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Abstract: Carbon catalysts have shown promise as an alternative to the currently available
energy-intensive approaches for nitrogen fixation (NF) to urea, NH3, or related nitroge-
nous compounds. The primary challenges for NF are the natural inertia of nitrogenous
molecules and the competitive hydrogen evolution reaction (HER). Recently, carbon-based
materials have made significant progress due to their tunable electronic structure and ease
of defect formation. These properties significantly enhance electrocatalytic and photocat-
alytic nitrogen reduction reaction (NRR) activity. While transition metal-based catalysts
have solved the kinetic constraints to activate nitrogen bonds via the donation-back-π
approach, there is a problem: the d-orbital electrons of these transition metal atoms tend
to generate H-metal bonds, inadvertently amplifying unwanted HER. Because of this, a
timely review of defective carbon-based electrocatalysts for NF is imperative. Such a review
will succinctly capture recent developments in both experimental and theoretical fields.
It will delve into multiple defective engineering approaches to advance the development
of ideal carbon-based electrocatalysts and photocatalysts. Furthermore, this review will
carefully explore the natural correlation between the structure of these defective carbon-
based electrocatalysts and photocatalysts and their NF activity. Finally, novel carbon-based
catalysts are introduced to obtain more efficient performance of NF, paving the way for a
sustainable future.

Keywords: N2 fixation; carbon catalysts; electrocatalysis; photocatalysis; hydrogen evolu-
tion reaction; defective carbon materials

1. Introduction
The production of urea and ammonia as precursors of nitrogen fertilizers through

nitrogen fixation is of great scientific significance. Currently, the conventional industrial
methods for synthesizing urea, ammonia, and other nitrogenous sources are complex
and require a lot of energy input (Figure 1) [1,2]. Therefore, it is imperative to study
environmentally friendly, sustainable, and efficient urea and ammonia synthesis methods
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to replace traditional technologies. Ammonia has been employed in agriculture as a
nitrogen fertilizer, in emerging green energy, as a vital raw compound for pharmaceuticals,
and in hydrogen storage [3–5]. In 2022, global ammonia consumption was ~170 M tons
according to ChemAnalyst, with around 65% of it consumed in the fertilizer field. Ammonia
is mainly converted by nitrogen via Haber–Bosch (H-B) technology, benefiting the majority
of the world’s population [6]. In the H-B process, the reaction by converting a mixture of N2

and H2 to NH3 is induced by iron catalysts at high pressure and temperature to overcome
the high kinetic barrier associated with the cleavage of N≡N [7–13]. Nevertheless, only
~15% conversion is obtained in a single process of nitrogen-to-ammonia cycle, even at
high pressure (>40 MPa). The unreacted H2 and N2 are recycled to reach a final overall
yield of 97%, occurring at the high pressure and temperature conditions provided by a
high energy input [14]. The energy consumed to produce ammonia is ~485 kJ·mol−1 in
the whole process [15]. Around 452 Mt of CO2 is generated in the NH3 synthesis process
based on the IEA report [16]. In addition, the industrial urea synthesis mainly adopts the
Bosch–Meiser process with high temperature and high pressure (150–200 ◦C, 15–25 MPa).
This conventional, energy-intensive route to urea and ammonia synthesis has a significant
impact on global energy and environmental challenges. Thus, there is an urgent need to fix
nitrogen in an energy-efficient and environmentally friendly manner [17,18].
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energy-intensive pathway and the alternative C-N coupling pathway under ambient conditions.

Davy et al. [19] reported an electrocatalytic nitrogen fixation (NF) method in the 19th
century. Since then, the reduction in energy consumption in the NF approach has attracted
tremendous research attention [20,21], and significant progress has been made regarding
nitrogen fixation via electrocatalytic and photocatalytic approaches. For example, Pickett
et al. (1985) first synthesized ammonia by the dinitrogen complex with electricity at room
temperature and pressure [22]. Oshikiri et al. (2016) prepared ammonia from atmospheric
water and nitrogen under sunlight irradiation to achieve a sustainable energy and low-
carbon society [23]. Zhou et al. made ammonia with a high conversion efficiency of 60% for
nitrogen by the ionic liquid, which has a high nitrogen solubility [24]. Zheng et al. reported
a potentially convenient and green method for NF with a satisfactory conversion efficiency
and high yield of ammonia under mild operating conditions [25].

Metal-based catalysts can effectively reduce operating and capital costs by reducing
the experimental pressure and temperature [26]. Novel catalysts (e.g., Ru) have demon-
strated a low energy barrier due to reactant chemisorption on active centers and the
following activation approach caused by electron transfer [27]. For example, Ken et al.
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(1972) reported that a Ru-based catalyst whose catalytic efficiency was 10 times more than
traditional Fe-based catalysts [28]. The possible reason is that the kinetic energy barrier of
N≡N in the π-feedback path is reduced, and the empty d-orbital of the Ru-based catalyst
receives the lone pair of electrons from nitrogen [29,30]. The occupied d-orbital of the
Ru-based catalyst donates electrons to the anti-bonding orbital of nitrogen. It derogates
the N≡N bond, resulting in a “donate–accept” reaction path. Although Ru-based catalysts
have a relatively good catalytic performance in converting H2 and N2 to ammonia, their
insufficient stability and high cost still hinder their practical application for industrializa-
tion [14]. Furthermore, electrons in the d-orbitals of Ru-based catalysts can form H-Ru
bonds, leading to undesirable side reactions (hydrogen evolution reactions (HER)) [31].
Research on transition metal-based catalysts has exhibited low faradaic efficiencies (<10%)
and generation rates of ammonia (<10−8 mol·cm−2·s−1) [32], while the required faradaic
efficiencies for industrialization are over 10% and generation rates of ammonia are around
10−6 mol·cm−2·s−1) [33]. Thus, it is necessary to probe novel catalysts that enable huge
changes in electronic structure to achieve the required catalytic performance [34].

Carbon-based catalysts are promising alternatives for metal-based catalysts due to
their high specific surface area, tunable defects and porosity, excellent mechanical prop-
erties, and optimal electrical conductivity [35]. Various carbon-based catalysts, including
graphene, carbon nanotubes, heteroatom-doped carbon dots, single-atom metal-doped
carbon, and dual-metal-doped carbon show low-active centers for chemical adsorption
of reaction intermediates and/or reactants (Figure 2). Energy sites are clustered near the
periphery of the carbon layer [36]. These sites are rich in unpaired electrons can be saturated
with heteroatoms or hydrogen and are active centers for reactant dissociation or activa-
tion [37]. When graphite sheets have non-hexagonal defects (e.g., octagonal, heptagonal, or
pentagonal shapes), the additional charges associated with these defects enhance the con-
version of adsorbed molecules, thereby amplifying undesirable reactivity in the substrate
plane [38]. Compared to the basal plane in graphite structures, edge areas, and defective
units are reduced in nanocarbon with a well-defined crystal structure [39]. Thus, these
materials often lack significant heterogeneous catalytic activity and require engineered
defects to make them active [40].
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Figure 2. Schematic illustration of carbon catalysts for nitrogen fixation: (A) Carbon catalysts ranging
from 0 D to 3 D. (B) Non-metal and metal doping carbon catalysts. (C) C/N products.

In this paper, we present a summary of current advances in the study of NF and the
state-of-the-art carbon-based catalysts for NF under ambient conditions. The fabrication
and application of defective, heteroatom-doped, and (single-atom and dual-atom) metal-
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doped carbon-based catalysts in NF are presented. Subsequently, the electrocatalytic and
photocatalytic NF by carbon-based catalysts are discussed. Finally, the challenges and
outlook in this exciting field are also presented.

2. Mechanisms of Nitrogen Fixation
2.1. Mechanism of Ammonia Generation

Recently, the electrocatalytic synthesis of ammonia has two main mechanisms: dissociative and as-
sociative. Figure 3A shows the dissociative approach as *N≡N → N* → NH* → NH2* → NH3 [41].
The triple bond of nitrogen is broken before hydrogenation. This approach requires
much energy to break down the covalent bond of nitrogen. Also, it is limited by the
Brønsted–Evans–Polanyi relation. As a comparison, the hydrogenation occurs earlier, which
converts nitrogen molecules into NNH*. According to the order of H addition, the hydro-
genation process can be divided into distal hydrogenation and alternating hydrogena-
tion [42]. In the distal hydrogenation, the distal nitrogen atom (far away from the end-on
adsorption site) is preferentially hydrogenated until the first ammonia molecule is released
(Figure 3B). Then, the other N atom repeats this hydrogenation approach to form another
ammonia molecule [43]. In the alternating hydrogenation process, in addition to the proton-
coupled electron transfer, the two nitrogen atoms in the nitrogen molecule are hydrogenated
to form ammonia molecules and are released sequentially (Figure 3C). Also, the enzymatic
approach shows a similar hydrogenation approach to the alternating approach (Figure 3D).
However, both N atoms are bound to the catalyst surface in a lateral coordination mode.
The detailed intermediates that occur in these approaches are shown in Table 1.
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Table 1. The detailed intermediates occurring in various approaches to ammonia generation.

Mechanism Routes Elementary Reaction Steps

Dissociative N2 + 2* → 2*N
*N + e− + H+ → *NH

*NH + e− + H+ → *NH2
*NH2 + e− + H+ → NH3 + *

Associative distal N2 + * → *N2
*N2 + e− + H+ → *NNH

*NNH + e− + H+ → *NNH2
*NNH2 + e− + H+ → *N + NH3

*N + e− + H+ → *NH
*NH + e− + H+ → *NH2

*NH2 + e− + H+ → NH3 + *

Associative Alternating, and enzymatic N2 + * → *N2
*N2 + e− + H+ → *NNH

*NNH + e− + H+ → *NHNH
*NHNH + e− + H+ → *NHNH2

*NHNH2 + e− + H+ → *NH2NH2
*NH2NH2 + e− + H+ → *NH2 + NH3

*NH2 + e− + H+ → NH3 + *

2.2. Mechanism of C-N Coupling to Form Nitrogenous Compounds

The nitrogenous compounds (e.g., methylamine, ethylamine, formamide, and urea)
can be generated by C-N coupling from nitrogen and carbon dioxide. In the C-N coupling
approaches, nitrogen and carbon dioxide species are first converted into various interme-
diates, (e.g., *NH2, *NH, *H2NOH, *NO, *NO2, *N2, *COOH, *CO, and *CO2) (Figure 4).
The C-N coupling principles are vital to designing and optimizing catalysts to catalytically
synthesize various nitrogenous compounds.
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Chen et al. (2020) first reported the C-N coupling for synthesizing urea by simulta-
neously reducing the N2 and CO2 [45]. PdCu nanoparticles as the catalysts are deposited
on TiO2 nanosheets for the electrochemical synthesis of urea. N2 and CO2 are directly
coupled with water molecules for urea formation under ambient conditions. The C-N
bonds in urea are formed by the thermodynamically spontaneous reaction between CO
and *N=N*. Density functional theoretical calculations and the isotope-labeled operando
synchrotron-radiation Fourier transform infrared spectroscopy are used to reveal the reac-
tion approaches, intermediates, and quantification of products. Firstly, nitrogen molecules
are absorbed on the surface of catalysts and activated on these catalytic active sites to
form *N2. CO2 molecules are converted to *CO on the adjacent active sites (Figure 4A).
Next, the activated *CO and *N2 spontaneously react both in the thermodynamic and
kinetic aspects as the C-N coupling step to form a tower-like *NCON intermediate. Then,
*NCONH is formed due to the first hydrogenation of *NCON. *NCOHN can be converted
into *NHCONH or *NCONH2 through alternating or distal approaches. The generation
of *NCONH2 has a stability of +0.14 eV, making it a better choice than *NHCONH. This
step is the most energy-intensive step as a potential rate-limiting step to synthesize urea.
Then, urea molecules are easy to desorb from the catalytic surface due to the exothermic
subsequent reduction steps [46,47]. Table 2 shows the catalytic mechanisms of urea syn-
thesis. In addition, efficient desorption of urea from catalyst surfaces is vital to achieve
high productivity in NF. Factors, including the local reaction environment, the structure of
active sites, and the interaction strength between the catalyst and urea molecules influence
the mechanism of urea desorption. It is essential for effective urea desorption that there is
a delicate balance in binding strength between the catalyst and urea. For example, weak
binding results in premature desorption of intermediates, disrupting the completion of
reaction pathways and lowering the overall yield of urea. On the other hand, strong binding
causes urea molecules to remain adsorbed on the catalyst surface, blocking active sites and
reducing catalytic turnover. Therefore, the design of catalysts must optimize the binding
interaction to stabilize intermediates during the reaction while enabling the efficient release
of urea, ensuring sustained catalytic activity, and productivity.

Table 2. The catalytic mechanisms for generating nitrogenous compounds.

Compounds Mechanism

Urea CO2 + N2 + 6H+ + 6e− → NH2CONH2 + H2O E0 = 0.211 V
CO2 + 2NO + 10H+ + 10e− → NH2CONH2 + 3H2O E0 = 0.772 V

CO2 + 2NO2
− + 16H+ + 14e− → NH2CONH2 + 5H2O E0 = 0.833 V

CO2 + 2NO3
− + 18H+ + 16e− → NH2CONH2 + 6H2O E0 = 0.811 V

In addition, it is easier to couple NO3
−/NO2

−/NO with CO2 to generate urea due
to a lower bond dissociation energy of N=O. As shown in Figure 4B, *CO generated by
the reduction of CO2 reacts with *NH2 intermediates created from NO3

−/NO2
− to form

urea via the *CO-*NH2 coupling mechanism [48–50]. For example, Yu et al. (2022) reported
oxide-derived core–shell Cu@Zn nanowires to synthesize urea by the *CO-*NH2 coupling
mechanism. The obtained Faradaic efficiency was ~9.3% and the urea yield rate was
~7.3 µmol·cm−1·h−1 at −1.02 V vs. RHE. Also, *CO can react with *NO intermediates
as a potential mechanism, where the presence of *OCNO and *NO intermediates are
verified by in situ Sum Frequency Generation (in situ SFG) spectroscopy (Figure 4C) [51].
Moreover, *CO2 can react with *NO2 intermediates as a potential mechanism, where the
presence of CO2NH2 intermediates is verified by Operando Synchrotron Radiation Fourier
Transform Infrared (SR-FTIR) spectroscopy (Figure 4D), an application used in identifying
functional groups and confirming the production of specific nitrogen compounds [52].
Moreover, in situ Raman spectroscopy is also capable of detecting transient intermediates
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and confirming the binding of nitrogen species on catalyst surfaces, which can provide
insights into reaction intermediates.

3. Carbon-Based Catalysts
Recently, these carbon-based materials have shown great promise in improving NF

performance, an area that has been extensively studied. Multiple methods have been
explored to improve NF efficiency, including topology and edge-site defect engineering,
metal-free heteroatom doping, and metal atomic doping (Table 3).

Table 3. Performance of recent carbon-based catalysts.

Catalyst Electrolyte Yield Rate FE Ref.

NH3 DrGO 0.1 M KOH 7.4 µg·h−1·mg−1 10.8% [53]
0.1 M HCl 7.8 µg·h−1·mg−1 22.0%

BG 0.05 M H2SO4 9.8 µg·h−1·cm−2 10.8% [54]
N-PC 0.05 M H2SO4 23.8 µg·h−1·mgcat

−1 1.42% [55]
P-G 0.5 M LiClO4 32.33 µg·h−1·mgcat

−1 20.82% [56]
TiO2@C 0.1 M Na2SO4 20.03 µg·h−1·mgcat

−1 10.76% [57]
VO2@CN 0.1 M Na2SO4 0.31 µmol·h−1·mgcat

−1 67.9% [1]
0.1 M HCl 0.52 µmol·h−1·mgcat

−1 61.9%
Fe SAC/N-C 0.1 M KOH 53.13 µg·h−1·mgcat

−1 39.6% [58]
a1-Ru/CNTs 5 mM Cs2CO3 10.49 µg·h−1·mgcat

−1 17.48% [59]
FeSAC-N-C 0.1 M KOH 3.47 µg·h−1·cm−2 23.7% [60]
FeSA-N-C 0.1 M KOH 7.48 µg·h−1·mgcat

−1 56.55% [61]
CO(NH2)2 Fe(a)@C-Fe3O4/CNTs 0.1 M KNO3 1341.3 µg·h−1·mgcat

−1 16.5% [62]
CuPc-Amino 0.1 M KHCO3 103.1 mmol·h−1·g−1 11.9% [63]
N-doped C 0.1 M KHCO3 102.2 mg·h−1·mgcat

−1 0.55% [64]
CH3NH2 CoPC-NH2/CNT 0.1 M KHCO3 - 13% [65]

Tips: DrGO: defective reduced graphene oxide. BG: B-doped graphene. N-PC: N-doped porous carbon. P-G:
P-doped graphene. TiO2@C: TiO2 decorated juncus effusus-derived carbon microtubes. VO2@CN: VO2 anchored
on N-doped carbon. Fe SAC/N-C: Fe single-atom catalyst (SAC) anchored on N-doped carbon. a1-Ru/CNTs:
ultrafine amorphous Ru nanoclusters supported on CNTs. FeSAC-N-C: Fe single-atom immobilized on nitrogen-
doped carbon nanosheets. FeSA-N-C: single-atom dispersed Fe-N-C. Fe(a)@C-Fe3O4/CNTs: symbiotic graphitic
carbon encapsulated amorphous iron and Fe3O4 nanoparticles on carbon nanotubes. CuPc-Amino: copper ph-
thalocyanine strengthened by amino substitution. CoPC-NH2/CNT: cobalt β-tetraaminophthalocyanine/carbon
nanotube. “-” indicates that the corresponding parameter was not provided in the given reference.

3.1. Intrinsic Defects

The topology and edge defects are intrinsic properties of carbon materials, which
contribute to their diverse functions and electronic structures. Edge defects have vacancies
at the dangling groups and edges. Topological defects contain the deformations and
inherent topologic vacancies at both the carbon matrix and edges [66]. Various defects
(Figure 5) have been reported, including single/multiple vacancies, lattice reconstructions,
non-hexagonal topologies, and dangling group [67], which significantly impact the charge
density of carbon atoms close to the defects by comparing with that of carbon atoms in the
basal plane. Thus, it is a potential approach to facilitate the conversion efficiency in NF. For
example, Zhang et al. reported a reduced graphene oxide with tunable defects (DrGO) for
NF under mild conditions in a wide pH range [53]. The NF performance of defective sites
(single vacancy (SV) and double vacancy (DV) on the carbon basal plane) are examined,
and an enhanced ammonia selectivity caused by the strong binding of nitrogen instead
of hydrogen is performed. Density theoretical calculations show that the thermodynamic
overpotential at DV sites of DrGO is similar to the most efficient transition metal-based
catalysts reported so far.
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3.2. Metal-Free Heteroatom Doping

Another typical strategy to enhance NF performance is metal-free heteroatom doping
that replaces carbon lattice atoms with heteroatoms such as chlorine (Cl), fluorine (F),
sulfur (S), oxygen (O), boron (B) [54], and nitrogen (N) [40,55]. This strategy has attracted
widespread attention from the materials science community [68]. It changes the spin dis-
tribution and charge density of carbon atoms, thereby affecting the adsorption behavior
of products, intermediates, and reactants at particular sites [69]. In addition, it facilitates
the electron transfer approach [56]. For example, nitrogen (N) has a higher electronega-
tivity (3.04) than carbon (C, which has an electronegativity of 2.55), allowing it to steal
electrons from neighboring carbons [70]. Finally, N-doping causes charge polarization
and redistribution, thereby improving catalytic activity and substrate adsorption in NF
under mild conditions [71]. Liu et al. pyrolyzed zeolite imidazole framework-8 (ZIF-8) to
develop various nitrogen-doped porous carbon catalysts (NPC) under ambient conditions
(Figure 6A) [55]. These NPCs exhibit adjustable nitrogen speciation and controllable nitro-
gen content (ranging from 2.1% to 13.6%) at various experimental temperatures. When
applied for NRR, the NPC-750 sample with 13.6% nitrogen content achieved a maximum
Faradaic efficiency (FE) of 1.42% and an ammonia yield of 1.40 mmol·h−1·g−1 at −0.9 V.
Both experimental results and density functional theory (DFT) calculations highlight the
pyrrolic and pyridinic nitrogen as the main active sites for nitrogen adsorption and subse-
quent N≡N cleavage. The preferred approach for ammonia formation involves a series
of reactions: *N≡N → *NH=NH → *NH2–NH2 → 2NH3 [72]. Co-doping with two kinds
of heteroatoms (P/N, S/N, and B/N), synergistically induces new neutral centers [73,74].
Organic precursors were polymerized to prepare metal-free co-doping carbon-based cata-
lysts for NF [75]. Remarkable results were achieved by carefully adjusting bonding states
and doping levels. N-B pairs that replace the basal plane of the graphite sheet serve as
active triggers, which are verified by both experimental studies and DFT simulations.
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Furthermore, the edge-carbon atoms adjacent to the N-B pair serve as the catalytic site for
NF. At the same time, B/N co-doping carbon-based catalysts effectively inhibit HER, as
evidenced by the optimal adsorption-free-energy of *H species (0.65 eV). This carbon cata-
lyst has an excellent FE of 13.79% and an ammonia production rate of 7.75 µg·mgcat

−1·h−1.
Yu et al. reported a B-doped graphene with a doping level of 6.2%, which performed
a FENH3 of 10.8% (at −0.5 V (RHE)) and an ammonia yield rate of 9.8 µg·mgcat

−1·h−1

(Figure 6B) [54]. The doped boron into the graphene backbone results in a redistribution
of electron density, and the electron-deficient B active sites enhance the binding affinity
for nitrogen molecules. Theoretical and computational analysis demonstrate the catalytic
activity of various B-doped carbon structures and identify the BC3 structure as having the
lowest energy barrier for ammonia generation from nitrogen. Yang et al. systematically
examined the performance of the oxygen/chalcogen group element (Te, Se, S, O) in the NF
progress by experimental and theoretically computational analysis (Figure 6C) [76]. These
doped heteroatoms accumulate the adsorption of nitrogen on the carbon atoms close to the
heteroatoms. Also, Se- and Te-doped carbon catalysts show optimal NF activity, which is
superior to most metal-based catalysts.
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3.3. Metal Doping
3.3.1. Single-Atom-Doped Carbon Catalysts

In addition, metal-doped carbon catalysts are a promising technology for NF [77,78].
Notably, O, S, and N can be coordinated with single-metal atoms (SA) to prepare highly
reactive carbon-based single-atom catalysts (SACs). These arrangements create active
centers similar to those on carbon-loaded metal-N-macrocycles as natural enzymes. Due
to different dopants and metal atoms, it is easy to control the charge density of isolated
metal sites, making the catalytic performance of SAC suitable for various reactions [79,80].
The earth-abundant metals (transition metals), including Cu, Ni, Co, and Fe, have been re-
searched for E-NRR [81,82]. Fe-ZIF was carbonized to prepare single-atom Fe supported by
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N-doped carbon materials (FeSA/N-C) with a Fe mass loading of 4.2 wt % (Figure 7A) [83].
The EXAFS image of FeSA/N-C exhibits that the key peak at 1.5 Å assigned to the N-Fe
bond, corresponding to the wavelet transform (WT) plot, in which only the N-Fe signal
of FeSA/N-C is found. The maximum WT value reached is 3.7 Å−1. FeSA/N-C has a
high ammonia formation rate of 62.9 ± 2.7 µg·mgcat

−1·h−1 and FE of 18.6 ± 0.8%. The Fe
single-atom in the Fe-N4 configuration is beneficial to the adsorption of nitrogen and sub-
sequent activation, indicating higher E-NRR performance and catalytic selectivity, which is
validated by DFT simulations. Rose’s group (2022) reported a single-atom Cu supported by
N-doped carbon materials (CuSA/N-C) to synthesize urea (Figure 7B) [84]. They revealed
that the Cu-N4 site exhibits higher activity toward CO2RR and that *COOH incorporation
is a key parameter determining catalytic activity for urea production. Thus, the Cu-N4 site
performs the highest FEurea of 28% at −0.9 V (RHE).
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3.3.2. Dual Atom-Doped Carbon Catalysts

Also, the development of metal diatomic carbon catalysts to replace SACs is vital to
enhance proton coupling electron transfer. For example, Zhang et al. (2020) prepared a
Zn/Fe diatomic carbon catalysts with an FENH3 of 26.5% and a high ammonia yield rate
of 30.5 µg·mgcat

−1·h−1 (Figure 8A) [85]. Theoretical and computational analysis reveals
that the Zn/Fe diatomic active sites synergistically favor nitrogen activation and reduce
the reaction barrier of the intermediate formation of NNH* (the rate-limiting step). Zhang
et al. (2023) reported a Fe/Cu diatomic porous graphene with a high ammonia yield rate
of 1.08 mmol·mgcat

−1·h−1 (at 0.5 V (RHE)) and a maximum FENH3 of 92.51% (at −0.3 V
(RHE)) (Figure 8B–D) [86]. The strong interactions between Fe/Cu diatomic sites and
NO3

− facilitate the adsorption and discharge of NO3
− anions calculated by theoretical
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computation. The Fe/Cu diatomic active sites weaken the O-N bonds, resulting in the
lower of the overall reaction barriers.
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4. Electrocatalytic NF
Electrocatalytic NF (E-NF) involves the diffusion of N2 molecules to the working elec-

trode (WE) surface, where they undergo electron reduction with simultaneous acquisition
of protons, ultimately generating NH3 [87–89]. Compared with the traditional H-B method,
E-NF has several merits, including the low energy cost, high chemical space, and sustain-
able proton source. (1) The traditional H-B approach relies on thermal energy, while E-NF
uses electrical energy. As a result, it operates under milder conditions, making it possible
to use catalysts that might not require high temperatures and pressures. (2) Liquid-phase
reaction conditions in E-NRR provide a versatile chemical space for optimizing catalytic
performance. By adjusting parameters such as potential range, electrolyte type, and pH, the
process can be tuned. (3) The E-NF approach does not rely on fossil fuels but uses water as
a proton source and reducing agent. This shift to renewable energy (wind or solar energy)
enables the production of NH3 in a decentralized strategy. Thus, E-NF holds great promise,
providing both environmental benefits and opportunities for innovative catalyst design.

E-NF unfolds within the complicated range of solid–liquid–gas three-phase interfaces.
The first step involves the diffusion of N2 molecules onto the WE surface. These molecules
are then further reduced, facilitated by electrons, while gaining protons, ultimately pro-
ducing NH3. Nevertheless, some difficult challenges remain. For example, under ambient
conditions, N2 solubility in water is as low as 0.66 mmol·L−1, which greatly restricts the
production of NH3 [90]. In addition, the chemical inertness of N2 creates obstacles during
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adsorption and activation approaches [91]. (1) The first bond in N≡N requires a stag-
gering 410 kJ·mol−1 to dissociate. (2) N2 has a proton affinity of ~494 kJ·mol−1, which
lacks a constant dipole moment. Its reactivity is inhibited by the negative electron affinity
(−1.90 eV) and high ionization potential (15.84 eV). (3) The electron transfer during E-NF
is hindered by the small energy gap (10.82 eV) between the lowest unoccupied molecu-
lar orbital (LUMO) and the highest occupied molecular orbital (HOMO) [91]. After N2

adsorption/activation, subsequent reduction reactions involve complex steps, including
bond breaking, hydrogenation, and electron transfer [42]. Two proposed mechanisms have
emerged. (1) Association pathway: Catalysts adsorb N2 molecules on their surface. Next,
the N≡N is destroyed by continuous hydrogenation, resulting in N-N bond cleavage and a
release of NH3 [92]. (2) Dissociation pathway: Bond cleavage occurs with N2 adsorption,
and then the adsorbed N atoms are independently hydrogenated to generate NH3 [93].
Taken together, resolving these complexities is key to efficient electrocatalytic NF and
sustainable NH3 production.

In theory, nitrogen should convert to ammonia when a relatively negative bias voltage
is applied to the electrode compared to the equilibrium barrier for E-NF (0.092 V vs.
RHE) [94]. Nevertheless, this equilibrium barrier represents the average of six protons and
six electrons transferred [92]. The first electron affinity of N2 is around −2.78 V, which
emphasizes the thermodynamic difficulty of N2 hydrogenation [95]. Thus, the activation
of nitrogen is challenging under mild conditions [96]. In contrast, only two electrons
are required in parasitic HER. Only two electrons for each H2 are produced in one half-
reaction. Protons and electrons combine easily via HER, resulting in quite low selectivity
for NH3 (low FENH3). To overcome these challenges, it is crucial to design carbon-based
electrocatalysts in a reasonable way, which can enhance N2 adsorption and activation to
improve E-NF activity [97].

Additionally, the reaction cell is a key factor affecting the catalytic performance of
NF. The commonly used reaction cell for E-NF includes a single-cell reactor and, an H-
cell reactor with a selective membrane, which is similar to electrocatalytic water splitting
(Figure 9A–C) [98]. As shown in Figure 9A, electrodes are dipped in the electrolytes, and
nitrogen is blown around WE. The single-cell reactor can also be placed in an autoclave to
achieve high nitrogen saturation. A continuous stirring helps achieve a uniform distribution
of the reactants [99]. The H-cell reactor (Figure 9B) has two compartments separated by
a selective membrane. The cathode and anode are placed in different compartments,
respectively. H2O and organic electrolytes can even exist in the same cell in some cases
(Figure 9C) [100]. In the flow cell equipped with a gas diffusion electrode (GDE), the gas
permeates via the electrode to contact the bulk electrolyte at the electrode surface, thereby
establishing a three-phase boundary essential for efficient E-NF reactions (Figure 9D,E) [26].
To maintain uniform reactivity at WE, the electrolyte is typically recirculated within the
flow cell, ensuring consistent ion transport and reactivity across the electrode surface.

Furthermore, it is worth mentioning that in carbon-based electrochemical nitrogen
fixation methods, the reactor design and electrode configuration are crucial factors in-
fluencing the reaction efficiency. Typically, common reactors include H-type cells and
flow reactors, and a carbon-based electrode array, made from materials such as graphite,
carbon paper, or carbon cloth, is used due to its high surface area and excellent electrical
conductivity. The electrodes are usually arranged in parallel or stacked configurations to
maximize the interaction between the nitrogen gas and the electrode surface. Commonly
used electrolytes are KOH, Na2SO4, and phosphate buffer. Moreover, the operating con-
ditions, such as pH, also play a significant role in the efficiency of the reaction. A slightly
acidic to neutral pH (around 6–7) is often preferred, as it helps to minimize side reactions
and maintain the stability of the nitrogen reduction process. The supporting electrolyte,
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commonly potassium or sodium bicarbonate, is employed to enhance ionic conductivity.
Moreover, the surface area of the electrodes, which can be increased through modifications
like roughening, directly impacts the rate of nitrogen fixation, with a larger surface.
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5. Photocatalytic NF
The first photocatalytic nitrogen fixation was reported in 1977, which was induced

by Fe-doped TiO2 under UV irradiation. Holes and electrons are generated in the photo-
catalytic NF (P-NF) process [101]. Protons are utilized as a source of hydrogen gas, and
electrons induced in the photocatalytic process are used to activate nitrogen molecules and
convert them to ammonia [102]. As a comparison, water is split into hydrogen and oxygen
(H2O → H2 + O2) [103], ∆G298 = 237 kJ·mol−1, and carbon dioxide is reduced to methane
(CO2 + 2H2O → CH4 + 2O2) [104], ∆G298 = 237 kJ·mol−1 in P-NF. These reactions are
difficult due to ∆Go > 0, requiring high energy input by absorbing photons with energies
corresponding to the shortwave visible or UV regions. NF on heterogeneous surfaces
can proceed via dissociation and association mechanisms, which are the same as in E-NF.
g-C3N4 has a band gap potential of ~2.7 eV to absorb visible light, which can work under
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solar irradiation. To improve P-NF performance, several strategies have been explored,
including defect and metal doping.

In the defect strategy, an “all-in-one” strategy has been investigated to enhance the
P-NF performance, particularly for g-C3N4, by introducing pores, corners/edges, noncrys-
tallinity, strain, dopants, and vacancies [105]. This strategy could improve the response of
their visible light to long-wavelength/near-infrared light range, enhance the photogener-
ated electron migration, decrease the photocarriers recombination, control the bandgap
width to the required reduction potential of active species, tune the VB, CB position, and
adjust the electron density to improve the adsorption of nitrogen on the surface of catalysts
and reduction of nitrogen. Ma et al. reported an N-deficient g-C3N4 by microwaving with
a P-NF rate of ~3 mg·gcat

−1·h−1·L−1 [106]. Zhang et al. also prepared a C-deficient g-C3N4

by a two-step method to calcinate a bulk g-C3N4 at 500 ◦C for 2 h, and then calcinated
the as-obtained samples at 530 ◦C for 2 h. XPS spectra were used to characterize the N/C
atomic ratio, and XRD was employed to show the peak shift. EPR showed rich C vacancies
in the final products. Its P-NF performance was ~84 mg·gcat

−1·h−1 without any cocatalyst
and sacrificial agent. Also, functional groups (e.g., cyano groups (-C≡N) [107] and amino
groups (-NH2) [108]) can improve the P-NF performance. Wang et al. intercalated K+

and modified cyano groups (-C≡N) on the g-C3N4 photocatalysts [107]. The -NH2 in the
triazine ring can react with K+ to generate -C≡N, contributing to an excellent ammonia
formation rate of 3.42 mmol−1·g−1·h−1. Both experimental results and theoretical calcu-
lations proved that the -C≡N can be regenerated via a pathway analogous to the Mars
van Krevelen process with the aid of the intercalated K+. The regenerated -C≡N not only
enhanced the P-NF performance and extended the reaction cycle but also stabilized the
photocatalysts. Cao et al. reported ultrathin g-C3N4 nanosheets with rich -NH2 groups by
collecting the gaseous thermal polymerization products of urea [108]. The modified g-C3N4

nanosheets have an ammonia production rate of 60.5 µmol−1·h−1, which was almost dou-
ble that of the pristine g-C3N4. Zhang et al. (2021) [109] synthesized a p-n heterojunction
by Cu2O and g-C3N4 nanosheets, which sped up the separation of photogenerated carriers
and the adsorption of visible light, leading to improved photocatalytic performance for
ammonia generation. However, the loaded amount of Cu2O needs to be optimized because
overloading Cu2O will cover the active sites to decrease the contact between g-C3N4 and
N2, reducing the photocatalytic performance.

Heteroatom doping into the g-C3N4 matrix can also improve the P-NF performance.
For example, Huang et al. reported an O-doped g-C3N4 matrix with an ultrahigh P-NF
performance of 118.8 mg·gcat

−1·h−1·L−1 under visible light irradiation [110]. Also, the
O-doped g-C3N4 catalyst had excellent stability. Li et al. used the plasma method with a
feeding gas of H2S to prepare S-doped and N defective g-C3N4 nanosheets and obtained
an ammonia production rate of 6.2 mg g−1·h−1·L−1 [111]. Cao et al. prepared an S-doped
and C-defective porous g-C3N4 nanosheets (SCNNSs) by collecting the gaseous thiourea
under a self-generated ammonia atmosphere [112]. The as-obtained SCNNSs catalysts
had an ammonia production rate of 5.99 mM·gcat

−1·h−1 under the simulated solar irradi-
ation within 4 h, which was 2.8 times higher than bulk SCN. Liang et al. used ultrathin
g-C3N4 and NaBH4 to prepare a B-doped and N-deficient ultrathin g-C3N4 photocata-
lyst (BNUCN) with an ammonia production rate of 435.28 µmol−1·g−1·h−1 under visible
light [113]. The significant enhancement in P-NF can be attributed to (1) enhanced nitro-
gen adsorption capacity, photocarriers separation efficiency, and visible light absorption
due to the N-deficient in g-C3N4 after doping B; (2) the doped B atoms can improve the
adsorption of nitrogen and then enhance the activation of nitrogen on the catalyst surface;
and (3) after doping B, the -C≡N was generated and can improve the P-NF performance.
The length of N-N of nitrogen molecules was extended, further improving the adsorption



Nanomaterials 2025, 15, 65 15 of 22

energy of nitrogen on the catalysts, and increasing ammonia yield, which was verified by
theoretical calculations.

In addition, the doped transition metal single atoms can improve the P-NF perfor-
mance by activating nitrogen molecules and boosting visible light absorption. The empty
bonding orbitals of the nitrogen molecule can accept electrons in the bonding orbitals of the
nitrogen molecule, while the electrons occupied by the d-orbitals in the TM can be trans-
ferred to the antibonding orbitals of the nitrogen molecule. Thus, TM can weaken the bond
strength of nitrogen molecules, which is favorable to nitrogen activation. Fe-EDTA-CNNS
was prepared by grafting ethylenediaminetetraacetic acid (EDTA) on g-C3N4 nanosheets
and further chelating Fe3+, which has a high P-NF performance of 50 µmol−1·h−1·L−1 [114].
The doped Fe was highly dispersed and stable. The Fe-EDTA-CNNS catalysts have high
charge separation and transfer capacity, and an enhanced absorption for visible light,
compared to the un-modified samples. Liu et al. reported that the single-atom Co-doped
g-C3N4 catalysts had an ammonia production rate of 50.2 µmol−1·h−1 with a stable perfor-
mance on cycling [115]. The ammonia production rate of single-atom Co-doped g-C3N4

catalysts was six times that of bulk g-C3N4 catalysts. Although bismuth-, metal–organic
frameworks (MOFs)-, and copper-based nanomaterials have a good photocatalytic perfor-
mance to remove pollution in aquatic environments via specific functionalization, carbon
nanomaterials have good photocatalytic performance and show strong competition in NF
(Table 4) [116–118].

P-NF is typically conducted in heterogeneous suspension systems, where solid powder
photocatalysts are dispersed directly into an aqueous solution. This solution may consist
of pure water or water containing added hole scavengers, such as methanol or ethanol, to
enhance the reaction efficiency. The design of reaction cells for P-NF shares similarities with
those used in E-NF (Figure 10) [119]. In these systems, a continuous flow of nitrogen gas
is introduced, facilitating contact between the nitrogen molecules, photocatalyst particles,
and the aqueous medium to drive the reaction.
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Also, it is worth noting that the applied solution works as the whole sacrificial agent
and significantly impacts NF. As reported by Muhammad et al. (2024), NaHCO3 can
consume some holes to inhibit urea oxidation, and some holes can oxidize water to provide
protons for urea synthesis [120]. However, the amount of NaHCO3 used also needs to be
strictly controlled. Compared with 0.4 M NaHCO3, 0.2 M NaHCO3 has a reduced ability
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to quench photogenerated holes, thereby enhancing water and urea oxidation. This is
evidenced by the higher oxygen yield and lower urea yield at 0.2 M NaHCO3 compared
with 0.4 M NaHCO3. At 0.8 M NaHCO3, the increased consumption of holes by NaHCO3

resulted in a significant decrease in oxygen yield, while the urea yield was lower than that
at 0.4 M NaHCO3. This decrease may be attributed to the reduced availability of protons
for water oxidation. The highest urea yield was obtained at 0.4 M NaHCO3, indicating
that it achieved an optimal balance between suppressing excessive urea oxidation and
maintaining efficient water oxidation, thereby ensuring sufficient proton supply for urea
synthesis. However, the amount used also needs to be strictly controlled.

Table 4. Reported photocatalysts for NF.

Catalyst Yield Rate AQE Ref.

NH3 0.6Cu2O/CN 500 µmol·h−1·mgcat
−1 0.57% [109]

Cu2O - 0.1%
Pt1-Ptn-TiN 637 µmol·h−1·mgcat

−1 0.1% [121]
g-C3N4-V 84 µmol·h−1·mgcat

−1 - [122]
VN-g-C3N4 5.5 mg·L−1·h−1·mgcat

−1 - [123]
Co-g-C3N4 5.8 mg·L−1·h−1·mgcat

−1 - [124]
SiW12/K-C3N4 353.2 µmol·h−1·mgcat

−1 - [125]
c-PAN/Bi2OW6 160 µmol·h−1·mgcat

−1 - [126]
CO(NH2)2 SrTiO3-FeS-CoWO4 8054.2 µg·h−1·mgcat

−1 [120]
Ru-TiO2 24.95 µmol·h−1·g−1 4.7% at 380 nm [127]

6.3% at 420 nm
Tips: AQE: apparent quantum efficiency. Pt1-Ptn-TiN: single atoms and clusters of platinum on TiN. g-C3N4-V:
porous white powders with surface carbon vacancies. VN-g-C3N4: N vacancies doped C3N4. c-PAN/Bi2OW6:
cyclized polyacrylonitrile (c-PAN) decorated on Bi2WO6. “-” indicates that the corresponding parameter was not
provided in the given reference.

6. Conclusions and Outlook
This review presents a thorough summary of carbon-based catalysts for NF. For carbon

materials doped with heteroatoms, neighboring heteroatoms with weak or strong electron
affinities can lead to a re-distribution of charge and spin density in the carbon skeleton,
resulting in non-electron neutral sites. Non-electron-neutral carbon or heteroatoms can
act as Lewis acids to promote nitrogen adsorption (a precursor step to NF) and inhibit
HER, thereby increasing the efficiency of ammonia conversion. Doping strategies help
increase the density of active sites, thereby improving the NF performance. C atoms on
the basal plane have an obvious difference in charge density compared to C atoms close to
the defects of carbon catalysts with topological defects and edge sites, thus increasing their
NF performance. In SACs, metal single atoms distributed atomically can be ligated with
N (N-M) or other heteroatoms (e.g., S-M and B-M) in the carbon matrix. The unsaturated
coordination situation results in a large amount of charge transfer from SAC to carbon
materials, resulting in a high efficiency for NF.

Research for NF has made significant progress, but there are still some limitations and
challenges that need to be resolved to achieve practical applications. (1) Several electrocata-
lysts exhibited optimal FE (>50%), but high selectivity just occurred at low overpotentials
and low ammonia production rates. FE reduces with an increase in negative potential
where HER dominates. SACs can improve selectivity for urea by offering isolated active
sites that reduce HER competition. Also, the apparent quantum efficiency (AQE) values
can be used instead of the FE to compare the photocatalytic performance when a n- or
p-type semiconductor is employed. (2) The NF performance of SACs is impacted by lig-
and effects. Nevertheless, harsh reaction conditions (e.g., high temperatures) inhibit the
introduction of functional groups to support SAC. Thus, it is necessary to develop simple
preparation and optimization methods to synthesize SACs. (3) The current understanding
of the mechanism depends heavily on DFT simulations, but NF in solution is very complex.
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FE may not always accurately reflect the performance of nitrate reduction reactions due to
competing reactions such as the HER. Thus, there is a strong need to study mechanisms
by spectroscopic techniques to detect intermediates to directly verify nitrogen fixation
products and distinguish them from HER byproducts. The in situ characterizations include
in situ Raman spectroscopy, gas chromatography–mass spectrometry (GC-MS), in situ
Fourier transform infrared spectroscopy (FTIR), in situ Sum Frequency Generation (in situ
SFG), and spectroscopy (UV–Vis spectroscopy). Electrochemical techniques can also be
applied, including in-situ electrochemical impedance spectroscopy (EIS) and differential
electrochemical mass spectrometry (DEMS). Also, the isotopic labeling can work as a sug-
gested complementary characterization technique. With these characterizations, it is good
to monitor the formation of intermediates such as *NH2, *CO, and *NCON, leading to
optimizing the output performance of NF. (4) Urea exhibits strong adsorption on many
catalysts, which can inhibit its desorption and reduce overall productivity. This is particu-
larly problematic in systems where the catalyst binds strongly to the reaction intermediates.
Modifying the surface structure of catalysts (e.g., introducing defects or functional groups)
can facilitate urea desorption and minimize undesired adsorption effects. (5) The catalyst
leaching and deactivation during prolonged operation hinder the durability and stability of
these catalysts. Biomimetic Catalysts inspired by nitrogenase enzymes can replicate natural
pathways for urea production, offering improved efficiency.

The adsorption intensity between intermediates/reactants and metal sites impacts
the NF selectivity of these catalysts. Novel design methods can fine-tune the coordination
environment, thereby optimizing the adsorption intensities. (1) The development of di-
atomic catalysts with heteroatom and various metal atoms coordination, inspired by the
structures of biological nitrogenases (e.g., FeV and FeMo), is a promising strategy. (2) Metal
single atoms coordinated carbon materials strategy is another potential method, which
favors electron localization and modulates the adsorption intensities of intermediates and
reactants. (3) The defective structure of SAC-embedded carbon-based materials can be
expanded to promote E-NRR and inhibit competitive HER. To date, research on the various
coordination conditions of the central metal has been limited. In the coming future, progress
in these strategies will lead to a higher ammonia production rate and FE, thereby enabling
the replacement of the fossil fuel-dependent and energy-intensive H-B process by the NF
process. In addition, unlike metal alloys, which often face segregation challenges that
impact their performance, heteroatom-doped carbon-based nanomaterials show excellent
catalytic performance. This operation stability arises from the strong covalent bonds formed
between the incorporated dopants and carbon atoms, effectively mitigating segregation.
Also, the strategic co-doping of carbon nanomaterials with various heteroatoms (e.g., S, B,
N, and F) enables the design of catalysts with a wide spectrum of active sites, enhancing
the versatility of their catalytic performance. Thus, it is vital to design novel carbon-based
catalysts for NF.

Furthermore, the influence of semiconductor types on the electronic surface state
and reaction pathways should also be taken seriously. N-type semiconductors tend to
facilitate electron transfer due to their abundance of free electrons, potentially enhancing
the reduction of nitrogen to nitrogenous species. This can also shift the reaction pathway
toward more selective nitrogen reduction. P-type semiconductors often exhibit strong hole-
induced oxidation effects, which may influence the adsorption and activation of nitrogen
molecules on the catalyst surface, thereby impacting the overall reaction pathway. The
electronic structure of the semiconductors (e.g., bandgap, conduction, and valence band
positions) also plays a crucial role in modulating catalytic activity and selectivity.
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