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eismic processing in the inverse data space
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ABSTRACT

Until now, seismic processing has been carried out by ap-
plying inverse filters in the forward data space. Because the
acquired data of a seismic survey is always discrete, seismic
measurements in the forward data space can be arranged con-
veniently in a data matrix �P�. Each column in the data matrix
represents one shot record. If we represent seismic data in the
temporal frequency domain, then each matrix element con-
sists of a complex-valued number. Considering the dominant
role of multiple scattering in seismic data, it is proposed to re-
place data matrix P by its inverse P−1 before starting seismic
processing. Making use of the feedback model for seismic
data, multiple scattered energy is mapped onto the zero time
axis of the inverse data space. The practical consequence of
this remarkable property may be significant: multiple elimi-
nation in the inverse data space simplifies to removing data at
zero time only. Moving to the inverse data space may cause a
fundamental change in the way we preprocess and image
seismic data.

INTRODUCTION

After the introduction of seismic digital signal processing in the
960s, seismic processing in the 1970s was characterized by the
ime series approach. Processes such as statistical deconvolution,
ommon-midpoint stacking, and time migration treated seismic data
s time objects. In the early 1980s, however, wave theory regained a
rincipal role. The seismic community realized that seismic data
hould be considered as sampled wavefields, measured with proper
liasing protection at the data acquisition surface. Transformation of
urface measurements into wavefields below the acquisition surface

wavefield extrapolation — evolved into one of the key operations
n seismic signal processing. In addition, wave-theory-based multi-
le removal algorithms were successfully introduced.

In this paper, a concept is proposed that may introduce a new tran-
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ition path in seismic processing. It is shown that working in the in-
erse data space offers new opportunities in preprocessing and im-
ging.

ARRANGING SEISMIC MEASUREMENTS
IN A FORWARD DATA MATRIX

It has been shown �Berkhout, 1982� that measurements of a seis-
ic survey can be arranged conveniently in a data matrix, with each

olumn representing a shot record and each row representing a re-
eiver gather �Figure 1�. This matrix can be used directly for the for-
ulation of wave-theory-based numerical algorithms in seismic

rocessing, such as multiple removal and prestack migration. In
any theoretical considerations, the data matrix is assumed to be

ompletely filled with regularly sampled measurements. Figure 1 il-
ustrates that this is not the case in practice. In particular, the spacing
etween submatrices may be large. Note that in the temporal fre-
uency domain, each element of the data matrix represents the fre-
uency component of a single seismic trace; i.e., one complex-val-
ed number.After removal of the waves that have travelled along the
urface, the data matrix can be expressed in terms of propagation and
eflection operators, yielding the WRW-model �Berkhout, 1982�. In
his paper, the data matrix plays a central role.

OPERATOR FRAMEWORK FOR WAVEFIELDS

The detail-hiding operator framework for wavefields is an attrac-
ive starting point for the derivation of seismic processing algo-
ithms. In the single scattering version of this framework, the dis-
rete version of the model for primary wavefields is formulated in
he �xr,yr;xs,ys;��-domain in terms of vectors and matrices �Fig-
re 2�:

�Pj�z0,z0� = D�z0��X�z0,z0�S j�z0� . �1a�

n equation 1a, detector matrix D�z0� and source vector Sj�z0� repre-
ent the angle-dependent data acquisition information for one shot
ecord �geometry, field arrays, and signature� at the surface z = z0,j

ndicating the lateral position of the source array; matrix �X�z0,z0�
efines the earth’s multidimensional transfer operator for primary
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A30 Berkhout
eflections �each column represents one spatial impulse response�.
ote that �X includes mode conversion.
For OBC-data, the detector surface �z0� should be replaced by the

ea bottom �z1�, where z1 may be generalized to z1�x,y�:

�Pj�z1,z0� = D�z1��X�z1,z0�S j�z0� . �1b�

t follows from equation 1a that one trace at detector �array� position
due to a seismic source �array� at position j is given by the complex-
alued scalar:

�Pij�z0,z0� = Di
†�z0��X�z0,z0�Sj�z0� , �2a�

igure 1. The data matrix for 3D seismic measurements, one column
ecord and one row representing a receiver gather. �a� In multistream
ubmatrix represents the measurements of a single streamer line �5 s
n this example�. �b� In multicross-spread land data, one submatrix
urements of a single cross-spread �36 cross-spreads are shown here�
rices are generally finely sampled.

igure 2. Primary reflection measurements in terms of surface opera
urface operator ��X�, where �X includes mode conversion.

igure 3. Feedback model, showing the generation of surfac
Berkhout, 1982�. The mathematics of this model leads to a set of mu
ral equations of the second kind. Note that if we neglect the interna
�X.
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ow vector Di
†�z0� representing the detector �array� at position i. If

he responses of all sources under consideration are measured by the
ame detector distribution �OBC data for instance�, then it follows
rom the foregoing that data matrix �P�z0,z0� can be written as

�P�z0,z0� = D�z0��X�z0,z0�S�z0� . �2b�

f we include multiples �M� and other types of noise �N�, such as
aves that travel along the surface, the total data matrix needs to be

ntroduced:

P�z0,z0� = �P�z0,z0� + M�z0,z0� + N�z0� �3a�
or

P�z0,z0� = D�z0�X�z0,z0�S�z0� + N�z0� ,

�3b�

X�z0,z0� being the earth’s multidimensional
transfer operator for all types of reflections �pri-
maries and multiples, longitudinal and shear�.

If the surface multiples have been removed,
then the stress-free surface has been replaced by a
reflection-free surface, and equations 3a and 3b
need to be replaced by

P0�z0,z0� = �P�z0,z0� + M0�z0,z0�

+ N�z0� �4a�
or

P0�z0,z0� = D�z0�X0�z0,z0�S�z0� + N�z0� .

�4b�

The subscript 0 indicates that the influence of the
surface �z0� has been removed. Note that if we ne-
glect the internal multiples, then P0 = �P and
X0 = �X.

In the following, we take a closer look at total
data matrix P.

MAKING USE OF THE
FEEDBACK MODEL

Let us consider the feedback model at z0, show-
ing the physics behind surface multiples �Figure
3�:

P = P0 + �P0A�P0 + �P0A�2P0 + . . . . . . ,

�5a�

where
P0 = DX0S �5b�

and
A = S−1R�D−1. �5c�

Bear in mind that P0 contains internal multiples
only.

In mathematical terms, multiplication with
�P0A� means a spatial convolution process. In
physical terms, multiplication with �P0A� means
adding one roundtrip through the subsurface.
Equation 5a can also be written as:

enting a shot
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Seismic processing in the inverse data space A31
P = �I − P0A�−1P0 �6a�
r

P = P0 + P0AP. �6b�

he continuous formulation of equation 6b repre-
ents a set of multidimensional integral equations
f the second kind. Multiple scattering equation
b defines the theoretical base of multiple remov-
l algorithms such as SRME �Berkhout, 1982�.
ote that equation 6b has the structure of the
ell-known Lippmann-Schwinger equation

Weglein et al., 1997�. For practical purposes, it is
ssential that equation 6b includes the influence
f the data acquisition operators D and S �Ver-
chuur, 1991; Kelamis and Verschuur, 2000�. It is
lso important to realize that surface operator A
oes not contain traveltime �see equation 5c�.
his property of A is used in the next section.

MOVING TO THE INVERSE
DATA SPACE

According to the feedback model �Figure 3�,
ultiple scattering data in the forward data space

FDS� is given by

P = �I − P0A�−1P0. �7a�

he series expansion of equation 7a is given by
quation 5a, showing that in practice the forward
ata space may be very complex. From expres-
ion 7a, multiple scattering data in the inverse
ata space �IDS� can be easily derived:

P−1 = P0
−1�I − P0A�

r
P−1 = P0

−1 − A . �7b�

quation 7b may be referred to as the multiple scattering equation in
he inverse data space. It shows that the inverse data space is very
imple with respect to the forward data space, consisting of the in-
erse surface-free response, primarily situated at negative times, and
he surface-related properties at and around zero time. This can be
ell understood if we bear in mind that the inversion process trans-

orms the poles in the reverberant forward data to zeros in the nonre-
erberant inverse data. If we illustrate this with a single reflector be-
ng illuminated by a plane wave, then matrices become scalars �see
igure 4�:

P = �1 + Re−2j�pz�z�−1�DRe−2j�pz�zS� �8a�

P−1 = �DRe−2j�pz�zS�−1 + �DS�−1 �8b�

0
−1 = �P−1 = �DRe−2j�pz�zS�−1 and A = − �DS�−1 �8c�
P0 = �P = DRe−2j�pz�zS and X0 = �X = Re−2j�pz�z,

�8d�
here pz�z = 200 ms and R = 0.5. Figure 4 clearly demonstrates

he simplicity of P−1 with respect to P, as predicted by the theory.
Surface operator A can be found at and around zero time. Know-

ng that the surface is stress free for marine data, meaning
��z0,z0� = −I, it follows from its definition that matrix A contains

he data acquisition information �wavelet and directivity� for each

Figure 4. �a�A
in the forward
verse data spa
ple free and ze
Downloaded 05 Nov 2012 to 131.180.130.19
plane wave, single reflector example to show the difference between �b� P
data space and �c� P in the inverse data space. After removing A in the in-

ce, �d� P0 and �e� X0 = −AP0 can be recovered. Note that the output is multi-
ro phase. Note also that for this single reflector example X = �X.
8. Redistribution subject to 
igure 5. Preprocessing diagram, showing how to separate angle-de-
endent surface and subsurface information without prior knowl-
dge of surface and subsurface properties. Note that the resulting
rimaries are consistent with all surface multiples in the data.
SEG license or copyright; see Terms of Use at http://segdl.org/
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A32 Berkhout
hot record as materialized in the field. Hence, A can be used to ap-
ly a full deconvolution process for sources and detectors �see Fig-
re 5�. This capability may offer new opportunities for the improve-
ent of time-lapse preprocessing.

SYNTHETIC DATA EXAMPLE

Preprocessing in the inverse data space is demonstrated on finite-
ifference data in a horizontally-layered medium that was derived
rom log data. Figure 6a shows one shot record �primaries plus sur-
ace as well as internal multiples�, and Figure 6b shows this shot
ecord without surface multiples �primaries plus internal multiples�,
oth in the forward data space: one column of P and P0 in the time
omain. In Figures 6c and d, both records are shown in the inverse
ata space: one row of P−1 and P0

−1 in the time domain. Here, matrix
nversion was carried out in the spatial Fourier domain. In Figure 6c,
he focal point at and around zero time makes the difference with re-
pect to Figure 6d. In Figures 6e and f, both shot records are shown in
he Radon-transformed inverse data space. Now, the angle-depen-
ent information in surface operator A is clearly visible at � = 0.

igure 6. �a and b� Shot record modeled with and without surface-rel
nd �e and f� in the Radon-transformed inverse data space. �g�After a
ormed back to the forward data space �h�.
Downloaded 05 Nov 2012 to 131.180.130.198. Redistribution subject to 
ote that the combination of A and P0
−1 generates all surface-related

ultiples in the forward data space, meaning that multiples contrib-
te to the definition of primaries in the inverse data space. After
daptive subtraction of the surface operator around � = 0 �Figure
g�, the result is transformed back into the forward data space, lead-
ng to the output without surface multiples �Figure 6h�. Comparison
f Figure 6f with g, and Figure 6b with h shows the large potential of
ultiple removal in the inverse data space, taking into account that

he entire process is conceptually simple and fully data driven.

CONCLUSIONS

Seismic data is complex because of the dominant role of multiple
cattering. This makes seismic processing a difficult task, requiring
omplex seismic tools and high-level seismic skills.

If we arrange the measurements of a seismic survey in a data ma-
rix and we determine the inverse of this matrix, then the surface is
ecoupled from the subsurface. In terms of the feedback model �Fig-
re 3�, the forward path and the backward path are separated.

This decoupling property may have far-reaching consequences

ultiples in the forward data space, �c and d� in the inverse data space,
e subtraction of the surface operator around � = 0, the result is trans-
ated m
daptiv
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Seismic processing in the inverse data space A33
or the way we will preprocess seismic data in the future: The angle-
ependent scattering properties of the �near� surface as well as the
ngle-dependent source and detector behavior at the �near� surface
an be removed from the data without prior knowledge of surface
nd subsurface. Moreover, it is expected that in the inverse data
pace, missing data can be interpolated far beyond aliasing because
f the interrelationship between primaries and surface-related multi-
les. The latter can be understood by bearing in mind that missing
ngles in surface operator A can easily be repaired. These angles are
hen used in the combination of A and P0 to construct missing data in
he forward data space.

By repeating inverse data processing at each depth level, all inter-
al multiple scattering events related to one depth level map onto �
0, and can thus be used in the imaging process. This means that by

ncluding the inverse data space, existing migration technology can
e used to construct an image of the subsurface from both primaries
nd multiples: at each depth level, primaries are imaged in the for-
ard data space and multiples are imaged in the inverse data space.
There are many physical systems outside the seismic discipline

here feedback paths play a principal role, and where measurements
an be described by integral equations of the second kind. Looking at
Downloaded 05 Nov 2012 to 131.180.130.198. Redistribution subject to 
he results of this paper, it may be expected that analysis of these sys-
ems will benefit when carried out in the inverse data space.
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