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Abstract

After stroke, functional recovery may be promoted during the first six months through
rehabilitation. Several events are thought to lead to regaining lost functions, among which
the remapping of affected limbs to other regions of the cortex is a frequent occurrence. High
spatial resolution brain imaging techniques, like magnetic resonance imaging (MRI), may
be used to observe the affected areas and assess the severity of the lesions, but are unable
to provide much insight on dynamic changes in brain function. An alternative non-invasive
technique possessing an excellent temporal resolution to observe transient events is elec-
troencephalography (EEG), a method limited by a low spatial resolution. This study aims
to combine 62-channel EEG recordings with anatomical information derived from struc-
tural MRI and diffusion-weighted imaging (DWI) to improve the low resolution of EEG.
During EEG acquisition, stroke patients (N = 3) and age-matched healthy controls (N =
2) received electrical impulses at both index fingers, stimulating both brain hemispheres
sequentially through somatosensory feedback. After a static estimation of the current time
series of candidate sources distributed over the brain cortex, a multivariate autoregressive
(MAR) model was used to estimate the causal interactions between those found to be ac-
tive due to the applied stimulus. The result was a visualization of the information transfer
between active sources. A reasonably accurate estimation was achieved, even in presence
of low signal to noise ratio (SNR) of EEG. Physiologically plausible source locations and
connecting pathways were found, but an explanation of the observed phenomena and the
interpretation of the differences between patients and controls is beyond the scope of this
thesis, as a more extensive study is needed for this purpose. Consistent results found
within subjects provide evidence of the potential value of this method in longitudinal stud-
ies, even when a comparison between subjects were not possible due to confounding factors
(i.e. SNR differences). The obtained results support the candidacy of this method in the
study of stroke, as it was found to be useful to track the information flow in the brain
and might constitute a first step towards the development of a precise prognostic model of
stroke.
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List of variables

A: Matrix of weighting coefficients in a MAR model

Al: Weighting matrix in VBMEG MAR model, initialized based on estimated anatomical connec-
tions

A−1
L : Variance matrix of Z

α−1
0n : Current variance (inverse precision)

ᾱ−1
0n : Mean current variance

b: Magnetic field

b∞: Primary field

β−1: Average noise variance, estimated from the baseline

Cn: Index for anatomically connected sources to the nth source

Cuu = Autocovariance of the baseline

D: Smooth currents (dipole space)

δ: Time delays in signal propagation along white matter tracts

en: Noise for a single time series in a MAR model

En: Noise matrix for the full MAR model

E: Electric field

η: Measurement noise

fs: Number of fibers sprouting from the seed ROI in the currently considered pair

ft: Number of fibers estimated between a pair of ROIs

φs: Potential basis function (BEM)

g: Leadfield vector

G: Leadfield matrix

Ĝ: Smooth Leadfield matrix

γ0nα: Hyperparameter controlling the shape of the gamma function describing the posterior distri-
bution of the currents’ variance

Ip: An identity matrix matching the size of the number of dipoles p

j: Current density (Biot-Savart)

jp: Primary currents

jv: Passive currents

K,k: Solution kernels reflecting the structure of the cortical model for solving the forward problem.
Generalized expression for the Leadfield matrix

k∞: Infinite homogeneous model for solving the forward problem

L(D): Energy function associated to the prior distribution of the currents D
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λ: Regularization parameter for solving an L2 norm minimization problem

M = Measurements (EEG or MEG)

µ0: Permittivity of empty space

N = Number of sensors (electrodes)

ν: Parameter controlling the relative weight between the reconstruction error and the regularization
term in a least squares problem

P: Number of dipoles

Θ: Dipole orientation

q = Dipole moment (orientation and magnitude)

r: Observation point (sensor coordinates)

r’: Source point (dipole coordinates)

S: Number of surfaces in tessellation

σ: Medium conductivity

σ0: Unit conductivity of an infinite homogeneous medium

Σ0: A regularization matrix

Σ−1
α : Current covariance matrix, with the precision (inverse variance) along its diagonal

ΣC : Diagonal matrix with the Trace of the Autocovariance matrix Cuu repeated along its diagonal

Σ−1
G : Noise covariance matrix

T: Time

U1(D): Energy function associated to the probability of the measurements given the currents

v: electric potential

v∞: Primary potential

vs: Number of voxels in seed ROI

vt: Number of voxels in target ROI

W: 3-dimensional weighting matrix in a MAR model

WL: Gaussian smoothing filter for smoothness constraint

xn: Vector containing a number of time samples previous to yn
yn: nth sample of a time series in a MAR model

Z = Coarse currents (source space)

ψs: Weighting basis function (BEM)

ω: Reconstruction error in a MAR model
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Chapter 1

Introduction

1.1 Stroke: The Ailment and its Impact

Stroke is caused, in general terms, by the interruption of blood supply (oxygen) to specific
areas of the brain [1], and it refers to the clinical condition of rapidly developing neurological
deficit in the affected areas (when not due to seizure activity) [2]. Stroke caused by a
deprivation of blood supply from flow blockage is called ischemic stroke, and may have
different origins, thrombosis or an embolus within a blood vessel being the most common.
Other events that may result in such an oxygen deficit may be occlusion caused by a
hematoma or tumor or inflammation of the arteries, but these cases are rare [2]. Stroke
may also occur as a result of the rupture of a blood vessel (hemorrhagic stroke) [3]. There
are several symptoms that may arise as soon as an occlusion occurs (numbness or weakness
of the face or limbs, normally on one side of the body [1]) and quickly reacting to them
greatly improves the chances of survival and recovery for patients.

Stroke is the third most common cause of death in industrialized countries, only
surpassed by heart disease and cancer [4]. In Europe, as the proportion of elderly members
of the population grows on a yearly basis, and the likelihood of having a stroke doubles
every 10 years after the age of 55 [5], stroke incidents are expected to increase from 20%
of the 65+ population, observed in the year 2000, to 35% by 2050, which would result in
a decrease in the European population from 728 million in 2000 to 705 million inhabitants
in 2050 [6]. For this reason, preventing cerebrovascular accidents resulting in stroke and
properly reacting to such episodes when they occur has become a major concern for all
parties involved.

Stroke survivors tend to suffer from a variety of impairments that become evident
during the first 6 months after the occurrence of the cerebrovascular accident, being hemi-
paresis, cognitive deficits and depressive symptoms some of the most common ones [7]. The
severity of their impairment depends on the location and spread of the damaged region in
the brain. Consequently, patients having suffered from stroke face a dramatic decrease in
their quality of life.

According to the World Health Organization (WHO), 15 million people suffer a stroke
every year around the world, from which 5 million are left permanently disabled [8]. The
global prevalence of stroke was estimated to be 33 million in 2015 [9]. This results in
a large number of productive years lost by those patients (Disability adjusted life years-
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DALYs), that was of 38 million DALYs in 1990 and that is expected to be of 61 million
DALYs in 2020, placing a huge burden on the global population, as healthy, productive
people need to support an ever enlarging non-productive population [8]. Even though
major risk factors such as high blood pressure and smoking have been gradually controlled
and reduced worldwide, the generalized aging of the population observed in most countries
has led to the expected incidence of stroke for the following years to elevate [8].

The increasing number of stroke patients results in a large expenditure in healthcare.
For example, in 2003, the Netherlands spent an average of e 16,000 per patient during the
6 months following the accident in medical costs [10]. According to the Dutch National
Institute for Public Health and the Environment (RIVM), in the 2002 report on Dutch
Health Status and Forecasts [11], a total amount of 417 million Euros were spent on care
given to stroke patients in 1999, an amount that according to Struijs et al. [12] remained
relatively constant (at least until 2005, when their work was published), albeit a slight
increase. The enlargement of the population of aged individuals observed during the last
10 years, alongside the development of more effective treatment, has caused these numbers
to augment. The aforementioned report by the RIVM stated that the costs related to
stroke in the Netherlands, which constituted about 3% of the costs in Healthcare in that
country in 2002, where expected to increase 1.5% every year [11].

Additionally, there are many sources of expenditure that are not so obvious, such as
social services and caring costs [13]. More than 50% of stroke survivors return to their
home after being released from the hospital and are cared for by informal care givers, such
as their families [14]. Van Eeden et al. [14] strived to perform a more comprehensive
analysis of the costs, as they included the intervention costs (those that contribute to the
development and administration of the Self-Management Intervention and the augmented
cognitive behavioral therapy), the health-care sector costs (general practitioner (GP) visits,
hospital visits, and medication), patient and family costs (travel costs, costs of informal
care, productivity losses and home adjustments) and costs outside the healthcare sector
(productivity costs). Such broader studies offer a more accurate image of the costs related
to stroke and accentuate the relevance of improving the rehabilitation therapies provided
nowadays. 3 years later, Van Eeden et al. [15] reported that the total societal costs in
the Netherlands, for 1 year post-stroke patients were e 29,484, from which 74% was spent
over the first 6 months. This amounts to e 21,818.16, which approaches quite well the
estimation the RIVM offered back in 2002 [11].

1.2 Treatment

When stroke occurs, an immediate and efficient response from healthcare providers is
paramount, so that the patient may achieve the best possible recovery, as a full recovery
is typically not accomplished [16]. Nevertheless, treatment applied to stroke survivors has
proven to have variate, unpredictable results [17], which has so far hindered the overall
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rehabilitation process. Nelles et al. [18] found that passive movements induced on patients
having suffered from stroke generates some of the activation patterns of those observed
when the same movement is performed actively after substantial motor recovery has been
achieved. This phenomenon has been used to promote re-learning by striving to trigger
the neuroplastic mechanisms that seem to underlie the brain’s resilience and capacity to
reconfigure itself [19]. The problem is, though, that this neuroplastic mechanism is not yet
fully understood, which makes it challenging for physicians to determine a rehabilitation
therapy that might effectively trigger structural changes in the brain that would, in turn,
allow for a patient to recover lost functionality.

Langhorne et al. [20] carried out a review of the literature in order to lay down a map
of relevant rehabilitation interventions and they found that some forms of rehabilitation
therapies do seem to have a positive effect in either the recovery or the compensation
(depending on the characteristics and particularities of every patient) of lost functions,
while for others evidence of actual benefits could not be found. Naturally, variables such
as the quality of the therapy itself also play a role in the degree and rate of improvement in
patients, but subtle differences in the lesions present in each case may hinder the process,
regardless of the thoroughness and quality of the therapy provided, which calls for training
to be adapted, tailor-made even, to every single case.

1.3 Neuroplasticity

Brain plasticity or neuroplasticity refers to the ability of the brain to remodel neuronal
cortical connections, triggered by a goal-oriented experience (learning) [21]. This mech-
anism is not yet entirely understood, but several hypothesis exist behind its functioning,
such as long-term potentiation (improvement of the execution of a task through repetition;
"persistent increase in synaptic strength following high-frequency stimulation of a chemi-
cal synapse" [22]) and long-term depression ("activity-dependent reduction in the efficacy
of neuronal synapses lasting hours or longer following a long patterned stimulus" [23]).
Synaptic plasticity in cortical horizontal connections is also thought to be behind the reor-
ganization of the cortical map [24]. The occurrence of this reorganization has been reported
to vary and may depend on the underlying mechanism causing that specific reorganization
in an individual [24]. Therefore, even though there seems to be enough evidence of neu-
roplasticity in stroke patients, an optimal way of triggering it and of achieving a specific
desired reorganization in the maps of the brain is yet to be found. Better understanding
neuroplasticity by knowing which stimuli reconfigure brain maps in a certain way may hold
in itself the key to optimizing rehabilitation therapies so as to achieve a functional recovery
through neural compensation.

Neuroplasticity has been attributed to multiple underlying events, such as connec-
tive redundancy, axonal sprouting resulting in the formation of new synapses, functional
take-over by the contra-lateral homologous cortex, etc. [25]. Training and other forms of
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rehabilitation have been found to promote changes in the representation of affected limbs on
the cortex, relocating them to healthy regions of a patient’s brain. Frequently, repurposed
areas may be found in the peripheral areas of infarction, the homologous contra-lateral
region and adjacent supplementary motor areas (SMA) [25]. Phenomena such as axonal
sprouting does not normally occur in adult individuals (they typically occur during matu-
ration), but the occurrence of injuries enables these mechanisms to be triggered once again,
approximately during the first 6 months after injury [25], which is why therapy provided
within this time frame yields the best results. This remapping of limbs in the cortex alters
the functional connectome, which most likely results in topological changes in the brain
network [26].

1.4 The Human Connectome

The Human Connectome is a comprehensive structural description of the elements of a hu-
man brain network and the elements connecting them to each other [27]. This description
may be performed at different scales, going from the microscale (single neurons and their
synapses), through the mesoscale (components within regions), to the macroscale (brain
regions and the pathways leading to them). An alternative meaning for the term "connec-
tome" is that referring to the sequence of co-activated areas (i.e. functional connectivity)
[28], which is the one used in the present paper.

1.5 An Effort to Understand Neuroplasticity

The problem of understanding the way in which the brain reconfigures itself may be ap-
proached in different ways. One of the main strategies adopted to this end consists of
studying the way in which the brain responds to external stimuli. Hypothetically, acquir-
ing some notion about the effects a particular form of stimulus has on the rearranging of
the brain network could, in principle, make it possible for a specific, desired configuration
to be induced on the brain. Several techniques exist to measure and observe brain activity,
but all of them have technical aspects that obscure the observed phenomena. For example,
techniques like functional magnetic resonance imaging (fMRI) posses a high spatial resolu-
tion, providing accurate information on the exact location of active areas within the brain,
but have a poor temporal resolution that results in the loss of information on transient
events. On the other hand, electroencephalography (EEG) has a high-enough temporal
resolution to measure transient responses, but a low spatial resolution, providing only a
general idea of where the active areas are located [29].

To face this problem, a conglomerate of methods has been developed in an attempt
to combine the advantages of multiple brain imaging techniques to compensate for their
individual weaknesses. In general, these methods seek to combine brain activity mea-
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surements performed while applying a known perturbation with mathematical constraints
derived from prior knowledge of physiological phenomena, in order to determine which
areas of the brain are activated as a response to such stimuli. However, this activation
is rarely isolated and seldom exclusive to a given episode, which makes it difficult to be
attributed to a specific event.

Multiple techniques for brain source localization have emerged from the collective
work of many research groups worldwide, being gradually refined so that an ever more
accurate identification of participating components of the brain can be performed. In
general, this process consists of two stages, known as the Forward Problem and the
Inverse Problem.

The solution of the Forward Problem requires building a model of the brain to be
studied alongside its surrounding tissues (i.e. skull, scalp, etc.) with their respective
geometric and physical characteristics (i.e. conductivity), including a conglomerate of
prospective sources of neural activity so that a corresponding primary magnetic field or
primary scalp potential at each of these sources can be calculated relative to the location of
the observation points (i.e. electrodes) [30]. To do this, several assumptions can be made
(i.e. consider the skull to be spherical) [29], trying to find an equilibrium between model
accuracy and computational complexity.

Once the model of the brain has been built and its corresponding magnetic field
or scalp potential has been calculated, depending on whether magnetoencephalography
(MEG) or EEG recording techniques are involved, the Inverse Problem can be solved.
Previously obtained measurements of brain activity are used as input in order to estimate
the location of neural activity related to a given, known stimulus. These locations are
determined by estimating the magnitude of the currents and (usually) defining a threshold
above which those currents will be assumed to be related to the stimulus. This problem
is inherently complicated, as it is severely underdetermined; far more sources exist than
sensors to measure their activity.

Consequently, the ideal case would be for a method to be implemented such that
it was possible to benefit from the advantages of every technique while avoiding their
corresponding disadvantages, so as to effectively observe the effects external stimuli have
on the activation patterns of the brain. Nevertheless, the estimation of the location of
active sources in the brain of stroke patients constitutes but a fraction of the information
needed to understand the effects the applied rehabilitation has on their recovery. Acquiring
a full perspective of the structural changes undergone in a patient’s brain during and after
rehabilitation requires not only to know where information is processed, but also the regions
between which this information is transferred. In other words, it is of utter importance to
understand the way in which the brain network is modified in response to the therapy so
that it might be possible to alter it in a specific way. A first approach at understanding these
changes might be to compare the conventional information flow between interconnected
brain areas found in healthy subjects with those displayed by patients, so that differences
in functional connectivity may be observed.
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The presently described research effort has studied the gradual "evolution" of multiple
brain source localization methods, as well as different possibilities for building a dynamic
model describing source interactions. This search on the state of the art has made it
possible to select what seems like an appropriate candidate for the intents and purposes
of this endeavor. A physiologically constrained Bayesian estimation algorithm is used to
locate active brain sources. These sources, combined with white matter tracks estimated
from DWI, are used to build a multivariate autoregressive (MAR) model to describe the
causal interactions between regions of interest (ROIs).

This method, called Variational Bayesian Multimodal Encephalography (VBMEG)
has been developed by the Japanese company ATR (Advanced Telecommunications Re-
search Institute International). It has been found to yield accurate localization results
when processing data related to a face recognition task [31], but its localization potential
for processing different forms of stimulation remains unexplored.

1.6 Problem Definition and Goal

The underdetermined nature of the inverse problem calls for structural, physiological and
functional information to be combined to find the location of active areas in the brain
related to a specific form of stimulus. Among the methods published over the past years, the
VBMEG method has shown potential both in locating these active sources and estimating
the pathways connecting each of these to others. This dynamic model of activity between
brain sources is useful in providing some notion of activation causality and information
transfer. Nevertheless, the accuracy of this method remains to be explored when using more
complex forms of stimulation (i.e. somatosensory perturbations). Furthermore, published
results have focused on healthy subjects exclusively, leaving the matter of its potential to
study patients untested.

Therefore, the present work will investigate the dynamic interactions between sources
activated by an external somatosensory stimulus, comparing those found in healthy subjects
with those found in stroke patients. To this end, a multimodal brain imaging method
combining anatomical data from structural and diffusion MRI with functional information
from EEG will be applied to estimate the location of active brain sources. A Multivariate
Autoregressive (MAR) model will then be used to estimate the activation causality of the
sources, providing some notion of the pathways used by active sources to relay information
to one another. This research effort is meant to serve as a proof of concept for the potential
of the VBMEG method in future studies of the topological changes in the brain of stroke
patients.
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1.7 Layout of this Thesis

Chapter 2 of the present document offers an overview of the solution of the brain source
localization problem, with special emphasis in the techniques applied by the currently
used method, as well as a general explanation of the MAR model. Chapter 3 presents a
description of the whole process carried out to estimate the current densities of each source
and the causal interaction among them. Chapter 4 presents the obtained results, later to
be discussed inChapter 5, where possibilities for further improvement in future studies are
also contemplated. Chapter 6 portraits the conclusions of this work and theAppendix A
offers more exhaustive, mainly mathematical descriptions of the concepts employed in the
VBMEG method. Finally, Appendix B offers an explanation of the aspects considered
when discriminating independent EEG components during its preprocessing.
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Chapter 2

Theoretical Background

The multimodal brain imaging method used in the present work is a combination of prob-
abilistic (Bayesian) methods with a Multivariate Autoregressive (MAR) model, which is
capable of estimating active sources over a period of time, as well as the causality between
their activation. This chapter will offer an explanation of the process of "Brain Source
Localization", as well as the particularities of the applied methods.

As it was briefly mentioned in the introduction, the problem enclosed in source local-
ization has its origin in the fact of having unfit instruments to measure the contributions
of each region of interest (ROI) in the brain. The recorded activity acquired using imag-
ing techniques such as EEG and MEG can be attributed to pyramidal neurons in the
brain, which have a perpendicular orientation with respect to its cortex. The resulting
scalp potential or magnetic field can be measured using the aforementioned techniques,
but the number of ROIs far exceeds the number of sensors that can be used to perform
the measurements, which is why, mathematically, this problem is underdetermined.

To face these issues, a number of methods have been developed to narrow down and
pinpoint the location of sources portraying an activity pattern that might be related to a
specific episode or event (i.e. external stimulus). These techniques may avail themselves of
extra information derived from structural (MRI/DWI) and functional (fMRI) recordings
to further constrain and reduce the set of candidate sources. In general, the whole process
may be broken down into several steps, which are described next.

2.1 Construction of the head model

The first step consists of building a mathematical model of the head that will contain the
candidate sources to be related to the measurement of the scalp potential or the magnetic
field. This model can be built in different ways and can have an array of complexities,
carrying along a corresponding variety of difficulties and computational costs to solve.
The simplest models may be defined as a single sphere or series of concentric spheres with
candidate sources placed on the surface. While such a model may be solved with relative
ease, the accuracy of the obtained results may not be sufficient, its resemblance to an
actual human head being so poor. On the other hand, building a head model mimicking
the geometric and physical properties of a human head may prove too difficult to solve,
which is why an adequate balance between computational complexity and model fidelity
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must be found.

Crouzeix et al. [32] compared single- and multi-layered spherical and realistic models,
and found that a good option offering an acceptable degree of fidelity, while remaining
relatively easy to compute is the concentric shell head model. This model is comprised of
concentric layers, corresponding to multiple tissues of the head (brain, cerebro-spinal fluid,
skull, scalp, etc.), possessing geometries and physical properties (i.e. conductivity) similar
to those found in a real head. Some assumptions can be made to simplify the calculations,
such as the conductivity found in each shell being isotropic. Each of these shells may be
modeled using a general atlas of the anatomy of the human head, but better results are
obtained when these geometries are derived from anatomical information specific to each
individual, as even small inter-subject differences may lead to inaccuracies in the estimation
[33]. Once the layers corresponding to these tissues have been defined, a set of candidate
sources must be incorporated into the brain layer. There are different possibilities, but a
common practice in recent projects has been to divide the cortex into parcels, normally
triangular, and assign candidate sources to either the vertices of these elements or to place
them at the geometric center of each triangle [34].

It is pertinent now to mention that difficulties may arise when tessellating the cor-
tex of stroke patients presenting large lesions, as the inhomogeneity of the surface of the
cortex may make it impossible to lay down a homogeneous mesh; this may have serious
computational implications. The way in which candidate sources are defined in the brain
plays a major role in the accuracy of the estimation of their current densities, but also on
the computational costs involved. Setting up a homogeneous mesh on the cortex, as men-
tioned recently, allows for an efficient numerical method, called Boundary Element Method
(BEM) to be used. In general, this method consists of approximating the solution to a
partial differential equation (PDE) by calculating the solution to the PDE at the boundary
of the domain and then using this information to find the solution inside the domain [35].
In terms of the problem at hand, this is convenient as it allows to place a mesh exclusively
on the surface of the brain, which makes it much lighter to compute. Nevertheless, when
setting up such a mesh is not possible, some alternatives exist.

One of them utilizes a Finite Element Method (FEM) instead, which allows to use
inhomogeneous elements capable of fitting any geometry, but has the disadvantage of hav-
ing to mesh the whole volume (of the brain, in this case) which dramatically elevates the
computational costs involved. Other alternatives, such as using the contra-lateral region
to mirror the damaged area, have been explored [33], but subtle differences between both
hemispheres still lead to inaccuracies in the estimation. For this study, though, stroke
patients with relatively small lesions were selected in order to avoid major problems in
setting up the mesh.

Once the location of the candidate sources has been defined, the remaining parame-
ters to be estimated are the source orientation and the source magnitude, which together
constitute the moment of the dipoles. Whenever anatomical information from MRI data
is available, it is possible to differentiate between white and gray matter inside the brain,
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which can be used to fix the orientation of the sources. This can be done because, as
mentioned before, the currents result from the activity of pyramidal neurons, which are
perpendicular to the cortex. In practice, the T1 MRI scan is segmented into white and gray
matter, a boundary surface is set at the gray matter and all sources are set to reside on it,
with a perpendicular orientation to this surface. Therefore, the only unknown parameters
left are the source’s current magnitudes.

2.2 Solving the Forward Problem: Calculating the
Leadfield

Once the head model has been built, the next step consists of finding the magnetic field
(when MEG measurements are involved) or the scalp potential (when using EEG data)
related to a specific source distribution as perceived by a specific sensor layout, which con-
stitutes the solution of the Forward Problem. As the present work used EEG measurements
only, MEG-related descriptions will not be included here. The relationship between the
electric field and the current densities, leading to the calculation of the primary potential,
may be found in Appendix A. The primary potential is the electric potential observed at a
certain sensor location r due to the primary current exclusively. The expressions for this
quantity (also shown in Appendix A) constitutes the boundary integral equation for solving
the forward problem for scalp potentials (EEG).

The solution to the boundary equation previously mentioned may be factored and
expressed as the product of a field kernel and the dipole moment [34], and the form this
kernel takes depends on the type of model chosen. The solution may be enunciated as:

v(r) = kT (r, r’) · q (2.1)

With k(r, r’) being a 3x1 vector kernel function of the sensor locations and the source
locations r’. q represents the dipole moments (orientation and magnitude). More details
about these Kernels and the Leadfield matrix may be found in Appendix A.

In general the kernel used in the solution, regardless of the chosen model, may be
factored so that the terms independent of the sensor locations may be computed separately
to build a so-called transfer matrix, which greatly increases the efficiency of the solution
of the inverse problem, as it would normally require the computation of the Leadfield for
many source locations. Multiplying this transfer matrix with the primary potential yields
the Leadfield matrix G, which is used to compute the current densities during the solution
of the inverse problem [34].
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2.3 Solving the Inverse Problem

The relationship between the measured scalp potential and the primary source currents
may be described mathematically by means of the following expression:

M = G ·D + η (2.2)

In this equation, M is a matrix that contains the measured EEG information and
has N rows (N is the number of sensors), D is a matrix containing information on the
moments of the dipoles (D is used instead of q here, to relate it to the current densities
(amount of electric current per cross-sectional area), as the orientations are typically fixed
to be perpendicular to the border of the gray matter region, as described earlier), G
is the NxP gain (Leadfield) matrix (with P being the number of dipoles) obtained by
solving the forward problem, and represents the scalp potential produced by each current
source as measured by the N sensors, and η is an matrix containing the noise of the
measurements, assumed to follow a Gaussian distribution N(η|0, (βΣG)−1), where β−1 is
a scaling parameter estimated from the stimulus period and Σ−1

G is the noise covariance
matrix estimated from the baseline. The full noise covariance matrix (βΣG)−1 is assumed
to be the variance of the noise.

A wide variety of methods have been developed over the years to solve this problem.
These methods may be classified mainly as Parametric (i.e. non-linear Least Squares,
Beamformers, Subspace techniques, Computational Intelligence, etc.) or Non-Parametric
(i.e. Bayesian Framework, Weighted Resolution Optimization, Shrinking methods, etc.).
The category that has been found to yield the best results [36][37] is that of Bayesian
methods within the Non-Parametric techniques.

2.3.1 The Bayesian Framework

Bayesian methods applied to brain source localization seek to find an estimator that max-
imizes the posterior probability distribution of the currents D for the observed data M,
which is represented as the addition of two energy functions: the first energy function is
related to the posterior distribution of the measurementsM given the sourcesD (p(M|D)),
whereas the second energy function is associated to the likelihood of the sources (p(D)).
The formulation of this minimization problem may be found in Appendix A.

Several methods exist within this framework, and some of them are frequently used
as benchmark for comparing the accuracy of new methods. One of these is the minimum
norm estimate (MNE), which is characterized by using an L2 norm loss function com-
bined with Tikhonov regularization as an energy function for the prior information. In
practice, this method strives to find values for D such that the squared difference between
the measurements and the multiplication of the Leadfield times the current densities is
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minimized. The regularization parameter is used to control the weight given to the prior
knowledge, depending on how reliable it is.

Nevertheless, according to Pascual-Marqui [36], this method does not work well with
neither the realistic nor the spherical models of the head, as it tends to favor weak and
surface sources due to an estimation of the noise [37]. Further improvements have been
made on the MNE method by adding a weighting matrix based on the norm of the columns
of the Leadfield matrix (weighted MNE) and by making this weighted estimation recursive,
updating the values of the weighting matrix in every iteration.

Other methods have sprouted from WMNE, such as the LORETA (Low Resolution
Electrical Tomography) method, which besides using Leadfield Normalization uses a Lapla-
cian operator, which allows it to estimate sources not only on the brain cortex, but within
the inner volume. One of the methods found to be most accurate during simulations, often
used for comparing new models, is sLORETA [36][37], or Standardized Low Resolution
brain Electromagnetic Tomography. This method uses the estimation obtained from the
MNE method and standardizes it using its variance, assumed to result from the actual
source variance and variation due to noisy measurements. More detailed explanations on
all these methods may be found in Appendix A.

The VBMEG method is constituted by a static estimation of the current time series
and a dynamic estimation of the sources interactions with one another. The static esti-
mation uses an altered version of the MNE method similar in structure to the Wiener
filter, which intends to use the current variance to regularize the solution of the L2-
reconstruction problem. Nevertheless, because the true current variance is not known,
the VBMEG method places a hierarchical prior on the current variance and estimates
it iteratively using an Automatic Relevance Determination (ARD) model. The VBMEG
method differentiates itself further from the MNE method in that it places a smoothness
constraint in the currents, ensuring that neighboring active sources are correlated.

The dynamic estimation, on the other hand, uses a MAR model to determine whether
causal interactions exist between active sources found during the static estimation and all
other sources anatomically connected to them. The MAR weighting matrix is found using
an L2-regularized least-squares method as well, solved using Singular Value Decomposition
(SVD).

The sLORETA method, mentioned earlier in this subsection, was used as benchmark
for the estimated source locations, and will be shown in the Results chapter.

2.3.2 The Multivariate Autoregressive (MAR) Model

The following explanation is based on the work of Harrison and colleagues [38].

Multivariate Autoregressive (MAR) models are an attempt at estimating the values a
set of variables will take based on the weighted, linear sum of a number of previous values
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they have assumed. Such a model has the following form:

yn =
m∑

i = 1
yn−i · A(i) + e(n) (2.3)

In this equation, yn represents the nth sample of a d-dimensional time series and m
is the order of the model, which is equal to the number of previous time samples taken
into account. A(i) is a d × d matrix of weighting coefficients initially assuming causal
interactions between the nth time sample of each time series and its preceding m time
samples, and en is additive Gaussian noise with zero mean. The time series for each
variable (from which the mean has been previously subtracted) may be presented in vector
form as xn = [yn − 1, ..., yn−m ], which can be expressed in a standard linear regression form,
as:

yn = xn ·W + en (2.4)

Where W is a m×d×d matrix containing the weighting matrices for each time series.
Time series may also be placed in matrix form so that it contains the time series of all
variables. Therefore, the MAR model may be expressed in matrix form as follows:

Y = X ·W + En (2.5)

Where En is a matrix containing the aforementioned Gaussian noise for all time series.
In these models, all variables are connected to one another beforehand. The model is then
fitted to the data in order to determine which of the coefficients are non-zero. These
coefficients are related to the concept of Granger Causality, which states that activity in
region X "Granger Causes" activity in region Y if any of the connections from X to Y, over
all time lags, are non-zero. More details on the MAR model used in the present work will
be provided in the next section.
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Chapter 3

Methods

The whole estimation process can be followed in Figure 3.1. This process is broken down
in this section, with more thorough explanations about the calculations shown in Appendix
A.

3.1 Experimental Data

Real data analyses were performed on data provided by the Vrije Universiteit Medical
Center, recorded from 5 participants, from which 3 were stroke patients and 2 healthy
controls. Recorded data was comprised of 62-channel EEG measurements collected during
a somatosensory stimulation experiment, structural MRI (T1-MRI) and diffusion weighted
MRI (DWI) data. This experiment was divided into two conditions, each of which was
the perturbation of one brain hemisphere by means of electric stimulation delivered at the
index finger of the contralateral hand. Patients were asked to keep their eyes open and
blink normally during the experiments. In patients, the first condition was set to be the
unaffected hemisphere, whereas for healthy controls the first condition was set to be the
dominant hand. The delivered stimulus was defined to be a monophasic anodal electrical
pulse with a width of 400 µs, applied at a frequency of 3-4 Hz, randomly distributed over
the surface of each index finger. The length of the trial window varied between 250 and 300
ms. The intensity of the stimulation was determined by finding the sensitivity threshold
for each patient, which corresponds to the value at which each individual is capable of
perceiving 5 out of 10 pulses. The stimulation value was then set to be twice as large as
the value corresponding to the sensitivity threshold.

22



Figure 3.1: VBMEG method pipelines, combining EEG, structural and diffusion MRI to
estimate the dynamic interactions between active sources related to a particular stimulus.
The preprocessed EEG and the noise model obtained from its baseline are used alongside
the calculated Leadfield in the static estimation (hVB) at the source level, so that the es-
timated currents might be related to the ROI interactions directly. The estimated current
time series are included in the MAR model based on the estimated anatomic connections
and their corresponding time delays to estimate the effective connectivity (causality) be-
tween sources. The 100 strongest pairs of connections are selected, a higher resolution
tractography is estimated between them, and a dynamic model of the information flow
between active sources is obtained
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3.2 Preprocessing

3.2.1 Construction of the Cortical and Head Models

An anatomical model of the patient’s head was built, discriminating white from gray mat-
ter, so that prospective brain sources could be constrained to lie within the gray matter
region exclusively, and the orientation of their magnetic fields set to be perpendicular to
its surface. The cortical model, specific to every patient, was built using T1 MRI im-
ages corrected using SPM8 in order to avoid a biased extraction of the cortical surface
due to low-frequency variation values derived from the non-homogeneity of the MRI ma-
chine’s magnetic field [39]. The cortical surface was extracted using Freesurfer ’s "recon-all"
command, which performs motion correction, boundary extraction, corregistration, parcel-
lation, etc. [40].

To solve the Forward Problem, a triple-layered realistic model (each layer bearing the
conductivity for the scalp, the skull and the brain, asumed to be isometric) was built.
The volumetric image of the gray matter used as the innermost shell was obtained using
SPM8 ’s "Segment" command, which separates the MRI images into cerebrospinal fluid,
white and gray matter [41]. The surface files for the scalp and the skull were obtained
using Freesurfer ’s "watershed" command [40].

3.2.2 EEG Coordinate Transformation

The coordinates and orientations of the sensors (EEG electrodes) were transformed to head
coordinates using fiducial markers defined at the approximate location of the left and right
preauriculars and the nasion for every participant. The coordinates for these markers were
picked manually from the MRI data.

3.2.3 EEG Preprocessing

EEG preprocessing was carried out both in Matlab and in EEGlab. Matlab was used
mainly to remove the stimulation artifact from the raw data, as it is evident enough to
be done manually, whereas filtering, epoching, down-sampling, independent component
analysis (ICA) and bad component rejection were effectuated directly on EEGlab.

The stimulation artifact was removed manually first by identifying the range (across
trials) containing its characteristic large spike. The region located within this range was
"cut-out" and the gap was reconstructed using Matlab’s "fillgaps" function, which uses
Autoregressive Modeling to estimate extrapolated values from forward and reverse au-
toregressive fits [42]. The reconstructed signal was then exported to EEGlab for further
preprocessing.
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The EEG data was filtered using a band-pass filter with lower and upper cutoff fre-
quencies of 1 and 100 Hz, respectively, plus a notch filter at 50 Hz (45-55 Hz) to get rid of
the power line noise, with data down-sampling from 2048 to 512 Hz right after. The data
was then segmented into 250 ms epochs, going from -50 ms to 200 ms with respect to the
stimulus’ onset. ICA was applied after epoching to remove components corresponding to
EOG (electrooculogram), EMG (electromyogram) and ECG (electrocardiogram) artifacts.
Identification of such components was based on concentration of large amounts of activity
at an individual electrode and confirmed based on the phase plot for each independent com-
ponent, where non-artefactual components were identified to be monotonically decreasing.
See Appendix B for a more thorough explanation on EEG IC rejection.

3.3 Leadfield Calculation

FRESURFER was used to parcellate the cortex into approximately 5,000 elements, which
were then grouped into 2000 ROIs using Matlab’s "reducepatch" function [43], each with
a single current source located at its geometric center. For the calculation of the Leadfield
at every EEG electrode location, dipoles were set at the vertices of each of the 5,000
elements of the mesh, oriented perpendicularly to the boundary between gray and white
matter. A BEM was used for the forward computing and was solved with Galerkin’s
method of weighted residuals, using linear basis functions to approximate the potential at
every surface.

A differentiation between high-resolution, locally distributed sources’ currents (dubbed
D, corresponding to the vertex space) and locally clustered sources’ currents (named Z,
corresponding to the source space) was made, so that the currents D was a smoothed
version of the currents Z, as:

D = WL · (Z) (3.1)

Where WL is a Gaussian smoothing filter (refer to Appendix A). The Leadfield matrix
obtained using the dipole locations has a high resolution, which is why it needs be mul-
tiplied times the smoothing filter to perform the calculations of the rougher Z currents.
The relationship between the smooth and the coarse Leadfield matrices is then expressed
as:

Ĝ = G ·WL (3.2)

The effect of using this smoothed version of the currents is that these sources can be
mapped to the vertex space, providing a higher resolution for the location of the activ-
ity.
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3.4 DWI Analysis

The anatomic connections between brain areas and the time delays corresponding to the
lengths of these connections were estimated using probabilistic fiber tracking combining
structural T1 MRI and DWI images. The images were acquired by means of a 3T MRI
scanner (Discovery MR750, GE Medical Systems), and the dMRI image acquisition proto-
col involved 40 non-collinear gradient directions uniformly sampled over a sphere, with a
b-value of 1000 s/mm2, with an imaging matrix of 96x64 (zero padded to 256x256).

Image correction for subject motion during acquisition and for Eddy currents was done
using FSL’s "eddy correct" [44] command, whose bias on the grading direction was compen-
sated by rotating the b-vector using FSL’s non-linear registration tool FNIRT [45].

The seed and target ROIs, converted to volume ROIs and transformed to diffusion
space, where used for fiber tracking in MRtrix [46] using a fiber orientation distribution
reconstructed at each voxel by constrained spherical deconvolution. Fibers were tracked
with a step length of 0.2 mm within a mask of white matter volume, generating 105 fibers
from each ROI and stopping them either when intersecting another region or when being
longer than 300 mm. This process is exactly the same as the one done by Fukushima et
al. [31].

The estimated connections where evaluated in terms of strength, defined as the number
of fibers between a pair of ROIs ft divided by the number of fibers generated from the pair’s
corresponding seed ROI fs, normalized by the size of the regions. This is expressed in the
following equation:

Conn.Strength = (ft/vt)
(fs/vs)

(3.3)

Where vt and vs are the number of voxels in the target and in the seed ROIs, respec-
tively. These strengths were then binarized using a threshold value of 10−4. The binary
values were used as an indicator of significant connections between brain areas and were
used to assign interactions and calculate the delays for the construction of the MAR ma-
trix. Furthermore, connected ROIs where the only ones considered as candidates for the
estimation of the current densities.

3.5 Source Reconstruction and Connectivity Estima-
tion

As it was mentioned in the introductory section, the Variational Bayesian Multimodal
Encephalography (VBMEG) method was used to reconstruct the sources’ current densities
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and estimate the causality underlying their dynamics. Fukushima et al. [31] have presented
results obtained when performing the estimation of these two aspects simultaneously, as
the results obtained after performing several simulations appeared to be better than those
obtained when applying the steps sequentially. Executing both the source reconstruction
and the fiber tracking at the same time was later found to result in distortions under certain
circumstances. Therefore, it was decided by the research group at ATR and consequently
done so in the presently described work, to perform a two-stage estimation. The first
stage consists of estimating the current densities using the static hierarchical Variation
Bayesian (hVB) method [47]. Once completed, the second stage uses the static results
in the dynamic NETMAR method [31] to estimate the effective connectivity and observe
the sources’ interactions. Besides avoiding the eventual distortions, this also resulted in a
dramatic decrease in computation times, as fiber tracking is only done once.

3.5.1 Static Estimation

The static estimation carried out in the hVB method seeks to reconstruct instantaneous
values of the sources’ currents at multiple points in time. Equation 2.2 shows what
the issue in reconstructing these currents may be, as the total number of currents that
may be reconstructed perfectly equals the number of sensors used in the measurements.
The value of the currents may then be approximated by iteratively reducing the difference
between the measurements and candidate values assigned to the currents multiplied by the
Leadfield, as:

E(D) = ν‖M−G ·D‖2 + D′ · Σ0 ·D (3.4)

ν is a parameter that controls the relative weight between the reconstruction error
and the regularization matrix Σ0, which may contain different sorts of information. For
example, choosing the identity matrix as a regularization matrix results in the MNEmethod
mentioned in chapter 2 (and described more in detail in Appendix A). The minimum
solution to equation 3.4 is obtained by differentiating it with respect to D and making
it equal to zero, and is given by:

D = Σ−1
0 ·G′ ·

(
G · Σ−1

0 ·G′ + ν−1Ip
)−1
·M (3.5)

A different choice for this matrix might be the current covariance matrix, which would
result in the inverse filter known as the Wiener filter. Nevertheless, this method only
reconstructs the currents adequately when the current’s true covariance matrix is known,
which is not the case in practice.

To face this, the hVB method places a hierarchical prior on the current’s variance,
which is then estimated from the observed EEG data. The method offers the possibility
of using fMRI information as prior information on the variance distribution, although this
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data was not available in the present work and the mean variance was initialized as 1.
Additionally, the hVB method places a spatial smoothness constraint based on structural
MRI data (T1) that forces closely neighboring sources to have a high correlation with
respect to one another, thus enforcing the notion of these neurons firing at the same time.
The currents are therefore calculated using the following equation:

D(t) = Σ−1
α ·G′

(
G · Σ−1

α ·G′ + β−1Ip
)−1
·M(t)

Σ−1
α = WL ·A−1

L ·WL (3.6)

In this equation, Σ−1
α is the diagonal current covariance matrix with the inverse vari-

ance (precision) of the currents along its diagonal and β−1 is the average noise variance
estimated from the baseline of the EEG measurements M. WL is a Gaussian filter enforc-
ing the smoothness constraint and A−1

L is the variance matrix of the unsmoothed currents.
A more detailed explanation is offered in Appendix A.

A consequence of adding the hierarchical prior, which is a nonlinear function of the
current’s variance, is that the estimation problem cannot be be solved analytically. There-
fore, a Variational Bayesian algorithm is used and the minimization problem described
by equation 3.5 is expressed as the maximization of the free energy (see Appendix A).
Within this framework, the current variance and the current magnitudes are iteratively and
alternatively estimated until the free energy converges. The current variance is estimated
as a weighted average of the average magnitude of the estimated currents and prior mean
variance, as shown in the following expression:

α−1
n =

γ0nα · ᾱ−1
0n + T

2

(
1
T

T∑
t=1

D2
n(t)

)
γ0nα + T

2 (L(Σ−1
α ) ·G)n,n

(3.7)

Where γ0nα is a confidence hyperparameter that controls the width of the gamma
function describing the posterior distribution of the currents’ variance. The steps for
calculating the current densities and updating the variance are summarized in the following
pseudocode:

1. Initialization of the current variance α−1 and the confidence parameter γ0. If fMRI
information is used, this corresponds to the solution of the Wiener filter in the first
iteration. If no fMRI data is available, the variance and the hyperparameter are both
initialized as 1, which as the first iteration is equal to the MNE solution

2. Calculate the current magnitudes (Equation 3.6)

3. Update the current variance (Equation 3.7)

4. Calculate the free energy. If the solution does not converge, re-calculate the current
densities and variance, with the mean variance along the diagonal of the current
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covariance matrix

The maximization of the free energy is achieved by minimizing the divergence between
the true joint posterior distribution of the current densities and their variance given the
observed EEG measurements with respect to the trial posterior distribution of the esti-
mated parameters, which once it converges conforms the evidence of the measurements
(marginal likelihood) and may be expressed as the minimization of the Kullback-Leibler
(KL) distance. A step-by-step description is provided in Appendix A.

In any case, the current version of the VBMEG method does not iterate the solution
until the free energy converges, but rather a fixed number of 1000 times. A threshold is
then applied to the resulting current magnitudes, considering only those above it as active
sources related to the EEG data.

3.5.2 Dynamic Estimation

Once the currents’ time series had been calculated using the hVB static estimation, they
were used in a MAR model to estimate the causality between the ROIs containing the
sources found to be active, which may be interpreted as dynamic functional integration
between these regions. In chapter 2, it was mentioned that the order of the model consists
of the number of previous time samples used to estimate the current value of the time
series. There are multiple strategies for finding an optimal value for the order, such as the
minimum description length (MDL) or a maximum likelihood approach [38]. Nevertheless,
the amount of previous samples used is determined differently in the VBMEG method, as
it uses the estimation of the fibers connecting ROIs to build a delay matrix containing the
information transfer times between sources. The delay for self-interactions was considered
to be of 3 ms and the propagation velocity along the axons was set to be 6 m/s. The
time series are then clipped according to these delays in order to estimate the MAR co-
efficients. Under these constraints, the MAR model is meant to constitute a source space
representation of the sources’ interactions across the whole brain.

A small example of this process is provided here in an attempt to explain how the
estimation works. The dynamics of a single source Dn,t were modeled as follows:

Dn,t =
∑
k∈Cn

(
an,k ·Dk,t−δn,k

)
+ ωn,t (3.8)

In the previous equation, Cn is an index of the sources that are anatomically connected
to the nth source, an,k is the corresponding MAR coefficient and δn,k is its time lag for the
interconnection between the nth and the kth sources. ωn,t is the reconstruction error.

Let us assume there are 3 neighboring nodes, 2 of which are connected to the first, as
shown in Figure 3.2.
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Figure 3.2: Example of three anatomically connected sources p1...p3, separated by a dis-
tance m

In order to calculate the MAR coefficients of matrixA1 for source p1, its corresponding
current time series, here called d1, is "clipped" so that only the segment of the time series
that could, in principle, be explained by the current of any other source is considered.
To this end, the largest time lag from the matrix is taken into account, and the current
d1 is set to go from time zero plus the largest time lag, up until the end time minus the
same time lag. Within this time range, even the sources located farthest from p1 could
already have had an effect on it. The Dk,t−δ1,k matrix is built in the same spirit. The first
column corresponds to the self-interactions of p1, so the time lag to be removed is equal
to 3 ms. The rest of the columns of Dk,t−δ1,k contain shortened current time series for
the rest of the sources, in this case p2 and p3, and the lag is obtained from the estimated
fiber length connecting them to p1, so m12 and m13, and the pulse propagation velocity.
The Dk,t−δ1,k matrix includes the shortened currents of all the Cn nodes estimated to be
physically connected to node p1. With the vector d1 and the matrix Dk,t−δ1,k , it is now
possible to calculate the MAR coefficients describing the causality for source p1 by solving
the following least-squares error problem:

min(E(A1)) = ‖D1 −A1 ·D1,t−∆1‖
2 + λ ·A2

1 (3.9)

Where ∆1 is a matrix containing the lags for all connected sources and λ is a regular-
ization parameter for which an adequate value was found using Akaike’s Bayesian Informa-
tion criterion (ABIC) [48]. The solution is obtained using Singular Value Decomposition
(SVD), and the result is a vector with the MAR coefficients for current D1, from which
any found to be non-zero are interpreted as effective connections. The first element of the
MAR vector a1 reflects a relationship from the source with itself and is therefore located
at the diagonal of the MAR matrix A, whereas the rest describe remote interactions and
are located in the off-diagonal, which constitutes the effective connectivity matrix.

This same procedure is repeated for each current until the MAR matrix is built. The
dynamic source model including all sources may be described as:
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Dt =
L∑
l=1

(Al ·Dt−∆l
) + ωt (3.10)

Once theAl matrix has been calculated, multiplying the matrixDt−∆l
containing each

of the shortened current time series used before, times the MAR matrix, constitutes the
MAR model describing the currents’ matrix Dt (equation 3.10). The difference between
this Dt matrix and the MAR model Dt−∆l

· Al is the residual error ωt, which may be
regarded as an input driving the MAR model. This residual error has a temporal structure
that may be used to correct the forecast error when performing a forward prediction of the
value of the currents [49]. As such, the residual error was used as an input to the MAR
model to predict the value of the currents in order to evaluate the regularization parameter
λ, as it was found by the Japanese group to result in divergences when set too low.

The final step of the VBMEG method, dubbed NETMAR, involved a visualization of
the information transfer between the regions enclosing the identified active sources. "Strong
connections" were identified between these regions and fiber tracking was repeated, taking
only these into account. The result is an animation of the source dynamics, from which
snapshots at different time points are shown in the next chapter.
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Chapter 4

Results

In this section, results for 3 handpicked subjects will be shown. The first one is a healthy
control chosen due to the high quality of its EEG data, thought to be a representative
benchmark for the capabilities of the VBMEG method when localizing sources related to
somatosensory evoked potentials (SEPs), as well as the information transfer using NET-
MAR. The second subject is a stroke patient with a Fugl-Meyer score of 63 out of 66 and an
EmNSA score of 37, which was considered to be a well recovered patient. The third subject
was a patient with a Fugl-Meyer score of 59 and an EmNSA of 35, chosen as a more severe
(yet still mild) case of stroke. This setup is meant to provide a comparison between stroke
patients and healthy subjects that, even though not large enough to offer representative
conclusions about the studied phenomena, might very well serve as an indication of this
method’s potential for future research.

4.1 Static Estimation Results

Source reconstruction was performed for every time point so that the current time series
for each source was estimated. Special attentions was paid to times of interest at the
event-related potential (ERP), particularily to sources found at a time point close to P50
(positive ERP spike at 50ms). P5 has been interpreted as reflecting the activation of the
contralateral somatosensory cortex during a task triggering SEPs [50]. Besides this time
point, approximate times for N70 (negative spike at 70ms), P100 and N140 were taken as
reference for comparison with cortical maps existing in the literature. The choice for time
points was done by observing the waveform of the C3 and C4 electrodes when the right
hand and left hand were stimulated, respectively. These waveforms are shown in Figure
4.1, with the time values compiled in Table 4.1. Figure 4.2 shows topographical maps
at the time points shown in Table 4.1.

At the time point corresponding to the P50 wave landmark, a comparison was made be-
tween the topographical maps, an estimation carried out using Pascual Marqui’s sLORETA
free academic software [51], and the static estimation of VBMEG (hVB), shown in Figure
4.3. The topographical maps (bottom row) offer a large area within which active sources
would be expected to reside, whereas the estimation performed by sLORETA shows a more
specific location for the active sources, albeit of it having a low spatial resolution (middle
row). The solution obtained using the hVB (top row), on the other hand, shows physiolog-
ically plausible locations for active sources with a much higher degree of specificity. The
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Subject Right Hand Stim. Left Hand Stim. Units
P50 N70 P100 N140 P50 N70 P100 N140 [Time]

Control 1 55.66 94.73 127.9 151.4 49.8 84.96 135.7 157.2 ms
Patient 1 53.71 102.5 129.9 174.8 53.71 102.5 124 174.8 ms
Patient 2 55.66 110.4 143.6 155.3 53.71 96.68 110.4 135.7 ms

Table 4.1: Time points corresponding to chosen P-N (positive and negative) wave land-
marks, expected to be found around 50, 70, 100 and 140 ms. The time instances were
determined by observing the C3 (left hemisphere) and C4 (right hemisphere) electrode
measurements (shown in Figure 4.1), as their location is above the sensorimotor area
stimulated during the experiments

colors in these plots represent the Brodmann areas segmenting the cortex by functional
specialization. The sources estimated using the hVB method for all PN time points from
Table 4.1 are shown in Figure 4.4.

The accuracy of the estimation was evaluated in terms of the Variance Accounted For
(VAF) as in the work of Yoshioka et al. [52], which was calculated using the following
equation:

V AF = 1−

N∑
k=1

(
Mk(t)− M̂k(t)

)2

N∑
k=1

Mk(t)2
× 100 (4.1)

Where M̂ is the estimated EEG from the real measurements M, N is the number of
electrodes and t is time going from -50 ms to 200 ms. The obtained VAF for all subjects
is shown in Table 4.2.

Subject VAF% Right Hand VAF% Left Hand

Healthy Control 1 99.9377 99.9999
Patient 1 (FM=63) 91.5956 89.1255
Patient 2 (FM=59) 84.4479 79.6016

Table 4.2: VAF for VBMEG’s estimation of the location of active sources

The signal to noise ratio (SNR) was calculated by considering the baseline to contain
noise exclusively. The SNR [53] was computed as follows:

SNR =
(
Armssignal
Armsnoise

)
(4.2)
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Where Arms is the root mean square amplitude. The estimated SNR values for all
subjects are shown in Table 4.3:

Subject SNR Right Hand SNR Left Hand

Healthy Control 1 23.6774 (13.7433 dB) 25.8536 (14.1252 dB)
Patient 1 (FM=63) 14.1981 (11.5223 dB) 9.7563 (9.8928 dB)
Patient 2 (FM=59) 6.1266 (7.8722 dB) 3.7537 (5.7446 dB)

Table 4.3: SNR for preprocessed EEG data used as input in the estimation of the location
of active sources. The value in decibels (dB) was calculated as SNRdB = 10 · log10(SNR),
and is included for comparison purposes in the discussion section. This scale is useful when
dealing with signals having a wide dynamic range[54]

4.2 Dynamic Estimation Results

Source interactions estimated from the MAR model were used in an attempt to observe in-
formation flow among brain regions. Sources had to be chosen for testing their connectivity
strength with respect to their anatomically connected neighbors, from which a maximum
of 100 strong pairs of sources were chosen. Figure 4.5 shows the estimated anatomical
connections over the whole brain and the information transfer between active sources. The
time points chosen for the "snapshots" of the source dynamics were those corresponding to
the aforementioned PN-waveform landmarks.

4.3 Modularity

A new Brain Module visualization tool designed to perform comparisons between multiple
subjects was tested in the present work. This analysis tool, developed by Miguel Ângelo
Ribeiro Ferreira Braga1 at TU Delft, is still under improvement, but it could already show
some of its potential for future studies on brain connectivity. The modularity represented in
figure 4.6 shows the estimated groups of densely interconnected sources for each subject,
based on the anatomical connectivity matrix obtained during fiber tracking. The visual-
ization tool evaluates the connections between sources and finds an optimum surpassing a
pre-specified threshold, which was set to be 1.2. Details on the actual calculations may be
found in the work of Newman [55].

1Developer contact: TU Delft, Mekelweg 2, 2628 CD Delft, Computer Graphics and Visualization
group. Phone: +351918885470. e-mail:miguelrfbraga@gmail.com
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Figure 4.6: Estimated modules for each subject using a modularity threshold of 1.2. Each
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reflects a single module, but are not meant to be compared between subjects
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Chapter 5

Discussion

The present work aimed to apply a two-stage estimation procedure, consisting of a static
estimation of the location of active sources related to a specific stimulus and a dynamic
estimation of the information transfer between them. This application is intended as a
proof of concept to support the candidacy of the method in future studies, moving towards
an increasingly precise prognostic model of stroke. The assessment of the obtained results
is broken down into several main aspects in this section, first enlisted and then (some of
them) discussed more in depth.

I. Advantages of this method:

• The soft prior placed on the current’s variance in the static approximation ren-
ders the estimation robust against noise, especially when fMRI data is used to
initialize the variance

• The smoothness prior allows for the estimated currents to be mapped to the
dipole space, providing a higher spatial resolution to the estimated active areas.
The currents’ reconstruction, carried out at the source level, can be directly
related to the estimation of the interactions between ROIs

• The estimation of the activation causality between sources provides insight on
functional integration between brain areas

• The selection of strong fiber pairs between estimated sources further constrains
the solution, as only sources found to have a causal effect on their anatomically
connected neighbors are left, which might remove false positives found during
the static estimation

• The visualization of the information transfer between active sources, based on
a higher-resolution tractography focused on the identified strong pairs, provides
valuable insight into the topology of the network involved in a specific task

II. Validity of the static estimation: A high VAF was calculated for all subjects, even
for those where a poor SNR of the EEG was found

III. Preliminary findings:

• Estimated source locations: Active sources were found at the expected regions
at the time points of interest shown in Table 4.1
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• White matter pathways: Physiologically plausible pathways were estimated for
most subjects, connecting sources in the sensorimotor cortex to the central area
of the brain (i.e. thalamus) and to each other between homologous contralateral
regions

• The modularity analysis tool succeeded in grouping neural modules consistently,
although a formal comparison is complicated at this stage, as the tool is still
under development

IV. Challenging aspects:

• Model assumptions: Assumptions on the spatial sparseness and smoothness of
the currents, as well as on the noise having a Gaussian distribution and being
temporally uncorrelated may not approach reality enough, which may lead to
inaccuracies in the estimation

• The noise model: The noise covariance matrix is estimated from the baseline,
which is assumed to be conformed only by noise. During the iterative estimation
of the current densities and the current’s variance, a scaling factor for the noise
is estimated from the stimulus period, which is used to adjust the noise model.
If the estimated scaling factor was inappropriate, noise could be over or under
estimated, which could result in the parameters over-fitting the solution. Addi-
tionally, different models for the noise will lead to different estimation results,
and as long as a "true model" is not found, there will always be uncertainty
regarding the possibility of fitting the noise in the solution

• The reconstruction threshold: The default reconstruction threshold was too
high, as it was a value equal to 5% of the largest current reconstructed. Sources
found in the visual cortex, consistently found to have larger magnitudes, ob-
scured sources in all other areas in many cases. A threshold taking into account
5% of sources possessing the largest magnitudes was used instead, which resulted
in a consistent within-subject estimation of sources in the expected areas

• The MAR model choice: This model might be an oversimplification of the dy-
namic interactions between brain regions, as it does not include input and noise
dynamics. Furthermore, its linear character does not include effects resulting
from the joint activity of multiple areas, which most likely exist in the brain

• Nonlinearities: The coupling in the somatosensory feedback has been found to
be nonlinear. However, the linear method used for the static estimation seems to
estimate the current densities appropriately. It might be the case that the short
latency of the stimulus used in the present work generates an approximately
linear response, which might not be the case when using a continuous form of
stimulation, such as a multisine signal

• SNR differences: Differences in SNR between subjects obstruct a direct com-
parison between them, as it is hard to know whether observed differences in the
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estimation are due to the brain characteristics of the subjects (i.e. patients)
or due to a low SNR. Nevertheless, comparisons between conditions (between
brain hemispheres) are possible within patients, as consistent results were found
in both of them. This could be useful in longitudinal studies, in case the low
SNR was characteristic in stroke patients

V. Recommendations:

• The fMRI-based prior: Whenever a reliable prior derived from fMRI data is
available, the weighting of the estimation may be shifted towards the prior
knowledge to a larger extent, which empowers the ARD model and reduces the
risk of the parameters over-fitting the model

• Computation requirements: Some stages of the estimation process, such as the
estimation of the white matter tracks, require a lot of computation time. This
did not result in large problems in the present work, as only a few subjects
were processed, but parallel computing might be necessary for larger studies,
involving many participants

• Experimental setup: Data acquisition must be performed with care, so that a
large SNR may be achieved and meaningful results may be obtained. Addition-
ally, trial design must be done in such a way that the effects of the stimulation
of the previous trial has already died out, so that they don’t overlap

5.1 Model Validity

The VAF was calculated for the results of the static estimation of each subject. In gen-
eral, values were high and coincided with the values reported by Yoshioka et al.[52]. They
reported that, when correct prior information was used, VAFs larger than 90% were calcu-
lated. These results were compared to the used range of the hyperparameters used in the
hierarchical prior, and the large VAF values were seen when the values of the hyperparam-
eters had medium to high values (placing a mild and a high confidence in the fMRI prior).
In the present work, these values were set to 1, as no fMRI information was available.
Therefore, the large values found (especially the one close to 100) could have more than
one interpretation.

One interpretation could be that the noise is being underestimated and the parameters
are over-fitting the solution, estimating the noise. If this was the case, there are some
options that could be tried. One of them, a bit questionable, could be to fix the noise
covariance matrix to be the one initially calculated from the baseline, skipping the iterative
update of the noise scaling factor. The other option, would be to use one of the main
advantages of this method, which is to use the t-values of the fMRI data to initialize the
currents variance. In this way, the ARD model can "prune" low-variance sources much

43



more effectively, reducing the risk of over-fitting.

Another interpretation, could be that the variance estimation was done really well.
In an ideal case, having the true current variance would lead to an exact estimation of the
current densities. This would also imply that the noise estimation was very accurate. The
calculated SNRs for all subjects might hint towards this, as high values were obtained for
the subjects with highest VAFs. Babiloni et al. [56] mention that EEG recordings may
have SNR values ranging from 10 to 20 when performed during highly synchronized and
spatially focused events, such as evoked potentials from the primary sensory cortex. Luck
[57] mentions that a reasonable EEG SNR is of about 10, and Parks et al. [58] show some
examples of signals with different SNRs (in decibels), where it can be seen that a 5 dB
SNR corresponds to a still noisy signal (like the one found in patient 2), and that an SNR
of 10 dB looks indeed quite clean. Therefore, the high VAF, alongside a high SNR and
within-subject consistency could indicate that the estimation was indeed accurate. In any
case, the addition of the fMRI prior is most likely convenient.

5.2 Preliminary Findings

5.2.1 Location of active sources

The expected source locations for time points related to activity of both the primary (SI)
and secondary (SII) somatosensory cortices for the healthy control were based on the work
of Hämäläinen et al. [50], where they reported the following areas:

1. P50: Interpreted as reflecting the activation of the contralateral SI somatosensory
cortex

2. N70: Generated in the contralateral SI somatosensory area

3. P100: Reflects contralateral and ipsilateral activation of the SII somatosensory cor-
tices

4. N140: Bilateral but asymmetrical, showing larger presence on the contralateral side

Table 5.1 shows the percentage of active sources that were estimated to be in the
sensorimotor cortex and in the visual-related areas (this last region shown as it was found
to consistently contain a large amount of sources, an aspect that will be relevant when
discussing thresholds later on).

The percentage of sources found in the somatosensory area at P50 for the Healthy
Control does show presence of active sources in the contralateral side to the stimulated
hand, which also holds for N70. The bilateral activation expected at P100 can be seen,
although it is not symmetric, and the expected asymmetric activation at N140 can indeed
be seen in the percentages.
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Stim.

Hand
Hemisphere

Somato-

sensory
Motor Vision

Somato-

sensory
Motor Vision

Somato-

sensory
Motor Vision

Somato-

sensory
Motor Vision

LH 9 5 40 5 2 42 4 3 41 3 2 43

RH <1 1 23 <1 <1 23 1 2 21 1 1 27

LH <1 3 32 <1 5 31 3 7 35 4 6 22

RH 6 6 19 6 3 26 7 3 21 7 7 25

LH 3 2 40 6 <1 43 5 1 48 4 <1 42

RH 0 0 20 0 0 16 0 0 19 23

LH 0 <1 22 0 <1 25 0 2 21 0 0 30

RH 9 1 34 5 34 2 7 27 1 43

LH 4 0 43 4 0 38 2 0 36 5 0 49

RH 3 0 48 4 0 53 6 0 46 1 0 43

LH 0 23 0 37 0 36 0 42

RH 11 0 45 8 0 41 8 0 36 3 0 37

N140

Patient 2

FM=59

EmNSA=

35

R. Hand

L. Hand

P50 N70 P100

Patient 1

FM=63

EmNSA=

37

R. Hand

L. Hand

Control 1

R. Hand

L. Hand

<1 <1

<1

<1 <1

<1 <1

<1

Table 5.1: Percentage of active sources found in the somatosensory, motor and visual
Brodmann areas. This percentage is taken from the top 5% sources, assumed to be active
as a consequence of the applied stimulation. The visual percentage contains the visual,
visual-temporal and visual-parietal areas. The cells highlighted in red correspond to the
affected hemispheres and hands of patients

The case of the stroke patients might be more difficult to compare. At a first glance,
it seems like Patient 1 does satisfy the expectations for P50 and N70, but the bilateral
activation expected at P100 and N140 is not seen, which could be related to the apparent
decrease in inter-hemispheric connections observed in Figure 4.5. On the other hand,
Patient 2 shows a symmetric bilateral activation when the affected hemisphere is stimu-
lated, which seems to be a frequent finding in post-stroke cases [59] [60]. There are too
few subjects in the present work to draw such conclusions, but the consistent finding of
sources in the somatosensory cortex might be an indicator of the potential of this method
in future studies.

5.2.2 Pathways

Knösche et al. [61] used manganese tracing as benchmark for white matter tracts estimated
using different methods, mentioning this technique still faces issues related to manganese
diffusion into extracellular space and crossing fibers, to name some of them. Nevertheless,
the general areas attributed to tracks sprouting from the sensorimotor cortex were used to
make a rough comparison with the estimated effective tracks found for the healthy control
in the present work. The routes related to the motor and the somatosensory cortices
expected to be found were [61]:

1. Motor Cortex: Cortico-thalamic tract to the ventral-anterior/ventral-lateral nucleus,
cortico-striatal tract to the caudate nucleus and a cortico-cortical tract connecting
the motor cortices on both hemispheres, crossing the mid-body of the corpus callosum

2. Somatosensory Cortex: Cortico-nigral tract ending in the substantia nigra, cortico-
thalamic tract terminating at the ventral-posterior/ventral-posterior-lateral nucleus,
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and a cortico-cortical tract connecting both somatosensory cortices, propagated through
the genu of the corpus callosum

A visual inspection of the tracks shown in Figure 4.5 shows that these pathways
could indeed have been estimated for the healthy control, although the exact locations of
each tracks’ extremes must be verified. Nevertheless, the connections do seem to lead to
the center of the brain, where the expected structures would be, and the cortices of both
hemispheres seem to be connected. A frontal view of these could make the comparison much
easier in future work. The estimated pathways in the healthy control may be appreciated
with relative ease, but this is not the case for stroke patients. The tracks estimated for
patient 2 do seem to lead to the corpus callosum, but those for patient 1 rather seem to
lead away into the frontal lobe. The high degree of validity of the solution obtained for
the healthy control is a good indicator of this estimation, as the effective tractography
currently discussed is based on the sources found to be active, but more exploratory work
is needed before any conclusions about the accuracy of this estimation may be made.

5.2.3 Estimated Modules

The modularity analysis tool mentioned in Chapter 4 estimated five modules for the healthy
control and four for the patients when a threshold of 1.2 was used. Defining an adequate
threshold for module definition is an important topic of research in the characterization of
brain networks [62], which is why it is complicated to compare the modules obtained thus
far, as threshold adjustments may be required for stroke patients. Found modules group
together regions related to multiple different tasks, such as sensorimotor and visual signal
processing, and even though brain networks seem to be widespread (which may explain
why focal damages often affect a wide array of functions) [63], this groups are yet to be
validated. Meunier et al. [64] carried out a study comparing the modularity of young
people (18-33 years old) to that of elderly people (62-76 years old), finding 5 modules in
the first group and 6 in the second. In the present work, even though the applied tool
defined 5 modules for the healthy control as well, some of them (i.e. central module) are
very similar on both hemispheres, which in the work of Meunier et al. [64] are grouped
in the same module. Nevertheless, central, frontal and posterior modules were identified
for the healthy control, failing to identify the ventral frontal and medial temporal reported
in the aforementioned study. In the case of stroke patients, only two very large modules
where identified, which may suggest a need to try higher threshold values when dealing
with patients.
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5.3 Challenging Aspects

5.3.1 Model Assumptions

The VBMEG method is built upon a series of assumptions that may not be entirely
accurate and that may influence the estimation results to a large extent, which should
be taken into account during their interpretation. Some of these assumptions include
spatial sparseness and smoothness of the dipole currents, a time invariant current variance
within each trial, an accurate cortical model obtained from structural images (i.e. T1
MRI) and a correct corregistration between EEG and structural MRI coordinates [52].
From these, one assumption that might be particularly compromised in the present work
is the corregistration, as one of the steps includes manually selecting the fiducial markers
(preauriculars and nasion) from MRI images. A measure used to assess this selection is the
mean scalp forcing distance, which was considered to be acceptable when around 5 mm,
following ATR’s advice. Nevertheless, a possible way of improving the estimation in this
sense is using automatic algorithms such as Iterative Closest Point (ICP) [65].

When these assumptions are not met by the actual data, estimation errors might most
likely occur. Nevertheless, it has been reported [31][47][52] that the estimation greatly
improves when adding the fMRI prior to the current’s variance, as long as the hyperpa-
rameters are well tuned depending on the task involved, which improves the robustness of
the method against assumption errors and noise [52].

5.3.2 The noise model

A particularly sensitive assumption involved in the solution implemented by the VBMEG
method is the one taken upon the nature of the noise present in the signal. In this method,
noise is assumed to follow a Gaussian distribution with zero mean, and the noise covariance
matrix used as a regularization factor is estimated from the baseline assuming time samples
to be serially uncorrelated, thus assuming the baseline to be constituted entirely by noise.
Different assumptions for the noise, such as representing it as the variance of the signal
across trials or the remnant of subtracting the ERP from each trial, will result in different
outcomes.

Regardless of what portion or aspect of the signal is assumed to be noise, assuming
it to be uncorrelated may also not always be accurate. Actually, the estimation done with
the NETMAR method seems to indicate the noise is correlated in some cases. As this
method considers the baseline to be noise, having causal relationships between sources
occurring within this range could be interpreted as the baseline not being comprised of
noise exclusively, which was observed in some of the animations of the source dynamics.
Future work may be focused on exploring the effects of building the noise model in an
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alternative way.

5.3.3 The Reconstruction Threshold

An important factor for the discrimination of active sources related to the stimulus in
question is the threshold for excluding weak sources. The threshold used by the Japanese
group is equal to 5% of the magnitude of the largest reconstructed current. Nevertheless,
this threshold was too high for the present study and sources on the somatosensory cortex
were found only in a couple of subjects. Instead, a threshold leaving the top 5% of the
reconstructed currents with largest magnitudes was used. As it can be seen in Figure 5.1,
a large amount of sources was consistently found in the vision-related regions using this
threshold, which means that active sources in the visual areas were consistently found to
have large magnitudes. This is probably due to the fact of participants having their eyes
open during the experiment.

The 5% of the maximum current threshold might have worked for the Japanese group
because they used the method on data related to a face recognition task and were thus
looking for sources in these regions. In the case of the present work, active sources on the
sensorimotor areas seem to have a much lower magnitude than sources in the visual area,
which is why the default threshold did not work for all subjects.

Therefore, the exclusion threshold must be defined carefully, especially when there
are no expectations for the location of the sources [66]. There are alternative methods,
such as Beamforming approaches, which filter out sources automatically [37]. One of these
methods, called Linearly Constrained Minimum Variance (LCMV) beamformer was used
as benchmark by Fukushima et al. [31], but results were found to be less accurate after
running simulations, as sparse source distributions were not correctly estimated and more
false positives were returned.

Another option could be to try using an L1-norm instead of an L2-norm as a regu-
larization term, which provides a sparser solution by minimizing the sum of the absolute
values of the currents. However, Silva et al. [67] carried out a comparison between these
two options, and found that L1 norms were more sensitive to noise and more computation-
ally expensive, as the number of grid points considered in the analysis must be increased
for larger numbers of electrodes.

5.3.4 MAR model choice

The MAR model is an attractive option for exploring interesting phenomena pertaining to
the dynamics of the brain, as it provides insight on functional integration over the brain
related to a specific task and local neighbor interactions, while remaining relatively simple
to implement and solve [38][48]. Leaving the evident limitation of this model being linear
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aside, for the time being, and that it may very well fail to describe the nonlinear brain
dynamics accurately, other issues remain, even if the brain dynamics were linear.

The construction of the MAR matrix depends on the chosen order for each time
series, which corresponds to the number of previous time samples to be taken into account
as a linear combination to represent a given value. In the present work, the order for
each current time series was defined by shortening the time series of physically connected
sources, depending on the distance between them. In concept this makes sense, but the
way in which these distances and their corresponding time delays were determined might
not reflect the characteristics of the information transfer accurately enough, resulting in
an inadequate comparison between multiple time series. In other words, this approach
relies heavily on the tractography performed, which adds an extra aspect to evaluate when
validating the estimation of the source interactions. The study of the specifications of the
applied commands for fiber tracking was beyond the scope of the present work, but it
might be an interesting line of research in future endeavors.

5.3.5 Nonlinearities

The hierarchical prior placed on the current variance turns the inverse problem into a
nonlinear problem. The VBMEG method approaches the solution by means of an iterative
optimization of the Free Energy, which was found by Sato [68] to be equivalent to the
natural gradient method [47]. However, the problem being a nonlinear function of the
current’s variance does not make VBMEG a nonlinear method. The sensory feedback in
the nervous system has been found to be coupled in a nonlinear way [69], which is why it
might be surprising for this linear method to be a ble to estimate the location of active
sources accurately. A possible explanation is that the short latency of the electrical impulses
used to generate the SEPs causes an approximately linear response. Nevertheless, this may
be a problem when dealing with continuous perturbations, such as multisines.

On the other hand, the estimation on the source dynamics is performed with a linear
MAR model, which was found to result in false positive estimates on the effective con-
nectivity during simulations done by Fukushima et al. [31]. Therefore, alternatives must
be considered to model these aspects more precisely. Possible additions to the present
processing scheme could be the use of bi-linear variables, which model hypothesized inter-
actions between variables (i.e. change of connection strength between two sources as an
effect of changes in a third source, or the relationship between the currents and an extra
factor such as time) [38].
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5.4 Recommendations

5.4.1 Computational requirements

A laptop computer with an i7 processor with 4 cores, 3.60 GHz and 16 GB of RAM was
used, running Matlab 2014a for compatibility reasons with the Japanese method. Table
5.2 shows the approximate computation times for each stage. Tractography took much
longer for patients than it did for controls (about 60% more time), and had to be performed
in a Linux environment, which was installed in a virtual machine on the same laptop.
While tractography took between 1.5 and 2.5 days with two cores assigned to that task
exclusively, computation times can be dramatically reduced with the use of a computer
cluster (i.e. INSY cluster at TU Delft). This was not done in the present work due to a
lack of time, as it would be necessary to adapt the code so that it might work properly
with the architecture of the cluster.

Task Computation time

Leadfield Matrix 00:05:30
Current’s reconstruction 00:00:08

MAR model 00:00:25
Whole brain tractography 1.5 to 2.5 days
Strong-pairs tractography 03:00:00

Table 5.2: Computational times for all tasks in hh:mm:ss format

As more comprehensive studies, aimed at drawing conclusions about the observed
phenomena, will require processing many subjects, parallel computing may very well be
necessary. Investing time in adapting the program to be run at a computer cluster will
turn the heaviest processes into a trivial matter.

5.4.2 Experimental setup

A total of 16 data sets were made available for the present work. During the EEG pre-
processing stage, it became evident that most of these were infested with noise and bad
channels and were, therefore, not useful for processing. This was not a real problem for
the presently discussed endeavor, as it was more of a proof of concept, but future work
searching to draw meaningful conclusions about the observed phenomena should pay spe-
cial attention to the data acquisition stage. A good idea could also be to add an electrode
for detecting eye artifacts (i.e. above one of the eyes).
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Additionally, it might be beneficial to have longer time spans for each trial, as ef-
fects from areas related to somatosensory stimuli may yet be present after the 200 ms
characterizing the data used in this study (i.e. P300 at approximately 300 ms [50]).

Further, the convenience of EEG over other techniques (i.e. MEG) is its low cost
and the relative portability of the equipment (i.e. the 4D-EEG [70] project equipped a
van with EEG recording equipment to visit patients and perform measurements). Being
so that fMRI data seems to have a large impact in the estimation accuracy and that this
data is not so easily acquired, it might be interesting to look at alternatives in this area.
For example, Sato et al. [71] reported to have found similar results using Near Infrared
Spectroscopy (NIRS) as those obtained from fMRI measurements, which could prove to be
an inexpensive and portable option for future studies.

5.5 Future work and potential impact

The results obtained during the presently described research effort constitute evidence
of the potential of this method in studying structural and functional changes in stroke
patients. However, there are still many aspects to explore before meaningful conclusions
about the observed phenomena may be drawn such as the impact of using different noise
models in the solution. For example, as it might be of interest to study brain activity related
to mechanical stimuli and this might involve continuous perturbations (i.e. multisine), it
will be necessary either to define a range to be considered as the baseline (the VBMEG
method estimates the Noise covariance matrix from it) or to extract some alternative form
of noise from the continuous signal. Furthermore, this sort of stimulation might require
altering the method to account for nonlinearities (i.e. nonlinear least squares).

Furthermore, there may still be space for improvement in the solution of the Forward
Problem, as better fits for the sensor registration than the ones obtained may yet be
achieved. Additionally, a high quality of the EEG data must be sought so that meaningful
results may be generated. As it was briefly mentioned earlier in this chapter, a deeper
study of the tractography and its validity may be paramount, due to the large influence it
has in the estimation of the source dynamics.

On the other hand, a MAR model may be too simplistic to adequately describe the
brain dynamics, which is why an MARX (exogenous) or the use of an M-ARMAX model
instead could improve the estimation dramatically, as they would model the effects of the
input as well and, in the case of the ARMAX structure, even include disturbance dynamics
[72].

As it is right now, this method could prove to be a useful tool at observing the effects
of rehabilitation on stroke patients in a more direct fashion. Ward [73] carried out a review
on the rehabilitation therapies applied at present and reached the conclusion of the main
issue being that these are not planned according to the underlying mechanisms of recovery,
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failing to tend to the specific needs of each individual in many cases. Further work on this
method could lead to a better understanding of brain plasticity, which could one day pose
the possibility to trigger it at will and in specific ways.
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Chapter 6

Conclusions

The VBMEG method applied in the present work consists of a variety of pipelines that
interact towards the estimation of active sources and their dynamics, related to a particular
stimulus. Each of these pipelines embodies a whole research topic, as their use is based
on assumptions and simplifications that may reduce the degree of fidelity of the model to
different extents. Consequently, much work is needed in all areas involved before conclusive
statements may be made regarding the observed phenomena. However, the high scores in
the used measures for estimation validity, alongside the apparent consistency in the esti-
mation of the source locations at time points where somatosensory activity was expected,
provides evidence of the value and the potential of this method in the study of the brain.
Furthermore, even though a MAR model may be an oversimplified representation of the
source dynamics, it does seem to be a valuable tool to be built upon.

Overall, this work built a dynamic model portraying the information flow related to
SEP stimulation both in healthy controls and in stroke patients. To do so, high spatial
resolution information from MRI and DWI was used to complement the EEG data, char-
acterized by a high temporal resolution. Furthermore, this is the first application of the
VBMEG method to SEP data, and its promising results bear witness to this method’s
value for future explorations. Therefore, it is reasonable to state that further research
along this line towards a better understanding of neural dynamics is justified.
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Appendix A

Brain source localization and Dynamic
Estimation

A.1 Solution to the Forward Problem

The mathematics explained in this section were based mainly on the work of Mosher et
al.[34].

The relationship between the magnetic field b and the current densities j of a group
of sources is shown by the Biot-Savart law, shown next:

b(r) = µ0

4π

∫
G
j(r’)× d

d3dr’ (A.1)

Where d=r-r’ (with magnitude d) is the distance between the observation point r and
the source point r’, and j(r’) corresponds to the current density at the source points. The
integration is executed over the closed volume G; outside this volume, both the current
and the conductivity are set to be zero. µ0 is the permittivity of empty space.

The currents in the previously shown volume integral consist of two components, the
passive jv and the primary jp currents. This distinction is made in order to phrase that
the passive currents, which are a result of the macroscopic electric field in the conduction
medium of the volume, arise from neural activity (primary currents) in a certain region.
This is shown in the following expressions for both current components.

jv(r) = σ(r)E(r) (A.2)
jp(r) = j(r)− jv(r) (A.3)

Where σ is the conductivity of each layer and E is the electric field, which when
assuming the magnetic field to be quasi-static, is equal to the negative gradient of the
electric potential, as E = −∇v(r), as explained by Hämäläinen et al.[74]. Substituting
j(r) in Biot-Savart’s law yields the following expression:

b(r) = µ0

4π

∫
G

(jp(r’)− σ(r’)∇v(r’))× d
d3dr’ (A.4)
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This volume integral may be rewritten as a sum of surface integrals in order to take
into account the conductivity of each layer (corresponding to each type of tissue)[74], as
follows:

b(r) = b∞(r)− µ0

4π

S∑
i = 1

(σ−i − σ+
i ) ·

∫
Si
v(r’)ni (r’)× d

d3dr’ (A.5)

Where ni is a vector perpendicular to the ith surface, oriented outwards, and the "+"
and "-" superscripts indicate the conductivity outside and inside the ith surface, respec-
tively. The variable S is the number of surfaces into which the cortex is divided. The
primary field is the magnetic field observed at a certain location r due to the primary
current exclusively, and it’s defined as:

b∞ (r) = µ0

4π

∫
G
jp(r’)× d

d3dr’ (A.6)

With a corresponding primary potential v∞ :

v∞ (r) = 1
4πσ0

∫
G
jp(r’) · d

d3dr’ (A.7)

Where σ0 is the unit conductivity of an infinite homogeneous medium. The primary
potential and the primary field may be calculated by specifying a current distribution
jp(r’). In order to compute the magnetic field as shown in equation A.5, it is also
necessary to compute the potential as shown below:

σ0 v∞(r) = σ−i + σ+
i

2 v(r) + 1
4π

S∑
i = 1

(σ−i − σ+
i ) ·

∫
Si
v(r’)ni (r’) · d

d3dr’ (A.8)

Equations A.5 and A.8 constitute the boundary integral equations for solving the
forward problem for external magnetic fields (MEG) and scalp potentials (EEG) on all
surfaces, respectively.

A.1.1 The Leadfield Matrix

Let us consider the variable m to be either the the magnetic field or the scalp potential at
any given dipole on the cortex. This value, which is found using either equation A.5 or
A.8, depending on the measurement technique, is a function of the location, orientation
and current magnitude of the dipoles on the cortex, and the location of the sensors used
to capture their activity, as expressed by the following equation:
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m(r) = g(r, r’,Θ) · c (A.9)

Where c is the current magnitude and Θ is the dipole orientation. This expression can
be extended to take into account the contributions of all dipoles as a linear superposition,
as shown in the following expression:

m =


m(r1)

...
m(rN)

 =


g(r1, r’1,Θ1) . . . g(r1, r

′
p,Θp)

... . . . ...
g(rN , r′1,Θ1) . . . g(rN , r′p,Θp)



c1
...
cp



= G(r′i,Θi) ·CT (A.10)

Where G is the gain (Leadfield) matrix relating the set of p dipoles to the N sensors.
This expression may be extended to include the time series of the currents, as the Lead-
field matrix is independent from the measurements (which is done in the currently used
method)[29].

A.1.2 The Boundary Element Method (BEM)

The explanations provided on this section are based mainly in the work of Mosher et
al.[34].

As it was mentioned earlier in this section, equations A.5 and A.8 are the boundary
equations that will be used in the BEM. For the solution of the EEG Forward Problem,
it is the primary potential v∞ in equation A.8 that is known and the task is to find its
corresponding scalp potential. Equation A.8 may be expressed as L(v(r)) = v∞(r), where
L(·) is a linear operator. Therefore, the task becomes to minimize the difference between
L(v(r)) and the primary potential. The method used to solve this in the VBMEG algo-
rithm is Galerkin’s method (discussed shortly), which is a particular sort of Weighted
Residuals method. In general, Weighted Residuals methods add a weighting function w(r)
to the previously mentioned minimization problem as an inner product for both potentials
((·, ·) denotes inner product). This is shown in the following equation:

(w(r), v∞ (r)) = (w(r), L(v(r))) (A.11)

In BEM, this weighting function is defined as a finite combination of S basis functions
ψs(r), as:
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w(r) =
S∑

s = 1
χs · ψs(r) (A.12)

These equations are both known and linearly independent. Values for χ are chosen
arbitrarily such that the weighting function comprehends the entire dimensional space
comprised by S, which is the number of basis functions determined by the number of
tessellated surfaces. Note: In Mosher et al.[34], s is called n and S is called N, but for
variable consistency across this paper I have renamed them. This results then in the basis
functions providing weighting to the potentials, like:

(ψi (r), v∞ (r)) = (ψi (r), L(v(r))), i = 1, ..., S (A.13)

In this equation, the potential v(r) itself is still unknown, but the BEM approaches
it as a similar sum as the one used for the weighting function, with nodal parameters vs,
which are a function of the nodes located at rs, and basis functions φs(r):

v(r) ∼=
S∑

s = 1
vs · φs(r) (A.14)

The choice of the basis functions for the weighting and for the potentials may vary,
but what characterizes Galerkin’s method is that the chosen weighting basis functions are
the same as the potential basis functions (ψi (r) = (φi (r)).

Substituting equation A.14 in equation A.13 yields the general form of the BEM:


(ψ1(r), v∞(r))

...
(ψS(r), v∞(r))

 =


(ψ1(r), L(φ1(r)) . . . (ψ1(r), L(φS(r))

... . . . ...
(ψS(r), L(φ1(r)) . . . (ψS(r), L(φS(r))



v1
...
vS

 (A.15)

There are two common choices for basis functions in Galerkin’s method, constant and
linear. Constant refers to the value of the potential being 1 at the centroid of each triangular
element covering the cortex, whereas linear consists in defining three basis functions for
each point within every triangular element. These linear basis functions, used in the
VBMEG method as well, are defined as:
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φi(r) = r · (rj × rk)
ri · (rj × rk)

φj(r) = r · (rk × ri)
ri · (rj × rk)

φk(r) = r · (ri × rj)
ri · (rj × rk)

(A.16)

Where r is a point inside the triangle and ri , rj and rk are the vertices of a triangle
arranged in such way that the permutation from ri to rj and from rj to rk is a an outward
vector from the surface. When constant basis functions are used, the number of basis
functions S is the same as the number of P dipoles, but when the linear basis functions
are used, the number of basis functions equals S = P/2+2.

These basis functions, which are to be used both on the weighting and the potential
functions, may be substituted in equation equation A.15, and this equation can, in turn
be expressed as:

g = Hv (A.17)

In this equation, g is a Sx1 vector containing the inner product of the basis functions
and the primary potentials, H is a SxS matrix that is a function of the known basis
functions and the head geometry, and v is a Sx1 vector containing the nodal parameters
vs . Solving for the nodal parameters yields the following equation:

v = H̃−1g (A.18)

H̃−1 is used instead of H−1 to state that the former is a directly invertible matrix.
Substituting in equation A.14 allows for the unknown potentials to be calculated as:

v(r) ∼= [φ1(r), . . . , φS]v = [φ1(r), . . . , φS]H̃−1g (A.19)

A.1.3 Matrix Kernels

In Chapter 2, it was mentioned that the primary potential may be expressed as a field
kernel k multiplied by the dipole moments q. These factoring may be implemented directly
on gi , as the inner product of the basis functions and a kernel (chosen depending on the
type of model built), multiplied times the dipole moments, as shown below:
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g = G∞q =


(ψ1(r),k∞(r, r’))T

...
(ψS(r),k∞(r, r’))T

q (A.20)

For an EEG BEM model, the choice of the Infinite Homogeneous Model k∞ is:

k∞(r, r’) =
[

1
4π

d
d3

]
, where d = r− r’ (A.21)

Then, the EEG Forward Problem is solved as:

v(r) ∼= [φ1(r), . . . , φS (r)]H̃−1G∞ q (A.22)

Which can be substituted in equation A.5 to solve the MEG Forward Problem.

As mentioned before, the H̃−1 matrix is independent of the sensor and dipole loca-
tions, and may be obtained efficiently using LU decomposition. For this reason, it can be
precomputed and then used to calculate the Leadfield matrix for each dipole. The BEM
kernel shown before may be expanded to include all N electrodes, as shown below:


φ1(r1), . . . , φS(r1)

...
φN+1(r), . . . , φS(rN+1)

 H̃−1G∞ (A.23)

Multiplying this expression times a switching matrix SW, which subtracts the (n+1)th
electrode from n single ended electrode locations generates the transfer matrix Tv , men-
tioned in section 2.

SW


φ1(r1), . . . , φS(r1)
...

φN+1(r), . . . , φS(rN+1)

 (LU)−1G∞

 = TvG∞ (A.24)

A.2 Solution to the Inverse Problem

A.2.1 The Bayesian Framework

This explanation on the Bayesian framework is based on the work of Grech et al.[37].

The methods comprising this category seek to find the current densities D̂ that max-
imize the posterior distribution of D given the measurements contained in M.
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D̂ = max
D

[p(D|M)] (A.25)

According to Bayes’ law, the conditional probability density of the current densities
given the measurements may be defined as:

p(D|M) = p(M|D)p(D)
p(M) (A.26)

If a Gaussian distribution is assumed for the previously shown posterior density, it
can be expressed as:

p(D|M) = exp [−Fα(D)]/z
p(M) (A.27)

In this expression, z is a partition function working as a normalization factor (see the
Intermezzo on this matter) and Fα(D) is:

Fα(D) = U1(D) + αL(D) (A.28)

Where U1(D) is an energy function associated to p(M|D), L(D) an energy function
associated to p(D) and α is a regularization parameter. This means that the maximization
problem shown in equation A.25 may be expressed as the minimization of these energy
functions:

D̂ = min
D

(Fα(D)) (A.29)

Intermezzo: The Partition Function as a Normalization Constant

This brief discussion of the Partition Function as a normalization constant is based on[75][76].

The probability of a single candidate source having a certain value, defined as the
fraction of the sources having that particular value, is located somewhere between 0 and 1,
and this probability is mutually exclusive to the probability of it having any other value.
At the same time, the probability of a source having any value between zero and one,
inclusive, is 1. Therefore, the joint probability for the source’s possible values must be
equal to one, as:

P0 + P1 + P2 + ... =
∑
i

Pi =
∑
i

ni
n

= 1
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A probability distribution that follows the previous equation is said to be normalized.
It is then possible to express this probability as some factor ξ (normalization constant)
multiplying a function, like:

Pi = ξf(i)∑
i

Pi = ξ
∑
i

f(i) = 1

Solving for the normalization constant gives a partition function scaling f(i):

ξ = 1∑
i
f(i)

Coming back to equation A.28, U1(D) may be defined as the least-square reconstruc-
tion error (L2 norm loss function), as long as noise is assumed to be white (temporally
uncorrelated, having a Gaussian distribution and zero mean).

U1(D) = ‖GD−M‖2 (A.30)

L(D), on the other hand, may be defined to contain priors derived from anatomical
(i.e. DTI) and functional (i.e. fMRI) data, such as:

L(D) = Us(D) + Ut(D) (A.31)

With s and t standing for a spatial and a temporal prior, respectively.

Therefore, the problem of maximizing the posterior distribution of the current densities
becomes a minimization problem for the energy:

D̂ = min
D

(Fα(D)) = min
D

(‖GD−M‖2 + αL(D)) (A.32)

Which shows that it is possible to directly control how strongly the estimation rests
on the prior knowledge.

The reconstruction error U1 is associated to the probability of the measurements M
given the current densities D in a directly proportional way. For display purposes, the
variable X will be used, being X = GD−M:

p(M|D) ∝ exp(−XT .X) (A.33)

Which may be expressed more generally as:
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p(M|D) ∝ exp(−Tr(XT .Σ1.X)) (A.34)

Where "Tr" is the trace of the matrix and Σ1 is the data covariance matrix.

Within the Bayesian Framework, there are some methods that are often used as bench-
mark for the results obtained by newer methods (and combinations of these are used to
develop new methods as well). A brief explanation of some of these methods, involved in
the present work, will be described next.

Minimum Norm Estimates (MNE)

One of the most used methods, in its most basic form, seeks to find the solution with
minimum power and uses Tikhonov regularization. In Tikhnonov regularization, L(D) =∥∥∥D2

∥∥∥, which results in the following expression for Fα(D):

Fα (D) = ‖GD−M‖2 + α ‖D‖2 (A.35)

This expression can then be transformed (the proof may be found in the Appendix of
Grech et al.[37]) so that the estimation for the current densities is:

D̂MNE = GT (GGT + αIN)−1M (A.36)

Where N is the number of electrodes. The inverse operator GT (GGT + αIN)−1 may
be expressed simply as TMNE, which when multiplied times the Leadfield matrix yields
the resolution matrix R, which should ideally be the identity matrix (corresponding to the
current densities being estimated exactly[36]).

To compensate for the partial favoring of weak and surface sources, it is possible to
add a weighting matrix, here dubbed WMNE, which is defined as:

WMNE = Ω⊗ I3 (A.37)

Where ⊗ is the Kronecker product (see intermezzo for explanation). Ω is defined
as:

Ωββ =

√√√√ N∑
α = 1

v(rα, r’β) · v(rα, r’β)T , for β = 1, ..., p (A.38)

Where v(r, r’) is the potential measured at the electrode located at position r with
respect to the dipole located at position r’.
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Intermezzo: Kronecker products

This brief explanation is based on[77]. If A is a mxn matrix and B is a pxq matrix, the
Kronecker product of these matrices is defined as:

A⊗B =


a11B . . . a1nB
... . . . . . .

am1B . . . amnB



The addition of this weighting matrix constitutes theWMNEmethod, or theWeighted
Minimum Norm Estimates, whose expression for the estimation of the current densities
looks as follows:

D̂WMNE = (WT
MNEWMNE)−1GT (G(WT

MNEWMNE)−1GT + αIN)−1M (A.39)

Further improvements on this method have been made by iteratively estimating the
current densities, providing weightings based on the magnitudes of the sources of the
previous iteration (WMNE with FOCUSS). The weighting matrix WMNE is normalized
using the Leadfield (Leadfield Normalization), which is then described by:

WMNEi = diag

(
1

‖G(:, j)‖

)
WMNEi−1 diag(Di−1) (A.40)

The estimation then is the same as for WMNE, but calculating the weighting matrix
in every iteration.

Low Resolution Electrical Tomography (LORETA)

In this method, the Leadfield normalization described earlier is combined with the Lapla-
cian operator ∆, which is a dot product of two gradient vector operators[78], in order
to provide sources both on the surface and within the volume the same chance of being
reconstructed, as sources are located not only on the cortex, but also inside the brain. The
regularization parameter is defined as:

L(D) = ‖∆B.D‖2

B = Ω⊗ I3 (A.41)

Which then results in the following expression for the estimation of the current den-
sities:
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D̂LOR = (B∆T∆B)−1GT (G(B∆T∆B)−1GT + αIN)−1M (A.42)

In the same way as described earlier, there is a recursive version of LORETA, called
LORETA with FOCUSS.

Standardized Low Resolution brain Electromagnetic Tomography (sLORETA)

This method uses the estimation obtained from the MNE method and standardizes it
using its variance. The variance of this estimate is assumed to result from the actual
source variance SD = I3p and variation due to noisy measurements SnoiseM = αIN . The
variance of the electrical potential is then defined as:

SM = GSD GT + SnoiseM (A.43)

And the variance of the estimated current density is:

SD̂ = TMNE SM TTMNE = GT [GGT + αIN ]−1G (A.44)

Which is equivalent to the resolution matrix TMNE mentioned after discussing equa-
tion A.36. The standardized current density power is then:

D̂TMNE,l {[SD̂]ll}−1 D̂MNE,l (A.45)

Where D̂MNE, l is a 3x1 vector containing the estimate for the current density at dipole
l and [SD̂ ]ll is the lth diagonal block of the resolution matrix.

A.2.2 The hierarchical Variational Bayesian (hVB) method

The explanation of this section is based in the work of Sato et al.[47] and the subsequent
publication of Yoshioka et al.[52].

As it was mentioned in the sections focused on the Bayesian Framework in this ap-
pendix, the problem to be solved consists of minimizing the difference between the recon-
structed and the measured currents, as enunciated in equation A.35. Equation A.36,
which constitutes the solution to the Inverse Problem using the MNE method, may be
expressed more generally as:

D = Σ−1
0 G′

(
GΣ−1

0 G′ + β−1IM
)−1

M (A.46)
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Where Σ−1
0 is a regularization matrix. Using the identity matrix as a regularization

parameter results in the MNE method described earlier (equation A.20), but varying this
regularization parameter results in different linear inverse methods. This regularization
term is introduced with the intention of constraining the solution to face the underdeter-
mined nature of the inverse problem that has been discussed before. As the maximum
amount of sources that can be estimated exactly is equal to the number of sensors being
used, multiplying the Leadfield times an NxN regularization matrix will constrain the so-
lution to this number. The challenge is, then, to define an adequate regularization matrix
so that the sources are effectively reconstructed.

A different option for a regularization matrix is the covariance matrix (like in the
Wiener filter). If the true covariance matrix was known, the source currents could be
reconstructed perfectly, but this is not the case. Therefore, assumptions must be made
so that a covariance matrix may be built to provide an acceptable approximation of the
current densities.

What characterizes the hVB method is that it estimates the current variance from
the measured EEG signal and uses it to build a regularization matrix to constrain the
solution of the inverse problem. This matrix is built using a hierarchical prior on the
current variance for the diagonal terms.

Hierarchical Prior

First, a Gaussian prior distribution is assumed for the currents, as:

P0(D1:T |α) ∝ exp
[
−1

2

T∑
t=1

D′(t)AD(t)
]

(A.47)

Where α is the inverse current variance and A is a diagonal matrix containing α =
{αn|n = 1 : N}. The current variance α−1 is assumed to be time-invariant. Whenever
fMRI data is available, it may be used to provide an initial value to the currents’ variance,
otherwise setting the initial value for the current variance to be 1 for each dipole. After
the first iteration, the inverse variance (precision) is estimated using an Automatic Rel-
evance Determination (ARD) model[79] to place a hierarchical prior, which possesses a
Gamma distribution Γ (α|ᾱ, γ) with mean ᾱ and shape parameter γ, as shown below:

P0(α) =
N∏
n=1

Γ (αn|ᾱ0n , γ0nα)

Γ (α|ᾱ, γ) ≡ α−1(αγ/ᾱ)Γ(γ)−1e−αγ/ᾱ (A.48)

Where Γ(γ) ≡
∫∞

0 dt tγ−1e−T is the Gamma function and γ0nα are hyperparameters
directly controlling the width of the Gamma distribution. Whenever the mean value of the
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inverse current variance ᾱ is small, it is more likely that the inverse current variance α will
also have a small value, whereas whenever the mean is large, the probability of the inverse
variance acquiring a large value increases. In the case when fMRI information is available,
it can be used to initialize the values for the current variance. This results in regions with
low inverse variance (so high variance) being assumed to be active. The current variance
is then iteratively updated so that only dipoles depicting large variances remain.

Intermezzo: Automatic Relevance Determination (ARD) model

This description of the ARD model is based on the lecture by Florian Wilhelm[80] and the
work of David MacKay[79].

The ARD model is meant to "prune" the amount of parameters used to fit a model to
some data set by setting a threshold on the precision (inverse variance) of each of them and
setting any parameter that crosses it to zero . It has been described already when discussing
the regularization matrix Σ0, which is why this intermezzo is only meant to underline the
role it plays in the hVB method. Essentially, the ARD approach is used to estimate the
hyperparameter α to achieve an adequately weighted solution for the L2 regularization
problem described earlier. The whole process consists on setting initial values for the
hyperparameters, using them to evaluate some approximation of the desired quantity (i.e.
Free Energy), updating the hyperparameters and comparing them to a threshold, and
repeating until the solution converges. This process will be discussed in detail as the hVB
method is described.

A.2.3 Smoothness constraint

In the original method described in Sato et al.[47], the smoothness constraint is applied to
the off-diagonal terms of the covariance matrix. These terms are controlled by a second
diagonal matrix dubbed Λ, which contains λ = {λn|n = 1 : N} values that, the larger
they are, the larger the correlation between each dipole and its corresponding neighbors
is. These values are estimated using a hierarchical prior in the same way as for the inverse
current variance, and are included in the current prior distribution as follows:

P0(D1:T |α, λ) ∝ exp
[
−1

2

T∑
t=1

D′(t)ΣαD(t)
]

Σ−1
α = A−1 + WΛ−1W′ (A.49)

Where Σ− 1
α is the current covariance matrix and W is a Gaussian smoothing fil-

ter.
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Equation A.34, which establishes the probability of the observed EEG signal given
the current densities, may be rewritten to include the covariance matrix of the sensor noise,
as:

P (M|D, β) ∝
[
−1

2β(M−GD)′ΣG (M−GD)
]

(A.50)

Where β−1 is the average noise variance and (βΣG)−1 is the full noise covariance
matrix, estimated from the baseline of the EEG. Nevertheless, the VBMEG method may
also apply a smoothness constraint based on the structural MRI data of each subject, in
the form of a Gaussian smoothing filter, defined as:

(WL)nm = exp
(
− (dnm /σ)2

)
(A.51)

In the Gaussian smoothing filter, dnm is the shortest path between the nth and the mth
vertices in the cortical model and σ is the standard deviation. A full width half maximum
(FWHM) value of 8mm was assumed.

Intermezzo: Converting FWHM to the standard deviation σ

This brief explanation is based on[81].

The probability density function for a Gaussian distribution with mean µ and standard
deviation σ is:

f(x) = 1
σ
√

2π
exp

(
−(x− µ)2

2σ2

)

If this distribution is centered at the origin, the mean is zero and the FWHM is the
distance from −xw to xw , so FWHM = xw − (−xw) = 2xw . To find the peak of the
function, it is necessary to find the value of xw that satisfies f(xw) = f(µ)/2. Substituting
these values then yields:

1
σ
√

2π
exp

(
− x2w

2σ2

)
= 1

2
1

σ
√

2π

xw = ±
√

2σ2 ln2

Therefore, the FWHM and the standard deviation are related as:
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FWHM = σ
√

8ln2

This Gaussian filter is used on the Leadfield, as high correlations are assumed between
neighboring dipoles. Under this assumption, the smoothed cortical currents D are defined
as:

D(t) = WLZ(t) (A.52)

This then calls for a re-definition of the quasi-static approximation for the scalp mea-
surements shown in equation 2.2 to be reformulated as:

M(t) = ĜZ(t) (A.53)

Where Ĝ is a smooth Leadfield matrix Ĝ ≡ GWL and Z(t) are the un-smoothed
reconstructed currents.

With this smoothing constraint based on structural MRI, the current densities may
be calculated as:

D(t) = Σ−1
α G′(GΣ−1

α G′ + β−1IN)−1M(t)
Σα−1 = WLA−1

L W′
L (A.54)

Where A−1
L = diag(α−1

L ) is the variance matrix for Z.

Variational Bayesian Method

The problem to be solved was shown earlier in this appendix, in equation A.26. The
idea is to use prior information on the distribution of the currents D to find their posterior
distribution given a scalp potential M. The following equations were taken from the work
of Sato et al.[47] in which the hVB method was introduced. The posterior distribution for
the currents given the observed EEG signal is defined as:

P (D|M) =
∫
dαP (D, α|M) (A.55)

The joint provability of the currents and the inverse current variance α given the
measurements is:

69



P (D, α|M) = P (D, α,M)
P (M)

P (D, α,M) = P (M|D)P0 (D|α)P0 (α)

P (M) =
∫
dDdαP (D, α,M) (A.56)

The marginal likelihood (evidence) of the measured scalp potential cannot be calcu-
lated analytically, which is why the joint posterior distribution of the currents and their
corresponding inverse variance given the measurements is reformulated as the maximiza-
tion of the Free Energy (see intermezzo on Free Energy for a more detailed explanation
on this subject). The Free Energy for a trial distribution Q(D, α) can be written as:

F (Q) =
∫
dDdαQ(D, α)log

[
P (D, α,M)
Q(D, α)

]

=
∫
dDdαQ(D, α)log

[
P (M)P (D, α|M)

Q(D, α)

]
(A.57)

This expression can be rearranged to fit the Kullback-Leibler Divergence (refer to
intermezzo on this topic) to measure the difference between the trial distribution being
tested and the joint posterior distribution P (D, α|M) and adopts the following form:

F (Q) = log(P (M))−
∫
dDdαQ(D, α)log

[
Q(D, α)

P (D, α|M)

]
= log(P (M))−KL[Q(D,α)‖P (D, α|M)] (A.58)

As it may be noted, when both distributions are equal the whole KL term goes to
zero, so the joint posterior P (D, α|M) may be obtained by maximizing the Free Energy
with respect to the trial distribution Q and the log-marginal likelihood log(P(M)) equals
the Free Energy.

Intermezzo: Kullback-Leibler Divergence

This brief explanation was taken from[82][83].

The Kullback-Leibler Divergence is used as an indicator of the difference between two
probability distributions over the same variable. If, for example, a comparison is to be made
between the "true" distribution p(x) and a trial distribution q(x), defined in an attempt to
describe p(x), the Kullback-Leibler divergence from p(x) to q(x) is defined as:
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KL[q(x)‖p(x)] =
∫ ∞
−∞

q(x)log q(x)
p(x)dx (A.59)

By this definition, when the the trial distribution is equal to the true distribution, the
KL distance goes to zero.

Intermezzo: Free Energy Principle

The following explanation is based on the work of Karl Friston[84][85].

The Free Energy principle enounces that any self-organizing system in homeostatic
equilibrium must minimize its free energy. To maintain this equilibrium, the system has a
set of states identified to be acceptable for preserving its stability, called a global random
attractor, each of which states must have a low entropy (also called "surprise") or lack
of predictability. The system cannot avoid "surprises", but the free energy constitutes an
upper bound for surprise. This means that minimizing the free energy minimizes surprise
as well. The free energy depends on two aspects, the sensory states of the system and a
recognition density encoded by its internal states. A recognition density is an approximate
probability distribution of the causes of data (i.e. sensory input). The Free Energy is
defined as:

F (x(t)) = L(s(t)) +
∫

Ψ
q(ψ(t)|µ(t)) ln q(ψ(t)|µ(t))

p(ψ(t))|s(t),m)dψ

= L(s(t)) +KL[q(ψ(t)|µ(t))‖p(ψ(t))|s(t),m)]

Where ψ(t) ∈ Ψ is a set of unobservable fictive random variables (they only exist to
parametrize the marginal likelihood), µ(t) are internal states, m is a probabilistic generative
model and s(t) are sensory signals. L(s(t)) is the self-information or surprisal, and is equal
to:

L(s(t)) = −ln(p(s(t)|m))

p(s|m) is the ergodic density and it is an invariant probability measure of finding the
system in any state when observed at a random point in time. When the KL divergence
is zero, the Free Energy approximates the ergodicity perfectly (exact Bayesian inference),
but when the form of the proposed model does not match the conditional density, only an
approximate Bayesian inference is achieved.

The present work is based on the so-called Bayesian Brain Hypothesis, which says the
brain has a model of the world being constantly optimized using sensory inputs, making
inferences about the causes for such inputs.
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Based on the explanation provided in the Free Energy Intermezzo and the factorization
assumption Q(D,α) = QD (D)Qα (α)[68], the free energy may be expressed as:

F (Q) = 〈logP (D, α,M)〉α − 〈logQD (D)〉D − 〈logQα (α)〉α
= 〈log(M |D)〉D −KL[QD (D)Qα (α)‖P0 (D|α)P0(α)] (A.60)

Where 〈̇〉D and 〈̇〉α represent the expectation value with respect to QD (D) and
Qα (α), respectively. The maximum free energy is calculated by alternatively maximizing
the Free Energy with respect to QD and Qα until the Free Energy converges. The first
step, denominated D-step here, consists on a maximization with respect to QD while Qα is
fixed.

QD (D) ∝ exp [〈logP (D, α,M)〉α ] (A.61)

In the second step, here called the α-step, the Free Energy is maximized with respect
to Qα while QD is fixed.

Qα (α) ∝ exp [〈logP (D, α,M)〉D ] (A.62)

hVB Algorithm

The steps of the hVB algorithm are summarized in table A.1, where Σ−1
α is the estimated

covariance matrix and ΣB = GΣ−1
α G′ + Σ−1

G . ΣC is a diagonal matrix with the Trace of
the Autocovariance matrix Cuu repeated along its diagonal.

A.2.4 Tools used in NETMAR

Singular Value Decomposition (SVD)

The following explanation is based on the overview from Jepson and Flores-Mangas[86]
and this Wikipedia article[87].

The SVD is the factorization of a matrix into an orthonormal rotation matrix VT , a
scaling diagonal matrix Σ with the so-called singular values on its diagonal (non-negative,
listed from largest to smallest) and another rotation matrix U, with respect to the coordi-
nate axes.

In the present work, the solution to the least-squares problem would be given by:
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Table A.1: hVB Static Estimation
Step Task Equation

Noise Covariance Definition Σ−1
G = Cuu + ΣC

D-step Inverse Filter L(Σ−1
α ) = Σ−1

α G′Σ−1
B

D-step Estimate Current Z(t) = L(Σ−1
α )M(t)

α-step Estimate Variance α−1
n =

γ0nαᾱ
−1
0n+T

2

(
1
T

T∑
t=1

D2
n(t)
)

γ0nα+T
2 (L(Σ−1

α ) G)n,n

α-step Estimate Covariance Σ−1
α = diag(α−1

n )
Inverse Filter - L(Σ−1

α ) = Σ−1
α G′Σ−1

B

Current reconstruction - Z(t) = L(Σ−1
α )M(t)

Current smoothing Apply Gaussian filter D(t)=WZ(t)

Al = V(R(UTDt))

Where R is the pseudoinverse of the diagonal matrix Σ.

There are many applications for the SVD, such as the calculation of the pseudo-
inverse of a matrix, the solution of homogeneous linear equations and the solution of the
total least-squares minimization.
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Appendix B

EEG Preprocessing: Bad component
rejection

The rejection for bad components present in the ERP extracted from the EEG signal is not
always straightforward and it requires practice. This appendix is dedicated to providing
examples of artefactual components and highlights which aspects to take into account for
cleaning the signal.

Section 3.2.3 outlines the steps followed to preprocess the EEG signal in the present
work. After running ICA, the first step towards rejecting artefactual components is to
plot the properties of each component. This was done in EEGlab using Plot-Component
Properties. An example of a "good" component is shown in Figure B.1.

A

B

C

Figure B.1: Example of a good independent component, found using ICA

The first aspect to which attention must be paid is the topographical representation
of the component (A in Figure B.1). A good independent component depicts a spread
activity over multiple electrodes. The second aspect is the activity power spectrum (B),
which must be monotonically decreasing. Different degrees of steepness may be observed,
but sudden decays may reflect visual artifacts, like the one shown in Figure B.2. The
third aspect to take into account is the activity over time (C). The averaged signal over
trials must not show activity before the stimulus onset, as doing so may confirm the
component as an artifact. Figure B.3 shows examples of components corresponding to
muscle artifacts.
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Figure B.2: Example of a visual artifact independent component, found using ICA. Notice
the sudden drop in the power spectrum, as well as the activity before stimulus onset

Figure B.3: Example of muscle artifacts independent components, found using ICA. Be-
sides the concentration at a single electrode, the power spectrum does not decrease grad-
ually

Bad components like the ones shown in Figure B.2 and B.3 must be removed man-
ually using the component rejection tool from EEGlab.
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