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Summary 

A two-dimensional, incompressible, potential flqw 'solution based on 
A.M.O. Smith's method has been developed capable of predicting the unsteady 
interference pressure loadings on either moving or stationarybodies of 
arbi trary shape due to the passage of a second ' body. The pr,essure distri but ion 
has been suitably integrated to yield overall forces (side and axial) and 
moments (rolling and yawing). Effects of crosswinds of arbitrary magnitude 
and direction can be aceurately ineluded. The results of awide range of 
computations using different body configurations are presented and analysed. 

The studies earried out indicate that substant'ial aerodynamic 
interferenee loads may be expeeted under real train passage condition's. 
These loads, impulsive in nature, depend on the type of body geometry, the 
lateral spacing between the bodies, and the e~osing velocity. In general, 
streamlining greatly reduces these loads, as does inereased lateral spacing. 
Crosswinds signifieantly alter the predieted loadings, tending to increase 
them. The interferenee loading indueed on a stationary vëhiele when passed 
by a moving vehiele appears to impose the most critical 'design loads, for 
co'nditions of zero crosswind. 

Velocity scaling of the interference loadings presents inherent 
diffieulties due to the basic unsteady nature of the problem. No simpleand 
generally applieable velocity sealing laws are expeeted to emerge for this 
problem", however~ over limi ted ranges of conditions "ad hoc" veloei ty rules 
(trends) can certainly be obtained. The basie. unsteady nature of this 
problem also greatly eomplieates experimental studies . The usual steady 
state wind tunnel methods will generally be inadequate; preferenee is strongly 
fndieated for true unsteady motion simulation at reduced physieal scale. 
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1. LITERATURE REVIEW 

A fairly large body of literature has grown up during the past 
decade concerning the aerodynamic problems of high speed trains .. 'Most of 
i t conç erns three broad areas: 

(1) The drag of high speed trains. 

(2) Problems of high speed trains entering and passing through tunnels. 

(3) Problems due to the pressure wave set up wh en a high speed train 
passes either a stationary train or another train moving in the 
opposite direct ion, in free space. 

The present review is concerned with the last type of problem only. 
The problem can be attributed to the pressure which develops around the body , 
due to the motion of the body. The magnitude and direct ion of the net pressure 
field is a function of the shape of the body and the speed of travel. Conse~ 

quently when a high speed train passes either a stationary train or another 
train passing in the opposite direction, the pressure fields can impose 
large fluctuating loads on the trains. In this report the pressure pulses 
will be qategorized into two types: 

(1) The "cab" pulse. 

(2) The "coach" pulse. 

The cab pulse is measured at the front of the measuring train 
as the passing train goes by. The coach pulse is measured somewhere further 
to the rear of the measuring train. Both theoretical and experimental work 
has been do ne in an attempt to predict the magnitude and duration of the 
pressure pul se • 

l(a) Review of Theoretical Methods 

All the theoretical approaches are based on potential flow theory. 
They can be categori~ed into two distinct methods. The first method 
utilizes the concept of singularities and their images to satisfy Laplace's 
equation and the appropriate boundary conditions and thus arrive at a 
solution to the flow field for a body (or bodies) moving in an incompressible, 
inviscid, irrotational fluid. 

Carpenter (Ref. 1) gave a solution to the problem of 2 cylinders 
moving in an infinite fluid. The cylinders with their generators perpendicular 
to the plane of motion are moving with arbitrary translational veloci"ties.. The 
cylinders are replaced by moving doublets. Each of the doublets have their 
respective images in the other cylinder yielding an infinity of doublets 
together with their images. The complex potential due to the entire system 
is given. For purposes of computation, Carpenter suggests that just the 
first few terms (three) are usually sufficient. He also gives correction 
factors to account for the dropped terms. He extends the soluti0n to the 
case of any number of moving cylinders and gives examples of several flow 
situations using the above methods. 
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Kawaguti (Ref. 2) has adopted an identical approach. He considers 
two-dimensional cylinders as well as spheres. He restricts his calcuJ.ations 
to the case of two bodies moving with their axes parallel to each other, but 
in opposi te directions wi th different veloci ties. Whereas the image of a 
doublet in a sphere is a continuous distribution of doublets starting from 
the centre of the sphere up to the inverse point. This complicates the 
calculations considerably for the sphere cases. Kawaguti has extended his 
solutions to calculate the pressure variation using the unsteady Bernoulli's 
equation. 

Pukuchi (Ref. 3) has attempted to sol ve the problem in a slightly 
different manner. Instead of doublets, he places a meving source, and considers 
two cases. In the first case he takes the image of the source in the horizontal 
plane. The resulting image is a source ofthe same strength and at the same 
distance below the ground plane. By putting a sink at x = 00 he gets a half 
body and its image. This leads to a pressure distribution on the body as 
affected by the ground plane. The other case this author considers is the 
effect of an infinite vertical surface in the x direction. This gives rise to 
a source in one quadrant and its three images in the other three quadrants • 
This simulates the effect of a train passing a vertical wallor approximately 
another stationary train. He also gi yes calculations of the pressure coefficient 
Cp. 

In the second theoretical method, a system of moving singularities 
is placed on the contour of the trains and wi thin the body contour. This 
leads to a system of integral equations. These can be converted to a set of 
linear algebraic equations, which can be solved either by a Seidel method or 
by straight matrix inversion, depending on the size and conq>lexity of the 
matrix. 

Sockel (Ref. 4) has reported one such technique for two dimensional 
flow. He models the trains by a moving system of line vortices on the contour 
and a single source at the front end within the contours. This results in a 
semi-infinite boundary contour which is closed at the front end and open at 
the downstream end. By writing the equation of the stream functions for the 
singularities, he arri yes at a set of integral equations. To complete the 
potential flow solution, it is necessary to have a condition on the net cir­
culation about each train. A similar argument in wing theory leads to the 
Kutta condition. For his study, Sockel assumes that the net circulation about 
each train is zero. This assumption is expected to be increasingly valid for 
longer train configurations 0 The solution of the deri ved integral equations 
gives the instantaneous flow field. Solution is effected by direct quadrature 
using a form of the trapezoidal rule. 

leb) Review of Experimental Data Available in the Current Literature 

There are not many reports of experimental data of the pressure field 
due to passing of high speed trains in the open literature • Fukuchi (Ref. 3) 
has reported field measurements of velocity and pressure due to the passage of 
a high speed train. The velocity was measured with a hot wire anemometer and 
the pressure with a pressure transducer. This muld correspond to the "coach 
pulse" • Ris measurements seem to indicate that the peak pressure pulse is not 
strongly affected by the height above the ground. 
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- ------------ --

The main source of experimental data which has been uncovered to date, 
relating to this problem, is a paper by Hillmann et al (Ref. 5). They were 
involved in modifying an existing locomotive for high speed travel on the German 
railroad. Consequently they conducted extensive aerodynamic experiments to 
determine the effects of various shapes on the body pressure distribution. 
Experiments with models as weIl as fUll scale tests have been reported. Some 
of their results have been used for comparison in this report : They have also 
given an empirical metnod to account for the effect of crosswinds oo .the pressure 
pulse magnitude. One needs wind tunnel data for the specific body shape to be 
able to use the method. 

2. DESCRIPl'ION OF THE PRESENT METHOD 
< 

The method adopted for thepresent computation is based on the work by 
A.M.O. Smith and J. Pierce (Ref. 6). It .is an exact method capable of solving 
for the flow field about an arbitrarily shaped body in incompressible, potential 
flow. The method is qui te general and can handle any number of bodies , thus 
accounting for mutual interference between bodies. Smith has given full details 
of the method as applied to single bodies. In the present work this has been 
extended to handle two bodies • Further, using the unsteady form of Bernoulli' s 
equation, the pressure distribution around one of the bodies has been evaluated. 
This pressure distribution has been suitably integrated to arrive at forces and 
moments. 

2(a) Basic Formulation 

The method consists of placing a surface source-sink distribution on 
the contour of the bodies • The potential due to this distribution is written 
down. This contains both the self influence terms as weIl as the mutual influence 
terms. This results in a set of equations for the unknown source-sink distribution. 
This set of equations is solved using appropriate boundary conditions to give the 
source strengths. Once the source strengths are known, the potential at any 
point (either on the body or in free space) can be evaluated; fr om this the 
velocities and pressures can be obtained. 

Although the basic method adopted is general and therefore can be 
readily extended, in principle, to three-dimensional flow cases, the overall 
aims of the present project precluded such a general formulation. In three­
dimensional flow cases, significantly larger computing costs and additional 
computational difficulties, are to be expeeted. Consequently, the problem has 
been formulated and solved in two dimensions (see page 4). 

The potential at any point p due to the source distribution around a 
shell of area S, bounded by z = ...ICO ~_to +00 and s = s to R, is o 

3 

crdS 
r 

(1) 



4 

True body contour 

Segmented contour used in the 
co~utation 



If p(x,y,z) (any field point) is in the plane z = 0, and q(E;,n,r;) is any · source 
point 

2 J ( t) 2 ( ) 2 /,2 r = x. -s+ Y - n + ~ 

and 

ep = 2/ r· o-(s) d~ dx 
IJ .. [(;x_s)2 + (y_TJ)2 +~172 

s 0 o -

It cap. ~ sho-wn- thatthis reduces to 

,epp = _,I o-(s) ~og((x _ ~)2 + (y _ TJ)2}1/2dS 

sa 

(2) 

if we assume that 0(8) does not vary in the z (or s) direction. (See Appendix). 
The cOI!1putations of velocity and pressure ~nvolve derivatives of ep which are 

oep 
di 

oep 
dy 

/ 

o-(s) (x_s) ds 
-2 . 2 ' 2 

(x-S) + (y,-TJ) 
S o 

-2/ o-(s) (Y~TJ) ds 
2 2 

(x-S) + (y-TJ) s o 

(4) 

Although up to this point the formulation has been made for one body, it is 
apparent that the presence of a second body merely increases the number of 
source points, if we decideto compute all the pressures and forces on only 
one of the .bodies. It will give rise to a jump in the coordinates as one 
proceeds fr om one . body to the other, This can be easily handled in a computer 
programme. 

2(b) Trans;formatîon to Body Coordinates 

Before proceeding to solve for o(s), it is necessary to get a 
rel~tionship between s and the Cartesian coordinates (x,y). It is also 
preferabie to per~orm the integrations in terms of s rather than x or y. 

" The ' Ooundary s is broken up into a number of linear segments and some assumption 
regarding the variation of 0 on each segment is made. In the present instance, . 
two types of variation were tried. First, 0 was assumed to oe constant on each 
segment, but varying from segment to segment. Next 0 was assumed to vary 
linearly on each segment as weil as varying from segment to segment. 
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The following coordinate transformation used: 

l. Body attac~ed coordinates. 

(Xi.,'Jd 2. n is + outward normal to the body. 
\ . 
1\ 

3. s is + clockwise around the body. I \ • 
I \ ~\,) 
I \ '::> 4. j the source point lies on the I 
I saxis. 

5. i the field point arbitrarily 
located in space. 

With the above transformation the integrals for the potential and its derivatives 
become (see Appendix): 

n Sj+l 

ep(x,y) -I J (J'j(S) log ((s .. -
2 2 = s) + h .. } ds 

~J ~J 
(5) 

j=l s. 
J 

n Sj+l 
(s .. -s) cosCX. - h .. sira. oep 

-2 I I CT}S) 
~J J ~J J ds di= 2 2 
(s .. -s) + h .. j=l s . ~J ~J 

J 

(6) 

n Sj+l 
(s .. -s) sira. + h .. cosCX . oep 

= -2 I J CTj(S) 
~J J ~J J ds dy 2 2 
(s .. -s) + h .. j=l s. ~J ~J J 

2(c) Boundary Condition 
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-Consider the body moving to the left with a velocity V through a static 
fluid. The boundary condition (in potential flow) wili be that the normal 
component of velocity will be zero on the boundary. This can be written as: 

(q - v ) . Ti = 0 
00 1 (8) 

It should be noted tbat V bas been introduced as a vector sb that its direction 
co 

can be specified. This is useful when computing crosswing cases. 

2(d) Solution of the .Equations 

If we now make suitable assumptions regarding the variation of cr 
within each segment, equations (6) and (7) can be integrated. The first j 
assumption that was tried was that crj is constant on each segment. The second 
assumption was that crj varied linearly on each segment. 

CJ}+I 

Sj 

where a and b can be expressed in terms of Sj, Sj+l, crj, crj+l, and Sij. Af ter 
integrating equations (6) and (7), they can be arranged in the form 

dCj). 
~ 

dx 

dCj). 
~ 

"Oy 

n 

=L 
j=l 

n 

=L 
j=l 

x .. cr. 
~J J 

Y .. cr. 
~J J 

From this tne normal component of velocity on the body can be written as 

n 

\' cr. [- X .. sinx. + Yi · coscx. J ~ J ~J ~ J . ~ 
j=l 
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This can be now used with equation (8) to solve for cr·. One important point to 
be noted here is the case when i .= j. For the. case i

J
= j, the integrals have 

to be evaluated by approachipg the limits properly. If this is done d~/dn 
approaches the correct finite value. The procedure adopted in the present 
calculations was to solve for three basic cases. Subsequently these solutions 
can be superimposed to obtain solutions for any number of different cases 
inclucling the effect of body crossivinds 0 

The basic cases considered are ShOWll below. The bodies are assumed 
to be rooving with unit velocity in the directions ShOWll. 

It is clear that case (1) by itself gives the solution when th~ two bodies 
are approaching each othero If cases (1) and (2) are superposed we get the 
solution for the case when one body is at rest and the other passes it. Super­
position of all three cases gives the crosswind cas'e. 

2(e) Calculation of C 
p 

The pressure distribution can be obtained once the velocity distribution 
is knOWllo The unsteady Bernoulli Ys equation is .used. 

_p + _1 V2 dq:l ·poo 1 2 
--:<\:Lt = ......... +-V P 2 OlJ p . 2 00 
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Here U is a velocity used for nondimensionalizing the pressure. Normally, 
with only one body present, U can be chosen equal to Voo. With two bodies, 
the choice is not obvious. In the present ,case it has been made equal to the 
closing velocity of the two bodies • ocp/Ot has been computed numerically 

By computing cp at least two stations ± 11K from the station x, oCP/Ox is obtained. 
In the present calculations I1x ~ .01 proved sUfficient, i.e. no appreciable 
difference was found in cp by going from ~x = . 01 to .001. 

2(f) Computation of Force$ and Moments 

, The drag force Fx, the side force F , the Yawing Moment YM and the 
Rolling Moment RM have been calculated by sui~able integration of the pressure 
coefficient Cp. 

y 

RM 

~---+--------~ X L---~----------~Z 

YM Fx Sign Convention 

A simple trapezoidal rule has been used to integrate Cp. The pressure distri­
bution has been assumed to be uniform in the z direction. The height of the 
train has been programmed as an input variable. The actual height used for 
computation is 85% of the height read in. This is to approximately account for 

' the three-dimensional relief at the top of the train. For calculating the 
rolling moment, the centre of pressure in the z direction has been assumed to 
be at one third the height of the train from the ground. 

3. RANGE OF COMPUTATIONS 

A fairly extensive range of computations have been carried out. Apart 
fr om the cases of one and two cylinders, used for establishing the validity of 
the computations, foUr different body configurations (Fig. 4) have been utilized. 
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They all have a basic length of 360" . . The first three are . 90" wide and the 
last is 120" wide. The basic configuration is rectangular with 15" corner 
radii. The first modification has elliptic front ~ndrear sectionsjoined by 
a rectangular .section. The second and third modifications are .rectangular with 
corner radii of 30" and 20" respectively. The height of the ,bodies was assumed · 
to be 120" for all overall force and moment com,putations. The lateral separa.tión , 
between bodies was va.ried from 12'! (between adjacent. sides) to, 48". A number 
of velocities from 45 mph to 150 mph were considered. Crosswinds of velocity 
30 to 60 mph were considered at various angles from, 0 to 900 • Cases with one 
body stationary and the other moving past it were also compute~. The entire . 
range of· cases computed are shown in Tables 1 to 5. 

4. RESULTS AND DISCUSSION 

4(a) Motion of a Single ,Cylinder 
i 

The pressure distribution on an isolated sin,gle cylinder moving in 
an undisturbed fluid has been well established theoretically as weU as experi­
mentally. Hence this was used as an initial check on the accuracy of the developed 
numerict:!-l procedure. For a single cylinder in potential flow, moving with -a 
velocity V ,tne· pressure coef:ficient is 

CC) 

p - poo 2 
Cp 1 ~ = 1 - 4 sin 9 

"2 p 00 

This is plotted in 'fig. 1. In'the same figure is ' shown the results of the 
present computati0n using 36 points. It is seen that the agreement between 
the twosolutions is excellent. 

4(b) Two Cylinders Moving Past Each Other 

The case of two moving right circular cylinders passing each, other 
with their centers located on parallel lines has been investigated by Kawaguti 
(Ref. 2). He replaces the cyli!).ders by doublets (for the · first approximation) . . 
Then by considering the images of these doublets in the two cylinders he 
proceeds to higher order ·approximations. By summing the .potential due to each 
of the doublets and thei'r images, he arrives at ' a series ,solution., The accuracy 
of the solution depends on the number of terms of the series one considers. ' 
Kawaguti has given 'the solution to the fifth order approximatio!).. ' This 'is ' 
shown plotted in Fig. 2 as a time history of the pressure at point A on one of 
the cylinders. On' the ,same figure are also plotted the results of the present 
computation .. To check the rate of convergence of the present solution a 
series of computations were Undertaken. gradually increasing the number of 
points (or segments) considered. These resul ts ,are also shown in Fig. '2. , It ' 
is seen that the most critical point is at Ut/a=O. At this point, the present 
solution gave an asymptotic value of Cp = -3.8. , This is seen in Fig. '3. 
Kawaguti's solution gave a value of -3.77. The 60 point solution is ' in error 
by less than 3% (based on the ,difference between the Cp at point A of .the . 
single body and the' C at the same point with 2 cylinders at Ut/a=O). In the 
s~e ~ figure is also sEown the results of the computation when the sourCe 
s'trength a( s) was assumed to vary linearly on eachsegment. It is seen that 

\ . 
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the solution is not improved. Since this assumption also resulted in long er 
computing time, it was decided to use the assumption cr = constant on each 
segment for all succeeding computations. 

The results for the two cylinder case are also indicative of the 
large interference effect present when the two cylinders are close together. 
The characteristic shape of the curve is also wor th noting as it is roughly 
similar to the shape predicted for train passing cases. 

4(c) Cab and Coach Pressure Pulses for Basic Geometry 

Before discussing the cab and coach pressure pulses, it is useful 
to examine the pressure distribution on a body as it is approached and passed 
by an identical body moving with equal velocity. Figures 23(a) to (j) show 
the pressure distribution on a body with the basic configuration under such 
a condition. Figure 23(a) shows the isolated body moving with no interference 
from the approaching body. The pressures have been normalized using the 
closing velocity of the bodies. The pressure distribution shows the characteristic 
suction peaks at the corners as one would expect, which gradually approach atmos­
pheric pressure near the middle of the body. As the interference due to body B 
is experienced on body A, the higher pressures ahead of body B tend to reduce the 
suction pressure at the front inside corner of body A. This type of pressure 
distribution is displayed until the front of body B is past the middle of body 
A. Subsequently, the suction pressures on the inside wallof body A increases 
further. When the two bodies completely overlap, a large suction pressure at 
the front and rear of the inside wall effectively seal the pressures on the 
inside wall maintaining a nearly uniformly high negative value. The pressure 
distribution will be symmetrical in time about the instant where the trains 
are completely overlapped. The pressures on the outside wall, i.e. not 
adjacent to the other train, are not greatly affected by the interference of 
the second train. 

Figure 5 shows the time history of pressure at point 8 (located at 
the front of body A (see Fig. 4) on the side facing body B) on body A. The 
two bodies A and Bare moving past each other with velocities VA and VB 
respectively, VA being equal to -VB' The closing velocity is therefore 2VA. 
The train pressure coefficient is based on the closing velocity. In the case 
of the moving cylinders, however, the pressure coefficient is based on the 
velocity of a single body to facilitate comparison with theoretical results. 
The point 8 on the body A corresponds to the location where -Cp reaches a 
maximum value with only body A present ,and moving with velocity VA' This can 
be defined as the cab pulse. The dif~erence between the C~MAX on this body 
and on the single cylinder is due to the different velocitles used for non­
dimensionalizing the pressures. 

Some of the characteristic features of the pressure pulse at this 
point are as follows. 

In the quiescent state, i.e., when mutual interference is absent, 
the C at this point will be -.75. As the trains approach each other, 
depen~ing on the closing velocity, the mutual interference due to the two 
bodies will begin to relieve this suction pressure. As the head of train B 
passés the point 8 on train A, this relief is reduced until, by the time the 
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two trains are completely overlapping each other, the suction pressure again 
increases reaching a peak value of nearly -1.3 (for t:,.y = 105 11

). The actual 
curve followed is dependent· on the lateral separation between the trains. 
This will be discussed in Section 4(j). The shape of the curve is roughly 
similar to the one shown in Fig. ·2 for the moving cylinders; As predicted by 
theory, the curves will be symmetrical about -Utjt:,.y = O. The pressure-time 
history for point 19 (located at thè middle of train A on the wide facing 
train B) as the two bodies approach and passwith equal velocities, is shown 
in Fig. 7 for the basic geometry. This corresponds to the coach pulse. The 
pressure in the quiescent state at this point depends on the length of , the 
body. Theoretically, if the body were long enough, the effect of the frontal 
shape which gives rise to a large suction peak will have vanished andCp would 
be zero. In the present case, a small suction pressure is still maintalned. 
As the two bodies come closer together, the pressure time history at point .19 
follows generally the same trends as for the cab pulse. Since the prèssure 
at the quiescent state is not as high as at point 8, the .consequences of the 
coach pulse are not as extreme as that due to the cab pulse. 

4(d) Pressure Pulses When One Body is Stationary and the .Other Moves Past It 

The pressure time history at point 19 with th~ basic geometry when 
one of the bodies is stationary and the other moves past it with velocity VB 
is shown in Fig. 9. There are two aspects to this case . . Either body A could 
be moving and body B stationary or vice versa. In eachcase the pressure is 
givenon .body A. The pressure pulse at point 19 again corresponds to the 
coach pulse. This case is of interest because most experimental data on the 
pressure pulses gathered to date correspond to this case, specifically where 
the measurements are made on a wall as a train passes by. This will be 
examined in detail further on. 

Referring to Fig. 9 it is seen that the case where VA = 0 and train 
B moves past train A is a critical one. The pressure at point 19 undergoes a 
change in sign. As the train B approaches the train A, the pressure at point 
19, which in the quiescent stage is atmospheric, starts to increase positively, 
i.e., the pressure will tend to push the side inwards. Just as the .head .0f 
the train B moves .past point 19, the pressure suddenly changes sign and as 
the trains completely overlap, reaches a negative maximum which would tend to 
pull the sides out. It is this reversal in sign of the pressure loading which 
probably could be more critical than a larger pressure pulse acting continuously 
in only one direction. 

4(e) Forces Due to Train Passage 

As mentioned in Section 2(f) the pressure distribution on body A has 
been suitably integrated to arrive at overall forces and moments. For an 
isolated body due to the nature of the present analysis (potential,non~ 
circulatory flow) the integrated pressure distribution will be ,zero. However, 
in the presence of another body, there will be a net unsteady effect which 
does not integrate to zero. This is clearly seen in Fig. 12 where the force 
time history on body A is shown when bodies A and B move past each other with 
equal and opposite velocities. The nature of the curve is somewhat similar to 
the coach pulse time history (Fig. 7). The bodies will be subjected to a 
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fairly large amplitude (of the order of several tons) sideforce tending to 
push them together. The pulse duration is o~ the order of 100 millisecs 
giving a frequency of about 10 cps. 

In Fig. 13 is shown a similar plot for the case of one stationary 
train and the other moving past it. The force on the stationary train as 
well as on the moving train are shown. Just as in the case of the pressure 
(at point 19 discussed earlier, see Fig. 9) the force on the stationary train 
is more critical. Not only does the force change sign, but the peak magnitude 
is also greater. Axial forces (in the x direction) are considerably smaller 
and have not been shown. 

4(f) Effect of Lateral Spacing 

Forces and pressures are generally relieved ,as the lateral distance 
between the bodies (óy) is increased. In Fig. 5 the effect of lateral spacing 
on the pressure time history at point 8 on the basic geometry is shown. The 
basic shape of the curves are the same. The point to be noted is that the 
overall variation of pressure about the quiescent state is reduced. It is 
slightly different f0r the coach pulse. Here the effect is simply to reduce 
the ~CpMAX' This is shown in Fig. 7. Figures 10 and 11 show the variation of 
the pe8.k suction pressure at a particular point as a function of lateral 
spacing. The relief afforded by larger spacing is greater for the coach pulse 
than for the cab pulse. 

In Fig. 14, the integrated force Fy has been plotted as a function 
of lateral spacing. This graph clearly indicates the accelerating growth of 
the side forçe as the latera..l distance separating the trains iS , decreased. 
For the basic geometry, with VA = -VB = 90 mph, increasing the lateral spacing 
from 15" to 24" reduces the side force by 4000 lb., whereas increasing the 
spacing from 12" to 15" reduces the side force by 3000 lb. 

4(g) Effect of Streamlining 
-.o t 

The effect of streamlining is also to relieve the loads and moments. 
This is shown by the computations carried out using the Modification 1 
(Ellipse) geometry. This shape is made of an elliptic front and rear section 
and a rectangular midsection. For this geometry? when the body is moving without 
interference, the peak -C~ occurs at point 10 (Fig. 22). The peak Cp value is 
~0.23 as compared to -0.7) on the basic geometry. The time history of the cab 
pulse, generated as two bodies with this ~reamlining approach each other and , 
pass, is shown in Fig. 6. It is seen that the pressure variation is not as 
large as for the basic geometry. The coach pulse time history for th±s 
geometry is shown in Fig. 8. As would be expected the streamlining does not 
affect the coach pulse as much as the cab pulse, the former being influenced by 
the length of the train. 

Figures 10 and 11 show the effect of lateral separation on both the 
cab pressure pulse and ,coach pressure pulse for a streamlined body. The cab 
pulse is seen to be much smaller for the Mod. 1 geometry and the rate of 
decrease of the cab pulse with an increase in ~y is slightly higher than for 
the basic geometry. A similar graph for Mod. 2 is seen to lie in between the 
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basic geometry and Mod. 1 as would be expected. As mentioned earlier the coach 
pulse is not strongly affected by frontal shape. This is al~o evident from 
Fig. 11. 

The integrated pressure or force Fy for Mod. 1 and Mod. 2 geometries 
is shown in Fig. 14. The variation of total side force with spacing (~y) is 
similar t0 that of the pressure pulses as discussed above. 

4(h) Effect of Crosswind 

Crosswinds have a very significant effE;ct on the forces and moments , 
acting during train passage. They tend to distort the pressure distribution 
to such an extent (depending on crosswind magnitude and . direction) th at ,force 
time histories have a totally different shape. This is shown in Fig. ,17 where 
the time history of Fy has been plótted with crosswiód angle as a parameter. 
In addition the case of no crosswind is also shown in the' same figure for 
comparison. 

When there is no crosswind, the isolated body does not experience 
a net force. As the bodies move closer together, the mutual interference 
distorts the pressure distribution asymmetrically and a net force results. 
The significant lateral force (directed towards the passing train) is negligible 
until the bodies are very close together. With a crosswind (see Fig. 17) 
starting at a crosswind angle of 00 , i.e ... wind blowing from left to right, . 
it is seen that the train is subjected to a force which varies in direction as 
the trains approach each other and pass. The net force tends to rise positively 
as they approach each other, reaching a peak when the nose-ta-nose distance 
between the bodies is nearly zero. As th~y start overlapping each other the 
force starts ' decreasing and ul timately becomes negative. The negative maximum 
is reached when the bodies are 'halfway across each other. Thus, even ,though 
the crosswind may not significantly increase the peak value of force, the fact 
that the train is subject to a significant lateral force whose sign changes 
rapidly is of importance. The effect of varying the crosswind angle is to chang€ 
the amplitudes of the force peaks. The maximum amplitudes seem to be reached 
with a crosswind angle between 60 0 and 750 • The distortion of the pressure 
distribution due to crosswinds also results in a net force in the x direction; 
i. e., ei ther a net thrust .or drag depending on the crosswind angle. This is 
shown in Fig. 18. The magnitudes are not large enough to have much significa~ce. 

Crosswinds seem to affect the net yawing moment very strongly. The 
yawing moment timehistory is shown plotted in Fig. 19 when two trains approach 
each other and pass (with equal and opposite velocities of 60 mph) in the 
presence of a crosswind of 45 mph magnitude blowing at an angle of 750 • Again 
for comparison, the case when nb crosswind is present is shown in the same 
figure . . The crosswind gives rise to a peak yawing moment greater than 10 times 
that with no crosswind. The same case for the streamlinedbody shape (Mod. 1) 
is also shown in Fig. 19. It is seen that the streamlining relieves the 
yawing moment considerably. 

A final point to be noted regarding the effect of crosswinds is that 
i t depends on the longi tudinal separation distance ~x. This i..s -br.ought out _in 
Fig. 20. It is seen that when öx is zero, the crosswind angle has negligible " 
effect. When öx !::! 341 inches, i. e., when the trains are first commencing to 
overlap, the crosswind has a significant effect. 
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4(i) Problems of Scaling 

Scaling for experimental purposes appears to be a difficult problem. 
Tbis is due to the essential nonlinearity of the interference between the 
trains. This is th~ fundamerital difference . betWeen the pressure distribution 
on a single isolated body moving with uniform velo city ~d that on bodies 
subjected to mutual interference. This can be seen in the form of the 
Bernoulli' s equation. The general Bernoulli t S equati. on for unsteady flow 
is: 

P-Poo 

1 v2 
2' P oo 

dep + ! 2 
P dt = Poo 2 P Ytx, 

- 2 
= 1 V + ~ dep 

... v2 v2 dt 
00 00 

In the case of steady flow dep/dt = 0 and hence pressure (or force) can be 
scaled in proportion to the square of the free stream velocity. In the case 
of unsteact.y flows the dep/dt term which is dependeht on the interference is 
not proportiopal to (velocity)2 in generaL In fa ct under certain conditions 
it is nearly proportional to the velocity. This- is shown in Figs. 15 and 16. 
Fy is shown plotted against velocity for theb~sic geometry when the trains 
aOIl1Pletely overlap each other. Tt is seen that Fy is almost directly propor­
tio'nal to Vo In fact, it appears from Fig. 16 (Which has been drawn to a 
highly exaggerated scale) that Fy aCv) .91). This is only at fu. = 0". When 
~he ~o~es are far e~ough apar~ Fy a(v)2 • . In. between th~se two ext:em~s it 
1S diff1cult to pred1ct exactly what the sca11ng factor W111 beo Th1S 1S 
sp'own in Fig. 12 where the force time history for the basic geometry has been 
plotted for dïfferent veloci ties. When one includes any crosswind effects , 
the problem becomes more difficult. 

4(j) Comparison of Present Results with Those of Sockel 

As mentioned in the literature review, Sockel (Ref. 4) has reported 
a theoretical investigation of the pressure distribution along passing rail­
road trains. Some of his results will be used for comparison wi th the present 
co~utations 0 

Sockel' s results have been pres~n~ted for two-dimensional bodies, 
semi-infinite in length with a circular nose section. The lateral separation 
distance is 1.3 times the width of the trains • Some of the graphs from bis 
paper are shown in Figs. 2l(a) to (d). Figure 2l(a) show~the pressur!= 
distribution on body A as bodies A and B approach each other with equal 
velocities and overlap. Since his bodiès are semi .. infïnite they can never 
completely overlap. Figures 23(a) to (j) show the corresporiding pressure 
distribution obtained from the present computations. The present computations 
shown are for the basic geometry wi·th a lateral separation of 105" or 1.167 
times the train width. Consequently the comp8.rison can only be quali tati ve. 
Tt should also be noted that Sockel has normàJ.ized bis pressure distribution 
wi th the velQcity of one of the bodies while the present computations have used 
the closing velociiy. 
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For the isolated body (Figs. 2l(a) and 23(a)) the pressure distribu­
tions are similar, with a lobe of positive pressure (inward arrows in present 
case) i n the front and two lobes of negat i ve pressures on the front corners. 
In the present case, of course, t he pressure distribution will be symmetrical 
about both axes. The pressure distri bution when the two bodies are just opposite 
each other is shown in the second figure from the top in Fig. 2l(a). The 
correspondi ng case in the present study is shown in Fig . 23(b). Both these 
figures indicate a regi on of +ve pressure at the front followed by a small 
region of -ve pressure and subsequent ly +ve pressure. The third contour (from 
the top) in Fig . 2l (a ) corresponds t o Fig. 23(e) i n the present computations. 
Some of the common feat ures are a regi on of +ve pressure at the front, followed 
by a -ve pressure over a fairly long length and th en a final +ve pressure 
region. Beyond this point it is not pos sible to compare the two solutions 
because of the type of bodies o The present computations show that the -ve 
pressure extends on the i~ner sid~ until it reaches a peak value at ~x = 0 
when the trains overlap completely. At this poi nt the 'large negative pressures 
at either inner corner effectively block any relief and the pressure is almost 
uniformly negat i ve all along t he i nner side. 

Figure 22 shows the pressure distributi on on the Mod. 1 configuration. 
As would be expected the p e ak pressure is less than for the ,basic geometry 
case and the pres sure distributi on is more uni form. 

The main di fferenc e s 'between Sockel's computation and the present 
are seen from a comparison of the pressure ~ ignatures at a particula~ point. 
His curves for poi nt 3 correspond roughÀY to the ' cab pulse of the present 
computati on. In Fig. 2l (b) the pressure signat ure for point 3 is given when 
two trai ns approach each othér with equal velocTti es. This corresponds 
roughly to the pr essur e t i me history for poi nt 8 i n Fig . 5 at a ' ~y = 114", 
It is seen that the curves are s omewhat similar up to a -Ut/~y ~ 1. Beyond 
that, the present' t heory predi cts a continued r ise i n -ve pressure ending in 
a peak at Ut/~y = 0 whereas Sockel's curve t ends to f l atten out in th at region. 
Similarly, i n Fig . 21(d ) Sockel shows the pressure ~ulse on the stationary 
train as the other trai n passes by . Thi s is similar to the graph shown in 
Fig . 9 . Agai n the comparison i s vali d up to Ut/~y ~ 1. The main reason for 
the differences noted above appears to be the difference in body shapes, 
Sockel us i ng s emi - inf inite bodies and the present work being carried out with 
finite bodi es. 

4(k) Comparison with Exper i ment al Data 

Exper iment al result s available are very sparse. Further, it is 
established that t he i nterference results can be very sensitive to the 
numerous parameters involved , i .e., body geometry, spacing, velocity, type 
of measurement, and so forth. Wind t unnel results under steady conditions 
appear to be of l i mited use for predicti ng i nterference lOadings since the 
real problem of interest (passi ng with relatively small lateral separations) 
is i nherently unsteady i n nature. Another i mportant diffi culty is the problem 
of scaling which has been dis cussed earli er . Keeping these poi nts in mind, one 
can sti ll exami ne the l i mited experiment al data from a quali tat i ve v i ewpoint. 

The main source of experiment al data appears to be that due to 
Hillmann et al (Ref. 5). Extensive (wind t unnel ) model testing as weIl as 
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some very limited full scale testing has been carried out by these authors. 
Some general comparisons can be made using their results. The pressure 
signature of a train (moving at 125 mph) as it passed a stationary measuring 
train has been recordedand is shown in Fig. 24. This would correspond to 
the measurement of the coach pressure pulse. This is comparable to the 
pres.sure time history obtained from the present computati0ns shown in Fig. 9 
(for the case VA = 0, VB = 125 mph). It is not possible to compare the magnitude 
of the pressure pulse as Hillmann et al do not give a scale for their pressure 
measurement. However, the shapes of the pulse are quite similar and the 
duration is of the same order of magnitude (about 200 msec). 

In Fig. 25 is shown the effect of later al spacing on the coach 
pressure pulse as given by Hillmann et al. The locomotives 112 and 103 
referred to are roughly similar in shape to the present basic geometry and the 
Kruckenburg model used is similar in shape to the Mod. 1 geometry used for the 
present calculations. This figure can be compared to the results predicted by 
the present computations shown ' in Fig. 10. It is, seen that the shape of the 
curves is similar in both cases and the effect of streamlining is of the same 
order of magnitude in both cases. 

The problem of scaling discussed in S'ection 4( i) can be also 
substantiated from Fig. 26. In this figure are shown the results of Hillmann's 
tests to determine the relationship of the magnitude of the pressure pulse to 
the train velocity. It is apparent that the pressure pulse magnitude is 
definitely not proportional to (velocity)2. 

Hillmann et al have reported a measurement of the pressure pulse 
under crosswind c.onditions. This is also shown in Fig. 24. It is seen that 
crosswind distorts the shape of the pressure pulse in a manner similar to th at 
indicated by the present computation (Fi~. 17). 

4(~) Limitations of the Present Study 

There are two main limitations regarding the present study. 
due to the scope of the work and the other the type of approach used. 
will be elaborated on below. 

One is 
These 

By scope of the work, one is referring to the fact that the solution 
is in two dimensions. Consèquently, the pressure relief afforded by the third 
dimension is nöt included. This isvividly brought out in Kawaguti's work 
(Ref. 2) where he considers the pressures due to passing cylinders and those 
due to passing spheres . . The ,peak suction pressure · at a particular point on 
the cylinders reaches nearly -3.8 ·. For a similar case when {wo spheres are 
passing, the peak pressure at the s.ame point is only -1.55. Thus one can 
appreciate the relief of pressure afforded by the third dimension. In the 
case ofelongated bodies such as the ones used in the present study, the 
relief will not be so great. everYWhere. Near the ground plane, there will be 
practically no relief. The pressures will begin to taper off as one approaches 

I 

. the top of the train. An empirical approach to include this effect has been 
used in the computation of the moments and forces. 

The secon~ major limitation is due to the type of solution used in 
the present study. It is based on p,otential flow. Consequently, all the 
viscous effects have been neglected. Viscous effects as is weIl known will 
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be confined to the boundary layer on the bodies and i ts major effect will be 
felt near the rear of the trains where the flow will separate from the bodies 
giving rise to a large amotmt of drag which cannot be accotmted for by 
potential flow theory. The pressures at the rear corners will also net be 
as high as predicted by potential flow theory. All these factors will lead 
to the present solution predicting conservative loads. The loads in practice 
might lie in between two-dimensional and three-dimensional solutions. Finally, 
one should note the limitations of the solutions regarding the number of 
segments or points chosen for the computations. In the present instance it 
has been observed that the solution is fairly sensi ti ve to the number of 
points and their distribution. To arrive at a solution which approaches the 
,asymptotic solution, a minimum of 72 points were needed. Increasing the 
number of points will increase the accuracy of the solution, but it will 
also increase computing time whi ch soon could become prohi bi ti ve depending on 
the number of cases one wants to compute. The present solution is within 5% 
of the as'ymptotic solution. One of the features of the present study is th at 
only 3 basic cases have to be computed in detail for each configuration and 
separation ,distance. Once these are complete the superposition of the 
solution discussed in Section 2(d) reduces costs enormously. 

5 • C ONC LUS IONS 

General conclusions that have been reached during the present study 
are as follows: 

1. Au incoIr!Pressible potential flow method in two dimensions has been 
developed, capable of predicting the tmsteady pressure distribution, 
forces (side force and drag), and moments (yawing and rolling) on moving 
or stationary bodies (e. g., trains) of arbi trary shape, due to the 
passage of a second body. Effects of arbitrary wind velocity may also 
be included. 

2. Substantial aerodynamic pressure pulses are iIr!Posed due to the passage 
of a 'train past another moving or stationary train. For example, fer 
the basic geometry considered, with a lateral separation of 105" (train 
wi"dth 90 ") a pressure coefficient, based on closing velocity , at the 
front of the train (point 8) of nearly 1.4 and an integrated load of 
9000 lbs is predicted due to the passage of another train with equal and 
opposi te velocity of 60 Ir!Ph. 

3. The case of a stationary train encountering a pressure pulse due to the 
passage of another moving train appears to be the cri tical one. This is 
due to the sudden reversal of the direction of the pressure loading. For 
example, for the basic geometry, wi th a lateral separation of 105", the 
pressure coefficient onthe stationary train at point 19 (Le., middle 
of the train) changes from +.6 to -1.4 in ab out 75 milliseconds (for a 
train velocity of 125 Ir!Ph). This impulsi ve loading can be quite abrupt. 
Ini tially i t will act so as to push the sides and windows of the train 
inwards, then it abruptly reverses, loading the train sides in the 
opposi'te direction. 

4. The lateral separation !::"y, between passing trains i s a very important 
factor affecting the interference loading. Increasing!::"y reduces this 
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loading rather quickly when the separation is small and less rapidly at 
larger separation. The amount of reduction is dependent on body shapes, 
train velocities, and the nose-to-nose distance between the trains. 

5. Body shape pl~s a very important role in deciding the type and magnitude 
of the interference loading. Streamlining can reduce the loading sig­
nificantly. Typically, for identical cases of lateral separation and 
velocity, the maximum cab pressure pulse on Mod. 1 geometry (elliptical 
nose and rear sections) is reduced to a value of Cp = -0.90 from a 
value of Cp = -1.40 for the basic train geometry. The integrated inter­
ference loads are also similarly reduced. 

6. Crosswinds can significantly increase the magnitude and type of loading 
due to train passage. For example, in the case of two trains approaching 
each other and passing with ·equal velocity, the sideforce is predominantly 
in the positive direction, i.e., tending to pull the trains together. If 
there is crosswind the trains are initially subject to a significant 
positive load which gradually changes sign and becomes significantly 
negative and then as the trains overlap, becomes strongly positive again. 

7. For the case of two trains approaching and passing each other with equal 
velocity, the crosswind effect was found to be greatest, for a given 
crosswind strength, when th~ crosswind angle was approximately 70 0 

(relative to direction of · train travel) . 

8. Crosswinds can significantly increase the interference yawing moment. 
Streamlining will tend to alleviate crosswind effects significantly. 

9. Scaling of the interference loads, measured or predicted, applicable to 
closely passing trains, from one set of velocity conditions to another 
set, presents inherently important difficulties. This follows directly 
from the basic unsteady nature of the problem and the fact that there 
is no simpl~ (moving) coordinate system in which the problem may be 
considered tl:S stationary. ·Thus the singulari ties representing the 
flow boundaries have variabIe strength (w.r.t. time) in all useful 
coordinate systems and the p ocpjdt term will always play an important 
role in establishing fluid pressures. The only expected exception to 
this will occur when the body separations are large and the problem then 
will be nearly steady in coordinate systems translating with the bodies. 
These situations, however, are not expected to be the critical design 
cases, so that in general it appears that ad hoc scaling "rules" will 
have to be developed based on measurements or calculations which bracket 
the complete ranges of interest, including the important role of 
crosswinds. 

10. Wind tunnel studies under steady state conditions in general will be quite 
inadequate for the prediction of the true unsteady train interference 
loadings. Even for the case of a train passing a long plane wall, wind 
tunnel simulations with steady flow con~itions will be severely hampered 
by the presence of the tunnel wall boundary layer if viscous bodyeffects 
are of interest. 
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6. RECOMMENDATIONS FOR FUTURE WORK 

The present study has brought to light the importance of the aero­
dynamic phenomena due to interference when two bodies with a high relative 
velocity and close lateral separation approach each other and pass. From the 
point of view of supplying preliminary data, the present work is satisfactory. 
It is capable of predicting the trends of such effects as streamlining, lateral 
separation crosswinds, etc. However, for a finalized design, measurements 
initially with scaled vehicles are essential. It ·is also clear that f0r model 
tests to be of real significance, unsteady interference effects will have to 
be accurately simulated. In fact, the lack of such data appears to be the 
major deficiency in our present understanding of real interference loadings. 
Wind tunnel tests under steady conditions can provide complementary information, 
however, as pointed out earlier, such testing has definite limitations for the 
present interference problem. 

Regarding extensions to the present theoretical work, it can be 
expanded to include the third dimension. This would have to be app~oached with 
some caution as it would entail larger developmental and computational costs. 
Complemented by model (and possibly limited full scale testing) covering an 
adequate parameter range, the present study itself could be empirically 
modified to give three dimensional and real fluiq effects. 
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BASIC GEOMETRY 

TABLE 1 

/:J.y 105 105 105 105 105 105 105 105 105 105 105 105 105 105 105 

&. 0.0 20 340 360 380 52.5 78.75 105 210 420 262.5 315 341.25 472.5 630 

VA 45 60 90 135 150 45 60 90 135 150 0 0 0 0 0 

VB 45 60 90 135 150 0 0 0 0 0 45 60 90 135 150 

Vc 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

8- 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

VA 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 

vB 60 60 60 60 60 60 60 60 60 60 60 60 60 60 60 

Vc 30 30 30 30 30 45 45 45 45 45 60 60 60 60 60 

8° 30 45 60 75 90 30 45 60 75 90 30 45 60 75 90 

N SEP = 15, NVE L = 3, H = 120 TOTAL CASES = 450 

TABLE 2 

6.y 102 102 102 102 102 102 114 114 114 114 114 114 138 138 138 138 138 

&. 0 25.5 51 102 204 ' 306 0 28.5 57 114 228 342 0 34.5 69 276 414 

VA 45 60 90 45 60 90 0 0 0 60 60 60 60 60 

VB 45 60 90 0 0 0 45 60 90 60 60 60 60 60 

Vc 0 0 0 0 0 0 0 0 0 45 45 45 45 45 

8° 0 0 0 0 0 0 0 0 0 30 45 60 75 40 

N SEP = 18, N VEL = 14, H = 120 TarAL CASES = 252 

Note: VA' YB' Vc are in roph; x, y, H are in inches. 



TABLE 3 

MOD. 1 (ELLIPSE) 

/1y 105 105 105 105 105 105 105 105 102 114 138 102 114 138 

/1x 0 26.25 52.5 105 210 315 525 735 0 0 0 204 228 276 

VELOCITIES SAME AS FOR CASE 2 
N SEP = 14, N VEL - 14, H = 120 , NUMBER OF CASES 196 

TABLE 4 

MOD. 2 (30" RADIUS) 

/1y 105 102 105 114 138 102 105 114 138 

/1x 1 body 0 0 0 0 204 210 228 276 

VELOCITIES SAME AS FOR CASE 2 
N SEP = 9, N VEL = 14, H = 120 , NUMBER OF CASES 126 

TABLE 5 

MOD. 3 (120" WIDE) 

/1y 105 136 

/1x 1 body 0.0 

VELOCITIES SAME AS FOR CASE 2 
N SEP = 2, N VEL = 14, H = 120 , NUMBER OF CASES 28 

TOTAL NUMBER OF CASES: 450 + 252 + 196 + 126 + 28 = 1,052 

NOTE: VA,VB ,VC are in MPH. x, y, H are in inches. 
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Figures 23(a) to 23(j) show the pressure distribution at various time intervals on 
a body moving with a velocity of 56.8 mph as it approaches and passes an identical 
body moving in the opposite direction with the same velocity. Lateral separation 
between bodies is 105 inches. All the figures have been photographically reduced 
by a factor of 2.645. 
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APPENDIX 

DEVELOPMENT OF COMPUTATIONAL EQUATIONS 

Let S be the surface of a cylinder extending from -L to L. ~(s) 
is the distribution of sources of strength ~ on the body. ~(s) is assumed 
independent of z. s is the coordinate measured along the contour of the 
body. In this formulation the subscript i refers to the field point and 
j to the source point. Coordinates x, y, z referto the field point and 
~, Tl, s to the source point. r is the distance from the field point to 
the source point. 

Without loss of generality we can assume that z = O. The potential at 
x, y, z due to the distribution of sources is 

cp(x,y,z) =J J ~~s) dS 

or 

cp(x,y,o) = f ~(S)JL ~s = J ~(s) JL d;dS 

-L -L 

where 

i a2 = (x _ ~) 2 + (y _ Tl) 2 

To avoid the infinite integral that will result above as the cylinder becomes 
two-dimensional (L -? 00) we can make use of the fact that the net source strength 
on the cylinder is zero, so that 

So, 

A .. 1 



Now if we let L -700 

cp(x,y,o) = .. f o-(s) log(a~)ds 

or 

cp(x,y) = -f 0-( s) log(x - ~)2 + (y - T})2}ds 

and 

~= - 2fo-(s) (x2-~) 2 ds 
(x -~) + (y - T}) 

oep = _ 2 f 0-( s) (y - T}) ds 
Öy , (x _ ~)2 + (y _ '1)2 

Coordinate Transformations 

Consider the following coordinate transformation: 

1. Body attached coordinates. 

2. h is the + outward normal 
to the body. 

3. s is + clockwise around 'the 
body. 

4. j, the source point, lies 
onthe s axi s • 

Xi..,Yi. 

\ ~':J 
\ 
\ 

5. i, 'the field point, could 
be anywhere in space. 

~------------------~x 

6. ct is measured from + x to s. 

From the figure , i t is seen that 

Xl' = X • + (s . . cosa. - h .. sira.) 
oJ lJ J lJ J 

Y
l
· = YOJ' + (s .. sira. + h . . cosct.) 

lJ J lJ J 

A-2 



for the source point, h .. = 0, s .. = S 
lJ lJ 

s = x . + S cesa. 
oJ J 

x. - S = (s .. - s)cosa. - h .. siw. 
1 lJ J lJ J 

Y
1
. - Tl = (s .. - s)sia:x. + h . . cosa. 

lJ J lJ J 

· 2 ) + sln a. 
J 

h2 ( . 2 2 ) + i. Sln a. + cos a. 
J J J 

+ 2h .. sia:x. cosa. - 2h .. sia:x.cosa. 
lJ J J lJ J J 

2 2 
= (s .. - s) + h .. 

lJ lJ 

cp(x, y) = -} cr(s)log[(s .. - s)2 + h~ .]ds 
lJ lJ 

~ = - 2cr(s) 
(s .. - s)cosa. 

lJ J 
2 (s .. - s) 

lJ 

- h .. siw. 
lJ J ds 
2 + h .. 
lJ 

~cp (s .. - s)sia:x. + h.jcosa. 
o () lJ J 1 J dY = - 2cr s 2 2 

(s .. - s) + h .. 
lJ lJ 

Before proceeding further wi th the integration, we have to get e~ressions 
for Sij and hij in terms which can be calculated. We can write: 

s = (x - x )cosa + (y - y )sina o 0 

A-3 



If we write 

then 

s = -x cosa yosira o 0 

h = x sira - y coáX o 0 0 

s = s + x cosa + y sira 
o 

h = ho - x sincx + y cosa 

For a specific point, and Soj and hOj ean be calculated from 

s . = s. x . cosa . 
OJ J J J 

h . 
OJ 

and 

y .sira. 
J J 

(Note: oh. = 0) 
J 

Integration for cp and cp Derivatives 

obtaining 
At this point we ean write the integral as a sum over n segments, 

'Pi (x, y) = -I Sj+l 

J CT. (s )log(( s .. 
J l.J 

22 · 
- s) + h .. }ds 

l.J 
j=l s. 

J 

n Sj+l 
( Sij s)cosa. ~ h .. sira. 

-2 I J CTj(S) 
-

= J l.J J 
2 2 

(s .. - s) + h . . 
j=l s l.J l.J 

j 

n 
Sj+l 

(s .. - s)sira . + h .. cosa. 

-2 I J CTj(S) 
l.~ ~ l.~ J 

= 
(sij 

2 2 I 
- s) + h .. \ s. l.J j=l J 

A-4 
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By making suitable assumptions for the distribution of 0" over the element we 
can integrate the above equations. 

1. 0" is constant over each element but varies from element to element. 

2. 0" varies linearly over each element as well as varying from element to 
I 

element. 

If we assume 0" constant over each element the equations become 

ep. (x,y) = 
J. 

dep. 
J. 

dX 

dep. 
J. 

dy 

n Sj+l 

- \' 0". I log((s .. L J J.J 
2 2) - s) + h .. ds 

J.J 
j=l s. 

J 

( s. . - s) cosQ";. - h .. sim. 
J.J J J.J J ds 

2 2 (s .. - s) + h .. 
J.J J.J 

(s .. - s)sim. + h .. cosa. 
J.J J J.J J ds 

2 2 (s .. - s) + h . . 
J.J J.J 

In these two equations we have three different integrals of the form 

I 2 
dx a tan 

-1 x 
2 =-- --

a + x lal lal 

I x 1 2 2 
2 2 dx = 2' log(x . + a ) 

a + x 

If we assume 0" to vary linearly wi'thin each element, 

(s - sm.) "]-, 
O".(s) =0" . + ( J ) (O"J.+1- 0".1) 

J J -. Smj+i - Smj_l J-

where subscript m stands for the mid-point of the 
element. 
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+ 

cp. (x,y) = 
l. 

0' - cr 
j+1 j-1 

- s) + h .. }ds 
l.J 

22 · ] sm.)log((s .. - s) + h .. }ds 
J l.J l.J 

(Sij - s) cosCX. - h .. sira . 
J l.J J ds 

2 2 (s .. - s) + h .. 
l.J l.J 

O"l- cr 'l + _~J +-=-__ J~-...:;... 
S '+1 

f (S - s ) 
mj 

(S .. - s)cosa. - h .. sira. 
l.J J l.J J 

2 2 Smj+1 - Smj_1 
s. 

J 

(s .. - s) + h .. 
l.J l.J 

dCP. In [ fS'+1 (s .. - s) sina. 
l. = -2 0' l.J J 

dy j ( )2 
j=l s. Sij - s 

J 

+ h . . cosa. 
l.J J ds 
2 + h .. 
l.J 

0'. 1 - cr. 1 S '+1 ( Sij - s)sira . + h . . cosa. 
+ J+ J- F(s - sm·) 

J l.J J 
2 2 Smj+1 - sm· 1 J 

(sij - s) + h .. J- S. l.J 
J 

ds ] 

ds ] 

The only new integra1s that appear due to the second assUll:!J?tion are: 

J 22 122 22 
x 10g(a + x )dx = 2 (x + a )[log(x + a ) - 1J 

J x2 I I -1 x 
. 2 2 dx = x - a tan -

a + x lal 

Summary of Equations 

Summarizing the various terms we have the following: 

S '+1 
10 f C( )2 2} . = log s - s.. + h. . ds 

l.J lJ 
S . 

J 
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s. 
1 JO +1 

I = (s- 2 2 
sm.) log [( S - s .. ) + h .. }ds 

J lJ lJ 
Sj 

h .. 
lJ ds 

2 2 
Sij) + hij 

S '+1 h .. 
Jl =f\s - sm·) lJ 

2 J (s - s .. ) S. lJ 
J 

° JSÜ+l (s - Si) 
K = ( S ) ds - s.. + h .. 

lJ lJ s. 
J 

2 
+ h .. 

lJ 

__ 1 =JSÜ+l (S - Smj)(S - Sij) 
r 2 2 ds 

(s - s .. ) + h .. 
lJ lJ s. 

J 

n 

ds 

epi = - I O"j10 - L.sj(O"j+l - O"j_l)I
l 

j=l 

Oep. In 
~ = 2 0". (JOsira . 
ox J J 

j=l 
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Thus it is seen that the equations ~e of the form: 

cr .X .. 
J ~J 

cr .Y .. 
J ~J 

cr .Z .. 
J ~J 

where X . . , Y. . and Z. . are the matrices' formed by the various integrals. 
~J ~J ~J 

They can be calculated using the geometry of the configuration. ocp/Ox and 
ocp,/dyare the u and v co~onents of velocity. The normal and tangential 
'components are gi ven by: 

OCPi _In 
~n - . cr.[ - X .. sira. + Y .. coSO:. ] 
on J ~J ~ ~J ~ 

j=l 

ocp. n 
~ = \' cr .[x .. coSO:. + Y .. sira.] 
os ~ J ~J ~ . ~J ~ 

j=l 

The solution is obtained when the proper boundary condition is i~osed on 
the normal derivative at the surface to get a set of n algebraic linear 
equations in the n unknown cr'. Ei. 

J 
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UTIAS R<oport No. 185 

Inst1tute tor Aerospace studies, University of Toronto 

AERODYiIAMIC INrERFE!UlICE OF HIGH SPEED GROUlID VEHICLES 

J ohnston, G. W., Seshag1r1 , B. V. , EUis , N. D. 34 pages 26 figures 5 tables 

1. Aerodynamie Interferenee 2. Unsteady Potential Flow 3. GroWld Vehiele. 
4 . Cross Wind Interferenee 5. Impulsive Loading. 

I . Jor.nston, G. W. , Seshagiri , B. V., Ellis, N. D. I r. UTIAS Report No. 1115 

~ 
A two-dimenslonaJ.., incompresslble, potential :flow solution based on A. t-1. 0. Sm1th' s method has been 

de:veloped co.pable of predicting the Wlsteady interferenee pressure loadings on ei ther moving or 
statlonary bodies of arbltrary shape due to tbe pas!:iE,ge of a second body . The pr~ssure distrlbution 
has been suitably integrated to yield overall forees (side and axial) and moments (rolling ar.d yawing). 
Effects of erosswinds of arbitrary magnitude e.nd direction call be aecurately ineluded. The results 
of a wide ranSe of eomputations using different body configurations are presented and analysed. The 
studies carried out indicate that substantial aerodynamic interference leads r:ay be e>..-pected under 
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