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Chapter 11 ®)
Characterization of a RISC-V oo
Microcontroller Through Fault Injection

Dario Asciolla, Luigi Dilillo, Douglas Santos, Douglas Melo,
Alessandra Menicucci and Marco Ottavi

Abstract This article reports the results of fault injection on a microcontroller based
onthe RISC-V (Riscy) architecture. The fault injection approach uses fault simulation
based on Modelsim and targets a set of 1000 fault injected per microcontroller block
and per benchmarck. The chosen benchmarks are the Dhrystone and CoreMark that
may represent generic workloads. The results show certain block are more prone
to fault than others, as also confirmed by a vulnerability analysis that correlates the
number of observed faults and the rate of access to the blocks.
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11.1 Introduction

The space environment interaction with electronics represents an important chal-
lenge for satellite missions. Ionizing particles and electromagnetic radiations affect
electronic devices by inducing faults in specific circuit areas that may lead to system
failures. These failures can be temporary, with the occurrence of the so-called Soft
Errors, or permanent with the occurrence of Hard Errors [1]. Moreover, the exposi-
tion of electronics to radiation induces to premature aging, with the deterioration of
performance and/or functionality of the systems. For this reason, the space industry
resorts to hardening techniques that are generally based on hardware and software
redundancy, with the generation of custom devices. This type of solutions, while
effective, are energy and hardware greedy and leads to costs several times higher
than for conventional COTS (Commercial Off The Shelf) electronics.

Completely programmable hardware platforms such as FPGA make the develop-
ment of a system extremely flexible but, at the same time, require ad-hoc designing
and therefore they are not available to a broad programming community. On the other
side, the use of standard processors ISA architectures allows many developers to de-
sign applications, but the closeness of the architectures does not allow the designers
to make easy and cheap modifications to the underlying hardware.

RISC-V allows developers to combine the advantages of both worlds [2], pro-
viding flexibility to both hardware and software. On one side we can modify the
architecture to obtain specific applications, while on the other side we can open to
applications made by programmers, who are unaware of the underlying hardware.
RISC-V is an open ISA born from both the academia and research environment [3].
The RISC-V ISA was originally developed in the Computer Science Division of
the EECS Department at the University of California, Berkeley [3]. RISC-V rep-
resents a promising platform to experiment different techniques and to design new
architectures.

The purpose of this paper is characterizing a RISC-V core, through an extensive
simulation-based fault injection campaign with the target of identifying the most
critical modules within the core. For this purpose, the study of sequential modules
is fundamental, especially for COTS components, because they can suffer from bit
flips [4]. The data stored in the memory element can be corrupted, with Single Event
Upsets (SEUs), after the interaction with ionizing particles and electromagnetic ra-
diations in general. This paper analyzes the effects of SEU (Single Event Upset) in a
RISC-V core. This characterization is useful in perspective to design a fault-tolerant
version of a RISC-V core for space applications by applying targeted hardening tech-
niques, shaped on the sensitivity of the different blocks composing the system. The
final target is the use of this kind of low cost hardened processor within nanosatel-
lites, like Cubesats, and in other systems where high reliability, flexibility and low
cost are required.



11 Characterization of a RISC-V Microcontroller ... 93

The rest of the paper is organized as follows. Sections 11.2 and 11.3 detail the
RISC-V platform and fault injection methodology, respectively. Section 11.4 intro-
duces the chosen algorithmic benchmarks. Sections 11.5 and 11.6 present the simu-
lation results as well as an analysis of the microcontroller vulnerability. Conclusions
are given in Sect. 11.7.

11.2 Platform

The chosen RISC-V platform is the Parallel Ultra Low Power (PULP) Platform.
It is been designed from Integrated Systems Laboratory (IIS) of ETH Zrich and
Energy-efficient Embedded Systems (EEES) group of the University of Bologna
[5]. It is an open-source platform and very useful for our purposes, because it is
possible to access all parts of the system. In this specific case, from this platform, the
Pulpino microcontroller has been chosen. It is built for RISC-V Riscy and zero-riscy
core [6]. Pulpino offers a separate memory for instructions and data. It uses AXI
(Advanced eXtensible Interface) interface as its main interconnect and a bridge to
APB (Advanced Peripheral Bus) for simple peripherals [6]. All architectural details
about Pulpino platform [6] are shown in Fig. 11.1.

The choice of Riscy core for this study is based on the following reasons. Firstly,
it is a four-stage RISC-V core and it can run most of the typical workloads. It is a
32-bit core and for the chosen configuration, it can manage only integer numbers. It
implements the RV32I instruction set. All software that runs over this core has been
compiled using the GNU RISC-V Toolchain [7] with an optimization level equal
to 3.

Adv.
Debug Unit
p. A vy
\J AJ \J 1 1
GPIO UART I’c SPI SPI JTAG

Fig. 11.1 RISC-V PULPino platform architecture overview
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Fig. 11.2 RISC-V Riscy core architecture overview

Riscy core architecture overview [6] is shown in Fig. 11.2. For the characterization
campaign, we are focusing over all sequential modules inside the core. In Riscy
core there are four stages: Instruction Fetch, Instruction Decode, Execution and
the Write Back. All stages are separated by an interface register. In the Instruction
Fetch stage, sequential parts are inside the prefetch buffer, the hardware loop control
module and inside the instruction fetch top-level registers. In the Instruction Decode
stage, sequential modules are inside the register file and the controller unit. In the
Execution stage, the control-state registers and the multiplier are both sequential
modules. In the write-back stage, the load-store unit is the only sequential module.
The only architectural modification that was made consists of the redefinition of
state machines inside sequential modules by using the binary codification instead of
labels. This modification was introduced to simplify the fault injection procedure.

11.3 Fault Injection Environment

For replicating the typical effects of space radiation environment on electronics [8],
a simulation-based fault injection technique was chosen. This technique allows full
access to the entire processor without any architectural modifications. One of the
main disadvantages of this technique is that, being simulation based, required a long
time to run compared to execution on hardware emulators such as the FPGA based
ones [9]. This simulation-based strategy is based on TCL (Tool Command Language)
scripts, that allow the manipulation of signals for fault injection and observe fault
effects. The HDL (Hardware description language) simulator used for the system
simulation and to run TCL scripts was the Modelsim [10] from Mentor Graphics.

11.3.1 Fault Model

The used fault model is based on SEU occurrence in sequential logic blocks. In each
simulation, a single fault is injected to cause a bit flip inside the chosen sequential
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block. Other effects could be Multiple Bit Upset (MBUs), Multi Cell Upsets Single
Event Latchups, but they are out of the scope of this study.

11.3.2 Simulation Procedure

The first step of the procedure, a golden simulation, with no injected fault , is per-
formed to obtain the reference data to be used for the detection of mismatches caused
by fault injections. The Riscy core fault injection is performed for all sequential sub-
systems. For each sequential subsystem, 1000 simulations are performed, 1 fault
injected per simulation run. The following steps [11] summarize the tasks executed
for each simulation:

(1) Selection of a flip-flop, in a certain sequential subsystem, where the fault will
be injected. This is done selecting, in a random way, from a list that contains all
signals, in the VHDL code, which implement registers. Each signal corresponds
to each bit of the register.

(2) Selection of a random instant when the fault will be injected. In order to avoid a
fault during the logging process, the fault is injected before the reporting process.

(3) Simulation runs until the chosen injection instant.

(4) Injection of the fault by forcing a bit flip in the target sequential element.

(5) Simulation runs until the end of the algorithmic benchmark.

(6) Making a copy of the register file content.

(7) Storing the print out of the program results.

If exceptions are generated during the execution, they are stored in a file and whether
the core doesn’t respond after a threshold time a relative log is generated.

11.3.3 Fault Effects Classification

Data obtained during the simulation campaign are used to classify fault effects that
can be summarized in five categories [11] that are listed below:

e No Effect—The simulation finishes obtaining the correct result from the program
and the content of the register file is equal to the reference one.

e Latent—The simulation finishes obtaining the right result, but the content of the
register file is not equal to the reference.

e Wrong result—The system has a failure and the simulation finishes obtaining the
wrong program result.

e Timed out—The simulation takes an abnormal amount of time to finish the program
execution compared to the reference.

e Exceptions—The core generates exceptions during the simulation.
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Latent errors potentially can propagate and lead to a system failure in the future, but
these errors may also be masked by the normal core functioning.

11.4 Chosen Benchmarks

Benchmarks usually are used to evaluate performances of microcontrollers, micro-
processors and computing systems in general. In this characterization campaign,
they are used because they offer a generic workload that can cover almost all op-
erations that a core can execute. Benchmarks perform a large number of different
operations such as logic, numeric and string operations. The chosen benchmarks, for
this campaign, are Dhrystone and CoreMark, described below.

e Dhrystone benchmark provides a measure of integer performance and no floating
point instructions. Here, it has been used the 2.1 C version that avoids over opti-
mization problems [12] encountered with the first version. Dhrystone benchmark
workload [13] can be categorized in: ALU operations for 42% of the instructions;
20% load instructions; 15% store instructions; 21% branch instructions; 2% shift-
ing instructions.

e CoreMark benchmark from EEMBC [14] (Embedded Microprocessor Benchmark
Consortium) is specifically designed for embedded systems and it can be used
to measure microcontrollers and microprocessors performances. It is considered
the next version of Dhrystone [14]. It implements numbers of algorithms like
find, sort, matrix manipulation, state machine and crc. The crc is used both to
provide a typical workload for an embedded application and to check the results
of the operations. This benchmark is designed to be independent of the compiler
optimization options and this is one of the improvements respect to Dhrystone
[14].

11.5 Simulation Results

This section presents and discusses the results of the fault injection campaign and
the measure of the utilization of sequential modules. These simulations are useful
for vulnerability estimation.

11.5.1 Resources Utilization Using Dhrystone and Coremark

The resources utilization has been measured using a Modelsim simulation running a
TCL script. Coremark is configured to perform 1 cycle while Dhrystone 1000 cycles.
In this study, the focus is over the sequential parts inside modules that are the target
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Riscy resources utilization using Dhrystone and CoreMark
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Fig. 11.3 RISC-V Riscy sequential resources utilization

of the characterization through fault injection. A simulation both for Dhrystone and
CoreMark is performed obtaining the resources utilization for the entire simulation
time. In this simulation, the measure of the resource utilization is performed counting
how many times the value, stored in a given register, changes from the beginning to
the end of the simulation. This was made using a TCL script that runs in Modelsim.

The workload is similar for both simulations, as shown in Fig. 11.3, for Dhry-
stone and CoreMark. The most used modules are the prefetch unit, the instruction
fetch-instruction decode pipeline register and the instruction decode-execute pipeline
register. There are modules that are never used during the benchmark execution like
the hardware loop for Dhrystone and the multiplier registers and the interrupt con-
troller for both benchmarks (in the run simulations).

11.5.2 Characterization Through Fault Injection Using
Dhrystone Benchmark as Workload

In Fig. 11.4 are shown the results of the simulation campaign. As mentioned above,
for each microcontroller block, 1000 simulations were performed, with a fault has
been injected for each run.

This procedure is repeated for each block, obtaining the results showed in the
plot.

The graph shows that the most critical sequential modules are the controller and
the register file, with injected faults that cause a large number of latent errors and
wrong results. Despite the fact that the controller is used with a lower frequency
than the register file, it causes a large number of failures when it undergoes to fault
injection.

Exceptions are generated from modules inside the instruction fetch stage, in the
instruction decoder stage and in the execution-write back pipeline register. In this
core, exceptions are used to report a wrong instruction operation code.

The hardware loop module, the interrupt controller and the control-state registers
don’t cause any failure when faults are injected.
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Riscy fault injection campaign results using Dhrystone Benchmark
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Fig. 11.4 Fault injection campaign results using Dhrystone Benchmark

A particular behavior to be noticed is about the multiplier module. It is never used
during the program execution but it causes failures when faults are injected, because
due to its implementation, faults can propagate in other modules.

11.5.3 Characterization Through Fault Injection Using
CoreMark Benchmark as Workload

Figure 11.5 shows the results of the simulation campaign with the same procedure
used above.

Like in the analysis concerning the other benchmark, it can be noticed that the
most critical modules are the controller and the register file, which present a large
number of latent errors and wrong results. The controller is again accessed with lower
frequency w.r.t. the register file, but it displays high vulnerability.

Riscy fault injection campaign results using CoreMark Benchmark
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Fig. 11.5 Fault injection campaign results using CoreMark Benchmark
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Exceptions are generated from modules inside the instruction fetch stage, in the
instruction decoder stage and in the execution-write back pipeline register. In this
core, exceptions are used to report a wrong operation code of the instruction.

The interrupt controller and the control-state registers don’t cause any failure
when faults are injected. In this case, CoreMark stimulates the usage of the hardware
loop module and we noticed system failures caused by faults injected inside this
module.

In this case, the multiplier module shows less latent errors respect the Dhrystone
workload.

11.6 Vulnerability Estimation

Results obtained from the fault injection campaigns present similar trends for the
two workloads. In this section, we try to calculate the vulnerability of each block of
the RISC-V Riscy core, by introducing the following equation:

ixc, ifu>0

v= ¥ ) (11.1)
0, otherwise

v resource vulnerability.

f failure rate. It is equal to the number of wrong results normalized to the number
of simulations;

u resource utilization. For each module, it is equal to the number of clock cycles
of activity over the total number of clock cycles.

¢ normalization constant equal to 100.

This approach allows to extrapolate a general evaluation of the block vulnera-
bility that is independent of the used benchmark algorithm. Since it is based on the
correlation between the amount of detected failures and the actual use of the blocks
of the microcontroller. Figure 11.6 shows the results of the vulnerability associated
with each block.

The plot uses a logarithmic axis to easily visualize the results.

It can be noticed that there is a correlation between the vulnerability calculated
from both campaigns. The subsystems that show a high vulnerability are the instruc-
tion fetch registers, the controller and the register file.

Lower but significant vulnerability magnitude is showed for the prefetch unit, in-
struction fetch-instruction decode pipeline register, the instruction decode-execution
pipeline register, ex-wb pipeline register and the load store unit.

Vulnerability is normalized to the resource utilization for the chosen benchmark.
There is information about the vulnerability for the hardware loop only from the
campaign using CoreMark. For Dhrystone this module wasn’t used and it didn’t
generate system failures.
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Fig. 11.6 RISC-V Riscy sequential resources vulnerability

The limitation of the adopted vulnerability model is due to the occurrence of
system failures that are observed also in blocks that are not supposed to be used
by the algorithm. This is the case for the multiplier registers that generate system
failures during the campaign, whether this block is supposed to be never used. For
this reason, the multiplier module vulnerability is not shown in Fig.11.6. These
occurrences, which are treated as exceptions, are caused by the propagation of a
fault injected in other blocks. These events depend on how the module is designed
and can be avoided with modifications in the system design.

11.7 Conclusion

This paper introduces a detailed analysis of the SEU effects in the RISC-V Riscy
core. The results are based on data obtained from the fault injection campaigns based
on simulation-based injection technique. The workload is similar both for Dhrystone
and Coremark benchmarks as representative of generic applications.

From simulation results, showed in Fig.11.4 for Dhrystone workload and in
Fig. 11.5 for CoreMark workload, the most critical sequential modules are the con-
troller and the register file. Despite the fact that the controller is used with lower
frequency than the register file, it causes a large number of failures when it under-
goes to fault injection. Exceptions are caused by faults injected in modules inside the
instruction fetch stage, in the instruction decoder stage and in the execution-write
back pipeline register. CoreMark stimulates the usage of the hardware loop module
and we noticed a relevant system failures caused by faults injected inside this module.

The interrupt controller and the control-state registers don’t cause any failure
when faults are injected.

The most used resources are the prefetch unit, the instruction fetch-instruction
decode pipeline register and the instruction decode-execute pipeline register. There
are modules that are never used during the benchmark execution like the hardware
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loop for Dhrystone and the multiplier registers and the interrupt controller for both
benchmarks (in the run simulations).

From the study of vulnerability, showed in Fig. 11.6, the most critical module
result to be the controller module.

The Vulnerability can be used to estimate, for each module, the system failure
rate when executing other software. This can be done simply making the product
between the tabled vulnerability values and the utilization value measured for the
given application. These represents an important information for the design of fault-
tolerant Risc-V core, since it can be used to evaluate the best redundancy techniques
in terms of time usage and hardening impact for each composing block, on the base
of its vulnerability.
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