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A B S T R A C T   

Determining an appropriate segment length for highway safety evaluations in low- and middle-income countries 
(LMICs) poses a significant challenge. This study aims to address this issue by recommending a suitable segment 
length for such evaluations in India, using a 167 km intercity expressway as a case study. We employed negative 
binomial (NB) models on datasets segmented from 100 m to 1000 m with 100 m increments. Our findings 
strongly suggest that segment lengths from 300 m to 700-m suit various safety assessments. However, the study 
reveals that parameter estimates vary significantly with both segment length and sample size. This highlights the 
sensitivity of parameters to data aggregation and sample size across different segment lengths, making it difficult 
to identify a single optimal length. Therefore, we propose selecting the segment length and segmentation 
approach based on specific local conditions, highway context, data availability and quality. The methodology 
presented here can guide policymakers in LMICs to make informed choices regarding segment length for safety 
evaluations, including blackspot identification and treatment on their highways.   

1. Introduction 

In recent years, several low- and middle-income countries (LMICs) 
have rapidly expanded their road infrastructure with little focus on 
safety. The burden of road traffic crashes (RTCs) has increased in such 
countries, although an opposite trend was observed for many infectious 
diseases [1]. There is a constant demand to improve the safety status of 
the existing road infrastructure. The Highway Safety Manual (HSM) 
suggests that the safety evaluation of a geometric design element or a 
road safety intervention must be carried out using crash prediction 
models, also commonly known as Safety Performance Functions (SPFs) 
[2]. 

The SPFs are generally developed based on highway segment- 
specific crash frequency or crash severity data [3]. These models are 
based on the premise that crash data distribution is not entirely random, 
though dependent on a highway's geometric and traffic characteristics 
[4]. Thus, one of the major steps in developing SPFs is to divide the 
highway stretch or network into discrete segments [5]. Choosing an 
appropriate segmentation approach and length for SPFs is crucial as they 
can affect the inference about the effectiveness of a road safety inter-
vention [6,7]. It is also often argued that segmentation is critical to 

generating unbiased estimates of statistical models and, consequently, to 
correct inferences [8]. Studies have shown that the selection often de-
pends on data availability status and analysts' choice [8,9]. Past research 
has highlighted that the SPFs recommended by HSM are not transferable 
to other conditions and settings due to variations in many factors, such 
as driver behaviour, road environment, data availability and consistency 
[10]. Therefore, researchers have tried to build local site-specific SPFs 
[11]. In addition, LMICs need a distinct approach to build SPFs because 
of the heterogeneous traffic, highly variable roadside environment, 
different road user behaviour, and vehicle standards [1]. In addition, the 
activities along and around the highways in LMICs are comparatively 
high compared to LMICs. The design standards and road safety in-
terventions in HICs may not be effective or infeasible to apply in LMICs. 
Hence, the SPFs built for LMICs need a customized approach. 

In this context, this study is motivated by the challenges faced by a 
road safety practitioner in LMICs for selecting the adequate segment 
length in a highway safety evaluation study. In contrast to HICs, LMICs 
have no guiding document like the HSM available to select segment 
lengths for crash analysis for road safety practitioners. Further, in 
LMICs, the complexities of implementing the HSM suggested segment 
length approaches increase due to issues related to road safety data, such 
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as low quality, limited availability, inconsistencies, and absence of a 
central database and non-linking of databases [8,12]. 

This study aims to recommend an adequate segment length for road 
agencies in India. As a case study, we collected data on fatal crashes, 
geometrics, speed, AADT, and roadside environment for an Indian six- 
lane rural expressway. 

2. Literature review 

2.1. Overview of segmentation approaches 

Roadway segmentation aims to establish a unit of analysis for the 
safety evaluation [13]. The unit of analysis can be of fixed or variable 
lengths based on the homogenous geometric, crash data, and traffic 
characteristics. The roadway segmentation approaches can be divided 
into three categories as follows [9]:  

i. Fixed length-based approach: The highway network is divided 
into segments with pre-specified fixed length [13].  

ii. Homogenous traffic and roadway characteristics-based approach: 
The highway network is divided into segments based on changes 
in one or more traffic and roadway characteristics [2,14].  

iii. Spatial clustering-based approach: In this method, the segments 
are divided based on the spatial distribution of the RTCs on the 
highway network. Techniques such as K-means clustering 
[9,15,16], and Fisher's method have been used for segmentation 
[5,17,18]. These methods divide roadway segments into homo-
geneous groups by grouping segments with similar crash 
distributions. 

The HSM recommends a homogenous segmentation approach with a 
minimum segment length of approximately 0.10 miles (161 m) and the 
physical characteristics of the highway [2,12]. The HSM segmentation 
approaches have been suggested and developed when the network-level 
data is extensively available [14,19]. However, in LMICs, data avail-
ability is limited, and data collection is arduous and time-consuming 
without a centralized database [30]. 

2.2. Segmentation approaches in the crash prediction models 

Ghadi and Török [9] argue that the accuracy of the Crash Prediction 
Models (CPMs) and highway safety evaluation methods depends on the 
accuracy of the crash data distribution on the segmented highways; the 
more accurate the crash data is segmented, the more accurate the SPF. 
This will also affect the performance of some safety evaluation methods 
that rely on CPMs in their criterion [4,20] – [6]. One of the early studies 
by Thomas [21] suggested that the statistical form of the crash distri-
bution varies as the length of the road segment increases. Fitzpatrick 
et al. [19] employed a two-step segmentation approach, somewhat like 
the approach suggested by the HSM. First, they divided the roadway 
based on the horizontal curve and tangent segments and then predicted 
the number of midblock crashes for each segment. Second, they iden-
tified the segments with intersections. At the same time, a study by 

Koorey [14] concluded that fixed-length segments are computationally 
easier to create from constant-interval raw crash data. Besides, the study 
also recommended minimizing the short segments by not creating new 
segments when the length is less than 50 m. 

Recent studies have extensively used the HSM-suggested segmenta-
tion approach. For example, Agostino [22] analyzed the performance of 
two different methods of segmentation using homogeneous segments 
with varying lengths based on the HSM approach on a sample of Italian 
four-lane rural motorways. Cafiso et al. [12] suggested that the ho-
mogenous segmentation approach is too complicated and impractical 
when the available variables are too high. Therefore, the fixed seg-
mentation approach is most feasible in such cases. M. Ghadi & Török [9] 
opined that the effectiveness of the segmentation approaches determines 
the accuracy of the developed SPFs. The study concluded that the per-
formance of SPFs changed as the segmentation approach changed. 
Elagamy et al. [20,23] concluded that the segmentation approach based 
on the presence of curvatures was best for total crashes, considering the 
time trend. However, the fixed-length segmentation approach was the 
best for fatal and injury crashes and property damage-only crashes 
without considering the time trend. 

A Brazilian study by Silva et al. [6] emphasized that the longer 
segments minimize the effects related to the improper and uncertain 
georeferencing of the crash data. Tahir et al. [5] concluded that the HSM 
and fixed segmentation (1 km) were the best methods for predicting 
crash modification factors. Bartin et al. [10] developed the SPF based on 
the HSM segmentation approach with a minimum of 160 m (0.1 mile) 
segment length for the undivided two-lane urban and suburban arterial 
segments in New Jersey, US. Table 1 summarizes the studies using the 
three common segmentation approaches based on the regions. 

2.3. Segmentation approaches in India 

Limited literature is available in the context of LMICs compared to 
the HICs. Vayalamkuzhi and Amirthalingam [34] employed the fixed- 
length segmentation approach to develop CPMs for a four-lane divided 
rural highway in India. Singh et al. [35] also adopted a fixed-length 
segmentation approach, dividing the selected rural highway stretches 
of 250 km into 68 uniform segments of varying lengths. Similarly, 
Dhankute and Parida [31] divided the selected 115 km of four-lane rural 
highway stretch into 23 segments of a fixed length of 5 km each. A recent 
study by Bisht and Tiwari [30] implemented a fixed-length segmenta-
tion approach of 100 m to assess the safety effectiveness of the paved 
shoulder on a four-lane divided highway in India. Bisht and Tiwari [27] 
also used a fixed segmentation approach to study the effect of risk fac-
tors on pedestrian fatal crashes on a rural six-lane highway in India. 
Similarly, another study by Bisht and Tiwari [28] implemented the fixed 
length (100 m) segmentation approach for a six-lane intercity 
expressway in India. 

A few studies also applied the HSM-based segmentation approach in 
India. Dinu and Veeraragavan [38] employed the homogenous seg-
mentation approach to divide India's 200 km of selected two-lane rural 
highways. Mitra et al. [37] implemented the HSM-based homogenous 
segmentation to divide the selected four-lane highway stretch into fifty- 

Table 1 
Summary of the studies based on adopted segmentation approaches and the study region.  

Adopted segmentation 
approach 

Study region 

HICs LMICs 

Fixed length Thomas [21], Cafiso et al. [13], Lu et al. [17], Ma 
et al. [24], Cafiso et al. [12], Tahir et al. [5] 

Bhavsar et al. [26], Bisht and Tiwari [27], Bisht and Tiwari [28], Bisht & Tiwari [29], Bisht and 
Tiwari [30], Silva et al. [6], Dhankute and Parida [31], ChikkaKrishna et al. [32], ChikkaKrishna 
et al. [33], Vayalamkuzhi and Amirthalingam [34], Singh et al. [35] 

Homogeneous 
characteristics 

Koorey [14], Cafiso et al. [13], Agostino [22], Cafiso 
et al. [12], Tahir et al. [5], Bartin et al. [10] 

Elagamy et al. [20], Elagamy et al. [23], Nair and Bhavathrathan [36], Mitra et al. [37], Dinu and 
Veeraragavan [38] 

Spatial clustering Thomas [21], Anderson [16], M. Ghadi et al. [25], M. 
Ghadi and Török [9], Shen et al. [18] 

Nair and Bhavathrathan [36], Bisht et al. [30]  
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two homogeneous road segments, varying segment lengths between 
300 m and 1600 m. A study by Nair and Bhavathrathan [36] proposed a 
hybrid segmentation methodology, combining the HSM and clustering- 
based segmentation approaches. However, as evident from Table 2, very 
few studies implemented the clustering-based segmentation approach 
for highways in India [30]. 

The reviewed studies indicated that the choice of the segmentation 
method and segment length varied between the studies for various 
reasons, one of the major reasons being data availability. The method-
ological framework of the reviewed studies showed that the selection 
was also influenced by the analyst's choice [40]. The adopted segmen-
tation approaches and segment length also depend on the roadway type, 
hierarchy, and speed limit [8]. Hence, it can be summarized that the 
segmentation approach and adopted segment length vary due to analyst 
choice influenced by data availability roadway type and the study region 
[8,40]. 

In the case of LMICs, the studies suggested that researchers preferred 
a fixed-length segmentation approach. In these countries, guidance on 
the segmentation approach is scant for road safety practitioners. Liter-
ature also suggests that segmentation approaches based on the per se of 
adequate segment length for safety evaluation studies have not been 
explored in LMICs. Therefore, this study will contribute by suggesting 
adequate segment-length implementation for safety evaluation studies 
on rural divided highways in India. 

3. Methodology 

3.1. Study area and data description 

In this study, a 167 km long access-controlled six-lane Indian 
expressway known as the Yamuna expressway was selected, shown in 
Fig. 1. 

The geometry, crash, speed, and traffic volume data were collected 
from the expressway's governing body, i.e., the Yamuna Expressway 
Industrial Development Authority (YEIDA) and the concessionaire Jay-
pee Infratech Limited. The expressway geometric data consists of ver-
tical alignment, including vertical alignment gradient, vertical gradient 
length, and vertical curve length. On the other hand, horizontal align-
ment variables include horizontal alignment radius, curve length and 
straight length of the horizontal alignment. 

The crash dataset consists of fatal crashes on the expressway from 
August 2012 to October 2018. Each fatal crash consists of information 
such as the date and time of the crash, location, vehicle type and road 
users involved in a crash, severity and fatalities, causes of the crash, and 
type of crash. The details related to driver and victim information, 
weather conditions, and lighting data were unavailable. Traffic volume 
data were extracted with the help of speed camera data, and toll 
transaction details data of the toll plazas on the expressway. The share of 
the cars in the total traffic volume was the highest as it varies between 
72 and 80% of the total traffic volume on the expressway. Therefore, the 
car's 85th percentile speed was considered the representative speed for a 

Table 2 
Summary of segmentation methods and adopted segment length based on regions.  

Authors/Country Highway context Number of 
lanes 

Segmentation method Adopted segment length (m) 

HICs 
Koorey [14]/New Zealand rural all Fixed length 250 m 
Cafiso et al. [13]/Italy rural 2 The HSM 500 m to 4290 m 

Lu et al. [14]/US both 
minimum 4 
lanes All three 

The HSM and Spatial clustering methods: variable segment length 
Fixed length method: 800 m 

Agostino [22]/Italy rural 4 The HSM 76 m to 10,195 m 

Ma et al. [24]/China rural 4 & 6 Fixed length and the HSM Fixed length: 1000 m 
The HSM method: 400 m to 1400 m 

Cafiso et al. [12] /Italy rural 4 Fixed length and the HSM Fixed length: 650 m 
The HSM method: varying segment length 

M. Ghadi and Török [9]/ 
Hungary NA 4 Fixed length and the HSM 

Fixed length: 750  
The HSM method and Spatial clustering based: Varying segment length 
Recommended method: Clustering based method with 6760 m of segment 
length 

Shen et al. [18]/China rural NA Clustering minimum 200 m 

Tahir et al. [5]/Australia rural 2 All methods Fixed length method: 1000 m 
Other methods: minimum 200 m to maximum 17,300 m 

Bartin et al. [10]/US 
urban and 
suburban 2 The HSM minimum 161 m (0.1 mile)  

LMICs 
Dinu & Veeraragavan [38]/ 

India 
rural 2 The HSM 1000 m to 22,000 m 

Boroujerdian et al. [39]/Iran rural NA Dynamic Varying segment length 
ChikkaKrishna et al. [32,33]/ 

India 
rural 4 Fixed length Minimum 160 m (0.1 mile) 

Mitra et al. [37]/India rural 4 The HSM 300 m to 1600 m 

Elagamy et al. [20,23]/Egypt rural 2 & 4 Fixed length and the HSM 
Fixed method: 1000 m 
The HSM method: AADT, number of lanes, shoulder widths, median width, 
curvature, U-turns 

Bhavsar et al. [26]/India rural 4 Fixed length 1000 m 

Silva et al. [6]/Brazil rural 4 Fixed length Tested segment length: 500 to 5000, with increments of 500 m 
recommended: 4500 m to 5000 m 

Bisht & Tiwari [30]/ India rural 4 Fixed length 100 m 
Nair & Bhavathrathan [36]/ 

India both 2 & 4 
The HSM and Spatial 
clustering NA 

Bisht & Tiwari [28]/ India 
rural 
(expressway) 

6 Fixed length 100 m 

Bisht & Tiwari [29] /India rural 6 Fixed length 100 m 
Bisht & Tiwari [27]/India rural 6 Fixed length 100 m  
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segment. The lane-wise speed data was recorded by speed cameras 
installed at five locations, each in both directions, staggered along the 
expressway stretch. Further, the posted speed limit for cars was 100 
kmph and 60 kmph for trucks and buses. 

In addition, the segments with rest areas and the presence of an 

underpass were also considered. The 100 m influence length on both 
sides of the underpass was considered as the pedestrian activity 
observed. Due to the presence of the nearby village, pedestrian and 
motorized two-wheeler activities were observed on the expressway. 
Further, the hazards on the shoulder consist of overhead gantry board 

Fig. 1. A typical map of the selected expressway as a case study stretch.  

Fig. 2. Distribution of the fatal crashes based on the segment length.  
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and road signage posts, non-standard signage poles, overhead electric 
cable posts, full-grown trees, and kilometer stones. The hazards were 
considered if they were present within the clear zone of the expressway. 
The next subsection discusses the approach adopted for the segmenta-
tion process. 

3.2. Adopted segmentation approach 

The original geometric dataset was available for the 20 m section of 
the expressway. Therefore, in this study, consecutive 20 m sections were 
combined from 100 m to 1000 m segments for the unit of analysis. There 
were two distinct purposes for combining the sections into segments. 
First, to create the desired segment-specific datasets for developing 
explanatory models. For example, the average value of five consecutive 
20 m sections of the geometric variable was considered a representative 
value for the 100 m segment. Thus, based on the conclusion of the 
literature review, we adopted a fixed-length segmentation approach. A 
similar approach for combining various sections into segments was 
utilized for all the independent variables. Since the location inaccuracy 
with the crash data exists, it is difficult to determine the exact location of 
the crash [41]. However, based on the location information available, 
we can determine the geo-location of the crash. Second, entering crash 
data into the segments will improve the accuracy of fatal crash locations 
on the expressway [41]. 

Fig. 2 illustrates the change in the number of segments with fatal 
crashes as segment length increases from 100 to 1000 m. It shows that 
the zero crash segments decrease with the increase in the segment 
length. Compared to smaller segment lengths, the segment with 500 to 
700 m length has a uniform distribution of segments per the number of 
fatal crashes. 

The model specifications employed the data for the fatal crash, 
geometric, speed, volume, and roadside characteristics. The next section 
discusses the results of the developed explanatory models concerning 
parameter transferability testing. Fig. 3 demonstrates the analytical 
framework adopted in this study. 

3.3. Explanatory model development 

Generally, the Poisson regression model is a starting point in the 
crash analysis, as crash counts are non-negative integer values [42]. The 
basic premise of the Poisson distribution is that mean and variance 

should be equal. However, crash data are generally over-dispersed as the 
variance exceeds the mean. The Poisson model specification suggests 
that highway segments with the same independent variable's magnitude 
are expected to have the same number of crashes, which is hardly true. 
Moreover, the Poisson specification lacks transferability due to unob-
served effects [43]. Researchers have shown that crashes are due to 
many risk factors, and many are unobservable or omitted in the model 
specification [44]. 

The segments with the same values of independent variables (Xi) still 
may differ in many other omitted variables. Consequently, the λi also 
varies because of omitted variables, leading to variance greater than the 
mean, called overdispersion. As a result, the negative binomial (NB) is 
employed to handle the overdispersion issue in the crash data [45,46]. 
The NB model specification assumes that the Poisson parameter follows 
a Gamma probability distribution, also known as the Poisson-Gamma 
model. 

In the NB model, overdispersion is accounted for with the help of an 
overdispersion parameter denoted by α. Therefore, the model selection 
between Poisson and NB depends on the estimate of α.In the case of the 
NB model, the value of α is greater than zero. Hence, in the NB model, 
the parameter λi can be well approximated by a Gamma distribution 
function with a quadratic variance and mean relationship. The Gamma 
probability density function can take any shapes based on the values of 
rate (a) and shape (b) parameters, and can be expressed through Eq. (1): 

f(λi) =
abλb− 1

i exp( − aλi)

Γ(b)
(1) 

As mentioned earlier, the maximum likelihood method uses the NB 
density function for parameter estimation. The expectation can be 
computed as E(λi) = b

a.In contrast, variance is computed as Var(λi) =

b/a2. Hence, the expected number of crashes for the expressway 
segment (i) with given values of independent variables Xi can be 
expressed as Eq. (2): 

λi = e(βXi+ϵi) (2) 

Where εi is stochastic and accounts for the unobserved heterogeneity 
in λi. The exp(εi) is a Gamma distributed error term with a mean value 
equal to one and variance equal to α. The conventional NB model 
specification provides the marginal distribution as an NB distribution. 
Therefore, the probability of segment i having ni the number of crashes 
can be estimated with the help of Eq. (3) [47]: 

Fig. 3. Methodological framework of the study.  
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⎟
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(3) 

Where Γ(*) is a Gamma function, and if α is equal to zero, the NB 
model is reduced to the Poisson model. The model transferability was 
tested based on McFadden's pseudo (ρ2) likelihood-based ratio tests. The 
likelihood ratio test evaluates the difference in log likelihoods between 
the null model and the full model and can be estimated as per Eq. (4): 

χ2 = − 2 [LL(βA) − LL(βB) ] (4) 

Where LL(βA) and LL(βB) are the log-likelihood at convergence for 
two competing models, A and B, respectively. Whereas chi-squared 
(χ2) is a test statistic (chi-square distributed) with a degree of freedom 
equal to the difference in the number of estimable parameters between 
two competing models. 

In this study, the statistical performance of the developed NB models 
in terms of model fit was assessed and compared by computing log- 
likelihood at convergence, Akaike information criteria (AIC), and 
Bayesian information criteria (BIC). The smaller the AIC and BIC values, 
the better the model is as the estimates converge close to the true pa-
rameters [44]. 

AIC = − 2LL(β)+ 2k (5)  

BIC = − 2LL(β)+ k*ln(N) (6) 

Where LL(β) is the log-likelihood at convergence, LL(0) is the log- 
likelihood value for the intercept-only model, N is the number of the 
segments, k is the number of parameters. To sum up, the NB models were 
developed to assess the transferability of the parameters. In this study, 
the 100 m segment model was considered the base model for assessing 
the parameter transferability across the different tested segment length 
models. 

4. Results and discussion 

In this study, we originally collected thirty-two independent vari-
ables. As an initial step, the independent variable selection process in-
cludes checking univariate distributions, correlation analysis, and multi- 
collinearity for the independent variables. Therefore, one of the highly 
correlated variables was removed. Next, the variance inflation factor 
(VIF) was computed to check the multi-collinearity among the variables. 
The variables having a VIF of more than ten were excluded from the 
study. Therefore, thirteen independent variables were retained for the 
model fitting in the next step. 

Next, the backward stepwise selection regression method was used to 
select the best subset of the thirteen retained independent variables. 
Therefore, the final seven independent variables were retained and are 
considered continuous data. The segment-wise number of fatal crashes 
was considered the dependent variable. The presented results are the 
parameter estimation of the final NB regression models for all the 
considered regression models. The NB models were developed for all the 
segment lengths in the next stage. Table 3 presents the descriptive 
summary of the final retained independent variables in the study for the 
100 m length segment. 

Table 4 presents the NB model estimates for all the segment lengths. 
The significance level was set to 10% for all the models. The bold ones 
are statistically significant parameter estimates at or less than a 10% 
significance level. Since none of the roadside variables was statistically 
significant, therefore, they were dropped during the variable selection 
process. 

As shown in Table 4, for the 100 m segment length model, the sta-
tistically significant variables are vertical curve length, AADT, and 
segment with the presence of an underpass. However, with the increase 
in the segment length, the sample size decreases, and the parameter 
estimates change to statistically insignificant, except for the AADT. The 
intercept magnitude decreases with the segment length increase and 
varies between − 3.016 and − 0.319. However, its parameter estimate 
was consistent and statistically significant till 600 m. In the case of the 
vertical gradient variable, the parameter estimates magnitude fluctuates 

Table 3 
Summary descriptive statistics of the study variables for 100 m segment length.  

Variable description Mean Std. Dev. Min. Max. 

Dependent variable 
Number of fatal crashes 0.33 0.63 0.00 6.00  

Independent variables [unit] (abbreviation) 
Vertical gradient [%] (VGRAD) 0.06 1.05 − 2.00 33.66 
Vertical curve length [km] (VCRUVL) 0.20 0.20 0.00 0.79 
Horizontal curve radius [%] (HCURVRD) 0.17 1.98 − 10.00 7.50 
Horizontal curve length [km] (HCURVLC) 0.52 0.80 0.00 3.20 
AADT, Cube root of traffic volume [vehicles/day] 14.44 2.35 11.00 18.00 
Proportion of the segment with hazard on the shoulder [m] (HZSHLD) 0.07 0.25 0.00 1.00 
Proportion of the segment with underpass [m] (UNDPS) 0.11 0.32 0.00 1.00  

Table 4 
NB model parameter estimates for all developed models for 100 to 1000 m segment length.  

Independent variable description Segment-specific parameter estimates 

100 m 200 m 300 m 400 m 500 m 600 m 700 m 800 m 900 m 1000 m 

Intercept ¡3.016 ¡2.315 ¡1.865 ¡1.684 ¡1.230 ¡1.028 − 0.819 − 0.892 − 0.319 − 0.383 
Vertical gradient − 0.069 − 0.076 0.008 − 0.017 0.029 − 0.160 − 0.248 − 0.099 − 0.051 0.089 
Vertical curve length ¡0.638 ¡0.655 − 0.443 − 0.387 − 0.405 − 0.496 − 0.295 − 0.304 − 0.265 − 0.595 
Horizontal curve radius 0.044 0.048 0.049 0.052 0.055 0.055 0.067 0.072 0.057 0.083 
Horizontal curve length 0.086 0.101 0.106 0.093 0.113 0.096 0.100 0.132 0.116 0.147 
AADT, Cube root of traffic volume 0.124 0.122 0.120 0.127 0.116 0.116 0.118 0.128 0.101 0.112 
Proportion of the segment with hazard on the shoulder 0.177 0.077 − 0.130 0.206 − 0.394 − 0.376 − 0.563 − 0.168 − 1.137 − 0.970 
Proportion of the segment with the underpass 0.806 1.127 0.833 0.756 0.413 0.515 − 0.479 − 0.353 − 0.410 − 0.196  
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between − 0.248 and 0.089. However, its parameter estimates are sta-
tistically insignificant for all models. The direction of the parameter 
estimates changes from positive to negative, suggesting the change in 
the association with fatal crashes as the segment length varies; however, 
the effect is inconsistent. 

Further, the effect is statically insignificant for all the models. The 
parameter's estimate of the vertical curve length variable varies from 
− 0.655 to − 0.265, suggesting a negative association with fatal crashes. 
The parameter's estimates show consistency in effect on the fatal 

crashes. However, its effect is statistically significant for segment lengths 
to 200 m. On the other hand, the variable horizontal curve radius has a 
consistently positive effect and varies between 0.044 and 0.083. In 
addition, the direction of the parameter estimate is positive and remains 
unchanged as the segment length increases. Again, its effect is statisti-
cally insignificant for all segments. However, the strength of the effect is 
negligible as the standard deviation and variance are low; refer to 
Table 4. Similarly, consistency (i.e., 0.086 to 0.147) and low effect were 
observed in the case of the variable horizontal curve length. However, 

Fig. 4. Parameter estimate's variation with change in segment length.  

Fig. 5. Comparison of the covariance estimates for the estimated parameters.  
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none of the effects were statistically significant. 
The coefficient of the exposure variable, such as AADT, varies be-

tween 0.101 and 0.128, and the effect was statistically significant for all 
models. The parameter estimates of the variable proportion of the 
segment with hazard on the shoulder are inconsistent as the direction 
changes as the segment length varies. However, its effect is consistent for 
segment lengths greater than 500 m. The parameter's magnitude varies 
between − 1.137 and 0.206. Lastly, the parameter estimates of the var-
iable proportion of the segment with underpass vary between − 0.479 
and 1.127, suggesting inconsistency in the direction of the effect. 
However, the effect varied as it was positive up to 600 m. However, the 
effect was statistically significant for segments to 300 m. Further, it was 
negative for the segment length greater than 600 m. However, a larger 
dataset shall be tested to consolidate the findings, and other highway 
facility types should also be considered. 

Fig. 4 summarizes the variation in the parameter estimates as 
segment length changes. In Fig. 4, the y-axis represents the magnitude of 
the parameter estimate, whereas the x-axis represents the segment 
length. 

Fig. 5 illustrates the change in the covariance between the estimated 
parameters as segment length varies. The results imply that the 
covariance between the parameters increases as the segment length 
increases. 

As shown in Table 5, the models are statistically insignificant for 
segment lengths greater than 700 m at or less than a 10% significance 
level. For abbreviations definition refer to Table 3. In Table 5, the bold 
Chi-square values indicate statistical significance at or less than a 10% 
significance level. As evident, with the increase in the segment length, 
the Akaike information criterion (AIC) and Bayesian information crite-
rion (BIC) statistics decrease, suggesting a better model fit, though the 
model fit beyond 700 m segment length was statistically insignificant. 

The model results showed that the parameter estimates' consistency, 
statistical significance, effect, and magnitude depend on the sample size 
and segment length. Further, the developed models in this study suggest 
that the models are statistically insignificant as the segment length in-
creases more than 700 m. However, the magnitude of AIC and BIC sta-
tistics decreases as segment length increases. Fig. 6 presents the 
cumulative residual (CURE) plots for all the segments of the expressway. 

In the end, the results indicate that additional information is required 
to improve the model specifications, such as increasing the study period 
and including more highway stretches. Due to the research funding 
crunch in LMICs, additional data collection may not always be feasible. 
Therefore, the methodology presented here can guide practitioners in 
getting an optimal length of the segments for CPM development and 
blackspot treatment on the highways. 

5. Conclusions 

This study sought to answer the question of adequate segment length 
for highway safety evaluation studies in LMICs. In LMICs, where data 
availability and accuracy are issues, data collection for very short seg-
ments is challenging and very long sections dilute the variability [8,48]. 
Due to various issues, the segmentation approaches vary between 
studies and at the regional level. Though we did not primarily aim to 
present a safety evaluation study, the major motivation was to provide 
an adequate segment length in the limited data availability scenario. In 
this direction, we present a case study of an Indian rural six-lane 
expressway. 

This study has shown that the consistency of the parameter estimates 
varies with the segment length and sample size. The findings suggest 
that it is difficult to suggest a point estimate for the adequate segment 
length. However, findings strongly suggest that a segment length be-
tween 300 and 700 m can be considered adequate for various safety 
evaluation studies for multi-lane rural highways. The study highlighted 
the parameter sensitivity to sample size and data aggregation for 
different highway segment lengths. Therefore, the methodology pre-
sented here can guide practitioners to judicially select an adequate 
segment length for safety evaluation, such as blackspot identification 
and treatment, and for fitting the CPMs on the highways. 

One of the study findings' major indications is that road safety- 
related data availability and quality shall be improved in India, which 
also applies to other LMICs [49,50]. In addition, though modelling 
techniques may not be novel in this study, the segmentation framework 
employed may provide valuable insight to policymakers, practitioners, 
and road safety practitioners in LMICs. This study employed the fixed- 
length segmentation approach, which is pragmatic and straightfor-
ward. In addition, considering the data availability and sample size, the 
fixed-length segmentation approach was deemed fit [5]. 

The absence of extensive data availability limited this study. The 
generalisability and transferability of this study's findings are subject to 
caution and certain limitations. The limitation of the study is that most 
of the parameter estimates are insignificant, irrespective of the segment 
length. Thus, an additional study can be conducted with additional data 
to enhance the sample size. Another limitation is that we have adopted 
the 100 m incremental increase (fixed length) in the segment length for 
developing different segment length-related scenarios. Therefore, an 
alternative segmentation approach with additional data should also be 
tested for Indian highways in the future. In addition, other modelling 
techniques can be tested in future studies. 

Since data collection is cost-intensive, expressway crash data in 
LMICs usually have small observations. Additionally, some rural ex-
pressways inherently have low crash rates for many segments; however, 
with high severity, the sample size remains low in such cases. Such crash 
data has characteristics of low sample mean, excessive zero 

Table 5 
Model fit statistics for all the segments.  

Model for segment length Sample size The goodness of fit statistics Overall model fit# 

Log-likelihood AIC BIC Chi-square value p-value 

100 1674 − 1214.337 2444.673 2488.057 64.907 0.000 
200 837 − 911.365 1838.731 1876.569 43.938 0.000 
300 558 − 757.472 1530.943 1565.538 23.811 0.001 
400 419 − 654.445 1324.891 1357.194 18.927 0.008 
500 335 − 579.920 1175.839 1206.352 16.173 0.024 
600 279 − 522.859 1061.717 1090.767 14.920 0.037 
700 240 − 478.261 972.521 1000.366 15.120 0.034 
800 210 − 442.032 900.063 926.840 13.177 0.068 
900 186 − 411.115 838.229 864.035 11.057 0.136 
1000 168 − 384.513 785.026 810.017 13.287 0.065 

Note: degree of freedom = 7; Critical chi-square at 90% significance level is 12.017. #Comparison of the fitted model against the intercept-only model. 
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Fig. 6. CURE plots for all ten segments.  
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preponderance, and negative skewness [8,42]. Moreover, with the 
available crash data, many risk factors remain unobserved; such an issue 
is called unobserved heterogeneity [46]. Lord & Mannering [42] have 
argued that the NB model is susceptible to the above-discussed data is-
sues and unobserved heterogeneity and estimates the parameters with 
less reliability. Therefore, an alternative approach could be to imple-
ment random parameter techniques in future studies [42,46]. The 
random parameter techniques address the unobserved heterogeneity 
issues by allowing the parameters to vary across the expressway 
segments. 

Overall, this study strengthens the idea that adequate segment length 
and segmentation approaches rely on many factors, which is not a 
straightforward question to answer [51]. Therefore, selecting segment 
length and segmentation approach should be based on the local condi-
tions, highway context, level of data availability and data quality. 
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