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This study investigates how navigation uncertainty affects conflict detection and resolution (CD&R) for uncrewed
aircraft in U-space. Position and velocity errors are modelled as zero-mean Gaussian noise consistent with ADS-
L accuracy, and propagated through conflict metrics using Monte Carlo and analytical approximations. Under
uncertainty, state-based detection becomes probabilistic. The probability of detection depends on both the level
of uncertainty and the encounter geometry, and falls below 50 % when the nominal intrusion time equals the
look-ahead. Operationally, detection is re-evaluated over time as the encounter develops, yielding multiple obser-
vations with varying probabilities. Two resolution algorithms are compared: Modified Voltage Potential (MVP)
and Velocity Obstacle (VO). MVP proves more robust under uncertainty because it explicitly maximises dis-
tance at the closest point of approach (CPA). By maximising CPA distance, MVP maintains an outward push and
avoids reversal behaviour during the manoeuvre, whereas VO performance degrades at low relative speeds and
shallow angles. BlueSky simulations confirm these effects: MVP achieves higher intrusion-prevention rates and
larger post-resolution miss distances across conflict scenarios, with its advantage most pronounced at low rela-
tive velocity. The findings highlight the importance of maximising CPA distance as a conflict resolution strategy.
Moreover, the look-ahead horizon and protected zone can be tuned to achieve a desired target level of safety.

1. Introduction

The number of Uncrewed Aerial Systems (UASs) operating in Euro-
pean airspace is expected to increase markedly in the coming decade. Es-
timates indicate that several hundred thousand drones may be active by
2030 [1]. The safe integration of this traffic alongside existing aviation
requires dedicated operational concepts, such as the U-space framework
[2]. Within U-space, the tactical separation layer is intended to address
conflicts not resolved during pre-flight strategic planning, by using real-
time state information to detect and resolve conflicts between aircraft
on short time horizons [3].

This tactical conflict resolution typically relies on observations of
the current aircraft state information such as position and velocity to be
shared among the airspace users. These tactical attributes are provided
by communication, navigation, and surveillance (CNS) systems. One
of the means to communicate this state information to other airspace
users is the Automatic Dependent Surveillance-Light (ADS-L) system,
proposed for U-space operations [4]. These state data are subject to
uncertainty where position and velocity estimates contain errors that
could degrade the performance of tactical conflict detection and reso-

lution [5]. While the same problems exist in crewed aircraft [6,7], the
scales of the separation minima and manoeuvring speeds are different.
Crewed aircraft apply minimum separation standard of about 5 nautical
miles, whereas UAS operations typically require only 50 to 200 metres
[8-12]. The much smaller separation distances make navigation uncer-
tainty proportionally more significant for UAS.

In the presence of navigation errors, conflict detection and resolu-
tion become probabilistic. Analysis of these stochastic effects enables a
systematic characterisation of how errors in state information propagate
through detection and resolution logic, and how this propagation influ-
ences sensitivity to thresholds such as look-ahead time and protected-
zone radius. Such models would allow a derivation of requirements on
aspects like look-ahead time and separation minima from a target level
of safety (TLS).

This study focuses on state-based conflict detection and resolution
because their geometric structure allows analytical propagation of nav-
igation uncertainty into both the detection metrics and the resulting
manoeuvres. From the detection perspective, this contrasts with proba-
bilistic methods that model uncertainty directly. Examples include Gaus-
sian integration over collision zones [13], stochastic prediction with
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\begin {equation}\label {eq:mvp_dv} \dV = \frac { \left ( \frac {\RPZ }{\varepsilon } - \norm {\dCPA } \right ) } { \tCPA \cdot \norm {\dCPA } } \cdot \dCPA \end {equation}
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\begin {equation}\label {eq:vo_optimal} \Vres = \arg \min _{\mathbf {V} \in \partial \mathcal {VO}} \left \| \mathbf {V} - \Vo \right \|\end {equation}
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\begin {equation}\xrel \sim \Normal (\murel , \Sigmarel ) \in \mathbb {R}^2 \label {Xeqn21-A.1}\end {equation}


\begin {equation}\Vrel \in \mathbb {R}^2. \label {Xeqn22-A.2}\end {equation}


\begin {equation}\tCPA = \frac {\inner {\Vrel }{\xrel }}{\norm {\Vrel }^2} \label {Xeqn23-A.3}\end {equation}


\begin {equation}\dCPA := \xrel - \tCPA \, \Vrel \label {Xeqn24-A.4}\end {equation}


\begin {equation}P := I - \frac {\Vrel \Vrel ^\top }{\norm {\Vrel }^2}, \quad \text {so that} \quad \dCPA = P\, \xrel \label {Xeqn25-A.5}\end {equation}
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\begin {equation}\dCPA \sim \Normal (P\, \murel ,\, P\, \Sigmarel \, P^\top ) \label {Xeqn26-A.6}\end {equation}


\begin {equation}\vect {v}_{\parallel } := \frac {\Vrel }{\norm {\Vrel }} \label {Xeqn27-A.7}\end {equation}


\begin {equation}\vperp := \begin {bmatrix} - v_{\parallel , y} \\ \hphantom {-} v_{\parallel , x} \end {bmatrix} \label {Xeqn28-A.8}\end {equation}


\begin {equation}T := \begin {bmatrix} \vperp ^\top \\ \vect {v}_{\parallel }^\top \end {bmatrix} \in \mathbb {R}^{2 \times 2} \label {Xeqn29-A.9}\end {equation}


\begin {equation}\vect {z} := T\, \dCPA \label {Xeqn30-A.10}\end {equation}


\begin {equation}\mathbb {E}[\vect {z}] = T\, \mathbb {E}[\dCPA ] = T\, P\, \murel \label {Xeqn31-A.11}\end {equation}


\begin {equation}\mathbb {E}[\vect {z}] = \begin {bmatrix} \vperp ^\top P\, \murel \\ \vect {v}_{\parallel }^\top P\, \murel \end {bmatrix} \label {Xeqn32-A.12}\end {equation}
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\begin {equation}\vect {v}_{\parallel }^\top P\, \murel = 0 \label {Xeqn33-A.13}\end {equation}


\begin {equation}\mathbb {E}[\vect {z}] = \begin {bmatrix} \vperp ^\top P\, \murel \\ 0 \end {bmatrix} \label {Xeqn34-A.14}\end {equation}


\begin {equation}\operatorname {Cov}[\vect {z}] = T\, P\, \Sigmarel \, P^\top \, T^\top \label {Xeqn35-A.15}\end {equation}


\begin {equation}\operatorname {Cov}[\vect {z}] = \begin {bmatrix} \vperp ^\top P\, \Sigmarel \, P^\top \vperp & \vperp ^\top P\, \Sigmarel \, P^\top \vect {v}_{\parallel } \\ \vect {v}_{\parallel }^\top P\, \Sigmarel \, P^\top \vperp & \vect {v}_{\parallel }^\top P\, \Sigmarel \, P^\top \vect {v}_{\parallel } \end {bmatrix} \label {Xeqn36-A.16}\end {equation}
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\begin {equation}P^\top \, \vect {v}_{\parallel } = 0 \quad \Rightarrow \quad \text {All terms involving } \vect {v}_{\parallel } \text { vanish} \label {Xeqn37-A.17}\end {equation}


\begin {equation}\operatorname {Cov}[\vect {z}] = \begin {bmatrix} \sigma _z^2 & 0 \\ 0 & 0 \end {bmatrix} \label {Xeqn38-A.18}\end {equation}


\begin {equation}\sigma _z^2 := \vperp ^\top P\, \Sigmarel \, P^\top \, \vperp \label {Xeqn39-A.19}\end {equation}
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\begin {equation}z \sim \Normal \left (\vperp ^\top P\, \murel ,\; \vperp ^\top P\, \Sigmarel \, P^\top \, \vperp \right ) \label {Xeqn40-A.20}\end {equation}
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\begin {equation}\xrel \sim \Normal (\murel , \Sigmarel ), \label {Xeqn41-B.1}\end {equation}
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\begin {equation*}P := I - \frac {\Vrel \Vrel ^\top }{\norm {\Vrel }^2}\end {equation*}


\begin {equation}\vperp = \frac {1}{\norm {\Vrel }} \begin {bmatrix} - V_{\mathrm {rel},y} \\ \ \, V_{\mathrm {rel},x} \end {bmatrix} \label {Xeqn43-B.3}\end {equation}
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\begin {equation}\mu _{\tin } \approx h(\murel ), \qquad \sigma ^2_{\tin } \approx \nabla h(\murel )^\top \Sigmarel \, \nabla h(\murel ). \label {Xeqn44-B.4}\end {equation}
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\begin {equation}\nabla h(\murel ) = \nabla f(\murel ) + \frac { g(\murel ) }{ \norm {\Vrel }\, \sqrt {\,\RPZ ^2 - g(\murel )^2\,} } \; \nabla g(\murel ), \label {Xeqn45-B.5}\end {equation}


\begin {align}f(\xrel ) &= \frac {\inner {\Vrel }{\xrel }}{\norm {\Vrel }^2}, & \nabla f(\murel ) &= \frac {\Vrel }{\norm {\Vrel }^2}, \\[6pt] g(\xrel ) &= \vperp ^\top P\, \xrel , & \nabla g(\murel ) &= \vperp ^\top P .\end {align}
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\begin {equation}\Vrel \sim \Normal (\nurel , \SigmaVrel ). \label {Xeqn46-C.1}\end {equation}


\begin {equation}f(\Vrel ) = \frac {\inner {\Vrel }{\xrel }}{\inner {\Vrel }{\Vrel }}. \label {Xeqn47-C.2}\end {equation}
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\begin {equation}\mu _{\tCPA } \approx f(\nurel ) \label {Xeqn48-C.3}\end {equation}


\begin {equation}\sigma ^2_{\tCPA } \approx \nabla f(\nurel )^\top \SigmaVrel \, \nabla f(\nurel ). \label {Xeqn49-C.4}\end {equation}


\begin {equation}\nabla f(\nurel ) = \frac {\xrel }{\norm {\nurel }^2} - \frac {2\, \inner {\nurel }{\xrel }}{\norm {\nurel }^4} \nurel . \label {Xeqn50-C.5}\end {equation}


\begin {equation}g(\Vrel ) = \left \|\, \xrel - f(\Vrel )\, \Vrel \right \|. \label {Xeqn51-C.6}\end {equation}


\begin {equation}\dCPA = \xrel - \tCPA \, \Vrel . \label {Xeqn52-C.7}\end {equation}
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\begin {equation}\mu _{d_{\mathrm {CPA}}} \approx g(\nurel ), \qquad \sigma ^2_{d_{\mathrm {CPA}}} \approx \nabla g(\nurel )^\top \SigmaVrel \, \nabla g(\nurel ). \label {Xeqn53-C.8}\end {equation}


\begin {equation}\vect {d} = \xrel - f(\Vrel )\, \Vrel . \label {Xeqn54-C.9}\end {equation}


\begin {equation}\nabla g(\nurel ) = \frac {\vect {d}}{\norm {\vect {d}}} \left ( -\, \nabla f(\nurel )\,\inner {\nurel }{} - f(\nurel )\, I \right ), \label {Xeqn55-C.10}\end {equation}
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\begin {equation}h(\Vrel ) = f(\Vrel ) - \frac { \sqrt {\RPZ ^2 - g(\Vrel )^2} }{ \norm {\Vrel } }. \label {Xeqn56-C.11}\end {equation}


\begin {equation}\mu _{\tin } \approx h(\nurel ), \qquad \sigma ^2_{\tin } \approx \nabla h(\nurel )^\top \SigmaVrel \, \nabla h(\nurel ). \label {Xeqn57-C.12}\end {equation}


\begin {equation}\nabla h(\nurel ) = \nabla f(\nurel ) + \frac { g(\nurel )\, \nabla g(\nurel ) }{ \norm {\nurel }\, \sqrt {\RPZ ^2 - g(\nurel )^2} } + \frac { \sqrt {\RPZ ^2 - g(\nurel )^2} }{ \norm {\nurel }^3 } \nurel . \label {Xeqn58-C.13}\end {equation}
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\begin {equation}B = (0, 0), \qquad A = (2d, 0), \qquad \text {where } d > 0 \label {Xeqn59-D.1}\end {equation}
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\begin {equation}P_m = \left ( \frac {2d}{m^2 + 1}, \frac {2dm}{m^2 + 1} \right ) \label {Xeqn66-D.8}\end {equation}
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\begin {equation}d = \tfrac {1}{2} \norm {AB} \label {Xeqn71-D.13}\end {equation}
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\begin {equation}\Vrel \sim \Normal (\nurel ,\, \SigmaVrel ), \qquad \Vrel = \begin {bmatrix} v_x \\ v_y \end {bmatrix}. \label {Xeqn72-E.1}\end {equation}
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\begin {equation}\xrel = (2d, 0), \qquad 2d = \norm {\xrel } > 0. \label {Xeqn74-E.3}\end {equation}
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randomized estimation of conflict probability [14], geometric probabil-
ity bounds [15], and analytical formulations based on Gaussian relative-
motion models [16]. These approaches estimate conflict probability,
whereas the present analysis focuses on the probability that a determin-
istic state-based conflict detection identifies a conflict under navigation
uncertainty.

For conflict resolution, optimisation-based systems such as ACAS X
[17]1 and ACAS sXu [18] incorporate uncertainty into large-scale prob-
abilistic models and dynamic programming. Although they reduce en-
counters to pairwise interactions [19], they do not provide insights into
the robustness of the resulting policies under navigation uncertainty.

A complementary viewpoint is taken here by analysing how nav-
igation uncertainty influences the deterministic commands generated
by state-based methods. Maintaining an explicit geometric structure al-
lows examination of how position and velocity errors propagate into
both conflict detection and the resulting manoeuvre. The aim of this
paper is to explain why state-based conflict detection and resolution re-
main effective in the presence of navigation uncertainty. This is done
by characterising how navigation errors affect key detection variables,
how uncertainty propagates through candidate manoeuvres, and how
these mechanisms influence macroscopic safety metrics used to evalu-
ate resolution performance. The main contributions of this paper are as
follows:

1. An uncertainty-quantification framework is formulated for state-
based conflict detection that propagates position and velocity errors
to three key decision variables: the time to closest point of approach
tcpa, the projected distance at closest point of approach ||d¢cp, |, and
the time to loss of separation 7;,, using analytical derivations and
Monte Carlo simulations.

2. Navigation uncertainty is forward-propagated through the conflict
resolution process to relate uncertainty in the projected distance at
closest point of approach ||d¢cps|l to the distribution of resolution
velocities generated by the Modified Voltage Potential (MVP) and
Velocity Obstacle (VO) methods.

3. The post-resolution projected distance at closest point of approach
||dEPA|| is analysed to quantify how uncertainty propagates across
successive conflict-resolution iterations and how this propagation re-
lates to the selection and stability of resolution directions.

4. The proposed framework is evaluated using large-scale Monte Carlo
simulations conducted with the open-source BlueSky air traffic man-
agement simulator.

The remainder of the paper is organised as follows. Section 2 in-
troduces the tactical conflict detection and resolution algorithms. Sec-
tion 3 presents the uncertainty models and their propagation within
state-based detection and resolution. Section 4 describes the evaluation
methodology. Section 5 reports and discusses the results, and Section 6
concludes the paper.

2. Tactical separation management

Suppose two aircraft are in conflict and require separation. This con-
flict is defined as a predicted loss of separation within a specified look-
ahead time, rather than an actual breach of the minimum separation
standard. When the separation minima between two aircraft are actu-
ally violated, it results in a loss of separation (LoS). To detect conflicts
before they escalate into LoS, the future positions of the aircraft must be
estimated. This is typically done by extrapolating their current velocity
vectors, although more advanced methods may employ intent informa-
tion shared between the conflicting aircraft [20].

In today’s civil aviation, the air traffic controller is responsible for
resolving such conflicts through a centralised approach. The controller
maintains a global view of the traffic situation and issues coordinated
manoeuvres to ensure safe separation. The main advantage of this ap-
proach is its ability to optimise decisions globally, taking into account
the entire airspace picture, which allows for efficient conflict resolution
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and adherence to traffic flow constraints. However, centralised systems
depend heavily on infrastructure and reliable communication, and their
scalability becomes a significant challenge in environments with dense
or rapidly changing traffic, such as those expected in future U-space
operations. This challenge is intensified by the highly combinatorial na-
ture of multi aircraft conflict resolution, where the number of possible
configurations grows quadratically with the size of the group [21].

On the other hand, in a decentralised approach [22], the decision-
making for conflict resolution is assigned to each pilot. Such a decen-
tralised approach can be applied to UAS by assigning the conflict reso-
lution task to the autonomous system. The benefit of this method is that
it relies on multiple agents to resolve the conflict, in contrast to the cen-
tralised control, thus removing the single point of failure and improving
robustness. However, the downside is that this approach typically has
limited global situational awareness, and because conflicts are solved
locally, resolutions may lead to a domino effect in more complex and
dense traffic situations [23].

To explore the effectiveness of decentralised approaches under un-
certainty, this paper investigates the full process of conflict detection
and resolution, which forms the core of autonomous separation in high-
density airspace. Conflict detection typically involves predicting a loss
of separation within a specified look-ahead time based on the current
state (position and velocity) of surrounding traffic.

Building upon this foundation, the paper focuses on two representa-
tive decentralised resolution algorithms: the Modified Voltage Potential
(MVP) method [22] and the Velocity Obstacle (VO) method [24]. These
were selected based on recent studies comparing state-based conflict res-
olution algorithms under high-density traffic conditions [25]. Notably,
the MVP method has demonstrated superior macroscopic performance
in terms of safety, efficiency, and stability. The algorithm even outper-
forms more complex or jointly optimised algorithms due to its use of
implicit coordination and the summation of avoidance vectors in multi-
aircraft conflicts [26]. The VO approach, on the other hand, provides
a geometric and intuitive solution framework widely used in robotics,
and has been successfully adapted for air traffic scenarios [27,28]. To-
gether, these methods offer valuable insights into scalable, robust, and
interpretable decentralised conflict resolution strategies for future urban
air mobility and U-space environments.

2.1. State-based conflict detection

State-based conflict detection uses the estimated relative trajectory,
computed from the current relative position and extrapolated using the
relative velocity. A spatial parameter, the radius of the protected zone
Rp;, and a temporal parameter, the look-ahead time #,,y jcaq> define the
condition for conflict. A conflict is said to occur if the magnitude of the
projected distance at the closest point of approach vector, ||dcpall, is
less than Rpy, and the time to intrusion entry, t;,, is less than 7, heads
as shown in Eq. (1). This situation is illustrated in Fig. 1. The following
paragraphs describe the computation of ||dcp, |l and #;,.

(ldcpall < Rpz) A (tin < figokahcas) = Conflict (€8]

The ownship aircraft, indexed by o, with its position taken as the
origin of the reference frame, moves with velocity V,. A potential in-
truder, indexed by i, located at position x;, is flying near the ownship
with velocity V;. The relative velocity V, is defined as the difference
between the ownship and intruder velocities, V, — V,. The time to the
closest point of approach, 7cp,, is calculated as shown in Eq. (2).

Vrel * Xrel
Iepa = w0 2
”Vrel”2
Once tcpy is known, the vector dc-p, can be calculated as shown in
Eq. (3). With the vector distance at the closest point of approach de-
termined, its magnitude ||dcpy || can be calculated. Then, using vector
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Fig. 1. State-based conflict detection by calculating the closest point of ap-

proach.

geometry or the Pythagorean relation, the time to intrusion entry f;,
can be obtained as shown in Eq. (4).

depa = Xpel — Viel - fopa 3)
\/ R3; = lldcpa ll? .

to=tepp — —

in CPA ”Vre] ” ( )

The advantages of state-based conflict detection lie in its general ap-
plicability, owing to its clear and simple definition, and its robustness to
deviations from the planned trajectory or cleared flight path. It is flexi-
ble and suitable for operations where the future trajectory is unknown,
such as surveillance missions.

However, its main limitation is the potential to miss conflicts re-
sulting from planned changes in the velocity vector. One approach to
mitigate such false negatives is to apply the conflict detection logic not
only to current states, but also to intended future velocity vectors. This
enables conflict detection to function as a preventive tool, particularly
when an aircraft plans to turn, change altitude, or change speed. This
concept can be stated as a traffic rule: when not in conflict, an aircraft
shall not change its heading, vertical speed, or velocity vector in a man-
ner that would result in a conflict within the look-ahead time.

2.2. Conflict resolution methods

Conflict resolution methods can be understood formally by exam-
ining the space of feasible velocity changes available to the ownship. A
widely used representation of this solution space is the concept of Veloc-
ity Obstacles (V0), originally introduced in the context of robotics [24]
and later adapted for aerial conflict resolution. A VO is constructed by
first defining a collision cone (CC), bounded by tangents from the own-
ship to the protected zone around the intruder, which contains all rel-
ative velocity vectors that would lead to a predicted loss of separation.
Translating this cone by the intruder’s velocity yields the VO in absolute
velocity space. The resulting region, illustrated in Fig. 2, represents all
ownship velocities that would result in a conflict within a specified time
horizon. To ensure safe separation, the ownship must select a resolution
velocity vector that lies outside the VO set.

Building on this basic concept, several variations of the VO frame-
work have been developed to address multi-agent interactions, opera-
tional constraints, and traffic management rules. The Selective Velocity
Obstacle (SVO) [12] incorporates right-of-way rules on top of the VO
concept so that only non-priority aircraft manoeuvre. The Optimal Re-
ciprocal Collision Avoidance (ORCA) [29] extends the original formu-
lation to cooperative scenarios, reducing oscillatory behaviour by shar-
ing avoidance responsibility between agents. ORCA computes mutually
feasible velocities as intersections of permitted half-planes, selecting an
option close to the preferred trajectory while ensuring separation. For
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Ownship

Fig. 2. Solution space illustration and highlighted Velocity Obstacle (VO) and
Modified Voltage Potential (MVP) choice of velocity for conflict resolution.

constant-speed platforms, Constant Speed ORCA (CSORCA) [30] modi-
fies the geometry to respect speed constraints and avoid deadlocks. The
Dual-Horizon ORCA (DH-ORCA) [31] extends ORCA with two time hori-
zons. A short horizon for standard ORCA constraints and a longer “cross”
horizon for optional CSORCA-like constraints. The optional constraint
is applied only when an aircraft’s preferred course is predicted to cross
another’s trajectory within the cross horizon, with the decision made
independently using only the aircraft’s own intent.

While the aforementioned methods are derived directly from the VO
set, other strategies can still be interpreted within the same velocity
space framework. The Modified Voltage Potential (MVP) can be anal-
ysed in terms of the VO set, since its output corresponds to a point in
the admissible region outside all conflict cones. In this study, MVP is
compared against the shortest-way-out (SWO) variation, a geometric
VO-based strategy that selects the minimum-change velocity required
to exit the forbidden region. In this paper, this approach is referred to
as the VO method. The comparison is motivated by the fact that their
resolution velocities are often geometrically close in velocity space, as
shown in Fig. 2. This paper aims to examines how both methods perform
under uncertainty. The following subsections present the mathematical
formulation of each conflict resolution strategy.

2.2.1. Modified voltage potential algorithm

The Airborne Separation Assurance System (ASAS), developed in
2002 by [22] is the Modified Voltage Potential (MVP) algorithm. It was
originally inspired by the work of Eby and Kelly [32]. The MVP algo-
rithm has been evaluated in multiple contexts, including both crewed
and uncrewed aircraft, and under varying traffic densities [9,23,25].
Beyond its extensive operational evaluation, MVP is also analytically
proven to provide the minimum path-deviation solution within this fea-
sible region [33].

Fig. 2 illustrates the computation of the resolution vector in the MVP
method. The resolution vector is derived using the relative position at
the closest point of approach (CPA). The mathematical formulation of
the resolution manoeuvre is given in Eq. (5). An additional parameter,
¢, is introduced to ensure that the resulting resolution velocity avoids
grazing the intruder’s protected zone.

The resolution manoeuvre in the MVP method is defined by the fol-
lowing expression:

R
(222 ~ lidcpall)

av=-" 7
tcpa - lldepall

depa 5)

where ¢ is a geometric buffer parameter that ensures the resolution
vector avoids tangency with the protected zone, given by:
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_ . [ Rpz . lldcpall
£ = cos | arcsin — arcsin 6)
1%cel [1Xrerll

The final resolution velocity is obtained by adding the avoidance
vector dV to the nominal ownship velocity V,, yielding:

V.=V, +dV @

This formulation ensures that the ownship adjusts its velocity in a
direction aligned with the projected distance at the closest point of
approach, dcpy, scaled appropriately to ensure separation prior to f;,.
When both the ownship and the projected closest point lie outside the
protected zone, the correction factor ¢ refines the resolution manoeuvre
to prevent grazing the protected boundary. Otherwise, a direct linear
scaling is applied.

2.2.2. Velocity obstacle algorithm

The Velocity Obstacle (VO) algorithm resolves conflicts by selecting
an avoidance velocity outside the forbidden region V0, as defined in the
previous subsection. In the optimal-change formulation, referred to in
this paper as the VO method, the resolution velocity V.., is chosen as the
point on the boundary of VO, denoted 9V 0, that minimizes the deviation
from the nominal ownship velocity V,. This approach, also known as
the shortest-way-out strategy, ensures that the manoeuvre preserves the
original trajectory as closely as possible while maintaining separation
from the intruder, as illustrated in Fig. 2.

Vies = arg Vrerl()igo V-Vl (8)

3. Uncertainty in UAS navigation system

Uncertainty is inherent in any physical system model. It is typ-
ically classified into two categories: aleatory and epistemic [34,35].
Aleatory uncertainty arises from the inherent randomness of the system,
while epistemic uncertainty results from incomplete knowledge, often
introduced through assumptions or simplifications in the mathematical
model.

Within the CNS system, different sources of uncertainty emerge. In
the communication domain, uncertainty manifests as message drops or
latency. Although epistemic uncertainty may arise due to model sim-
plification, these phenomena are predominantly aleatory, as they nat-
urally occur in communication channels. In navigation systems, mea-
surement errors in position and velocity are also considered aleatory, as
they stem from intrinsic sensor variability and environmental interac-
tions. For surveillance systems, particularly in the context of ADS-L as an
integrated CNS component, uncertainty can be attributed to both com-
munication and navigation aspects due to the dependent-surveillance
nature. Therefore, this study focuses primarily on quantifying uncer-
tainty arising from aleatory sources.

Although communication reliability can influence safety metrics, its
effect on CD&R performance is limited to how often new resolution at-
tempts can be initiated. Prior study shows that more frequent message
reception improves safety performance [36]. In contrast, navigation un-
certainty directly affects both the conflict detection outcome and the
computed resolution vector, and therefore plays a more critical role
in shaping the CD&R response under the constant-state assumptions
adopted in this study. Consequently, the present work examines the de-
tail on how navigation uncertainty impacts CD&R performance.

In the field of Uncertainty Quantification (UQ), propagation analysis
is central to understanding how uncertainties in input variables affect
output behaviour. In linear systems, the distribution of outputs typically
reflects that of the inputs. However, in non-linear systems, the mapping
may distort the output distribution by shifting the mean, inducing skew-
ness, or amplifying the tails.
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For conflict resolution, input variables such as position and velocity
are subject to measurement error, which propagates through the conflict
detection and resolution (CD&R) algorithms described in Section 2. This
problem setup corresponds to a forward uncertainty propagation, where
stochastic inputs are propagated through the conflict detection and res-
olution logic to evaluate their impact on safety performance. Since the
CD&R algorithms form a non-linear mapping from these inputs to out-
puts such as miss distance or resolution success, the resulting output
distributions cannot be computed analytically and must instead be ap-
proximated numerically. Monte Carlo simulation is therefore required
to accurately capture the complex interactions between the input uncer-
tainties and the resolution outcomes.

Some recent approaches incorporate navigation uncertainty directly
into the conflict detection metric by modelling the relative position as a
Gaussian random variable. Closed-form expressions have been proposed
to compute the probability that an aircraft enters a predefined protected
volume-such as a cuboid, ellipsoid, or cylinder-under trivariate Gaussian
assumptions [13]. This framework has also been extended to compute
minimum separation distances that satisfy a specified Equivalent Level
of Safety (ELoS), enabling risk-based separation design for pre-tactical
airspace planning [37].

While these probabilistic methods embed uncertainty into the detec-
tion logic itself, state-based conflict detection and resolution maintains
the deterministic assumption and introduces navigation uncertainty at
the evaluation stage through position and velocity perturbations. This
approach uses a simple circular protected zone in two dimensions and
extendable to spherical or cylindrical shapes in three dimensions [38]. It
avoids assumptions about more complex protected-zone geometries or
fixed error models. The effect of the navigational error can be mitigated
by quantifying it and tuning the spatio-temporal parameters to achieve
a desirable CD&R performance.

This distinction is supported by previous studies on the effects of
CNS-related uncertainties, which have shown that both communication
and navigation uncertainties degrade autonomous separation perfor-
mance for UAS [5]. In particular, [36] provides a detailed analysis of
how position uncertainty, as a component of navigation error, impacts
the safety performance of conflict resolution. The degradation occurs
because the uncertainty perturbs the resolution velocity away from the
true value that would otherwise ensure successful conflict avoidance.

Across other engineering domains, uncertainty quantification has
become essential for understanding how model imperfections trans-
late into system-level performance. In aerospace, one of the exam-
ples is in multidisciplinary optimzation (MDO) where uncertainty-based
MDO frameworks propagate input variability through non-linear anal-
ysis chains to reveal how small modelling errors may affect mission-
level outcomes [39]. The theme is also important in planetary-entry
modelling, where uncertainties in aerothermodynamics, atmosphere,
and thermal protection system response can significantly shift predicted
heating loads and trajectory behaviour [40]. Aside from aerospace en-
gineering domain, infrastructure risk modelling demonstrates that un-
certainties distributed across hierarchical sub-models must be propa-
gated strategically to identify influential variables [41], while wind-
engineering studies show that sparse or highly variable data some-
times require non-probabilistic representations such as interval mod-
els [42]. Even in data-driven prognostics, poorly calibrated uncer-
tainty can lead to overconfident predictions in safety-critical set-
tings, motivating careful treatment of both aleatory and epistemic
components [43,44].

Together, these studies highlight a consistent message that when
non-linear models drive safety-critical decisions, uncertainty must be
characterised and propagated explicitly. This is directly relevant to tac-
tical separation, where navigation errors feed into geometric conflict
detection logic and resolution manoeuvres. Because state-based meth-
ods uses solely on the shared position and velocity information to un-
certain inputs, their performance relies on how navigation uncertainty
distorts the detection variables and candidate resolution velocities.
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Understanding this propagation is therefore crucial for assessing the re-
liability of state-based conflict detection and resolution.

To further examine the role of navigation systems as sources of un-
certainty, the following section first describes the types of navigation
systems commonly used in UAS, followed by the associated uncertainty
modelling.

3.1. UAS navigation systems

Unmanned Aerial Systems (UAS) typically rely on Global Naviga-
tion Satellite Systems (GNSS) and Inertial Measurement Units (IMUs) to
navigate in outdoor environments, providing absolute positioning and
inertial references essential for flight control. However, GNSS availabil-
ity is limited in indoor or GNSS-denied environments, restricting its ap-
plicability in such scenarios. Furthermore, due to the limited accuracy
of GNSS and the drift-prone nature of IMUs, visual-based navigation
methods have gained prominence as complementary approaches. Tech-
niques such as Visual Odometry and Visual-Inertial Odometry enable
UAS to estimate motion by analysing camera imagery, either indepen-
dently or in combination with inertial data, thereby enhancing robust-
ness in GNSS-denied settings. Visual Odometry, initially introduced in
[45] and further reviewed in [46], estimates motion solely from visual
inputs and has become essential in robotic navigation. Visual-Inertial
Odometry extends this capability by fusing visual and inertial measure-
ments to achieve real-time, robust state estimation, as demonstrated in
benchmarking studies [47]. Despite the development of these alterna-
tive methods, current standards for U-space operations and tactical sepa-
ration remain heavily dependent on GNSS. Specifically, the proposed use
of ADS-L for situational awareness, as outlined in the technical specifi-
cations [4], assumes the continuous availability and reliability of GNSS-
derived data. The primary parameters transmitted via ADS-L relevant to
tactical separation are the aircraft’s position, ground speed, and ground
track. These values are obtained from GNSS-based navigation solutions
and are encoded in the transmitted payload. The system further defines
navigation performance in terms of accuracy bounds, expressed as 95 %
confidence intervals. For instance, horizontal position accuracy is cate-
gorized into thresholds such as < 30 m, < 10 m, and < 3 m, while velocity
accuracy may be defined as < 10 m/s, < 3 m/s, or < 1 m/s, depending
on the GNSS quality and system configuration.

Although the ADS-L specification provides accuracy bounds, it does
not explicitly define uncertainty using Gaussian distributions or covari-
ance matrices. However, in probabilistic robotics and state estimation,
it is common practice to model sensor uncertainty as zero-mean Gaus-
sian noise for analytical and computational tractability [48]. Under this
assumption, the 95 % bounds specified by ADS-L are interpreted as ap-
proximately +2¢, allowing the derivation of a diagonal covariance ma-
trix based on the stated horizontal position and velocity accuracy.

For the purposes of this study, which addresses uncertainty quan-
tification and its propagation through state-based conflict detection and
resolution (CD&R) algorithms, the Gaussian assumption is adopted for
modelling navigation uncertainty. This approach facilitates the evalua-
tion of how uncertainty in input variables affects CD&R outcomes and
the safety performance of decentralized separation strategies through
Monte Carlo simulations. The following subsection presents the mathe-
matical formulation of position and velocity uncertainties, based on the
ADS-L specification.

3.2. Uncertainty modelling

To quantify the impact of navigation errors on conflict detection and
resolution (CD&R) algorithms, the position and velocity of each aircraft
are modelled as stochastic variables. Specifically, both position and ve-
locity are treated as two-dimensional Gaussian random vectors with in-
dependent components. This modelling approach is widely adopted in
probabilistic robotics and air traffic management [15,16,48] and aligns
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with the uncertainty descriptors provided in the ADS-L technical speci-
fication, which defines accuracy using 95 % confidence bounds. Under
the assumption of zero-mean Gaussian noise, these bounds are approx-
imated as +20, allowing the construction of corresponding covariance
matrices. These models form the basis for uncertainty propagation in
the CD&R algorithms using Monte Carlo simulation techniques.

The position vectors of the ownship and intruder aircraft are defined
as:

Xa ~ N(”D’ZO)’ Xi ~ ~/\/‘(Mi’z’i) (9)

with nominal positions:

X X;
Ho= |:_D:|’ o= |:_':| (10)
Yo Yi
and diagonal covariance matrices:
. Gz 0 . o‘i 0 an
°~ 10 65 o ai

The velocity vectors are similarly modelled as:

V, ~ N(v. ), Vi~ N©,Z,) 12

with nominal velocities:

v, = [”] v = [”] 13)
Yy, Yy,
and covariance matrices:
0'3 0 0'3 0
Z,=| o 2 | o= o2 a4
Yo Yi

The relative position and velocity are defined as:

Xl =X; = Xg, Vi =V, -V, (15)

Since x; and x, are modelled as independent Gaussian variables, their
difference is also Gaussian:

Xrel ~ N(ﬂrel’ 2re]) (16)
with
Hrel = Hi — Ho» Zrel = 2“i + Zo a7)

The relative velocity follows the same structure:

Vrel ~ N(Vrel’ 2’Vre|) (18)
with

Viel = Vo — Vis

W = Eo, Ty a9

The equations above define the position and velocity of both the
ownship and the intruder as two-dimensional Gaussian random vari-
ables, consistent with the ADS-L uncertainty descriptors. Specifically,
the positions x,, and x; are modelled as normally distributed vectors with
means p, and y;, respectively, and diagonal covariance matrices =, and
%,;. These means represent the nominal (expected) positions in Cartesian
coordinates, while the covariance matrices quantify the uncertainty in
each axis, assuming independence between the x and y components.

Similarly, the velocities V, and V; are treated as Gaussian random
vectors with mean velocities v, and v;, and corresponding covariance
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matrices X, and X, . These models reflect the stochastic nature of ve-
locity estimates from sensor noise.

The relative position x,. and relative velocity V., are then defined
as the differences between the intruder and ownship states. Since the
original variables are independent Gaussians, these relative states are
also Gaussian distributed. The mean of the relative position is simply the
difference between the mean positions, while its covariance is the sum
of the individual covariances. The same holds for the relative velocity.

To align the modelling with the ADS-L reporting standard, reported
accuracy bounds are interpreted as circular Gaussian confidence re-
gions. For example, a 30 m horizontal position accuracy at the 95 %
confidence level yields standard deviations of ¢, = o, ~ 6.127 m, based
on the inverse chi-squared quantile, such that 95 % of samples fall within
a 30 m radius.

Although Gaussian noise with independent, zero-mean position and
velocity errors is assumed here to enable the analytical uncertainty prop-
agation in Section 5.1, this choice is mainly a practical modelling base-
line rather than a fundamental limitation of the framework. The ADS-L
accuracy specification provides only marginal 95 % bounds for position
and speed, which can be naturally interpreted as approximately +2¢
under a Gaussian model, and no covariance information is supplied.
This makes the independent Gaussian assumption consistent with the
available navigation performance data and with standard practice in
probabilistic robotics and air-traffic modelling. Moreover, the Gaussian
assumption allows closed-form or first-order approximations for quan-
tities such as 7¢py, ldcpall, and #;,, which support the analytical insight
developed later in the paper.

Lastly, the numerical evaluation itself does not depend on the dis-
tribution model. The Monte Carlo propagation used in Section 4 is
distribution-agnostic and can accommodate non-Gaussian or correlated
error models without modifying the CD&R algorithms. Only the analyt-
ical approximations in Section 5.1 rely on Gaussian inputs. For other
distributions, the same propagation procedure remains valid, but the
closed-form expressions would no longer apply.

4. Methodology

This study investigates how navigation uncertainties affect the per-
formance of state-based conflict detection and resolution (CD&R) algo-
rithms. Two experimental phases are conducted. The first examines the
propagation of navigation uncertainty into the output variables of con-
flict detection and resolution. The second evaluates the macroscopic
safety implications through repeated simulations across multiple con-
flict geometries and uncertainty types.

All scenarios are designed as pairwise encounters between one own-
ship and one intruder. This configuration facilitates controlled variation
of initial conditions and isolates the influence of navigation uncertain-
ties. Prior research has indicated that most conflicts remain pairwise,
even in high-density airspace [12]. Moreover, the pairwise setting serves
as a clear benchmark for analysing how navigation uncertainty propa-
gates through state-based CD&R algorithms. This scenario provides a
direct mapping from relative-state uncertainty to detection and reso-
lution outcomes. Multi-conflict scenarios introduce convoluted interac-
tions that obscure these mechanisms, and are therefore identified as fu-
ture work.

The conflict geometry is defined by three parameters: the intruder’s
heading relative to the ownship, the horizontal miss distance at closest
point of approach (dcp, ), and the ground speed. The ownship maintains
a fixed heading of 0° and a fixed speed of 20 kts, while the intruder’s
heading is varied to alter the encounter geometry. The intruder speed is
fixed at 15 kts, serving as a representative value for conflict scenarios.
Both aircraft fly at constant altitude. For the CD&R logic, the protected
zone radius is set to Rp; = 50 m, and the look-ahead time is fixed at
fookahead = 15 8, consistent with operational assumptions in recent liter-
atures [5,9,12].
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Uncertainties are modelled in two navigation input variables: po-
sition and velocity. These are treated as independent Gaussian random
variables, with parameters derived from the ADS-L accuracy classes [4],
as discussed in Section 3.2. The horizontal position uncertainty is de-
fined by a 2¢ bound of 30 m, corresponding to a standard deviation of
approximately 6.127 m per axis, while the velocity uncertainty is de-
fined by a 26 bound of 1 m/s, corresponding to a standard deviation of
approximately 0.204 m/s per axis [49]. These values represent conser-
vative estimates of GNSS-based navigation performance under nominal
rural environments. In dense urban environments, where multipath in-
terference and partial GNSS blockage are common, the uncertainty is
expected to increase, resulting in wider confidence bounds [50]. The
proposed framework can accommodate such variations, regardless of
the environment settings, by adjusting the uncertainty parameters to
reflect environment-specific navigation performance.

4.1. Conflict detection

In the uncertainty propagation experiment, each source of naviga-
tion uncertainty (either in position or velocity) is introduced indepen-
dently while all other variables remain deterministic. For each run, the
encounter geometry is configured such that the deterministic time to in-
trusion #;;, equals the look-ahead threshold #,,,\ eaq- BY fixing this refer-
ence point, the simulation evaluates how uncertainty in the input prop-
agates through the conflict detection and resolution pipeline. The initial
separation ||dcp, || and relative heading angle Ay are varied systemati-
cally to sample a range of conflict scenarios.

For every scenario, 10* Monte Carlo samples are drawn based on
the assumed Gaussian distribution of the uncertain input variable. Each
sample is propagated through the conflict detection equations, produc-
ing distributions over four output variables: time to closest point of
approach 7qp,, distance at closest point of approach |[[dcp,|l, time to
intrusion #;;, and detection probability. While the first three variables
are deterministic in nominal conditions, the introduction of randomness
causes them to become stochastic. The detection outcome, originally a
binary decision, is expressed in probabilistic terms due to the uncer-
tainty of the input.

The detection probability is estimated empirically from the Monte
Cea
detection probability is computed as the average number of samples

satisfying the conflict condition, as shown in Eq. (20).

Carlo samples. Letting (||d Il tgl) ) denote the outputs of sample i, the

1] (1%, < Rez )

A (IE;) < tlonkahead)] (20)

The analysis of single-sample detection probability provides only an
instantaneous view of system performance. In operational settings, how-
ever, conflict detection is not limited to a single observation but occurs
repeatedly as new surveillance updates arrive. A missed detection at one
instant does not necessarily imply a total failure, since the following op-
portunities may still identify the conflict before intrusion. Conversely,
persistent non-detection arises only when every detection attempt dur-
ing the observation window fails. The final component of the conflict
detection analysis therefore extends to this time-sequenced setting, mod-
elling detection as a series of Bernoulli trials with evolving probability
of detection.

- 1
Pietect ® Petect = ﬁ

i=

4.2. Conlflict resolution

Following the identification of a potential conflict, a resolution ma-
noeuvre must be generated to restore separation within the look-ahead
time. This section considers two resolution algorithms: the Modified
Voltage Potential (MVP) and the Velocity Obstacle (VO) method, both
introduced in Section 2. These algorithms receive the relative state as
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input and output a resolution velocity vector V., based on the formu-
lations provided in Egs. (5) and (8), respectively.

To evaluate the effect of navigation uncertainty on conflict resolu-
tion, the same Monte Carlo samples generated for the detection phase
are propagated through each resolution algorithm. In each case, uncer-
tainty is applied to either position or velocity while holding the other
input constant. Under position uncertainty, the ownship and intruder
positions are perturbed using the Gaussian models introduced in Sec-
tion 3.2, while their velocities remain fixed. This affects both #-p, and
dcp,- Conversely, when velocity uncertainty is considered, only the ve-
locity vectors are sampled while positions remain deterministic. These
uncertainties will create randomness and alter the resolution vector pro-
duced by MVP and VO.

For each sample, the resolution velocity VY, is computed and stored.
To assess whether the sample leads to successful conflict avoidance, the
resolution vector is evaluated in the Velocity Obstacle (VO) frame. If
V¥ & V0, the resolution is considered successful.

In addition to that, the effectiveness of the manoeuvre is further
assessed by computing the post-resolution distance at closest point of
approach (|ldf,,, |1). Each aircraft is propagated forward by one second
using the assigned resolution velocity. Let At = 1 s be the time step. The
updated positions are computed as:

X =x,+ V. Ar,

xT=x,+ Vi Ar

From these positions, the updated relative state is calculated as:

X =X =X, Vi = Vo - Ve

The post-resolution distance at closest point of approach (||da) D) is then
evaluated using x:fel and V:fe] to the Eq. (3).

This value measures the minimum predicted separation after the res-
olution manoeuvre is executed. Together with the VO classification, it
provides a quantitative view of conflict resolution effectiveness under
uncertainty.

4.3. BlueSky simulation

In the conflict simulation phase, a batch of encounter scenarios is
generated over a discretized grid of initial conditions. Each scenario
defines a pairwise horizontal conflict geometry using parameters such
as relative bearing (Ay), intruder speed, and a fixed initial projected
[[dcpall. The simulation environment is implemented using the BlueSky
open-source air traffic simulator [51], which has been extended to
support stochastic models of navigation uncertainty and to facilitate
sample-based evaluation of conflict detection and resolution (CD&R)
outcomes.

Each configuration is defined by a unique combination of uncertainty
sources and resolution algorithm. This configuration is then repeated
simulations are executed to account for statistical variability. Noise is
injected into position and/or velocity based on user-specified uncer-
tainty modes, and is propagated through the full CD&R pipeline. The
conflict detection step evaluates pairwise interactions between an own-
ship and intruder over a look-ahead horizon. If a conflict is predicted, a
resolution command is issued by either the MVP or VO algorithm, de-
pending on the selected strategy. The initial condition of each encounter
is designed such that the time to conflict entry satisfies #;, = 1.5 ;oo xancad>
allowing the conflict to be detected sufficiently in advance under nav-
igation uncertainty. Navigation data is updated at a rate of 1 Hz, and
a communication uncertainty model is applied such that the navigation
state is successfully received with 80 % probability at each update cy-
cle. Each simulation configuration is repeated 50.000 times to achieve
statistical significance.

Throughout each simulation run, the relative distance between the
aircraft is tracked over time to evaluate the distance at closest point of
approach (CPA). This distance is used to determine whether a loss of
separation (LOS) has occurred. Two metrics are computed at the end of
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each batch: the Intrusion Prevention Rate (IPR) defined in Eq. (21) and
the distribution of ||dcpy ||

IPR = Meonflict ~ MLOS (21)
Aeonflict

In Eq. (21), neonsiicc denotes the total number of conflict instances and
nyos is the number of encounters in which the horizontal separation falls
below the protected zone radius. The IPR metric is bounded between 0.0
and 1.0 and serves as a summary indicator of resolution effectiveness,
higher values signify a greater fraction of conflicts resolved without loss
of separation.

Another key metric is the distribution of ||d¢p, ||, which indicates how
close the aircraft come during an encounter. This metric helps evaluate
how effectively the resolution algorithms increase the initial separation,
originally set to Om, to a safe distance exceeding the protected zone
radius of 50 m across different conflict geometries.

5. Results and discussion

This section presents the results of the experiments conducted to as-
sess the effects of navigation uncertainty on conflict detection and res-
olution (CD&R) algorithms. The analysis is structured into three sub-
sections. First, the propagation of position and velocity uncertainties
through the conflict detection process is examined, highlighting how
these input variabilities affect the key detection metrics. Second, the
performance of two conflict resolution strategies, Modified Voltage Po-
tential (MVP) and Velocity Obstacle (VO), is evaluated under uncer-
tainty, with a focus on the distribution of the resolution velocities and
their ability to increase the ||dcp, || to a safe value. Finally, large-scale
simulations using the BlueSky platform provide an assessment of overall
system safety, quantified by the intrusion prevention rate (IPR).

5.1. Conflict detection

Under deterministic conditions, conflict detection produces a binary
outcome. Either a conflict is detected or it is not. However, under uncer-
tainty, this true or false outcome becomes probabilistic. The presence of
noise in input variables such as position and velocity introduces vari-
ability into the conflict detection process, resulting in a detection prob-
ability that reflects the likelihood of a certain conflict condition being
detected as true. To understand how this randomness propagates into
the final detection outcome, it is necessary to analyse the key interme-
diate variables: the time to closest point of approach (7cp, ), the distance
at closest point of approach vector (dcp,), and the time to intrusion en-
try (z;,). Deriving the distributions of these variables, where possible,
offers insight into the probabilistic behaviour of the conflict detection
process. Section 5.1.1 presents analytical solutions and approximations
for these variables under position uncertainty, followed by the velocity
uncertainty case in Section 5.1.2. Then, this paper presents the conflict
detection probability in Section 5.1.3.

5.1.1. Position uncertainty

To distinguish the effects of different sources of uncertainty, the sub-
script p is used to denote variables influenced by position uncertainty.
When subjected to position uncertainty, the calculation of #cp, ,, the
time to closest point of approach, becomes a linear function of the ran-
dom position vectors of both the ownship and the intruder. As a result,
the mean and variance of rcp, , can be derived analytically, and the
variable follows a Gaussian distribution:

) (22)

with the mean and variance given by

2
tCPA,p N(”t(TPA.p’ G’CPA‘p

— Vrel * Hrel (23)
IVeell?

H ICPAp
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2D Distribution of dcpa under Position Uncertainty
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Under position uncertainty, the distribution of the closest point of
approach vector, dcpy, is confined to a one-dimensional subspace that
is orthogonal to the relative velocity. This follows from the fact that dcps
can be expressed as a linear projection of the relative position vector x,
onto the subspace orthogonal to V,,,, as formally proven in Appendix A.
Specifically, dcpy = P X, Where P is the projection matrix that removes
the component along V. As a result, d-p, follows a Gaussian distribu-
tion with non-zero variance only in the orthogonal direction and zero
variance in the direction aligned with V.. The distribution lies along a
single axis defined by the unit vector v, orthogonal to the relative veloc-
ity. The transformed scalar variable z = vIdCPA thus follows a univariate
Gaussian distribution:

2~ N(VIP e, v PZ PTV)) (25)

From this, the magnitude of the closest point of approach vector,
lldcpa p I, corresponds to the absolute value of the normally distributed
scalar z. Therefore, it follows a folded normal distribution:

lldcpapll ~ [N G p, Uip) (26)

where 4, , and ai are the mean and variance of the univariate nor-
mal distribution defined in Eq. (25).

This formulation is consistent with the illustration in Fig. 3. In the
figure, the origin represents the point along the V,, - cps line where the
magnitude of dcp, is zero. Each sample of dcp, lies along the line orthog-
onal to the relative velocity. The magnitude ||dcpa |l corresponds to the
Euclidean distance from the origin to each sample along this line. Since
the scalar projection z is normally distributed, the magnitude ||dcp, |l
is simply the absolute value of z, which results in a folded normal dis-
tribution as expressed in Eq. (26).

The approximation of the time to intrusion entry, #;,, is modelled
as a non-linear function of the relative position x.. Given that x  ~
N (Hpe1, Zpep) and the relative velocity V,,, is deterministic, the exact dis-
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Fig. 4. Probability density comparison between numerical simulation and an-
alytical approximation for tcp,, Ildcpsll, and #;, when |[dcp, || = 15 metres. The
approximation closely matches the simulation.

tribution of #;,, cannot be expressed analytically. A first-order approxi-
mation can be obtained using the delta method. The non-linear transfor-
mation is denoted by A(x,), and the approximated mean and variance
are given by:

) %l @7)
o'xzi"vp ~ Vh'(”rel)TZrel Vh(”rel) (28)

The function A(-) is defined in Appendix B as a function of both the
time and distance to closest point of approach. The gradient Vhi(u,)
describes how small changes in the relative position affect the estimated
time to intrusion. The approximation holds only when the condition
ldcpa(iee)ll> < R? is satisfied, ensuring the square root term remains
real.

Figs. 4 and 5 compare the numerical simulation results with the ana-
lytical solutions or approximations for the distributions of 7¢py, [[dcpall,
and 1. In both cases, the analytical results closely match the numerical
distributions. However, a significant deviation occurs in the distribution
of #;, when the dp, is 45 m near the boundary of the Rp,, as shown in
Fig. 5. This discrepancy arises because a portion of the samples yield
values of ||dcps ||> greater than R}Z,Z, rendering 7;, undefined for those
parts.

The behaviour of #;, also becomes highly sensitive near the boundary.
According to the intrusion-time equation introduced earlier, in Eq. (4),
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Fig. 5. Same comparison when ||d.p, || = 45 metres, near the R, boundary. De-
viation occurs in #;, due to samples in ||dcp, || exceeding R2,, where 1, becomes
undefined.

the term involving R2, — [|[dcpy [|> becomes very small as [|dcp, |l ap-
proaches the protected-zone radius. As a result, small variations in the
relative position cause large changes in 7;,. In this case, the Delta method
analytical approximation loses accuracy, and the distribution must be
obtained from numerical simulation for reliable results.

5.1.2. Velocity uncertainty

When velocity uncertainty is present, the calculations of the time to
closest point of approach rcp, , and the magnitude of the closest point
of approach vector ||/dcp, || become functions of the relative velocity
vector V.., which is modelled as a Gaussian random variable. Since
both expressions are non-linear in V., their exact distributions cannot
be analytically defined. To approximate their mean and variance, we
apply the delta method as in the #;, calculation for position uncertainty.

Under velocity uncertainty, the time to closest point of approach,
tcpaps 1S @ non-linear function of the relative velocity vector V. ~
N(u,,Z,). Using the delta method, the distribution of rcp, , can be ap-
proximated as:

) (29)

2
Icpaw N(/‘fcpA,u’ O repan

RV 2y, VI (Vier) (30)

where f(V,) is the non-linear function defined in Appendix C, along
with its gradient V f.

~ 2
”TCPA,u ~ f(Vrel)’ G;CPA'“
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The distribution of the distance at closest point of approach vector,
dcpya, is strongly influenced by the uncertainty in the relative velocity
V... Since t-p, varies with each realisation of V,,;, so does the projected
point X — fcpa - Vie, Which defines dp, . Geometrically, this projection
traces out an arc, centred at the midpoint of x,,, with radius equal to half
its magnitude. This result is formalized in Appendix D, which shows that
the set of all orthogonal projections of a fixed point onto lines through
another point forms a circle.

The radius of this circular distribution increases with higher relative
speed. This is because the conflict is assumed to occur at a fixed look-
ahead time, #;;; = ;,oxancaq» Meaning that larger velocities imply a greater
extrapolated distance from the current position, and thus a larger spread
in the projected points. The proof in Appendix D also shows that with
the same relative velocity, when the ownship and intruder get closer in
space, the radius of the distribution will be reduced.

Fig. 6 illustrates the two-dimensional distribution of the dcp, un-
der velocity uncertainty for two different conflict geometries. The blue
arc corresponds to a case with an initial offset of 20 m and a relative
heading difference of 180°, resulting in a high relative speed. The green
arc represents a configuration with a larger initial offset of 45 m but a
smaller heading difference of 10°, leading to a lower relative speed. In
both cases, the conflict is defined to occur at a fixed look-ahead time.
The higher relative velocity results in a larger relative distance, which
increases the radius of the arc traced by the dcp, samples. In contrast,
the lower-speed case yields a more tightly curved arc due to the shorter
extrapolation distance.

Unlike the position uncertainty case, where the distribution of dcpy
lies along a straight line orthogonal to the relative velocity vector, veloc-
ity uncertainty induces a curved projection geometry. As shown in Ap-
pendix D, the set of projection points from a fixed position onto varying
velocity directions traces out a circular arc, centred at half the relative
position with a magnitude of half the relative position.

Each realisation of d-p, under velocity uncertainty can be naturally
expressed in polar form as shown in Eq. (31). This decomposition al-
lows the expression of the angular component ¢ as a closed-form dis-
tribution. Appendix E proves that ¢ follows a projected normal distri-
bution. This result arises from the fact that ¢ is a deterministic rotation
of the relative velocity angle 6, which is itself projected normal. Since
the projected normal family is closed under rotational transformation,
¢ inherits this distribution. While the form of the distribution is known,
its exact parametres depend on the encounter geometry and are analyt-
ically complex to derive.

dops = 224 152 [‘;ﬁf(ﬂ 31)

On the other hand, the magnitude ||d:p4 ||, which is computed from
the origin to each projected point, cannot be expressed in a closed-form
distribution. This is due to the non-linear dependence of the trigono-
metric components shown in Eq. (31). However, an approximate distri-
bution for the magnitude can still be obtained using a first-order expan-
sion. As outlined in Appendix C, we apply the delta method to linearize
[[dcpall around the mean. The resulting distribution is approximately
folded normal, reflecting the non-negativity of the distance.

“dCPA,v” ~ N(”dCPA.v’ O.zctpA,v) 32
Hacppy ® WXeel = Hicpy , * Vol 3
6§CPA,V ~ Vg(VV)TZVreI Ve(vy) 34

Here, the function g(V,y) = ||X;¢; — f(Vie1) - Vierll maps the velocity
input to the CPA distance, and its gradient is evaluated using the chain
rule. The full derivation is provided in Appendix C.

The accuracy of the folded normal approximation for ||dcpy |l un-
der velocity uncertainty relies on the assumption that the non-linear



M.F. Rahman et al.

2D Distributions of dcpa under Velocity Uncertainty

04 ® dy=180°, dCPA=20m Samples
% dy=180°, dCPA=20m Deterministic
® dy=10°, dCPA=45m Samples
* dy=10°, dCPA=45m Deterministic
—104
—204
E
; =30 A
g
s
—404
—50 4
—~60
-40 -30 =20 =10 0 10 20
dcpa,x [M]

Fig. 6. Two-dimensional distribution of d.p, under velocity uncertainty, show-
ing arc-shaped uncertainty structures for different conflict geometries.

mapping from V, to dcp, is approximately linear in the region where
most probability mass is concentrated. This assumption becomes more
valid when the relative speed ||V, is large, which stabilizes the ge-
ometry and flattens the arc traced by d-p, over variations in velocity
directions.

As shown in Fig. 6, high relative velocity leads to an arc-shaped dis-
tribution that closely resembles a straight line segment. In such cases,
the Euclidean norm of d-p, becomes nearly a linear function of veloc-
ity deviations, making the delta method a reliable approximation. Con-
versely, when the relative speed is low, the arc becomes more curved,
and the projection geometry becomes increasingly non-linear in Carte-
sian coordinates.

In the case of high velocity uncertainty, another source of approx-
imation error arises. The spread in sampled velocity directions can in-
clude realisations that are nearly orthogonal to the mean relative ve-
locity. These lead to d-p, Vectors that are rotated away from the true
direction, including extreme cases where the projections form a near-
complete circle. Even if the magnitude of these velocity vectors remains
close to the mean, the directional deviation introduces asymmetry in the
distribution of ||dcp, , II, violating the conditions under which the folded
normal approximation is valid.

Therefore, the approximation degrades when both the relative ve-
locity is low and the uncertainty is high, due to increased curvature and
bias in the distribution of the projected dcp, vectors. These effects high-
light the non-linear nature of the transformation and the limitations of
linearization-based methods in such conditions.

To complete the analysis under velocity uncertainty, the intrusion
entry time #;, is also approximated using the delta method. As defined
in Eq. (B.2), t;, depends non-linearly on both -p, and ||d¢p, ||, which are
themselves functions of the random vector V. The composite function
is defined as:

VR? —g(Vi)?
”Vrel ”
where f and g represent the CPA time and distance functions, respec-
tively. The mean and variance of t;,, are then approximated by evaluating
h and its gradient at the mean velocity:

h(Vie) = f (Vo) — (35)
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approximation closely matches the simulation.

iy~ h(V,) 36)

o, & Vh(v,) Ey Vh(v,) (37)

The full derivation of VA(v,), which combines the gradients of f, g,
and ||V, |, is provided in Appendix C.

Figs. 7 and 8 compare the numerical simulation results with the ana-
lytical approximations for the distributions of 7cp,, ||[dcpa I, and 7, under
velocity uncertainty. In the high relative velocity case (Fig. 7), the ap-
proximation closely follows the simulated distributions across all three
metrics. This is valid since the arc-shaped d¢p, distribution is approx-
imately linear. In contrast, Fig. 8 shows a low relative velocity case,
where the curvature and directional spread of dp, increase. Moreover,
the presence of samples with ||d¢pa [|I> > Rlz,z, for which r,, is undefined,
further amplifies the difference between the analytical approximation
and the simulation. These results highlight the limitations of linear ap-
proximations in low relative speed, high velocity uncertainty situations,
where non-linear effects become more prevalent.

To close this section, it should be noted that an analytical approxi-
mation for the combined position and velocity uncertainty case is not
provided due to the significant increase in complexity. As shown in the
preceding results, the linearisation as an analytical approximation al-
ready becomes inaccurate under velocity uncertainty when the relative
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Fig. 8. Same comparison under lower relative velocity: ||dep,|l =45 m and
Ay = 10°. Deviation appears in all metrics due to increased curvature and direc-
tional bias in the dp, distribution, reducing the validity of the linear approxi-
mation.

speed is low or when the uncertainty magnitude is high, since the map-
ping to dcpy becomes strongly non-linear and the spread of samples
increases. In both position and velocity uncertainty, larger spreads also
raise the likelihood that sampled ||d¢p, ||*> exceed Rlz,z, rendering 7;, un-
defined. Extending the analytical approach to the combined case would
therefore further amplify these limitations, leading to unreliable esti-
mates and defeating the purpose of the approximation. Therefore, it is
important to emphasise that while the analytical approximation is use-
ful, its validity must be carefully assessed when applying it, and numer-
ical simulation should be used whenever necessary to verify or replace
the analytical results.

5.1.3. Detection probability

After deriving analytical solutions and approximations for fcp,,
[[dcpall, and 7;,, the next variable of interest is the detection probability.
Recall that the conflict detection algorithm provides a binary output:
True (conflict) or False (no conflict). In the presence of uncertainty, this
binary outcome becomes probabilistic. The resulting detection proba-
bility reflects the likelihood of a conflict being detected under uncertain
input conditions.

To evaluate this probability, an experiment was conducted across
various initial values of ||dcpsll and Ay, under the condition f,, =
fookahead» Which places the conflict geometry exactly at the detection
threshold. The detection probability is then approximated using Eq. (20)

11

Reliability Engineering and System Safety 269 (2026) 112111

54 4
521
501

48

-

Detection Probability [%]

40

Position U'ncertainty Velocity Uhcertainty

Fig. 9. Detection probability under position and velocity uncertainty.

Fig. 9 presents the distribution of detection probabilities under posi-
tion and velocity uncertainty, when t;; = #,55}anead> @SSUMIng a position
standard deviation of 30 metres and a velocity standard deviation of
1 m/s. Under position uncertainty, the mean detection probability is
46.55 %, with a maximum of 47.58 % at Ay = 140°, ||dcpsll = 0 m, and a
minimum of 45.58 % at Ay = 70°, ||dcpa || = 15 m. In comparison, under
velocity uncertainty, the mean detection probability is slightly higher
at 48.25 %, with a maximum of 49.61 % at Ay = 150°, ||[dcpall =25 m,
and a minimum of 46.82% at Ay = 90°, ||[dcpa |l = 15 m. For both types
of uncertainty, no specific trend was observed in detection probability
with respect to relative heading or initial offset. Note that these results
are specific to the chosen uncertainty magnitudes and may vary with
different configurations.

While the detection probability is under 50 % for t;, = f|ooxancad> it
is equally interesting to observe the detection probability variation in
time. Tracing back to the previous variables, the dcp, distribution un-
der position uncertainty remains unchanged because it is restricted to
the orthogonal projection of the relative velocity vector that remains
unchanged. This implies that the variance of t,, distribution remains the
same and only the mean is shifted in time. Depending on the uncer-
tainty level, it is likely that some conflicts are detected earlier in time
(when estimated 7;, > f|ooxancad) due€ to the spread of the distribution.
Then, as the ownship and intruder get closer, the remaining time to in-
trusion decreases while the look-ahead threshold remains fixed, causing
the detection probability to rise accordingly. Visually, this means that
in Figs. 4, 5, 7, and 8, the distribution of time to intrusion shifts to the
left into the "green" conflict detected area.

Mathematically, the detection probability can be decomposed us-
ing the chain rule in Eq. (38). This formulation shows that detection
probability is governed by the joint probability of spatial and temporal
conditions. Under position uncertainty, the spatial term is analytically
tractable due to the Gaussian assumption on position error, whereas
the temporal term remains intractable because of its nonlinearity and
dependence on ||dcp, || and the relative geometry. Notably, the approxi-
mation of 7, becomes unreliable when ||dcp, || approaches the protected
zone radius Rpy, as shown in Figs. 4 and 5.

Pdetect = Ip(”dCPA” < RPZ)
' P(tin < Tjookahead | lldcpall < RPZ)

Fig. 10 illustrates how the detection probability varies as #;, changes
relative to the look-ahead threshold #,,, heaq (i-€- as time progresses).
The different curves illustrate different initial values of [|dcpa |, given
that there is no conflict resolution applied. A key observation is that
both the slope and the maximum achievable detection probability are

(38)
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Fig. 10. Variation of the time to first intrusion (z,,) relative to the look-ahead
threshold (#,ooxaneaq) Under different initial values of [|d¢p, ||. This analysis applies
specifically to position uncertainty, where the variance of ||d¢p, ||, and conse-
quently #,, remains constant due to its invariance with respect to aircraft sepa-
ration distance.

defined by the nominal closest point of approach, due to the fixed ra-
dius of the protected zone. This means that grazing conflict can remain
undetected, while for more severe conflicts, only the initial time of de-
tection is affected by the uncertainty. Even though the nominal value
of ||dcp, || may fall below Rp,, random perturbations can push sampled
values beyond this boundary. As a result, the maximum detection prob-
ability is given by Eq. (39). Due to the temporal conditional probability
in Eq. (38), the likelihood of conflict detection becomes 100 % since the
t;, falls well below 7, aheaq @S the intrusion becomes imminent.

PdelecL,max = IPJ(”dCPA” < RPZ) (39)

An additional inference can be drawn when Pyee max = 1.0. In this
case, the detection probability curve effectively corresponds to the cu-
mulative distribution function (CDF) of the time to first intrusion ran-
dom variable 7,,. As a result, the slope of the detection probability curve
reflects the spread of the underlying probability density function (PDF)
of #,,, which is governed by the level of position uncertainty. Higher un-
certainty leads to a wider distribution of #;,, producing a shallower slope,
whereas lower uncertainty results in a sharper transition around the
look-ahead time threshold. This relationship highlights that not only the
maximum detection probability, but also the rate at which it increases
with decreasing #,, is sensitive to the level of navigational uncertainty.

Under velocity uncertainty, the distribution of d.p, varies with the
separation between aircraft. As shown in 6, the radius of the dcp, in-
creases with distance and contracts as the aircraft move closer. Con-
sequently, the variance of #;, decreases with reduced separation, lead-
ing to a sharper rise in detection probability as #;, decreases. Similar to
the position uncertainty case, early detections are still possible when
tin > Nookahead» AN detection probability continues to rise as the aircraft
converge.

To conclude, the detection probability depends on the conflict situa-
tion. When the spatial and temporal parametres are decoupled, a more
severe dcps leads to a higher detection probability than a grazing con-
flict. Then, as time progresses and the time to intrusion decreases, the
detection probability increases. The detection classification is further
discussed in the next subsection.

12

Reliability Engineering and System Safety 269 (2026) 112111

5.1.4. Operational implications

The previous subsection analysed instantaneous detection probabil-
ity under different encounter geometries. In practice, multiple obser-
vations occur between the first possible detection and the onset of in-
trusion. A persistently undetected conflict arises only if every detection
opportunity is missed throughout this interval.

When surveillance messages are exchanged at discrete times, each
opportunity to detect a conflict constitutes an independent Bernoulli
trial with a time varying success probability p,, obtained from Eq. (38).
The probability of observing no detection prior to intrusion is the prod-
uct of the complementary probabilities, as shown in Eq. (40). In the
equation, 7 = {t(,7,,...,1,} enumerates the sampling times from the
first possible detection ¢, up to the intrusion entry time f;,.

Pr(no detect) = H(l -p) (40)

teT

Fig. 10 shows that for small nominal ||dcp, || and Pyeeeq max = 1, the
term p, becomes 100 % and the Pr(no detect) is effectively 0. For grazing
encounters (i.e., those with large nominal projected ||dcpa 1), Pyetectmax <
1 constrains the ceiling of p,, and the resulting Pr(no detect) can be non-
negligible.

As an example, consider a case with nominal projected ||dcpyll =
45 m (with 50 metres separation standard) and horizontal position ac-
curacy 30 m. With a look-ahead time of 5 s, the probability of no detec-
tion prior to intrusion is 0.319 %. Increasing the look-ahead horizon to
6 s and 7 s reduces the no-detection probability to 0.089 % and 0.025 %,
respectively. Extending the horizon introduces additional observations
with positive p,, which multiplies additional factors (1 — p;) in (40) and
thereby lowers the overall non-detection probability.

Introducing conflict resolution modifies the evolution of p,. Once a
detection occurs, a manoeuvre is initiated. If the modified geometry still
results in a conflict, successive potentially positive detections occur un-
der updated p, values that reflect the new conflict state. The probability
of having an intrusion after a first manoeuvre therefore differs from
the one before the manoeuvre, and depends on the effectiveness of the
conflict resolution algorithm in resolving the conflict. This is further
discussed in the next subsection.

5.2. Conflict resolution

Conflict resolution is analysed in the velocity-space domain, where
the set of admissible commands can be represented by the inverse of
the velocity obstacle set (VO ). This section examines how navigation
uncertainty propagates from the input state to the resolution velocity
generated by the Modified Voltage Potential (MVP) and Velocity Ob-
stacle (VO) algorithms. The analysis begins with position uncertainty,
followed by velocity uncertainty.

5.2.1. Position uncertainty

Fig. 11 presents Monte Carlo samples of the resolution velocity un-
der position uncertainty for a conflict geometry with Ay =40° and
lldcpall =0 m. The MVP-provided resolution samples are distributed
along a straight line, whereas the VO-provided resolutions form an arc.
This behaviour is a direct consequence of the formulation in Eq. (5),
where the resolution velocity is constructed from a scalar term and the
vector dcpy. The scalar term reflects the variability introduced by the
uncertainty in 7cp, and ||dcpyll, while the vector component retains a
Gaussian distribution. As a result, the MVP resolution velocity samples
maintain a linear structure that is independent of the relative velocity.

In contrast, the VO resolution velocities follow a circular arc. It can
be mathematically shown, this arc is centred around the midpoint be-
tween the ownship and intruder velocities, with a radius equal to half
the magnitude of the relative velocity (the derivation is shown in Ap-
pendix D). Consequently, the shape and size of the VO distribution are
dependent on the conflict geometry. This effect is shown in Fig. 12,
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Fig. 11. Resolution velocity samples under position uncertainty for Ay = 40°,
ldcpall = 0 m.

where a smaller heading angle Ay = 10° leads to a lower relative ve-
locity and a smaller arc radius, while the MVP distribution retains its
linear form. In the limiting case, where speeds are equal and heading
differences are small, the arc becomes smaller. A fundamental difference
between the two methods is that, under position uncertainty, the MVP
resolution distribution is unbounded along the d.p, direction, whereas
the VO distribution remains bounded on a circular arc in velocity space.
This implies that, for rare outlier realisations of the uncertain state, MVP
can request relatively large instantaneous velocity changes along this
line. These large corrections are driven by measurement outliers rather
than by the nominal resolution geometry itself.

Another aspect of the resolution velocity distribution is the division
of samples across the two legs of the VO. Fig. 13 compares cases with
[[dcpall =0 m and 15 m, both at Ay = 40°. When the mean of the ran-
dom vector dcp, is zero, the distribution is symmetric, and the samples
are equally divided between both VO legs. As the mean increases, the
probability mass shifts, concentrating the samples on one side. This bias
can be quantified using the transformed variable in Eq. (25), which de-
pends on the conflict geometry and the relative position covariance X.
Mathematically, the probability that a sample lies on the dominant V©
leg corresponds to the probability that the scalar random variable z,
defined in Eq. (25), is positive. This is expressed in Eq. (41).

Paominant = P(z > 0) (41)

This has practical implications. When ||d¢p, || = 0 m, the distribution
is symmetric and Pyyminant ~ 0.5, indicating that the resolution veloc-
ity is equally likely to fall on either leg of the V. Under uncertainty,
if ||dcpa |l remains close to zero after the first resolution attempt, this
may cause reversals in resolution direction. Once a resolution step shifts
the mean of ||dcp, || away from zero, the probability mass concentrates
on a single dominant VO leg (i.e., Pyypinan: > 0.5), and subsequent it-
erations reinforce this choice, creating a self-reinforcing dynamic that
reduces reversals. Conversely, staying near zero sustains oscillatory be-
haviour. Therefore, increasing ||dcp, || is essential not only to ensure con-
flict avoidance, but also to improve confidence in the selected resolution
trajectory.
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To quantify how effectively each algorithm enlarges the ||dcp4 ||, the
post-resolution miss distance ”dép Al is evaluated one second after the
manoeuvre has been applied. Fig. 14 shows the resulting distributions
for a heading difference of 2° and two initial offsets, ||dcpy || = 0 m and
45 m, with both aircraft travelling at 20 kt. When ||dcpall =0 m, the
VO algorithm yields projected ||dép || that remain below 5 m with high
probability, whereas the MVP algorithm produces a better result. In this
shallow-angle case, 99.0 % of the VO samples fall below 50 m, compared
with 48.4 % for MVP. For an initial offset of 45 m, the VO distribution

is entirely confined below 50 m, while the corresponding proportion for
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Fig. 18. Distribution of post-resolution projected ||dEPA|| for A, =2° and initial ||dcp, || of 0 and 45m for velocity uncertainty.
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Fig. 19. Distribution of post-resolution [|df,, || for A, = 30° and initial [|dcp, |l of O and 45m for velocity uncertainty.

MVP is 47.4 %. Although MVP does not always clear the protected zone in
a single step, the subsequent detection-and-resolution cycles can correct
any residual conflict.

A higher heading difference (Ay = 30°) is depicted in Fig. 15. Under
this geometry all post-resolution distances exceed 50 m for both algo-
rithms, irrespective of the initial offset, indicating successful conflict
avoidance in every realisation.

The contrast between the 2° and 30° cases stems from the relative
speed: shallow angles generate low relative velocities. Although the
deterministic solutions of MVP and VO both lie outside the velocity-
obstacle set, their optimisation criteria differ. MVP explicitly seeks to
maximise ||dcp, || with minimal velocity change, whereas VO minimizes
the change in velocity subject only to leaving the obstacle set. This dis-
tinction makes the MVP algorithm intrinsically more robust under posi-
tion uncertainty, especially in low-speed encounters where the VO arc
gets tighter and the admissible region narrows.

The following section applies the same analysis framework to veloc-
ity uncertainty, comparing the resulting resolution commands and the
corresponding changes in projected ||dcpa|l-

5.2.2. Velocity uncertainty

Fig. 16 depicts Monte Carlo samples of the resolution velocity un-
der velocity uncertainty for Ay =40° and ||dcp, || = 0 m. Because the
random perturbation acts directly on the velocity vector, the resulting
distribution is no longer confined to a closed-form formulation. Even
so, the samples remain symmetrically split between the two VO legs, a
consequence of the zero mean in dgp,.
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A reduced heading difference (Ay = 10°) is shown in Fig. 17. In both
algorithms the sample point moves toward the VO intersection point,
which corresponds to the intruder velocity in the velocity space. This
shift becomes most pronounced when the relative speed approaches
zero, i.e., equal speed combined with a shallow heading angle differ-
ence.

To illustrate this edge case, Figs. 18 and 19 compare ||dgP Al distri-
butions for heading differences of 2° and 30°. For Ay = 2° and an initial
[[dcpall = 0 m, the VO algorithm leaves ||déPA|| <50 m in 74.1 % of the
samples; with an initial offset of 45 m this fraction rises to 96.9 %, and
some samples even decrease the distance at closest point of approach, in-
dicating a sub-optimal command. Under the same conditions, MVP lim-
its the proportion of unresolved cases to 9.5 % and 22.9 %, respectively.
At Ay = 30° all samples for both algorithms exceed the protected-zone
radius after one second, confirming successful avoidance.

These observations emphasise the earlier conclusion that, under un-
certainty, a conflict-resolution rule is most robust when it explicitly max-
imises ||dcpy ||. The MVP formulation satisfies this criterion, whereas the
VO algorithm seeks the smallest change required to exit the obstacle set.

5.2.3. Conflict resolution dynamics

The evolution of the ||d¢cp, || Over successive resolution cycles is gov-
erned both by conflict geometry and uncertainty level. Suppose that the
initial offset satisfies ||[dops |l = 0 m and Ay = 2°, the first-iteration out-
comes are illustrated in the left panel of Fig. 14. Because the detection
probability is below 50 % at t;, = i oxaneaq» the likelihood of resolving
the conflict in a single step is correspondingly limited, especially for the
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Fig. 20. Intrusion prevention rate under position uncertainty for various in-
truder speeds.
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Fig. 21. Intrusion prevention rate under position, velocity and combined un-
certainty at 20 kts.

VO algorithm under low relative speed. The MVP algorithm attains a
markedly higher success probability in the same condition. Under high
relative speed the conflict is typically removed after the first manoeuvre,
although the event remains probabilistic due to input uncertainty.

For shallow-angle encounters the resolution process exhibits a multi-
step character. Starting from ||dcpy || = 0 m, the distribution of the next
miss distance is given by Fig. 14 for two specific conditions. Each range
of ||[dcpa |l produced in that figure carries its own conditional probabil-
ity of triggering a successful resolution at the following iteration. A key
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observation from the figure is that MVP directly shifts the ||dcp, || away
from 0 m. Thus, in the next iteration, the probability of the aircraft per-
forming a counter-productive manoeuvre (such as turning to the op-
posite direction or the less dominant leg) is much smaller. This is not
the case for VO, after the first resolution high probability of the |[dcp |l
still lies close to zero. The sequence continues until ||dcp, || exceeds the
protected-zone radius or until a defined amount of time is reached.

A comprehensive assessment of this iterative behaviour is obtained
through large-scale Monte Carlo simulation in BlueSky. The resulting
safety metrics are presented in the next subsection, providing a macro-
scopic view of conflict-resolution performance under the combined in-
fluence of conflict geometry and uncertainty and also the final ||dcpy |-

5.3. Safety metric

Fig. 20 compares the intrusion prevention rate (IPR) of the VO and
MVP algorithms under position uncertainty for three intruder speeds.
At 5 kts and 15 kts the two methods exhibit similarly low IPR values
across all heading differences. When the intruder speed equals the own-
ship speed (20 kts), the results diverge: MVP maintains a high IPR for
every Ay, whereas VO shows a notable decrease of performance. The
degradation arises at shallow angles, where the relative speed is small
and the VO algorithm fails to enlarge ||dcp, || under position uncertainty
(see Section 5.2).

Fig. 21 extends the comparison to three uncertainty models namely;
position, velocity and combined (position + velocity), at 20 kts. Across
the full heading range, MVP retains a high IPR, with only a modest
reduction below Ay = 10°. The VO algorithm performs significantly
worse, particularly at shallow angles, and reaches its lowest IPR under
combined uncertainty. The contrast reflects the algorithmic objectives:
MVP maximises ||dcpy ||, whereas VO minimizes the velocity change sub-
ject to exiting the VO set, a strategy that is less effective when uncer-
tainty perturbs the resolution velocity.

A previous study introduced a scaled-speed variant of the VO algo-
rithm that permitted velocity changes up to 15 % larger than the nominal
command. Despite this additional control authority, the IPR decreased,
indicating that magnifying ||AV|| for the resolution velocity does not
compensate for VO’s structural limitations [36]. The decisive element is
the optimisation criterion: MVP selects the resolution velocity that max-
imises ||dcpa|l; VO merely chooses the smallest deviation that exits the
set VO.

Figs. 22 and 23 illustrate the distribution of the distance at clos-
est point of approach ||dcp, || after executing a resolution manoeuvre
under position and velocity uncertainty, respectively. Both figures con-
sider a shallow encounter geometry with a heading difference of 2° and
an initial ||dcpa |l = 0 m. These conditions represent a challenging case
for conflict resolution, where the relative motion is at its minimum.

In Fig. 22, under position uncertainty, the MVP algorithm produces
a cluster of post-resolution distances above the protected zone threshold
of 50 m, indicated by the red dashed line. More than 98 % of the samples
fall above 50 m, suggesting that MVP reliably generates separation even
under uncertainty. While some of the MVP samples fall below 50 m, this
can be solved by increasing the look-ahead time allowing more time for
the algorithm to resolve the conflict. In contrast, the Velocity Obsta-
cle (VO) algorithm has close to 96 % of the samples fall below the 50 m
threshold. As in MVP, this can be solved by adding more lookahead time
but since the fraction that falls below the threshold is large, it will take
significantly more time to resolve the conflict. This reflects VO’s vulnera-
bility, that is applying minimal velocity changes while avoiding conflict
does not always result in a safe separation under position uncertainty.

Fig. 23 shows a similar pattern under velocity uncertainty. MVP con-
tinues to demonstrate strong performance, with a tightly grouped dis-
tribution above the protected zone radius. VO again produces close to
70 % of the samples falling below the threshold. This reinforces the ear-
lier observation that VO’s resolution velocity is not the most reliable
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Fig. 24. Comparison of ||d¢p, || distribution for MVP and VO at different conflict angles under position uncertainty.

under uncertainty in navigation systems, both for position and velocity
uncertainty.

Fig. 24 extends the analysis by comparing the distribution of ||dcpy |l
across a range of heading angle differences, from 2° to 30°. Note that
some outlier points show ||dcp, || close to 0 m, indicating possibility of
mid-air collision. Each violin plot summarizes the distribution of ||dcp, ||
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under position uncertainty for both the MVP and VO algorithms. As the
conflict angle increases, the relative velocity between the aircraft also
increases, and both algorithms tend to generate greater separation with
more similar distributions. This occurs because the feasible resolution
velocity produced by the VO algorithm, constrained to a circular arc,
aligns more closely with the direction that maximises ||dcp, |l Since the
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VO algorithm produces resolution velocities along an arc centred at half
the relative velocity vector, with a radius equal to half its magnitude,
this arc increasingly aligns with the MVP resolution as the relative ve-
locity increases.

Another remark from Fig. 24 is the final miss-distance ||dcpy || lies
well above the protected-zone radius Rp, at high heading-angle differ-
ence. These results indicate a consistent extra distance relative to Rp .
Consequently, part of this margin can be exchanged for smaller devi-
ations from the nominal trajectory by modestly relaxing the targeted
post-resolution separation (i.e., via tuning Rp,) while still ensuring a
preferred intrusion prevention rate.

It is also important to note that, although the MVP resolution distri-
bution is mathematically unbounded along the d.p, direction under un-
certainty (as shown in Section 5.2), this does not lead to a persistent loss
of efficiency in practice. In the implementations, the commanded veloc-
ity change is always constrained by vehicle performance limits, such as
maximum turn rate and acceleration, so any excessively large command
is naturally saturated. Since the conflict resolution is recomputed at ev-
ery update cycle, subsequent iterations readjust the manoeuvre based on
the updated state estimate, thus removing unnecessary excessive correc-
tions. As a result, the unbounded mathematical structure of MVP does
not translate into excessive deviations at the macroscopic safety-metric
level.

In addition, navigation uncertainty can also trigger additional sepa-
ration manoeuvres. For example, when the conflict is already resolved,
a false positive in conflict detection may lead to an unnecessary avoid-
ance manoeuvre and temporarily increased separation. This effect is not
specific to MVP and can occur for any state-based conflict resolution al-
gorithm.

These findings support the following conjecture: the most robust con-
flict resolution strategy under navigation uncertainty is the one that ex-
plicitly maximises ||dcp, |, especially in geometries with small relative
velocity. By doing so, the MVP algorithm consistently maintains safe
separation distances and reduces the likelihood of counterproductive
resolution manoeuvres. In contrast, VO’s minimal velocity change strat-
egy often proves ineffective under these conditions. These results align
with macroscopic trends observed in the intrusion prevention rate (IPR)
from the BlueSky simulation campaign.

6. Conclusion and future work

This study assessed the impact of position and velocity uncertainty
on the performance of state-based conflict detection and resolution
(CD&R) algorithms in U-Space. Using Monte Carlo simulation and an-
alytical approximations, the propagation of uncertainty was quantified
for key variables in both conflict detection and resolution phases. High-
level safety implications were then evaluated using BlueSky simulations.

Monte-Carlo propagation shows that once Gaussian noise is in-
jected into position or velocity, the deterministic variables of state-
based detection, time to closest point of approach (7cp,), distance at
CPA (||[dcpal) and time to intrusion (#;,), become full probability dis-
tributions whose shape depends on conflict geometry and the source of
noise. For position uncertainty these distributions remain (folded) Gaus-
sian, but under velocity uncertainty the non-linearity of the projection
degrades first-order approximations, especially in low-relative-speed en-
counters where curved (||dcps||) samples appear. Crucially, the binary
conflict/no-conflict output turns probabilistic: when ¢, coincides with
the look-ahead threshold, the probability of declaring a conflict falls be-
low 50 % and rises only as t;, moves further inside the threshold. This
sensitivity highlights the need to tune look-ahead time as a function of
the navigation noise.

Uncertainty distorts not only the perceived conflict geometry but
also the feasible resolution velocities. Under position uncertainty, the
resolution velocity from the Modified Voltage Potential (MVP) algo-
rithm align along a straight line defined by d.p,, while the Velocity
Obstacle (VO) algorithm produces samples distributed along a conflict-
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geometry-dependent arc. Independently, under velocity uncertainty, the
resolution velocity does not show a closed-form solution. Nonetheless,
as the relative velocity decreases, the resolution velocity distribution for
VO collapses towards the intruder’s velocity, reducing the geometrical
space of the resolution. A shallow angle conflict 2°, 20 kt scenario illus-
trates the effect: after one second, VO fails to maintain separation in
74 % of trials, while MVP reduces this to just 9.5 %. By explicitly max-
imising ||dcpa I, MVP maintains safe separation even under navigational
uncertainties, whereas VO’s minimal-change strategy becomes ineffec-
tive when relative motion is limited.

Large-scale Monte-Carlo campaigns in the BlueSky simulator trans-
late those geometric differences into macroscopic safety metrics. Un-
der position uncertainty, MVP keeps the intrusion prevention rate (IPR)
close to 1.0 across all heading differences, even when the intruder
matches the ownship speed. In contrast, VO safety performance signif-
icantly reduced for shallow angle. The same issue exists under velocity
and combined uncertainty at 20 kts, MVP’s safety performance remains
high with a slight dip at the shallowest angle while VO reaches its lowest
IPR under combined uncertainty.

In principle, MVP steers the resolution manoeuvre outward from the
predicted closest point of approach. VO, in contrast, seeks the smallest
possible change in velocity and therefore performs reliably only when
the encounter geometry and the relative speed are desirable. Across an-
alytical derivation, simulation, and full-mission trials, a single principle
emerges: robust separation requires an algorithm that maximises pro-
jected distance at closest point of approach, not one that merely escapes
the intrusion.

Future work should address several directions to strengthen CD&R
under navigation uncertainty. Spatial and temporal parameters such as
look-ahead time and protected-zone radius should be adaptively tuned
based on aircraft speed, navigation uncertainty, communication reliabil-
ity. Broader uncertainty sources such as environmental effects, intruder
intent, and sensor degradation should also be incorporated. Extending
the analysis to multi-conflict scenarios and three-dimensional space are
essential, as these problem potentially increase the complexity and am-
plify the effects of navigation uncertainty on both detection and res-
olution outcomes. Finally, future research should quantify uncertainty
across a wider set of CD&R algorithms and rigorously test the conjec-
ture that the optimal strategy is the one that maximises the distance at
closest point of approach (||d¢cp, |-
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Appendix A. Proof: Coordinate transformation of dcp, and its
distribution under position uncertainty

Let the relative position be a random vector:

Xrel ™~ N(l‘rel’zrel) € Rz (Al)
and the relative velocity be a fixed vector
V., € R2. (A.2)
The time to closest point of approach (CPA) is defined as:
VT x
1 rel
fopa = —— (A.3)
”Vrel ”2
Then, the vector to CPA is:
depa =X — Icpa Viel (A4
Define the orthogonal projection matrix:
P:=1 relVrTel so that d, Px (A.5)
=4 H CPA = 1 .
”Vrel ”2 e
Since P is a linear transformation and x,, is Gaussian, it follows that:
depa ~ N(P ptyer. P2 PT) (A.6)
A.1. Coordinate transformation
Define the unit vector in the direction of motion:
Vrel
v = (A7)
Vol

and the unit vector orthogonal to it (counterclockwise rotation by 90
degrees):

v, = ['”"-Y] (A.8)
Yll.x
These vectors form an orthonormal basis:
vT
T := V+ € R?>*? (A.9)
Il
Now define the transformed vector:
1= Tdeps (10)
A.2. Mean of transformed vector
Using the linearity of expectation:
E[z] = T Eldcpal = T P pyy (A.11)
Breaking this into components:
VP pe
Elzl=| +, ™ (A.12)
|:VI|FP Heel

Since dcpy = P X, lies in the space orthogonal to V., and v || V¢,
it follows that:

VI Pl =0 (A.13)
Thus, the mean of the transformed variable is:
T
Elz] = [Vﬂ; ”rel] (A.14)
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A.3. Covariance of transformed vector

The covariance of the transformed variable is given by:

Coviz] =T PZ, PTTT (A.15)
Expanding this using the orthonormal basis:
VIPE 4 PTv, VIPZ Py
cota = [\t 10
Since PV, =0, and v || V., it follows that:
PT v;=0 = All terms involving v, vanish (A.17)
Thus:
Covlz] = [”3 O] (A.18)
0 0
where:
02 =V PE P v, (A.19)

A.4. Conclusion
The transformed vector z = T d¢p, lies entirely along the x-axis in the
transformed frame. Its non-zero component is a univariate Gaussian:

z~ N(VIP Heels VIPZ PT vy) (A.20)

rel

Appendix B. Approximation of t;, under position uncertainty

Assume the relative position is normally distributed,
Xrel ~ N(ﬂrel’zre]), (Bl)

and the relative velocity V,, is deterministic. The time to intrusion entry
is modeled as a nonlinear function of x,:

T
h(Xpe) = Vit _ 1 R%,Z - (VIP xrcl)z. (B.2)
IVeall> 1Veall
Here,
_7_ VrelV;rel
”Vre1”2

is the projection matrix onto the subspace orthogonal to the relative
velocity, and

v, = 1 [_Vrel,y]
=
”Vrel ” Vre],x
is the corresponding orthogonal unit vector.

Using the delta method, the mean and variance of #;, are approxi-
mated as:

(B.3)

He, h(peer), O',Zm ~ Vh(l‘re])-rzrel Vh(pye)- (B.4)
The gradient of & at u, is:
8(Hrer)
Vh(#rel) = Vf(#re]) + el Vg(”rel)’ (BS)
”Vrel” V RIZ)Z - g(”rel)2
with the component functions:
VT Xrel V,
fe) = 5, V(e = =, (B.6)
rel ”Vrel ”2 el ”Vrel ”2
8(Xee) = V] P Xy, Vg(e)) = V) P. (B.7)

This approximation is valid only when

ldepa ()l < R%Z,

ensuring the square root in (B.2) remains real.
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Appendix C. Derivation of delta method approximations for
velocity uncertainty

C.1. Time to closest point of approach (CPA)

Let the relative position be the deterministic vector x,, and the rel-
ative velocity be uncertain:
Vit ~ N (Veel, 2y, ) 1)
The time to CPA is defined by the nonlinear function:
VT x
_ rel rel
f(Vrel) = W (CZ)

rel ' rel

Using the delta method, the approximate mean and variance of 7:-py
are:

Hiepn % S Veat) C3)
o RV Ve Ey VY Ve, €4
The gradient is:
2v! x
Xrel rel” rel
Vi) = —— - —=—v. (C.5)
e ”Vrel”2 ”Vrel”4 e
C.2. Distance at CPA
Define the nonlinear function:
&Vie) = ” Xpe = S (Viel) Vrel”' (C.6)
Let
depa = Xpel — epa Vrel- (C.7)

Then, the approximate mean and variance of the folded normal vari-
able ||dcpa || are:

Hacpp ~ 8(Vrel): chpA ~ Vg(vrc])TZVm] Ve(VreD)- (C.8)
To compute the gradient, define the shorthand:
d= Xrel — f(Vrel) Vrel- (Cg)
Then the chain rule gives:
d
Vatia) = 1ar (=VS D Vo = Fie) 1), (C.10)
C.3. Intrusion entry time t;,
Define:
v/ R, —&(Va)?
h(Vie) = (Vi) — W (C.11)
re.
Then:
My, & h(Vee), af R VA(Ve) T2y Vh(Vyg). (C.12)
The gradient is:
/R2 2
\Y R, — 8(Vie))
Vh() = V f(vig) + 8Vre) VEWVie) P”z p L
“Vrel” \/ R}Z’Z - g(vrel)2 Vrel
(C.13)

This approximation requires ||dcp, || < Rpy to ensure the square root
remains real.

Appendix D. Locus of projections of a point onto lines through
another point

Let A and B be two distinct points in the plane. We show that the
set of all points obtained by projecting A perpendicularly onto lines that
pass through B forms a circle. This circle is centered at the midpoint of
segment AB and has radius equal to half the distance between A and B.
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D.1. Coordinate system setup

Without loss of generality, place:

B =(0,0), A =(2d,0), where d > 0 (D.1)
Then the midpoint of AB is

M =(d,0) (D.2)
and the distance between A and B is

|AB| =2d (D.3)

so the radius of the claimed circle is

r=d (D.4)

D.2. Lines passing through B

e Non-vertical lines: A line through B with slope m has the form y =
mx, which can also be written as:

mx—y=0 (D.5)
e Vertical line: The vertical line through B has equation
x=0 (D.6)

We handle this special case separately in Section D.5.
D.3. Projection of A onto a non-vertical line

To find the perpendicular projection of a point (x,, y,) onto a line
given in standard form ax + by + ¢ = 0, the formula is:

(b(bxo —ayy) —ac a(—=bxy + ay,) — bc >
a? + b? a? + b?
For our line mx — y = 0, we have a = m, b = —1, ¢ = 0. Applying the
formula to point A = (2d,0), we get:

po_ (24 2dm
" m2+1" m2+1

which is the projection point of A onto the line y = mx.

(D.7)

(D.8)

D.4. Distance from the projection point to the midpoint

We now compute the distance from the projection point P, to the
midpoint M = (d,0):

2 2
2d 2dm
P M|? = —d) +
1, M <m2+l ) <m2+1>
_d’(1-m?)? +4d°m?
B (m? + 1) (D.9)
_dimt+2m? 4 1)
T m241)2
=d?
So
1P, M| =d (D.10)

independent of m. This confirms that every projection point lies on the
circle centered at M = (d,0) with radius d.

D.5. Vertical line case

For the vertical line x = 0, the perpendicular projection of A = (2d,0)
is simply the point

B=(0,0) (D.11)
Its distance to the midpoint M = (d,0) is also:
IBM| = d (D.12)

so B also lies on the same circle.
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D.6. Conclusion

We have shown that as we vary the line through B, the perpendicular
projection of A always lies at a constant distance d from the midpoint
of segment AB. Thus, the complete set of these projection points forms
a circle centered at M with radius

d= %llABll (D.13)

Appendix E. Proof that the angle ¢ of dcp, follows a projected
normal distribution

Let the relative position be the fixed vector x,,; € R? and let the rel-
ative velocity be the random vector

v
Vrel ~ N(Vrel’ Zle)v Vrel = [Ux] . (E.1)

y
Define 6 = atan2(v,, vy) SO that (by definition) 6 is distributed as a pro-
jected normal [52]. We prove that the angle
¢ = atan2(dcpy > dopa x) (E.2)
associated with the closest-point-of-approach vector dqp, is also pro-
jected normal.
E.1. Rotate the coordinate frame

Without loss of generality, rotate the coordinate frame so that

Xrel = (2d,0), 2d = ”Xrel” > 0. (E.3)

A deterministic rotation preserves the family of projected normal distri-
butions.

E.2. Express V. in polar form

We represent the relative velocity as

cos 6

sin @ (E4)

Vre1=u[ ] v>0,

where v and 6 are the magnitude and direction of the Gaussian-
distributed velocity vector.

E.3. Compute the CPA vector

Using the standard CPA time formula,

VX _ 2dcosf

fopa = =4 — = (E.5)
IVl v
we compute:
depa = Xpel — epa Vel (E.6)
1 —cos?0
=2 E.
[— cos 6 sin 9] (E.7)
)
sin” 6
= . E.
[— cos 6 sin 9] (E.8)

As shown elsewhere, dcp, under velocity uncertainty traces a circular
arc of radius d centered at (d,0).

21

Reliability Engineering and System Safety 269 (2026) 112111

E.4. Direction of dcpy

The CPA vector is proportional to

[ sin @ ] ’ (£.9)
—cos@
L. . . cos @

which is a counterclockwise rotation of Lin 0] by 90°:

cos(0 — ’5”) _ [ sing (E.10)

sin(@ — ’2—’) “ [=cos8| ’
Therefore, the direction angle of dcp, is
¢=0-% (mod2n). (E.11)

E.5. Distribution of ¢

From (E.11), the angle ¢ is simply a constant shift of 6:
p=0-1%.

Since 0 is projected normal and the projected normal family is closed
under deterministic rotations, ¢ is also projected normal.

If x, is not aligned with the x-axis, an additional constant rotation
by arg(x,) is applied. The projected normal family is again invariant to
such a transformation.

Thus, ¢ follows a projected normal distribution. Its parameters de-
pend on the geometry and the Gaussian distribution that induces 6, and
a closed-form expression is nontrivial.

Appendix F. Figures

(Figs. F.1, F.2, F.3, F.4)

MVP Samples
® VO Samples
True MVP
25 A % True VO 1
=== dcpa direction
20 =

Along-track resolution speed [kts]

15 4

-4 4
Cross-track resolution speed [kts]

Fig. F.1. Resolution velocity distribution under position uncertainty (o, =
o, =6.127), A, =2°, |[dgpsll = 0 m.
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