
 
 

Delft University of Technology

Epidemic dynamics on information-driven adaptive networks

Zhan, Xiuxiu; Liu , Chuang  ; Sun, Gui-Quan; Zhang , Zi-Ke

DOI
10.1016/j.chaos.2018.02.010
Publication date
2018
Document Version
Final published version
Published in
Chaos, Solitons and Fractals

Citation (APA)
Zhan, X., Liu , C., Sun, G.-Q., & Zhang , Z.-K. (2018). Epidemic dynamics on information-driven adaptive
networks. Chaos, Solitons and Fractals, 108, 196-204. https://doi.org/10.1016/j.chaos.2018.02.010

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1016/j.chaos.2018.02.010
https://doi.org/10.1016/j.chaos.2018.02.010


Green Open Access added to TU Delft Institutional Repository 

'You share, we take care!' - Taverne project

https://www.openaccess.nl/en/you-share-we-take-care

Otherwise as indicated in the copyright section: the publisher 
is the copyright holder of this work and the author uses the 
Dutch legislation to make this work public. 



Chaos, Solitons and Fractals 108 (2018) 196–204

Contents lists available at ScienceDirect 

Chaos, Solitons and Fractals
Nonlinear Science, and Nonequilibrium and Complex Phenomena 

journal homepage: www.elsevier.com/locate/chaos 

Epidemic dynamics on information-driven adaptive networks

Xiu-Xiu Zhan 

a , b , Chuang Liu 

a , ∗, Gui-Quan Sun 

c , Zi-Ke Zhang 

a , d , e , ∗

a Alibaba Research Center for Complexity Sciences, Hangzhou Normal University, Hangzhou 311121, PR China
b Faculty of Electrical Engineering, Mathematics and Computer Science, Delft University of Technology, Delft 2628 CD, The Netherlands
c Complex Sciences Center, Shanxi University, Taiyuan 030 0 06, PR China
d Department of Automation, Shanghai Jiao Tong University, Shanghai 200240, PR China
e Alibaba Research Institute, Hangzhou 311121, PR China

a r t i c l e i n f o 

Article history:

Received 8 November 2017

Revised 19 January 2018

Accepted 8 February 2018

Available online 16 February 2018

Keywords:

Epidemic spreading

Information diffusion

Adaptive model

Bifurcation analysis

a b s t r a c t 

Research on the interplay between the dynamics on the network and the dynamics of the network has at- 

tracted much attention in recent years. In this work, we propose an information-driven adaptive model,

where disease and disease information can evolve simultaneously. For the information-driven adaptive

process, susceptible (infected) individuals who have abilities to recognize the disease would break the

links of their infected (susceptible) neighbors to prevent the epidemic from further spreading. Simula- 

tion results and numerical analyses based on the pairwise approach indicate that the information-driven

adaptive process can not only slow down the speed of epidemic spreading, but can also diminish the

epidemic prevalence at the final state significantly. In addition, the disease spreading and information

diffusion pattern on the lattice as well as on a real-world network give visual representations about how

the disease is trapped into an isolated field with the information-driven adaptive process. Furthermore,

we perform the local bifurcation analysis on four types of dynamical regions, including healthy, a con- 

tinuous dynamic behavior, bistable and endemic, to understand the evolution of the observed dynamical

behaviors. This work may shed some lights on understanding how information affects human activities

on responding to epidemic spreading.

© 2018 Elsevier Ltd. All rights reserved.
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1. Introduction

The spreading dynamic is one of the core issues in network

science [1–3] , where most of the related researches focus on epi-

demic spreading and information diffusion in recent years. Much

of the work to date focuses on the analysis of these two pro-

cesses independently, such as the spread of single contagion [4–

6] or concurrent diseases [7,8] , and the diffusion of various kinds

of information (e.g., news [9] , rumor [10] , innovation [11] .). How-

ever, the epidemic spreading process is closely coupled with the

corresponding disease information diffusion (or saying individuals’

awareness of the disease) in the real world. For instance, during

the severe acute respiratory syndrome (SARS) outbreak in China in

2003, overwhelming number of disease reports have been posted.

These kind of information about SARS may affect the individuals’

behavior in keeping away from SARS and thus help to make the

disease under control [12,13] . Therefore, disease information dif-

fusion may play an important role in the control of the epidemic
∗ Corresponding authors.

E-mail addresses: liuchuang@hznu.edu.cn (C. Liu), zkz@hznu.edu.cn (Z.-K.

hang).
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utbreak, but it is not easy to quantitatively measure the strength

f its impact [14] . 

Nowadays, some models have been proposed to model the in-

eraction between epidemic spreading and information diffusion

n complex networks [14–17] . The fundamental assumption is that,

hen a disease starts to spread in the population, people may get

he disease information from their friends or media before the ad-

ent of the epidemic and take some preventive measures to keep

way from being infected [15,18,19] . By depicting preventive mea-

ures as the reduction of transmitting probability [20,21] or par-

icular states of individuals (immune or vaccination) [22] , previous

odels showed that the disease information diffusion indeed in-

ibits the epidemic spreading significantly (reduce the epidemic

revalence as well as enhance the epidemic threshold) [15,23] .

herefore, the emergence of mutual feedback between information

iffusion and epidemic spreading [14] exhibits the intricate inter-

lay between these two types of spreading dynamics. The interplay

etween these two types of spreading dynamics is similar to the

ompeting epidemics [24,25] to some extent, that is to say, there is

 competitive mechanism between epidemic spreading and the in-

ormation diffusion. Most of aforementioned studies of such com-

lex interacted spreading dynamics are based on static network,

https://doi.org/10.1016/j.chaos.2018.02.010
http://www.ScienceDirect.com
http://www.elsevier.com/locate/chaos
http://crossmark.crossref.org/dialog/?doi=10.1016/j.chaos.2018.02.010&domain=pdf
mailto:liuchuang@hznu.edu.cn
mailto:zkz@hznu.edu.cn
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Fig. 1. Transmission diagram of epidemic spreading ( SI model in the horizontal di- 

rection) and disease information diffusion model (SIS model in the vertical direc- 

tion). 
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.e., the network structure stays fixed when the two processes are

preading on the network. However, individuals would sometimes

ut off the connections with the infected ones when they become

ware of the disease, leading to the change of network structure.

onsequently, how to characterize the mutual spreading process on

he adaptive networks is a crucial issue we want to address in this

ork. 

Generally, the network dynamic researches could be classified

nto two lines: (i) one is the dynamics of the network , which focuses

n the time evolution of network structure [26–28] ; (ii) the other

s considered as the dynamics on the network , which concerns the

tate change of the nodes (or interactions) on networks, such as

he epidemic spreading and information diffusion process [29,30] ,

he evolutionary game [31] and so forth. Currently, researchers be-

ame to study how the epidemic would spread on adaptive net-

orks, i.e., considering one epidemic spreading process on dynam-

cal changing networks [32] . In [32] , the author proposed a model

y considering that the susceptible individuals are allowed to pro-

ect themselves by rewiring their links from the infected neigh-

ors to some other susceptible ones [33–35] . Many researches in-

icate that segregating infected (or susceptible) individuals with

he adaptive behavior is an efficient strategy to reduce the fraction

f susceptible-infected ( SI ) interactions, as well as hinder the out-

reak of the whole epidemic spreading [36–38] . In addition, abun-

ant temporal behaviors are presented to illustrate the spreading

ynamics on the adaptive network, such as the coexistence of mul-

iple stable equilibrium and the appearance of an oscillatory re-

ion, which are absent in the spreading dynamics on static net-

orks [32,39] . Besides the edge rewiring strategy, the link cutting

r temporarily deactivating is also a commonly used rule in the

daptive models [40,41] . 

In this work, we consider a more complicated case that two

ynamical processes (i.e., epidemic spreading and disease infor-

ation diffusion) are spreading on adaptive networks. Therefore,

hree dynamical processes are coupled in this case, we aim to illus-

rate how the adaptive behavior can affect the interplay between

pidemic spreading and information diffusion. The adaptive behav-

or is aroused by the individuals awareness of the disease. In this

odel, those who have been informed of the emergence of disease

an break their neighbouring connections to prevent further infec-

ion. Additionally, epidemic spreading and disease information dif-

usion are described by the SI and SIS model, respectively. The dis-

ase information generation of the infected individuals is consid-

red to form a mutual feedback loop between these two types of

preading dynamics [20] . Therefore, the effect of information dif-

usion on epidemic spreading could be interpreted by two aspects:

i) reduce the epidemic spreading probability with protective mea-

ures; and (ii) cut off SI links with the information-driven adaptive

rocess. Both numerical analyses based on the pairwise approach

nd simulation results indicate that the information diffusion and

he adaptive behavior of the nodes can inhibit the epidemic out-

reak significantly. In addition, we present a full local bifurcation

iagram to show the abundant dynamical behaviors in the pro-

osed model. 

The paper is organized as follows. In Section 2 , we give a de-

ailed description of the model as well as mathematical expres-

ions based on the mean-field model and the pairwise model. In

ection 3 , we first analyze the case of epidemic and disease infor-

ation spreading on static network, i.e., the case of no adaptive

ehavior is taken into account. We further give the results of how

he epidemic and disease information spreading processes inter-

ct with each other on adaptive network. The sensitivity analysis

f the parameters and dynamical characterization of the model is

iven in the end of Section 3 . We conclude the paper with some

uture directions of the work in Section 4 . 
t  
. Model 

.1. Model description 

We give a detailed illustration of our model in Fig. 1 . The ver-

ical transformation describes the diffusion of disease information

y an SIS model, where individuals can be at one of the two states:

i) + : indicates that the individuals have known the existence of

he disease, denoted as the informed ones; (ii) −: indicates that

he individuals have not known the existence of the disease. At

ach time step, the informed nodes will transmit the information

o their unknown ( −) neighbours with probability α, and each in-

ormed individual may forget the information of the disease with

 probability λ. Besides, the one who has been infected by the dis-

ase will become to know the information of the disease with a

orresponding rate ω [14,16] . 

In the horizontal transformation of Fig. 1 , the epidemic spread-

ng is described by an SI model. Each node is at one of two

tates, susceptible (S) or infected (I). The disease can be transmit-

ed through the SI links, where the S-state individuals could be

nfected with the probabilities β , σ I β , σ S β and σ SI β respectively

hrough S −I −, S −I + , S + I − and S + I + links, where σ I , σ S and σ SI are

he impact factors of the information on epidemic spreading. Gen-

rally, when people know the occurrence of the disease (informed

ndividuals), they would like to take some measures to protect

hemselves, leading to the reduction in infectivity (0 < σ S , σ I < 1).

n particular, the influence coefficient of the epidemic spreading

robability through S + I + links could be calculated as σSI = σS σI ,

ith the assumption of the independent effect of the infection

robability. 

Additionally, we consider an information-driven adaptive pro-

ess which the informed individuals would reduce physical con-

acts to protect themselves or their friends. That is to say, the in-

ormed susceptible individuals ( S + ) will keep away from their in-

ected neighbors to protect themselves from being infected, and

nformed infected individuals ( I + ) will also avoid contacting their

usceptible neighbors to prevent the epidemic from further spread-

ng. Consequently, the edge-breaking rule of adaptive behavior is

dopted [40] . Thus, at each time step, the S + ( I + ) state individ-

als will break the links connected to their I ( S )-state neighbors

ith rate r S ( r I ) respectively. Specially, the breaking rate of the S + I + 
airs could be interpreted as 1 − (1 − r S )(1 − r I ) with the indepen-

ent assumption. It is worth noting that the deactivation of SI links

nly represents the avoidance of physical contacts between the S -

nd I -state individuals. That is to say, the edge-breaking process

ill not affect the diffusion of disease information for it can be

ransmitted through other types of connections such as phone, in-

ernet and so forth. The dynamic of the epidemic spreading degen-
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Fig. 2. The epidemic spreading dynamics of various information diffusion probabil- 

ities α without considering the effect of adaptive process. The horizontal axis ( T ) is 

the time step for the Monte Carlo simulation, the vertical axis ( I ) is the density of 

infected (the vertical axis of the inset figure is the density of informed population 

in the network). The parameters are set as β = 0 . 3 , σS = 0 . 5 , σI = 0 . 7 , λ = 0 . 2 , ω = 

0 . 75 , r S = r I = 0 . The inset shows the information diffusion dynamics ( Info ) of vari- 

ous β for α = 0 . 6 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. Comparison of simulation results with the mean-field model and the pair 

approximation model without considering the effect of adaptive process. The hori- 

zontal axis ( T ) is the time step for the Monte Carlo simulation, the vertical axis ( I ) 

is the density of infected. The parameters are set as β = 0 . 3 , σS = 0 . 5 , σI = 0 . 7 , λ = 

0 . 2 , ω = 0 . 75 , α = 0 . 6 , r S = r I = 0 . 

Fig. 4. Dynamical analysis of the spreading model with adaptive process. (a) Com- 

parison of the pairwise model with the simulation results, the horizontal axis ( T ) 

is the time step for the Monte Carlo simulation, the vertical axis ( I ) is the density 

of infected. (b) Degree distribution of the original network and that after the adap- 

tive process, the horizontal axis ( k ) represents degree, the vertical axis ( p ( k )) is de- 

gree probability. The parameters are set as β = 0 . 2 , σS = 0 . 5 , σI = 0 . 7 , λ = 0 . 2 , ω = 

0 . 2 , α = 0 . 5 , r S = 0 . 15 , r I = 0 . 1 . 
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erates to a classical SI model when we set r S = r I = 0 , i.e., there is

no edge-breaking in this case. 

According to the model described above, the spreading process

can be summarized as follows. At the beginning, an individual is

randomly selected as the I + node, which is considered as the seed

of both the epidemic spreading and information diffusion, and all

other individuals are set as S − ones. At each time step, (i) the in-

fected individuals would transmit the disease to their susceptible

neighbors with the corresponding probabilities; (ii) the informed

individuals would transmit the disease information to their un-

informed neighbors; (iii) the informed individuals can forget the

information; (iv) the informed individuals would also break the

links with their relevant neighbors by considering the adaptive

mechanism. Finally, the spreading process would be terminated

when the size of the infected individuals becomes stable. 

2.2. Numerical mathematical analysis 

Firstly, we develop theoretical analysis to depict the dynamic

processes of both information diffusion and epidemic spreading.

In particular, mean-field analysis and the pairwise analysis are

adopted. Let χ be the state variable, thus [ χ ] denotes the expected

values of individuals of different types on the population (e.g. [ S + ]
and [ S + I + ] represent the expected number of informed suscepti-

ble nodes and expected number of links connecting an informed

susceptible node to an informed infected node respectively). 

Therefore, with the classical mean-field approach, we can ob-

tain: 

d[ I + ] 
dt 

= 〈 k 〉 [ S + ](σS β[ I −] + σS σI β[ I + ]) 

+ α[ I −]([ S + ] + [ I + ]) + ω[ I −] − λ[ I + ] (1)

comparatively, with the pairwise approach, we can obtain: 

d[ I + ] 
dt 

= (σS β[ S + I −] + σS σI β[ S + I + ]) 

+ α([ S + I −] + [ I −I + ]) + ω[ I −] − λ[ I + ] (2)

where, the first terms of Eqs. (1) and (2) describe the infection

of the S + -state individuals, the second terms describe the infor-

mation acceptance of the I −-state individuals, the third terms de-

scribe the information generation of the I −-state individuals and
he last terms represent the information loss of the I + -state indi-

iduals. Simultaneously, the full set of differential equations based

n those two approaches can be illustrated in Appendix A . By the

ay, the adaptive process could be described by the last terms of
d[ S + I −] 

dt 
, 

d[ S −I + ] 
dt 

and 

d[ S + I + ] 
dt 

in the pairwise approach of Eq. (4) .

t should be noted that the pairwise analysis is based on a well-

nown closure approximation given by [ ABC ] = 

[ AB ][ BC ] 

[ B ] 
with the

ssumption that the degree of each individual obeys Poisson distri-

ution [42,43] . In general, it might be very hard to get exact solu-

ions of such complex differential equations, thus we give numeri-

al solutions of the equations instead of the theoretical analysis in

he following analysis. 

. Results 

.1. Simulation and numerical analysis without adaptive behaviour 

In this work, we perform our model on the ER network with a

otal population of N = 10 , 0 0 0 and average degree 〈 k 〉 = 6 unless

therwise stated. Moreover, all the simulation results are given by

0,0 0 0 realizations. We first consider a simple case of no adaptive

ehavior when the epidemic and disease information are spread-

ng in the network, i.e., the case of spreading on static network.

ig. 2 gives the simulation result of the fraction of infected nodes

volving with time for various information diffusion probabilities

, with the epidemic spreading probability β = 0 . 3 . For the SI pro-

ess, the whole population would be infected when β > 0 for the
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Fig. 5. The fraction of infected individuals in the stationary state (colors in the 

phase diagram represent the density of infected individuals at the final state, the 

dashed green curve shows that the prevalence value transmits from near 0 to signif- 

icantly larger than 0) versus α and β for (a) pairwise analysis and (b) simulation re- 

sult. The parameters are set as σS = 0 . 5 , σI = 0 . 7 , λ = 0 . 2 , ω = 0 . 2 , r S = r I = r = 0 . 1 . 

(For interpretation of the references to color in this figure legend, the reader is re- 

ferred to the web version of this article.) 
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onnected social networks, resulting in that the final infected den-

ity equals to 1 for all the values of α in Fig. 2 . That is to say, the

isease information diffusion cannot avoid the epidemic spreading

o the whole population when we perform our model on static

etwork. However, we find that the disease information diffusion

an slow down the epidemic spreading when we increase the

alue of α. Furthermore, the time cost for the whole population

ecomes infected when α = 1 is about three times longer than that
ig. 6. Illustration to dynamic spreading process by considering the adaptive effect on t

nformed individuals in some particular time steps. The red area represents the nodes

ndividuals. The red curves (lower panels) describe the fraction of infected individuals ov

arlo simulation, the vertical axis ( I ) is the density of infected). (a) α = 0 . 1 ; (b) α = 0 . 3 ; 

 . 1 , ω = 0 . 2 , r S = r I = r = 0 . 1 . (For interpretation of the references to color in this figure l
f α = 0 . In this sense, the diffusion of the disease information can

low down the epidemic spreading significantly. In addition, the

nset of Fig. 2 indicates that the epidemic spreading can enhance

he disease information diffusion. Actually, according to model il-

ustrated in Fig. 1 , on the one hand, we realize that the epidemic

preading could be influenced by information diffusion where the

pidemic spreading probability of the informed individuals would

hange; and on the other hand, the information diffusion could be

nfluenced by the epidemic spreading where the social disease in-

ormation level (namely Info in the inset of Fig. 2 ) would be higher

f more people are infected for the information generation, denoted

y the parameter ω. In this way, a mutual feedback between dis-

ase spreading and information diffusion emerges: higher preva-

ence of the infected individuals makes more disease information

enerated in the population, which in turn gives rise to more in-

ormed individuals, thereby weakening the spread of epidemic. 

Fig. 3 shows a comparison of the evolution of infected density

rom the numerical analysis according to Eqs. (3) and (4) and the

imulation results on ER network. Infected density curve based on

he classical mean-field approach is much quicker than that of the

imulation result, which would be caused by the mean-field as-

umption on the SI model. In the mean-field assumption, the I -

nd S -state individuals are well-distributed in the system. How-

ver, in the SI process, the I -state individuals are all well clustered,
he lattice. The square gridding patterns show the distribution of the infected and 

 that are infected by the epidemic, while the gray area represents the informed 

er time with corresponding (the horizontal axis ( T ) is the time step for the Monte 

(c) α = 0 . 5 ; (d) α = 0 . 7 . Other parameters are set as β = 0 . 4 , σS = 0 . 4 , σI = 0 . 8 , λ = 

egend, the reader is referred to the web version of this article.) 
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Fig. 7. Illustration to dynamic spreading process by considering the adaptive effect on haggle network, while the purple, green and red circles represent individuals in S −, 

S+ and I state respectively. The red curves (lower panels) describe the fraction of infected individuals over time with corresponding parameters. (a) α = 0 . 02 ; (b) α = 0 . 3 ; (c) 

α = 0 . 5 ; (d) α = 1 . 0 . Other parameters are set as β = 0 . 1 , σS = 0 . 3 , σI = 0 . 5 , λ = 0 . 08 , ω = 0 . 2 , r S = r I = r = 0 . 08 . (For interpretation of the references to color in this figure 

legend, the reader is referred to the web version of this article.) 
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resulting in that many I -state individuals have no chance to con-

tact the S -state individuals. In this way, the classical mean-field ap-

proach can not exactly describe the SI model. However, such prob-

lem is not so significant in the pairwise approach, which consider

the time evolution of the links as well. Fig. 3 shows that the in-

fected density curve of the pairwise approach finds good agree-

ment with the simulation results. 

3.2. Spreading dynamics with the adaptive process 

In this part, we shall present the spreading dynamics with

the information-driven adaptive process, the results are shown in

Fig. 4 . Different from the results of Fig. 2 , the saturation value of

the infected density at the final state is much smaller than 1 in

Fig. 4 (a). That is to say, with the adaptive process based on the

information diffusion, many individuals could avoid being infected

via reducing some contacts. In addition, we also plot the numerical

solution based on the pairwise approach in Fig. 4 (a). It can be seen

that the pairwise solution is not well consistent with simulation

for the spreading dynamic on the adaptive network. The difference

might be caused by the network structure variation in the adap-
ive process, where the assumption of the pairwise approach is the

oisson degree distribution. This conjecture is proved in Fig. 4 (b),

here the degree distribution of the original network is approxi-

ate to the Poisson-distribution with mean degree around 6 (pink

ircle markers), while the distribution of the network at the final

tate (gray diamond markers) deviates from the original distribu-

ion. In addition, Fig. 4 (a) shows that the difference becomes larger

ith the increase of time, where the degree distribution deviates

ore away from the original distribution when the process goes

n. 

The information-driven adaptive process can not only slow

own the speed of epidemic spreading, but also can diminish the

pidemic prevalence at the final state significantly according to

igs. 2 and 4 . For simplicity, we assume r S = r I = r in the follow-

ng analysis. In order to exhibit the influence of information diffu-

ion in detail, we show the full phase diagram α − β with r = 0 . 1

n Fig. 5 , the color gives the infected density in the final state for

ach combination of α and β . The Fig. 5 (a) and (b) are the numeri-

al solution of the pairwise approach and the simulation result, re-

pectively. As stated previously, the numerical solution is not very
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Fig. 8. Final fraction of infected individuals versus r . Different curves correspond to 

different α. Other parameters are set as β = 0 . 2 , σS = 0 . 5 , σI = 0 . 7 , λ = 0 . 2 , ω = 0 . 2 . 

Table 1 

Statistics of haggle network, where N, E, C represent the 

number of nodes, the number of links, clustering coefficient 

of each system respectively. 

Network N E C 

Haggle 274 2124 0.0337 
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Fig. 9. Distribution of the infected density in the final state versus different values 

of r and β . Each distribution is obtained by carrying out 10,0 0 0 independent re- 

alizations for the final fraction of infected. The parameters are set as r S = r I = r = 

0 . 7 , 0 . 35 , 0 . 15 , 0 ;β = 0 . 05 , 0 . 35 , 0 . 25 , 0 . 4 for (a), (b), (c) and (d) respectively. Other 

parameters are σS = 0 . 5 , σI = 0 . 7 , λ = 0 . 2 , ω = 0 . 2 , α = 0 . 6 . 
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recise, but it can match the overall trend of simulation result well.

or a fixed epidemic spreading probability β , epidemic outbreak

ize reduces with the increase of α. That is to say, the disease

nformation diffusion can inhibit the epidemic spreading. Analo-

ously, the quicker and broader of the information diffusion (larger

) is, the more efficient inhibition on the epidemic spreading will

e. In addition, the curve of the color mutation (the dashed green

urve) in Fig. 5 could be considered as the transition point, where

he epidemic can’t spread out if α and β locate at the area on the

eft of this curve (the white range). The threshold value of the epi-

emic spread probability becomes larger with the increase of α. 

In order to intuitively demonstrate the epidemic spreading and

he information diffusion process on adaptive network, we show

he simulation results of those two types of spreading processes

or various α on two different networks, i.e., a 100 × 100 lattice

ith degree k = 4 as well as a real-world network, e.g., Haggle

etwork [44] . The contacts in Haggle network represent connec-

ion between people measured by carrying wireless devices. The

tatistics of the network is given in Table 1 . The visualization of

ow epidemic and disease information interact with each other for

hese two networks are given in Fig. 6 and Fig. 7 , respectively. Tak-

ng Lattice as an example, we present four kinds of different lev-

ls of information spreading processes (corresponding to different

), and observe how the information diffusion affects the spread-

ng of epidemic. In addition, as the adaptive edge-breaking pro-

ess is merely executed on the epidemic spreading process, while

hese edges can still transmit information, thus the density of in-

ormed people can still maintain at a high level in the network.

or each α in Fig. 6 , firstly we give the fraction of the infected in-

ividuals at each time step (the red curve in each subfigure). For

ome particular time steps, we show the states of each individ-

al with the gridding patterns, where the red dots and the gray

ots represent the infected and informed individuals respectively

the contact networks and the un-informed susceptible individuals

re not shown in the figures). We can intuitively see the distri-

ution of the infected and informed individuals and conclude that

hen the diffusion of information is slower than the epidemic, we
annot stop the epidemic from spreading ( Fig. 6 (a) and (b)), how-

ver, when the information is diffusing faster, the epidemic will be

rapped into an isolated area and cannot spread anymore ( Fig. 6 (c)

nd (d)). Furthermore, the visualization of these two processes on

aggle network displays similar results as the results on Lattice. 

.3. Sensitivity analysis of the model 

The sensitivity of the edge-breaking probability on epidemic

preading dynamics. The phase diagram in Fig. 5 shows the im-

act of information diffusion rate α on the epidemic spreading dy-

amics. In general, the adaptive edge-breaking probability r S and

 I are also important parameters in affecting the epidemic spread-

ng process. Fig. 8 illustrates the epidemic prevalence in the final

tate versus the adaptive edge-breaking rate ( r ) for various infor-

ation diffusion rate α. It can be found that the epidemic preva-

ence diminishes with the increase of r , i.e., the epidemic could be

ontrolled if people are very sensitive with the disease informa-

ion and subsequently keep away from the infected. It should be

oted that there is no disease information diffusion when α = 0 ,

ut with considering the information generation, the infected in-

ividuals could stop contacting with the susceptible neighbors to

mpede the further spreading of epidemic. With the increase of α,

he epidemic prevalence reduces sharply versus r and the contin-

ous transition could be observed. By the way, it will change to a

otal isolation of infected individuals for r = 1 , which seems to be

he most effective way in controlling the contagion [45,46] . 

Dynamical characterization of the information-driven 

ewiring. In order to deeply characterize the complex dynamical

eatures of the proposed process, we concentrate on the distri-

ution of the infected density in the final state ( I ∗) rather than

he simple average value [32,39] . Fig. 9 shows four different types

f dynamical behavior by calculating the distribution of the final

raction of infected for various β and r . For the distribution of

ig. 9 (a), we have carried out 10,0 0 0 realizations of the infected

ensity, and above 94% of the infected density is 0.0 0 01, and

he maximal is 0.0 0 07, i.e., the infected density I ∗ → 0, thus we

onsider this distribution indicates a healthy state (the disease

an’t spread out) under the parameters setting here. Similarly, as

o the distribution of Fig. 9 (d), above 90% of the infected density is

igher than 0.8, indicates a case of endemic state (epidemic out-

reaks). Whereas the case illustrated in Fig. 9 (c) is very different,

here the infected density I ∗ is around either zero or a nonzero
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Fig. 10. (a) Bifurcation diagram of the density of the infected I as a function of the 

infection probability β for different values of the edge-breaking rate r based on the 

results of simulation of the full network (diamonds). (b) Two parameter bifurcation 

diagram showing the dependence on the edge-breaking rate r and the infection 

probability β based on the results of simulation of the full network. (c) Full phase 

diagram r − β for the simulation of the adaptive process. The parameters are the 

same as Fig. 8 . 
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value. This indicates that a bistable state [32] is located in this

model, where healthy state and endemic state are both stable in

this case. In addition, a continuous dynamic behavior can also be

observed in particular parameter settings ( Fig. 9 (b)). 

According to the dynamical behavior illustrated in Fig. 9 under

different parameter sets, bifurcation diagram of the density of the

infected as a function of infected probability β for different val-

ues of the edge-breaking rate r is given in Fig. 10 (a). Without the

adaptive edge-breaking mechanism ( r = 0 ), the disease can spread

out only if β > 0 for the SI process. When r > 0, the dynamical be-

haviors become more complicated, where the discontinuous phase

transitions, bistable, oscillatory are observed. A fast edge-breaking

(large r ) leads to a broad healthy and bistable state range (shows

by the range in the arrows) in Fig. 10 (a). In Fig. 10 (b), we give a

full r − β bifurcation diagram according to our simulation results,

and we can clearly identify the areas of healthy, a continous dy-

namic behavior, bistability and endemic state in this model. At last,

we present the dependence of the average value of infected den-

sity over 10,0 0 0 independent realizations on r and β in Fig. 10 (c),

where the changing of the density is consistent with the area clas-

sification in Fig. 10 (b). 

4. Conclusions 

In order to understand the interplay between the dynamics on

the network (the spread of epidemic spreading and disease infor-

mation) and the dynamics of the network (the time varying of net-

work links), we present two types of spreading dynamics with

SI and SIS process respectively on an information-driven adaptive

network, where the individuals who have known the disease in-

formation would probably cut off their links with others. Firstly,

we illustrate the mutual feedback between epidemic spreading and

information diffusion without considering the edge-breaking pro-

cess ( r S = r I = 0 ), where the high epidemic prevalence preserves

high disease information level, which in turn slows down the epi-

demic spreading. In this case, the numerical analysis based on the
airwise approach is consistent with the simulation result very

ell. Secondly, the results are very different when the information-

riven edge-breaking process is considered ( r S , r I > 0). The epi-

emic cannot spread out if the spreading probability is smaller

han the threshold (shown in Fig. 5 ). In addition, the disease

preading and information diffusion pattern on the lattice as well

s on a real-world network give visual representations that the

isease might be trapped into an isolated field with information-

riven adaptive process. Therefore, the information-driven adaptive

rocess can inhibit the epidemic spreading significantly that it can

ot only slow down the epidemic spreading speed, but also re-

uce the epidemic prevalence. Finally, we give the local bifurcation

nalysis on four types of dynamical phenomena, including healthy,

 continuous dynamic behavior, bistable and endemic, indicating

hat the state changes from healthy to a continuous dynamic be-

avior, bistable, endemic state as β increases. 

In summary, we study the dependence of the epidemic spread-

ng on the disease information diffusion and the information-

riven adaptive process, with considering the simplest spreading

odel (SI) and adaptive process (edge-breaking). Recent researches

how the different features between the epidemic and the infor-

ation diffusion [47,48] , and this difference would also impact the

nterplay between epidemic spreading and disease information dif-

usion significantly. Another area for future extension is to adopt

etworks prediction [49] or other adaptation rules rather than the

imple edge-breaking strategy, such as the temporarily deactivat-

ng, where the broken links would be active again after a fixed

ime [41] or, if the corresponding infected node becomes recovered

40] . 
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ppendix A 

Denote [ χ ] as the expected values of individuals of different

ypes described in Section 2.2 , the epidemic spreading is depicted

y the parameters β , σ I β , σ S β and σ SI β , while the diffusion of

isease information is controlled by the parameters: α, λ, ω. All

hese parameters have been explained in Section 2.1 . According to

he model described above, the differential equations of the mean-

eld approach ( Eq. (3) ) and pairwise approach ( Eq. (4) ) are given

s follows. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

d[ S −] 
dt 

= −〈 k 〉 β[ I −][ S −] − 〈 k 〉 σI β[ I + ][ S −] 

−α([ S + ] + [ I + ])[ S −] + λ[ S + ] 
d[ S + ] 

dt 
= −〈 k 〉 σS β[ I −][ S + ] − 〈 k 〉 σS σI β[ I + ][ S + ] 

+ α([ S + ] + [ I + ])[ S −] − λ[ S + ] 
d[ I −] 

dt 
= 〈 k 〉 β[ I −][ S −] + 〈 k 〉 σI β[ I + ][ S −] 

−α([ S + ] + [ I + ])[ I −] − ω[ I −] + λ[ I + ] 
d[ I + ] 

dt 
= 〈 k 〉 σS β[ I −][ S + ] + 〈 k 〉 σS σI β[ I + ][ S + ] 

+ α([ S + ] + [ I + ])[ I −] + ω[ I −] − λ[ I + ] 

(3)
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d[ S −] 
dt 

= −β[ S −I −] − σI β[ S −I + ] − α([ S −S + ] + [ S −I + ]) + λ[ S + ] 
d[ S + ] 

dt 
= −σS β[ S + I −] − σS σI β[ S + I + ] + α([ S −S + ] + [ S −I + ]) − λ[ S + ] 

d[ I −] 
dt 

= β[ S −I −] + σI β[ S −I + ] − α([ S + I −] + [ I −I + ]) − ω[ I −] + λ[ I + ] 
d[ I + ] 

dt 
= σS β[ S + I −] + σS σI β[ S + I + ] + α([ S + I −] + [ I −I + ]) + ω[ I −] − λ

d[ S −I −] 
dt 

= −β[ S −I −] + λ([ S + I −] + [ S −I + ]) − ω[ S −I −] + β [ S −I −]([ S −S −]
[ S −]

−α [ S −I −]([ S −I + ]+[ S −S + ]) 
[ S −] 

− α [ S −I −]([ I −I + ]+[ S + I −]) 
[ I −] 

d[ S −I + ] 
dt 

= −σI β[ S −I + ] + ω[ S −I −] + λ[ S + I + ] − α[ S −I + ] − λ[ S −I + ] −
+ σS σI β

[ S + I + ][ S −S + ] 
[ S + ] 

+ α [ S −I −]([ I −I + ]+[ S + I −]) 
[ I −] 

− α [ S −I + ]([ S −I + ]+[ S −
[ S −] 

d[ S + I −] 
dt 

= −σS β[ S + I −] + λ[ S + I + ] − λ[ S + I −] − α[ S + I −] − ω[ S + I −] −
+ σI β

[ S −I + ][ S −S + ] 
[ S −] 

+ α [ S −I −]([ S −S + ]+[ S −I + ]) 
[ S −] 

− α [ S + I −]([ I −I + ]+[ S + I −]
[ I −] 

d[ S + I + ] 
dt 

= −σS σI β[ S + I + ] + α[ S −I + ] + α[ S + I −] + ω[ S + I −] − 2 λ[ S + I +

+ σS σI β
[ S + I + ]([ S + S + ] −[ S + I + ]) 

[ S + ] 
+ α [ S −I + ]([ S −I + ]+[ S −S + ]) 

[ S −] 
+ α [ S + I −](

d[ I −I −] 
dt 

= 2 β[ S −I −] + 2 λ[ I −I + ] − 2 ω[ I −I −] + 2 β [ S −I −] 2 

[ S−] 
+ 2 σI β

[ S −I + ][
[ S −

d[ I −I + ] 
dt 

= σI β[ S −I + ] + σS β[ S + I −] + ω([ I −I −] − [ I −I + ]) + λ([ I + I + ] −
+ σS β

[ S + I −] 2 

[ S + ] 
+ σS σI β

[ S + I + ][ S + I −] 
[ S + ] 

+ α [ I −I −]([ S + I −]+[ I −I + ]) 
[ I −] 

− α [ I

d[ I + I + ] 
dt 

= 2 σS σI β[ S + I + ] + 2 α[ I −I + ] + 2 ω[ I −I + ] − 2 λ[ I + I + ] + 2 σS β
[

d[ S −S −] 
dt 

= 2 λ[ S −S + ] − 2 β [ S −I −][ S −S −] 
[ S −] 

− 2 σI β
[ S −I + ][ S −S −] 

[ S −] 
− 2 α [ S −S −]([ S −

[

d[ S −S + ] 
dt 

= λ[ S + S + ] − λ[ S −S + ] − α[ S −S + ] − σS β
[ S + I −][ S −S + ] 

[ S + ] 
− σS σI β

+ α [ S −S −]([ S −S + ]+[ S −I + ]) 
[ S −] 

− α [ S −S + ]([ S −S + ]+[ S −I + ]) 
[ S −] 

d[ S + S + ] 
dt 

= 2 α[ S −S + ] − 2 λ[ S + S + ] − 2 σS β
[ S + I −][ S + S + ] 

[ S + ] 
− 2 σS σI β

[ S + I + ][ S
[ S + ]
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