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Abstract 

Conventional extrusion limit diagram (ELD) involves only two extrusion process 

variables and as such it does not account for the combined effects of multiple process 

parameters on the extrusion process with respect to pressure requirement and 

extrudate temperature. Attempts were made in the present research to construct 

three-dimensional (3D) ELD for a magnesium alloy in the space of initial billet 

temperature, extrusion ratio and extrusion speed. A method to build 3D ELD by

integrating finite element (FE) simulations, extrusion experiments and artificial neural 

networks (ANN) was developed. In addition to initial billet temperature, extrusion 

ratio and extrusion speed, the temperature difference between the extrusion tooling

and billet, the size of the billet and the shape complexity of the extrudate were taken 
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as the additional process variables and integrated into the equivalent initial billet 

temperature, extrusion ratio and extrusion speed. The FE simulations, verified by 

performing extrusion experiments to produce magnesium alloy rods, were used to 

generate datasets for training the ANN. The ANN then predicted the peak values of 

extrusion pressure and extrudate temperature over a wider range of extrusion 

conditions, based on which a 3D ELD for the magnesium alloy was constructed. The 

3D ELD was finally validated by performing extrusion experiments to produce

magnesium alloy tubes. The results demonstrated that the constructed 3D ELD was 

reliable and able to provide guidelines for the selection of appropriate extrusion 

conditions. 

Keywords: Magnesium; Extrusion; Extrusion limit diagram; Hot shortness; Artificial 

neural networks. 

1. Introduction

Hot extrusion, mostly applied to aluminum alloys, is a predominant metal-forming

process to produce long profiles with unvaried cross sections. With ever increasing 

demands for light-weight profiles in ground vehicles in recent years, more and more 

attention has been paid to the extrusion of magnesium alloys. It has been widely 

recognized that the extrusion of magnesium alloys is not as easy as the extrusion of 

aluminum alloys and defects are more prone to occur, when the temperature of the 

extrudate at the die exit exceeds a certain value. At a high initial billet temperature, 
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the extrudate temperature easily reaches the incipient melting points of magnesium 

alloys, subsequently resulting in the occurrence of hot shortness on the extrudate 

surface (Luo et al., 2011). On the other hand, if a low initial billet temperature is 

employed, there is a risk of excessive extrusion pressure requirement, which may 

exceed the pressure capacity of the extrusion press used (Barnett et al., 2003). In 

addition, both applicable extrusion speed and extrusion ratio are limited by the risks 

of hot shortness and excessive extrusion pressure requirement, leading to low 

productivity of magnesium alloy extrusion (Zeng et al., 2019). Therefore, the main 

extrusion process variables, i.e., initial billet temperature, extrusion ratio and 

extrusion speed, have to be carefully chosen in order to produce defect-free 

magnesium alloy profiles and at the same time maximize the productivity. 

Extrusion limit diagram (ELD) graphically defines a workable area (i.e., the 

process window) for an extrusion process, to provide guidelines for the choice of 

extrusion parameters. It has been applied to the aluminum extrusion process (Tutcher 

and Sheppard, 1980). ELD is actually an x-y plot; extrusion speed or extrusion ratio, 

or their combination expressed as strain rate, is plotted against initial billet 

temperature. Critical initial billet temperatures and critical extrusion speeds, or 

extrusion ratios or strain rates, are defined by two limit lines, at which defect, typically 

hot shortness, is onset and the pressure requirement exceeds the pressure capacity 

limit of the extrusion press, as shown in Fig. 1 (Jackson and Sheppard, 1997).  
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Fig. 1. Schematic of the ELD in the space of extrusion speed (or extrusion ratio) and initial billet 

temperature. 

In the early days, ELD (Sheppard, 1981) was constructed by using two empirical 

models to define the limits of extrusion pressure and the surface quality of the 

extrudate. Later on, Clade and Sheppard (1993) added the contour maps of subgrain 

sizes and surface roughness to the ELD to depict the influence of extrusion condition 

on the surface quality and microstructural features of the extrudate. Based on the 

results obtained from extrusion experiments and numerical simulations, Kim et al. 

(2007) built ELDs and investigated the effect of scandium addition on the 

extrudability of the 7075 aluminum alloy. The results showed that hot shortness 

occurred more easily to the alloy with a higher scandium content. In addition to 

aluminum alloys, ELD was also constructed to determine suitable extrusion 

parameters for other alloys. For example, Sun et al. (2017) constructed an ELD for the 

superalloy Inconel 600 with a high nickel content, based on hot processing map.  

A number of researchers have extended the application of ELD to magnesium 

alloy extrusion. Barnett et al. (2003), for example, developed two empirical models to 
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predict extrusion pressure and extrudate temperature separately and established the 

ELDs for the extrusion of Mg-Al-Zn alloys. Comparison between the ELDs for 

magnesium alloys with different Al contents showed that with increasing Al content, 

the extrusion process window of permissible process parameters shrank. Liu et al. 

(2008a) also constructed an ELD for the AZ31 magnesium alloy, based on numerical 

simulations. In their study, initial billet temperature was set at 450 C so as to leave a 

sufficient margin for extrudate temperature to rise during extrusion to a point still 

below the incipient melting point of the alloy at 532 C. Wang et al. (2007) compared 

the extrudabilities of the AZ31 and AM30 alloys, according to the ELDs and extrusion 

experiment results, and found that the extrudability of the AM30 alloy was higher 

than that of the AZ31 alloy with respect to extrusion pressure requirement and 

incipient melting temperature. 

The construction of ELD requires two functions containing extrusion process 

parameters to express extrusion pressure requirement and extrudate temperature 

separately. In the past, empirical models were employed to describe these 

relationships. Such models had poor generalization performance, mainly because 

some of the factors, also influencing the extrusion process, were ignored for the sake 

of simplicity. The need for a more accurate empirical model was recognized, but such 

an empirical model would involve many parameters and constants and therefore it 

was not developed for practical use due to its complexity.  

Artificial neural networks (ANN) are mathematical systems including 

interconnected simple neurons that describe complex non-linear relationships between 
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input and output variables. ANN can learn from the experiences and then predict the 

new results on the basis of the experience (Li and Bridgwater, 2000). Unlike empirical 

models, it is not necessary for ANN to consider definite physical significance of 

parameters, which makes ANN more flexible and convenient for application 

(Haghdadi et al., 2013). Moreover, ANN have a great ability to handle random data, 

owing to the readjustment of the weight of each neuron in hidden layer (Yan et al., 

2017). In terms of the accuracy of predicted results, ANN are superior to empirical 

models in many application fields. For example, Yan et al. (2017) used both the ANN 

and Arrhenius constitutive equation to predict the flow stresses of the 

Al−6.2Zn−0.70Mg−0.30Mn−0.17Zr alloy during hot compression. The errors of flow 

stresses predicted from the ANN and Arrhenius constitutive equation were 1.03% and 

3.49%, respectively, demonstrating a higher accuracy of the ANN. It was also found 

that the ANN were superior to the parametric constitutive model to predict the flow 

stresses of the 7075 aluminum alloy at high strain rates (Sheikh-Ahmad and Twomey, 

2007).  A neural network system to predict and control springback and maximum 

strain was developed in a simulated aluminum channel forming process (Cao et al., 

2000). The relationship between springback and forming conditions was modeled by 

the neural network (Ruffini and Cao, 1998). Moreover, the neural network system was 

superior at minimizing springback when it was compared with the closed-loop control 

strategy. Owing to the above advantages, ANN have been widely used in many 

metal-forming processes, including extrusion (Hsiang et al., 2006). Bingöl et al. 

(2015), for example, used ANN to predict the load for the extrusion of gear-like 
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profiles. The results showed that the average relative error between the extrusion 

loads predicted by the ANN and finite element (FE) simulation was only 1.96%. It has 

been well acknowledged that ANN after training can make reliable predictions of 

extrusion pressure and extrudate temperature. It suggests that ELD may be 

constructed by using the results predicted from ANN instead of empirical models. 

Conventional ELD is built in the space of extrusion speed versus initial billet 

temperature, or extrusion ratio versus initial billet temperature. It does not serve the 

need to reveal the combined effect of extrusion speed and extrusion ratio on the 

extrusion results. This calls for the construction of ELD in a three-dimensional (3D) 

coordinate system to reveal the independent and combined effects of initial billet 

temperature, extrusion ratio and extrusion speed on the extrusion results.   

The main objective of the present research was to construct a reliable 3D ELD 

for a magnesium alloy by using ANN. The results obtained from FE simulations, 

verified by the extrusion experiments to produce magnesium alloy rods, were used to 

train ANN. Subsequently, ANN predicted the peak values of extrusion pressure and 

extrudate temperature at any extrusion conditions, from which a 3D ELD for the 

magnesium alloy was constructed. Finally, the 3D ELD was validated by the extrusion 

experiments to produce magnesium alloy tubes. 
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2. Methodology 

To construct 3D ELD, the peak extrusion pressure (𝑃peak) and peak extrudate 

temperature (𝑇peak) must be expressed as functions of extrusion conditions, namely 

Eqs. (1) and (2), respectively. The nominal pressure (Ps) provided by the extrusion 

press must be predefined. The critical temperature causing the occurrence of hot 

shortness (Ts) must be determined by performing thermal analysis. The extrusion 

process reaches its limit, when Eq. (3) or Eq. (4) is satisfied. 

 𝑃peak = 𝑔
1

(extrusion conditions) (1) 

 𝑇peak = 𝑔
2

(extrusion conditions) (2) 

 𝑃peak = 𝑃s (3) 

 𝑇peak = 𝑇s (4) 

Fig. 2 shows the strategy developed in this research to construct 3D ELD for 

magnesium alloy. Instead of empirical models, ANN was used to describe the 

relationships between extrusion conditions (input factors) and extrusion results 

(output factors). The input factors determining the output factors included initial billet 

temperature (Tb), extrusion ratio (r) and extrusion speed (Ve). Furthermore, the 

temperature difference between the die and billet (Tdb), the shape factor of the cross 

section of the extrudate (), the length of the billet (L) and the inner diameter of the 

container (D) that also influenced extrusion pressure and extrudate temperature were 

also taken into consideration. The shape factor () reflecting the shape complexity of 

the cross section of the extrudate was defined as the ratio of the perimeter of the 
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actual extrudate cross section to the perimeter of an equivalent circular section of 

equal cross-section area (Qamar et al., 2004). Obviously, large-scale ANN and a very 

large number of training datasets would be necessary, if all the seven process 

parameters mentioned above were taken as the input variables of ANN. Moreover, 

ELD would be constructed in a multi-dimensional space containing seven axes 

representing these seven parameters.  

For the sake of simplicity, the effects of Tdb, , L and D on the output factors 

were taken into consideration by using them to modify the three main process 

parameters, i.e., Tb, r and Ve. The seven parameters were integrated into these three 

process parameters, namely equivalent initial billet temperature (𝑇b
̅̅ ̅), equivalent 

extrusion ratio (�̅�) and equivalent extrusion speed (𝑉e̅), as expressed by Eqs. (5)-(7). 

For example, 𝑇b
̅̅ ̅ is a function of 𝑇b and Tdb, representing the initial temperatures 

of the billet and die. The equivalent extrusion ratio �̅� is a parameter that integrates 

extrusion ratio (r), shape factor () and the dimensions of the billet (L and D). In the 

present research, the equivalent parameters, 𝑉e̅, 𝑇b
̅̅ ̅ and �̅�, were employed as the 

input factors of ANN and the output factors were set to be 𝑃peak and 𝑇peak. 

 𝑉e̅ =
�̅�

𝑟
𝑉e (5) 

 𝑇b
̅̅ ̅ = 𝑇b + 𝑓1(𝑇db) (6) 

 �̅� = 𝑟𝑓2(, 𝐿, 𝐷) (7) 

When the parameters Tdb, , L and D were fixed and with the specific values of 

Tdb
*, *, L* and D*, the equivalent parameters 𝑉e̅, 𝑇b

̅̅ ̅ and �̅� were equal to Ve, Tb 

and r, respectively. The extrusion experiments to produce rods at various conditions 
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were regarded as simple extrusion, while the extrusion experiments for producing 

profiles under various conditions were considered complex extrusion. The basic 

strategy adopted in the present research was to convert complex extrusion into simple 

extrusion, and then predict the extrusion pressure and extrudate temperature through 

the ANN. To this end, the following two tasks would have to be completed in order to 

predict the extrusion pressure and extrudate temperature for any complex extrusion by 

the ANN: (i) the ANN should be trained with the data drawn from simple extrusion; 

(ii) the relationship between complex extrusion and simple extrusion should be 

determined. 

Finite element (FE) simulations of simple extrusion, verified by corresponding 

rod extrusion experiments, were performed at different r, Tb and Ve values to collect 

datasets to be used to train ANN. After training, the ANN could predict 𝑃peak and 

𝑇peak values of simple extrusion. 

The specific expressions of the equivalent parameters 𝑇b
̅̅ ̅ and �̅� (Eqs. (6) and 

(7)) were determined through non-linear regression on the basis of ANN and FE 

simulations at different Tdb, , L and D values. By using this method, 𝑃peak and 

𝑇peak values during extrusion to produce any profiles under any conditions could be 

predicted by using the ANN. 
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Fig. 2. Flow chart of the construction of 3D ELD for magnesium alloy. 

By using the ANN, 3D ELD was then constructed in a three-dimensional 

coordinate system of 𝑉e̅, 𝑇b
̅̅ ̅ and �̅�. In fact, the coordinate axes of 𝑉e̅, 𝑇b

̅̅ ̅ and �̅� 

represented the production efficiency, initial heating conditions and deformation 

degree applied to extrusion. The 3D ELD constructed in the current work was based 

on the extrusion experiments to produce magnesium alloy rods, as well as FE 

simulations and ANN. Finally, the extrusion experiments to produce magnesium alloy 

tubes were carried out to validate the applicability and accuracy of the 3D ELD.  

3. Experiments and FE simulations 

3.1 Material and compression tests 

The magnesium alloy Mg-8Al-0.5Zn-0.5RE containing rare earth elements of La 

(0.7%-1.3%) and Gd (0.3%-0.7%) was selected as the exemplary test material. The 
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as-cast alloy was subjected to a solid solution treatment at 420 °C for 24 h before 

compression tests. According to a previous study (Bai et al., 2019), the temperature 

limit (Ts) of the present magnesium alloy, corresponding to the occurrence of hot 

shortness, was 481 °C. 

Uniaxial compression tests of cylindrical specimens with a diameter of 8 mm and 

a height of 12 mm were performed using a thermomechanical simulator (Gleeble 

1500D, DSI, USA). Test temperatures were set from 300 to 420 C with an interval of 

30 C. Strain rates were 0.001, 0.01, 0.1, 1 and 10 s-1. A hyperbolic sine-type equation 

(Eq. (8)), proposed by Sellars and McTegart (1996), was employed to describe the 

deformation behavior of the material. The constitutive constants (Table 1) determined 

through the compression tests were applied in the FE simulations of magnesium alloy 

extrusion.  

 = [sinh( )] expn Q
A

RT
 

 
 
 

 (8) 

Table 1. Constitutive constants of the magnesium alloy Mg-8Al-0.5Zn-0.5RE. 

Constitutive constant A α n Q (kJ/mol) 

Value 2.31881010 1.72110-2 4.5164 141.329 

3.2 Extrusion experiments to produce rods for the verification of the FE 

simulations 

To verify the results obtained from the FE simulations, extrusion experiments to 

produce magnesium alloy rods were performed using a hydraulic press with a force 

capacity of 2 MN. Fig. 3 shows the schematic diagram of the experimental setup. The 

as-cast magnesium alloy was machined into rods with a diameter of 29 mm and a 
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length of 23 mm to produce extrusion billets. They were extruded into finer rods with 

a diameter of 5.5 mm. The inner diameter of the container liner was 30 mm and 

consequently the extrusion ratio was 29.8. Initial billet temperatures from 250 to 440 

ºC and extrusion speeds from 14.3 to 245.6 mm/s were employed. Before the 

extrusion experiments, the billet, die and container were preheated to the same target 

temperature by four heating units inserted into the container. Holding time was 15 min. 

The actual heating temperature at point A was monitored by a thermocouple inserted 

into the container liner. During extrusion, the extrusion force applied through the stem 

was measured by a force sensor installed between the press ram and stem (see Fig. 3). 

In addition, the temperature at the die orifice (i.e., point B) was measured and 

registered. The detailed experimental conditions were also described in a previously 

published paper (Bai et al., 2019).  

 

Fig. 3. Schematic diagram of the experimental setup to produce rods. 

An essential limiting factor for the extrusion press to run at its full force capacity 

is the load-bearing capacity of the extrusion tooling. Actually, the lowest value (the 

yield strength of the stem, the load-bearing capacities of the die and die backer, or the 

load capacity of the extrusion press) should be taken as the upper limit of extrusion 
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pressure. If the peak value of extrusion pressure exceeds the yield strength of the stem, 

the diameter of the stem must be increased, which in turn requires a larger container 

and results in a larger extrusion ratio for a given extrudate and thus a higher extrusion 

pressure requirement. In the present research, the yield strength of the stem was taken 

to be the upper limit of extrusion pressure (Ps). The value was 1360 MPa for the stem 

made of the tool steel X40CrMoV5-1 (Bauser et al., 2006). 

3.3 FE simulations 

The FE simulations of extrusion to produce rods were conducted to compare the 

simulation results with the results obtained from the experiments mentioned in 

subsection 3.2 and to verify the results obtained from the FE simulations. Details of 

the simulation work were given in a previous paper (Bai et al., 2019). An 

axisymmetric model (Fig. 4) was built by using the commercial software package 

DEFORM. Heat exchanges among all the objects in the model, as well as those 

between the objects and surrounding environment were taken into consideration. A 

shear friction model was adopted at the interfaces between the billet and extrusion 

tooling and the friction factor was set at 1.0 (Li et al., 2008). The constitutive equation 

of the magnesium alloy (Eq. (8) and Table 1) determined from the hot compression 

tests were applied in the FE model. The thermal properties of the magnesium alloy 

and tooling material (H13 tool steel) are listed in Table 2 (Liu et al., 2008b). The 

initial billet temperatures and extrusion speeds of the FE simulations were the same as 

those of the extrusion experiments to produce rods. 
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Fig. 4. FE axisymmetric model of the extrusion process to produce rods. 

Table 2. Physical properties of the billet and extrusion tooling. 

Physical property Magnesium alloy H13 tool steel 

Thermal conductivity [W/(m °C)] 96 28.4 

Heat capacity [N/(mm2 °C)] 2.097at 327°C  

2.275 at 527°C 

5.6 

Heat transfer coefficient between tooling and 

workpiece [N/(°C s mm2)] 

11 11 

Heat transfer coefficient between 

tooling/workpiece and air [N/(°C s mm2)] 

0.02 0.02 

Emissivity 0.7 0.7 

 

A series of FE simulations of extrusion to produce rods were carried out to prepare 

datasets for training ANN. As mentioned earlier in Section 2, these FE simulations 

corresponded to the simple extrusion experiments. In these FE simulations, the 

temperature difference between the die and billet (Tdb), the shape factor of the 

extrudate (), the length of the billet (L) and the inner diameter of the container (D) 

were unchanged, with values of 0 °C, 1, 23 mm and 30 mm, respectively. Moreover, 
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the input variables of the training dataset, 𝑉e̅, 𝑇b
̅̅ ̅ and �̅�, were equal to Ve, Tb and r, 

respectively. Each input variable was set to 6 levels (Table 3), meeting the 

requirements of the diversity and uniformity of training samples. After the FE 

simulations, the peak values of extrusion pressure and extrudate temperature were 

drawn as the output variables of the dataset. Datasets containing 216 samples on basis 

of these FE simulations were generated.  

Table 3. Levels of the parameters used in the FE simulations for preparing ANN training datasets. 

Input parameters Level 1 Level 2 Level 3 Level 4 Level 5 Level 6 

 �̅� 5 25 45 65 85 105 

𝑇b
̅̅ ̅ (°C) 130 200 270 340 410 480 

𝑉e̅ (mm/s) 10 90 180 270 360 450 

 

To determine the specific expressions of the equivalent parameters of 𝑉e̅, 𝑇b
̅̅ ̅ 

and �̅� (Eqs. (5)-(7)), FE simulations of extrusion to produce profiles with different 

values of Tdb, , L and D were carried out. Table 4 shows the variables for the FE 

simulations. Six profiles with different cross sections were specially designed to 

create shape factors () values from 1 to 6 (Fig. 5). An extrusion ratio of 45, initial 

billet temperature of 340 °C and extrusion speed of 150 mm/s were employed in these 

FE simulations. 

Table 4. Variables of the FE simulations for modifying the ELD. 

No. Tdb (°C) L (mm) D (mm) λ 

1 -50, -40, -30, -20, -10, 

0, 10, 20, 30, 40, 50 

23 30 1 

2 0 11.5, 23, 46, 69, 92, 115 30 1 

3 0 23 15, 30, 60, 90, 120 1 

4 0 140 80 1, 2, 3, 4, 5, 6 
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Fig. 5 Cross sections of the profiles with different shape factor  values. 

4. Construction of extrusion limit diagram 

4.1 Verification of the FE simulations 

The FE simulation results and experimentally measured results at the same extrusion 

conditions were compared to verify the results obtained from the FE simulations. As 

an example, the measured and simulated extrusion pressure-stroke curves of the 

extrusion experiment at an extrusion ratio of 29.8, initial billet temperature of 350 °C 

and extrusion speed of 117.1 mm/s, are shown in Fig. 6a. The simulated 

pressure-stroke curve was in good agreement with the measured results. The average 

difference between the simulated pressure and measured pressure was 6.4%. The peak 

values of extrusion pressure were of most interest in the present work. Linear 

regression was used to find the relationship between the peak values of measured and 
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simulated extrusion pressures at different extrusion conditions (Fig. 6b). The 

reliability of the FE simulations was thereby confirmed.   
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Fig. 6. Comparison between the experimentally measured and simulated extrusion pressures. (a) 

Extrusion pressure-stroke curves at an extrusion ratio of 29.8, initial billet temperature of 350 °C 

and extrusion speed of 117.1 mm/s; (b) Linear correlation between the experimental and simulated 

extrusion pressure values obtained at different extrusion conditions. In the legend, the slop and the 

correlation coefficient of the fit are given. 

The simulated extrudate temperature was also validated through the comparison 

between the measured and simulated temperatures at point B (Fig. 3) which showed 
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negligible differences. The comparison was reported in a previously published paper 

(Bai et al., 2019). This further assured the use of the results from the FE simulations 

to train ANN for establishing a 3D ELD.   

4.2 Training of ANN 

ANN describing the relationships between the input variables of 𝑉e̅, 𝑇b
̅̅ ̅ and �̅� and 

the output variables of 𝑃peak and 𝑇peak were built by using the Neural Network 

Fitting APP in Matlab. The APP provided a three-layer feed-forward network 

including input layer, single hidden layer and output layer. The sigmoid function and 

linear function were employed as the transfer functions of the hidden layer and the 

output layer, respectively. Hornik et al. (1989) demonstrated that the single hidden 

layer network containing sufficient neurons had the ability to approximate any 

complex non-linear relationships between the inputs and outputs. Fig. 7 shows the 

structure of the ANN. Before training the ANN, both the input variables and output 

variables should be normalized in the range of 0-1 in order to obtain optimal results 

and accelerate the convergence (Sola and Sevilla, 1997). Eq. (9) was employed to 

normalize the training data (Haghdadi et al., 2013),  

 
min

max min

' 0.1 0.8
X X

X
X X

 
   

 
 (9) 

where X is the original value, X’ is the normalized one corresponding to X, and Xmax 

and Xmin are the maximum and minimum values of a dataset, respectively. 216 cases 

prepared for the FE simulations were randomly divided into three datasets for training, 

validating and testing the ANN as the proportions of 70%, 15% and 15%, 
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respectively. 

 

 

Fig. 7. Structure of the ANN used in the present research. 

The proper number of neurons (N) in the hidden layer was determined by 

combining the method of trial and error with the criterion proposed by Carpenter and 

Hoffman (1997). According to the criterion, the value of N in the present ANN should 

be lower than 80 so as to ensure that the ANN could give an overdetermined 

approximation. Then, the ANN with different N values increased from 3 to 80 were 

separately trained to obtain the corresponding mean square errors (MSEs) of the test 

dataset. The computing method for the MSE is shown by Eq. 10, where iY  and 'iY  

are the output variables of the FE simulations and ANN, respectively. The lowest 

mean square error (MSE) of the test dataset was reached, when the number of neurons 

in the hidden layer was 20, implying that the ANN had fine generalization 

performance (Fig. 8). Accordingly, the number of neurons in hidden layer was set to 

be 20. 

 
2

1

1
MSE= ( ' )

n

i i

i

Y Y
n 

  (10)  
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Fig. 8. MSEs of the test dataset calculated by the ANN with different numbers of neurons in the 

hidden layer. 

The normalized testing results of the ANN are shown in Fig. 9. Both the 

normalized peak values of extrusion pressure and extrudate temperature predicted by 

the ANN were plotted against those obtained from the FE simulations. The regression 

lines corresponding to extrusion pressure (Fig. 9 a) and extrudate temperature (Fig. 9 

b) had the same slope of 0.998. The R-squares of the two regression lines were 0.9997 

and 0.9998, respectively. Both the high R-squares and the regressed lines with the 

slope close to 1 demonstrated that the results predicted by the ANN were consistent 

with those from the FE simulations. The ANN established in the present study were 

hence reliable. 
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Fig. 9. Extrusion results predicted by the FE simulations and ANN: (a) normalized peak values of 

extrusion pressure and (b) normalized peak values of extrudate temperature. 

To predict the 𝑃peak and 𝑇peak values during extrusion to produce any profiles 

by using the ANN, the specific expressions of 𝑇b
̅̅ ̅ and �̅� were determined. Based on 

the ANN and the simulated 𝑃peak and 𝑇peak values at different Tdb, , L and D 

values, the values of the equivalent parameters of 𝑇b
̅̅ ̅ and �̅� were calculated by using 

the secant method (Ebelechukwu et al., 2018). Then, the expressions of the equivalent 

parameters were determined by the regression line (Fig. 10). As mentioned in Section 

2, 𝑇b
̅̅ ̅ is a function of Tb and Tdb (Eq. (6)). Fig. 11a shows a regression curve in the 

Journal of Materials Processing Technology，Volume 275, January 2020, 116361

https://doi.org/10.1016/j.jmatprotec.2019.116361 8/20



Ac
ce
pt
ed
 v
er
si
on

plot of Tdb against 𝑇b
̅̅ ̅ − Tb. Eq. (11) is the expression of 𝑇b

̅̅ ̅. The equivalent 

extrusion ratio �̅� is a function of r, , L and D (Eq. (12)), where 𝑓λ(), 𝑓L(𝐿/𝐿∗) 

and 𝑓D(𝐷/𝐷∗) are separately defined as the influencing factors of , L and D. Fig. 

11b shows the regression curve in a plot of  against 𝑓λ(). Eq. (13) describes the 

relationship between 𝑓λ() and . With the same method, the expressions of 

𝑓L(𝐿/𝐿∗) and 𝑓D(𝐷/𝐷∗) were also determined (Eqs. (14) and (15)).  

 𝑇b
̅̅ ̅ = 𝑇b + 4.854 [

exp(0.095∆𝑇db)−1

0.392 exp(0.095∆𝑇db)+1
] (11) 

 �̅� = 𝑟𝑓λ()𝑓L(𝐿/𝐿∗)𝑓D(𝐷/𝐷∗) (12) 

 𝑓λ() = 0.785 + 0.215𝜆 (13) 

 𝑓L (
𝐿

𝐿∗) =
1.513

1+1.355exp (−0.979𝐿/𝐿∗)
 (14) 

 𝑓D (
𝐷

𝐷∗) =
0.702

1−0.997exp (−1.169𝐷/𝐷∗)
 (15) 
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Fig. 10. (a) Regression curve of 𝑇b
̅̅ ̅ − Tb and (b) influence factor 𝑓λ(). 

The ANN built above had great accuracy and generalization performance. It 

could thus be used to describe the relationships between the input variables and output 

variables for extrusion to produce any magnesium alloy profiles.  

4.3 Establishment of the 3D ELD 

As aforementioned, two functions separately linking Ppeak and Tpeak with extrusion 

process parameters are required when an ELD is to be constructed. Based on the FE 

simulation results, the ANN were built to describe the relationships between the 

output variables and extrusion process parameters. Eqs. (16) and (17) give the 

mathematical expressions of the limits of extrusion pressure and billet temperature. 

Through solving the equations by the secant method (Ebelechukwu et al., 2018), the 

maximum values of allowable equivalent extrusion speeds (𝑉e̅) at different equivalent 

parameters of 𝑇b
̅̅ ̅ and �̅� were calculated. Thereafter, the ELD (Fig. 11) of the 
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magnesium alloy was plotted in a three-dimensional coordinate system, where 𝑇b
̅̅ ̅, �̅� 

and 𝑉e̅ were denoted to be the x, y and z axes, respectively.  

 𝑃peak = ANNP(𝑇b
̅̅ ̅, �̅�, 𝑉e̅) = 𝑃𝑠 (16) 

 𝑇peak = ANNT(𝑇b
̅̅ ̅, �̅�, 𝑉e̅) = 𝑇𝑠 (17) 

 

Fig. 11. 3D ELD for the magnesium alloy. 

The 3D ELD defined a safe space of the extrusion process parameters by the 

surfaces representing the extrusion pressure limit and billet temperature limit. It is like 

a tent, being safe inside and unsafe outside. In the space to the left side of the pressure 

limit surface, the extrusion pressure will exceed the allowable yield strength of the 

stem; if the extrusion parameters in this space are chosen, failure of the stem will 

surely occur due to a too high extrusion pressure. On the other hand, in the space to 

the right side of the pressure limit, the magnesium alloy can be extruded without the 

risk of stem failure. In Fig. 11, the temperature limit surface divides the extrusion 

parameters space into two parts: in the space to the right side of the temperature limit, 
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hot shortness on the extrudate will appear, because the extrudate temperature will 

exceed the critical value corresponding to the incipient melting point of the 

magnesium alloy, while the extrusion with the parameters in the left space will lead to 

sound extrudate without surface defects. The intersecting curve of the pressure limit 

surface and temperature limit surface determines the maximum equivalent extrusion 

speeds at different extrusion ratios. With increasing the equivalent extrusion ratio 

from 5 to 105, the maximum equivalent extrusion speed decreases from 391 to 259 

mm/s.  

Compared with conventional ELD constructed in a 2D plane of extrusion speed 

(extrusion ratio) and initial billet temperature, the present 3D ELD directly reflects the 

extrudability of the magnesium alloy. For a conventional 2D ELD in a coordinate 

system of extrusion speed and initial billet temperature, other extrusion process 

parameters, such as r, Tdb, , L and D are all fixed. As a result, the 2D ELD is only 

applicable to the extrusion to produce a specific profile. The present 3D ELD is 

however established for a specific billet material, instead of a specific profile. It can 

determine the safe extrusion parameters to produce profiles of any cross sections, 

from simple to complex. The application of the present 3D ELD for a specific 

extrusion process is run by following four steps:  

Step 1: the equivalent extrusion ratio �̅� is calculated;  

Step 2: the equivalent 2D ELD in the 𝑉e̅-𝑇b
̅̅ ̅ plane is obtained through 

intersecting the 3D ELD by the plane of �̅�;  
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Step 3: the equivalent 2D ELD is converted into the 2D ELD for a specific 

profile in the Ve-Tb plane by using Eqs. (5), (11) and (12);  

Step 4: the safe extrusion parameters are determined on the basis of the ELD. 

For example, the equivalent parameters 𝑇b
̅̅ ̅, �̅� and 𝑉e̅ are equal to Tb, r and Ve, 

respectively, for the standard extrusion experiments to produce magnesium alloy rods. 

The 2D ELD for these profiles can be directly obtained by intersecting the 3D ELD 

using the plane at a given extrusion ratio of 29.8, as shown in Fig. 11. The intersected 

2D ELD is shown in Fig. 12. The solid circular marks to the right side of the 

temperature limit line represent the conditions where hot shortness occurs during 

extrusion. The farther a combination of initial billet temperature and extrusion speed 

is from the temperature limit line, the more serious hot shortness will be. As shown in 

Figs. 13, severe hot shortness indeed occurred at the extrusion conditions with the 

combinations of these two process parameters, namely a: 350 ºC and 245.6 mm/s, d: 

400 ºC and 190.4 mm/s and f: 440 ºC and 117. 1 mm/s. However, the other 

combinations of these two process parameters, such as b: 350 ºC and 190.4 mm/s and 

e: 400 ºC and 117.1 mm/s, only slight cracks were observed on the surfaces of 

extruded rods (Fig. 13).  

The hollow circular marks inside the process window, such as at point c: 350 ºC 

and 117.1 mm/s and point g: 440 ºC and 14.3 mm/s, represent the extrusion conditions, 

at which magnesium rods can be extruded without the occurrence of hot shortness or 

excessive extrusion pressure requirement. The comparison between Figs. 12 and 13 
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confirms that the ELD constructed by the ANN can reliably predict the results of 

extrusion to produce magnesium alloy rods. 
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Fig. 12. 2D ELD for the production of magnesium alloy rods at an extrusion ratio of 29.8. The 

extrudate surfaces under the extrusion conditions marked by the symbols from a to g are shown in 

Fig.13. 

 

Fig. 13. Magnesium rods extruded at a fixed extrusion ratio of 29.8, different initial billet 

temperatures and extrusion speeds: (a) 350 °C and 245.6 mm/s; (b) 350 °C and 190.4 mm/s; (c) 
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350 °C and 117.1 mm/s; (d) 400 °C and 190.4 mm/s; (e) 400 °C and 117.1 mm/s; (f) 440 °C and 

117.1mm/s; (g) 440 °C and 14.3 mm/s. 

5. Validation of the ELD 

Extrusion experiments to produce rectangular and circular tubes through porthole dies 

were performed to validate the ELD constructed in the present study. Fig. 14 shows 

the cross sections of the tubes. The width, height and wall thickness of the 

cross-section of the rectangular tube were 25.4 mm, 12.7 mm and 1.5 mm, 

respectively. The outer diameter and the wall thickness of the circular tube were 52 

mm and 2 mm, respectively. Billets with dimensions of  75  65 mm and  100  65 

mm were used to extrude the rectangular tube and circular tube, respectively. The 

inner diameters of the container liners to extrude the rectangular tube and circular 

tube were 80 and 100 mm, respectively, and their extrusion ratios were 47.7 and 25, 

respectively. In order to verify the predictive capability of the ELD, the parameters 

employed in tubes extrusion were different from those used in rod extrusion. The 

initial billet temperatures were 200-450 °C, and the extrusion speeds were 16.2 -125 

mm/s. Fig. 15 shows the extruded tubes. 

 

Fig. 14. Cross sections of the rectangular tube (a) and circular tube (b). 
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Fig. 15. Extruded magnesium alloy tubes. 

The parameters of r, dbT , L , D  and  used are listed in Table 5. The 

calculated equivalent extrusion ratios (�̅�) for the extrusion of the rectangular tube and 

circular tube were 78.88 and 46.46, respectively. By intersecting the 3D ELD by 

planes at constant �̅� values of 78.88 and 46.46, the equivalent 2D ELDs for the 

extrusion of these two tubes were obtained. According to Eqs. (5) and (11)-(15), the 

equivalent 2D ELDs were converted into real 2D ELDs. In addition, the 2D ELDs 

constructed by the conventional mathematic models were compared with those 

constructed by the ANN.  

Table 5. Parameters for constructing the 2D ELDs of the rectangular tube and circular tube.  

Parameters r Tdb (°C) L (mm) D (mm) λ 

Rectangular tube 47.7 40 65 80 3.86 

Circular tube 25 40 65 100 5.0 

 

The most widely used empirical models to predict extrusion pressure and 

temperature changes occurring during extrusion are as follows (Sheppard, 1999): 

 
4

0.171 1.86ln
3

mL
P r

D

 

   
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 (18) 
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
   (21) 

where   is the flow stress of the deforming material, m  the friction coefficient 

being assumed to have a value of 1, 1T  the temperature rise caused by 

deformational heat, 2T  the temperature rise caused by the friction between the 

billet and container, 3T  the temperature increase caused by the friction between the 

billet and die land,   the density of the billet, C  the thermal capacity of the billet, 

k  the thermal conductivity of the billet, Rv  the ram speed, and DL  the length of die 

land.  

Fig. 16 shows the 2D ELD for the extrusion of the rectangular tube. The solid 

curves and dash curves represent the extrusion limit curves determined by the ANN 

and the empirical model, respectively. The safe process window is shown in the green 

color. The grey area represents the parameters at which the extrusion pressure 

requirement exceeds the allowable yield strength of the stem. If the parameters in the 

light red area are selected, hot shortness will occur during the extrusion process. 

Fig. 17 shows the rectangular tubes extruded at different conditions corresponding 

to those shown in the ELD (Fig. 16). The predictions of the ELD constructed by the 

ANN are in good agreement the experimental results. For example, the tubes extruded 

at the conditions of a: 300 °C and 95.4 mm/s, b: 400 °C and 47.7 mm/s and c: 450 °C 

and 16.2 mm/s, located in the safe area (i.e., a, b and c in Fig. 16), all had fine surface 
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quality (Fig.17a, b and c). Hot shortness indeed occurred at the conditions of d: 

350 °C and 95.4 mm/s and e: 450 °C and 47.7 mm/s, as shown in Fig. 17d and e, 

which was predicted by the ELD (Fig. 16).  

Figs. 18 and 19 show the 2D ELD for the extrusion of the circular tube and the 

corresponding experimental results, respectively. Once again, the experimental results 

are consistent with the predictions of the ELD. Therefore, the 2D ELD constructed by 

using the present method is reliable and can provide guidelines for the selection of 

appropriate extrusion process parameters.  
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Fig. 16. 2D ELD for the production of the rectangular tubes. The surfaces of the extrudates extruded 

under the conditions marked by a-e are shown in Fig. 17a-e. (For interpretation of the references to 

colour in the text, the reader is referred to the web version of this article.) 
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Fig. 17. Rectangular tubes extruded under different conditions: (a) 300 °C and 95.4 mm/s; (b) 

400 °C and 47.7 mm/s; (c) 450 °C and 16.2 mm/s; (d) 350 °C and 95.4 mm/s; (e) 450 °C and 47.7 

mm/s. 
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Fig. 18. 2D ELD for the production of the circular tube. The surfaces of the extrudates extruded 

under the conditions marked by a-d are shown in Fig. 17a-d. 

 

Fig. 19. Circular tubes extruded at different conditions: (a) 300 °C and 100 mm/s; (b) 350 °C and 

50 mm/s; (c) 300 °C and 125 mm/s; (d) 400 °C and 50 mm/s. 

 

Furthermore, in comparison with the ELD constructed by the empirical models (the 

dash lines in Figs. 16 and 18), the ELD developed in the present research makes more 

reliable predictions for the extrusion of magnesium alloy profiles. This is because the 

ANN can predict the peak extrusion pressure and extrudate temperature more 

accurately than the empirical models. Fig. 20 compares the experimentally measured, 

ANN-predicted and empirical-model-predicted peakP  values during extrusion to 
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produce magnesium alloy rods. Taking the measured values as the reference points, 

the mean relative errors (MREs) of the peakP  values predicted by the ANN and 

empirical model were 3.34% and 30.44%, respectively. Clearly, the pressures 

predicted by the empirical model were much higher than those obtained from 

experiments, while the ANN-predicted pressure values were in good agreement with 

those obtained from extrusion experiments. 
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Fig. 20 Peak extrusion pressure values measured during the extrusion experiments and predicted 

by the ANN and by the empirical model. 

 

6. Conclusions 

A 3D ELD for the magnesium alloy Mg-8Al-0.5Zn-0.5RE was constructed in the 

space of the equivalent extrusion ratio, initial billet temperature and extrusion speed 

by using the ANN. The following conclusions have been drawn. 
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(1) After being validated by extrusion experiments, the FE simulations of extrusion of 

magnesium alloy can be used to provide datasets to be used for training the ANN. 

(2) In addition to the main extrusion process parameters, i.e., initial billet temperature, 

extrusion speed, and extrusion ratio, the influences of billet dimensions, the 

temperature difference between the die and billet, and extrudate shape on the 

extrusion results can be integrated into the equivalent process parameters. As a 

result, the ANN can give high prediction accuracy and generalization 

performance. 

(3) The 3D ELD clearly presents the extrudability of the Mg-8Al-0.5Zn-0.5RE alloy. 

For the extrusion process to produce magnesium alloy rods, with increasing 

extrusion ratio from 5 to 105, the maximum extrusion speed decreases from 391 to 

259 mm/s. 

(4) 2D ELDs for any complex profiles can be obtained through intersecting the 3D 

ELD. The experimental validation through tube extrusion confirms that the 3D 

ELD established by the ANN is reliable and can provide guidelines for the 

selection of appropriate extrusion parameters. 
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Table captions 

Table 1. Constitutive constants of the magnesium alloy Mg-8Al-0.5Zn-0.5RE. 

Table 2. Physical properties of the billet and extrusion tooling. 
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Table 3. Levels of the parameters used in the FE simulations for preparing ANN 

training datasets. 

Table 4. Variables of the FE simulations for modifying the ELD. 

Table 5. Parameters for constructing the 2D ELDs of the rectangular tube and circular 

tube.  

Figure captions 

Fig. 1. Schematic of the ELD in the space of extrusion speed (or extrusion ratio) and 

initial billet temperature. 

Fig. 2. Flow chart of the construction of 3D ELD for magnesium alloy. 

Fig. 3. Schematic diagram of the experimental setup to produce rods. 

Fig. 4. FE axisymmetric model of the extrusion process to produce rods. 

Fig. 5 Cross sections of the profiles with different shape factor  values. 

Fig. 6. Comparison between the experimentally measured and simulated extrusion 

pressures. (a) Extrusion pressure-stroke curves at an extrusion ratio of 29.8, initial 

billet temperature of 350 °C and extrusion speed of 117.1 mm/s; (b) Linear 

correlation between the experimental and simulated extrusion pressure values 

obtained at different extrusion conditions. In the legend, the slop and the 

correlation coefficient of the fit are given. 

Fig. 7. Structure of the ANN used in the present research. 
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Fig. 8. MSEs of the test dataset calculated by the ANN with different numbers of 

neurons in the hidden layer. 

Fig. 9. Extrusion results predicted by the FE simulations and ANN: (a) normalized peak 

values of extrusion pressure and (b) normalized peak values of extrudate 

temperature. 

Fig. 10. (a) Regression curve of 𝑇b
̅̅ ̅ − Tb and (b) influence factor 𝑓λ(). 

Fig. 11. 3D ELD for the magnesium alloy. 

Fig. 12. 2D ELD for the production of magnesium alloy rods at an extrusion ratio of 

29.8. The extrudate surfaces under the extrusion conditions marked by the 

symbols from a to g are shown in Fig.13. 

Fig. 13. Magnesium rods extruded at a fixed extrusion ratio of 29.8, different initial 

billet temperatures and extrusion speeds: (a) 350 °C and 245.6 mm/s; (b) 350 °C 

and 190.4 mm/s; (c) 350 °C and 117.1 mm/s; (d) 400 °C and 190.4 mm/s; (e) 

400 °C and 117.1 mm/s; (f) 440 °C and 117.1mm/s; (g) 440 °C and 14.3 mm/s. 

Fig. 14. Cross sections of the rectangular tube (a) and circular tube (b). 

Fig. 15. Extruded magnesium alloy tubes. 

Fig. 16. 2D ELD for the production of the rectangular tubes. The surfaces of the 

extrudates extruded under the conditions marked by a-e are shown in Fig. 17a-e. 

(For interpretation of the references to colour in the text, the reader is referred to 

the web version of this article.) 
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Fig. 17. Rectangular tubes extruded under different conditions: (a) 300 °C and 95.4 

mm/s; (b) 400 °C and 47.7 mm/s; (c) 450 °C and 16.2 mm/s; (d) 350 °C and 95.4 

mm/s; (e) 450 °C and 47.7 mm/s. 

Fig. 18. 2D ELD for the production of the circular tube. The surfaces of the extrudates 

extruded under the conditions marked by a-d are shown in Fig. 17a-d. 

Fig. 19. Circular tubes extruded at different conditions: (a) 300 °C and 100 mm/s; (b) 

350 °C and 50 mm/s; (c) 300 °C and 125 mm/s; (d) 400 °C and 50 mm/s. 

Fig. 20 Peak extrusion pressure values measured during the extrusion experiments and 

predicted by the ANN and by the empirical model. 
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