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complement Balian–Low type theorems for the non-existence 
of smooth frames and Riesz sequences at the critical density. 
The proof hinges on a connection between smooth lattice 
orbits and generators for an explicitly constructed finitely 
generated Hilbert C∗-module. An important ingredient in 
the approach is that twisted group C∗-algebras associated to 
finitely generated nilpotent groups have finite decomposition 
rank, hence finite nuclear dimension, which allows us to 
deduce that any matrix algebra over such a simple C∗-algebra 
has strict comparison of projections.
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1. Introduction

Let G be a nilpotent Lie group and let (π, Hπ) be an irreducible, square-integrable 
projective representation of G. For a lattice Γ ≤ G, consider the orbit of π under a vector 
g ∈ Hπ,

π(Γ)g = (π(γ)g)γ∈Γ. (1.1)

The aim of this paper is to study the existence of a vector g ∈ Hπ such that π(Γ)g forms 
a frame or Riesz sequence (Riesz basis for its span) in Hπ, that is, π(Γ)g satisfies the 
frame inequalities

A‖f‖2
Hπ

≤
∑
γ∈Γ

|〈f, π(γ)g〉|2 ≤ B‖f‖2
Hπ

, f ∈ Hπ, (1.2)

for constants 0 < A ≤ B < ∞, or the Riesz inequalities

A‖c‖2
�2 ≤

∥∥∥∥∑
γ∈Γ

cγπ(γ)g
∥∥∥∥2

Hπ

≤ B‖c‖2
�2 , c ∈ �2(Γ). (1.3)

A particular focus will be on the existence of frames and Riesz sequences π(Γ)g for which 
the associated diagonal matrix coefficient function Cgg : G → C, defined by

Cgg(x) = 〈g, π(x)g〉, x ∈ G, (1.4)

possesses an additional form of localization, e.g., smoothness or L1-integrability.
Frames and Riesz sequences are classical notions in various areas of complex and har-

monic analysis, and play an important role in the applications of these areas as they 
provide stable and unconditionally convergent Hilbert space expansions. More modern 
variants of these notions have also been studied in the setting of operator theory and op-
erator algebras, most notably in Hilbert C∗-modules, where they give rise to projections 
in associated C∗-algebras.

In this paper the existence of localized frames and Riesz sequences of the form (1.1)
will be studied via a correspondence to projections in an associated twisted group C∗-
algebra. It turns out that recent results on C∗-algebras (in particular, group C∗-algebras) 
provide adequate tools that are capable of treating localization properties in the existence 
problem.

Before formulating the main results and describing the methods used in their proof, 
the requisite background and context will be sketched.

1.1. Background and context

A first fundamental obstruction to the existence of frames and Riesz sequences of 
lattice orbits π(Γ)g is provided by the density theorem, relating the lattice co-volume 
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vol(G/Γ) or its reciprocal (the so-called “density”) and the formal dimension dπ > 0 of 
π. Different versions of this theorem can be found in, e.g., [12,102,106].

Theorem 1.1. Let G be a nilpotent Lie group with a lattice Γ ≤ G. Let (π, Hπ) be an 
irreducible, square-integrable projective representation of G of formal dimension dπ > 0.

(i) If there exists g ∈ Hπ such that π(Γ)g forms a frame, then vol(G/Γ)dπ ≤ 1.
(ii) If there exists g ∈ Hπ such that π(Γ)g forms a Riesz sequence, then vol(G/Γ)dπ ≥ 1.

(The value vol(G/Γ)dπ is independent of the choice of Haar measure on G.)

Theorem 1.1 provides a critical density for a lattice to admit a frame or Riesz sequence 
in its orbit. In particular, a lattice admitting an orthonormal basis must have the critical 
density vol(G/Γ) = d−1

π . Necessary conditions of this type are commonly referred to as 
density conditions and can also be obtained for discrete index sets that do not necessarily 
form a group, see, e.g., [43,82].

There is a converse to Theorem 1.1 for irreducible representations of a nilpotent Lie 
group N that are square-integrable modulo the center Z = Z(N). Representations of 
this type can be treated as projective representations of G = N/Z, so-called projective 
relative discrete series representations (see Section 6.1). The following result can be 
derived from [12,34] by combining [34, Theorem 1.3] and the arguments underlying [12, 
Theorem 3].

Theorem 1.2. Let G be a connected, simply connected nilpotent Lie group with a lattice 
Γ ≤ G. Let (π, Hπ) be a projective relative discrete series representation of G of formal 
dimension dπ > 0.

(i) If vol(G/Γ)dπ ≤ 1, then there exists g ∈ Hπ such that π(Γ)g forms a frame.
(ii) If vol(G/Γ)dπ ≥ 1, then there exists g ∈ Hπ such that π(Γ)g forms a Riesz sequence.

Together, Theorem 1.1 and Theorem 1.2 provide a dichotomy that completely de-
scribes the reproducing properties (frame and Riesz sequence) of lattice orbits of square-
integrable representations in terms of the lattice co-volume or density. The existence 
claims in Theorem 1.2 rely on techniques for von Neumann algebras and are not accom-
panied by explicit constructions. For more specific representations and lattices acting 
via two group actions, special cases of the existence claims in Theorem 1.2 can also be 
obtained via tiling arguments [29,57], in which case the generating vector can be chosen 
to be an indicator function of a common fundamental domain. For historical expositions 
on the density theorem in time-frequency analysis, see [39,59].

For vectors g ∈ Hπ possessing certain localization properties (i.e., a smooth or inte-
grable vector), a second obstruction to the existence of frames and Riesz sequences of the 
form π(Γ)g is given by the strictness of the density conditions in Theorem 1.1. For the 
Euclidean plane G = R2 and its projective Schrödinger representation (π, L2(R)), the 



4 E. Bédos et al. / Journal of Functional Analysis 283 (2022) 109572
fundamental Balian–Low theorem in time-frequency analysis asserts that there exists no 
orthonormal basis (or Riesz basis) of the form π(Γ)g for a Schwartz function g ∈ S(R), 
[14,27]. Alternatively, for a Schwartz function, the associated density inequalities in The-
orem 1.1 are strict [6,37,51]. Balian–Low type theorems for (classes of) nilpotent groups 
have been obtained in [35,52] and show that the inequalities in Theorem 1.1 are strict 
for integrable vectors. It should be mentioned that (non-localized) orthonormal bases in 
the orbit of a nilpotent Lie group could still exist by Theorem 1.2, and even for nilpotent 
Lie groups not admitting a lattice, cf. [54,91].

A key problem in time-frequency or phase-space analysis [38,46] is the existence of 
smooth frames (resp. Riesz sequences) π(Γ)g for a given lattice Γ ≤ G with super-
critical (resp. sub-critical) density. While the mere existence of such frames and Riesz 
sequences are well-known for lattices possessing a qualitative “covering density” [45], 
there are currently no quantitative results that match the necessary conditions provided 
by Theorem 1.1, except for the specific setting of the Heisenberg group. Indeed, for 
G = R2 and its projective Schrödinger representation (π, L2(R)) (for which dπ = 1), the 
density theorems for sampling and interpolation in Bargmann-Fock spaces [79,112,113]
can be recast as the Gaussian Gabor system π(Γ)g with g(t) = e−πt2 forming a frame 
(resp. Riesz sequence) for L2(R) if and only if vol(R2/Γ) < 1 (resp. vol(R2/Γ) > 1), 
see also [53,55,64]. Although the frame and Riesz property of a multivariate Gaussian 
Gabor system cannot be simply described in terms of a density condition [48,96], it is still 
expected [48, Remark 2] that Gabor frames (resp. Riesz sequences) π(Γ)g with arbitrary 
smooth window g ∈ L2(Rd) exist for any lattice Γ ≤ R2d satisfying vol(R2d/Γ) < 1 (resp. 
vol(R2d/Γ) > 1), see also [59,97]. Only recently has there been a first contribution [63]
to this existence problem for Gabor frames in higher dimensions, namely for so-called 
non-rational lattices Γ ≤ R2d, by exploiting the structural results on (irrational) non-
commutative tori [104] and its link with Gabor frames [77]; see Section 7.1 for a more 
detailed discussion.

1.2. Main results

Our main result concerns the existence of frames and Riesz sequences generated by 
smooth vectors, i.e., vectors g ∈ Hπ for which the orbit maps x 
→ π(x)g are smooth; in 
notation, g ∈ H∞

π . The result relies on a compatibility condition between the 2-cocycle 
σ of the projective representation π and the lattice Γ, known as “Kleppner’s condition”; 
see [11,70,88,89,92]. A pair (Γ, σ) satisfies Kleppner’s condition if, for any non-trivial 
γ ∈ Γ satisfying σ(γ, γ′) = σ(γ′, γ) for all γ′ ∈ Γ such that γ′γ = γγ′, the associated 
conjugacy class {(γ′)−1γγ′ : γ′ ∈ Γ} is infinite.

The following theorem is a special case of our main theorem (Theorem 6.6).

Theorem 1.3. Let (π, Hπ) be a σ-projective relative discrete series representation of a 
connected, simply connected nilpotent Lie group G of formal dimension dπ > 0. Suppose 
that Γ ≤ G is a lattice such that (Γ, σ) satisfies Kleppner’s condition.
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(i) If vol(G/Γ)dπ < 1, then there exists g ∈ H∞
π such that π(Γ)g forms a frame.

(ii) If vol(G/Γ)dπ > 1, then there exists g ∈ H∞
π such that π(Γ)g forms a Riesz se-

quence.

Under Kleppner’s condition, Theorem 1.3 provides a full converse to the Balian–Low 
type theorems [6,37,51,52] on the strictness of the density conditions (Theorem 1.1) for 
smooth vectors. In fact, as a direct consequence of Theorem 1.3, the smooth vectors in 
Theorem 1.3 could even be chosen to be analytic (cf. Corollary 6.9). A more general 
version of Theorem 1.3, valid for projective representations arising from genuine repre-
sentations that are merely square-integrable modulo their projective kernel, is given in 
Theorem 6.6.

It is currently not known whether the existence claims (i) and (ii) in Theorem 1.3 also 
hold without the assumption of Kleppner’s condition. The fact that Kleppner’s condition 
is not needed in Theorem 1.2 and in a version of Theorem 1.3 for the 3-dimensional 
Heisenberg group indicates that it might be superfluous for Theorem 1.3 in general, too.

For applications to time-frequency analysis, we mention that the representations 
(π, Hπ) appearing in Theorem 1.3 can, by Kirillov’s orbit method, be realized to act 
on some L2(Rd), with the action of π in a coordinate parametrization given by

π(x)f(t) = eiP (x,t)f(Q(x, t)), t ∈ Rd, x ∈ Rn,

for polynomials P and Q. In such a realization, the space of smooth vectors H∞
π is 

precisely the space S(Rd) of Schwartz functions, and the corresponding matrix coeffi-
cients define functions in S(Rn). Theorem 1.3 provides therefore new classes of localized 
frames and Riesz sequences in L2(Rd). A key feature of such localized systems is that, 
via techniques underlying the theory of localized frames [1,9,41,47,107], the reproducing 
properties of frames and Riesz sequences, namely

f ∈ L2(Rd) if and only if f =
∑
γ∈Γ

cγπ(γ)g for some (cγ)γ∈Γ ∈ �2(Γ),

respectively

c ∈ �2(Γ) if and only if cγ = 〈f, π(γ)g〉 for some f ∈ L2(Rd),

automatically extend to families of associated Banach spaces; in particular, so-called 
coorbit spaces [36]. Therefore, such localized systems provide a description and char-
acterization of these Banach spaces and can be used for the purpose of (generalized) 
time-frequency analysis on Rd; see [49] for a concrete exposition associated to lower-
dimensional nilpotent groups.
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1.3. Methods

With notation as in Theorem 1.3, our proof method is based on the interpretation 
of a vector g ∈ Hπ defining a lattice orbit π(Γ)g as an element of a module over an 
associated operator algebra. The relevant operator algebras are generated by the σ-
twisted left regular representation (λσ

Γ, �
2(Γ)) of Γ, determined by

λσ
Γ(γ)δγ′ = σ(γ, γ′)δγγ′ for γ, γ′ ∈ Γ,

where {δγ : γ ∈ Γ} is the canonical basis for �2(Γ). The completion of the span of the 
collection

λσ
Γ(Γ) = {λσ

Γ(γ) : γ ∈ Γ} ⊆ B(�2(Γ))

in the strong operator topology gives the σ-twisted group von Neumann algebra L(Γ, σ), 
while completion in the norm topology gives the (reduced) σ-twisted group C∗-algebra 
C∗

r (Γ, σ). Since a lattice Γ ≤ G in a nilpotent Lie group G is finitely generated and nilpo-
tent, Kleppner’s condition on (Γ, σ) is equivalent to the algebra L(Γ, σ) (resp. C∗

r (Γ, σ)) 
being a factor (resp. simple), cf. [70,92]. In addition, since Γ is amenable, the reduced 
algebra C∗

r (Γ, σ) is isomorphic to the full twisted group C∗-algebra C∗(Γ, σ). Our ap-
proach makes a fundamental use of the algebras C∗

r (Γ, σ) and C∗(Γ, σ) being simple. It 
should be mentioned that the non-twisted group C∗-algebra C∗(Γ) (i.e., σ being trivial) 
is simple if and only if Γ is trivial, so that the use of cocycles is essential for our approach.

The question of the existence of a general vector g ∈ Hπ generating a frame π(Γ)g in 
Hπ (see Theorem 1.2) can be naturally approached using techniques for von Neumann 
algebras and their Hilbert modules, as shown by Bekka [12] (cf. [34] for Riesz sequences). 
The fundamental observation here is that there exists a frame (resp. Riesz sequence) of 
the form π(Γ)g for some g ∈ Hπ if and only if π|Γ is a subrepresentation of λσ

Γ (resp. λσ
Γ is 

a subrepresentation of π|Γ), cf. [12, Corollary 3 and 4]. By the square-integrability of π, 
the restriction π|Γ can be extended to give Hπ the structure of a Hilbert L(Γ, σ)-module, 
so that the existence of frames (resp. Riesz sequences) in Hπ is equivalent to Hπ being 
a submodule of �2(Γ) (resp. �2(Γ) is a submodule of Hπ), cf. [12, Proposition 1] and [34, 
Theorem 5.1]. When L(Γ, σ) is a factor, such submodule inclusions are in turn equivalent 
to inequalities involving the associated von Neumann dimensions, which gives rise to the 
inequalities vol(G/Γ)dπ ≤ 1 (resp. vol(G/Γ)dπ ≥ 1). The basis for these results is that 
projections in a II1 factor (such as L(Γ, σ)) are completely classified by their value under 
the canonical tracial state by the Murray-von Neumann comparison theory.

For providing density conditions for the existence of a localized vector g yielding a 
frame or Riesz sequence of the form π(Γ)g, the above mentioned von Neumann algebra 
techniques do not seem to be sufficient. In contrast, we show in the present paper that the 
theory of C∗-algebras and associated Hilbert C∗-modules do provide powerful techniques 
for approaching the localization problem. The following explicitly constructed Hilbert 
C∗-module plays a central role in the proof of Theorem 1.3.
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Theorem 1.4. Let (π, Hπ) be a σ-projective relative discrete series representation of a 
connected, simply connected, nilpotent Lie group G. Suppose Γ ≤ G is a lattice. Then 
the space H∞

π of smooth vectors can be completed into a finitely generated left Hilbert 
C∗

r (Γ, σ)-module Eπ,Γ, where the left action and the C∗
r (Γ, σ)-valued inner product •〈·, ·〉

are determined by

a · f =
∑
γ∈Γ

a(γ)π(γ)f for a ∈ S(Γ) and f ∈ H∞
π ,

•〈f, g〉(γ) = 〈f, π(γ)g〉 for f, g ∈ H∞
π and γ ∈ Γ,

where S(Γ) ⊂ �1(Γ) denotes the Schwartz space on Γ, cf. Section 6.

A general method for the construction of a Hilbert C∗
r (Γ, σ)-module from an inte-

grable σ-projective representation of a discrete group Γ was outlined by Rieffel [103]. 
However, the explicit construction of such modules was only accomplished in [104] for 
the projective Heisenberg representation of a locally compact abelian group of the form 
G × Ĝ. The modules constructed in [104] are usually called Heisenberg modules and have 
found numerous applications in operator algebras and noncommutative geometry, see, 
e.g., [20,23,30,73,78,119]. The explicit module provided by Theorem 1.4 forms a natural 
generalization of the Heisenberg modules to all nilpotent Lie groups and is established 
here via the representation theory of nilpotent Lie groups and associated coorbit space 
theory. It should be mentioned that the Heisenberg modules of Rieffel [104] are, in 
addition, also equipped with a natural right action which gives them the structure of 
imprimitivity bimodules. No such extra structure is present for the modules provided by 
Theorem 1.4.

The link between the Hilbert C∗-module Eπ,Γ and lattice orbits π(Γ)g with g ∈ H∞
π

is given by the following theorem, see Proposition 4.3 for a more general version and 
Section 3.3 for definitions of the terms used below.

Theorem 1.5. With notation as in Theorem 1.4, let A := C∗
r (Γ, σ) and let g1, . . . , gn ∈

H∞
π . Then the following assertions hold:

(i) The set {g1, . . . , gn} is an algebraic generating set for Eπ,Γ if and only if 
(π(Γ)gj)1≤j≤n is a frame for Hπ.

(ii) The set {g1, . . . , gn} is A-linearly independent and has closed A-span in Eπ,Γ if and 
only if (π(Γ)gj)1≤j≤n is a Riesz sequence in Hπ.

Theorem 1.5 provides a correspondence between spanning (resp. linear independent) 
sets in Eπ,Γ and frames (resp. Riesz sequences) in Hπ. For the particular setting of the 
projective Heisenberg representation (π, L2(Rd)) of R2d, the correspondence for frames 
(part (i)) was first proved by Luef in [77]. Combined with the general fact that imprimi-
tivity bimodules between unital C∗-algebras must be finitely generated, this was used in 
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[77] to prove the existence of a Gabor frame (π(γ)gj)γ∈Γ,1≤j≤n for L2(Rd) with finitely 
many localized windows over any given lattice Γ in R2d. In the present paper we prove 
directly the existence of such frames in the orbit of nilpotent Lie groups by exploiting 
classical sampling techniques [36,45].1 Via Theorem 1.5, the existence of a multiwindow 
frame with finitely many windows in H∞

π implies that the module Eπ,Γ constructed in 
Theorem 1.4 is finitely generated, which is essential for our approach towards proving 
Theorem 1.3.

A finitely generated Hilbert C∗-module Eπ,Γ as constructed in Theorem 1.4 corre-
sponds naturally to a projection in a matrix algebra over C∗

r (Γ, σ), which can be explicitly 
constructed using module frames, see, e.g., [42,105]. Using this interpretation, the ex-
istence of frames and Riesz sequences π(Γ)g generated by a single g ∈ H∞

π can be 
approached via the comparison theory for projections in (matrix algebras over) the C∗-
algebra C∗

r (Γ, σ). This approach is reminiscent of the method [12] towards Theorem 1.2
using von Neumann algebras. However, in contrast to the setting of von Neumann al-
gebras, the comparison theory for projections in C∗-algebras is remarkably subtle, see, 
e.g., [16,115] and the references therein. Among others, this is caused by the fact that 
C∗-algebras, in contrast to von Neumann algebras, might not possess sufficiently many 
projections for a satisfactory comparison theory. This has lead, among others, to the 
more general notion of Cuntz subequivalence of positive elements in (matrix algebras 
over) a C∗-algebra [26], and the corresponding comparison then concerns whether Cuntz 
subequivalence of positive elements can be described via tracial states. A C∗-algebra 
satisfying such a property is said to have strict comparison of positive elements and 
it is this notion, which is stronger than strict comparison of projections, that forms a 
central ingredient in the present paper (see Section 5.1). We mention that for irrational 
non-commutative tori, the presence of strict comparison of projections was proven in 
[104] (see also [16]) and (implicitly) exploited in [63] for the study of Gabor frames; see 
Section 7.1.

A part of the (revised) Toms–Winter conjecture predicts that for any unital separable, 
simple, nuclear, infinite-dimensional C∗-algebra, strict comparison of positive elements 
is equivalent to a regularity property known as finite nuclear dimension (see e.g. [115, 
p. 302]). The implication from finite nuclear dimension to strict comparison of positive 
elements is known,2 and follows by combining results of Rørdam [108] and Winter [120]. 
Therefore, for establishing strict comparison of positive elements in our setting, it would 
suffice to prove that the twisted group C∗-algebra C∗

r (Γ, σ) has finite nuclear dimension. 
We prove the even stronger property that C∗

r (Γ, σ) has finite decomposition rank:

Theorem 1.6. Let Γ be a finitely generated, nilpotent group and let σ be a 2-cocycle on Γ. 
Then the twisted group C∗-algebra C∗

r (Γ, σ) has finite decomposition rank, in particular 

1 This should be compared with the discussion [77, p. 1942], where it is asserted that the techniques 
[36,45] would not provide an explanation for the fact that only finitely many generators are needed.
2 In fact, under various additional assumptions (which all hold in our setting), the full equivalence is 

known, see, e.g., [115] and our discussion after Theorem 5.1.
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finite nuclear dimension. Hence C∗
r (Γ, σ) has strict comparison of positive elements, and 

therefore of projections, whenever (Γ, σ) satisfies Kleppner’s condition.

Finite decomposition rank of group C∗-algebras associated to finitely generated, nilpo-
tent groups is due to Eckhardt, Gillaspy and McKenney [32,33]. Our proof of Theorem 1.6
relies on [32] and extends their result to the twisted case via the theory of representation 
groups; in particular, we use a recent result of Hatui, Narayanan and Singla [58, Theorem 
3.5], cf. Section 5.3 for precise details.

Theorems 1.4, 1.5 and 1.6 are the essential ingredients in our proof of Theorem 1.3.
An additional result of independent interest, at least to operator algebraists, is the 

following theorem, which provides new examples of classifiable C∗-algebras in the sense 
of the classification program for simple separable nuclear C∗-algebras (see e.g. [115, 
Chapter 18] and references therein).

Theorem 1.7. Let Γ be a finitely generated, nilpotent group and let σ be a 2-cocycle on Γ
such that (Γ, σ) satisfies Kleppner’s condition. Then C∗

r (Γ, σ) is a unital, separable, sim-
ple C∗-algebra with finite nuclear dimension that satisfies the UCT, hence is classifiable 
by the Elliott invariant. Moreover, C∗

r (Γ, σ) has stable rank one.

We note that there are remarkably few examples in the literature of pairs (Γ, σ) (with 
Γ countable) such that C∗

r (Γ, σ) has stable rank one (cf. the discussion in [11, p. 293 
and Appendix A]). Within the class of countable amenable groups, our result about 
this property in Theorem 1.7 has previously only been known for finitely generated free 
abelian groups (this may be deduced from [19, Theorem 1.5], which deals with simple 
noncommutative tori), and for some examples of finitely generated nilpotent groups (see 
the comment after Theorem 4.7 in [90]). For a countable nilpotent group and a 2-cocycle 
σ on Γ such that (Γ, σ) satisfies Kleppner’s condition, Osaka and Phillips raise in [90, 
Problem 4.8] the question whether C∗(Γ, σ)  C∗

r (Γ, σ) has real rank zero and stable 
rank one, and whether the order on projections over C∗(Γ, σ) is determined by traces 
(this is equivalent to the one we call strict comparison of projections). Our Theorems 1.6
and 1.7 provide a partial answer to their question.

1.4. Extensions

The proof of Theorem 1.3 makes a fundamental use of the presence of strict compar-
ison of projections in twisted group C∗-algebras C∗(Γ, σ) of finitely generated nilpotent 
groups Γ, which we show by relying on the paper [32]. The results in [32] are, however, 
also valid for virtually nilpotent groups, and it might be that a version of Theorem 1.3
is also valid for more general (classes of) groups of polynomial growth. For such an ex-
tension, several parts in our approach, among others, the explicitly constructed Hilbert 
C∗-modules (Theorem 1.4) would require different arguments, while there are also sev-
eral ingredients that do currently not have analogues for virtual nilpotent groups, among 
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others, the existence of suitable representation groups [58]. With an eye on such possi-
ble extensions, we prove several auxiliary results in a slightly more general setting than 
strictly needed for our main result Theorem 1.3, provided they do not require additional 
arguments.

As another extension, we mention that our current approach also allows a version 
of Theorem 1.3 for Gabor systems on general (compactly generated) locally compact 
abelian groups, which was left open in [63]. For this extension, the module constructed 
in Theorem 1.4 could be replaced by the Heisenberg modules of [104].

1.5. Outline

Section 2 provides preliminary results on frames, square-integrable representations 
and group operator algebras. Hilbert C∗-modules and their generating sets are discussed 
in Section 3. A general construction of Hilbert C∗-modules associated to projective rep-
resentations of discrete groups is outlined in Section 4. Section 5 is devoted to strict 
comparison of positive elements in C∗-algebras. In particular, the presence of strict com-
parison of projections in simple twisted group C∗-algebras (Theorem 1.6) associated to 
finitely generated nilpotent groups is proven in Section 5.3, along with Theorem 1.7. In 
Section 6 the results obtained in previous sections are applied to the setting of nilpo-
tent Lie groups to prove Theorem 1.3 (cf. Theorem 6.6), along with Theorem 1.4 and 
Theorem 1.5. Lastly, we discuss some examples in Section 7.

Notation. The notation N0 will be used for the natural numbers including zero 0. The 
complex numbers without zero will be denoted by C× = C \ {0}. The cardinality of a 
set X is denoted by |X| ∈ [0, ∞]. For functions f1, f2 : X → [0, ∞), we write f1 � f2 if 
there exist constants C1, C2 > 0 such that f1(x) ≤ C1f2(x) and f2(x) ≤ C2f1(x) for all 
x ∈ X.

2. Preliminaries

2.1. Frames and Riesz sequences

Let J be a countable index set. A family (gj)j∈J of vectors in a Hilbert space H is 
called a frame for H if

‖f‖2
H �

∑
j∈J

|〈f, gj〉|2 for all f ∈ H. (2.1)

A frame (gj)j∈J is called a Parseval frame if (2.1) can be chosen to be equality. A system 
(gj)j∈J is called a Bessel sequence if the associated analysis operator C : H → �2(J) given 
by

C f = (〈f, gj〉)j∈J for f ∈ H
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is a bounded, linear operator. Its adjoint, the synthesis operator D : �2(J) → H, is deter-
mined by Dej = gj , where ej denotes the standard basis vector of �2(J) corresponding to 
an index j ∈ J . The frame operator associated to (gj)j∈J is given by S = C ∗C : H → H. 
The system (gj)j∈J is a frame for H if and only if S is invertible.

The family (gj)j∈J is called a Riesz sequence in H if

‖c‖2
�2 �

∥∥∥∑
j∈J

cjgj

∥∥∥2
for all c = (cj)j∈J ∈ �2(Γ).

Alternatively, (gj)j∈J is a Riesz sequence if and only if the associated Gramian operator
G := D∗D : �2(J) → �2(J) is invertible, where D is the synthesis operator of the sequence 
(gj)j .

For background and further results on frames and Riesz sequences, see, e.g., [22,121].

2.2. Cocycles and projective representations

Throughout, G denotes a second countable, locally compact, unimodular group with 
identity element e. We assume that a Haar measure μG on G is fixed and let Lp(G) be 
the associated Lebesgue space for p ∈ [1, ∞].

By a cocycle on G we will mean a Borel measurable map σ : G ×G → T that satisfies 
the identities

(1) σ(x, y)σ(xy, z) = σ(x, yz)σ(y, z) for all x, y, z ∈ G,
(2) σ(e, e) = 1.

Such maps are frequently called normalized 2-cocycles, or multipliers, in the literature. 
We denote by Z2(G, T ) the set of all such cocycles.

Given a cocycle σ on G, a σ-projective unitary representation π of G on a Hilbert 
space Hπ is a map π : G → U(Hπ) (where U(Hπ) denotes the unitary operators on Hπ) 
such that

π(x)π(y) = σ(x, y)π(xy) for all x, y ∈ G.

We will always assume that representations are measurable, i.e., x 
→ π(x)f is a Borel 
measurable function on G for every f ∈ Hπ. A subspace of Hπ is said to be invariant 
under π if it invariant under π(x) for every x ∈ G. We say that π is irreducible if {0}
and Hπ are the only closed subspaces of Hπ which are invariant under π.

Given f, g ∈ Hπ, we can form the function Cgf : G → C given by

Cgf(x) = 〈f, π(x)g〉 for x ∈ G.

Such functions on G are called matrix coefficients associated to π. If f = g, then Cff is 
called a diagonal matrix coefficient. Matrix coefficients satisfy the relation
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Cg(π(x)f)(y) = σ(x, x−1y)Cgf(x−1y) for f, g ∈ Hπ and x, y ∈ G. (2.2)

The σ-twisted left regular representation of G is the σ-projective unitary representation 
of G on L2(G) given by(

λσ
G(x)f

)
(y) = σ(x, x−1y) f(x−1y) for x, y ∈ G, f ∈ L2(G).

In terms of λσ
G, (2.2) can be stated as the intertwining relation Cg(π(x)f) = λσ

G(x)Cgf , 
provided that Cgf ∈ L2(G).

An irreducible, projective unitary representation π is called square-integrable if there 
exist nonzero f, g ∈ Hπ such that 

∫
G
|〈f, π(x)g〉|2dμG(x) < ∞. In that case, there exists 

a unique dπ > 0 called the formal dimension of π (depending on the Haar measure on 
G) such that∫

G

〈f, π(x)g〉〈f ′, π(x)g′〉 dμG(x) = 1
dπ

〈f, f ′〉〈g, g′〉 for all f, f ′, g, g′ ∈ Hπ. (2.3)

Square-integrability of π implies that for each g ∈ Hπ, the coefficient operator Cg : Hπ →
L2(G), mapping each f ∈ Hπ to Cgf , is a well-defined, bounded, linear operator. More-
over, d 1/2

π Cg is an isometry which intertwines π and λσ
G, cf. (2.2), and thus realizes π as 

a subrepresentation of λσ
G.

For more details on projective and square-integrable representations, cf. [3,93,110,118].

2.3. Lattices

Let Γ ≤ G be a discrete subgroup of a second countable unimodular locally compact 
group G. A left (resp. right) fundamental domain of Γ in G is a Borel set Σ ⊂ G such 
that G = Γ · Σ and γΣ ∩ γ′Σ = ∅ (resp. G = Σ · Γ and Σγ ∩ Σγ′ = ∅) for all γ, γ′ ∈ Γ
with γ �= γ′. The discrete Γ ≤ G is called a lattice if it admits a left or right fundamental 
domain of finite measure. Alternatively, a discrete subgroup Γ ≤ G is a lattice if, and 
only if, the quotient G/Γ carries a finite G-invariant Radon measure. By Weil’s integral 
formula, vol(G/Γ) = μG(Σ) for any choice of fundamental domain Σ ⊂ G for Γ. See, 
e.g., [100] for more details and properties.

2.4. Twisted group operator algebras

Let Γ be a countable discrete group, and let σ be a cocycle on Γ. The σ-twisted 
convolution of two functions a, b : Γ → C in �1(Γ) is defined by

(a ∗σ b)(γ′) =
∑
γ∈Γ

σ(γ, γ−1γ′)a(γ)b(γ−1γ′) for γ′ ∈ Γ.

We often simply write ∗ = ∗σ. The σ-twisted involution of a is given by
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a∗(γ) = σ(γ, γ−1)a(γ−1) for γ ∈ Γ.

The Banach space �1(Γ) becomes a unital Banach ∗-algebra with respect to σ-twisted 
convolution and σ-twisted involution, which we denote by �1(Γ, σ).

The full σ-twisted group C∗-algebra of Γ is the completion C∗(Γ, σ) of �1(Γ, σ) with 
respect to the universal C∗-norm

‖a‖u = sup
π

‖π(a)‖ for a ∈ �1(Γ, σ),

where the supremum is taken over all nondegenerate ∗-representations of �1(Γ, σ) on a 
Hilbert space. We will frequently consider �1(Γ, σ) as embedded in C∗(Γ, σ). There is a 
bijective correspondence π 
→ π̂ between σ-projective unitary representations of Γ and 
nondegenerate ∗-representations of C∗(Γ, σ), where π̂ is determined from π by

π̂(a) =
∑
γ∈Γ

a(γ)π(γ)

for all a ∈ �1(Γ, σ). As π is irreducible if and only if π̂ is irreducible, one deduces from 
the Gelfand-Naimark theory for C∗-algebras that there always exist enough σ-projective 
irreducible unitary representations of Γ to separate its elements.

Let λσ
Γ be the σ-twisted left regular representation of Γ on �2(Γ). The C∗-algebra 

generated by λσ
Γ(Γ) ⊆ B(�2(Γ)) is called the reduced σ-twisted group C∗-algebra of Γ and 

is denoted by C∗
r (Γ, σ). Equivalently, we have C∗

r (Γ, σ) = λ̂σ
Γ
(
C∗(Γ, σ)

)
. Similarly, the 

von Neumann algebra generated by λσ
Γ(Γ) ⊆ B(�2(Γ)) is called the σ-twisted group von 

Neumann algebra of Γ and is denoted by L(Γ, σ). It is equipped with a faithful, normal 
tracial state τ given by

τ(a) = 〈aδe, δe〉 for a ∈ L(Γ, σ),

where δe ∈ �2(Γ) denotes the characteristic function of {e} in Γ. We refer to τ as the 
canonical tracial state, and denote its restriction to C∗

r (Γ, σ) also by τ .
The canonical map λ̂σ

Γ : C∗(Γ, σ) → C∗
r (Γ, σ) is always faithful on �1(Γ, σ). Hence 

we will often consider �1(Γ, σ) as embedded in C∗
r (Γ, σ) via this map. If the group Γ is 

amenable, then λ̂σ
Γ is a ∗-isomorphism. In this case, e.g., when Γ is nilpotent, we will 

frequently identify C∗(Γ, σ) with C∗
r (Γ, σ). For additional information about the operator 

algebras associated to (Γ, σ), the reader may consult, e.g., [10,93,122] and references 
therein.

An element γ ∈ Γ is called σ-regular if we have σ(γ, γ′) = σ(γ′, γ) whenever γ′ ∈ Γ
and γγ′ = γ′γ. If γ is σ-regular, then every element in the conjugacy class of γ is σ-
regular, hence it makes sense to talk about σ-regular conjugacy classes. The pair (Γ, σ)
is said to satisfy Kleppner’s condition if every nontrivial, σ-regular conjugacy class is 
infinite. The twisted group von Neumann algebra L(Γ, σ) is a factor (i.e., has a trivial 
center) if and only if (Γ, σ) satisfies Kleppner’s condition, cf. [70, Theorem 2]. Kleppner’s 
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argument shows that C∗
r (G, σ) has a nontrivial center whenever (G, σ) does not satisfy 

Kleppner’s condition. Hence this condition is necessary for C∗
r (G, σ) to be simple (i.e., 

to have no non-trivial ideals), but it is not always sufficient, cf. [11]. See also [88,92] for 
other results relying on this condition.

A function a : Γ → C is said to be σ-positive definite if

n∑
i,j=1

cicja(γjγ−1
i )σ(γjγ−1

i , γi) ≥ 0 for all γ1, . . . , γn ∈ Γ, c1, . . . , cn ∈ C; (2.4)

see [10,72] for a slightly different definition (where a would be called σ̄-positive definite).
The following characterization of σ-positive functions will be convenient for our pur-

poses. The result is part of the folklore for trivial cocycles σ ≡ 1.

Proposition 2.1. Assume a ∈ �1(Γ, σ). Then a is σ-positive definite as a function on Γ
if and only if λ̂σ

Γ(a) is positive as an element of C∗
r (Γ, σ). It follows that if a ∈ �1(Γ, σ)

is a diagonal matrix coefficient associated to a σ-projective unitary representation of Γ, 
then λ̂σ

Γ(a) is positive in C∗
r (Γ, σ).

Proof. Given a finite subset F = {γ1, . . . , γn} of Γ, denote by PF the orthogonal projec-
tion of �2(Γ) onto span{δγ : γ ∈ F}. Then it is well-known that an operator T ∈ B(�2(Γ))
is positive if and only if PFTPF is positive for any such F . Let η ∈ �2(Γ). Write 
PF η =

∑n
i=1 ciδγi

for some scalars c1, . . . , cn ∈ C and note that

〈λ̂σ
Γ(a)δγi

, δγj
〉 =

∑
γ∈Γ

a(γ)〈λσ
Γ(γ)δγi

, δγj
〉 =

∑
γ∈Γ

a(γ)σ(γ, γi)〈δγγi
, δγj

〉

= a(γjγ−1
i )σ(γjγ−1

i , γi).

Hence

〈PF λ̂σ
Γ(a)PF η, η〉 = 〈λ̂σ

Γ(a)PF η, PF η〉 =
n∑

i,j=1
cicj 〈λ̂σ

Γ(a)δγi
, δγj

〉

=
n∑

i,j=1
cicj a(γjγ−1

i )σ(γjγ−1
i , γi).

Thus the condition λ̂σ
Γ(a) ≥ 0 is equivalent to the condition that the above expression is 

non-negative for all γ1, . . . γn ∈ G and c1, . . . , cn ∈ C, i.e., to the σ-positive definiteness 
of a, as desired.

Assume now that the function a ∈ �1(Γ, σ) may be written as a(γ) = 〈f, π(γ)f〉 for 
some σ-projective unitary representation π of Γ on Hπ and some f ∈ Hπ. Then for 
γ1, . . . , γn ∈ Γ and c1, . . . , cn ∈ Γ we have that
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n∑
i,j=1

cicj 〈f, π(γjγ−1
i )f〉σ(γjγ−1

i , γi) =
n∑

i,j=1
cicj〈f, π(γj)π(γ−1

i )f〉σ(γjγ−1
i , γi)σ(γj , γ−1

i )

=
n∑

i,j=1
cicj〈π(γi)∗f, π(γ−1

i )f〉σ(γ−1
i , γi) =

〈 n∑
i=1

ciπ(γi)∗f,
n∑

j=1
cjπ(γj)∗f

〉
≥ 0.

This shows that a is σ-positive definite, hence that λ̂σ
Γ(a) is positive in C∗

r (Γ, σ). �
3. Hilbert C*-modules, generating sets and localization

Throughout this section, A denotes a unital C∗-algebra with unit 1A.

3.1. Hilbert C*-modules

We follow the conventions in [71,99], except that we prefer to work with left Hilbert 
C∗-modules. Thus, by an inner product A-module we mean a complex vector space E
together with a left A-module structure and a map •〈·, ·〉 : E × E → A such that the 
following axioms are satisfied:

(a1) •〈af + bg, h〉 = a •〈f, h〉 + b •〈g, h〉 for all a, b ∈ A and f, g, h ∈ E .
(a2) •〈f, g〉∗ = •〈g, f〉 for all f, g ∈ E .
(a3) •〈f, f〉 ≥ 0 (as a positive element of A) and •〈f, f〉 = 0 if and only if f = 0.

An inner product A-module becomes a normed space with respect to

‖f‖E = ‖•〈f, f〉‖1/2 for f ∈ E .

If E is complete with respect to this norm, E is called a Hilbert A-module. We will 
often consider A itself as a Hilbert A-module with respect to the inner product •〈a, b〉 =
ab∗, a, b ∈ A.

If A0 is a dense ∗-subalgebra of A, then a pre-inner product A0-module is a complex 
vector space E0 together with a left A0-module structure and a map •〈·, ·〉 : E0 ×E0 → A0

such that the above three axioms are satisfied for a ∈ A0 and f, g ∈ E0, where the 
positivity is interpreted in the completion A of A0. A pre-inner product A0-module E0

can always be completed into a Hilbert A-module E , see [99, Lemma 2.16].
Given a closed A-submodule E0 of a Hilbert A-module E , the orthogonal complement

of E is the set E⊥
0 = {f ∈ E : •〈f, g〉 = 0 for all g ∈ E0}. One always has E0 ∩ E⊥

0 = {0}
but not necessarily E0 + E⊥

0 = E . If the latter is the case, E0 is called orthogonally 
complementable in E .

One may form the direct sum of finitely many Hilbert A-modules in the obvious way. 
The direct sum of n copies of a Hilbert A-module E is denoted by En.
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3.2. Adjointable operators

A map T : E → F between Hilbert A-modules is called adjointable if there exists a 
(uniquely determined) map T ∗ : F → E such that

•〈Tf, g〉 = •〈f, T ∗g〉 for all f ∈ E and g ∈ F .

An adjointable map is automatically a bounded, A-linear operator. We say that E and 
F are isomorphic (as Hilbert A-modules) if there exists an adjointable map T : E → F
which is a unitary, i.e., satisfies that T ∗T = IE and TT ∗ = IF . We denote by LA(E , F)
the set of all adjointable maps from E into F , which is a Banach space with respect 
to the operator norm. Furthermore, we set LA(E) := LA(E , E). The map T 
→ T ∗ is 
an involution on LA(E), and LA(E) becomes a C∗-algebra with respect to the operator 
norm.

If a map T : E → F is A-linear and isometric (as a map between the underlying Banach 
spaces), it need not be adjointable. However, the following conditions are equivalent:

1) T is A-linear, isometric, and Im(T ) is orthogonally complementable in E ;
2) T is adjointable with T ∗T = IE ;
3) T is an adjointable isometry.

The equivalence between 1) and 2) is [71, Proposition 3.6]. The fact that 2) implies 3) 
is straightforward. Finally, if 3) holds, then Im(T ) is closed, and orthogonally comple-
mentable in F by [71, Theorem 3.2], so 1) holds. An immediate consequence is that 
there exists an adjointable isometry E → F if and only if E is isomorphic to a closed, 
orthogonally complementable A-submodule of F .

Given g, h ∈ E , the rank-one operator Θg,h ∈ LA(E) is given by Θg,hf = •〈f, g〉h for 
f ∈ E .

3.3. Spanning and independence

Let E be a Hilbert A-module. The A-span of a set S ⊆ E is the set spanA S of all 
finite A-linear combinations 

∑n
j=1 ajgj where gj ∈ S, aj ∈ A for 1 ≤ j ≤ n. A finite set 

S ⊆ E is called a generating set for E if spanA S = E , and E is called finitely generated if 
it admits a finite generating set. Note that this notion is often called algebraically finitely 
generated in Hilbert C∗-module theory to distinguish it from the weaker notion of being 
topologically finitely generated.

Associated to a finite set {g1, . . . , gn} ⊆ E are the analysis operator C : E → An and 
the synthesis operator D : An → E given by

C f = (•〈f, gj〉)nj=1,
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D(aj)nj=1 =
n∑

j=1
ajgj

for f ∈ E and (aj)j ∈ An. Both these operators are adjointable, with C ∗ = D . The opera-
tor S : C ∗C : E → E is called the frame operator and the operator G = D∗D : An → An

is called the Gramian operator.
The following characterization of generating sets will be convenient for our purposes, 

cf. [42, Theorem 5.9].

Lemma 3.1 ([42]). A finite set {g1, . . . , gn} ⊆ E is a generating set for E if and only if it 
is a frame for E, that is, there exist C1, C2 > 0 such that

C1•〈f, f〉 ≤
n∑

j=1
•〈f, gj〉•〈f, gj〉∗ ≤ C2•〈f, f〉 for all f ∈ E, (3.1)

if and only if the associated frame operator S is invertible in LA(E).

Proof. Consider the set {g1, . . . , gn} ⊆ E . If it is generating for E , then it is a frame for E
by [42, Theorem 5.9]. If it is a frame for E , satisfying (3.1), then, using [71, Lemma 4.1], 
we get that the positive operator S =

∑n
j=1 Θgj ,gj satisfies that C1 IE ≤ S ≤ C2 IE ; 

since C1 > 0, it follows that S is invertible in LA(E). Finally, if S is invertible in LA(E), 
and f ∈ E , then f = S S −1f =

∑n
j=1 •〈S −1f, gj〉 gj , which shows that {g1, . . . , gn} is 

generating for E . �
As for Hilbert spaces, if one can choose C1 = C2 = 1 in (3.1), the frame is called 

Parseval.
We call a finite set {g1, . . . , gn} A-linearly independent if whenever a1, . . . , an ∈ A are 

such that 
∑n

j=1 ajgj = 0, then aj = 0 for 1 ≤ j ≤ n. Note that contrary to the Hilbert 
space case, the A-span of a finite set might not be topologically closed. We say that a 
finite set S has closed A-span if spanA S is topologically closed.

Lemma 3.2 ([5]). A finite set {g1, . . . , gn} ⊆ E is A-linearly independent with closed 
A-span if and only if the associated Gramian operator G is invertible in LA(E).

Proof. Consider a finite set {g1, . . . , gn} ⊆ E . Applying [5, Proposition 2.1] to the asso-
ciated analysis operator C : E → An, and setting D = C ∗, we get that the following 
conditions are equivalent:

1) C is surjective;
2) There exists C > 0 such that C ‖(aj)j‖An ≤ ‖D(aj)j‖E for all (aj)j ∈ An;
3) There exists C ′ > 0 such that C ′•〈(aj)j , (aj)j〉 ≤ •〈D(aj)j , D(aj)j〉 for all (aj)j ∈ An.
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In fact, to show these equivalences, it is shown in [5] that 1) ⇒ D∗D is invertible ⇒ 3) 
⇒ 2) ⇒ D is injective with closed range ⇒ 1). This means that the associated Gramian 
operator G = D∗D is invertible in LA(E) if and only if D is injective with closed range, 
which is equivalent to {g1, . . . , gn} being A-linearly independent with closed A-span. �

In [8], sets satisfying the properties of Lemma 3.2 are called module Riesz sequences.
We recall that if Mn(A) denotes the C∗-algebra consisting of all n × n matrices over 

A and p ∈ Mn(A) is a projection (i.e., p is self-adjoint and idempotent), then Anp is a 
Hilbert A-submodule of An (we consider here elements of An as row vectors).

Proposition 3.3. Let n ∈ N. Then the following hold:

(i) There exists a generating set with n elements in E if and only if there exists an 
adjointable isometry E → An, if and only if there exists a projection p in Mn(A)
such that E ∼= Anp.

(ii) There exists an A-linearly independent set with n elements and closed A-span in E
if and only if there exists an adjointable isometry An → E.

Furthermore, if there exists a generating set (resp. A-linearly independent set with closed 
A-span) with n elements, then one can find a generating set (resp. A-linearly independent 
set with closed A-span) with n elements that belong to any dense subspace E0 of E.

Proof. (i) A generating set with n elements is a frame by Lemma 3.1. Hence, the corre-
sponding frame operator S is invertible. As in the Hilbert space case, by applying S −1/2

to each element of the frame, one obtains a new frame with n elements which is Parseval. 
But then the associated analysis operator C : E → An is an adjointable isometry.

Next, assume that there exists an adjointable isometry C : E → An for some n ∈ N. 
Then one checks readily that Im(C ) = Anp, where p is the projection in Mn(A) whose 
i-th row vector is C C ∗ei, where ei = (δi,j1A)nj=1 ∈ An. Thus, E ∼= Anp.

Finally, if there exists a projection p in Mn(A) such that E ∼= Anp, then, as Anp has 
clearly a generating set with n elements, this is also true for E .

(ii) Assume first that g1, . . . , gn are A-linearly independent and that F = spanA{g1,

. . . , gn} is closed in E . Then F is a Hilbert A-module, and {g1, . . . , gn} is a generating 
set for F . Denoting by S ∈ LA(F) the corresponding frame operator, S is positive 
and invertible, and (gj)nj=1 is a frame. Since S f =

∑n
j=1 •〈f, gj〉gj for every f ∈ F , we 

get that gi =
∑n

j=1 •〈S −1gi, gj〉gj for every 1 ≤ i ≤ n. By A-linear independence, this 
forces •〈S −1gi, gj〉 = δi,j 1A. Hence, the set {g̃j : 1 ≤ j ≤ n}, where g̃j := S −1/2gj , is 
orthonormal in the sense that

•〈g̃i, g̃j〉 = •〈S −1gi, gj〉 = δi,j 1A

for all 1 ≤ i, j ≤ n. It follows that the associated synthesis operator D : An → E given 
by D(aj)j =

∑n
j=1 aj g̃j is an adjointable isometry.
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Conversely, suppose D : An → E is an adjointable isometry. Set gj = D(ej) for 
each 1 ≤ j ≤ n, where ej denotes the jth element of the standard basis of An. Then 
{g1, . . . , gj} is an orthonormal set, hence A-linearly independent. This finishes the proof 
of (ii).

Suppose now that {g1, . . . , gn} is a generating set for E , which by the argument for 
(i) above can be assumed to be a Parseval frame. Let S be the corresponding frame 
operator. In terms of rank-one operators, we get S =

∑n
j=1 Θgj ,gj = IE . Now it is an 

easy exercise to check that

‖Θg,g − Θg′,g′‖ ≤ (‖g‖ + ‖g′‖)‖g − g′‖

for all g, g′ ∈ E . By density of E0 in E , we can find g′j ∈ E0 such that ‖gj − g′j‖ < δ for 
every j = 1, . . . , n, where M := max{‖g1‖, . . . , ‖gn‖} and δ := min{1, ((2M + 1)n)−1}. 
This gives that

‖IE −
n∑

j=1
Θg′

j ,g
′
j
‖ ≤

n∑
j=1

‖Θgj ,gj − Θg′
j ,g

′
j
‖ ≤ (2M + 1)

n∑
j=1

‖gj − g′j‖ < (2M + 1)nδ ≤ 1,

hence that S ′ :=
∑n

j=1 Θg′
j ,g

′
j

is invertible in LA(E). Since S ′ is the frame operator 
associated to the family {g′1, . . . , g′n}, it follows from Lemma 3.1 that this family, which 
lies in E0, is a generating set for E . By considering the Gramian operator instead of 
the frame operator, a similar argument shows the analogous property for A-linearly 
independent sets with closed A-span. �

The first part of Proposition 3.3 is essentially known, see, e.g., [105, Section 7] and 
[42, Section 5] for somewhat similar statements.

3.4. Localization of Hilbert C*-modules

We will repeatedly use the following simple observation, which relies on the elementary 
fact that cac∗ ≤ cbc∗ for every c ∈ A whenever a, b ∈ A are self-adjoint and a ≤ b.

Lemma 3.4. Assume τ is a tracial state on A and let a, b ∈ A be positive. Then

0 ≤ τ(ab) ≤ ‖a‖τ(b).

Proof. Indeed, since a is positive, we have that 0 ≤ a ≤ ‖a‖1A. Hence we get

0 ≤ b1/2ab1/2 ≤ b1/2‖a‖1Ab1/2 = ‖a‖b,

which implies that

0 ≤ τ(b1/2ab1/2) ≤ τ(‖a‖b) = ‖a‖τ(b).
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As τ is tracial, τ(b1/2ab1/2) = τ(ab), and the result follows. �
We assume from now on that A has a faithful, tracial state τ . We denote by H

the Hilbert space obtained from the GNS construction applied to (A, τ). Thus H is the 
Hilbert space completion of A with respect to the inner product given by 〈a, b〉τ = τ(ab∗)
for a, b ∈ A. To avoid confusion, we write â when we view a ∈ A as an element of H. Since 
τ is faithful, we can view A as a C∗-subalgebra of B(H), whose action on H is determined 
by ab̂ = âb for a, b ∈ A. The vector f0 := 1̂A ∈ H is then cyclic and separating for A, 
and we have τ(a) = 〈af0, f0〉τ for every a ∈ A.

Let M = A′′ ⊆ B(H) be the von Neumann algebra on H generated by A. By [116, 
Proposition V.3.19], the functional on M given by a 
→ 〈af0, f0〉τ is a faithful tracial 
normal state on M , which we also denote by τ . The GNS-space of (M, τ), which is 
usually denoted by L2(M, τ), can then be identified with H, and M acts also on it from 
the right in the obvious way.

Throughout this subsection we also fix a Hilbert A-module E , where we denote the 
A-valued inner product by •〈·, ·〉. We define a scalar-valued inner product on E by setting

〈f, g〉Hτ
E = τ(•〈f, g〉) for f, g ∈ E ,

and denote by Hτ
E the corresponding Hilbert space completion of E . (This is a special 

case of a procedure known as localization of Hilbert C∗-modules, see [71, p. 7].) Since τ
is a tracial state, the left action of A on E extends to a representation πτ

E of A on Hτ
E . 

Indeed, using Lemma 3.4, we get that for all a ∈ A and f ∈ E ,

‖af‖2
Hτ

E
= τ(•〈af, af〉) = τ(a•〈f, f〉a∗) = τ(a∗a •〈f, f〉) ≤ ‖a∗a‖τ(•〈f, f〉) = ‖a‖2‖f‖2

Hτ
E
.

It follows that the linear operator f 
→ af extends to a bounded linear operator πτ
E(a) on 

Hτ
E for each a ∈ A, and one checks readily that the map a 
→ πτ

E(a) is a ∗-homomorphism 
from A into B(Hτ

E). We refer to the pair (Hτ
E , π

τ
E) as the localization of E with respect 

to (A, τ).
We recall the notion of a Hilbert module over a von Neumann algebra, which is 

different from the notion of a Hilbert C∗-module over a C∗-algebra. If N denotes a von 
Neumann algebra, a (left, normal) Hilbert N -module is a Hilbert space K together with 
a normal unital representation of N on K.

The following proposition seems part of the folklore. As we could not find a suitable 
reference in the literature, we include a proof, for the ease of the reader.

Proposition 3.5. The representation πτ
E of A on Hτ

E extends uniquely to a normal repre-
sentation of M on Hτ

E . In other words, Hτ
E is a Hilbert M -module.

Proof. Given a ∈ M , we define a map φa : E × E → C by

φa(f, g) = τ(a•〈f, g〉) for a ∈ M and f, g ∈ E .
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Then φa is linear in the first variable and conjugate-linear in the second. We also have 
that

φa(f, g) = τ(a•〈f, g〉) = τ((a∗)∗•〈g, f〉∗) = τ((•〈g, f〉a∗)∗) = τ(•〈g, f〉a∗) = φa∗(g, f).

In particular, if a is self-adjoint, then φa(f, g) = φa(g, f). Moreover, if a ≥ 0, then by 
Lemma 3.4 we have that φa(f, f) = τ(a•〈f, f〉) ≥ 0. Thus, for fixed a ≥ 0 we have shown 
that φa is a semi-inner product on E . Consequently it satisfies the Cauchy–Schwarz 
inequality:

|φa(f, g)| ≤ φa(f, f)1/2φa(g, g)1/2. (3.2)

From Lemma 3.4 it also follows for a ≥ 0 that

φa(f, f) = τ(a•〈f, f〉) ≤ ‖a‖τ(•〈f, f〉) = ‖a‖‖f‖2
Hτ

E
. (3.3)

Combining (3.2) and (3.3), we arrive at

|φa(f, g)| ≤ ‖a‖‖f‖Hτ
E‖g‖Hτ

E for a ≥ 0.

By writing a given a ∈ M as a linear combination of positive elements in M , one easily 
deduces that φa is a bounded, sesquilinear form on E for every a ∈ M , so it extends 
uniquely to a bounded, sesquilinear form φa on Hτ

E . By Riesz’ representation theorem 
there exists a unique bounded linear operator πτ

E(a) on Hτ
E such that

〈πτ
E(a)f, g〉Hτ

E = φa(f, g) for all f, g ∈ Hτ
E .

Thus we get a map πτ
E : M → B(Hτ

E). Note that for a ∈ A and f, g ∈ E we have that

〈πτ
E(a)f, g〉Hτ

E = τ(a•〈f, g〉) = τ(•〈af, g〉) = 〈af, g〉Hτ
E .

It follows that πτ
E extends the representation of A on Hτ

E . Since φa(f, g) is linear in a
for fixed f, g ∈ E , it also follows that πτ

E is linear on M . Further, from what we showed 
earlier, we have that

〈πτ
E(a)∗f, g〉 = 〈πτ

E(a)g, f〉 = φa(g, f) = φa∗(f, g) = 〈πτ
E(a∗)f, g〉

for f, g ∈ E . This implies that πτ
E preserves adjoints.

Next, we claim that πτ
E is a positive map: Indeed, let a ∈ M be positive. Then for 

every f ∈ E we get from Lemma 3.4 that 〈πτ
E(a)f, f〉Hτ

E = τ(a•〈f, f〉) ≥ 0. Writing a 
general f ∈ Hτ

E as a limit of a sequence (fn)n∈N in E , we get that

〈πτ
E(a)f, f〉Hτ = lim 〈πτ

E(a)fn, fn〉 ≥ 0.
E n→∞
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We will now show that πτ
E is normal. Since πτ

E is a positive linear map, it suffices to 
show that for any given bounded, increasing net (ai)i∈I of positive elements in M with 
s.o.t. limit a, πτ

E(a) is the s.o.t. limit of (πτ
E(ai))i∈I . (By s.o.t., we mean the strong oper-

ator topology.) Note that (πτ
E(ai))i∈I is a bounded, increasing net of positive operators 

in B(Hτ
E), so it has a s.o.t. limit which we denote by T . Thus, we want to show that 

πτ
E(a) = T . For this, let f, g ∈ E . Since a is the s.o.t. limit of (ai)i, the net (ai•〈f, g〉)i

converges in M to a•〈f, g〉 in the s.o.t. Using the s.o.t. continuity of τ , we get

lim
i
〈πτ

E(ai)f, g〉Hτ
E = lim

i
τ(ai•〈f, g〉) = τ(a•〈f, g〉) = 〈πτ

E(a)f, g〉Hτ
E

However, since T is the s.o.t. limit of (πτ
E(ai))i, we have limi π

τ
E(ai)f = Tf , so

lim
i
〈πτ

E(ai)f, g〉Hτ
E = 〈lim

i
πτ
E(ai)f, g〉Hτ

E = 〈Tf, g〉Hτ
E

as well. We have thus shown that 〈πτ
E(a)f, g〉 = 〈Tf, g〉 for all f, g ∈ E .

Next, let f ∈ E and g ∈ Hτ
E . Let g = limn gn where gn ∈ E for all n. Then it follows 

easily by the above that 〈Tf, g〉Hτ
E = limn〈πτ

E(a)f, gn〉Hτ
E = 〈πτ

E(a)f, g〉Hτ
E . Therefore, 

〈πτ
E(a)f, g〉Hτ

E = 〈Tf, g〉Hτ
E for arbitrary g ∈ Hτ

E , so we can conclude that πτ
E(a)f = Tf

for all f ∈ E . By density, it follows that πτ
E(a) = T . This completes the proof of the 

normality of πτ
E .

To see that πτ
E is multiplicative on M , we first observe that πτ

E , being normal, is 
ultraweakly continuous. Moreover, πτ

E is multiplicative on A, and A is ultraweakly dense 
in M . Since multiplication in a von Neumann algebra is separately continuous in each 
variable for the ultraweak topology, it is then straightforward to check that πτ

E(ab) =
πτ
E(a)πτ

E(b), first for a ∈ A and b ∈ M , and next for a, b ∈ M .
Finally, since any normal representation of M is ultraweakly continuous, πτ

E is clearly 
the only normal representation of M on Hτ

E extending the given representation of A on 
Hτ

E . �
3.5. Localization of adjointable operators

As in Section 3.4, let τ be a faithful tracial state on A and let M be the von Neumann 
algebra coming from the GNS construction applied to (A, τ). Given two Hilbert M -
modules H and H′, we denote by BM (H, H′) the bounded, M -linear operators from H
into H′.

We will make use of a procedure called localization of adjointable operators. Parts of 
the statements in the following result can be found in [7, p. 13] and [71, p. 58].

Lemma 3.6. Let E, F and K be Hilbert A-modules. Then the following hold:

(i) Every adjointable operator T : E → F extends uniquely to a bounded, M -linear map 
T τ : Hτ

E → Hτ
F . The map T 
→ T τ defines an injective, bounded, linear operator 

from LA(E , F) into BM (Hτ
E , Hτ

F )
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(ii) Let T ∈ LA(E , F) and S ∈ LA(F , K). Then (ST )τ = SτT τ and (T τ )∗ = (T ∗)τ .

Proof. (i) Let T : E → F be an adjointable map, and denote by ‖T‖ its operator norm 
as a bounded linear map between the Banach spaces E and F . Then by [71, Proposition 
1.2], we have that

•〈Tf, Tf〉 ≤ ‖T‖2
•〈f, f〉 for all f ∈ E .

Applying τ to the above inequality, it follows that ‖Tf‖2
Hτ

F
≤ ‖T‖2‖f‖2

Hτ
E

for all f ∈ E . 
Hence, T extends uniquely to a bounded linear operator T τ : Hτ

E → Hτ
F , which satisfies 

that ‖T τ‖ ≤ ‖T‖, where ‖T τ‖ denotes the operator norm of T τ as a bounded linear map 
from Hτ

E to Hτ
F . Thus T 
→ T τ defines an injective, bounded linear map LA(E , F) →

B(Hτ
E , Hτ

F ). For the M -linearity, let a ∈ M and let (ai)i∈I be a net in A that converges 
to a in the strong operator topology. Then, for any f ∈ E , we get that T τ (af) =
T τ (limi(aif)) = limi(aiTf) = aT τf . Hence, if f ∈ Hτ

E , say f = limn fn for some 
sequence (fn)n∈N in E , then T τ (af) = T τ (limn(afn)) = limn T

τ (afn) = limn aT
τfn =

aT τf , which shows that T τ is M -linear.
(ii) For f ∈ E , we get that (SτT τ )f = SτTf = STf since T τ (resp. Sτ ) extends T

(resp. S). Thus, by uniqueness of the extension (ST )τ , it follows that (ST )τ = SτT τ .
For f ∈ E and g ∈ F , applying τ to the equality •〈Tf, g〉 = •〈f, T ∗g〉 immediately 

gives that 〈Tf, g〉Hτ
F = 〈f, T ∗g〉Hτ

E , from which it readily follows that 〈T τf, g〉Hτ
F =

〈f, (T ∗)τg〉Hτ
E for f ∈ Hτ

E and g ∈ Hτ
F . Hence, (T τ )∗ = (T ∗)τ . �

Setting E = F = K in Lemma 3.6, we get that the map T 
→ T τ from LA(E) into 
B(Hτ

E) is an injective ∗-homomorphism, hence an isometry, see, e.g., [85, Theorem 3.1.5]. 
Thus, LA(E) can be viewed as a unital C∗-subalgebra of B(Hτ

E), and spectral invariance 
is known to hold (see, e.g., [85, Theorem 2.1.11]), that is, if T ∈ LA(E) is invertible as 
an element of B(Hτ

E), then its inverse is necessarily in LA(E).

4. Hilbert C*-modules from projective representations of discrete groups

This section provides a general method for the construction of Hilbert C∗-modules 
from (integrable) σ-projective representations of discrete groups. Our method follows the 
approach outlined in [103] and [104, Section 1] closely, complementing it with statements 
on frames/Riesz sequences.

Henceforth, Γ denotes a countable discrete group, and σ denotes a cocycle on Γ. In this 
section we set A equal to C∗

r (Γ, σ), the reduced twisted group C∗-algebra of (Γ, σ), and 
let τ denote the canonical tracial state on A. We let Cc(Γ, σ) denote the ∗-subalgebra of 
�1(Γ, σ) consisting of all finitely supported functions on Γ. We fix a σ-projective unitary 
group representation π of Γ on a Hilbert space Hπ. In this context we make the following 
definition:
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Definition 4.1. Let A0 be a ∗-subalgebra of �1(Γ, σ) containing Cc(Γ, σ), and let H0 be 
a dense subspace of Hπ. We call the pair (A0, H0) admissible for π if the following hold:

(1) For every a ∈ A0 and f ∈ H0, the vector

a · f := π̂(a)f =
∑
γ∈Γ

a(γ)π(γ)f (4.1)

is an element of H0.
(2) For every f, g ∈ H0, the function •〈f, g〉 : Γ → C given by

•〈f, g〉(γ) := 〈f, π(γ)g〉Hπ
for γ ∈ Γ (4.2)

is an element of A0.

Proposition 4.2. Let (A0, H0) be an admissible pair for π. Then, with the action of A0
on H0 given by (4.1) and the A0-valued inner product on H0 given by (4.2), H0 becomes 
a left pre-inner product A0-module, which can be completed to a Hilbert A-module E.

Proof. The assumption that (A0, H0) is an admissible pair ensures that the action of A0
on H0 is well-defined into H0 and that the inner product on H0 takes values in A0. Since 
A0 contains Cc(Γ, σ), it is dense in �1(Γ, σ). Moreover, �1(Γ, σ) is dense in C∗

r (Γ, σ), and 
the �1-norm dominates the C∗

r -norm on �1(Γ, σ). Hence it follows that A0 is dense in 
C∗

r (Γ, σ).
For the A0-linearity in the first argument of •〈·, ·〉, let f, g ∈ H0. Consider first a = δγ

for some γ ∈ Γ. Note that •〈f, g〉 is simply the matrix coefficient Cgf associated to π as 
in Section 2.2. Using relation (2.2), we get

•〈a · f, g〉(γ′) = 〈π(γ)f, π(γ′)g〉Hπ
= [Cg(π(γ)f)](γ′) = Cgf(γ−1γ′)σ(γ, γ−1γ′)

= •〈f, g〉(γ−1γ′)σ(γ, γ−1γ′) =
(
a ∗σ •〈f, g〉

)
(γ′)

for every γ′ ∈ Γ, i.e., •〈a · f, g〉 = a ∗σ •〈f, g〉. This formula clearly extends by linearity 
to every a ∈ Cc(Γ, σ). Now assume that a ∈ A0 and pick a sequence (an)∞n=1 in Cc(Γ, σ)
such that ‖a − an‖1 → 0 as n → ∞. Using what we just have shown, we get that, for 
every γ′ ∈ Γ,∣∣(•〈a · f, g〉 − a ∗σ •〈f, g〉

)
(γ′)

∣∣ ≤ ∣∣•〈(a− an) · f, g〉(γ′)
∣∣ +

∣∣((an − a) ∗σ •〈f, g〉
)
(γ′)

∣∣
≤

∣∣〈(a− an) · f, π(γ′)f〉Hπ

∣∣ + ‖(a− an) ∗σ •〈f, g〉‖1

≤ ‖(a− an) · f‖Hπ
‖π(γ′)f‖Hπ

+ ‖a− an‖1 ‖•〈f, g〉‖1

≤ ‖a− an‖1 ‖f‖2
Hπ

+ ‖a− an‖1 ‖•〈f, g〉‖1

→ 0
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as n → ∞. Hence, •〈a · f, g〉 = a ∗σ •〈f, g〉 for every a ∈ A0, as desired.
Moreover, for each f ∈ H0, the function •〈f, f〉 ∈ A0 ⊆ �1(Γ, σ) is a diagonal matrix 

coefficient on Γ associated to π, hence positive in C∗
r (Γ, σ) by Proposition 2.1.

Lastly, if •〈f, f〉 = 0 for some f ∈ H0, then ‖f‖2
Hπ

= •〈f, f〉(e) = 0, hence f = 0. This 
proves all the properties needed for H0 to be a pre-inner product A0-module as defined 
in Section 3.1. �

Let (A0, H0) be an admissible pair for π, as in Proposition 4.2. Note that for f, g ∈ H0

we have

τ(•〈f, g〉) = •〈f, g〉(e) = 〈f, π(e)g〉Hπ
= 〈f, g〉Hπ

.

This implies that the localization space Hτ
E can be naturally identified with Hπ. Thus, 

the representation πτ
E of A on Hτ

E induces a representation πr of A = C∗
r (Γ, σ) on Hπ, 

which satisfies that π̂ = πr ◦ λ̂σ
Γ. (This shows that π is weakly contained in λσ

Γ whenever 
there exists an admissible pair for π.)

Similarly, for a, b ∈ �1(Γ, σ), the localized inner product on A as a left module over 
itself is given by:

τ(•〈a, b〉) = (a ∗ b∗)(e) =
∑
γ∈Γ

σ(γ, γ−1e)a(γ)b∗(γ−1e) =
∑
γ∈Γ

σ(γ, γ−1)a(γ)σ(γ−1, γ)b(γ)

= 〈a, b〉�2(Γ).

Consequently, the localization space Hτ
A of A, considered as a left module over itself, can 

be naturally identified with �2(Γ). It is readily verified that the representation πτ
A of A

on Hτ
A corresponds then to the identity representation of A on �2(Γ).

Proposition 4.3. Let (A0, H0) be an admissible pair for π, and E be the associated Hilbert 
A-module. Let g1, . . . , gn ∈ H0. Then the following hold:

(i) The finite set {g1, . . . , gn} is an algebraic generating set for E if and only if

(π(γ)gj)γ∈Γ,1≤j≤n

is a frame for Hπ.
(ii) The finite set {g1, . . . , gn} is an A-linearly independent set in E with closed A-span 

if and only if

(π(γ)gj)γ∈Γ,1≤j≤n

is a Riesz sequence in Hπ.
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Proof. Denote by C : E → An the analysis operator associated to a finite set 
{g1, . . . , gn} ⊆ E , so C f = (•〈f, gj〉)nj=1 for f ∈ E . It maps H0 into �1(Γ)n ∼=
�1(Γ × {1, . . . , n}), and after this identification, it acts on H0 by

C f = (〈f, π(γ)gj〉)γ∈Γ,1≤j≤n.

Thus, the action of C on H0 coincides with the action of the analysis operator 
C : Hπ → �2(Γ × {1, . . . , n}) associated to the system (π(γ)gj)γ∈Γ,1≤j≤n. By density, 
it follows that the localized operator C τ : Hτ

E → Hτ
An can be identified with C . Simi-

larly, the localization of the synthesis operator D : An → E can be identified with the 
synthesis operator D : �2(Γ × {1, . . . , n}) → Hπ of (π(γ)gj)γ∈Γ,1≤j≤n. Consequently, by 
Lemma 3.6, the same identifications hold for the frame operator S ∈ LA(E) and the 
Gramian operator G ∈ LA(An).

(i) By the discussion below Lemma 3.6, the frame operator S ∈ LA(E) is invertible 
if and only if its localization, the frame operator S associated to (π(γ)gj)γ∈Γ,1≤j≤n, is 
invertible. Invertibility of the former is equivalent to {g1, . . . , gn} being a generating set 
by Lemma 3.1, while invertibility of the latter is equivalent to (π(γ)gj)γ∈Γ,1≤j≤n being 
a frame for Hπ.

(ii) Similarly, the Gramian associated to {g1, . . . , gn} is invertible if and only if 
the Gramian G associated to (π(γ)gj)γ∈Γ,1≤j≤n is invertible. The former invertibil-
ity is equivalent to {g1, . . . , gn} being A-linearly independent with closed A-span by 
Lemma 3.2, while the latter invertibility is equivalent to (π(γ)gj)γ∈Γ,1≤j≤n being a Riesz 
sequence for Hπ. �
5. Strict comparison in C*-algebras

Throughout this section, A denotes a unital C∗-algebra.

5.1. Strict comparison of positive elements and of projections

We first recall a few facts about the comparison of positive elements in C∗-algebras, 
originally introduced by Cuntz [26]. We follow Rørdam [109] (see e.g. [4,108,115] for 
alternative presentations).

Let A+ denote the cone of positive elements of A. For m, n ∈ N, we let Mm,n(A)
denote the space of m × n matrices over A. We let M∞(A)+ denote the (disjoint) union ⋃

n∈N Mn(A)+. For a, b ∈ M∞(A)+, say a ∈ Mn(A)+ and b ∈ Mm(A)+, we say that a is 
Cuntz subequivalent to b, and write a � b, if there exists a sequence (rk)∞k=1 in Mm,n(A)
such that ‖r∗kbrk − a‖ → 0 in Mn(A) as k → ∞.

Assume now that A has at least one tracial state. If τ is a tracial state on A, we 
define τ : Mn(A) → C for each n ∈ N by τ([aij ]) :=

∑n
i=1 τ(aii). Moreover, we define 

dτ : M∞(A)+ → [0, ∞) by dτ (a) = limk→∞ τ(a1/k) whenever a ∈ Mn(A)+. Then we 
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say that A has strict comparison of positive elements whenever the following implication 
holds for a, b ∈ M∞(A)+:

If dτ (a) < dτ (b) for every tracial state τ on A, then a � b.

We note that this property implies that A has strict comparison of projections, in the 
following extended sense (compared to [16, FCQ2, p. 22] and [115, Definition 11.3.8]):

If n ∈ N and p, q are projections in Mn(A) such that τ(p) < τ(q) for every tracial
state τ on A, then p is Murray-von Neumann subequivalent to q in Mn(A), i.e.,
there exists some v ∈ Mn(A) such that p = v∗v and vv∗ ≤ q.

Indeed, if A has strict comparison of positive elements and the projections p, q ∈
Mn(A) satisfy the assumption above, then we readily get that dτ (p) = τ(p) < τ(q) =
dτ (q) for every tracial state τ on A, hence that p � q. This means that there exists 
a sequence (rk)∞k=1 in Mn(A) such that r∗kqrk → p as k → ∞, and it is well-known 
that this implies that p is Murray-von Neumann subequivalent to q in Mn(A), cf. [108, 
Proposition 2.1] or [115, Proposition 14.2.1].

We next mention some conditions ensuring that strict comparison of positive elements 
hold whenever A belongs to a certain class of C∗-algebras. As we will not work explicitly 
with any of the properties involved, we do not recall the lengthy definitions and simply 
refer the reader to Strung’s book [115] for undefined terminology in the following theorem 
and in the comments related to it.

Theorem 5.1 ([108,109,120]). Let A be a unital, separable, simple, nuclear, infinite-
dimensional C∗-algebra with at least one tracial state, and let Z denote the Jiang-Su 
algebra [66]. Consider the following conditions:

1) A has finite decomposition rank;
2) A has finite nuclear dimension;
3) A is Z-stable;
4) A has strict comparison of positive elements.
5) A has stable rank one.

Then 1) ⇒ 2) ⇒ 3) ⇒ 4). We also have 3) ⇒ 5).

The first implication is by definition, the second is due to Winter, cf. [120, Corol-
lary 7.3], and the third is due to Rørdam, cf. [109, Corollary 4.6] and [115, Theorem 
15.4.6]; to be a bit more precise, this implication can be deduced from [109, Theorem 
4.5] by arguing in the same way as in the proof of [108, Theorem 5.2 (a)], taking into ac-
count Blackadar and Handelman’s characterization of lower semi-continuous dimension 
functions, cf. [18], and Haagerup’s result that quasitraces on exact C∗-algebras, hence 
on nuclear C∗-algebras, are traces, cf. [56]. The implication 3) ⇒ 5) follows from [109, 
Theorem 6.7].
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Let A be as in Theorem 5.1. For completeness, we add that if A is also assumed to 
have a unique tracial state (or more generally, if the extreme boundary of the tracial 
state space of A has a finite topological dimension), then Matui and Sato have shown 
in [80] that 4) implies 2), i.e., conditions 2), 3) and 4) are equivalent in this case. This 
means that the (revised) Toms-Winter conjecture (cf. [115, p. 302]) holds in this case.

5.2. Relation to finitely generated Hilbert C*-modules

Consider the Hilbert A-modules E = Anp and F = Anq associated to some projections 
p, q ∈ Mn(A). Then p is Murray–von Neumann subequivalent to q if and only if E is 
isomorphic to an orthogonally complementable submodule of F , i.e., there exists an A-
submodule E ′ of F such that E ∼= E ′ and E ′ ⊕ E ′ ⊥ = F . This is again equivalent to the 
existence of an adjointable isometry E → F .

Let E be a finitely generated Hilbert A-module. If A has a tracial state τ , then we 
define

τ(E) = τ(p) =
∑
i

τ(pii)

for any projection p = [pij ] ∈ Mn(A) such that E ∼= Anp. (It is not difficult to check that 
τ(p) = τ(q) if we also have E ∼= Akq for some projection q ∈ Mk(A).)

The correspondence between finitely generated Hilbert A-modules and projections in 
matrix algebras over A allows us to prove the following result in the presence of strict 
comparison of projections (in the sense defined in the previous subsection):

Proposition 5.2. Suppose A has at least one tracial state and strict comparison of pro-
jections. Let E be a finitely generated Hilbert A-module and n ∈ N. Then the following 
hold:

(i) If τ(E) < n for all tracial states τ on A, then E admits a generating set with n
elements.

(ii) If τ(E) > n for all tracial states τ on A, then E admits an A-linearly independent 
set with n elements such that its A-span is closed.

Proof. (i) Assume that τ(E) < n for all tracial states τ on A. Since E is finitely generated, 
we can find k ∈ N and a projection p ∈ Mk(A) such that E ∼= Akp. We let In denote 
the n × n identity matrix in Mn(A), and 0r denote the zero matrix in Mr(A) for r ∈ N. 
If b ∈ Mn(A) and c ∈ Mr(A), we denote by b ⊕ c the matrix in Mn+r(A) given by 

b ⊕ c :=
(
b 0
0 c

)
. Set

p̃ =
{
p⊕ 0n−k if k < n,

p if n ≤ k,
Ĩn =

{
In if k ≤ n,

I ⊕ 0 if n ≤ k.
n k−n
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Further, set m = max(n, k). Then p̃ and Ĩn are projections in Mm(A), satisfying that

τ(p̃) = τ(p) < n = τ(In) = τ(Ĩn)

for all tracial states τ on A. Strict comparison of projections implies that p̃ � Ĩn. In terms 
of Hilbert A-modules, this means that there exists an adjointable isometry Amp̃ → AmĨn, 
so we get an adjointable isometry

E ∼= Akp ∼= Amp̃ → AmĨn ∼= An,

which by Proposition 3.3 means that E admits a generating set consisting of n elements.
(ii) Arguing similarly as in (i), we now get that there exists an adjointable isometry 

An → E , which by Proposition 3.3 means that E admits an A-linearly independent set 
with n elements that has closed A-span. �

Assume now that A has a faithful tracial state τ and E is a finitely generated Hilbert 
A-module. Then one may use the localization procedure of Section 3.4 to express τ(E)
in terms of the dimension of the Hilbert M -module Hτ

E , where M is the von Neumann 
algebra associated to (A, τ). Indeed, by Proposition 3.3 (and its proof), we can find an 
adjointable isometry C : E → An for some n ∈ N, and we then have Im(C ) = Anp for 
some projection p ∈ Mn(A). Considering the localization of C (with respect to τ) as in 
Lemma 3.6, we obtain a bounded, M -linear map C τ : Hτ

E → Hτ
An

∼= (Hτ
A)n = L2(M, τ)n. 

In addition, since C ∗C = I, we obtain by Lemma 3.6 that (C τ )∗C τ = (C ∗C )τ = I, 
hence C τ is an isometry. Moreover, we have Im(C τ ) = L2(M, τ)np, where we consider p
as a projection in Mn(M). It follows that Hτ

E is finitely generated as a Hilbert M -module 
(cf. [2, Proposition 8.5.3]) and that its dimension (with respect to τ) is given by

dim(M,τ) Hτ
E = τ(p),

cf. [2, Definition 8.5.4]; see also [74, Definition 1.6], and [68, Chapter 2] in the case where 
M is a II1-factor.

The above discussion yields the following result.

Proposition 5.3. Suppose E is finitely generated Hilbert A-module and τ is a faithful 
tracial state on A. Then

τ(E) = dim(M,τ) Hτ
E .

5.3. Twisted group C*-algebras of finitely generated, nilpotent groups

In this section we will extend the results from [32,33] on the finite decomposition 
rank (nuclear dimension) of group C∗-algebras associated to finitely generated nilpotent 
groups to twisted group algebras of such groups. By Theorem 5.1, this will imply the 
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presence of strict comparison of projections, which will allow us to exploit Proposition 5.2
in the setting of Section 4.

The following result (cf. [58, Theorem 3.5]) will be useful to us for extending the 
relevant results in [32,33].

Theorem 5.4 ([58]). Let Γ be a finitely generated nilpotent group. Then Γ has a repre-
sentation group Γ̃ which is finitely generated and nilpotent.

In [58, Definition 1.1], a group Γ̃ is called a representation group3 of a discrete group Γ
if there is a central extension 1 → B → Γ̃ → Γ → 1 such that the associated transgression 
map from Hom(B, C×) into the second cohomology group H2(Γ, C×) is an isomorphism. 
As pointed out in [58, Section 3], see [15,114] for more information, Γ has always a 
representation group Γ̃, and one may alternatively say that Γ̃ is a Schur cover of Γ
(sometimes called a stem cover of Γ), meaning that there is a central extension

1 → N → Γ̃ → Γ → 1

such that N is contained in the commutator subgroup of Γ̃ and is isomorphic to the second 
homology group H2(Γ, Z). We let φ : Γ̃ → Γ denote the homomorphism appearing in the 
sequence above.

The relevance of representation groups for our purposes lies in the fact that any 
projective representation of Γ corresponds to a genuine representation of Γ̃. Indeed, let 
σ ∈ Z2(Γ, T ) and let π be a σ-projective unitary representation Γ on a Hilbert space 
Hπ. Identifying the circle group T with the center T · IHπ

of the group of unitary 
operators U(Hπ), and letting q : U(Hπ) → U(Hπ)/T denote the quotient map, we get 
a homomorphism ρπ : Γ → U(Hπ)/T given by ρπ = q ◦ π. Since Ext(Γab, T ) = 0
(because T is divisible, cf. [60, Chapter III, Proposition 2.6]), we may then invoke [114, 
Proposition V.5.5], and deduce that there exists a homomorphism π̃ : Γ̃ → U(Hπ), i.e., 
a unitary representation π̃ of Γ̃ on Hπ, satisfying that q ◦ π̃ = ρπ ◦ φ.

From the relation between π and π̃, it follows readily that for every γ ∈ Γ̃, there exists 
(a unique) μγ ∈ T such that

π̃(γ) = μγ π(φ(γ)) .

Note that π is irreducible if and only if π̃ is irreducible: Indeed, as φ is surjective, we 
obviously have π(Γ)′ = π̃(Γ̃)′, so this is a consequence of Schur’s lemma. It is also 
immediate that π(Γ) and π̃(Γ̃) generate the same C∗-algebra of operators on Hπ.

If π is a σ-projective unitary representation of Γ on a Hilbert space Hπ, we will 
denote by C∗(π(Γ)) the C∗-subalgebra of B(Hπ) generated by π(Γ). In other words, 
C∗(π(Γ)) = π̂(C∗(Γ, σ)). Since C∗(Γ, σ) is nuclear whenever Γ is amenable [94, Corollary 

3 There is a similar notion of representation group for certain locally compact groups which was introduced 
by C.C. Moore [83], see also [93, Section 3].
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3.9], and as any ∗-homomorphic image of a nuclear C∗-algebra is also nuclear (see for 
example [17, Corollary IV.1.13]), we get in particular that C∗(π(Γ)) is nuclear whenever 
Γ is nilpotent. Moreover, using results due to Eckhardt, Gillaspy and McKenney [32] and 
Eckhardt and Gillaspy [31] in the case of ordinary unitary representations, we obtain the 
following:

Theorem 5.5. Let Γ be a finitely generated nilpotent group and σ ∈ Z2(Γ, T ). Let π be a 
σ-projective unitary representation of Γ on a Hilbert space Hπ. Then

(i) C∗(π(Γ)) and C∗(Γ, σ)  C∗
r (Γ, σ) are nuclear, quasidiagonal and have finite de-

composition rank;
(ii) If π is irreducible, then C∗(π(Γ)) is also simple, it satisfies the universal coefficient 

theorem (UCT), and its decomposition rank is less or equal to 1.

Proof. (i) The assertion about nuclearity follows from our comment above. Next, accord-
ing to Theorem 5.4, Γ has a representation group Γ̃ which is finitely generated and nilpo-
tent. As explained previously, there exists a unitary representation π̃ of Γ̃ on Hπ such that 
C∗(π(Γ)) = C∗(π̃(Γ̃)). Now, [32, Theorem 5.1] gives that C∗(Γ̃) has finite decomposition 
rank. Using [69, (3.3)], we deduce that any ∗-homomorphic image of C∗(Γ̃), in particu-
lar C∗(π̃(Γ̃)), has finite decomposition rank. Since C∗

r (Γ, σ) = C∗(λσ
Γ(Γ)) = C∗(λ̃σ

Γ(Γ̃)), 
this implies that C∗(Γ, σ)  C∗

r (Γ, σ) has finite decomposition rank. Since any separable 
C∗-algebra with finite decomposition rank is quasidiagonal (cf. [115, Theorem 17.4.3]), 
we have shown (i).

(ii) Assume now that π is irreducible. Then π̃ is irreducible too. As any primitive 
ideal of C∗(Γ̃) is maximal [98], we get that C∗(π̃(Γ̃)) is simple. Further, [31, Theorem 
3.5] gives that C∗(π̃(Γ̃)) satisfies the UCT. Finally, [32, Theorem 6.2] gives that the 
decomposition rank of C∗(π̃(Γ̃)) is less or equal to 1. �
Remark 5.6. By definition, the decomposition rank of a separable C∗-algebra bounds 
its nuclear dimension. Thus, in Theorem 5.5 we could replace finite decomposition rank
with finite nuclear dimension. To show that this weaker property holds, we could then 
have invoked [33, Theorem 4.4] instead of quoting [32, Theorem 5.1].

Theorem 5.7. Let Γ be a finitely generated nilpotent group and σ ∈ Z2(Γ, T ). Assume 
that (Γ, σ) satisfies Kleppner’s condition.

Then C∗(Γ, σ)  C∗
r (Γ, σ) is a (unital, separable, nuclear) simple, quasidiagonal C∗-

algebra with a unique tracial state, which satisfies the UCT and has decomposition rank 
less or equal to 1.

Proof. The fact that C∗(Γ, σ)  C∗
r (Γ, σ) is simple with a unique tracial state whenever 

Γ is nilpotent and (Γ, σ) satisfies Kleppner’s condition is due to Packer, cf. [92]. Let now 
π be any σ-projective irreducible unitary representation of Γ. Since C∗(Γ, σ) is simple, 
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we have C∗(Γ, σ)  C∗(π(Γ)), which we know is quasidiagonal and has decomposition 
rank less or equal to 1 from Theorem 5.5. �

Combining Theorem 5.1 and Theorem 5.7, we finally get:

Corollary 5.8. Let Γ be a finitely generated nilpotent group, σ ∈ Z2(Γ, T ), and assume 
(Γ, σ) satisfies Kleppner’s condition. Then C∗(Γ, σ)  C∗

r (Γ, σ) has strict comparison of 
positive elements and stable rank one. In particular, C∗

r (Γ, σ) has strict comparison of 
projections (in our extended sense).

Note that a combination of Theorem 5.7 and Corollary 5.8 directly provides Theo-
rem 1.6. Lastly, we mention how to obtain Theorem 1.7 from these results.

Proof of Theorem 1.7. As shown by Tikuisis, White and Winter, cf. [117, Corollary D], 
the class C of all separable, unital, simple, infinite-dimensional C∗-algebras with finite 
nuclear dimension and which satisfy the UCT is classified by the Elliott invariant. Now 
Theorem 5.7 gives that C∗

r (Γ, σ) belongs to C whenever Γ and σ satisfy the assumptions 
of this theorem (and Γ is infinite). �
6. Lattice orbits of nilpotent Lie groups

Let (π, Hπ) be a projective representation of a nilpotent Lie group G on Hπ. For a 
lattice Γ ≤ G and a vector g ∈ Hπ, we consider the system of vectors

π(Γ)g = (π(γ)g)γ∈Γ. (6.1)

A system (6.1) will be treated as a Γ-indexed family, possibly with repetitions.
In this section the results obtained in the previous sections are applied to the restric-

tion π|Γ of π to Γ and an explicitly constructed associated Hilbert C∗-module.

6.1. Relative discrete series and projective representations

Let N be a connected, simply connected nilpotent Lie group and let (π, Hπ) be an 
irreducible unitary representation of N . Denote by Pπ =

{
x ∈ N : π(x) ∈ C · IHπ

}
the projective kernel of π. Then Pπ ≤ N forms a connected, simply connected normal 
subgroup. Assume that (π, Hπ) is square-integrable modulo Pπ, i.e., there exist f, g ∈
Hπ \ {0} such that ∫

N/Pπ

|〈f, π(x)g〉|2 dμN/Pπ
(xPπ) < ∞. (6.2)

Since π(x) = χ(x)IHπ
for a character χ ∈ P̂π, the integrand N � x 
→ |〈f, π(x)g〉| ∈

[0, ∞) in (6.2) defines a function on N/Pπ.
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The orthogonality relations for (π, Hπ) yield that there exists a unique dπ > 0 such 
that ∫

N/Pπ

|〈f, π(x)g〉|2 dμN/Pπ
(xPπ) = d−1

π ‖f‖2
Hπ

‖g‖2
Hπ

, f, g ∈ Hπ; (6.3)

see, e.g., [25,84,95]. An irreducible representation π that is square-integrable modulo Pπ

is called a relative discrete series representations; this will be denoted by π ∈ SI/Pπ.
In particular, if π is irreducible and square-integrable modulo the center Z of N , then 

π ∈ SI/Pπ, and Pπ = Z by [25, Theorem 3.2.3] and [25, Corollary 4.5.4].
A representation π ∈ SI/Pπ can be treated as a square-integrable projective repre-

sentation of N/Pπ: Given a smooth cross-section s : N/Pπ → N for the quotient map 
p : N → N/Pπ, the mapping

π′ : N/Pπ → U(Hπ), xPπ 
→ π(s(xPπ)) (6.4)

defines an irreducible projective unitary representation of N/Pπ. The assumption on π
yields that (π′, Hπ) is square-integrable on N/Pπ in the strict sense, i.e., 〈g1, π′(·)g2〉 ∈
L2(N/Pπ) for all g1, g2 ∈ Hπ. The constant dπ > 0 in (2.3) coincides with the formal 
dimension dπ′ of π′ normalized according to Haar measure on N/Pπ (see Section 2.2). 
A different choice of cross-section yields equivalent projective unitary representations 
(cf. [3] for details).

A square-integrable projective representation π′ obtained via a cross-section as in (6.4)
will be referred to as a projective relative discrete series representation of the connected, 
simply connected nilpotent Lie group G = N/Pπ. For simplicity, it will often also be 
written π = π′.

Notation. Throughout, unless stated otherwise, any nilpotent Lie group G is assumed 
to be connected and simply connected. The Lie algebra of G is denoted by g and its 
dimension by d. The associated exponential map is denoted by expG : g → G and forms 
a global diffeomorphism. The Schwartz space on G consists of all F : G → C such that 
F ◦ expG ∈ S(g).

6.2. Smooth vectors and matrix coefficients

Let (π, Hπ) be an irreducible unitary representation of a nilpotent Lie group N . The 
space of smooth vectors H∞

π consists of all vectors g ∈ Hπ such that the orbit maps 
N � x 
→ π(x)g ∈ Hπ are smooth. The Lie algebra n acts on H∞

π via the derived 
representation

dπ(X)g = d
∣∣∣∣ π(expN (tX))g, X ∈ n, g ∈ H∞

π .

dt t=0
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For a basis {X1, ..., Xd} for n, a family of semi-norms in H∞
π is defined by

‖g‖β := ‖dπ(Xβ)g‖Hπ
= ‖dπ(Xβ1

1 ) · · · dπ(Xβd

d )g‖Hπ
, β ∈ Nd

0 .

The space H∞
π is π-invariant and is norm dense in Hπ, see, e.g., [25, Appendix A.1].

For smooth vectors, the associated matrix coefficients of a square-integrable repre-
sentation define Schwartz functions, see, e.g., [24,25,61,95] for different versions. For our 
purposes, the following version is most convenient, cf. [95, Theorem 2.6] and [95, Remark 
2.2.8].

Lemma 6.1 ([95]). Let π ∈ SI/Pπ. If f, g ∈ H∞
π , then Cgf = 〈f, π′(·)g〉 ∈ S(N/Pπ).

Proof. The result follows from the general theorem [95, Theorem 2.6] in the following 
manner.

Let p ⊆ n denote the Lie algebra of Pπ. As in [95, Remark 2.2.8], let ne ⊂ n be 
a subspace of even dimension, so that the orthogonal decomposition n = ne ⊕ p gives 
rise to the diffeomorphism φ : ne → N/Pπ, X 
→ expN (X)Pπ (cf. [25, Section 1.2]), 
with inverse φ−1 : N/Pπ → ne given by expN (X)Pπ 
→ X. Hence, a (smooth) cross-
section s : N/Pπ → N for p : N → N/Pπ is given by s(expN (X)Pπ) = expN (X), i.e., 
p ◦s = idN/Pπ

. For this cross-section, denote by π′ the projective representation of N/Pπ

as defined in (6.4).
If f, g ∈ H∞

π , then [95, Theorem 2.6] yields that ne � X 
→ 〈f, π(expN (X))g〉 ∈ C is 
in S(ne). A direct calculation using expN/Pπ

(X + p) = p(expN (X)) and the definition of 
π′ shows

〈f, π′(expN/Pπ
(X + p))g〉 = 〈f, π′(expN (X)Pπ)g〉 = 〈f, π(expN (X))g〉, X ∈ n.

Therefore, X + p 
→ 〈f, π′(expN/Pπ
(X + p))g〉 defines a Schwartz function on n/p ∼= ne, 

i.e., 〈f, π′(·)g〉 ∈ S(N/Pπ). �
Lemma 6.1 allows to prove a convenient characterization of the space H∞

π . For this 
and other purposes, a family of semi-norms on S(N/Pπ) defined via polynomial weights 
and left-invariant differential operators will be used, cf. [62,75,111] for more details on 
what follows.

Let U be fixed a symmetric, compact generating set for G = N/Pπ and define the 
length function τ : G → [0, ∞) by

τ(x) = min{n ∈ N0 | x ∈ Un},

with U0 := {e}. Then τ(xy) ≤ τ(x) + τ(y), τ(x−1) = τ(x) and τ(e) = 0 for x, y ∈ G. 
Given α ∈ N0, let wα : G → [1, ∞) be defined as x 
→ (1 + τ(x))α and define Lp

wα
(G) to 

be the collection of all F ∈ Lp(G) such that ‖F‖Lp
w

:= ‖wα · F‖Lp < ∞.

α
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Let D(G) be the (unital) algebra of all left-invariant differential operators on G, i.e., 
all linear operators D : C∞(G) → C∞(G) of the form D =

∑
β∈Nd

0
cβX

β , where all but 
finitely many cβ ∈ C are zero and Xβ = Xβ1

1 · · ·Xβd

d for a basis {X1, ..., Xd} for g.
Let p ∈ [1, ∞]. Then a function F ∈ C∞(G) belongs to S(G) if, and only if, for all 

D ∈ D(G) and α ∈ N0,

‖F‖D,α,p :=
∥∥DF

∥∥
Lp

wα
< ∞. (6.5)

The space S(G) is independent of the choice of the neighborhood U and the exponent 
p, cf. [62,75,111].

Proposition 6.2. Let π ∈ SI/Pπ. For g ∈ H∞
π \ {0} and α ∈ N0, let

H1,α
π :=

{
f ∈ Hπ : ‖Cgf‖L1

wα
=

∫
G

|Cgf(x)|wα(x) dμG(x) < ∞
}
.

Then H∞
π =

⋂
α∈N0

H1,α
π .

Proof. As in the proof of Lemma 6.1, consider the orthogonal decomposition n = ne ⊕ p

and the diffeomorphism φ : ne → N/Pπ, X 
→ expN (X)Pπ. Let π′ denote the projective 
representation of G = N/Pπ defined via the section s : N/Pπ → N, s(expN (X)Pπ) =
expN (X) as in (6.4).

If f ∈ H∞
π , then Cgf ∈ S(G) by Lemma 6.1. In particular, using the semi-norms 

(6.5) with p = 1, yields directly that Cgf ∈ L1
wα

(G) for all α ∈ N0. For the converse, let 
f ∈

⋂
α∈N0

H1,α
π and let g ∈ H∞

π \ {0} be normalized such that

f =
∫
G

〈f, π′(x)g〉π′(x)g dμG(x) =
∫

N/Pπ

〈f, π(s(xPπ))g〉π(s(xPπ))g dμN/Pπ
(xPπ);(6.6)

cf. the orthogonality relations (2.3) and (6.3). By [25, Theorem 1.2.10], the map φ : ne →
N/Pπ transforms the Lebesgue measure dY on ne to Haar measure μG on G = N/Pπ. 
Therefore, the reproducing formula (6.6) and the change-of-variables formula yields

f =
∫
ne

〈f, π(expN (Y ))g〉π(expN (Y ))g dY.

Given a basis {X1, ..., Xd} of n and a multi-index β ∈ Nd
0 , a direct calculation entails 

then that dπ(Xβ)f =
∫
ne
〈f, π(expN (Y ))g〉dπ(Xβ)π(expN (Y ))g dY . Since g ∈ H∞

π , it 
follows as in the proof of [25, Lemma A.1.1] that

dπ(Xβ)π(expN (Y ))g = π(expN (Y ))
∑
′

pβ′(expN (Y ))dπ(Xβ′
)g,
|β |≤|β|
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where pβ′ are polynomial functions on N , i.e., pβ′ ◦expN is a polynomial on n. Combining 
these identities with norm estimates for vector-valued integrals (see, e.g., [40, Theorem 
A.22]) gives

‖dπ(Xβ)f‖Hπ

≤
∑

|β′|≤|β|
‖dπ(Xβ′

)g‖Hπ

∫
ne

|〈f, π(expN (Y ))g〉||pβ′(expN (Y ))| dY

=
∑

|β′|≤|β|
‖dπ(Xβ′

)g‖Hπ

∫
N/Pπ

|〈f, π(s(xPπ))g〉||pβ′(s(xPπ))| dμN/Pπ
(xPπ).

(6.7)

By the assumption g ∈ H∞
π , we have C1 := max|β′|≤|β| ‖dπ(Xβ′)g‖Hπ

< ∞. Since pβ′ ◦
expN is a polynomial on ne, it follows by the identity pβ′(expN (Y )) = pβ′(s(expN/Pπ

(Y +
p))) that pβ′ ◦ s is a polynomial function on G = N/Pπ. By [75, Section 1.5] or [76, 
Section 3.5], any polynomial function p on N/Pπ is comparable to the polynomial weight 
w = 1 + τ(·) in the sense that there exist C2, M > 0 (depending on p) such that 
p(x) ≤ C2w(x)M for x ∈ G. Choosing α > 0 sufficiently large, it follows therefore easily 
from this and (6.7) that there exists C > 0 such that

‖dπ(Xβ)f‖Hπ
≤ C

∫
G

|〈f, π(s(x))g〉|wα(x) dμG(x) < ∞. (6.8)

Since β ∈ Nd
0 was chosen arbitrary, it follows that f ∈ H∞

π . �
The arguments used in the proof of Proposition 6.2 are reminiscent of some arguments 

used in [46, Section 11.2] and [13, Section 2.2], which require different assumptions than 
used here.

6.3. Mapping properties for smooth vectors

Henceforth, π = π′ will denote a projective relative discrete series representation of 
G = N/Pπ and Γ ≤ G will denote a lattice.

The Schwartz space S(Γ) on the discrete subgroup Γ ≤ G is defined by

S(Γ) =
{
c ∈ CΓ :

∑
γ∈Γ

|cγ |wα(γ) < ∞, ∀α ∈ N0

}
,

and equipped with the semi-norms ‖c‖α := ‖c‖�1wα
= ‖wα·c‖�1 for α ∈ N0; see [65,67,111].

The following result shows that the action of the analysis (resp. synthesis) operator 
associated to smooth vectors is well-defined into (resp. on) the space S(Γ).
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Proposition 6.3. Let (π, Hπ) be a projective relative discrete series representation of a 
nilpotent Lie group G. Suppose that Γ ≤ G is a lattice. Then the following assertions 
hold:

(i) For all f, g ∈ H∞
π , the mapping

Γ � γ 
→ 〈f, π(γ)g〉 ∈ C

defines an element of S(Γ).
(ii) For (cγ)γ∈Γ ∈ S(Γ) and g ∈ H∞

π , the series∑
γ∈Γ

cγπ(γ)g

defines an element of H∞
π .

Thus (S(Γ), H∞
π ) forms an admissible pair for π|Γ in the sense of Definition 4.1.

Proof. The space L1
wα

(G) is invariant under translations LxF := F (x−1·) and RxF :=
F (·x) for x ∈ G, with ‖Lx‖B(L1

wα
), ‖Rx‖B(L1

wα
) ≤ wα(x), see, e.g., [101, Proposition 

3.7.6]. In particular, the weight wα : G → [1, ∞) is a control weight for L1
wα

(G) in the 
sense of [36, Section 3]. Throughout, let H1,α

π be as defined in Proposition 6.2, see [21,36]
for basic properties.

(i) Let α ∈ N0. If f, g ∈ H∞
π , then Cgf ∈ S(G) by Lemma 6.1. In particular, this 

implies, by using the semi-norms (6.5) with p = ∞, that, for all α′ ∈ N0, there exists 
Cα′ > 0 such that |Cgf(x)| ≤ Cα′(1 + τ(x))−α′ for x ∈ G. Since (1 + τ(·))−α′ ∈ L1

wα
(G)

for a sufficiently large α′ ≥ α (cf. [111, Proposition 1.5.1]), the submultiplicativity and 
local boundedness of w = (1 + τ(·)) yield that∫
G

sup
y∈V

|Cgf(xy)|wα(x) dμG(x) ≤ Cα′

∫
G

sup
y∈V

(1 + τ(xy))−α′
wα(x) dμG(x)

≤ Cα′ sup
y∈V

(1 + τ(y−1))α
′
∫
G

(1 + τ(x))−α′
wα(x) dμG(x)

(6.9)

< ∞

for any relatively compact unit neighborhood V ⊂ G. The property (6.9) allows an 
application of [36, Lemma 3.8], which yields that (〈f, π(γ)g〉)γ∈Γ ∈ �1wα

(Γ). Since α ∈ N0
was chosen arbitrary, it follows that (〈f, π(γ)g〉)γ∈Γ ∈

⋂
α∈N0

�1wα
(Γ) = S(Γ).

(ii) If (cγ)γ∈Γ ∈ S(Γ) and g ∈ H∞
π , then (cγ)γ∈Γ ∈ �1wα

(Γ) and g satisfies (6.9) with 
the choice g = f for all α ∈ N0. Hence, by [36, Proposition 5.2] or [21, Theorem 6.1], the 
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mapping (cγ)γ∈Γ 
→
∑

γ∈Γ cγπ(γ)g is bounded from �1wα
(Γ) into H1,α

π for α ∈ N0. This 
shows 

∑
γ∈Γ cγπ(γ)g ∈

⋂
α∈N0

H1,α
π = H∞

π by Proposition 6.2.
For the admissibility of the pair (S(Γ), H∞

π ) for π|Γ, it is obvious that Cc(Γ, σ) is 
contained in S(Γ), so it remains only to show that S(Γ) is a ∗-subalgebra of �1(Γ, σ). It 
is straightforward to see that S(Γ) is closed under twisted involution. For the algebra 
property, note that S(Γ) =

⋂
α∈N0

�1wα
(Γ) and that each �1wα

(Γ), where α ∈ N0, is an 
ordinary convolution algebra. Since |c ∗σ d| ≤ |c| ∗ |d| for c, d ∈ �1(Γ), it follows readily 
that S(Γ) is also closed under twisted convolution. �
6.4. Finitely generated modules associated to lattices

This section is devoted to the construction of a Hilbert C∗-module from H∞
π . The 

following observation will guarantee that this module is finitely generated.

Proposition 6.4. Let (π, Hπ) be a projective relative discrete series representation of a 
nilpotent Lie group G. Suppose that Γ ≤ G is a lattice. Then there exists a finite family 
(gj)nj=1 of vectors gj ∈ H∞

π such that (π(γ)gj)γ∈Γ,1≤j≤n is a frame for Hπ.

Proof. Let g ∈ H∞
π \{0}, so that Cgg satisfies the property (6.9) with g = f . Then, by [21, 

Theorem 6.4] or [45, Section 4], there exists a compact unit neighborhood U ⊂ G such 
that for any discrete family Λ in G satisfying G =

⋃
λ∈Λ λU and supx∈G |Λ ∩ xU | < ∞,

‖f‖2
Hπ

�
∑
λ∈Λ

|〈f, π(λ)g〉|2, f ∈ Hπ.

Since G is a nilpotent Lie group, Γ ≤ G is also co-compact, see, e.g., [25, Corollary 5.4.6]. 
Hence, there exists a relatively compact fundamental domain Σ ⊂ G for Γ. Let (xjU)nj=1
be a finite cover of Σ. Then Λ′ := {γxj : γ ∈ Γ, j = 1, . . . , n} satisfies G =

⋃
λ′∈Λ′ λ′U

and supx∈G |Λ′ ∩ xU | < ∞, so that

‖f‖2
Hπ

�
∑
λ∈Λ′

|〈f, π(λ′)g〉|2 =
n∑

j=1

∑
γ∈Γ

|〈f, π(γ)π(xj)g〉|2, f ∈ Hπ.

Therefore, defining gj := π(xj)g ∈ H∞
π for j = 1, . . . , n, gives the desired result. �

The existence of localized multi-window Gabor frames was proven in [77, Theorem 
4.6] via a correspondence to projective modules over non-commutative tori. The proof 
of Proposition 6.4 shows that this is also a direct consequence of the classical sampling 
techniques [21,36].

Theorem 6.5. Let (π, Hπ) be a σ-projective relative discrete series representation of a 
nilpotent Lie group G of formal dimension dπ > 0. Suppose that Γ ≤ G is a lattice. Then 
(S(Γ), H∞

π ) is an admissible pair for π|Γ in the sense of Definition 4.1, so that H∞
π can 
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be completed into a Hilbert C∗
r (Γ, σ)-module E. The module E is finitely generated, and 

if τ denotes the canonical tracial state on C∗
r (Γ, σ), then

τ(E) = vol(G/Γ)dπ.

(The constant vol(G/Γ)dπ is independent of the choice of Haar measure on G.)

Proof. Admissibility of the pair (S(Γ), H∞
π ) was proved in Proposition 6.3. Combining 

Proposition 6.4 with Proposition 4.3, we get that E is finitely generated.
By the discussion preceding Proposition 4.3, the localization space Hτ

E of E with 
respect to τ can be naturally identified with Hπ, and the representation πτ

E of C∗
r (Γ, σ) on 

Hτ
E induces a representation πr of C∗

r (Γ, σ) on Hπ. By Proposition 3.5, this representation 
can be extended to give Hπ the structure of a Hilbert L(Γ, σ)-module, where the action is 
determined by λσ

Γ(γ) · f = π(γ)f for γ ∈ Γ and f ∈ Hπ. The dimension dim(L(Γ,σ),τ) Hπ

of this Hilbert L(Γ, σ)-module was computed in [34] to be vol(G/Γ)dπ, see [34, Theorem 
4.3]. Therefore, by Proposition 5.3, it follows that τ(E) = dim(L(Γ,σ),τ) Hπ = vol(G/Γ)dπ, 
as required. �
Proof of Theorem 1.4. The statement of Theorem 1.4 follows directly from Theorem 6.5
combined with the fact that π ∈ SI/Pπ and Pπ = Z, cf. Section 6.1. �
Proof of Theorem 1.5. Theorem 1.5 follows by applying Proposition 4.3 to the module 
of Theorem 6.5. �
6.5. Existence of smooth frames and Riesz sequences

The following theorem is the main result of this paper.

Theorem 6.6. Let (π, Hπ) be a σ-projective relative discrete series representation of a 
nilpotent Lie group G. Suppose Γ ≤ G is a lattice such that (Γ, σ) satisfies Kleppner’s 
condition. Then the following assertions hold:

(i) If vol(G/Γ)dπ < 1, then there exists g ∈ H∞
π such that π(Γ)g is a frame for Hπ.

(ii) If vol(G/Γ)dπ > 1, then there exists g ∈ H∞
π such that π(Γ)g is a Riesz sequence 

in Hπ.

Proof. For the applicability of the results of Section 5.3, we note that a discrete Γ ≤ G

is finitely generated, see, e.g., [25, Corollary 5.4.4].
(i) Suppose vol(G/Γ)dπ < 1. By Theorem 6.5, it follows that τ(E) < 1 for the canonical 

trace τ on C∗
r (Γ, σ), which is the unique tracial state on C∗

r (Γ, σ) by [92]. Since C∗
r (Γ, σ)

has strict comparison of projections by Corollary 5.8, it follows from Proposition 5.2 that 
E admits a generating set with one element. By Proposition 3.3, the generating element 
may be chosen to be g ∈ H∞

π . Hence, π(Γ)g is a frame for Hπ by Proposition 4.3.
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(ii) Suppose vol(G/Γ)dπ > 1. Just as in (i), we get τ(E) > 1 for the unique tracial 
state τ on C∗

r (Γ, σ), so by strict comparison of projections and Proposition 5.2, E admits 
an A-linearly independent set {g} which is closed in E . By Proposition 3.3, g can be 
chosen in H∞

π , so π(Γ)g is a Riesz sequence by Proposition 4.3. �
Proof of Theorem 1.3. The statement of Theorem 1.3 follows directly from Theorem 6.6
combined with the fact that π ∈ SI/Pπ and Pπ = Z, cf. Section 6.1. �
Remark 6.7. Theorem 6.6 can be extended to multi-window and super systems, cf. [34]
for these notions. Under Kleppner’s condition, the inequality vol(G/Γ)dπ < n/d (resp. 
vol(G/Γ)dπ > n/d) implies the existence of an n-multiwindow d-super frame (resp. Riesz 
sequence) in Hd

π with windows in H∞
π .

6.6. Special classes of smooth vectors

Theorem 6.6 can also be used to prove the existence of frames and Riesz sequences 
generated by smooth vectors with additional qualities, such as Gårding vectors or ana-
lytic vectors for a representation (π, Hπ) of a Lie group N .

For k ∈ C∞
c (N) and g ∈ Hπ, a Gårding vector is defined by

π(k)g =
∫
N

k(x)π(x)g dμN (x). (6.10)

The Gårding subspace Hγ
π ⊆ Hπ is the linear span of all vectors of the form (6.10). The 

space Hγ
π is π-invariant and norm dense in Hπ and satisfies Hγ

π ⊆ H∞
π , cf. [25, Appendix 

A].
A vector g ∈ Hπ is called analytic if the orbit map x 
→ π(x)g is real-analytic. The 

space of all analytic vectors is denoted by Hω
π and is a π-invariant dense subspace of Hπ, 

cf. [44,86].
The following modification result can be proved in a similar manner as [52, Proposition 

4.4] (cf. also [50, Proposition 1]). Its proof will be omitted here.

Lemma 6.8. Let π be an irreducible, square-integrable projective representation of a nilpo-
tent Lie group G. For g ∈ H∞

π \ {0}, let H1
π = {f ∈ Hπ : Cgf ∈ L1(G)} be equipped with 

the norm ‖f‖H1
π

:= ‖Cgf‖L1 . Suppose that V ⊂ H1
π is a norm dense subspace. Then the 

following assertions hold:

(i) If π(Γ)g is a frame, then there exists g̃ ∈ V such that π(Γ)g̃ is a frame.
(ii) If π(Γ)g is a Riesz sequence, then there exists g̃ ∈ V such that π(Γ)g̃ is a Riesz 

sequence.

Corollary 6.9. Under the assumptions of Theorem 6.6, the following hold:
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(i) If vol(G/Γ)dπ < 1, there exists g ∈ Hω
π (resp. g ∈ Hγ

π) such that π(Γ)g is a frame.
(ii) If vol(G/Γ)dπ > 1, there exists g ∈ Hω

π (resp. g ∈ Hγ
π) such that π(Γ)g is a Riesz 

sequence.

Proof. The result follows from Theorem 6.6 and Lemma 6.8 after showing that Hω
π (resp. 

Hγ
π) is dense in H1

π. To show the latter, let h ∈ Hω
π (resp. h ∈ Hγ

π) be non-zero. By the 
atomic decomposition of H1

π (cf. [21,36]), there exists a sequence (xi)i∈N in G such that 
any f ∈ H1

π can be represented as a norm convergent series f =
∑

i∈I ciπ(xi)h for some 
(ci)i∈I ∈ �1(I). If fn :=

∑n
i=1 ciπ(xi)h for n ∈ N, then fn ∈ Hω

π (resp. fn ∈ Hγ
π), and 

fn → f in H1
π as n → ∞. This completes the proof. �

Remark 6.10. An alternative argument for the existence claims (i) and (ii) in Corol-
lary 6.9 for the Gårding space Hγ

π can be obtained via the Dixmier-Malliavin theorem 
[28], which asserts that H∞

π = Hγ
π for a nilpotent Lie group. Then (i) and (ii) follow 

already from Theorem 6.6.

7. Examples

In this section we discuss two examples that illustrate our main result.

Example 7.1 (The Heisenberg group). Let N be the 2d +1-dimensional Heisenberg group, 
i.e., N = Rd ×Rd ×R with multiplication

(x, ω, s)(x′, ω′, s′) = (x + x′, ω + ω′, s + s′ + x · ω′).

The center of N is given by Z = {0} × {0} × R ∼= R, hence the quotient G = N/Z is 
isomorphic to the abelian group Rd ×Rd.

The Schrödinger representation of N on L2(Rd) is given by

π(x, ω, s)f(t) = e2πise−2πiωtf(t− x).

The corresponding projective representation of R2d ∼= Rd ×Rd can be given by

π(x, ω)f(t) = e−2πiωtf(t− x)

where the associated cocycle is given by σ((x, ω), (x′, ω′)) = e−2πix·ω′ . A lattice orbit 
π(Γ)g for Γ a lattice in R2d and g ∈ L2(Rd) is in this context known as a Gabor system.

A lattice Γ in R2d is of the form Γ = MZ2d for some M ∈ GL2n(R). Viewing instead 
Γ as Z2d, the cocycle is given by σΘ(k, l) = e−2πi(Θk)·l for k, l ∈ Z2d, where Θ = M tJM

and J denotes the standard symplectic 2n × 2n matrix

J =
(

0 In
−I 0

)
.

n
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With this notation, Kleppner’s condition translates into the statement that whenever 
k ∈ Z2d satisfies e2πi(Θk)·l = 1 for all l ∈ Z2d, then k = 0. For a lattice of the form 
Γ = αZd × βZd with α, β > 0, this translates into the number αβ being irrational. 
Kleppner’s condition implies a weaker condition, namely that Θ contains at least one 
irrational entry. Let us call Γ nonrational when the latter condition holds. For nonrational 
lattices, Rieffel proved that the non-commutative tori C∗(Γ, σ) have strict comparison 
of projections and cancellation [104] (see also [16, Theorem 5.3.2]). A consequence of 
this (cf. [104, Corollary 7.10]) was used in [63, Theorem 5.4], combined with the link 
between Heisenberg modules over non-commutative tori and Gabor frames [77], to prove 
the existence of Gabor frames π(Γ)g with integrable vector g ∈ H1

π (hence, g ∈ S(Rd)
by Lemma 6.8) for nonrational lattices Γ satisfying vol(R2d/Γ) < 1. Therefore, in this 
setting, our main result is already covered by the result in [63].

The following example considers the group G5,3 from Nielsen’s catalogue [87]. This 
example is of interest to time-frequency analysis as it leads to so-called coorbit spaces [36]
that are different [49, Example 3.3] from the coorbit spaces associated to the Schrödinger 
representation defined in Example 7.1, so-called modulation spaces. In addition, we men-
tion that group C∗-algebras associated with lattices in G5,3 have been studied in [81].

Example 7.2 (The group G5,3). Consider the group G5,3 from [87, p. 6]. This is a step 3 
nilpotent Lie group with R5 as underlying manifold. The group operation is given by

(x1, . . . , x5)(y1, . . . , y5)

= (x1 + y1 + x4y2 + x5y3 + x2
5y4/2, x2 + y2, x3 + y3 + x5y4, x4 + y4, x5 + y5).

The center of G5,3 is given by R × {0}4. An irreducible representation (π, L2(R2)) of 
G5,3 which is square-integrable modulo the center is given by

π(x1, . . . , x5)f(s, t) = e2πi(x1−x2x4+x4s−x3t+x4t
2/2)g(s− x2, t− x5).

The formal dimension of π is dπ = 1. The quotient of G5,3 by the center is isomorphic 
to G := R ×N , where N denotes the 3-dimensional Heisenberg group from the previous 
example, although the multiplication is in a different order:

(x1, x2, x3, x4)(y1, y2, y3, y4) = (x1 + y1, x2 + y2 + x4y3, x3 + y3, x4 + y4).

Here we have relabeled the coordinates from xj to xj−1 for j = 2, 3, 4, 5. The Haar 
measure μG on G is just the 4-dimensional Lebesgue measure. The center Z of G is 
R2 × {0}2. The corresponding projective representation of R × N corresponding to π
(which we denote also by π) is given by

π(x1, . . . , x4)f(s, t) = e2πi(x3s−x2t+x3t
2/2)f(s− x1, t− x4).
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The cocycle is given by

σ((x1, x2, x3, x4), (y1, y2, y3, y4)) = exp(2πi(−x1y3 + x4y2 + x2
4y3/2)).

Let N ′ = N ∩ Z3 denote the discrete Heisenberg group, which is a cocompact lattice 
in the Heisenberg group. Hence the group Γ = Z ×N ′ is a lattice in G. The conjugacy 
class of an element (k1, k2, k3, k4) ∈ Γ is given by

{(k1, k2 + pk3 + qk4, k3, k4) : p, q ∈ Z}.

From this we see that the elements with finite conjugacy class in Γ are exactly elements 
of the center Z ∩ Γ = Z2 × {0}2, and these elements have singleton conjugacy classes.

Let us consider the dilation automorphisms δα,β of G (α, β > 0) given by

δα,β(x1, x2, x3, x4) = (αx1, β
2x2, βx3, βx4).

Applying these to Γ ⊆ G, we get a family of lattices Γα,β := δα,β(Γ) in G which are 
isomorphic as discrete groups to Γ. We can compute the covolume of Γα,β as

vol(G/Γα,β) = μG(δα,β([0, 1]4)) = μG([0, α] × [0, β2] × [0, β] × [0, β]) = αβ4.

Let us check Kleppner’s condition for (Γα,β, σ). We need only check the elements with 
finite conjugacy class, i.e., those in the center of Γα,β. Thus, an element (αk1, β2k2, 0, 0)
is σ-regular if and only if for all (αl1, β2l2, βl3, βl4) ∈ Γα,β we have that

1 = σ((αk1, β
2k2, 0, 0), (αl1, β2l2, βl3, βl4))σ((αl1, β2l2, βl3, βl4), (αk1, β2k2, 0, 0))

= exp(−2πi(αβk1l3 + β3k2l4)).

For this to happen, we need αβk1l3 + β3k2l4 ∈ Z for all l3, l4 ∈ Z. Hence, we see that if 
at least one of the numbers αβ and β3 is rational, then nontrivial σ-regular conjugacy 
classes exist. On the other hand, if both αβ and β3 are irrational, then Kleppner’s 
condition is satisfied.

Our main result now states the following: Let α, β > 0 such that both β3 and αβ are 
irrational numbers. If αβ4 < 1 (resp. αβ4 > 1), then there exists g ∈ H∞

π = S(R2) such 
that π(Γα,β)g is a frame (resp. Riesz sequence) for L2(R2).
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