower bottom
	Mean yaw angle vs moment DEL at tower bottom
	Comparison of moment DEL at tower bottom


	Neural Network
	Feed forward neural network
	Basic architecture & concept
	Activation function
	Forward propagation
	Backward propagation
	Cross validation
	Vanishing and exploding of gradient

	Recurrent neural network (LSTM)
	Basic architecture & concept
	Gates
	Forward & Backward propagation


	Individual turbine level load estimation
	Applied dataset
	Input and target signals
	Base case

	Accuracy measurement
	Linear regression (for subsets of operating conditions)
	Feed forward artificial neural network
	Decision of hyper parameters
	Estimation result for base case

	Recurrent neural network (LSTM)
	Estimation result for base case

	Case study with different input combination
	Accuracy measurements for different input combinations
	Estimation with standard signals
	Estimation with standard signals and wave data
	Estimation with non-standard signals
	Summary of the results
	Combined weights for CS10, Oper. cond. 1

	Case study for improvement
	Division of operating condition
	Estimation with principal components

	Required number of data points for accurate estimation
	Conclusion

	Farm-wide level load estimation
	Methodology
	Applied dataset
	Extrapolation with neural network
	Response frequency changes

	Linear regression (for subset of operating conditions)
	Feed forward neural network for base case
	Estimation result for base case
	Estimation without power generation below rated

	Case study for different input combinations
	Estimation results
	Summary of the results

	Case study for improvement
	Inclusion of peak frequencies and values
	Inclusion of filtered signals
	Normalization of signals
	Inclusion of wake effect

	Conclusion

	Conclusions and future work
	Conclusions
	Recommended implementation procedure
	Data pre-processing
	Neural network application

	Future work
	Training with larger dataset
	Application of different machine learning techniques
	Training with simulation
	Farm-wide level load estimation with more than two turbines
	Explicit wake effect inclusion in farm-wide level load estimation


	Detailed procedure of data preprocessing
	Pre-processing of wave data
	Time series of acceleration in SCADA system
	Conversion into FA & SS directional components
	Conversion of strain into moment
	Measurement error
	Damage equivalent load
	Statistical properties

	Derivation of strain-forces relationship
	Derivation of damage equivalent load
	Moment DEL at tower top vs moment DEL at tower bottom (SS Direction)
	Pearson's correlation coefficient for transition piece and monopile
	Important features to estimate moment DEL
	Feature selection with random forest algorithm
	Feature selection with PCA

	Combined weight calculation after training
	Farm-wide level load estimation - results of normalization
	Bibliography

