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 a b s t r a c t

This study investigates how navigation uncertainty affects conflict detection and resolution (CD&R) for uncrewed 
aircraft in U-space. Position and velocity errors are modelled as zero-mean Gaussian noise consistent with ADS-
L accuracy, and propagated through conflict metrics using Monte Carlo and analytical approximations. Under 
uncertainty, state-based detection becomes probabilistic. The probability of detection depends on both the level 
of uncertainty and the encounter geometry, and falls below 50% when the nominal intrusion time equals the 
look-ahead. Operationally, detection is re-evaluated over time as the encounter develops, yielding multiple obser-
vations with varying probabilities. Two resolution algorithms are compared: Modified Voltage Potential (MVP) 
and Velocity Obstacle (VO). MVP proves more robust under uncertainty because it explicitly maximises dis-
tance at the closest point of approach (CPA). By maximising CPA distance, MVP maintains an outward push and 
avoids reversal behaviour during the manoeuvre, whereas VO performance degrades at low relative speeds and 
shallow angles. BlueSky simulations confirm these effects: MVP achieves higher intrusion-prevention rates and 
larger post-resolution miss distances across conflict scenarios, with its advantage most pronounced at low rela-
tive velocity. The findings highlight the importance of maximising CPA distance as a conflict resolution strategy. 
Moreover, the look-ahead horizon and protected zone can be tuned to achieve a desired target level of safety.

1.  Introduction

The number of Uncrewed Aerial Systems (UASs) operating in Euro-
pean airspace is expected to increase markedly in the coming decade. Es-
timates indicate that several hundred thousand drones may be active by 
2030 [1]. The safe integration of this traffic alongside existing aviation 
requires dedicated operational concepts, such as the U-space framework 
[2]. Within U-space, the tactical separation layer is intended to address 
conflicts not resolved during pre-flight strategic planning, by using real-
time state information to detect and resolve conflicts between aircraft 
on short time horizons [3].

This tactical conflict resolution typically relies on observations of 
the current aircraft state information such as position and velocity to be 
shared among the airspace users. These tactical attributes are provided 
by communication, navigation, and surveillance (CNS) systems. One 
of the means to communicate this state information to other airspace 
users is the Automatic Dependent Surveillance-Light (ADS-L) system, 
proposed for U-space operations [4]. These state data are subject to 
uncertainty where position and velocity estimates contain errors that 
could degrade the performance of tactical conflict detection and reso-
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lution [5]. While the same problems exist in crewed aircraft [6,7], the 
scales of the separation minima and manoeuvring speeds are different. 
Crewed aircraft apply minimum separation standard of about 5 nautical 
miles, whereas UAS operations typically require only 50 to 200 metres 
[8–12]. The much smaller separation distances make navigation uncer-
tainty proportionally more significant for UAS.

In the presence of navigation errors, conflict detection and resolu-
tion become probabilistic. Analysis of these stochastic effects enables a 
systematic characterisation of how errors in state information propagate 
through detection and resolution logic, and how this propagation influ-
ences sensitivity to thresholds such as look-ahead time and protected-
zone radius. Such models would allow a derivation of requirements on 
aspects like look-ahead time and separation minima from a target level 
of safety (TLS).

This study focuses on state-based conflict detection and resolution 
because their geometric structure allows analytical propagation of nav-
igation uncertainty into both the detection metrics and the resulting 
manoeuvres. From the detection perspective, this contrasts with proba-
bilistic methods that model uncertainty directly. Examples include Gaus-
sian integration over collision zones [13], stochastic prediction with
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\begin {equation}\label {eq:mvp_dv} \dV = \frac { \left ( \frac {\RPZ }{\varepsilon } - \norm {\dCPA } \right ) } { \tCPA \cdot \norm {\dCPA } } \cdot \dCPA \end {equation}
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\begin {equation}\label {eq:vo_optimal} \Vres = \arg \min _{\mathbf {V} \in \partial \mathcal {VO}} \left \| \mathbf {V} - \Vo \right \|\end {equation}
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\begin {equation}\xrel \sim \Normal (\murel , \Sigmarel ) \in \mathbb {R}^2 \label {Xeqn21-A.1}\end {equation}


\begin {equation}\Vrel \in \mathbb {R}^2. \label {Xeqn22-A.2}\end {equation}


\begin {equation}\tCPA = \frac {\inner {\Vrel }{\xrel }}{\norm {\Vrel }^2} \label {Xeqn23-A.3}\end {equation}


\begin {equation}\dCPA := \xrel - \tCPA \, \Vrel \label {Xeqn24-A.4}\end {equation}


\begin {equation}P := I - \frac {\Vrel \Vrel ^\top }{\norm {\Vrel }^2}, \quad \text {so that} \quad \dCPA = P\, \xrel \label {Xeqn25-A.5}\end {equation}


$P$


$\xrel $


\begin {equation}\dCPA \sim \Normal (P\, \murel ,\, P\, \Sigmarel \, P^\top ) \label {Xeqn26-A.6}\end {equation}


\begin {equation}\vect {v}_{\parallel } := \frac {\Vrel }{\norm {\Vrel }} \label {Xeqn27-A.7}\end {equation}


\begin {equation}\vperp := \begin {bmatrix} - v_{\parallel , y} \\ \hphantom {-} v_{\parallel , x} \end {bmatrix} \label {Xeqn28-A.8}\end {equation}


\begin {equation}T := \begin {bmatrix} \vperp ^\top \\ \vect {v}_{\parallel }^\top \end {bmatrix} \in \mathbb {R}^{2 \times 2} \label {Xeqn29-A.9}\end {equation}


\begin {equation}\vect {z} := T\, \dCPA \label {Xeqn30-A.10}\end {equation}


\begin {equation}\mathbb {E}[\vect {z}] = T\, \mathbb {E}[\dCPA ] = T\, P\, \murel \label {Xeqn31-A.11}\end {equation}


\begin {equation}\mathbb {E}[\vect {z}] = \begin {bmatrix} \vperp ^\top P\, \murel \\ \vect {v}_{\parallel }^\top P\, \murel \end {bmatrix} \label {Xeqn32-A.12}\end {equation}
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\begin {equation}\vect {v}_{\parallel }^\top P\, \murel = 0 \label {Xeqn33-A.13}\end {equation}


\begin {equation}\mathbb {E}[\vect {z}] = \begin {bmatrix} \vperp ^\top P\, \murel \\ 0 \end {bmatrix} \label {Xeqn34-A.14}\end {equation}


\begin {equation}\operatorname {Cov}[\vect {z}] = T\, P\, \Sigmarel \, P^\top \, T^\top \label {Xeqn35-A.15}\end {equation}


\begin {equation}\operatorname {Cov}[\vect {z}] = \begin {bmatrix} \vperp ^\top P\, \Sigmarel \, P^\top \vperp & \vperp ^\top P\, \Sigmarel \, P^\top \vect {v}_{\parallel } \\ \vect {v}_{\parallel }^\top P\, \Sigmarel \, P^\top \vperp & \vect {v}_{\parallel }^\top P\, \Sigmarel \, P^\top \vect {v}_{\parallel } \end {bmatrix} \label {Xeqn36-A.16}\end {equation}
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\begin {equation}P^\top \, \vect {v}_{\parallel } = 0 \quad \Rightarrow \quad \text {All terms involving } \vect {v}_{\parallel } \text { vanish} \label {Xeqn37-A.17}\end {equation}


\begin {equation}\operatorname {Cov}[\vect {z}] = \begin {bmatrix} \sigma _z^2 & 0 \\ 0 & 0 \end {bmatrix} \label {Xeqn38-A.18}\end {equation}


\begin {equation}\sigma _z^2 := \vperp ^\top P\, \Sigmarel \, P^\top \, \vperp \label {Xeqn39-A.19}\end {equation}
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\begin {equation}z \sim \Normal \left (\vperp ^\top P\, \murel ,\; \vperp ^\top P\, \Sigmarel \, P^\top \, \vperp \right ) \label {Xeqn40-A.20}\end {equation}
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\begin {equation}\xrel \sim \Normal (\murel , \Sigmarel ), \label {Xeqn41-B.1}\end {equation}
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\begin {equation*}P := I - \frac {\Vrel \Vrel ^\top }{\norm {\Vrel }^2}\end {equation*}


\begin {equation}\vperp = \frac {1}{\norm {\Vrel }} \begin {bmatrix} - V_{\mathrm {rel},y} \\ \ \, V_{\mathrm {rel},x} \end {bmatrix} \label {Xeqn43-B.3}\end {equation}


$\tin $


\begin {equation}\mu _{\tin } \approx h(\murel ), \qquad \sigma ^2_{\tin } \approx \nabla h(\murel )^\top \Sigmarel \, \nabla h(\murel ). \label {Xeqn44-B.4}\end {equation}
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\begin {equation}\nabla h(\murel ) = \nabla f(\murel ) + \frac { g(\murel ) }{ \norm {\Vrel }\, \sqrt {\,\RPZ ^2 - g(\murel )^2\,} } \; \nabla g(\murel ), \label {Xeqn45-B.5}\end {equation}


\begin {align}f(\xrel ) &= \frac {\inner {\Vrel }{\xrel }}{\norm {\Vrel }^2}, & \nabla f(\murel ) &= \frac {\Vrel }{\norm {\Vrel }^2}, \\[6pt] g(\xrel ) &= \vperp ^\top P\, \xrel , & \nabla g(\murel ) &= \vperp ^\top P .\end {align}


\begin {equation*}\norm {\dCPA (\murel )}^2 < \RPZ ^2,\end {equation*}
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\begin {equation}\Vrel \sim \Normal (\nurel , \SigmaVrel ). \label {Xeqn46-C.1}\end {equation}


\begin {equation}f(\Vrel ) = \frac {\inner {\Vrel }{\xrel }}{\inner {\Vrel }{\Vrel }}. \label {Xeqn47-C.2}\end {equation}
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\begin {equation}\mu _{\tCPA } \approx f(\nurel ) \label {Xeqn48-C.3}\end {equation}


\begin {equation}\sigma ^2_{\tCPA } \approx \nabla f(\nurel )^\top \SigmaVrel \, \nabla f(\nurel ). \label {Xeqn49-C.4}\end {equation}


\begin {equation}\nabla f(\nurel ) = \frac {\xrel }{\norm {\nurel }^2} - \frac {2\, \inner {\nurel }{\xrel }}{\norm {\nurel }^4} \nurel . \label {Xeqn50-C.5}\end {equation}


\begin {equation}g(\Vrel ) = \left \|\, \xrel - f(\Vrel )\, \Vrel \right \|. \label {Xeqn51-C.6}\end {equation}


\begin {equation}\dCPA = \xrel - \tCPA \, \Vrel . \label {Xeqn52-C.7}\end {equation}
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\begin {equation}\mu _{d_{\mathrm {CPA}}} \approx g(\nurel ), \qquad \sigma ^2_{d_{\mathrm {CPA}}} \approx \nabla g(\nurel )^\top \SigmaVrel \, \nabla g(\nurel ). \label {Xeqn53-C.8}\end {equation}


\begin {equation}\vect {d} = \xrel - f(\Vrel )\, \Vrel . \label {Xeqn54-C.9}\end {equation}


\begin {equation}\nabla g(\nurel ) = \frac {\vect {d}}{\norm {\vect {d}}} \left ( -\, \nabla f(\nurel )\,\inner {\nurel }{} - f(\nurel )\, I \right ), \label {Xeqn55-C.10}\end {equation}
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\begin {equation}h(\Vrel ) = f(\Vrel ) - \frac { \sqrt {\RPZ ^2 - g(\Vrel )^2} }{ \norm {\Vrel } }. \label {Xeqn56-C.11}\end {equation}


\begin {equation}\mu _{\tin } \approx h(\nurel ), \qquad \sigma ^2_{\tin } \approx \nabla h(\nurel )^\top \SigmaVrel \, \nabla h(\nurel ). \label {Xeqn57-C.12}\end {equation}


\begin {equation}\nabla h(\nurel ) = \nabla f(\nurel ) + \frac { g(\nurel )\, \nabla g(\nurel ) }{ \norm {\nurel }\, \sqrt {\RPZ ^2 - g(\nurel )^2} } + \frac { \sqrt {\RPZ ^2 - g(\nurel )^2} }{ \norm {\nurel }^3 } \nurel . \label {Xeqn58-C.13}\end {equation}
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\begin {equation}B = (0, 0), \qquad A = (2d, 0), \qquad \text {where } d > 0 \label {Xeqn59-D.1}\end {equation}
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\begin {equation}P_m = \left ( \frac {2d}{m^2 + 1}, \frac {2dm}{m^2 + 1} \right ) \label {Xeqn66-D.8}\end {equation}
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\begin {equation}d = \tfrac {1}{2} \norm {AB} \label {Xeqn71-D.13}\end {equation}
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randomized estimation of conflict probability [14], geometric probabil-
ity bounds [15], and analytical formulations based on Gaussian relative-
motion models [16]. These approaches estimate conflict probability, 
whereas the present analysis focuses on the probability that a determin-
istic state-based conflict detection identifies a conflict under navigation 
uncertainty.

For conflict resolution, optimisation-based systems such as ACAS X 
[17] and ACAS sXu [18] incorporate uncertainty into large-scale prob-
abilistic models and dynamic programming. Although they reduce en-
counters to pairwise interactions [19], they do not provide insights into 
the robustness of the resulting policies under navigation uncertainty.

A complementary viewpoint is taken here by analysing how nav-
igation uncertainty influences the deterministic commands generated 
by state-based methods. Maintaining an explicit geometric structure al-
lows examination of how position and velocity errors propagate into 
both conflict detection and the resulting manoeuvre. The aim of this 
paper is to explain why state-based conflict detection and resolution re-
main effective in the presence of navigation uncertainty. This is done 
by characterising how navigation errors affect key detection variables, 
how uncertainty propagates through candidate manoeuvres, and how 
these mechanisms influence macroscopic safety metrics used to evalu-
ate resolution performance. The main contributions of this paper are as 
follows:

1. An uncertainty-quantification framework is formulated for state-
based conflict detection that propagates position and velocity errors 
to three key decision variables: the time to closest point of approach 
𝑡CPA, the projected distance at closest point of approach ‖𝐝CPA‖, and 
the time to loss of separation 𝑡in, using analytical derivations and 
Monte Carlo simulations.

2. Navigation uncertainty is forward-propagated through the conflict 
resolution process to relate uncertainty in the projected distance at 
closest point of approach ‖𝐝CPA‖ to the distribution of resolution 
velocities generated by the Modified Voltage Potential (MVP) and 
Velocity Obstacle (VO) methods.

3. The post-resolution projected distance at closest point of approach 
‖𝐝+CPA‖ is analysed to quantify how uncertainty propagates across 
successive conflict-resolution iterations and how this propagation re-
lates to the selection and stability of resolution directions.

4. The proposed framework is evaluated using large-scale Monte Carlo 
simulations conducted with the open-source BlueSky air traffic man-
agement simulator.
The remainder of the paper is organised as follows. Section 2 in-

troduces the tactical conflict detection and resolution algorithms. Sec-
tion 3 presents the uncertainty models and their propagation within 
state-based detection and resolution. Section 4 describes the evaluation 
methodology. Section 5 reports and discusses the results, and Section 6 
concludes the paper.

2.  Tactical separation management

Suppose two aircraft are in conflict and require separation. This con-
flict is defined as a predicted loss of separation within a specified look-
ahead time, rather than an actual breach of the minimum separation 
standard. When the separation minima between two aircraft are actu-
ally violated, it results in a loss of separation (LoS). To detect conflicts 
before they escalate into LoS, the future positions of the aircraft must be 
estimated. This is typically done by extrapolating their current velocity 
vectors, although more advanced methods may employ intent informa-
tion shared between the conflicting aircraft [20].

In today’s civil aviation, the air traffic controller is responsible for 
resolving such conflicts through a centralised approach. The controller 
maintains a global view of the traffic situation and issues coordinated 
manoeuvres to ensure safe separation. The main advantage of this ap-
proach is its ability to optimise decisions globally, taking into account 
the entire airspace picture, which allows for efficient conflict resolution 

and adherence to traffic flow constraints. However, centralised systems 
depend heavily on infrastructure and reliable communication, and their 
scalability becomes a significant challenge in environments with dense 
or rapidly changing traffic, such as those expected in future U-space 
operations. This challenge is intensified by the highly combinatorial na-
ture of multi aircraft conflict resolution, where the number of possible 
configurations grows quadratically with the size of the group [21].

On the other hand, in a decentralised approach [22], the decision-
making for conflict resolution is assigned to each pilot. Such a decen-
tralised approach can be applied to UAS by assigning the conflict reso-
lution task to the autonomous system. The benefit of this method is that 
it relies on multiple agents to resolve the conflict, in contrast to the cen-
tralised control, thus removing the single point of failure and improving 
robustness. However, the downside is that this approach typically has 
limited global situational awareness, and because conflicts are solved 
locally, resolutions may lead to a domino effect in more complex and 
dense traffic situations [23].

To explore the effectiveness of decentralised approaches under un-
certainty, this paper investigates the full process of conflict detection 
and resolution, which forms the core of autonomous separation in high-
density airspace. Conflict detection typically involves predicting a loss 
of separation within a specified look-ahead time based on the current 
state (position and velocity) of surrounding traffic.

Building upon this foundation, the paper focuses on two representa-
tive decentralised resolution algorithms: the Modified Voltage Potential 
(MVP) method [22] and the Velocity Obstacle (VO) method [24]. These 
were selected based on recent studies comparing state-based conflict res-
olution algorithms under high-density traffic conditions [25]. Notably, 
the MVP method has demonstrated superior macroscopic performance 
in terms of safety, efficiency, and stability. The algorithm even outper-
forms more complex or jointly optimised algorithms due to its use of 
implicit coordination and the summation of avoidance vectors in multi-
aircraft conflicts [26]. The VO approach, on the other hand, provides 
a geometric and intuitive solution framework widely used in robotics, 
and has been successfully adapted for air traffic scenarios [27,28]. To-
gether, these methods offer valuable insights into scalable, robust, and 
interpretable decentralised conflict resolution strategies for future urban 
air mobility and U-space environments.

2.1.  State-based conflict detection

State-based conflict detection uses the estimated relative trajectory, 
computed from the current relative position and extrapolated using the 
relative velocity. A spatial parameter, the radius of the protected zone 
𝑅PZ, and a temporal parameter, the look-ahead time 𝑡lookahead, define the 
condition for conflict. A conflict is said to occur if the magnitude of the 
projected distance at the closest point of approach vector, ‖𝐝CPA‖, is 
less than 𝑅PZ, and the time to intrusion entry, 𝑡in, is less than 𝑡lookahead, 
as shown in Eq. (1). This situation is illustrated in Fig. 1. The following 
paragraphs describe the computation of ‖𝐝CPA‖ and 𝑡in.

(‖𝐝CPA‖ < 𝑅PZ) ∧ (𝑡in < 𝑡lookahead) ⟹ Conflict (1)

The ownship aircraft, indexed by 𝑜, with its position taken as the 
origin of the reference frame, moves with velocity 𝐕𝑜. A potential in-
truder, indexed by 𝑖, located at position 𝐱𝑖, is flying near the ownship 
with velocity 𝐕𝑖. The relative velocity 𝐕rel is defined as the difference 
between the ownship and intruder velocities, 𝐕𝑜 − 𝐕𝑖. The time to the 
closest point of approach, 𝑡CPA, is calculated as shown in Eq. (2).

𝑡CPA =
𝐕rel ⋅ 𝐱rel
‖𝐕rel‖

2
(2)

Once 𝑡CPA is known, the vector 𝐝CPA can be calculated as shown in 
Eq. (3). With the vector distance at the closest point of approach de-
termined, its magnitude ‖𝐝CPA‖ can be calculated. Then, using vector 
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Fig. 1. State-based conflict detection by calculating the closest point of ap-
proach.

geometry or the Pythagorean relation, the time to intrusion entry 𝑡in
can be obtained as shown in Eq. (4).

𝐝CPA = 𝐱rel − 𝐕rel ⋅ 𝑡CPA (3)

𝑡in = 𝑡CPA −

√

𝑅2
PZ − ‖𝐝CPA‖2

‖𝐕rel‖
(4)

The advantages of state-based conflict detection lie in its general ap-
plicability, owing to its clear and simple definition, and its robustness to 
deviations from the planned trajectory or cleared flight path. It is flexi-
ble and suitable for operations where the future trajectory is unknown, 
such as surveillance missions.

However, its main limitation is the potential to miss conflicts re-
sulting from planned changes in the velocity vector. One approach to 
mitigate such false negatives is to apply the conflict detection logic not 
only to current states, but also to intended future velocity vectors. This 
enables conflict detection to function as a preventive tool, particularly 
when an aircraft plans to turn, change altitude, or change speed. This 
concept can be stated as a traffic rule: when not in conflict, an aircraft 
shall not change its heading, vertical speed, or velocity vector in a man-
ner that would result in a conflict within the look-ahead time.

2.2.  Conflict resolution methods

Conflict resolution methods can be understood formally by exam-
ining the space of feasible velocity changes available to the ownship. A 
widely used representation of this solution space is the concept of Veloc-
ity Obstacles (), originally introduced in the context of robotics [24] 
and later adapted for aerial conflict resolution. A  is constructed by 
first defining a collision cone (), bounded by tangents from the own-
ship to the protected zone around the intruder, which contains all rel-
ative velocity vectors that would lead to a predicted loss of separation. 
Translating this cone by the intruder’s velocity yields the  in absolute 
velocity space. The resulting region, illustrated in Fig. 2, represents all 
ownship velocities that would result in a conflict within a specified time 
horizon. To ensure safe separation, the ownship must select a resolution 
velocity vector that lies outside the  set.

Building on this basic concept, several variations of the  frame-
work have been developed to address multi-agent interactions, opera-
tional constraints, and traffic management rules. The Selective Velocity 
Obstacle (SVO) [12] incorporates right-of-way rules on top of the VO 
concept so that only non-priority aircraft manoeuvre. The Optimal Re-
ciprocal Collision Avoidance (ORCA) [29] extends the original formu-
lation to cooperative scenarios, reducing oscillatory behaviour by shar-
ing avoidance responsibility between agents. ORCA computes mutually 
feasible velocities as intersections of permitted half-planes, selecting an 
option close to the preferred trajectory while ensuring separation. For 

Fig. 2. Solution space illustration and highlighted Velocity Obstacle (VO) and 
Modified Voltage Potential (MVP) choice of velocity for conflict resolution.

constant-speed platforms, Constant Speed ORCA (CSORCA) [30] modi-
fies the geometry to respect speed constraints and avoid deadlocks. The 
Dual-Horizon ORCA (DH-ORCA) [31] extends ORCA with two time hori-
zons. A short horizon for standard ORCA constraints and a longer “cross” 
horizon for optional CSORCA-like constraints. The optional constraint 
is applied only when an aircraft’s preferred course is predicted to cross 
another’s trajectory within the cross horizon, with the decision made 
independently using only the aircraft’s own intent.

While the aforementioned methods are derived directly from the 
set, other strategies can still be interpreted within the same velocity 
space framework. The Modified Voltage Potential (MVP) can be anal-
ysed in terms of the  set, since its output corresponds to a point in 
the admissible region outside all conflict cones. In this study, MVP is 
compared against the shortest-way-out (SWO) variation, a geometric 
-based strategy that selects the minimum-change velocity required 
to exit the forbidden region. In this paper, this approach is referred to 
as the VO method. The comparison is motivated by the fact that their 
resolution velocities are often geometrically close in velocity space, as 
shown in Fig. 2. This paper aims to examines how both methods perform 
under uncertainty. The following subsections present the mathematical 
formulation of each conflict resolution strategy.

2.2.1.  Modified voltage potential algorithm
The Airborne Separation Assurance System (ASAS), developed in 

2002 by [22] is the Modified Voltage Potential (MVP) algorithm. It was 
originally inspired by the work of Eby and Kelly [32]. The MVP algo-
rithm has been evaluated in multiple contexts, including both crewed 
and uncrewed aircraft, and under varying traffic densities [9,23,25]. 
Beyond its extensive operational evaluation, MVP is also analytically 
proven to provide the minimum path-deviation solution within this fea-
sible region [33].

Fig. 2 illustrates the computation of the resolution vector in the MVP 
method. The resolution vector is derived using the relative position at 
the closest point of approach (CPA). The mathematical formulation of 
the resolution manoeuvre is given in Eq. (5). An additional parameter, 
𝜀, is introduced to ensure that the resulting resolution velocity avoids 
grazing the intruder’s protected zone.

The resolution manoeuvre in the MVP method is defined by the fol-
lowing expression:

𝐝𝐕 =

(

𝑅PZ
𝜀 − ‖𝐝CPA‖

)

𝑡CPA ⋅ ‖𝐝CPA‖
⋅ 𝐝CPA (5)

where 𝜀 is a geometric buffer parameter that ensures the resolution 
vector avoids tangency with the protected zone, given by:
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𝜀 = cos
(

arcsin
(

𝑅PZ
‖𝐱rel‖

)

− arcsin
(

‖𝐝CPA‖
‖𝐱rel‖

))

(6)

The final resolution velocity is obtained by adding the avoidance 
vector 𝐝𝐕 to the nominal ownship velocity 𝐕own, yielding:

𝐕res = 𝐕𝑜 + 𝐝𝐕 (7)

This formulation ensures that the ownship adjusts its velocity in a 
direction aligned with the projected distance at the closest point of 
approach, 𝐝CPA, scaled appropriately to ensure separation prior to 𝑡in. 
When both the ownship and the projected closest point lie outside the 
protected zone, the correction factor 𝜀 refines the resolution manoeuvre 
to prevent grazing the protected boundary. Otherwise, a direct linear 
scaling is applied.

2.2.2.  Velocity obstacle algorithm
The Velocity Obstacle (VO) algorithm resolves conflicts by selecting 

an avoidance velocity outside the forbidden region , as defined in the 
previous subsection. In the optimal-change formulation, referred to in 
this paper as the VO method, the resolution velocity 𝐕res is chosen as the 
point on the boundary of , denoted 𝜕, that minimizes the deviation 
from the nominal ownship velocity 𝐕𝑜. This approach, also known as 
the shortest-way-out strategy, ensures that the manoeuvre preserves the 
original trajectory as closely as possible while maintaining separation 
from the intruder, as illustrated in Fig. 2.

𝐕res = arg min
𝐕∈𝜕

‖

‖

𝐕 − 𝐕𝑜‖‖ (8)

3.  Uncertainty in UAS navigation system

Uncertainty is inherent in any physical system model. It is typ-
ically classified into two categories: aleatory and epistemic [34,35]. 
Aleatory uncertainty arises from the inherent randomness of the system, 
while epistemic uncertainty results from incomplete knowledge, often 
introduced through assumptions or simplifications in the mathematical 
model.

Within the CNS system, different sources of uncertainty emerge. In 
the communication domain, uncertainty manifests as message drops or 
latency. Although epistemic uncertainty may arise due to model sim-
plification, these phenomena are predominantly aleatory, as they nat-
urally occur in communication channels. In navigation systems, mea-
surement errors in position and velocity are also considered aleatory, as 
they stem from intrinsic sensor variability and environmental interac-
tions. For surveillance systems, particularly in the context of ADS-L as an 
integrated CNS component, uncertainty can be attributed to both com-
munication and navigation aspects due to the dependent-surveillance 
nature. Therefore, this study focuses primarily on quantifying uncer-
tainty arising from aleatory sources.

Although communication reliability can influence safety metrics, its 
effect on CD&R performance is limited to how often new resolution at-
tempts can be initiated. Prior study shows that more frequent message 
reception improves safety performance [36]. In contrast, navigation un-
certainty directly affects both the conflict detection outcome and the 
computed resolution vector, and therefore plays a more critical role 
in shaping the CD&R response under the constant-state assumptions 
adopted in this study. Consequently, the present work examines the de-
tail on how navigation uncertainty impacts CD&R performance.

In the field of Uncertainty Quantification (UQ), propagation analysis 
is central to understanding how uncertainties in input variables affect 
output behaviour. In linear systems, the distribution of outputs typically 
reflects that of the inputs. However, in non-linear systems, the mapping 
may distort the output distribution by shifting the mean, inducing skew-
ness, or amplifying the tails.

For conflict resolution, input variables such as position and velocity 
are subject to measurement error, which propagates through the conflict 
detection and resolution (CD&R) algorithms described in Section 2. This 
problem setup corresponds to a forward uncertainty propagation, where 
stochastic inputs are propagated through the conflict detection and res-
olution logic to evaluate their impact on safety performance. Since the 
CD&R algorithms form a non-linear mapping from these inputs to out-
puts such as miss distance or resolution success, the resulting output 
distributions cannot be computed analytically and must instead be ap-
proximated numerically. Monte Carlo simulation is therefore required 
to accurately capture the complex interactions between the input uncer-
tainties and the resolution outcomes.

Some recent approaches incorporate navigation uncertainty directly 
into the conflict detection metric by modelling the relative position as a 
Gaussian random variable. Closed-form expressions have been proposed 
to compute the probability that an aircraft enters a predefined protected 
volume-such as a cuboid, ellipsoid, or cylinder-under trivariate Gaussian 
assumptions [13]. This framework has also been extended to compute 
minimum separation distances that satisfy a specified Equivalent Level 
of Safety (ELoS), enabling risk-based separation design for pre-tactical 
airspace planning [37].

While these probabilistic methods embed uncertainty into the detec-
tion logic itself, state-based conflict detection and resolution maintains 
the deterministic assumption and introduces navigation uncertainty at 
the evaluation stage through position and velocity perturbations. This 
approach uses a simple circular protected zone in two dimensions and 
extendable to spherical or cylindrical shapes in three dimensions [38]. It 
avoids assumptions about more complex protected-zone geometries or 
fixed error models. The effect of the navigational error can be mitigated 
by quantifying it and tuning the spatio-temporal parameters to achieve 
a desirable CD&R performance.

This distinction is supported by previous studies on the effects of 
CNS-related uncertainties, which have shown that both communication 
and navigation uncertainties degrade autonomous separation perfor-
mance for UAS [5]. In particular, [36] provides a detailed analysis of 
how position uncertainty, as a component of navigation error, impacts 
the safety performance of conflict resolution. The degradation occurs 
because the uncertainty perturbs the resolution velocity away from the 
true value that would otherwise ensure successful conflict avoidance.

Across other engineering domains, uncertainty quantification has 
become essential for understanding how model imperfections trans-
late into system-level performance. In aerospace, one of the exam-
ples is in multidisciplinary optimzation (MDO) where uncertainty-based 
MDO frameworks propagate input variability through non-linear anal-
ysis chains to reveal how small modelling errors may affect mission-
level outcomes [39]. The theme is also important in planetary-entry 
modelling, where uncertainties in aerothermodynamics, atmosphere, 
and thermal protection system response can significantly shift predicted 
heating loads and trajectory behaviour [40]. Aside from aerospace en-
gineering domain, infrastructure risk modelling demonstrates that un-
certainties distributed across hierarchical sub-models must be propa-
gated strategically to identify influential variables [41], while wind-
engineering studies show that sparse or highly variable data some-
times require non-probabilistic representations such as interval mod-
els [42]. Even in data-driven prognostics, poorly calibrated uncer-
tainty can lead to overconfident predictions in safety-critical set-
tings, motivating careful treatment of both aleatory and epistemic
components [43,44].

Together, these studies highlight a consistent message that when 
non-linear models drive safety-critical decisions, uncertainty must be 
characterised and propagated explicitly. This is directly relevant to tac-
tical separation, where navigation errors feed into geometric conflict 
detection logic and resolution manoeuvres. Because state-based meth-
ods uses solely on the shared position and velocity information to un-
certain inputs, their performance relies on how navigation uncertainty 
distorts the detection variables and candidate resolution velocities.
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Understanding this propagation is therefore crucial for assessing the re-
liability of state-based conflict detection and resolution.

To further examine the role of navigation systems as sources of un-
certainty, the following section first describes the types of navigation 
systems commonly used in UAS, followed by the associated uncertainty 
modelling.

3.1.  UAS navigation systems

Unmanned Aerial Systems (UAS) typically rely on Global Naviga-
tion Satellite Systems (GNSS) and Inertial Measurement Units (IMUs) to 
navigate in outdoor environments, providing absolute positioning and 
inertial references essential for flight control. However, GNSS availabil-
ity is limited in indoor or GNSS-denied environments, restricting its ap-
plicability in such scenarios. Furthermore, due to the limited accuracy 
of GNSS and the drift-prone nature of IMUs, visual-based navigation 
methods have gained prominence as complementary approaches. Tech-
niques such as Visual Odometry and Visual-Inertial Odometry enable 
UAS to estimate motion by analysing camera imagery, either indepen-
dently or in combination with inertial data, thereby enhancing robust-
ness in GNSS-denied settings. Visual Odometry, initially introduced in 
[45] and further reviewed in [46], estimates motion solely from visual 
inputs and has become essential in robotic navigation. Visual-Inertial 
Odometry extends this capability by fusing visual and inertial measure-
ments to achieve real-time, robust state estimation, as demonstrated in 
benchmarking studies [47]. Despite the development of these alterna-
tive methods, current standards for U-space operations and tactical sepa-
ration remain heavily dependent on GNSS. Specifically, the proposed use 
of ADS-L for situational awareness, as outlined in the technical specifi-
cations [4], assumes the continuous availability and reliability of GNSS-
derived data. The primary parameters transmitted via ADS-L relevant to 
tactical separation are the aircraft’s position, ground speed, and ground 
track. These values are obtained from GNSS-based navigation solutions 
and are encoded in the transmitted payload. The system further defines 
navigation performance in terms of accuracy bounds, expressed as 95% 
confidence intervals. For instance, horizontal position accuracy is cate-
gorized into thresholds such as < 30 m, < 10 m, and < 3 m, while velocity 
accuracy may be defined as < 10 m∕s, < 3 m∕s, or < 1 m∕s, depending 
on the GNSS quality and system configuration.

Although the ADS-L specification provides accuracy bounds, it does 
not explicitly define uncertainty using Gaussian distributions or covari-
ance matrices. However, in probabilistic robotics and state estimation, 
it is common practice to model sensor uncertainty as zero-mean Gaus-
sian noise for analytical and computational tractability [48]. Under this 
assumption, the 95% bounds specified by ADS-L are interpreted as ap-
proximately ±2𝜎, allowing the derivation of a diagonal covariance ma-
trix based on the stated horizontal position and velocity accuracy.

For the purposes of this study, which addresses uncertainty quan-
tification and its propagation through state-based conflict detection and 
resolution (CD&R) algorithms, the Gaussian assumption is adopted for 
modelling navigation uncertainty. This approach facilitates the evalua-
tion of how uncertainty in input variables affects CD&R outcomes and 
the safety performance of decentralized separation strategies through 
Monte Carlo simulations. The following subsection presents the mathe-
matical formulation of position and velocity uncertainties, based on the 
ADS-L specification.

3.2.  Uncertainty modelling

To quantify the impact of navigation errors on conflict detection and 
resolution (CD&R) algorithms, the position and velocity of each aircraft 
are modelled as stochastic variables. Specifically, both position and ve-
locity are treated as two-dimensional Gaussian random vectors with in-
dependent components. This modelling approach is widely adopted in 
probabilistic robotics and air traffic management  [15,16,48] and aligns 

with the uncertainty descriptors provided in the ADS-L technical speci-
fication, which defines accuracy using 95% confidence bounds. Under 
the assumption of zero-mean Gaussian noise, these bounds are approx-
imated as ±2𝜎, allowing the construction of corresponding covariance 
matrices. These models form the basis for uncertainty propagation in 
the CD&R algorithms using Monte Carlo simulation techniques.

The position vectors of the ownship and intruder aircraft are defined 
as:

𝐱𝑜 ∼  (𝝁𝑜,Σ𝑜), 𝐱𝑖 ∼  (𝝁𝑖,Σ𝑖) (9)

with nominal positions:

𝝁𝑜 =
[

𝑥̄𝑜
𝑦̄𝑜

]

, 𝝁𝑖 =
[

𝑥̄𝑖
𝑦̄𝑖

]

(10)

and diagonal covariance matrices:

Σ𝑜 =

[

𝜎2𝑥𝑜 0
0 𝜎2𝑦𝑜

]

, Σ𝑖 =

[

𝜎2𝑥𝑖 0
0 𝜎2𝑦𝑖

]

(11)

The velocity vectors are similarly modelled as:

𝐕𝑜 ∼  (𝝂𝑜,Σ𝑣𝑜 ), 𝐕𝑖 ∼  (𝝂𝑖,Σ𝑣𝑖 ) (12)

with nominal velocities:

𝝂𝑜 =
[

𝑣̄𝑥𝑜
𝑣̄𝑦𝑜

]

, 𝝂𝑖 =
[

𝑣̄𝑥𝑖
𝑣̄𝑦𝑖

]

(13)

and covariance matrices:

Σ𝑣𝑜 =

[

𝜎2𝑣𝑥𝑜
0

0 𝜎2𝑣𝑦𝑜

]

, Σ𝑣𝑖 =

[

𝜎2𝑣𝑥𝑖
0

0 𝜎2𝑣𝑦𝑖

]

(14)

The relative position and velocity are defined as:

𝐱rel = 𝐱𝑖 − 𝐱𝑜, 𝐕rel = 𝐕𝑜 − 𝐕𝑖 (15)

Since 𝐱𝑖 and 𝐱𝑜 are modelled as independent Gaussian variables, their 
difference is also Gaussian:

𝐱rel ∼  (𝝁rel, Σrel) (16)

with

𝝁rel = 𝝁𝑖 − 𝝁𝑜, Σrel = Σ𝑖 + Σ𝑜 (17)

The relative velocity follows the same structure:

𝐕rel ∼  (𝝂rel, Σ𝑉rel ) (18)

with

𝝂rel = 𝝂𝑜 − 𝝂𝑖, Σ𝑉rel = Σ𝑣𝑜 + Σ𝑣𝑖 (19)

The equations above define the position and velocity of both the 
ownship and the intruder as two-dimensional Gaussian random vari-
ables, consistent with the ADS-L uncertainty descriptors. Specifically, 
the positions 𝐱𝑜 and 𝐱𝑖 are modelled as normally distributed vectors with 
means 𝝁𝑜 and 𝝁𝑖, respectively, and diagonal covariance matrices Σ𝑜 and 
Σ𝑖. These means represent the nominal (expected) positions in Cartesian 
coordinates, while the covariance matrices quantify the uncertainty in 
each axis, assuming independence between the 𝑥 and 𝑦 components.

Similarly, the velocities 𝐕𝑜 and 𝐕𝑖 are treated as Gaussian random 
vectors with mean velocities 𝝂𝑜 and 𝝂𝑖, and corresponding covariance 
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matrices Σ𝑣𝑜  and Σ𝑣𝑖 . These models reflect the stochastic nature of ve-
locity estimates from sensor noise.

The relative position 𝐱rel and relative velocity 𝐕rel are then defined 
as the differences between the intruder and ownship states. Since the 
original variables are independent Gaussians, these relative states are 
also Gaussian distributed. The mean of the relative position is simply the 
difference between the mean positions, while its covariance is the sum 
of the individual covariances. The same holds for the relative velocity.

To align the modelling with the ADS-L reporting standard, reported 
accuracy bounds are interpreted as circular Gaussian confidence re-
gions. For example, a 30 m horizontal position accuracy at the 95% 
confidence level yields standard deviations of 𝜎𝑥 = 𝜎𝑦 ≈ 6.127 m, based 
on the inverse chi-squared quantile, such that 95% of samples fall within 
a 30 m radius.

Although Gaussian noise with independent, zero-mean position and 
velocity errors is assumed here to enable the analytical uncertainty prop-
agation in Section 5.1, this choice is mainly a practical modelling base-
line rather than a fundamental limitation of the framework. The ADS-L 
accuracy specification provides only marginal 95% bounds for position 
and speed, which can be naturally interpreted as approximately ±2𝜎
under a Gaussian model, and no covariance information is supplied. 
This makes the independent Gaussian assumption consistent with the 
available navigation performance data and with standard practice in 
probabilistic robotics and air-traffic modelling. Moreover, the Gaussian 
assumption allows closed-form or first-order approximations for quan-
tities such as 𝑡CPA, ‖𝐝CPA‖, and 𝑡in, which support the analytical insight 
developed later in the paper.

Lastly, the numerical evaluation itself does not depend on the dis-
tribution model. The Monte Carlo propagation used in Section 4 is 
distribution-agnostic and can accommodate non-Gaussian or correlated 
error models without modifying the CD&R algorithms. Only the analyt-
ical approximations in Section 5.1 rely on Gaussian inputs. For other 
distributions, the same propagation procedure remains valid, but the 
closed-form expressions would no longer apply.

4.  Methodology

This study investigates how navigation uncertainties affect the per-
formance of state-based conflict detection and resolution (CD&R) algo-
rithms. Two experimental phases are conducted. The first examines the 
propagation of navigation uncertainty into the output variables of con-
flict detection and resolution. The second evaluates the macroscopic 
safety implications through repeated simulations across multiple con-
flict geometries and uncertainty types.

All scenarios are designed as pairwise encounters between one own-
ship and one intruder. This configuration facilitates controlled variation 
of initial conditions and isolates the influence of navigation uncertain-
ties. Prior research has indicated that most conflicts remain pairwise, 
even in high-density airspace [12]. Moreover, the pairwise setting serves 
as a clear benchmark for analysing how navigation uncertainty propa-
gates through state-based CD&R algorithms. This scenario provides a 
direct mapping from relative-state uncertainty to detection and reso-
lution outcomes. Multi-conflict scenarios introduce convoluted interac-
tions that obscure these mechanisms, and are therefore identified as fu-
ture work.

The conflict geometry is defined by three parameters: the intruder’s 
heading relative to the ownship, the horizontal miss distance at closest 
point of approach (𝐝CPA), and the ground speed. The ownship maintains 
a fixed heading of 0◦ and a fixed speed of 20 kts, while the intruder’s 
heading is varied to alter the encounter geometry. The intruder speed is 
fixed at 15 kts, serving as a representative value for conflict scenarios. 
Both aircraft fly at constant altitude. For the CD&R logic, the protected 
zone radius is set to 𝑅PZ = 50 m, and the look-ahead time is fixed at 
𝑡lookahead = 15 s, consistent with operational assumptions in recent liter-
atures [5,9,12].

Uncertainties are modelled in two navigation input variables: po-
sition and velocity. These are treated as independent Gaussian random 
variables, with parameters derived from the ADS-L accuracy classes [4], 
as discussed in Section 3.2. The horizontal position uncertainty is de-
fined by a 2𝜎 bound of 30 m, corresponding to a standard deviation of 
approximately 6.127 m per axis, while the velocity uncertainty is de-
fined by a 2𝜎 bound of 1 m∕s, corresponding to a standard deviation of 
approximately 0.204 m∕s per axis [49]. These values represent conser-
vative estimates of GNSS-based navigation performance under nominal 
rural environments. In dense urban environments, where multipath in-
terference and partial GNSS blockage are common, the uncertainty is 
expected to increase, resulting in wider confidence bounds [50]. The 
proposed framework can accommodate such variations, regardless of 
the environment settings, by adjusting the uncertainty parameters to 
reflect environment-specific navigation performance.

4.1.  Conflict detection

In the uncertainty propagation experiment, each source of naviga-
tion uncertainty (either in position or velocity) is introduced indepen-
dently while all other variables remain deterministic. For each run, the 
encounter geometry is configured such that the deterministic time to in-
trusion 𝑡in equals the look-ahead threshold 𝑡lookahead. By fixing this refer-
ence point, the simulation evaluates how uncertainty in the input prop-
agates through the conflict detection and resolution pipeline. The initial 
separation ‖𝐝CPA‖ and relative heading angle Δ𝜓 are varied systemati-
cally to sample a range of conflict scenarios.

For every scenario, 104 Monte Carlo samples are drawn based on 
the assumed Gaussian distribution of the uncertain input variable. Each 
sample is propagated through the conflict detection equations, produc-
ing distributions over four output variables: time to closest point of 
approach 𝑡CPA, distance at closest point of approach ‖𝐝CPA‖, time to 
intrusion 𝑡in, and detection probability. While the first three variables 
are deterministic in nominal conditions, the introduction of randomness 
causes them to become stochastic. The detection outcome, originally a 
binary decision, is expressed in probabilistic terms due to the uncer-
tainty of the input.

The detection probability is estimated empirically from the Monte 
Carlo samples. Letting 

(

‖𝐝(𝑖)CPA‖, 𝑡
(𝑖)
in

)

 denote the outputs of sample 𝑖, the 
detection probability is computed as the average number of samples 
satisfying the conflict condition, as shown in Eq. (20).

𝑃detect ≈ 𝑃detect =
1
𝑁

𝑁
∑

𝑖=1
𝟏
[(

‖𝐝(𝑖)CPA‖ < 𝑅PZ

)

∧
(

𝑡(𝑖)in < 𝑡lookahead
)]

(20)

The analysis of single-sample detection probability provides only an 
instantaneous view of system performance. In operational settings, how-
ever, conflict detection is not limited to a single observation but occurs 
repeatedly as new surveillance updates arrive. A missed detection at one 
instant does not necessarily imply a total failure, since the following op-
portunities may still identify the conflict before intrusion. Conversely, 
persistent non-detection arises only when every detection attempt dur-
ing the observation window fails. The final component of the conflict 
detection analysis therefore extends to this time-sequenced setting, mod-
elling detection as a series of Bernoulli trials with evolving probability 
of detection.

4.2.  Conflict resolution

Following the identification of a potential conflict, a resolution ma-
noeuvre must be generated to restore separation within the look-ahead 
time. This section considers two resolution algorithms: the Modified 
Voltage Potential (MVP) and the Velocity Obstacle (VO) method, both 
introduced in Section 2. These algorithms receive the relative state as 

Reliability Engineering and System Safety 269 (2026) 112111 

6 



M.F. Rahman et al.

input and output a resolution velocity vector 𝐕res, based on the formu-
lations provided in Eqs.  (5) and (8), respectively.

To evaluate the effect of navigation uncertainty on conflict resolu-
tion, the same Monte Carlo samples generated for the detection phase 
are propagated through each resolution algorithm. In each case, uncer-
tainty is applied to either position or velocity while holding the other 
input constant. Under position uncertainty, the ownship and intruder 
positions are perturbed using the Gaussian models introduced in Sec-
tion 3.2, while their velocities remain fixed. This affects both 𝑡CPA and 
𝐝CPA. Conversely, when velocity uncertainty is considered, only the ve-
locity vectors are sampled while positions remain deterministic. These 
uncertainties will create randomness and alter the resolution vector pro-
duced by MVP and VO.

For each sample, the resolution velocity 𝐕(𝑖)
res is computed and stored. 

To assess whether the sample leads to successful conflict avoidance, the 
resolution vector is evaluated in the Velocity Obstacle (VO) frame. If 
𝐕(𝑖)
res ∉ , the resolution is considered successful.
In addition to that, the effectiveness of the manoeuvre is further 

assessed by computing the post-resolution distance at closest point of 
approach (‖𝐝+CPA‖). Each aircraft is propagated forward by one second 
using the assigned resolution velocity. Let Δ𝑡 = 1 s be the time step. The 
updated positions are computed as:
𝐱+𝑜 = 𝐱𝑜 + 𝐕res𝑜 ⋅ Δ𝑡,

𝐱+𝑖 = 𝐱𝑖 + 𝐕res𝑖 ⋅ Δ𝑡

From these positions, the updated relative state is calculated as:
𝐱+rel = 𝐱+𝑖 − 𝐱+𝑜 , 𝐕+

rel = 𝐕res
𝑜 − 𝐕res

𝑖 .

The post-resolution distance at closest point of approach (‖𝐝+CPA‖) is then 
evaluated using 𝐱+rel and 𝐕+

rel to the Eq. (3).
This value measures the minimum predicted separation after the res-

olution manoeuvre is executed. Together with the VO classification, it 
provides a quantitative view of conflict resolution effectiveness under 
uncertainty.

4.3.  BlueSky simulation

In the conflict simulation phase, a batch of encounter scenarios is 
generated over a discretized grid of initial conditions. Each scenario 
defines a pairwise horizontal conflict geometry using parameters such 
as relative bearing (Δ𝜓), intruder speed, and a fixed initial projected 
‖𝐝CPA‖. The simulation environment is implemented using the BlueSky 
open-source air traffic simulator [51], which has been extended to 
support stochastic models of navigation uncertainty and to facilitate 
sample-based evaluation of conflict detection and resolution (CD&R) 
outcomes.

Each configuration is defined by a unique combination of uncertainty 
sources and resolution algorithm. This configuration is then repeated 
simulations are executed to account for statistical variability. Noise is 
injected into position and/or velocity based on user-specified uncer-
tainty modes, and is propagated through the full CD&R pipeline. The 
conflict detection step evaluates pairwise interactions between an own-
ship and intruder over a look-ahead horizon. If a conflict is predicted, a 
resolution command is issued by either the MVP or VO algorithm, de-
pending on the selected strategy. The initial condition of each encounter 
is designed such that the time to conflict entry satisfies 𝑡in = 1.5 𝑡lookahead, 
allowing the conflict to be detected sufficiently in advance under nav-
igation uncertainty. Navigation data is updated at a rate of 1 Hz, and 
a communication uncertainty model is applied such that the navigation 
state is successfully received with 80% probability at each update cy-
cle. Each simulation configuration is repeated 50.000 times to achieve 
statistical significance.

Throughout each simulation run, the relative distance between the 
aircraft is tracked over time to evaluate the distance at closest point of 
approach (CPA). This distance is used to determine whether a loss of 
separation (LOS) has occurred. Two metrics are computed at the end of 

each batch: the Intrusion Prevention Rate (IPR) defined in Eq. (21) and 
the distribution of ‖𝐝CPA‖.

IPR =
𝑛conflict − 𝑛LOS

𝑛conflict
(21)

In Eq. (21), 𝑛conflict denotes the total number of conflict instances and 
𝑛LOS is the number of encounters in which the horizontal separation falls 
below the protected zone radius. The IPR metric is bounded between 0.0 
and 1.0 and serves as a summary indicator of resolution effectiveness, 
higher values signify a greater fraction of conflicts resolved without loss 
of separation.

Another key metric is the distribution of ‖𝐝CPA‖, which indicates how 
close the aircraft come during an encounter. This metric helps evaluate 
how effectively the resolution algorithms increase the initial separation, 
originally set to 0m, to a safe distance exceeding the protected zone 
radius of 50m across different conflict geometries.

5.  Results and discussion

This section presents the results of the experiments conducted to as-
sess the effects of navigation uncertainty on conflict detection and res-
olution (CD&R) algorithms. The analysis is structured into three sub-
sections. First, the propagation of position and velocity uncertainties 
through the conflict detection process is examined, highlighting how 
these input variabilities affect the key detection metrics. Second, the 
performance of two conflict resolution strategies, Modified Voltage Po-
tential (MVP) and Velocity Obstacle (VO), is evaluated under uncer-
tainty, with a focus on the distribution of the resolution velocities and 
their ability to increase the ‖𝐝CPA‖ to a safe value. Finally, large-scale 
simulations using the BlueSky platform provide an assessment of overall 
system safety, quantified by the intrusion prevention rate (IPR).

5.1.  Conflict detection

Under deterministic conditions, conflict detection produces a binary 
outcome. Either a conflict is detected or it is not. However, under uncer-
tainty, this true or false outcome becomes probabilistic. The presence of 
noise in input variables such as position and velocity introduces vari-
ability into the conflict detection process, resulting in a detection prob-
ability that reflects the likelihood of a certain conflict condition being 
detected as true. To understand how this randomness propagates into 
the final detection outcome, it is necessary to analyse the key interme-
diate variables: the time to closest point of approach (𝑡CPA), the distance 
at closest point of approach vector (𝐝CPA), and the time to intrusion en-
try (𝑡in). Deriving the distributions of these variables, where possible, 
offers insight into the probabilistic behaviour of the conflict detection 
process. Section 5.1.1 presents analytical solutions and approximations 
for these variables under position uncertainty, followed by the velocity 
uncertainty case in Section 5.1.2. Then, this paper presents the conflict 
detection probability in Section 5.1.3.

5.1.1.  Position uncertainty
To distinguish the effects of different sources of uncertainty, the sub-

script 𝑝 is used to denote variables influenced by position uncertainty. 
When subjected to position uncertainty, the calculation of 𝑡CPA,𝑝, the 
time to closest point of approach, becomes a linear function of the ran-
dom position vectors of both the ownship and the intruder. As a result, 
the mean and variance of 𝑡CPA,𝑝 can be derived analytically, and the 
variable follows a Gaussian distribution:

𝑡CPA,𝑝 ∼  (𝜇𝑡CPA,𝑝 , 𝜎
2
𝑡CPA,𝑝

) (22)

with the mean and variance given by

𝜇𝑡CPA,𝑝 =
𝐕rel ⋅ 𝝁rel

‖𝐕rel‖
2

(23)
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Fig. 3. Distribution of 𝐝CPA under position uncertainty. The spread is con-
strained to the direction orthogonal to 𝐕rel.

𝜎2𝑡CPA,𝑝 =
𝐕𝑇relΣrel 𝐕rel

‖𝐕rel‖
4

(24)

Under position uncertainty, the distribution of the closest point of 
approach vector, 𝐝CPA, is confined to a one-dimensional subspace that 
is orthogonal to the relative velocity. This follows from the fact that 𝐝CPA
can be expressed as a linear projection of the relative position vector 𝐱rel
onto the subspace orthogonal to 𝐕rel, as formally proven in  Appendix A. 
Specifically, 𝐝CPA = 𝑃 𝐱rel, where 𝑃  is the projection matrix that removes 
the component along 𝐕rel. As a result, 𝐝CPA follows a Gaussian distribu-
tion with non-zero variance only in the orthogonal direction and zero 
variance in the direction aligned with 𝐕rel. The distribution lies along a 
single axis defined by the unit vector 𝐯⟂ orthogonal to the relative veloc-
ity. The transformed scalar variable 𝑧 = 𝐯⊤⟂𝐝CPA thus follows a univariate 
Gaussian distribution:

𝑧 ∼ 
(

𝐯⊤⟂𝑃 𝝁rel, 𝐯⊤⟂𝑃 Σrel 𝑃
⊤ 𝐯⟂

)

(25)

From this, the magnitude of the closest point of approach vector, 
‖𝐝CPA,p‖, corresponds to the absolute value of the normally distributed 
scalar 𝑧. Therefore, it follows a folded normal distribution:

‖𝐝CPA,p‖ ∼ |

|

|

 (𝜇𝑧,p, 𝜎2𝑧,p)
|

|

|

(26)

where 𝜇𝑧,p and 𝜎2𝑧,p are the mean and variance of the univariate nor-
mal distribution defined in Eq. (25).

This formulation is consistent with the illustration in Fig. 3. In the 
figure, the origin represents the point along the 𝐕rel ⋅ 𝑡CPA line where the 
magnitude of 𝐝CPA is zero. Each sample of 𝐝CPA lies along the line orthog-
onal to the relative velocity. The magnitude ‖𝐝CPA,p‖ corresponds to the 
Euclidean distance from the origin to each sample along this line. Since 
the scalar projection 𝑧 is normally distributed, the magnitude ‖𝐝CPA,p‖
is simply the absolute value of 𝑧, which results in a folded normal dis-
tribution as expressed in Eq. (26).

The approximation of the time to intrusion entry, 𝑡in, is modelled 
as a non-linear function of the relative position 𝐱rel. Given that 𝐱rel ∼
 (𝝁rel,Σrel) and the relative velocity 𝐕rel is deterministic, the exact dis-

Fig. 4. Probability density comparison between numerical simulation and an-
alytical approximation for 𝑡CPA, ‖𝐝CPA‖, and 𝑡in when ‖𝐝CPA‖ = 15 metres. The 
approximation closely matches the simulation.

tribution of 𝑡in cannot be expressed analytically. A first-order approxi-
mation can be obtained using the delta method. The non-linear transfor-
mation is denoted by ℎ(𝐱rel), and the approximated mean and variance 
are given by:

𝜇𝑡in,p ≈ ℎ(𝝁rel) (27)

𝜎2𝑡in,p ≈ ∇ℎ(𝝁rel)⊤Σrel ∇ℎ(𝝁rel) (28)

The function ℎ(⋅) is defined in Appendix B as a function of both the 
time and distance to closest point of approach. The gradient ∇ℎ(𝝁rel)
describes how small changes in the relative position affect the estimated 
time to intrusion. The approximation holds only when the condition 
‖𝐝CPA(𝝁rel)‖2 < 𝑅2 is satisfied, ensuring the square root term remains 
real.

Figs. 4 and 5 compare the numerical simulation results with the ana-
lytical solutions or approximations for the distributions of 𝑡CPA, ‖𝐝CPA‖, 
and 𝑡in. In both cases, the analytical results closely match the numerical 
distributions. However, a significant deviation occurs in the distribution 
of 𝑡in when the 𝐝CPA is 45 m near the boundary of the 𝑅PZ, as shown in 
Fig. 5. This discrepancy arises because a portion of the samples yield 
values of ‖𝐝CPA‖2 greater than 𝑅2

PZ, rendering 𝑡in undefined for those 
parts.

The behaviour of 𝑡in also becomes highly sensitive near the boundary. 
According to the intrusion-time equation introduced earlier, in Eq. (4), 
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Fig. 5. Same comparison when ‖𝐝CPA‖ = 45 metres, near the 𝑅PZ boundary. De-
viation occurs in 𝑡in due to samples in ‖𝐝CPA‖ exceeding 𝑅2

PZ, where 𝑡in becomes 
undefined.

the term involving 𝑅2
PZ − ‖𝐝CPA‖2 becomes very small as ‖𝐝CPA‖ ap-

proaches the protected-zone radius. As a result, small variations in the 
relative position cause large changes in 𝑡in. In this case, the Delta method 
analytical approximation loses accuracy, and the distribution must be 
obtained from numerical simulation for reliable results.

5.1.2.  Velocity uncertainty
When velocity uncertainty is present, the calculations of the time to 

closest point of approach 𝑡CPA,𝑣 and the magnitude of the closest point 
of approach vector ‖𝐝CPA,v‖ become functions of the relative velocity 
vector 𝐕rel, which is modelled as a Gaussian random variable. Since 
both expressions are non-linear in 𝐕rel, their exact distributions cannot 
be analytically defined. To approximate their mean and variance, we 
apply the delta method as in the 𝑡in calculation for position uncertainty.

Under velocity uncertainty, the time to closest point of approach, 
𝑡CPA,𝑣, is a non-linear function of the relative velocity vector 𝐕rel ∼
 (𝝁v,Σ𝑣). Using the delta method, the distribution of 𝑡CPA,𝑣 can be ap-
proximated as:

𝑡CPA,𝑣 ∼  (𝜇𝑡CPA,𝑣 , 𝜎
2
𝑡CPA,𝑣

) (29)

𝜇𝑡CPA,𝑣 ≈ 𝑓 (𝝂rel), 𝜎2𝑡CPA,𝑣 ≈ ∇𝑓 (𝝂rel)⊤Σ𝑉rel ∇𝑓 (𝝂rel) (30)

where 𝑓 (𝐕rel) is the non-linear function defined in  Appendix C, along 
with its gradient ∇𝑓 .

The distribution of the distance at closest point of approach vector, 
𝐝CPA, is strongly influenced by the uncertainty in the relative velocity 
𝐕rel. Since 𝑡CPA varies with each realisation of 𝐕rel, so does the projected 
point 𝐱rel − 𝑡CPA ⋅ 𝐕rel, which defines 𝐝CPA. Geometrically, this projection 
traces out an arc, centred at the midpoint of 𝐱rel, with radius equal to half 
its magnitude. This result is formalized in  Appendix D, which shows that 
the set of all orthogonal projections of a fixed point onto lines through 
another point forms a circle.

The radius of this circular distribution increases with higher relative 
speed. This is because the conflict is assumed to occur at a fixed look-
ahead time, 𝑡in = 𝑡lookahead, meaning that larger velocities imply a greater 
extrapolated distance from the current position, and thus a larger spread 
in the projected points. The proof in  Appendix D also shows that with 
the same relative velocity, when the ownship and intruder get closer in 
space, the radius of the distribution will be reduced.

Fig. 6 illustrates the two-dimensional distribution of the 𝐝CPA un-
der velocity uncertainty for two different conflict geometries. The blue 
arc corresponds to a case with an initial offset of 20 m and a relative 
heading difference of 180◦, resulting in a high relative speed. The green 
arc represents a configuration with a larger initial offset of 45 m but a 
smaller heading difference of 10◦, leading to a lower relative speed. In 
both cases, the conflict is defined to occur at a fixed look-ahead time. 
The higher relative velocity results in a larger relative distance, which 
increases the radius of the arc traced by the 𝐝CPA samples. In contrast, 
the lower-speed case yields a more tightly curved arc due to the shorter 
extrapolation distance.

Unlike the position uncertainty case, where the distribution of 𝐝CPA
lies along a straight line orthogonal to the relative velocity vector, veloc-
ity uncertainty induces a curved projection geometry. As shown in  Ap-
pendix D, the set of projection points from a fixed position onto varying 
velocity directions traces out a circular arc, centred at half the relative 
position with a magnitude of half the relative position.

Each realisation of 𝐝CPA under velocity uncertainty can be naturally 
expressed in polar form as shown in Eq. (31). This decomposition al-
lows the expression of the angular component 𝜙 as a closed-form dis-
tribution.  Appendix E proves that 𝜙 follows a projected normal distri-
bution. This result arises from the fact that 𝜙 is a deterministic rotation 
of the relative velocity angle 𝜃, which is itself projected normal. Since 
the projected normal family is closed under rotational transformation, 
𝜙 inherits this distribution. While the form of the distribution is known, 
its exact parametres depend on the encounter geometry and are analyt-
ically complex to derive.

𝐝CPA =
𝐱rel
2

+ ‖

𝐱rel
2

‖

[

cos𝜙
sin𝜙

]

, (31)

On the other hand, the magnitude ‖𝐝CPA‖, which is computed from 
the origin to each projected point, cannot be expressed in a closed-form 
distribution. This is due to the non-linear dependence of the trigono-
metric components shown in Eq. (31). However, an approximate distri-
bution for the magnitude can still be obtained using a first-order expan-
sion. As outlined in  Appendix C, we apply the delta method to linearize 
‖𝐝CPA‖ around the mean. The resulting distribution is approximately 
folded normal, reflecting the non-negativity of the distance.

‖𝐝CPA,v‖ ∼ |

|

|

 (𝜇𝑑CPA,v , 𝜎
2
𝑑CPA,v

)||
|

(32)

𝜇𝑑CPA,v ≈ ‖𝐱rel − 𝜇𝑡CPA,𝑣 ⋅ 𝝂v‖ (33)

𝜎2𝑑CPA,v ≈ ∇𝑔(𝝂v)⊤Σ𝑉rel ∇𝑔(𝝂v) (34)

Here, the function 𝑔(𝐕rel) = ‖𝐱rel − 𝑓 (𝐕rel) ⋅ 𝐕rel‖ maps the velocity 
input to the CPA distance, and its gradient is evaluated using the chain 
rule. The full derivation is provided in  Appendix C.

The accuracy of the folded normal approximation for ‖𝐝CPA,v‖ un-
der velocity uncertainty relies on the assumption that the non-linear
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Fig. 6. Two-dimensional distribution of 𝐝CPA under velocity uncertainty, show-
ing arc-shaped uncertainty structures for different conflict geometries.

mapping from 𝐕rel to 𝐝CPA is approximately linear in the region where 
most probability mass is concentrated. This assumption becomes more 
valid when the relative speed ‖𝐕rel‖ is large, which stabilizes the ge-
ometry and flattens the arc traced by 𝐝CPA over variations in velocity 
directions.

As shown in Fig. 6, high relative velocity leads to an arc-shaped dis-
tribution that closely resembles a straight line segment. In such cases, 
the Euclidean norm of 𝐝CPA becomes nearly a linear function of veloc-
ity deviations, making the delta method a reliable approximation. Con-
versely, when the relative speed is low, the arc becomes more curved, 
and the projection geometry becomes increasingly non-linear in Carte-
sian coordinates.

In the case of high velocity uncertainty, another source of approx-
imation error arises. The spread in sampled velocity directions can in-
clude realisations that are nearly orthogonal to the mean relative ve-
locity. These lead to 𝐝CPA vectors that are rotated away from the true 
direction, including extreme cases where the projections form a near-
complete circle. Even if the magnitude of these velocity vectors remains 
close to the mean, the directional deviation introduces asymmetry in the 
distribution of ‖𝐝CPA,v‖, violating the conditions under which the folded 
normal approximation is valid.

Therefore, the approximation degrades when both the relative ve-
locity is low and the uncertainty is high, due to increased curvature and 
bias in the distribution of the projected 𝐝CPA vectors. These effects high-
light the non-linear nature of the transformation and the limitations of 
linearization-based methods in such conditions.

To complete the analysis under velocity uncertainty, the intrusion 
entry time 𝑡in is also approximated using the delta method. As defined 
in Eq. (B.2), 𝑡in depends non-linearly on both 𝑡CPA and ‖𝐝CPA‖, which are 
themselves functions of the random vector 𝐕rel. The composite function 
is defined as:

ℎ(𝐕rel) = 𝑓 (𝐕rel) −

√

𝑅2 − 𝑔(𝐕rel)2

‖𝐕rel‖
(35)

where 𝑓 and 𝑔 represent the CPA time and distance functions, respec-
tively. The mean and variance of 𝑡in are then approximated by evaluating 
ℎ and its gradient at the mean velocity:

Fig. 7. Probability density comparison between numerical simulation and ana-
lytical approximation for 𝑡CPA, ‖𝐝CPA‖, and 𝑡in under velocity uncertainty. Shown 
here is the case with high relative velocity: ‖𝐝CPA‖ = 20 m and Δ𝜓 = 180◦. The 
approximation closely matches the simulation.

𝜇𝑡in,v ≈ ℎ(𝝂𝑣) (36)

𝜎2𝑡in,v ≈ ∇ℎ(𝝂𝑣)⊤Σ𝑉rel∇ℎ(𝝂𝑣) (37)

The full derivation of ∇ℎ(𝝂v), which combines the gradients of 𝑓 , 𝑔, 
and ‖𝐕rel‖, is provided in  Appendix C.

Figs. 7 and 8 compare the numerical simulation results with the ana-
lytical approximations for the distributions of 𝑡CPA, ‖𝐝CPA‖, and 𝑡in under 
velocity uncertainty. In the high relative velocity case (Fig. 7), the ap-
proximation closely follows the simulated distributions across all three 
metrics. This is valid since the arc-shaped 𝐝CPA distribution is approx-
imately linear. In contrast, Fig. 8 shows a low relative velocity case, 
where the curvature and directional spread of 𝐝CPA increase. Moreover, 
the presence of samples with ‖𝐝CPA‖2 > 𝑅2

PZ, for which 𝑡in is undefined, 
further amplifies the difference between the analytical approximation 
and the simulation. These results highlight the limitations of linear ap-
proximations in low relative speed, high velocity uncertainty situations, 
where non-linear effects become more prevalent.

To close this section, it should be noted that an analytical approxi-
mation for the combined position and velocity uncertainty case is not 
provided due to the significant increase in complexity. As shown in the 
preceding results, the linearisation as an analytical approximation al-
ready becomes inaccurate under velocity uncertainty when the relative 
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Fig. 8. Same comparison under lower relative velocity: ‖𝐝CPA‖ = 45 m and 
Δ𝜓 = 10◦. Deviation appears in all metrics due to increased curvature and direc-
tional bias in the 𝐝CPA distribution, reducing the validity of the linear approxi-
mation.

speed is low or when the uncertainty magnitude is high, since the map-
ping to 𝐝CPA becomes strongly non-linear and the spread of samples 
increases. In both position and velocity uncertainty, larger spreads also 
raise the likelihood that sampled ‖𝐝CPA‖2 exceed 𝑅2

PZ, rendering 𝑡in un-
defined. Extending the analytical approach to the combined case would 
therefore further amplify these limitations, leading to unreliable esti-
mates and defeating the purpose of the approximation. Therefore, it is 
important to emphasise that while the analytical approximation is use-
ful, its validity must be carefully assessed when applying it, and numer-
ical simulation should be used whenever necessary to verify or replace 
the analytical results.

5.1.3.  Detection probability
After deriving analytical solutions and approximations for 𝑡CPA, 

‖𝐝CPA‖, and 𝑡in, the next variable of interest is the detection probability. 
Recall that the conflict detection algorithm provides a binary output: 
True (conflict) or False (no conflict). In the presence of uncertainty, this 
binary outcome becomes probabilistic. The resulting detection proba-
bility reflects the likelihood of a conflict being detected under uncertain 
input conditions.

To evaluate this probability, an experiment was conducted across 
various initial values of ‖𝐝CPA‖ and Δ𝜓 , under the condition 𝑡in =
𝑡lookahead, which places the conflict geometry exactly at the detection 
threshold. The detection probability is then approximated using Eq. (20)

Fig. 9. Detection probability under position and velocity uncertainty.

Fig. 9 presents the distribution of detection probabilities under posi-
tion and velocity uncertainty, when 𝑡in = 𝑡lookahead, assuming a position 
standard deviation of 30 metres and a velocity standard deviation of 
1 m/s. Under position uncertainty, the mean detection probability is 
46.55%, with a maximum of 47.58% at Δ𝜓 = 140◦, ‖𝐝CPA‖ = 0 m, and a 
minimum of 45.58% at Δ𝜓 = 70◦, ‖𝐝CPA‖ = 15 m. In comparison, under 
velocity uncertainty, the mean detection probability is slightly higher 
at 48.25%, with a maximum of 49.61% at Δ𝜓 = 150◦, ‖𝐝CPA‖ = 25 m, 
and a minimum of 46.82% at Δ𝜓 = 90◦, ‖𝐝CPA‖ = 15 m. For both types 
of uncertainty, no specific trend was observed in detection probability 
with respect to relative heading or initial offset. Note that these results 
are specific to the chosen uncertainty magnitudes and may vary with 
different configurations.

While the detection probability is under 50% for 𝑡in = 𝑡lookahead, it 
is equally interesting to observe the detection probability variation in 
time. Tracing back to the previous variables, the 𝐝CPA distribution un-
der position uncertainty remains unchanged because it is restricted to 
the orthogonal projection of the relative velocity vector that remains 
unchanged. This implies that the variance of 𝑡in distribution remains the 
same and only the mean is shifted in time. Depending on the uncer-
tainty level, it is likely that some conflicts are detected earlier in time 
(when estimated 𝑡in > 𝑡lookahead) due to the spread of the distribution. 
Then, as the ownship and intruder get closer, the remaining time to in-
trusion decreases while the look-ahead threshold remains fixed, causing 
the detection probability to rise accordingly. Visually, this means that 
in Figs. 4, 5, 7, and 8, the distribution of time to intrusion shifts to the 
left into the "green" conflict detected area.

Mathematically, the detection probability can be decomposed us-
ing the chain rule in Eq. (38). This formulation shows that detection 
probability is governed by the joint probability of spatial and temporal 
conditions. Under position uncertainty, the spatial term is analytically 
tractable due to the Gaussian assumption on position error, whereas 
the temporal term remains intractable because of its nonlinearity and 
dependence on ‖𝐝CPA‖ and the relative geometry. Notably, the approxi-
mation of 𝑡in becomes unreliable when ‖𝐝CPA‖ approaches the protected 
zone radius 𝑅PZ, as shown in Figs. 4 and 5.

𝑃detect = ℙ
(

‖𝐝CPA‖ < 𝑅PZ
)

⋅ ℙ
(

𝑡in < 𝑡lookahead || ‖𝐝CPA‖ < 𝑅PZ
)

(38)

Fig. 10 illustrates how the detection probability varies as 𝑡in changes 
relative to the look-ahead threshold 𝑡lookahead (i.e. as time progresses). 
The different curves illustrate different initial values of ‖𝐝CPA‖, given 
that there is no conflict resolution applied. A key observation is that 
both the slope and the maximum achievable detection probability are 
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Fig. 10. Variation of the time to first intrusion (𝑡in) relative to the look-ahead 
threshold (𝑡lookahead) under different initial values of ‖𝐝CPA‖. This analysis applies 
specifically to position uncertainty, where the variance of ‖𝐝CPA‖, and conse-
quently 𝑡in, remains constant due to its invariance with respect to aircraft sepa-
ration distance.

defined by the nominal closest point of approach, due to the fixed ra-
dius of the protected zone. This means that grazing conflict can remain 
undetected, while for more severe conflicts, only the initial time of de-
tection is affected by the uncertainty. Even though the nominal value 
of ‖𝐝CPA‖ may fall below 𝑅PZ, random perturbations can push sampled 
values beyond this boundary. As a result, the maximum detection prob-
ability is given by Eq. (39). Due to the temporal conditional probability 
in Eq. (38), the likelihood of conflict detection becomes 100% since the 
𝑡in falls well below 𝑡lookahead as the intrusion becomes imminent.

𝑃detect,max = ℙ
(

‖𝐝CPA‖ < RPZ
)

(39)

An additional inference can be drawn when 𝑃detect,max = 1.0. In this 
case, the detection probability curve effectively corresponds to the cu-
mulative distribution function (CDF) of the time to first intrusion ran-
dom variable 𝑡in. As a result, the slope of the detection probability curve 
reflects the spread of the underlying probability density function (PDF) 
of 𝑡in, which is governed by the level of position uncertainty. Higher un-
certainty leads to a wider distribution of 𝑡in, producing a shallower slope, 
whereas lower uncertainty results in a sharper transition around the 
look-ahead time threshold. This relationship highlights that not only the 
maximum detection probability, but also the rate at which it increases 
with decreasing 𝑡in, is sensitive to the level of navigational uncertainty.

Under velocity uncertainty, the distribution of 𝐝CPA varies with the 
separation between aircraft. As shown in 6, the radius of the 𝐝CPA in-
creases with distance and contracts as the aircraft move closer. Con-
sequently, the variance of 𝑡in decreases with reduced separation, lead-
ing to a sharper rise in detection probability as 𝑡in decreases. Similar to 
the position uncertainty case, early detections are still possible when 
𝑡in > 𝑡lookahead, and detection probability continues to rise as the aircraft 
converge.

To conclude, the detection probability depends on the conflict situa-
tion. When the spatial and temporal parametres are decoupled, a more 
severe 𝐝CPA leads to a higher detection probability than a grazing con-
flict. Then, as time progresses and the time to intrusion decreases, the 
detection probability increases. The detection classification is further 
discussed in the next subsection.

5.1.4.  Operational implications
The previous subsection analysed instantaneous detection probabil-

ity under different encounter geometries. In practice, multiple obser-
vations occur between the first possible detection and the onset of in-
trusion. A persistently undetected conflict arises only if every detection 
opportunity is missed throughout this interval.

When surveillance messages are exchanged at discrete times, each 
opportunity to detect a conflict constitutes an independent Bernoulli 
trial with a time varying success probability 𝑝𝑡, obtained from Eq. (38). 
The probability of observing no detection prior to intrusion is the prod-
uct of the complementary probabilities, as shown in Eq. (40). In the 
equation,  = {𝑡0, 𝑡1,… , 𝑡𝑛} enumerates the sampling times from the 
first possible detection 𝑡0 up to the intrusion entry time 𝑡in.

Pr(no detect) =
∏

𝑡∈

(

1 − 𝑝𝑡
)

(40)

Fig. 10 shows that for small nominal ‖𝐝CPA‖ and 𝑃detect,max = 1, the 
term 𝑝𝑡 becomes 100% and the Pr(no detect) is effectively 0. For grazing 
encounters (i.e., those with large nominal projected ‖𝐝CPA‖), 𝑃detect,max <
1 constrains the ceiling of 𝑝𝑡, and the resulting Pr(no detect) can be non-
negligible.

As an example, consider a case with nominal projected ‖𝐝CPA‖ =
45 m (with 50 metres separation standard) and horizontal position ac-
curacy 30 m. With a look-ahead time of 5 s, the probability of no detec-
tion prior to intrusion is 0.319%. Increasing the look-ahead horizon to 
6 s and 7 s reduces the no-detection probability to 0.089% and 0.025%, 
respectively. Extending the horizon introduces additional observations 
with positive 𝑝𝑡, which multiplies additional factors (1 − 𝑝𝑡) in (40) and 
thereby lowers the overall non-detection probability.

Introducing conflict resolution modifies the evolution of 𝑝𝑡. Once a 
detection occurs, a manoeuvre is initiated. If the modified geometry still 
results in a conflict, successive potentially positive detections occur un-
der updated 𝑝𝑡 values that reflect the new conflict state. The probability 
of having an intrusion after a first manoeuvre therefore differs from 
the one before the manoeuvre, and depends on the effectiveness of the 
conflict resolution algorithm in resolving the conflict. This is further 
discussed in the next subsection.

5.2.  Conflict resolution

Conflict resolution is analysed in the velocity-space domain, where 
the set of admissible commands can be represented by the inverse of 
the velocity obstacle set ( ). This section examines how navigation 
uncertainty propagates from the input state to the resolution velocity 
generated by the Modified Voltage Potential (MVP) and Velocity Ob-
stacle (VO) algorithms. The analysis begins with position uncertainty, 
followed by velocity uncertainty.

5.2.1.  Position uncertainty
Fig. 11 presents Monte Carlo samples of the resolution velocity un-

der position uncertainty for a conflict geometry with Δ𝜓 = 40◦ and 
‖𝐝CPA‖ = 0 m. The MVP-provided resolution samples are distributed 
along a straight line, whereas the VO-provided resolutions form an arc. 
This behaviour is a direct consequence of the formulation in Eq. (5), 
where the resolution velocity is constructed from a scalar term and the 
vector 𝐝CPA. The scalar term reflects the variability introduced by the 
uncertainty in 𝑡CPA and ‖𝐝CPA‖, while the vector component retains a 
Gaussian distribution. As a result, the MVP resolution velocity samples 
maintain a linear structure that is independent of the relative velocity.

In contrast, the VO resolution velocities follow a circular arc. It can 
be mathematically shown, this arc is centred around the midpoint be-
tween the ownship and intruder velocities, with a radius equal to half 
the magnitude of the relative velocity (the derivation is shown in  Ap-
pendix D). Consequently, the shape and size of the VO distribution are 
dependent on the conflict geometry. This effect is shown in Fig. 12, 
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Fig. 11. Resolution velocity samples under position uncertainty for Δ𝜓 = 40◦, 
‖𝐝CPA‖ = 0 m.

where a smaller heading angle Δ𝜓 = 10◦ leads to a lower relative ve-
locity and a smaller arc radius, while the MVP distribution retains its 
linear form. In the limiting case, where speeds are equal and heading 
differences are small, the arc becomes smaller. A fundamental difference 
between the two methods is that, under position uncertainty, the MVP 
resolution distribution is unbounded along the 𝐝CPA direction, whereas 
the VO distribution remains bounded on a circular arc in velocity space. 
This implies that, for rare outlier realisations of the uncertain state, MVP 
can request relatively large instantaneous velocity changes along this 
line. These large corrections are driven by measurement outliers rather 
than by the nominal resolution geometry itself.

Another aspect of the resolution velocity distribution is the division 
of samples across the two legs of the . Fig. 13 compares cases with 
‖𝐝CPA‖ = 0 m and 15 m, both at Δ𝜓 = 40◦. When the mean of the ran-
dom vector 𝐝CPA is zero, the distribution is symmetric, and the samples 
are equally divided between both  legs. As the mean increases, the 
probability mass shifts, concentrating the samples on one side. This bias 
can be quantified using the transformed variable in Eq. (25), which de-
pends on the conflict geometry and the relative position covariance Σrel. 
Mathematically, the probability that a sample lies on the dominant 
leg corresponds to the probability that the scalar random variable 𝑧, 
defined in Eq. (25), is positive. This is expressed in Eq. (41).

𝑃dominant = ℙ(𝑧 > 0) (41)

This has practical implications. When ‖𝐝CPA‖ = 0 m, the distribution 
is symmetric and 𝑃dominant ≈ 0.5, indicating that the resolution veloc-
ity is equally likely to fall on either leg of the . Under uncertainty, 
if ‖𝐝CPA‖ remains close to zero after the first resolution attempt, this 
may cause reversals in resolution direction. Once a resolution step shifts 
the mean of ‖𝐝CPA‖ away from zero, the probability mass concentrates 
on a single dominant  leg (i.e., 𝑃dominant > 0.5), and subsequent it-
erations reinforce this choice, creating a self-reinforcing dynamic that 
reduces reversals. Conversely, staying near zero sustains oscillatory be-
haviour. Therefore, increasing ‖𝐝CPA‖ is essential not only to ensure con-
flict avoidance, but also to improve confidence in the selected resolution 
trajectory.

Fig. 12. Resolution velocity samples under position uncertainty for Δ𝜓 = 10◦, 
‖𝐝CPA‖ = 0 m.

Fig. 13. Resolution velocity samples under position uncertainty for Δ𝜓 = 40◦, 
‖𝐝CPA‖ = 15 m.

To quantify how effectively each algorithm enlarges the ‖𝐝CPA‖, the 
post-resolution miss distance ‖𝐝+CPA‖ is evaluated one second after the 
manoeuvre has been applied. Fig. 14 shows the resulting distributions 
for a heading difference of 2◦ and two initial offsets, ‖𝐝CPA‖ = 0 m and 
45 m, with both aircraft travelling at 20 kt. When ‖𝐝CPA‖ = 0 m, the 
VO algorithm yields projected ‖𝐝+CPA‖ that remain below 5 m with high 
probability, whereas the MVP algorithm produces a better result. In this 
shallow-angle case, 99.0% of the VO samples fall below 50 m, compared 
with 48.4% for MVP. For an initial offset of 45 m, the VO distribution 
is entirely confined below 50 m, while the corresponding proportion for 
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Fig. 14. Distribution of post-resolution projected ‖𝐝+CPA‖ for Δ𝜓 = 2◦ and initial ‖𝐝CPA‖ of 0 and 45m for position uncertainty.

Fig. 15. Distribution of post-resolution projected ‖𝐝+CPA‖ for Δ𝜓 = 30◦ and initial ‖𝐝CPA‖ of 0 and 45m for position uncertainty.

Fig. 16. Resolution velocity samples under velocity uncertainty for Δ𝜓 = 40◦, 
‖𝐝CPA‖ = 0 m.

Fig. 17. Resolution velocity samples under velocity uncertainty for Δ𝜓 = 10◦, 
‖𝐝CPA‖ = 0 m.
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Fig. 18. Distribution of post-resolution projected ‖𝐝+CPA‖ for Δ𝜓 = 2◦ and initial ‖𝐝CPA‖ of 0 and 45m for velocity uncertainty.

Fig. 19. Distribution of post-resolution ‖𝐝+CPA‖ for Δ𝜓 = 30◦ and initial ‖𝐝CPA‖ of 0 and 45m for velocity uncertainty.

MVP is 47.4%. Although MVP does not always clear the protected zone in 
a single step, the subsequent detection-and-resolution cycles can correct 
any residual conflict.

A higher heading difference (Δ𝜓 = 30◦) is depicted in Fig. 15. Under 
this geometry all post-resolution distances exceed 50 m for both algo-
rithms, irrespective of the initial offset, indicating successful conflict 
avoidance in every realisation.

The contrast between the 2◦ and 30◦ cases stems from the relative 
speed: shallow angles generate low relative velocities. Although the 
deterministic solutions of MVP and VO both lie outside the velocity-
obstacle set, their optimisation criteria differ. MVP explicitly seeks to 
maximise ‖𝐝CPA‖ with minimal velocity change, whereas VO minimizes 
the change in velocity subject only to leaving the obstacle set. This dis-
tinction makes the MVP algorithm intrinsically more robust under posi-
tion uncertainty, especially in low-speed encounters where the VO arc 
gets tighter and the admissible region narrows.

The following section applies the same analysis framework to veloc-
ity uncertainty, comparing the resulting resolution commands and the 
corresponding changes in projected ‖𝐝CPA‖.

5.2.2.  Velocity uncertainty
Fig. 16 depicts Monte Carlo samples of the resolution velocity un-

der velocity uncertainty for Δ𝜓 = 40◦ and ‖𝐝CPA‖ = 0 m. Because the 
random perturbation acts directly on the velocity vector, the resulting 
distribution is no longer confined to a closed-form formulation. Even 
so, the samples remain symmetrically split between the two  legs, a 
consequence of the zero mean in 𝐝CPA.

A reduced heading difference (Δ𝜓 = 10◦) is shown in Fig. 17. In both 
algorithms the sample point moves toward the VO intersection point, 
which corresponds to the intruder velocity in the velocity space. This 
shift becomes most pronounced when the relative speed approaches 
zero, i.e., equal speed combined with a shallow heading angle differ-
ence.

To illustrate this edge case, Figs. 18 and 19 compare ‖𝐝+CPA‖ distri-
butions for heading differences of 2◦ and 30◦. For Δ𝜓 = 2◦ and an initial 
‖𝐝CPA‖ = 0 m, the VO algorithm leaves ‖𝐝+CPA‖ < 50 m in 74.1% of the 
samples; with an initial offset of 45 m this fraction rises to 96.9%, and 
some samples even decrease the distance at closest point of approach, in-
dicating a sub-optimal command. Under the same conditions, MVP lim-
its the proportion of unresolved cases to 9.5% and 22.9%, respectively. 
At Δ𝜓 = 30◦ all samples for both algorithms exceed the protected-zone 
radius after one second, confirming successful avoidance.

These observations emphasise the earlier conclusion that, under un-
certainty, a conflict-resolution rule is most robust when it explicitly max-
imises ‖𝐝CPA‖. The MVP formulation satisfies this criterion, whereas the 
VO algorithm seeks the smallest change required to exit the obstacle set.

5.2.3.  Conflict resolution dynamics
The evolution of the ‖𝐝CPA‖ over successive resolution cycles is gov-

erned both by conflict geometry and uncertainty level. Suppose that the 
initial offset satisfies ‖𝐝CPA‖ = 0 m and Δ𝜓 = 2◦, the first-iteration out-
comes are illustrated in the left panel of Fig. 14. Because the detection 
probability is below 50% at 𝑡in = 𝑡lookahead, the likelihood of resolving 
the conflict in a single step is correspondingly limited, especially for the 
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Fig. 20. Intrusion prevention rate under position uncertainty for various in-
truder speeds.

Fig. 21. Intrusion prevention rate under position, velocity and combined un-
certainty at 20 kts.

VO algorithm under low relative speed. The MVP algorithm attains a 
markedly higher success probability in the same condition. Under high 
relative speed the conflict is typically removed after the first manoeuvre, 
although the event remains probabilistic due to input uncertainty.

For shallow-angle encounters the resolution process exhibits a multi-
step character. Starting from ‖𝐝CPA‖ = 0 m, the distribution of the next 
miss distance is given by Fig. 14 for two specific conditions. Each range 
of ‖𝐝CPA‖ produced in that figure carries its own conditional probabil-
ity of triggering a successful resolution at the following iteration. A key 

observation from the figure is that MVP directly shifts the ‖𝐝CPA‖ away 
from 0 m. Thus, in the next iteration, the probability of the aircraft per-
forming a counter-productive manoeuvre (such as turning to the op-
posite direction or the less dominant leg) is much smaller. This is not 
the case for VO, after the first resolution high probability of the ‖𝐝CPA‖
still lies close to zero. The sequence continues until ‖𝐝CPA‖ exceeds the 
protected-zone radius or until a defined amount of time is reached.

A comprehensive assessment of this iterative behaviour is obtained 
through large-scale Monte Carlo simulation in BlueSky. The resulting 
safety metrics are presented in the next subsection, providing a macro-
scopic view of conflict-resolution performance under the combined in-
fluence of conflict geometry and uncertainty and also the final ‖𝐝CPA‖.

5.3.  Safety metric

Fig. 20 compares the intrusion prevention rate (IPR) of the VO and 
MVP algorithms under position uncertainty for three intruder speeds. 
At 5 kts and 15 kts the two methods exhibit similarly low IPR values 
across all heading differences. When the intruder speed equals the own-
ship speed (20 kts), the results diverge: MVP maintains a high IPR for 
every Δ𝜓 , whereas VO shows a notable decrease of performance. The 
degradation arises at shallow angles, where the relative speed is small 
and the VO algorithm fails to enlarge ‖𝐝CPA‖ under position uncertainty 
(see Section 5.2).

Fig. 21 extends the comparison to three uncertainty models namely; 
position, velocity and combined (position + velocity), at 20 kts. Across 
the full heading range, MVP retains a high IPR, with only a modest 
reduction below Δ𝜓 = 10◦. The VO algorithm performs significantly 
worse, particularly at shallow angles, and reaches its lowest IPR under 
combined uncertainty. The contrast reflects the algorithmic objectives: 
MVP maximises ‖𝐝CPA‖, whereas VO minimizes the velocity change sub-
ject to exiting the VO set, a strategy that is less effective when uncer-
tainty perturbs the resolution velocity.

A previous study introduced a scaled-speed variant of the VO algo-
rithm that permitted velocity changes up to 15% larger than the nominal 
command. Despite this additional control authority, the IPR decreased, 
indicating that magnifying ‖Δ𝐕‖ for the resolution velocity does not 
compensate for VO’s structural limitations [36]. The decisive element is 
the optimisation criterion: MVP selects the resolution velocity that max-
imises ‖𝐝CPA‖; VO merely chooses the smallest deviation that exits the 
set .

Figs. 22 and 23 illustrate the distribution of the distance at clos-
est point of approach ‖𝐝CPA‖ after executing a resolution manoeuvre 
under position and velocity uncertainty, respectively. Both figures con-
sider a shallow encounter geometry with a heading difference of 2◦ and 
an initial ‖𝐝CPA‖ = 0 m. These conditions represent a challenging case 
for conflict resolution, where the relative motion is at its minimum.

In Fig. 22, under position uncertainty, the MVP algorithm produces 
a cluster of post-resolution distances above the protected zone threshold 
of 50 m, indicated by the red dashed line. More than 98% of the samples 
fall above 50 m, suggesting that MVP reliably generates separation even 
under uncertainty. While some of the MVP samples fall below 50 m, this 
can be solved by increasing the look-ahead time allowing more time for 
the algorithm to resolve the conflict. In contrast, the Velocity Obsta-
cle (VO) algorithm has close to 96% of the samples fall below the 50 m 
threshold. As in MVP, this can be solved by adding more lookahead time 
but since the fraction that falls below the threshold is large, it will take 
significantly more time to resolve the conflict. This reflects VO’s vulnera-
bility, that is applying minimal velocity changes while avoiding conflict 
does not always result in a safe separation under position uncertainty.

Fig. 23 shows a similar pattern under velocity uncertainty. MVP con-
tinues to demonstrate strong performance, with a tightly grouped dis-
tribution above the protected zone radius. VO again produces close to 
70% of the samples falling below the threshold. This reinforces the ear-
lier observation that VO’s resolution velocity is not the most reliable 
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Fig. 22. Distribution of ‖𝐝CPA‖ under position uncertainty.

Fig. 23. Distribution of ‖𝐝CPA‖ under velocity uncertainty.

Fig. 24. Comparison of ‖𝐝CPA‖ distribution for MVP and VO at different conflict angles under position uncertainty.

under uncertainty in navigation systems, both for position and velocity 
uncertainty.

Fig. 24 extends the analysis by comparing the distribution of ‖𝐝CPA‖
across a range of heading angle differences, from 2◦ to 30◦. Note that 
some outlier points show ‖𝐝CPA‖ close to 0 m, indicating possibility of 
mid-air collision. Each violin plot summarizes the distribution of ‖𝐝CPA‖

under position uncertainty for both the MVP and VO algorithms. As the 
conflict angle increases, the relative velocity between the aircraft also 
increases, and both algorithms tend to generate greater separation with 
more similar distributions. This occurs because the feasible resolution 
velocity produced by the VO algorithm, constrained to a circular arc, 
aligns more closely with the direction that maximises ‖𝐝CPA‖. Since the 
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VO algorithm produces resolution velocities along an arc centred at half 
the relative velocity vector, with a radius equal to half its magnitude, 
this arc increasingly aligns with the MVP resolution as the relative ve-
locity increases.

Another remark from Fig. 24 is the final miss-distance ‖𝐝CPA‖ lies 
well above the protected-zone radius 𝑅𝑃𝑍 at high heading-angle differ-
ence. These results indicate a consistent extra distance relative to 𝑅𝑃𝑍 . 
Consequently, part of this margin can be exchanged for smaller devi-
ations from the nominal trajectory by modestly relaxing the targeted 
post-resolution separation (i.e., via tuning 𝑅𝑃𝑍 ) while still ensuring a 
preferred intrusion prevention rate.

It is also important to note that, although the MVP resolution distri-
bution is mathematically unbounded along the 𝐝CPA direction under un-
certainty (as shown in Section 5.2), this does not lead to a persistent loss 
of efficiency in practice. In the implementations, the commanded veloc-
ity change is always constrained by vehicle performance limits, such as 
maximum turn rate and acceleration, so any excessively large command 
is naturally saturated. Since the conflict resolution is recomputed at ev-
ery update cycle, subsequent iterations readjust the manoeuvre based on 
the updated state estimate, thus removing unnecessary excessive correc-
tions. As a result, the unbounded mathematical structure of MVP does 
not translate into excessive deviations at the macroscopic safety-metric 
level.

In addition, navigation uncertainty can also trigger additional sepa-
ration manoeuvres. For example, when the conflict is already resolved, 
a false positive in conflict detection may lead to an unnecessary avoid-
ance manoeuvre and temporarily increased separation. This effect is not 
specific to MVP and can occur for any state-based conflict resolution al-
gorithm.

These findings support the following conjecture: the most robust con-
flict resolution strategy under navigation uncertainty is the one that ex-
plicitly maximises ‖𝐝CPA‖, especially in geometries with small relative 
velocity. By doing so, the MVP algorithm consistently maintains safe 
separation distances and reduces the likelihood of counterproductive 
resolution manoeuvres. In contrast, VO’s minimal velocity change strat-
egy often proves ineffective under these conditions. These results align 
with macroscopic trends observed in the intrusion prevention rate (IPR) 
from the BlueSky simulation campaign.

6.  Conclusion and future work

This study assessed the impact of position and velocity uncertainty 
on the performance of state-based conflict detection and resolution 
(CD&R) algorithms in U-Space. Using Monte Carlo simulation and an-
alytical approximations, the propagation of uncertainty was quantified 
for key variables in both conflict detection and resolution phases. High-
level safety implications were then evaluated using BlueSky simulations.

Monte-Carlo propagation shows that once Gaussian noise is in-
jected into position or velocity, the deterministic variables of state-
based detection, time to closest point of approach (𝑡CPA), distance at 
CPA (‖𝐝CPA‖) and time to intrusion (𝑡in), become full probability dis-
tributions whose shape depends on conflict geometry and the source of 
noise. For position uncertainty these distributions remain (folded) Gaus-
sian, but under velocity uncertainty the non-linearity of the projection 
degrades first-order approximations, especially in low-relative-speed en-
counters where curved (‖𝐝CPA‖) samples appear. Crucially, the binary 
conflict/no-conflict output turns probabilistic: when 𝑡in coincides with 
the look-ahead threshold, the probability of declaring a conflict falls be-
low 50% and rises only as 𝑡in moves further inside the threshold. This 
sensitivity highlights the need to tune look-ahead time as a function of 
the navigation noise.

Uncertainty distorts not only the perceived conflict geometry but 
also the feasible resolution velocities. Under position uncertainty, the 
resolution velocity from the Modified Voltage Potential (MVP) algo-
rithm align along a straight line defined by 𝐝CPA, while the Velocity 
Obstacle (VO) algorithm produces samples distributed along a conflict-

geometry-dependent arc. Independently, under velocity uncertainty, the 
resolution velocity does not show a closed-form solution. Nonetheless, 
as the relative velocity decreases, the resolution velocity distribution for 
VO collapses towards the intruder’s velocity, reducing the geometrical 
space of the resolution. A shallow angle conflict 2◦, 20 kt scenario illus-
trates the effect: after one second, VO fails to maintain separation in 
74% of trials, while MVP reduces this to just 9.5%. By explicitly max-
imising ‖𝐝CPA‖, MVP maintains safe separation even under navigational 
uncertainties, whereas VO’s minimal-change strategy becomes ineffec-
tive when relative motion is limited.

Large-scale Monte-Carlo campaigns in the BlueSky simulator trans-
late those geometric differences into macroscopic safety metrics. Un-
der position uncertainty, MVP keeps the intrusion prevention rate (IPR) 
close to 1.0 across all heading differences, even when the intruder 
matches the ownship speed. In contrast, VO safety performance signif-
icantly reduced for shallow angle. The same issue exists under velocity 
and combined uncertainty at 20 kts, MVP’s safety performance remains 
high with a slight dip at the shallowest angle while VO reaches its lowest 
IPR under combined uncertainty.

In principle, MVP steers the resolution manoeuvre outward from the 
predicted closest point of approach. VO, in contrast, seeks the smallest 
possible change in velocity and therefore performs reliably only when 
the encounter geometry and the relative speed are desirable. Across an-
alytical derivation, simulation, and full-mission trials, a single principle 
emerges: robust separation requires an algorithm that maximises pro-
jected distance at closest point of approach, not one that merely escapes 
the intrusion.

Future work should address several directions to strengthen CD&R 
under navigation uncertainty. Spatial and temporal parameters such as 
look-ahead time and protected-zone radius should be adaptively tuned 
based on aircraft speed, navigation uncertainty, communication reliabil-
ity. Broader uncertainty sources such as environmental effects, intruder 
intent, and sensor degradation should also be incorporated. Extending 
the analysis to multi-conflict scenarios and three-dimensional space are 
essential, as these problem potentially increase the complexity and am-
plify the effects of navigation uncertainty on both detection and res-
olution outcomes. Finally, future research should quantify uncertainty 
across a wider set of CD&R algorithms and rigorously test the conjec-
ture that the optimal strategy is the one that maximises the distance at 
closest point of approach (‖𝐝CPA‖).
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Appendix A.  Proof: Coordinate transformation of 𝐝𝐂𝐏𝐀 and its 
distribution under position uncertainty

Let the relative position be a random vector:
𝐱rel ∼  (𝝁rel,Σrel) ∈ ℝ2 (A.1)

and the relative velocity be a fixed vector
𝐕rel ∈ ℝ2. (A.2)

The time to closest point of approach (CPA) is defined as:

𝑡CPA =
𝐕⊤rel𝐱rel
‖𝐕rel‖

2
(A.3)

Then, the vector to CPA is:
𝐝CPA ∶= 𝐱rel − 𝑡CPA 𝐕rel (A.4)

Define the orthogonal projection matrix:

𝑃 ∶= 𝐼 −
𝐕rel𝐕⊤rel
‖𝐕rel‖

2
, so that 𝐝CPA = 𝑃 𝐱rel (A.5)

Since 𝑃  is a linear transformation and 𝐱rel is Gaussian, it follows that:
𝐝CPA ∼  (𝑃 𝝁rel, 𝑃 Σrel 𝑃

⊤) (A.6)

A.1.  Coordinate transformation

Define the unit vector in the direction of motion:
𝐯∥ ∶=

𝐕rel
‖𝐕rel‖

(A.7)

and the unit vector orthogonal to it (counterclockwise rotation by 90 
degrees):

𝐯⟂ ∶=
[

−𝑣∥,𝑦
𝑣∥,𝑥

]

(A.8)

These vectors form an orthonormal basis:

𝑇 ∶=

[

𝐯⊤⟂
𝐯⊤∥

]

∈ ℝ2×2 (A.9)

Now define the transformed vector:
𝐳 ∶= 𝑇 𝐝CPA (A.10)

A.2.  Mean of transformed vector

Using the linearity of expectation:
𝔼[𝐳] = 𝑇 𝔼[𝐝CPA] = 𝑇 𝑃 𝝁rel (A.11)

Breaking this into components:

𝔼[𝐳] =
[

𝐯⊤⟂𝑃 𝝁rel
𝐯⊤∥ 𝑃 𝝁rel

]

(A.12)

Since 𝐝CPA = 𝑃 𝐱rel lies in the space orthogonal to 𝐕rel, and 𝐯∥ ∥ 𝐕rel, 
it follows that:
𝐯⊤∥ 𝑃 𝝁rel = 0 (A.13)

Thus, the mean of the transformed variable is:

𝔼[𝐳] =
[

𝐯⊤⟂𝑃 𝝁rel
0

]

(A.14)

A.3.  Covariance of transformed vector

The covariance of the transformed variable is given by:
Cov[𝐳] = 𝑇 𝑃 Σrel 𝑃

⊤ 𝑇 ⊤ (A.15)

Expanding this using the orthonormal basis:

Cov[𝐳] =
[

𝐯⊤⟂𝑃 Σrel 𝑃⊤𝐯⟂ 𝐯⊤⟂𝑃 Σrel 𝑃⊤𝐯∥
𝐯⊤∥ 𝑃 Σrel 𝑃⊤𝐯⟂ 𝐯⊤∥ 𝑃 Σrel 𝑃⊤𝐯∥

]

(A.16)

Since 𝑃 𝐕rel = 0, and 𝐯∥ ∥ 𝐕rel, it follows that:
𝑃⊤ 𝐯∥ = 0 ⇒ All terms involving 𝐯∥ vanish (A.17)

Thus:

Cov[𝐳] =
[

𝜎2𝑧 0
0 0

]

(A.18)

where:

𝜎2𝑧 ∶= 𝐯⊤⟂𝑃 Σrel 𝑃
⊤ 𝐯⟂ (A.19)

A.4.  Conclusion

The transformed vector 𝐳 = 𝑇 𝐝CPA lies entirely along the x-axis in the 
transformed frame. Its non-zero component is a univariate Gaussian:
𝑧 ∼ 

(

𝐯⊤⟂𝑃 𝝁rel, 𝐯⊤⟂𝑃 Σrel 𝑃
⊤ 𝐯⟂

)

(A.20)

Appendix B.  Approximation of 𝒕𝐢𝐧 under position uncertainty

Assume the relative position is normally distributed,
𝐱rel ∼  (𝝁rel,Σrel), (B.1)

and the relative velocity 𝐕rel is deterministic. The time to intrusion entry 
is modeled as a nonlinear function of 𝐱rel:

ℎ(𝐱rel) =
𝐕⊤rel𝐱rel
‖𝐕rel‖

2
− 1

‖𝐕rel‖

√

𝑅2
PZ −

(

𝐯⊤⟂𝑃 𝐱rel
)2. (B.2)

Here,

𝑃 ∶= 𝐼 −
𝐕rel𝐕⊤rel
‖𝐕rel‖

2

is the projection matrix onto the subspace orthogonal to the relative 
velocity, and

𝐯⟂ = 1
‖𝐕rel‖

[

−𝑉rel,𝑦
𝑉rel,𝑥

]

(B.3)

is the corresponding orthogonal unit vector.
Using the delta method, the mean and variance of 𝑡in are approxi-

mated as:
𝜇𝑡in ≈ ℎ(𝝁rel), 𝜎2𝑡in ≈ ∇ℎ(𝝁rel)⊤Σrel ∇ℎ(𝝁rel). (B.4)

The gradient of ℎ at 𝝁rel is:

∇ℎ(𝝁rel) = ∇𝑓 (𝝁rel) +
𝑔(𝝁rel)

‖𝐕rel‖
√

𝑅2
PZ − 𝑔(𝝁rel)2

∇𝑔(𝝁rel), (B.5)

with the component functions:

𝑓 (𝐱rel) =
𝐕⊤rel𝐱rel
‖𝐕rel‖

2
, ∇𝑓 (𝝁rel) =

𝐕rel

‖𝐕rel‖
2
, (B.6)

𝑔(𝐱rel) = 𝐯⊤⟂𝑃 𝐱rel, ∇𝑔(𝝁rel) = 𝐯⊤⟂𝑃 . (B.7)

This approximation is valid only when
‖𝐝CPA(𝝁rel)‖2 < 𝑅2

PZ,

ensuring the square root in (B.2) remains real.
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Appendix C.  Derivation of delta method approximations for 
velocity uncertainty

C.1.  Time to closest point of approach (CPA)

Let the relative position be the deterministic vector 𝐱rel, and the rel-
ative velocity be uncertain:
𝐕rel ∼  (𝝂rel,Σ𝑉rel ). (C.1)

The time to CPA is defined by the nonlinear function:

𝑓 (𝐕rel) =
𝐕⊤rel𝐱rel
𝐕⊤rel𝐕rel

. (C.2)

Using the delta method, the approximate mean and variance of 𝑡CPA
are:

𝜇𝑡CPA ≈ 𝑓 (𝝂rel) (C.3)

𝜎2𝑡CPA ≈ ∇𝑓 (𝝂rel)⊤Σ𝑉rel ∇𝑓 (𝝂rel). (C.4)

The gradient is:

∇𝑓 (𝝂rel) =
𝐱rel

‖𝝂rel‖2
−

2 𝝂⊤rel𝐱rel
‖𝝂rel‖4

𝝂rel. (C.5)

C.2.  Distance at CPA

Define the nonlinear function:
𝑔(𝐕rel) = ‖

‖

𝐱rel − 𝑓 (𝐕rel)𝐕rel
‖

‖

. (C.6)

Let

𝐝CPA = 𝐱rel − 𝑡CPA 𝐕rel. (C.7)

Then, the approximate mean and variance of the folded normal vari-
able ‖𝐝CPA‖ are:
𝜇𝑑CPA ≈ 𝑔(𝝂rel), 𝜎2𝑑CPA ≈ ∇𝑔(𝝂rel)⊤Σ𝑉rel ∇𝑔(𝝂rel). (C.8)

To compute the gradient, define the shorthand:
𝐝 = 𝐱rel − 𝑓 (𝐕rel)𝐕rel. (C.9)

Then the chain rule gives:
∇𝑔(𝝂rel) =

𝐝
‖𝐝‖

(

−∇𝑓 (𝝂rel) 𝝂⊤rel − 𝑓 (𝝂rel) 𝐼
)

, (C.10)

C.3.  Intrusion entry time 𝑡in

Define:

ℎ(𝐕rel) = 𝑓 (𝐕rel) −

√

𝑅2
PZ − 𝑔(𝐕rel)2

‖𝐕rel‖
. (C.11)

Then:

𝜇𝑡in ≈ ℎ(𝝂rel), 𝜎2𝑡in ≈ ∇ℎ(𝝂rel)⊤Σ𝑉rel ∇ℎ(𝝂rel). (C.12)

The gradient is:

∇ℎ(𝝂rel) = ∇𝑓 (𝝂rel) +
𝑔(𝝂rel) ∇𝑔(𝝂rel)

‖𝝂rel‖
√

𝑅2
PZ − 𝑔(𝝂rel)2

+

√

𝑅2
PZ − 𝑔(𝝂rel)2

‖𝝂rel‖3
𝝂rel.

(C.13)

This approximation requires ‖𝐝CPA‖ < 𝑅PZ to ensure the square root 
remains real.

Appendix D.  Locus of projections of a point onto lines through 
another point

Let 𝐴 and 𝐵 be two distinct points in the plane. We show that the 
set of all points obtained by projecting 𝐴 perpendicularly onto lines that 
pass through 𝐵 forms a circle. This circle is centered at the midpoint of 
segment 𝐴𝐵 and has radius equal to half the distance between 𝐴 and 𝐵.

D.1.  Coordinate system setup

Without loss of generality, place:
𝐵 = (0, 0), 𝐴 = (2𝑑, 0), where 𝑑 > 0 (D.1)

Then the midpoint of 𝐴𝐵 is
𝑀 = (𝑑, 0) (D.2)

and the distance between 𝐴 and 𝐵 is
|𝐴𝐵| = 2𝑑 (D.3)

so the radius of the claimed circle is
𝑟 = 𝑑 (D.4)

D.2.  Lines passing through 𝐵

• Non-vertical lines: A line through 𝐵 with slope 𝑚 has the form 𝑦 =
𝑚𝑥, which can also be written as:
𝑚𝑥 − 𝑦 = 0 (D.5)

• Vertical line: The vertical line through 𝐵 has equation
𝑥 = 0 (D.6)

We handle this special case separately in Section D.5.

D.3.  Projection of 𝐴 onto a non-vertical line

To find the perpendicular projection of a point (𝑥0, 𝑦0) onto a line 
given in standard form 𝑎𝑥 + 𝑏𝑦 + 𝑐 = 0, the formula is:
(

𝑏(𝑏𝑥0 − 𝑎𝑦0) − 𝑎𝑐
𝑎2 + 𝑏2

,
𝑎(−𝑏𝑥0 + 𝑎𝑦0) − 𝑏𝑐

𝑎2 + 𝑏2

)

(D.7)

For our line 𝑚𝑥 − 𝑦 = 0, we have 𝑎 = 𝑚, 𝑏 = −1, 𝑐 = 0. Applying the 
formula to point 𝐴 = (2𝑑, 0), we get:

𝑃𝑚 =
(

2𝑑
𝑚2 + 1

, 2𝑑𝑚
𝑚2 + 1

)

(D.8)

which is the projection point of 𝐴 onto the line 𝑦 = 𝑚𝑥.

D.4.  Distance from the projection point to the midpoint

We now compute the distance from the projection point 𝑃𝑚 to the 
midpoint 𝑀 = (𝑑, 0):

‖𝑃𝑚𝑀‖

2 =
(

2𝑑
𝑚2 + 1

− 𝑑
)2

+
(

2𝑑𝑚
𝑚2 + 1

)2

=
𝑑2(1 − 𝑚2)2 + 4𝑑2𝑚2

(𝑚2 + 1)2

=
𝑑2(𝑚4 + 2𝑚2 + 1)

(𝑚2 + 1)2

= 𝑑2

(D.9)

So

‖𝑃𝑚𝑀‖ = 𝑑 (D.10)

independent of 𝑚. This confirms that every projection point lies on the 
circle centered at 𝑀 = (𝑑, 0) with radius 𝑑.

D.5.  Vertical line case

For the vertical line 𝑥 = 0, the perpendicular projection of 𝐴 = (2𝑑, 0)
is simply the point
𝐵 = (0, 0) (D.11)

Its distance to the midpoint 𝑀 = (𝑑, 0) is also:
‖𝐵𝑀‖ = 𝑑 (D.12)

so 𝐵 also lies on the same circle.
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D.6.  Conclusion

We have shown that as we vary the line through 𝐵, the perpendicular 
projection of 𝐴 always lies at a constant distance 𝑑 from the midpoint 
of segment 𝐴𝐵. Thus, the complete set of these projection points forms 
a circle centered at 𝑀 with radius
𝑑 = 1

2‖𝐴𝐵‖ (D.13)

Appendix E.  Proof that the angle 𝝓 of 𝐝𝐂𝐏𝐀 follows a projected 
normal distribution

Let the relative position be the fixed vector 𝐱rel ∈ ℝ2 and let the rel-
ative velocity be the random vector

𝐕rel ∼  (𝝂rel, Σ𝑉rel ), 𝐕rel =
[

𝑣𝑥
𝑣𝑦

]

. (E.1)

Define 𝜃 = atan2(𝑣𝑦, 𝑣𝑥) so that (by definition) 𝜃 is distributed as a pro-
jected normal [52]. We prove that the angle
𝜙 = atan2(𝑑CPA,𝑦, 𝑑CPA,𝑥) (E.2)

associated with the closest-point-of-approach vector 𝐝CPA is also pro-
jected normal.

E.1.  Rotate the coordinate frame

Without loss of generality, rotate the coordinate frame so that
𝐱rel = (2𝑑, 0), 2𝑑 = ‖𝐱rel‖ > 0. (E.3)

A deterministic rotation preserves the family of projected normal distri-
butions.

E.2.  Express 𝐕rel in polar form

We represent the relative velocity as

𝐕rel = 𝑣
[

cos 𝜃
sin 𝜃

]

, 𝑣 > 0, (E.4)

where 𝑣 and 𝜃 are the magnitude and direction of the Gaussian-
distributed velocity vector.

E.3.  Compute the CPA vector

Using the standard CPA time formula,

𝑡CPA =
𝐕⊤rel𝐱rel
‖𝐕rel‖

2
= 2𝑑 cos 𝜃

𝑣
, (E.5)

we compute:
𝐝CPA = 𝐱rel − 𝑡CPA 𝐕rel (E.6)

= 2𝑑
[

1 − cos2 𝜃
−cos 𝜃 sin 𝜃

]

(E.7)

= 2𝑑
[

sin2 𝜃
−cos 𝜃 sin 𝜃

]

. (E.8)

As shown elsewhere, 𝐝CPA under velocity uncertainty traces a circular 
arc of radius 𝑑 centered at (𝑑, 0).

E.4.  Direction of 𝐝CPA

The CPA vector is proportional to
[

sin 𝜃
−cos 𝜃

]

, (E.9)

which is a counterclockwise rotation of 
[

cos 𝜃
sin 𝜃

]

 by 90◦:
[

cos(𝜃 − 𝜋
2 )

sin(𝜃 − 𝜋
2 )

]

=
[

sin 𝜃
−cos 𝜃

]

. (E.10)

Therefore, the direction angle of 𝐝CPA is
𝜙 = 𝜃 − 𝜋

2 (mod 2𝜋). (E.11)

E.5.  Distribution of 𝜙

From (E.11), the angle 𝜙 is simply a constant shift of 𝜃:
𝜙 = 𝜃 − 𝜋

2 .

Since 𝜃 is projected normal and the projected normal family is closed 
under deterministic rotations, 𝜙 is also projected normal.

If 𝐱rel is not aligned with the 𝑥-axis, an additional constant rotation 
by arg(𝐱rel) is applied. The projected normal family is again invariant to 
such a transformation.

Thus, 𝜙 follows a projected normal distribution. Its parameters de-
pend on the geometry and the Gaussian distribution that induces 𝜃, and 
a closed-form expression is nontrivial.

Appendix F.  Figures

(Figs. F.1, F.2, F.3, F.4)

Fig. F.1. Resolution velocity distribution under position uncertainty (𝜎𝑥𝑜 =
𝜎𝑥𝑖 = 6.127), Δ𝜓 = 2◦, ‖𝐝CPA‖ = 0 m.
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Fig. F.2. Resolution velocity distribution under position uncertainty (𝜎𝑥𝑜 =
𝜎𝑥𝑖 = 6.127), Δ𝜓 = 2◦, ‖𝐝CPA‖ = 45 m.

Fig. F.3. Resolution velocity distribution under velocity uncertainty (𝜎𝑣𝑥𝑜 =
𝜎𝑣𝑥𝑖 = 0.204), Δ𝜓 = 2◦, ‖𝐝CPA‖ = 0 m.

Fig. F.4. Resolution velocity distribution under velocity uncertainty (𝜎𝑣𝑥𝑜 =
𝜎𝑣𝑥𝑖 = 0.204), Δ𝜓 = 2◦, ‖𝐝CPA‖ = 45 m.
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