GEOPHYSICS, VOL. 52, NO. 7 (JULY 1987); P. 965-972, 7 FIGS, | TABLE.

The critical reflection theorem

Jacob T. Fokkema* and Anton Ziolkowski*

In predictive deconvolution of seismic data, it is as-
sumed that the response of the earth is white. Any non-~
white components are presumed to be caused by the
source wavelet or by unwanted multiples. We show that
this whiteness assumption is invalid at precritical inci-
dence.

We consider plane waves incident on a layered acous-
tic half-space. At exactly critical incidence at any inter-
face in the half-space, the lower layer acts similar to a
rigid plate. The response of the half-space is then all-
pass, or white. This result we call the critical reflection
theorem. The response is also white if the waves are
postcritically incident on the lower half-space. In
normal data processing these postcritical components
are removed by muting. Thus the whiteness assumption
is normally applied to exactly that part of the data
where it is invalid.

ABSTRACT

The demarcation between precritical and postcritical
incidence can be exploited for the purposes of deconvo-
lution, provided the data can be decomposed into plane
waves. To develop this application, we consider the re-
sponse of a point source in the uppermost layer of the
layered half-space, with a free surface above. The
response is simply a superposition of the plane-wave
responses already studied, with complications intro-
duced by the source and receiver ghosts and by multi-
ples in the upper layer. At posteritical incidence the
earth response is white for all plane-wave components;
the source spectrum may be estimated from the postcri-
tical plane-wave components after removing the effects
of ghosts and multiples in the upper layer.

If the source signature is already known, the demar-
cation criterion can be used to separate intrinsic absorp-
tion effects from attenuation effects caused by scattering.

INTRODUCTION

In the deconvolution of seismic reflection data it is often
assumed that the impulse response of the earth is white and,
consequently, that the amplitude spectrum of the data is equal
to the amplitude spectrum of the source wavelet. This is exact-
jy what is assumed in routine least-squares prediction-error
filtering (Peacock and Treitel, 1969; Robinson and Treitel,
1980, p. 243), especially as it is applied to dynamite data.

We believe there is no theoretical justification for this as-
sumption. The only result we have found that lends any sup-
port to the assumption is the all-pass theorem of Treitel and
Rovinson (1966); but a corollary of the theorem strongly sug-
gests that the whiteness assumption must be wrong, as noted
by Ziolkowski and Fokkema (1986).

The all-pass theorem states that the normal-incidence reflec-
tion response of a plane-layered earth to an impulsive plane
wave is white, provided there is a perfect reflector at the
bottom of the stack of layers; that is, provided the reflection

coefficient at this reflector is +1 or — 1. It can casily be seen
that this theorem follows from conservation of energy. At the
perfect reflector all downgoing energy is reflected back toward
the surface. Since none of the elastic layers can create or de-
stroy energy, all the incident energy must eventually return to
the surface. This effect is independent of frequency, and there-
fore the reflection response is all-pass, or white.

There is an important corollary of this all-pass theorem: If
there is no perfect reflector in the plane-layered earth, the
normal-incidence reflection response to an impulsive plane
wave is nonwhite. In practice, even the strongest reflectors in
the earth sequence do not have reflection coefficients that are
close to +1 or —1. Therefore, the normal-incidence impulse
response of the real earth is nonwhite.

In this paper we consider nonnormal incidence and an
acoustic plane-layered earth model bounded by upper and
lower half-spaces. At nonnormal incidence the reflection coef-
ficient can become large, and beyond the critical angle total
internal reflection can occur. Since the velocities of the earth
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layers generally increase with depth, there will generally be
some angle of incidence at which total internal reflection will
occur and- where all the downgoing incident. energy is reflect-
ed.

We consider individual plane-wave components of the inci-
dent wave and study the structure of the scattered wave.
When the downgoing plane wave is critically incident at any
interface, the layer below the interface behaves similarly to a
rigid plate and reflects all the incident energy. The impulse
reflection response of the earth for this plane-wave component
is therefore white. We call this result “the critical reflection
theorem.™

There are a number of corollaries of this theorem, one of
which is that the reflection response is nonwhite at precritical
incidence; the corollary of the all-pass theorem is a specific
case of this result. Another corollary concerns postcritical re-
flection. If the lower half-space has a velocity greater than that
of the upper half-space, there is an incidence angle in the
upper half-space for which the wave is critically reflected at
the lower half-space. For greater incidence angles, the wave is
totally internally reflected at or above the lower half-space
and the reflection response is white.

In order to relate these plane-wave results to the seismic
reflection- method, we consider a- monopole source. in a. layer
placed on the layered half-space. The top surface of this
uppermost layer is a free surface. The wave field in the upper-
most layer may then be expressed as a sum of incident plane-
wave components from the source plus a sum of plane-wave
components scattered by the layered half-space. The free sur-
face imposes an interference pattern on the scattered field,
introducing peaks and notches in the spectrum of the scat-
tered response. The positions of the notches in the spectrum
depend upon the depths of the source and receiver and the
velocity of the upper layer, while the positions of the peaks
depend upon the thickness of the upper layer.

From the structure of the response it is clear that the ampli-
tude spectrum of the source wavelet can be determined from
the postcritically reflected plane-wave components of the
scattered field. In normal seismic data processing these com-
ponents are muted out and only precritically reflected compo-
nents are retained. If the whiteness of the postcritically reflect-
ed plane-wave components is to be used for determination of
the source spectrum, the data will have to be analyzed in a
new way.

THE CRITICAL REFLECTION THEOREM

We consider a stack of N plane-parallel homogeneous
acoustic layers, as shown in Figure 1, bounded at the bottom
by a homogeneous acoustic haif-space of density py,, and
velocity vy, ,, and at the top by a homogeneous acoustic half-
space of density p, and velocity vy, where v, is less than vy .
A plane pressure wave is incident from the upper half-space.
The normal to the wavefront is parallel to the x-z plane and
incident at an angle 0 to the normal to the layers, which is
chosen to be the z-axis.

The wave propagation is analyzed in the space-frequency
domain (x, z, ®) and the complex time factor exp (—iwt) is
omitted in the equations.

The incident field is the plane pressure wave

PN, 2, @) = Ag (@) exp {ia)(pox + 4y z)}. 1))

where Aj{w) is the spectrum of the pressure wave function,
po = sin 6/v, is the horizontal slowness, or ray parameter, in
the upper half-space, and g, = (1/63 — p2)!/? is the vertical
slowness in the upper half-space. The reflection response of the
stratified medium is unknown, but it will be a wave returning
at angle 0 to the normal, propagating upward:

PR(x, z, ®) = Agy(w) exp {iﬁ)(pox - gq z)}. 2)

The total pressure field in the upper half-space is the sum of
the incident and reflected fields:

POx, z, @) = exp (iwp, X)
X [Ag‘(m) exp (iovg, z) + A, () exp (—iwg, z)]. 3)

The normal component of particle acceleration is related to
the pressure gradient by Newton’s second law of motion. In
the time domain this relationship may be expressed as

Pu,(x, 2,00 —1dplx, 2, 0)
dr? N p oz >

4)

where u_(x, z, ¢} is the normal component of particle displace-
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Fig. 1. A stack of plane-parallel homogeneous acoustic layers
bounded at the bottom by a homogeneous acoustic half-space
of density py,, and velocity vy ,, and at the top by a homo-
geneous acoustic half-space of density p, and velocity vy. vg is
less than vy, ,. A plane pressure wave is incident from the
upper half-space; the normal to the wavefront is paraliel to
the x-z plane at an angle 0 to the normal to the layers, which
is the z-axis.
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ment. For a plane wave, the total differentiation with respect
to time d/dt is equal to the partial derivative 9/0t, and equa-
tion (4) may be transformed to the frequency domain to yield

1 0P(x, z, )

U.(x, z, 0) = —
z( ) p(l)l oz

3
Thus, in the upper half-space, layer 0, the normal component
of displacement, is

i
U2Ax, 2, ©) = —% exp (iwp, X)
Po®

0
X [Ag'(m) exp (ing, 2) — 44 (@) exp (—iong, z)]. (6)

Similarly, the pressure and normal displacement fields in the
nth and (n + 1)th layers are

P(x, z, ©) = exp (iwp, X)

x [A: () exp (iog, 2)

+ A (@) exp (— iy, z)] )
and

Us(x, 2, ©) = —2 exp (ip, %)
P,

x [A,T () exp (ing, 2) — A, (©) exp (—iwg, 2)] t]

for all values of x and for z, ., < z< z,,and

P l(x, z, @) = exp (iwp, . ;%)

x [A;+ (@) exp (ivg, . 2)+ A4, (@) exp (—iwg, . 12)] 9)

and

b?
Ui M x, 2, 0) = a1 exp (inp), , yx)-
Pn+ 1m

x [A:+ (o) exp (ing, , ;2)— A, (©) exp(—iog, . 12)] (10)

for all values of x and z, < z < z,, ;.
From the continuity of pressure at the boundaries for all
values of x, it follows that

Po=P1=" """ =Py=Pps1=""" Pn+1> (11)
which is Snell’s law. It can be expressed as

sin 6

=p for n=1,2,3,..,N+1 (12

1 1/2
n=(zr)

4, will become imaginary if p > 1/v,. At each boundary, pres-
sure and displacement are continuous. That is,

Pp =
Yo

Since

im PYx, z, ®) = lim P"*(x, z, 0), (13)

2tz 2z

and
lim U%(x, z, @) = lim U2* Xx, z, ). (14)
ztz, zlz

We now define a global reflection coeflicient R, (w) for the nth
layer as follows:

A7 (0) = R (0)4, (0) exp 2iwg, z,). (19)

Divide equation (14) by equation (13), after substitution from
expressions (7), (8), (9), and (10), using equation (15) and a
similar expression for the (n + 1)st layer to obtain the follow-
ing recursion formula for the global reflection coefficient.

I, + R, (o) exp {imt,,,r 1}

R, () = , {16)
1+T,R,, () exp {a’mrnﬂ}
in which
Tus1 = 2nsy(Zps1 — 24 17
is the vertical two-way traveltime in layer n, and
- In/Py = n+ 1/Pass (18)

T 4Py Gos 1/Pass

is the local rteflection coefficient. [It can be seen that when
p=0,4q,=1/v,, qu+ = 1/, and equation (18) is the well-
known expression for the reflection coefficient at normal inci-
dence.] Using definition (15) for the upper half-space, equation
(3) may be written as

Py (x, z, ®) = A (®) exp (iwpx)
X [exp (g 2) + Ry(®) exp {icoqo (229 — z)}]. (19

At critical incidence at the interface z=z,, p,,, =p=
1/v,,, by definition, from which it follows that g,,, = 0.
Equation (10) shows that the particle displacement
U?* Yx, z, ) = 0 for all frequencies, for all values of x, and for
z, < z <€z,,, That is, the {n + 1)th layer acts similarly to a
rigid plate at critical incidence, and it follows that all the
incident energy will be returned to the surface.

This conclusion can be drawn from the recursion formula
(16) and the auxiliary equation (18). When g,,, =0, T, = I,
and therefore R (w) = 1 for all w. The recursion formula (16)

then gives
r,_., +exp {im‘r,,}

Rn—l(m) = 4
1+T,_,exp {i(o‘t,,}

(20)

in which I, _, is real with modulus less than 1. The numerator
and denominator of the right-hand side of equation (20) are
complex numbers which have the same modulus, but different
phases. Therefore, R, _, () is a complex number of modulus 1.
It follows that R, _,(w), R,_,(®), ..., Ry(w) are all modulus 1.
From equation (15), it follows that the amplitude spectrum of
the total field in the upper half-space is the same as the spec-
trum of the incident pressure wave, and the reflection response
of the layered sequence is therefore white.
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COROLLARIES
Corollary 1: At precritical incidence, the response is nonwhite.

At precritical incidence, I', is real and has modulus less than
1 for all layers. Therefore, there is a wave transmitted into the
lower half-space. There cannot be any upcoming waves in the
lower half-space; therefore, R, (0w} = 0, and it follows from
the recursion equation {16) that Ry(w) = [’y which has modu-
lus less than 1 and is real. Using the recursion again, it follows
that R, _,(w) is complex and frequency-dependent, with mod-
ulus less than 1. Following the recursion to the top of the
stack with all I", real and modulus less than 1, it follows that
all the R (w0) are complex with modulus less than 1, including
R,(w). Therefore the reflection response is not white.

Corollary 2: At precritical incidence, the reflection response is,
in general, not minimum-phase.

Applying the recursion formula (16) to the upper half-space
yields
Ty + R {0) exp (iot,)
! + IR () exp (iwt,)’

Ry(0) = @n

in which, from corollary 1, we established that || < 1 and
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|R,(®)| < 1. The denominator of equation (21) is minimum-
phase and therefore R,(w) is causal. This is a generalization of
the normal-incidence result found by Treitel and Robinson
(1966). For Ry(w) to be minimum-phase, we require also that
IR ()] < |T,|, which will not generally be the case. It follows
that Ry(w) is not in general minimum-phase.

Corollary 3: If there are only evanescent waves in the lower
half-space, the reflection response is white.

Since vy < vy, ,, it is possible to have an incident wave in
the upper half-space such that

sin 6 1
p=—2L>—, 23)
Uo Un+1

It follows that gy, , = i(p? — 1/e}, )"* is pure imaginary, and
therefore, from equation (18), I'y is complex and has modulus
1. In the lower half-space there are no upcoming waves, so
Ry, (w) =0 and therefore, in equation (16), R (w) =T,
which is complex and has modulus 1. Following the recursion
(16) upward, it follows that Ry_ (o), Ry_,(1), ..., Ry(®) are
all complex and have modulus 1. Therefore the reflection re-
sponse is white.

SYNTHETIC EXAMPLES

We now demonstrate the effect of varying the angle of inci-
dence on the plane-wave reflection response in two examples.
In the first example we use a real well log from the North Sea
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F1G. 3. The incident-wave and plane-wave reflection responses
from the horizontally layered structure described by the pro-
files of Figure 2: (2) the incident wavelet; (b) the normally
incident reflection response; (¢) a precritical reflection re-
sponse; (d) a precritical reflection response just before critical
reflection; (e) a postcritical reflection response just after criti-
cal reflection; (f) a postcritical reflection response at a large
angle of incidence (30 degrees).
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which has been represented as 684 horizontal acoustic layers.
In the second example we take a simple five-layer case.

(1) 684-layer case

The acoustic velocity and density profiles are shown in
Figure 2. The incident wavelet and the plane-wave reflection
responses at various angles of incidence are shown in Figure 3.
The lower half-space has the highest velocity, and the wave is
critically reflected at the lower half-space when the angle of
incidence is arcsin (0.25713) in the upper half-space. The re-
flection responses in Figure 3 are thus divided into three pre-
critical and two postcritical responses, with the responses at
sin @ = 0.2570 and sin 6 = 0.2573 corresponding to just before
and just after critical reflection in the lower half-space. Notice
how similar these two responses are. The response at
sin 8 = 0.5 becomes critically reflected at a layer shallower
than the lower half-space.

In Figure 4 we show the amplitude spectra of the incident
wavelet and the reflection responses. The two posteritical. re-
sponses have the same amplitude spectrum as the incident
wavelet, showing that the reflection response of the sequence
is white (corollary 3). The three precritical responses have dif-
ferent spectra; therefore, the precritical earth response is not
white (corollary 1). Notice that, although the two responses
just before and just after critical reflection are very similar in
the time domain, their spectra are dramatically different.

(2) Five-layer case

We now consider a much simpler case, with only five layers
(Table 1). The incident wavelet and five reflection responses
are shown in Figure 5. The incident wave is ¢ritically reflected
at the lower half-space when the angle of incidence in the
upper half-space is 30 degrees (arcsin 0.5). Three precritically
and two postcritically reflected responses are shown, with. the
last precritical response (sin 8 = 0.499) and the first postcriti-
cal response (sin 0 = 0.501) looking very similar. The corre-
sponding amplitude spectra of these responses are shown in
Figure 6. Once again, we sec that the spectra of the postcriti-
cal responses are the same as the spectrum of the incident
wavelet, while the spectra of the precritical reflection responses
are different. It follows that the postcritical reflection response
of the earth is white, while the precritical reflection response is
nonwhite.

Table 1. Velocity and density structure of the five-layer model
used in the second synthetic example.

Velocity Density
Layer Depth (m/s) (kg/m>)
Upper <0 1500 1000
half-space
0-300 1800 1000
2 300-600 2100 1000
3 600-900 2400 1000
4 900-1200 2000 1000
5 1200-1500 2500 1000
Lower > 1500 3000 1000
half-space

POINT-SOURCE RESPONSE AND
THE INFLUENCE OF THE FREE SURFACE

In order to relate the plane-wave results to the seismic re-
flection method, we now use the earth model shown in Figure
7, in which the upper half-space of Figure 1 has been replaced
by a layer with a free surface at z = 0, This upper layer has the
same velocity and density as the upper half-space of Figure 1.
We introduce a monopole source in this layer at a depth h, on
the z-axis.

The pressure in this uppermost layer consists of an incident
field P™C and a scattered field P°:

Po(p,. py. 2, 0) = PN, p,, 7, ©) + P(p,, p,, 2, @) (21)
in which we introduce the third dimension y. The incident
field satisfies the inhomogeneous wave equation

aZPlNC
oz%

+ 0?q2 PN = —S(w)d(z — h,), (22)

in-which- g, ={(1/v})— pZ¥— p23*** from cylindrical symmetry,
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Fic. 4. The amplitude spectra (a)—(f) of the traces (a)—(f),
respectively, in Figure 3.
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and S(w) is the source spectrum. The well-known solution of
equation (22) is

PINC _ S(w)

=1

exp [im(P,x +p,y+ golz— h, I)], (23)

do

for0<z<z,.

The factor exp [it{p, x + p, )] is common to both the incident
and scarttered fields and will be omitted in further equations, for
simplicity. The scattered field consists of upgoing and down-
going waves, as in the other layers:

P = A exp [ia)qo z:I + A; exp [im{Zqo zp ~ qp z)] (24)

for0<z<z,.

We now find the global reflection coefficient R, at the
boundary z = z,. As before, this is the ratio of the upgoing
wave 1o the downgoing wave, but now recognizing that the
downgoing wave consists of both the incident wave and a
scattered wave,

S
Ay = Ro[i @) exp (—iongyh) + A;]. (25)
2mq
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F1G. 5. The incident-wave and plane-wave reflection responses
from a five-layer model (Table 1): (a) the incident wavelet; (b)
the normal incidence reflection response; (c) a precritical re-
flection response; (d) a precritical reflection response just
before critical reflection; {e) a postcritical reflection response
just after critical reflection; {f) a postcritical reflection response
at a large angle of incidence.
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FIG. 6. The amplitude spectra (a)-(f) of traces (a)—(f), respec-
tively, in Figure 5.
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FiG. 7. A point source is introduced into the uppermost layer,
layer 0, which has a free surface at z = 0. The layered half-
space is otherwise identical with that shown in Figure 1.
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At the free surface z = 0, the boundary condition is that the
pressure is zero:

Py=0. (26)

Therefore, from equations (21), (23), and (24) it follows that

s
A7 exp Qiogg zg) = —-l[i ©) vp (0goh) + A;] @n

2,

in which the well-known (—1) reflection coefficient is clearly
recognizable, Equations (25) and (27) can be solved for A,
and A;, thus enabling the scattered field P* in equation (24) to
be determined. Combining this result with equation (23) yields
the complete expression for the total field in layer O at a depth
z, as follows:

Po(Pa z, (0) = S(UJ)G(}), z, (!J) (28)

in which P = (PZ + P})"/* and the Green’s function G(p, z, )
are given by
i
2mq,

G(p, z, ) = [G'"C(P, z, ©) + G(p, z, m)].
(29)
where
G™(p, z, w) = exp [i«)qo lz—h, |J — exp [imqo(z + h,)]
(30)
and
R, exp ’:imqo(lzo —z— hs):l

1 + R, exp (2ing, z,)

G*(p, z, ®) =

x [1 — exp (2iwg, hj)][l — exp (2img, z)].

@31

The Green’s function consists of an incident field and a
scattered field. The incident field contains two terms, described
by equation (30): The first term is the direct wave from the
source; and the second term is the rcflection of this wave in
the free surface (the ghost). The scattered field is described by
equation (31) and contains five factors: R, is, of course, the
global reflection coeflicient at z = z, and contains all the in-
formation about the layered half-space; the denominator de-
scribes the behavior of the multiples in the first layer; the
factor [1 — exp (2iwgq h,)] is the ghost operator at the source;
the factor [1 —exp (2iwg,z)] is the ghost operator at the
receiver; and exp [iwgy(2z, —z — h)] is simply a phase
factor.

‘We may also find an expression for the vertical component
of the particle velocity U, in the layer, using the relation

1 2Py(p, z, w)

U._(p, z, ®) =
(P } op, =

The interesting case for exploration geophysics is for z = 0,
corresponding to the situation where geophones are placed on

(32)-

the surface. Here,

inp, U, (p, 0, w)

S) = exp (iwgy h,)

R, exp [x’mqo (225 — h,)]

I + R, exp (2iwg, zo)

+

x [] — exp (2iwq, hs)]. (33)

The direct wave and its free-surface reflection combine to give
a single term [exp (iwgy h,)] for the incident field. In the scat-
tered field the multiples and source ghost operator are still
there, but the receiver ghost vanishes since the geophones are
at the surface.

DISCUSSION AND CONCLUSIONS

The critical reflection theorem yields a demarcation
between plane-wave components that are precritically and
postcritically incident on the lower hall-space of an acoustic
plane-layered earth model. At precritical incidence, the refiec-
tion response is nonwhite; however, at postcritical incidence,
there are only evanescent waves in the lower half-space, and
the reflection response is white.

This result has an obvious application to the deconvolution
of seismic data, when the wavelet is minimum-phase. It is
usually assumed that the spectrum of the wavelet may be
obtained from the data, if the earth reflection response is
white, random, and stationary (for example, Robinson and
Treitel, 1980, p. 243). We have now proven that the reflection
response at precritical incidence is not white. Therefore, the
whiteness assumption does not hold at precritical incidence.
The assumptions of randomness and stationarity are irrel-
evant: If the earth reflection response is random and station-
ary, but not white, the spectrum of the reflected data is not the
same as the spectrum of the incident wavelet; if the earth
reflection response is white, but not necessarily random or
stationary, the spectrum of the reflected data is the same as
the spectrum of the incident wavelet. We can see from our two
examples that the number of layers, stationarity, and random-
ness are irrelevant; it matters only whether the plane waves
are precritically or postcritically reflected at the lower half-
space.

If the data can be treated as a point source over a layered
half-space, the source can be decomposed into its plane-wave
components (as described in the previous section). In shot
gathers over structures with significant dip, the plane, horizon-
tally layered earth mode! may be a poor approximation to the
real earth. We suggest that this model is a better fit to
common-midpoint (CMP) gathers, in which the effect of dip is
minimized (see, for example, Diebold and Stoffa, 1981). The
CMP gather then looks like a shot gather over an equivalent
plane-layered earth model, as described by Figure 7.

The measured pressure field P(r, z, 1), in which r is the
shot-receiver offset in the CMP gather, may then be trans-
formed to frequency to yield B(r, z, ®). The cylindrical sym-
metry about the z-axis through the source allows the data to
be transformed from offset r to wavenumber k., via the
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Hankel transform (see Bracewell, 1965, p. 248):

ﬁ()(kpa z, (D) = j‘ Po(", Z, (D)Jo(rk’)f dra (34)
0
where k, is chosen for appropriate p values, in which
k, = op. (35)
Thus we find
Po(p, z, 0) = J P(r, 2, @)Jo (wpr)r dr, (36)
0

in which P,(p, z, ®) has the structure described by equation
(28).

After the incident field has been removed (this could even be
done before the Hankel transformation), the individual plane-
wave responses of the scattered field can be analyzed. Using
the demarcation provided by the critical reflection theoren,
IRyf =1 for any ray parameter p greater than p_;, = /vy,
where vy, , is the velocity in the lower half-space. In the time
domain, each of these plane-wave components consists of a
source wavelet convolved with the white reflection response,
and further convolved with a source ghost operator, a receiver
ghost operator, and an operator describing the multiples in
the first layer. A band-limited amplitude spectrum of the
source wavelet may now be extracted from these plane-wave
components using the methods of predictive deconvolution. If
the wavelet is minimum-phase (in the case of dynamite, for
example), it may be calculated from the amplitude spectrum
using standard methods. Finally, the precritical plane-wave
components can now be deconvolved using this wavelet
derived from the postcritical plane-wave components,

In normal seismic data processing the muting process before
stack removes all postcritical plane-wave components. In
other words, in standard predictive deconvolution the white-
ness assumption is applied on precisely the part of the data
where it is invalid. Qur proposal simply involves splitting the
data into two parts: precritical incidence and postcritical inci-
dence. The precritical data are more or less what is left after
muting, and the postcritical data are what is normally re-
moved. It is only at postcritical incidence that the whiteness
assumption is valid.

In all of the above we have been dealing with lossless media,
but absorption may also take place. Absorption can only be
studied when the frequency-dependent elastic effects are taken
into account first (Ziolkowski and Fokkema, 1986). We can
check for the effects of absorption if we know the spectrum of
the incident plane wave. If the spectra of the plane-wave de-
composed data at postcritical incidence are compared with the
spectrum of the incident wavelet, attenuation of the incident
spectrum should be observed in the reflected data if absorp-
tion is present. Any effects of absorption can be identified with
specific layers by considering different postcritical angles. As
the velocities generally increase with depth, the largest p
values correspond to total internal reflections in the shallow-
est layers, while decreasing p values contain data from deeper
layers.

In conclusion, the postcritically reflected data, which are
muted out in conventional processing, contain valuable infor-
mation which can also be used in the processing of the precri-
tically reflected data. We emphasize that the assumption of
whiteness cannot be applied to the precritical earth reflection
response.
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