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Summarx

A two-dimensional, incompressible, potential flow solution based on
AM.0. Smith's method has been developed capable of predicting the unsteady
interference pressure loadings on either moving or stationary bodies of
arbitrary shape due to the passage of a second body. The pressure distribution
has been suitably integrated to yield overall forces (side and axial) and
moments (rolling and yawing). Effects of crosswinds of arbitrary magnitude
and direction can be accurately included. The results of a wide range of
computations using different body configurations are presented and analysed.

The studies carried out indicate that substantial aerodynamic
interference loads may be expected under real train passage conditions.
These loads, impulsive in nature, depend on the type of body geometry, the
lateral spacing between the bodies, and the closing velocity. In general,
streamlining greatly reduces these loads, as does increased lateral spacing.
Crosswinds significantly alter the predicted loadings, tending to increase
them. The interference loading induced on a stationary vehicle when passed
by a moving vehicle appears to impose the most critical design loads, for
conditions of zero crosswind.

Velocity scaling of the interference loadings presents inherent
difficulties due to the basic unsteady nature of the problem., No simple and
generally applicable velocity scaling laws are expected to emerge for this
problem, however, over limited ranges of conditions "ad hoc" velocity rules
(trends) can certainly be obtained. The basic.unsteady nature of this
problem also greatly complicates experimental studies. The usual steady
state wind tunnel methods will generally be inadequate; preference is strongly
indicated for true unsteady motion simulation at reduced physical scale.
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1. LITERATURE REVIEW

A fairly large body of literature has grown up during the past
decade concerning the aerodynamic problems of high speed trains. Most of
it concerns three broad areas:

(1) The drag of high speed trains.
(2) Problems of high speed trains entering and passing through tunnels.

(3) Problems due to the pressure wave set up when a high speed train
passes either a stationary train or another train moving in the
opposite direction, in free space.

The present review is concerned with the last type of problem only.
The problem can be attributed to the pressure which develops around the body
due to the motion of the body. The magnitude and direction of the net pressure
field is a function of the shape of the body and the speed of travel. Conse-
quently when a high speed train passes either a stationary train or another
train passing in the opposite direction, the pressure fields can impose
large fluctuating loads on the trains. In this report the pressure pulses
will be categorized into two types:

(1) The "cab" pulse.
(2) The "coach" pulse.
The cab pulse is measured at the front of the measuring train
as the passing train goes by. The coach pulse is measured somewhere further
to the rear of the measuring train. Both theoretical and experimental work

has been done in an attempt to predict the magnitude and duration of the
pressure pulse.

1(a) Review of Theoretical Methods

All the theoretical approaches are based on potential flow theory.
They can be categorized into two distinct methods. The first method
utilizes the concept of singularities and their images to satisfy Laplace's
equation and the appropriate boundary conditions and thus arrive at a
solution to the flow field for a body (or bodies) moving in an incompressible,
inviscid, irrotational fluid.

Carpenter (Ref. 1) gave a solution to the problem of 2 cylinders
moving in an infinite fluid. The cylinders with their generators perpendicular
to the plane of motion are moving with arbitrary translational velocities. The
cylinders are replaced by moving doublets. Each of the doublets have their
respective images in the other cylinder yielding an infinity of doublets
together with their images. The complex potential due to the entire system
is given. For purposes of computation, Carpenter suggests that just the
first few terms (three) are usually sufficient. He also gives correction
factors to account for the dropped terms. He extends the solution to the
case of any number of moving cylinders and gives examples of several flow
situations using the above methods,




Kawaguti (Ref. 2) has adopted an identical approach. He considers
two-dimensional cylinders as well as spheres. He restricts his calculations
to the case of two bodies moving with their axes parallel to each other, but
in opposite directions with different velocities. Whereas the image of a
doublet in a sphere is a continuous distribution of doublets starting from
the centre of the sphere up to the inverse point. This complicates the
calculations considerably for the sphere cases. Kawaguti has extended his .
solutions to calculate the pressure variation using the unsteady Bernoulli's
equation.

Pukuchi (Ref. 3) has attempted to sclve the problem in a slightly
different manner. Instead of doublets, he places a moving source, and considers
two cases. In the first case he takes the image of the source in the horizontal
plane. The resulting image is a source of the same strength and at the game
distance below the ground plane. By putting a sink at x = « he gets a half
body and its image. This leads to a pressure distribution on the body as
affected by the ground plane. The other case this author considers is the
effect of an infinite vertical surface in the x direction. This gives rise to
a source in one quadrant and its three images in the other three quadrants.

This simulates the effect of a train passing a vertical wall or approximately
another stationary train. He also gives calculations of the pressure coefficient

CPO

In the second theoretical method, a system of moving singularities
is placed on the contour of the trains and within the body contour. This
leads to a system of integral equations. These can be converted to a set of
linear algebraic equations, which can be solved either by a Seidel method or

by straight matrix inversion, depending on the size and complexity of the
matrix.

Sockel (Ref. 4) has reported one such technique for two dimensional
flow. He models the trains by a moving system of line vortices on the contour
and a single source at the front end within the contours. This results in a
semi-infinite boundary contour which is closed at the front end and open at
the downstream end. By writing the equation of the stream functions for the
singularities, he arrives at a set of integral equations. To complete the
potential flow solution, it is necessary to have a condition on the net cir-
culation about each train, A similar argument in wing theory leads to the
Kutta condition. For his study, Sockel assumes that the net circulation about
each train is zero. This assumption is expected to be increasingly valid for
longer train configurations. The solution of the derived integral equations
gives the instantaneous flow field. Solution is effected by direct quadrature
using a form of the trapezoidal rule.

1(b) Review of Experimental Data Available in the Current Literature

There are not many reports of experimental data of the pressure field
due to passing of high speed trains in the open literature. Fukuchi (Ref. 3) -
has reported field measurements of velocity and pressure due to the passage of
a high speed train., The velocity was measured with a hot wire anemometer and
the pressure with a pressure transducer, This would correspond to the "coach
pulse”. His measurements seem to indicate that the pesk pressure pulse is not
strongly affected by the height above the ground.



The main source of experimental data which has been uncovered to date,
relating to this problem, is a paper by Hillmann et al (Ref. 5)., They were
involved in modifying an existing locomotive for high speed travel on the German
railroad. Consequently they conducted extensive aerodynamic experiments to
determine the effects of various shapes on the body pressure distribution.
Experiments with models as well as full scale tests have been reported. Some
of their results have been used for comparison in this report. They have also
given an empirical method to account for the effect of crosswinds on the pressure
pulse magnitude, One needs wind tunnel data for the specific body shape to be
able to use the method.

2. DESCRIPTION OF THE PRESENT METHOD

The method adopted for the present computation is based on the work by
A.M.0, Smith and J. Pierce (Ref, 6). It is an exact method capable of solving
for the flow field about an arbitrarily shaped body in incompressible, potential
flow. The method is quite general and can handle any number of bodies, thus
accounting for mutual interference between bodies. Smith has given full details
of the method as applied to single bodies. In the present work this has been
" extended to handle two bodies, Further, using the unsteady form of Bernoulli's
equation, the pressure distribution around one of the bodies has been evaluated.
This pressure distribution has been suitably integrated to arrive at forces and
moments.

2(a) Basic Formulation

The method consists of placing a surface source-sink distribution on
the contour of the bodies. The potential due to this distribution is written
down. This contains both the self influence terms as well as the mutual influence
terms. This results in a set of equations for the unknown source-sink distribution.
This set of equations is solved using appropriate boundary conditions to give the
source strengths. Once the source strengths are known, the potential at any
point (either on the body or in free space) can be evaluated; from this the
velocities and pressures can be obtained.

Although the basic method adopted is general and therefore can be
readily extended, in principle, to three-dimensional flow cases, the overall
aims of the present project precluded such a general formulation. In three-
dimensional flow cases, significantly larger computing costs and additional
computational difficulties, are to be expected. Consequently, the problem has
been formulated and solved in two dimensions (see page 4).

The potential at any point p due to the source distribution around a
shell of area S, bounded by z = =» to +° and s = S, to & is

<P=f393— (1)
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Segmented contour used in the
}’Uﬁ' computation
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If p(x,y,z) (any field point) is in the plane z = o, and q(£,n,Z) is any source
point

Pl (x)2 4 (y - m2 4 2

and

o -2 [ —clg dt e @)
P d [(x-6) 4 (y-)® (1P

b i
It can be shown that this reduces to

' N2 251/2
9, - -fc<s> 10g{(x - £)° + (v - mP12as
86
if we assume that o(s) does not vary in the z (or z) direction. (See Appendix).
The computations of velocity and pressure involve derivatives of ¢ which are

9P _ _ef o(s) (x-%) ds (3)
ox (x-8)% + (y-1)°

S
o}

ol - _gkfﬂ o(s) (y-n) ds (%)
¥ ) (g-n)?

Although up to this point the formulation has been made for one body, it 1is
apparent that the presence of a second body merely increases the number of
source points, if we decide to compute all the pressures and forces on only
one of the bodies, It will give rise to a jump in the coordinates as one
proceeds from one. body to the other, This can be easily handled in a computer
programme,

2(b) Transformation to Body Coordinates

Before proceeding to solve for o(s), it is necessary to get a
relationship between s and the Cartesian coordinates (x,y). It is also
preferable to perform t?e integrations in terms of s rather than x or y.

The boundary s is broken up into a number of linear segments and some assumption
regarding the variation of o on each segment is made. In the present instance,
two types of variation were tried. First, o was assumed to be constant on each
segment, but varying from segment to segment. Next o was assumed to vary
linearly on each segment as well as varying from segment to segment.




The following coordinate transformation used:

5.

Body attached coordinates.
n is + outward normal to the body.
s is + clockwise around the body.

J the source point lies on the
s axis.

i the field point arbitrarily
located in space.

With the above transformation the integrals for the potential and its derivatives

become (see Appendix):

n Sj1
?(x,y) = Zf 0,(s) 108 {(s;, - )% + 12, as (5)
j=1 sj
Sj+l
30 (s, .-s) cosa. - hi‘ sinx .
5; = =2 Zf Uj(S) 5] J P) J d ds (6)
3L 8, 1578)7 + by

2
(sij-s) +

hi<
1J

[ Vet .
30 (sij—s) s1naj + hij co&JJ
ol Zf crj(s) 5 ds (7
s
J

2(c) Boundary Condition




Consider the body moving to the left with a velocity V through a static
fluid. The boundary condition (in potential flow) Wlll be that the normal
component of velocity will be zero on the boundary. This can be written as:

(@~ V) miym 0 (8)

It should be noted that V has been introduced as a vector so that its direction
can be specified. This iS useful when computing crosswing cases.

2(d) Solution of the Equations

If we now make suitable assumptions regarding the variation of ¢
within each segment, equations (6) and (7) can be integrated. The first J
assumption that was tried was that o; is constant on each segment. The second
assumption was that o3 varied lineariy on each segment.

T3+

8

Sj

where a and b can be expressed in terms of sj, Sj+l, 0j, O0j+l, and Si4e After
integrating equations (6) and (7), they can be arranged in the form

n
J=1
. ii

From this the normal component of velocity on the body can be written as

6@1 L
o = ZE: Gj [- Xij s1nxi + Yij cosxi }

J=1

‘31




. One important point to
= J, the integrals have

This can be now used with equation (8) to solve for o-
be noted here is the case when i = j. For the case i
to be evaluated by approaching the limits properly. If this is done aq/an

approaches the correct finite value. The procedure adopted in the present

calculations was to solve for three basic cases. Subsequently these solutions

can be superimposed to obtain solutions for any number of different cases

including the effect of body crosswinds. »

The basic cases considered are shown below. The bodies are assumed
to be moving with unit velocity in the directions shown.

(1) i el
Cam——
(2) b4

It is clear that case (1) by itself gives the solution when the two bodies

are approaching each other. If cases (1) and (2) are superposed we get the
solution for the case when one body is at rest and the other passes it. Super-
position of all three cases gives the crosswind case.

2(e) Calculation of Cp

The pressure distribution can be obtained once the velocity distribution
is known. The unsteady Bernoulli's equation is used.

2
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Here U is a velocity used for nondimensionalizing the pressure. Normally,
with only one body present, U can be chosen equal to V_., With two bodies,
the choice is not obvious. In the present .case it has been made equal to the
closing velocity of the two bodies. Bq/at has been computed numerically

By computing ¢ at least two stations * Ax from the station x, BQ/BX is obtained.
In the present calculations Ax = .0l proved sufficient, i.e. no appreciable
difference was found in ¢ by going from Ax = .01 to .00l.

2(f) Computation of Forces and Moments

The drag force Fy, the side force F,,, the Yawing Moment YM and the
Rolling Moment RM have been calculated by sui%able integration of the pressure
coefficient Cp.

Y aFy ¥
RM
,N\\\\\ ¢5_\\\\\
) - , 4
M Fx Sign Convention

A simple trapezoidal rule has been used to integrate Cp. The pressure distri-
bution has been assumed to be uniform in the z direction. The height of the
train has been programmed as an input variable. The actual height used for
computation is 85% of the height read in. This is to approximately account for
the three-dimensional relief at the top of the train. For calculating the
rolling moment, the centre of pressure in the z direction has been assumed to
be at one third the height of the train from the ground.

3. RANGE OF COMPUTATIONS

A fairly extensive range of computations have been carried out. Apart
from the cases of one and two cylinders, used for establishing the validity of
the computations, four different body configurations (Fig. U4) have been utilized.



They all have a basic length of 360". The first three are 90" wide and the
last is 120" wide. The basic configuration is rectangular with 15" corner
radii. The first modification has elliptic front and rear sections joined by

a rectangular section. The second and third modifications are rectangular with
corner radii of 30" and 20" respectively. The height of the bodies was assumed.
to be 120" for all overall force and moment computations. The lateral separation
between bodies was varied from 12" (between adjacent sides) to 48", A number
of velocities from 45 mph to 150 mph were considered, Crosswinds of velocity
30 to 60 mph were considered at various angles from 0 to 90°., Cases with one
body stationary and the other moving past it were also computed. The entire
range of cases computed are shown in Tables 1 to 5.

4. RESULTS AND DISCUSSION

L(a) Motion of a Single Cylinder

The pressure distribution on an isolated single cylinder moving in
an undisturbed fluid has been well established theoretically as well as experi-
mentally. Hence this was used as an initial check on the accuracy of the developed
numerical procedure. . For a single cylinder in potential flow, moving with .a
velocity V_, the pressure coefficient is
: A ™ >
C =1 - 4 sin®®

0. —pU2

This is plotted in'Fig. 1. In ‘the same figure is shown the results of the
present computation using 36 points. It is seen that the agreement between
the two solutions is excellent.

4(b) Two Cylinders Moving Past Each Other

The case of two moving right circular cylinders passing each other
with their centers located on parallel lines has been investigated by Kawaguti
(Ref. 2). He replaces the cylinders by doublets (for the first approximation).
Then by considering the images of these doublets in the two cylinders he
proceeds to higher order approximations. By summing the potential due to each
of the doublets and their images, he arrives at a series solution. The accuracy
of the solution depends on the number of terms of the series one considers.
Kawaguti has given the solution to the fifth order approximation., ' This is
shown plotted in Fig. 2 as a time history of the pressure at point A on one of
the cylinders. On'the same figure are also plotted the results of the present
computation. - To check the rate of convergence of the present solution a
series of computations were undertaken, gradually increasing the number of
points (or segments) considered. These results are also shown in PLg s 24+ Tb
is seen that the most critical point is at Ut/a=0. At this point, the present
solution gave an asymptotic value of Cp, = -3.8. This is seen in Fig. 3.
Kawaguti's solution gave a value of -3.T77. The 60 point solution is in error
by less than 3% (based on the difference between the C. at point A of the
single body and the C, at the same point with 2 cylinders at Ut/a=0). In the
same figure is also sgown the results of the computation when the source
strength o(s) was assumed to vary linearly on each segment. It is seen that
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the solution is not improved, Since this assumption also resulted in longer
computing time, it was decided to use the assumption o = constant on each
segment for all succeeding computations,

The results for the two cylinder case are also indicative of the
large interference effect present when the two cylinders are close together.
The characteristic shape of the curve is also worth noting as it is roughly
similar to the shape predicted for train passing cases.

L(ec) Cab and Coach Pressure Pulses for Basic Geometry

Before discussing the cab and coach pressure pulses, it is useful
to examine the pressure distribution on a body as it is approached and passed
by an identical body moving with equal velocity., Figures 23(a) to (J) show
the pressure distribution on a body with the basic configuration under such
a condition. Figure 23(a) shows the isolated body moving with no interference
from the approaching body. The pressures have been normalized using the
closing velocity of the bodies. The pressure distribution shows the characteristic
suction peaks at the corners as one would expect, which gradually approach atmos-
pheric pressure near the middle of the body. As the interference due to body B
is experienced on body A, the higher pressures ahead of body B tend to reduce the
suction pressure at the front inside corner of body A. This type of pressure
distribution is displayed until the front of body B is past the middle of body
A. Subsequently, the suction pressures on the inside wall of body A increases
further. When the two bodies completely overlap, a large suction pressure at
the front and rear of the inside wall effectively seal the pressures on the
inside wall maintaining a nearly uniformly high negative value. The pressure
distribution will be symmetrical in time about the instant where the trains
are completely overlapped. The pressures on the outside wall, i.e. not
adjacent to the other train, are not greatly affected by the interference of
the second train.

Figure 5 shows the time history of pressure at point 8 (located at
the front of body A (see Fig. 4) on the side facing body B) on body A. The
two bodies A and B are moving past each other with velocities Vp and Vg
respectively, V) being equal to -Vg. The closing velocity is therefore 2VA.
The train pressure coefficient is based on the closing velocity. In the case
of the moving cylinders, however, the pressure coefficient is based on the
velocity of a single body to facilitate comparison with theoretical results.,
The point 8 on the body A corresponds to the location where -C, reaches a
maximum value with only body A present and moving with velocity Vpe This can
be defined as the cab pulse. The difference between the Cyypx on this body
and on the single cylinder is due to the different velocitges used for non-
dimensionalizing the pressures.

Some of the characteristic features of the pressure pulse at this
point are as follows.

In the quiescent state, i.e., when mutual interference is absent,
the C, at this point will be -.T75. As the trains approach each other,
depenging on the closing velocity, the mutual interference due to the two
bodies will begin to relieve this suction pressure. As the head of train B
passes the point 8 on train A, this relief is reduced until, by the time the
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two trains are completely overlapping each other, the suction pressure again
increases reaching a peak value of nearly -1.3 (for Ay = 105"). The actual
curve followed is dependent on the lateral separation between the trains.
This will be discussed in Section L4(J). The shape of the curve is roughly
similar to the one shown in Fig. 2 for the moving cylinders. As predicted by
theory, the curves will be symmetrical about ~Ut/Ay = 0., The pressure-~time
history for point 19 (located at the middle of train A on the wide facing
train B) as the two bodies approach and pass with equal velocities, is shown
in Fig. 7 for the basic geometry. This corresponds to the coach pulse., The
Pressure in the quiescent state at this point depends on the length of the
body. Theoretically, if the body were long enough, the effect of the frontal
shape which gives rise to a large suction peak will have vanished and C, would
be zero, In the present case, a small suction pressure is still maintained.
As the two bodies come closer together, the pressure time history at point 19
follows generally the same trends as for the cab pulse., Since the pressure
at the quiescent state is not as high as at point 8, the consequences of the
coach pulse are not as extreme as that due to the cab pulse.

4(d) Pressure Pulses When One Body is Stationary and the Other Moves Past It

The pressure time history at point 19 with the basic geometry when
one of the bodies is stationary and the other moves past it with velocity Vg
is shown in Fig. 9. There are two aspects to this case. Either body A could
be moving and body B stationary or vice versa. In each case the pressure is
given on body A. The pressure pulse at point 19 again corresponds to the
coach pulse. This case is of interest because most experimental data on the
pressure pulses gathered to date correspond to this case, specifically where
the measurements are made on a wall as & train passes by. This will be
examined in detail further on.

Referring to Fig. 9 it is seen that the case where V) = 0 and train
B moves past train A is a critical one. The pressure at point 19 undergoes a
change in sign. As the train B approaches the train A, the pressure at point
19, which in the quiescent stage is atmospheric, starts to increase positively,
i.,e., the pressure will tend to push the side inwards. Just as the head of
the train B moves past point 19, the pressure suddenly changes sign and as
the trains completely overlap, reaches a negative maximum which would tend to
pull the sides out. It is this reversal in sign of the pressure loading which
probably could be more critical than a larger pressure pulse acting continuously
in only one direction.

4(e) Forces Due to Train Passage

As mentioned in Section 2(f) the pressure distribution on body A has
been suitably integrated to arrive at overall forces and moments. For an
isolated body due to the nature of the present analysis (potential, non-
circulatory flow) the integrated pressure distribution will be zero. However,
in the presence of another body, there will be a net unsteady effect which
does not integrate to zero. This is clearly seen in Fig. 12 where the force
time history on body A is shown when bodies A and B move past each other with
equal and opposite velocities. The nature of the curve is somewhat similar to
the coach pulse time history (Fig. 7). The bodies will be subjected to a
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fairly large amplitude (of the order of several tons) sideforce tending to
push them together. The pulse duration is of the order of 100 millisecs
giving a frequency of about 10 cps.

In Fig. 13 is shown a similar plot for the case of one stationary
train and the other moving past it. The force on the stationary train as
well as on the moving train are shown., Just as in the case of the pressure
(at point 19 discussed earlier, see Fig. 9) the force on the stationary train
is more critical. Not only does the force change sign, but the peak magnitude
is also greater. Axial forces (in the x direction) are considerably smaller
and have not been shown.

L(f) Effect of Lateral Spacing

Forces and pressures are generally relieved as the lateral distance
between the bodies (Ay) is increased. In Fig. 5 the effect of lateral spacing
on the pressure time history at point 8 on the basic geometry is shown. The
basic shape of the curves are the same. The point to be noted is that the
overall variation of pressure about the quiescent state is reduced. It is
slightly different for the coach pulse. Here the effect is simply to reduce
the ~Cyyax: This is shown in Fig. 7. Figures 10 and 11 show the variation of
the peak suction pressure at a particular point as a function of lateral
spacing. The relief afforded by larger spacing is greater for the coach pulse
than for the cab pulse. :

In Fig. 14, the integrated force F,, has been plotted as a function
of lateral spacing. This graph clearly indicates the accelerating growth of
the side force as the lateral distance separating the trains is decreased.

For the basic geometry, with Vy = -Vg = 90 mph, increasing the lateral spacing
from 15" to 24" reduces the side force by 4000 1b., whereas increasing the
spacing from 12" to 15" reduces the side force by 3000 1b.

L(g) Effect of Streamlining

The effect of streamlining is also to relieve the loads and moments.
This is shown by the computations carried out using the Modification 1
(Ellipse) geometry. This shape is made of an elliptic front and rear section
and a rectangular midsection. For this geometry, when the body is moving without
interference, the peak -C, occurs at point 10 (Fig. 22). The peak C, value is
~0.23 as compared to -o.7§ on the basic geometry. The time history of the cab
pulse, generated as two bodies with this §reamlining’approach each other and
pass, is shown in Fig. 6. It is seen that the pressure variation is not as
large as for the basic geometry. The coach pulse time history for this
geometry is shown in Fig. 8. As would be expected the streamlining does not
affect the coach pulse as much as the cab pulse, the former being influenced by
the length of the train.

Figures 10 and 11 show the effect of lateral separation on both the
cab pressure pulse and coach pressure pulse for a streamlined body. The cab
pulse is seen to be much smaller for the Mod. 1 geometry and the rate of
decrease of the cab pulse with an increase in Ay is slightly higher than for
the basic geometry. A similar graph for Mod. 2 is seen to lie in between the
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basic geometry and Mod. 1 as would be expected. As mentioned earlier the coach
pulse is not strongly affected by frontal shape. This is also evident from
il Lo

The integrated pressure or force F,, for Mod. 1 and Mod. 2 geometries‘
is shown in Fig. 1L, The variation of total side force with spacing (Ay) is
similar to that of the pressure pulses as discussed above.

4(h) Effect of Crosswind

Crosswinds have a very significant effect on the forces and moments
acting during train passage. They tend to distort the pressure distribution
to such an extent (depending on crosswind magnitude and direction) that force
time histories have a totally different shape., This is shown in Fig. 17 where
the time history of Fy has been plotted with crosswind angle as a parameter,
In addition the case of no crosswind is also shown in the same figure for
comparison. ' X

When there is no crosswind, the isolated body does not experience
a net force., As the bodies move closer together, the mutual interference
distorts the pressure distribution asymmetrically and a net force results,
The significant lateral force (directed towards the passing train) is negligible
until the bodies are very close together. With a crosswind (see Fig. 17)
starting at a crosswind angle of 0°, i.e., wind blowing from left to right,
it is seen that the train is subjected to a force which varies in direction as
the trains approach each other and pass. The net force tends to rise positively
as they approach each other, reaching a peak when the nose-to-nose distance
between the bodies is nearly =zero. As they start overlapping each other the
force starts decreasing and ultimately becomes negative. The negative maximum
is reached when the bodies are halfway across each other. Thus, even though
the crosswind may not significantly increase the peak value of force, the fact
that the train is subject to a significant lateral force whose sign changes
rapidly is of importance. The effect of varying the crosswind angle is to change
the amplitudes of the force peaks., The maximum amplitudes seem to be reached
with a crosswind angle between 60° and 75°, The distortion of the pressure
distribution due to crosswinds also results in a net force in the x direction,
i.e., either a net thrust or drag depending on the crosswind angle. This is
shown in Fig. 18. The magnitudes are not large enough to have much significance.

Crosswinds seem to affect the net yawing moment very strongly. The
yawing moment time history is shown plotted in Fig. 19 when two trains approach
each other and pass (with equal and opposite velocities of 60 mph) in the
presence of a crosswind of 45 mph magnitude blowing at an angle of 75°. Again
for comparison, the case when no crosswind is present is shown in the same
figure. The crosswind gives rise to a peak yawing moment greater than 10 times
that with no crosswind. The same case for the streamlined body shape (Mod. 1)
is also shown in Fig. 19. It is seen that the streamlining relieves the
yawing moment considerably.

A final point to be noted regarding the effect of crosswinds is that
it depends on the longitudinal separation distance Ax. This is. brought out in
Fig. 20. It is seen that when Ax is zero, the crosswind angle has negligible
effect. When Ax = 341 inches, i.e., when the trains are first commencing to
overlap, the crosswind has a significant effect.
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4(i) Problems of Scaling

Scaling for experimental purposes appears to be a difficult problem.
This is due to the essential nonlinearity of the interference between the
trains. This is the fundamental difference between the pressure distribution
on a single isolated body moving with uniform velocity and that on bodies
subjected to mutual interference. This can be seen in the form of the
Bernoulli's equation. The general Bernoulli's equati on for unsteady flow
ise
P+%DV2—D%=pw+%DV§O

p-Poo e V2 i ) _d_C_P.
N Rl - e
5 PV, Voo Voo

In the case of steady flow d9/dt = O and hence pressure (or force) can be
scaled in proportion to the square of the free stream velocity. In the case
of unsteady flows the d@/dt term which is dependent on the interference is
not proportional to (velocity)2 in general. In fact under certain conditions
it is nearly proportional to the velocity. This is shown in Figs. 15 and 16.
Fy is shown plotted against velocity for the basic geometry when the trains
completely overlap each other., It is seen that F.. is almost directly propor-
tional to V. In fact, it appears from Fig. 16 (which has been drawn to a
highly exaggerated scale) that Fy a(v)«91>, This is only at Ax = O". When
the bodies are far enough apart F a(V)Q. In between these two extremes it
is difficult to predict exactly what the scaling factor will be., This is
shown in Fig. 12 where the force time history for the basic geometry has been
plotted for different velocities. When one includes any crosswind effects,
the problem becomes more difficult.

4(3) Comparison of Present Results with Those of Sockel

As mentioned in the literature review, Sockel (Ref. 4) has reported
a theoretical investigation of the pressure distribution along passing rail-
road trains. Some of his results will be used for comparison with the present
computations,

Sockel's results have been presented for two-dimensional bodies,
semi-infinite in length with a circular nose section. The lateral separation
distance is 1.3 times the width of the trains. Some of the graphs from his
paper are shown in Figs. 21(a) to (d). Figure 21(a) shows the pressure
distribution on body A as bodies A and B approach each other with equal
velocities and overlap. Since his bodies are semi=infinite they can never
completely overlap. Figures 23(a) to (j) show the corresponding pressure
distribution obtained from the present computations. The present computations
shown are for the basic geometry with a lateral separation of 105" or 1.167
times the train width. Consequently the comparison can only be qualitative.
It should also be noted that Sockel has normalized his pressure distribution
with the velocity of one of the bodies while the present computations have used
the closing velocity.
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For the isolated body (Figs. 21(a) and 23(a)) the pressure distribu-
tions are similar, with a lobe of positive pressure (inward arrows in present
case) in the front and two lobes of negative pressures on the front corners,

In the present case, of course, the pressure distribution will be symmetrical
about both axes. The pressure distribution when the two bodies are just opposite
each other is shown in the second figure from the top in Fig. 21(a). The
corresponding case in the present study is shown in Fig. 23(b). Both these
figures indicate a region of +ve pressure at the front followed by a small
region of ~ve pressure and subsequently +ve pressure., The third contour (from
the top) in Fig. 21(a) corresponds to Fig, 23(e) in the present computations. -
Some of the common features are a region of +ve pressure at the front, followed

by a ~ve pressure over a fairly long length and then a final +ve pressure

region. Beyond this point it is not possible to compare the two solutions

because of the type of bodies. The present computations show that the -ve

Pressure extends on the inner side until it reaches a peak value at Ax = 0

when the trains overlap completely. At this point the large negative pressures

at either inner corner effectively block any relief and the pressure is almost

uniformly negative all along the inner side.

Figure 22 shows the pressure distribution on the Mod, 1 configuration.
As would be expected the peak pressure is less than for the basic geometry
case and the pressure distribution is more uniform.

The main differences between Sockel's computation and the present
are seen from a comparison of the pressure signatures at a particular point.
His curves for point 3 correspond roughly to the cab pulse of the present
computation. In Fig, 21(b) the pressure signature for point 3 is given when
two trains approach each other with egual velocities. This corresponds
roughly to the pressure time history for point 8 in Fig. 5 at a Ay = 114",

It is seen that the curves are somewhat similar up to a -Ut/Ay & 1. Beyond
that, the present theory predicts a ccntinued rise in -ve pressure ending in

a peak at Ut/Ay = O whereas Sockel's curve tends to flatten out in that region.
Similarly, in Fig. 21{d) Sockel shows the pressure pulse on the stationary
train as the other train passes by. This is similar to the graph shown in
Fig. 9. Again the comparison is valid up to Ut/Ay & 1. The main reason for
the differences noted above appears to be the difference in body shapes,
Sockel using semi-infinite bodies and the present work being carried out with
finite bodies,

4(x) Comparison with Experimental Data

: Experimental results available are very sparse. Further, it is
established that the interference results can be very sensitive to the

numerous parameters involved, i.e., body geometry, spacing, velocity, type

of measurement, and so forth. Wind tunnel results under steady conditions
appear to be of limited use for predicting interference loadings since the
real problem of interest (passing with relatively small lateral separations)

is inherently unsteady in nature. Another important difficulty is the problem
of scaling which has been discussed earlier. Keeping these points in mind, one
can still examine the limited experimental data from a qualitative viewpoint.

The main source of experimental data appears to be that due to
Hillmann et al (Ref. 5). Extensive (wind tunnel) model testing as well as
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some very limited full scale testing has been carried out by these authors.,

Some general comparisons can be made using their results. The pressure

signature of a train (moving at 125 mph) as it passed a stationary measuring
train has been recorded and is shown in Fig. 24, This would correspond to

the measurement of the coach pressure pulse, This is comparable to the

pressure time history obtained from the present computations shown in Fig., 9

(for the case Vy = 0, Vg = 125 mph). It is not possible to compare the magnitude
of the pressure pulse as Hillmann et al do not give a scale for thelr pressure
measurement, However, the shapes of the pulse are quite similar and the

duration is of the same order of magnitude (about 200 msec).

- In Fig. 25 is shown the effect of lateral spacing on the coach
pressure pulse as given by Hillmann et al. The locomotives 112 and 103
referred to are roughly similar in shape to the present basic geometry and the
Kruckenburg model used is similar in shape to the Mod. 1 geometry used for the
present calculations, This figure can be compared to the results predicted by
the present computations shown in Fig. 10. It is seen that the shape of the
curves is similar in both cases and the effect of streamlining is of the same
order of magnitude in both cases.

The problem of scaling discussed in Section 4(i) can be also
substantiated from Fig. 26. In this figure are shown the results of Hillmann's
tests to determine the relationship of the magnitude of the pressure pulse to
the train velocity. It is apparent that the pressure pulse magnitude is
definitely not proportional to (velocity)Z?.

Hillmann et al have reported a measurement of the pressure pulse
under crosswind conditions. This is also shown in Fig. 2L4. It is seen that
crosswind distorts the shape of the pressure pulse in a manner similar to that
indicated by the present computation (Fig. 17).

4(2) Limitations of the Present Study

There are two main limitations régarding the present study. One is
due to the scope of the work and the other the type of approach usqd. These
will be elaborated on below. 2

v

By scope of the work, one is referriﬁg to the fact that the solution
is in two dimensions. Consequently, the pressure relief afforded by the third
dimension is not included. This is vividly brought out in Kawaguti's work
(Ref. 2) where he considers the pressures due to passing cylinders and those
due to passing spheres.. The peak suction pressure at a particular point on
the cylinders reaches nearly -3.8. For a similar case when two spheres are
passing, the peak pressure at the same point is only -1.55. Thus one can
appreciate the relief of pressure afforded by the third dimension. In the
case of elongated bodies such as the ones used in the present study, the
relief will not be so great everywhere. Near the ground plane, there will be
practically no relief. The pressures will begin to taper off as one approaches
.the top of the train. An empirical approach to include this effect has been
used in the computation of the moments and forces.

The second major limitation is due to the type of solution used in

the present study. It is based on potential flow. Consequently, all the
viscous effects have been neglected. Viscous effects as is well known will
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be confined to the boundary layer on the bodies and its major effect will be

felt near the rear of the trains where the flow will separate from the bodies

giving rise to a large amount of drag which cannot be accounted for by

potential flow theory. The pressures at the rear corners will also nd be

as high as predicted by potential flow theory. All these factors will lead

to the present solution predicting conservative loads. The loads in practice

might lie in between two-dimensional and three-dimensional solutions. Finally, -
one should note the limitations of the solutions regarding the number of

segments or points chosen for the computations. In the present instance it

hags been observed that the solution is fairly sensitive to the number of &
points and their distribution. To arrive at a solution which approaches the

asymptotic solution, a minimum of 72 points were needed. Increasing the

nunber of points will increase the accuracy of the solution, but it will

also increase computing time which soon could become prohibitive depending on

the number of cases one wants to compute. The present solution is within 5%

of the asymptotic solution. One of the features of the present study is that

only 3 basic cases have to be computed in detail for each configuration and

separation distance. Once these are complete the superposition of the

solution discussed in Section 2(d) reduces costs enormously.

5. CONCLUSIONS

General conclusions that have been reached during the present study
are as follows:

1. An incompressible potential flow method in two dimensions has been
developed, capable of predicting the unsteady pressure distribution,
forces (side force and drag), and moments (yawing and rolling) on moving
or stationary bodies (e.g., trains) of arbitrary shape, due to the
passage of a second body. Effects of arbitrary wind velocity may also
be included.

2. Substantial aerodynamic pressure pulses are imposed due to the passage
of a train past another moving or stationary train. For example, far
the basic geometry considered, with a lateral separation of 105" (train
width 90") a pressure coefficient, based on closing velocity, at the
front of the train (point 8) of nearly 1.4 and an integrated load of
9000 1bs is predicted due to the passage of another train with equal and
opposite velocity of 60 mph.

3. The case of a stationary train encountering a pressure pulse due to the
passage of another moving train appears to be the critical one. This is
due to the sudden reversal of the direction of the pressure loading. For
example, for the basic geometry, with a lateral separation of 105", the
pressure coefficient on the stationary train at point 19 (i.e., middle
of the train) changes from +.6 to -1.4 in about 75 milliseconds (for a
train velocity of 125 mph). This impulsive loading can be quite abrupt.
Initially it will act so as to push the sides and windows of the train .
inwards, then it abruptly reverses, loading the train sides in the
opposite direction. ¥

4, The lateral separation Ay, between passing trains is a very important
factor affecting the interference loading. Increasing Ay reduces this
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loading rather quickly when the separation is small and less rapidly at
larger separation. The amount of reduction is dependent on body shapes,
train velocities, and the nose~to-nose distance between the trains,

Body shape plays a very important role in deciding the type and magnitude
of the interference loading. Streamlining can reduce the loading sig-
nificantly., Typically, for identical cases of lateral separation and
velocity, the maximum cab pressure pulse on Mod. 1 geometry (elliptical
nose and rear sections) is reduced to a value of C, = -0.90 from a

value of C, = -1.40 for the basic train geometry. ~The integrated inter-
ference loads are also similarly reduced.

Crosswinds can significantly increase the magnitude and type of loading
due to train passage. For example, in the case of two trains approaching
each other and passing with equal velocity, the sideforce is predominantly
in the positive direction, i.e., tending to pull the trains together. If
there is crosswind the trains are initially subject to a significant
positive load which gradually changes sign and becomes significantly
negative and then as the trains overlap, becomes strongly positive again.

For the case of two trains approaching and passing each other with equal
velocity, the crosswind effect was found to be greatest, for a given
crosswind strength, when the crosswind angle was approximately T70°
(relative to direction of train travel).

Crosswinds can significantly increase the interference yawing moment.
Streamlining will tend to alleviate crosswind effects significantly.

Scaling of the interference loads, measured or predicted, applicable to
closely passing trains, from one set of velocity conditions to another
set, presents inherently important difficulties. This follows directly
from the basic unsteady nature of the problem and the fact that there

is no simple (moving) coordinate system in which the problem may be
considered as stationary. Thus the singularities representing the

flow boundaries have variable strength (w.r.t. time) in all useful
coordinate systems and the P BQ/Bt term will always play an important
role in establishing fluid pressures. The only expected exception to
this will occur when the body separations are large and the problem then
will be nearly steady in coordinate systems translating with the bodies.
These situations, however, are not expected to be the critical design
cases, so that in general it appears that ad hoc scaling "rules" will
have to be developed based on measurements or calculations which bracket
the complete ranges of interest, including the important role of
crosswinds.

. Wind tunnel studies under steady state conditions in general will be quite

inadequate for the prediction of the true unsteady train interference
loadings. Even for the case of a train passing a long plane wall, wind
tunnel simulations with steady flow conditions will be severely hampered
by the presence of the tunnel wall boundary layer if viscous body effects
are of interest.
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6. RECOMMENDATIONS FOR FUTURE WORK

The present study has brought to light the importance of the aero-
dynamic phenomena due to interference when two bodies with a high relative
velocity and close lateral separation approach each other and pass. From the
point of view of supplying preliminary data, the present work is satisfactory.
It is capable of predicting the trends of such effects as streamlining, lateral -
separation crosswinds, etc, However, for a finalized design, measurements
initially with scaled vehicles are essential, It is also clear that for model
tests to be of real significance, unsteady interference effects will have to
be accurately simulated. In fact, the lack of such data appears to be the
major deficiency in our present understanding of real interference loadings.
Wind tunnel tests under steady conditions can provide complementary information,
however, as pointed out earlier, such testing has definite limitations for the
present interference problem.

Regarding extensions to the present theoretical work, it can be
expanded to include the third dimension, This would have to be approached with
some caution as it would entail larger developmental and computational costs.
Complemented by model (and possibly limited full scale testing) covering an
adequate parameter range, the present study itself could be empirically
modified to give three dimensional and real fluid effects.
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BASIC GEOMETRY

TABLE 1

105 105 105

78.75 105 210

60 90 135
0

60 60 60
60 60 60
45 45 L5
45 60 75

L =3, H= 120

TABLE 2

114 114 114
0 28.5 5T
0 0 0
45 60 90
0 0
0 0

N SEP = 18, N VEL = 14, H = 120

are in mph; x, y, H are in inches.

105
420
150

60
60
L5
90

105
262.5

0
L5
0

60
60
60
30

105
315
0
60

0
60
60
60
45

TOTAL CASES = 450

11k
11k
60
60
L5
30

TOTAL

114 114
228 3k42
60 60
60 60
b5 L5
L5 60
CASES = 252

105 105
341.25 472.5
0 0
90 135
0

0

60 60
60 60
60 60
60 5.
138 138
0 34.5
60 60
60 60
L5 L5
75 4o

105
630

0
150

60
90
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69




Ay 105 105 105
Ax 0. 2635 5085
Ay 105 102 105
Ax 1 body 0 0
Ay 105 136
Ax 1 body 0.0

NOE:

TABLE 3

MOD. 1 (ELLIPSE)

105 105 105 105 105 102 11k 138 102 11k
105 210 315 525 735 0 0 0 20k 228
VELOCITIES SAME AS FOR CASE 2
N SEP = 14, N VEL - 14, H =120 , NUMBER OF CASES 196
TABLE L
MOD. 2 (30" RADIUS)
Y 38 102 105 11k 138
0 0 20k 210 228 276
VELOCITIES SAME AS FOR CASE 2
NSEP =9, NVEL=14, H =120, NUMBER OF CASES 126
TABLE 5
MOD. 3 (120" WIDE)
VELOCITIES SAME AS FOR CASE 2
N SEP = 2, N VEL =14, H =120 , NUMBER OF CASES 28

TOTAL NUMBER OF CASES: LS50 + 252 + 196 + 126 + 28 = 1,052

VA,V ,Vc are in MPH. X, Yy, H are in inches.

138
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Fig. 21(b) Pressure signature during passing
at various stations (V,=-V;, )(Ref. 4).

Fig. 21(a) Fressure distribution during Fig. 21(c) Fressure signature during passing
p assing at different train positions at different train positions of moving
(V4 =-V) (Ref. 4) train (V= 0)(Ref. 4).

Fig. 21(d) pressure signature during passing
at various stations of stationary train
(Vp=0) (Ref.4)
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Figures 23(a) to 23(j) show the pressure distribution at various time intervals on
a body moving with a velocity of 56.8 mph as it approaches and passes an identical
body moving in the opposite direction with the same velocity. Lateral separation
between bodies is 105 inches. All the figures have been photographically reduced

N—L\—‘ by a factor of 2.645.
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APPENDIX

DEVELOPMENT OF COMPUTATIONAL EQUATIONS

Let S be the surface of a cylinder extending from -L to L. 0(s)
is the distribution of sources of strength 0 on the body. o(s) is assumed
independent of z. s is the coordinate measured along the contour of the
body. In this formulation the subscript i refers to the field point and
J to the source point. Coordinates x, y, z refer to the field point and
€, n, § to the source point. r is the distance from the field point to
the source point. ; '

=(E-8)2+(y-n+(z-t)°

Without loss of generality we can assume that z = 0. The potential at
X, ¥, %z due to the distribution of sources is

o(x,y,2) =Ifﬂr£l as

or
cp(x,y,o) _ch( )f fcr( )j datds
CP('x,y,o) =f o—(%) log l: ( /&< ;21,2 + L)2 J .
where

= (x - 8)% 4 (v - m)°

To avoid the infinite integral that will result above as the cylinder becomes
two-dimensional (I — ®) we can make use of the fact that the net source strength
on the cylinder is zero, so that

fc(s) log(2L)2ds = 0

So,

< JCQ—iTIT +1J> )

(x,¥,0) = c<s> log o(s) log(a®)ds

Al



Now if we let L = »

muﬂp)=~fcw>ma£mS

or

P(x,y) = ‘f o(s) log{(x - £)% + (y - n)%)ds

and

o0 oL o | (x - &) a
S fo“)m-gf+<y-mzs

DF L 2 0 o(s) sy ds
& f L

Coordinate Transformations

Consider the following coordinate transformation:

~

1. Body attached coordinates.

2. h is the + outward normal
to the body.

3. 8 is + clockwise around the
body.

4, j, the source point, lies
on the s axis.

5 1, the field peint, ceuld
be anywhere in space.

6. O is measured from + x to s.

From the figure, it is seen that

x, =x ., + (s,.cos0, - h, .sinx.)
ak o] iJ J 1J J

., = ., + (s, .sinmx, + h. .cese,
yl yOJ ( 1J dJd 1] J)



=x . + 8 cos,
¢ 0J J

= + @ isinel.
n yoj j

Xy = . = (Sij - s)cosOl‘_j - hijs1naj
.~ =(8., - 8)sin¥, + h, .cost,
y; = = (84 - s)eimy, + D, cosat,
(Xi - 5)2 + (yi - 71)2 = (Si,j - s)2(cos20tj + sineotj)

2 2 2
+ h .(gin®@, + cos &,
iJ( J J)

+ 2h. .sinx. cos. - 2h.. sinx.cosX.
1d J J 1J J J

?(x, 7) = - § ale)toal (s, - )% + 25, as

(s.. - s)cosa, - h, .sinc,
g% = - 20(s) —2J e I
(s.., - 8)° + h_,
id ij

cosC.
J J

(s,. - s)2 + e,
ij ij

(s, .
2‘3= - 20(s) —2

- s)sinx, + h,
3 i

Before proceeding further with the integration, we have to get expressions
for Sij and hij in terms which can be calculated. We can write:

g8 = (x - xo)cosoz + (y - yo)sina

h=-(x - xo)s,inoz + (y - yo)cosOt




If we write

then

)]
1l

-X cos® - y sinx
o o

=
]

X sind - y cost
o o

n
Il

8o + X cosQ + y sinX

h=ho_—xsina+ycosa

For a specific point, and Soj and hoj can be calculated from

and

S, s

oJ

., = X COSX, y.sino .

Il
]

oJ - S TR

h: +xi8inl. - cost . Note: h., =0
J J J yj J ( J )

]

8 i+ xcosd, *iy.sinx;
oJ € d 1 J

h +ixi.eing,
1 J

0]

yi cosaj

Integration for @ and @ Derivatives

At this point we can write the integral as a sum over n segments,

obtaining

P, (x5 ¥)

0P

Sj""l

]
) [ agenoaitsy - 9% + 1 Jas

j=1 s.
J J

= (s.. - s)cosa, - h, .sino.
Zfﬂs) FBb o Bl s
2 2
(s.. - 8)" +h

J=1 s ij ij

(s,. - s)2

1 585
ij g

5

n (s.., - s)sino, + h, .cosO,

z f o.(s) - a 13 :J ds
A :

J=1

A-4



By making suitable assumptions for the distribution of 0 over the element we
can integrate the above equations.

l. 0O is constant over each element but varies from element to element.

2. O varies linearly over each element as well as varying from element to
element.

If we assume O constant over each element the equations become

n S,j+:l_
9. (x,y) = - o log{(s.. - s)2 + h2 }as
R J iy ij
j=1 s
v J
o9, 29+1 (s.. - s)cosa. - h, .simo,
1 _ 1] J 1J J
a— = =2 o, 5 > ds
o h J (s.. - 8)° + h_,
j=1 S. ij iJj
dJ
o0, 2 2G+1 (s.. - s)sinx. + h, .coso,
= = -2 }; o-\jﬁ = D i
oy - j 2 2
y ‘ J (s.. - 8)° + h..
j=1 . iJ iy

s
dJ

In these two equations we have three different integrals of the form

u/Alog(a.2 + xe)dx = x log(a.2 + x2) - 2x + 2]a| tan-l g
f.__dx_ o8 -l X
8 + x° la la]
f —2X—2 dx -5 log(xz. + a.2)
2
a + x
Oj+t
If we assume 0 to vary linearly within each element, /y}/V/;
(s) ek L Yoan ANy
o.(s) =0, o, . -0,
J J -.(smyy - Smy_q) " 341 I-1 o
b g Ji 4
O e

where subscript m stands for the mid-point of the
element.



n S

CPi(x,y) = -ZI: Ujszig{(sij - 8) + hij}ds

j=1 S.
J J

8.
(o -0 +1
J+l  g-1 JRORY - -
+ & x[%s = smj)log{(sij s)° + hij}ds

miH T Pmi-l

J
o0, e %541 (s.. - s)cosa, - h, .simx,
- S o MR (85 Blopo, - By jedmal, e
ox 4 e P
s KBy g 8 T
J
’ -0 j+1 S.. - s)cos®. - h..sinx,
Owh L . T e RS e T
Bmeiq = Pma m; T e
5+1 -1 S5 (sij s)” + hij
oP = %341 (s.. - s)sino. + h, .cosq,
1 _ 1J J 1J J
r = -2 N ) 5 ds
" vl bd. i - B)" wh
J= Sj 1] ij
O, . =% 23+1 (s,. - 8)sinx, + h. .cosx,
p J+1 J=1 Lo S ) &7 J . 1J
B - Sm. 5 2 '
m ms_ -
5 +1 el S5 (sij s) + hi,j

st:|

st]

The only new integrals that appear due to the second assumption are:

| %208 + Pyax - 3 6 + &P)a0s6 + &) - 1]

2

é i
f_gi__dx:x_ la| ban™ 1%
a +x al

Summary of Equations

Summarizing the various terms we have the following:
S,

+1
O 2 e
X —flog{(s - Sij) + hij}ds
s,
dJ
A-6



K =

jj+l (s - Smj)(s - Sij)

ds

2
(S - SlJ)

+ h?.
1J

EZU.(Josina. + K cosa. )
J J dJ
J=1

1. L
+ As. (0, - 0, J sind. + K cosO.
39542, 7 750! 3 5y)

226.(-J0cosa. + K%sinot., )
J dJ dJ

1
+ As . (0, - 0, -Jcoso.'.+Kls‘nO£.
30934 310 J inot,)

1



Thus it is seen that the equations are of the form:

9. &

B o X
ox Z i
J=1

P, - &
> =Z oy
oy 343
J=1

n
%), "
S

where Xi j? Yij and Zij are the matrices formed by the various integrals.

They can be calculated using the geometry of the configuration. BCP/BX and

BCP/By are the u and v components of velocity. The normal and tangential
components are given by:

%,
5 =Z crj[- X; ysinoy + Yijcosai]
Jw),

o9, =
o =z 01X, joos0; + ¥, sincy]
a2

The solution is obtained when the proper boundary condition is imposed on

the normal derivative at the surface to get a set of n algebraic linear
equations in the n unknown O's.

J
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A two-dimensional, incompressible, potential flow solution based on A.M,0, Smith's method has been
developed capeble of predicting the unsteady interference pressure loadings on either moving or
stationary bodies of arbitrary shape due to the passege of a second body. The pressure distribution
has been suitably integrated to yield overall forces (side and axiel) and momeats (rolling end yawing) .
Effects of crosswinds of arbitrary magnitude end direction can be accurately included. The results
of a wide range of computations using different body configurations are presented and analysed. The
studies carried out indicate that substantial aerodynamic interference loads may be expected under
real train passage conditions. These loads, impwlsive in nature, depend on the type of body gecmetry,
the lateral spacing between the bodies, and the closing velocity. In general, streamlining greatly
reduces thesc loads, as does increased lateral spacing. Crosswinds significantly alter the predicted
loadings, tending to increase them. The interference loading induced on a stationary vehicle when
passed by a moving vehicle appears to impose the most critical design loads, for conditions of zero
crosswind. Velocity scaling of the interference loalings presents inherent difficulties due to the
basic unsteady nature of the problem. No simple and generally applicable velocity scaling laws are
expected to emerge for this problem, however over limited ranges of conditions "ad hoc" velocity
rules (trends) can certainly be obtained. The basic unsteady nature of this problem also greatly
comlicates experimental studies. The usual steady state wind tunnel methods will generally be
iradequate; preference is strongly indicated for true unsteady motion simulation at reduced physical
scale.
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