
Vulnerability Analysis of Smart Meters

Henrique Dantas

Te
ch

nis
ch

e
Un

ive
rsi

te
it

De
lft

VULNERABILITY ANALYSIS OF SMART
METERS

by

Henrique Nuno de Matos Pais Neves Dantas

in partial fulfillment of the requirements for the degree of

Master of Science

in Computer Engineering

at the Delft University of Technology,

to be defended publicly on Thursday August 21, 2014 at 10:00 AM.

Supervisors: Z. Erkin

C. Doerr

Thesis committee: J. C. A. van der Lubbe, TU Delft

I. Buhan, Riscure BV

An electronic version of this thesis is available at http://repository.tudelft.nl/.

http://repository.tudelft.nl/

The online truly secure system is one that is powered off, cast in a block of

concrete and sealed in a lead-lined room with armed guards.

Gene Spafford

ACKNOWLEDGMENTS

I am grateful for the continuous guidance and invaluable advice provided by Zeki Erkin and

Christian Doerr, without whom this thesis would not have occurred.

I would also like to express my sincere gratitude to Riscure, in particular to Gerrit van

der Bij and Ileana Buhan, for providing me with the opportunity, knowledge and resources to

work on this research study.

My gratefulness is further extended to ENCS, specially to Raymond Hallie and Benessa

Defend, who promptly made available all the facilities and assistance I required for this study.

Many thanks to all the friends I have made in Delft, who have filled my years in this small

Dutch town with memories I will forever cherish.

My last, and most heartfelt words are to my parents and family, for their incommensu-

rable support, and for providing me the means to follow my dreams.

Henrique Nuno de Matos Pais Neves Dantas

Delft, August 2014

v

CONTENTS

List of Figures xi

List of Tables xiii

1 Introduction 1

1.1 Goals and Contributions. 3

1.2 Thesis Overview . 5

2 Literature Review 7

2.1 Smart Grid . 7

2.1.1 Motivation for Smart Grids. 10

2.1.2 Major Challenges . 12

2.2 Communication Protocol . 19

2.2.1 Introduction to the Protocol . 19

2.2.2 Comparison with Competing Alternatives 20

2.3 Fuzzing . 23

2.3.1 Discovering Software Vulnerabilities . 23

2.3.2 Introduction to Fuzzing . 24

2.3.3 Fuzzing Frameworks . 25

2.3.4 Automatic Protocol Inference . 29

2.3.5 White-Box Fuzzing . 32

2.3.6 Identifying Exploitable Vulnerabilities . 33

3 Background 35

3.1 Communication Protocol . 35

3.1.1 COSEM . 36

3.1.2 COSEM application layer . 41

3.1.3 The DLMS/COSEM communications framework 42

3.1.4 Communication Profiles . 43

vii

viii CONTENTS

3.1.5 Data Link Layer . 47

3.1.6 Complete flow . 51

3.2 Fuzzing . 52

3.2.1 Basic Concepts . 53

3.2.2 Fuzzing methods . 55

3.2.3 Fuzzer types. 57

3.2.4 Data Representation . 58

3.3 Peach . 60

3.3.1 Peach Pits . 60

3.3.2 Data Model . 61

3.3.3 State Model . 63

3.3.4 Agent . 63

3.3.5 Test . 63

3.3.6 Run . 64

4 eFuzz 65

4.1 Fuzzing requirements . 66

4.2 Components . 67

4.2.1 Transformers . 67

4.2.2 Fixups . 72

4.2.3 Publishers . 73

4.2.4 Pit . 75

4.2.5 State Machine. 76

4.2.6 Tests and Runs . 78

4.3 Post processing . 78

5 Results & Analysis 81

5.1 Detection Performance of eFuzz . 82

5.1.1 Results . 84

5.2 Discussion . 85

6 Conclusions 89

6.1 Summary . 89

6.2 Contributions. 91

6.3 Future Work. 92

CONTENTS ix

A Paper submitted to SEGS 2014 95

Bibliography 105

LIST OF FIGURES

2.1 Communication Topology diagram, adapted from [1]. 22

2.2 High-level Architecture of SNOOZE. Adapted from [2]. 27

2.3 Detailed diagram of SNOOZE, illustrating its main components. Adapted from

[2]. 28

3.1 Example of an interface class with two instances. 38

3.2 Example of an encrypted and authenticated APDU. 40

3.3 Encryption and authentication of xDLMS Application Layer Protocol Data Units

(APDUs). 40

3.4 Client/server relationship and protocols with various communication profiles. 43

3.5 DLMS/COSEM communication profiles . 45

3.6 Entering protocol mode E (HDLC) . 46

3.7 LLC format as used in DLMS/COSEM. 47

3.8 MAC sub layer frame format. 47

3.9 DLMS/COSEM packet for direct connections. 48

3.10 A complete DLMS/COSEM flow including establishing a connection, making a

request, reading the response and closing the connection. This example is for

the physical interface. 51

4.1 Different components used in eFuzz/Peach and their relationship. 68

4.2 The authenticated decryption operation. This Figure depicts a simple case with

only a single block of additional authenticated data (labeled Auth Data 1) and

two blocks of plain text. EK denotes the AES encryption using the key K , multH

stands for the multiplication in GF (2128) by the hash key H , and incr designates

the counter increment function. This Figure is originally from [3]. 70

4.3 The authenticated decryption operation, considering the same case as in Fig-

ure 4.2. This Figure is originally from [3]. 71

4.4 Entering protocol mode E (HDLC) . 74

xi

xii LIST OF FIGURES

4.5 State machines describing the two approaches used to fuzz the target device.

On these diagrams i indicates the current fuzzing iteration while N is the total

number of tests available. In both situations the first iteration uses a reference

request to ensure the target is in a known state. 77

5.1 State machines describing the two approaches used to fuzz the target device.

On these diagrams i indicates the current fuzzing iteration while N is the total

number of tests available. In both situations the first iteration uses a reference

request to ensure the target is in a known state. 83

LIST OF TABLES

2.1 Main advantages of AMI to the involved stakeholders. Adapted from [4]. 9

3.1 Control field bit assignments of command and response frames 49

3.2 Advantages and disadvantages of the different fuzzing approaches. Adapted

from [5]. 54

5.1 Overview of the number of unexpected responses caused by eFuzz discrimi-

nated by strategy. Variable n indicates the maximum number of fields that are

mutated in each iteration. In the sequential strategy this value is by definition

one. 84

5.2 Distribution of the unexpected meter responses by cause. 85

5.3 Comparison of automated and non-automated approaches to detecting smart

meter vulnerabilities. 87

xiii

1
INTRODUCTION

Critical infrastructures are, by definition, essential assets to the correct functioning of the

economy and society. One of these infrastructures is the energy grid. Electricity is one of

the most fundamental and visible commodities as any disruption in its supply can have pro-

found effects on virtually everything else. Currently, the energy grid is undergoing significant

transformation in the direction of smart grids that will enable a new range of applications, in-

cluding but not limited to fine grained tariffs to decrease consumption fluxes, remote access

to metering data and better management of micro-generation.

The smart grid effort has been jump-started by legislation, mainly in Europe and the

United States, that aims to significantly transform the energy generation and distribution

infrastructures. [6] estimates the current investment on the smart grid, also known as Ad-

vanced Metering Infrastructure (AMI), to approach $100 B, which has been accompanied by

aggressive roll outs. An illustrative example is that of the European Parliament, which has

mandated that by 2020, 80% of the households be equipped with next generation meters [7].

One of the marquee features of AMI is the ability to remotely monitor and control all grid

activities. Smart meters are one of the major parts that make such capabilities possible. In

addition, smart meters must allow the final customers to track, and hopefully reduce, their

energy usage. [8] summarizes the major benefits of such devices in five points: (i) connec-

tivity, (ii) continuous measurements, (iii) sufficient computationally capability, (iv) gateway

functionality and (v) remote actuation.

1

2 1. INTRODUCTION

The evolution in the energy sector has undoubtedly potential to improve the way society

makes use of electricity however, it also opens the door to a new class of threats. As the cur-

rent devices gain networking capabilities and the ability to execute remote commands they

also become more exposed and more attractive to adversaries. Therefore, it is important to

perform security audits of the different grid components.

Particularly, the networked controllable electricity meters, play an important role in as-

suring the security of the smart grid. Smart meters are situated in each household, hence are

broadly available and can be easily probed by many people. As the physical protection is lim-

ited, it is safe to assume that curious customers will inspect the devices to try and understand

how they work.

Furthermore, its communication capabilities would also enable an adversary of gaining

control remotely. If a vulnerability is found that, for example, allows tampering with the re-

ported usage, it can have important repercussions. The impact will be significant if the vul-

nerabilities are published online, thus endangering a large installation base of meters to be

exploited. Since the smart meters are relatively new and there is little standardization with re-

spect to security, many different vendors develop their own software, we envision that smart

meter software is vulnerable to attacks.

Some of the plausible attack scenarios are as follows.

• Disclosure of sensitive data - Vulnerabilities in the smart meters that result in the leak-

age of consumption information can be used to ascertain if the home or shop owners

are away.

• Meter tampering - Attackers may find desirable to inflate the utility bill of victims or

unlawfully reduce their own.

• Pivoting - Penetration of meter defenses can be used for reconnaissance purposes or

exploitation of other parts of the system. If the meter is connected to a domestic net-

work, the opponent could use the meter to penetrate other devices in the house. Or,

more creatively, be used to make free calls or grant Internet connectivity via the GSM

connection that is common in smart meters. Alternatively it can reveal valuable infor-

mation about sensitive parts of the smart grid network.

• Remote command execution - If an adversary gains complete access to a meter, it may

be use it to extort individual victims, similarly to ramsonware. Meters could be switched

1.1. GOALS AND CONTRIBUTIONS 3

off, or internal security mechanisms be silently disabled so the electric installation or

the meter itself would be damaged.

• Grid destabilization - Given the remote accessibility of smart meters, an attacker could

gain controller of hundreds or thousands of identical metering devices and exploit vul-

nerabilities to simultaneously switch heavy loads such as electric cars on and off, with

the intent to destabilize and bring down the power grid.

One technique that is widely used to find vulnerabilities in proprietary software is fuzzing.

Very succinctly, it consists of trying numerous combinations of inputs, violating protocol or

file format rules, to see how the target responds to unexpected requests. The simplest way to

perform a fuzzing attack is manually. First one develops a crude version of a protocol client

and then chooses a set of values the tester believes may cause software faults in the target

system. However, this approach has various limitations: it is hard to fuzz complex protocols,

reuse of code is not always possible, and the developers have to focus on more than the target

protocol. To cope with such limitations, fuzzing frameworks have been developed, such as

SPIKE [9], SNOOZE [2] and Peach [10].

These fuzzing frameworks typically target software applications running on traditional

computing platforms, such as desktops. To monitor the working state of the targeted soft-

ware, they might for example attach debuggers to the process or inspect memory consump-

tion. Unfortunately, in embedded systems like smart meters, these capabilities are not al-

ways available and the fuzzing framework is usually physically separated from the investi-

gated target. Therefore, to fuzz an embedded system like a smart meter, it is necessary to

use a framework that supports the communication protocols available in the target and that

allows specific types of monitoring developed for these equipments.

1.1. GOALS AND CONTRIBUTIONS

Currently, most of the literature [11–16] on smart grid security is primarily focused on ar-

chitectural designs among other high-level approaches to improve the security of the AMI.

In addition, various researchers and industry experts [17], have advocated guidelines and

good practices that aim to raise awareness and assist smart grid stakeholders implementing

this complex network in a relatively secure manner as this is a nascent field. In compari-

son, fewer tools to evaluate the security afforded by devices already in the market have been

published. To address this void, this thesis presents a new fuzzer developed particularly for

4 1. INTRODUCTION

DLMS/COSEM smart meters, called eFuzz.

It is important to note the focus of eFuzz is not to discover implementation bugs with

security implications in a specific smart meter. Instead, eFuzz should provide a versatile and

easily expandable tool to fuzz DLMS/COSEM smart meters, in order to complement human

efforts. There are various contexts where eFuzz can be applied:

• A company hired to assess the security of a device would use eFuzz in an initial ap-

proach to autonomously detect possible points for further investigation. The respec-

tive report would serve as a guide to security experts and complement a full featured

source code review.

• Original equipment manufacturer (OEM) can integrate eFuzz in their quality assurance

efforts. Flaws detected at such an early stage are less costly to correct, and do not end

up in production products where they may pose as a latent vulnerability.

For development purposes as well as to evaluate the functionality and effectiveness of

eFuzz, a meter currently deployed in the Dutch market was used. In Chapter 5 the results of

a vulnerability test, performed across various configurations, will be shown. The tests con-

ducted on this specific smart meter are also compared with the traditional approach: an anal-

ysis made by a team of human experts.

The goals of this thesis are crystallized in three questions that served as guiding principles

during the research efforts presented in the current document, which culminated in eFuzz.

Research Question 1. Is it feasible to develop an automated tool with the goal of aiding se-

curity assessments of DLMS/COSEM meters, with sufficient flexibility to be easily adapted and

expanded to different devices?

Research Question 2. Can such a tool be capable of uncovering vulnerabilities in said devices,

within a time frame that is competitive with the conventional approach?

Research Question 3. In comparison with manual approaches, are the sets of vulnerabilities

uncovered be each, largely overlapping or largely disjoint?

These three are only a subset of possible questions that can arise during such a study.

Regardless, they constitute the fundamental hypotheses addressed in the remaining chapters

of this document.

1.2. THESIS OVERVIEW 5

1.2. THESIS OVERVIEW

This thesis is partitioned in six chapters, including the introductory.

Chapter 2 thoroughly presents the relevant related work. In addition to summarizing the

state of the art in the three most relevant topics, namely smart grids, DLMS/COSEM and

fuzzing, it introduces the reader to the same concepts.

Background knowledge is enclosed in Chapter 3. The contents of this Chapter, present

in detail the DLMS/COSEM protocol, the various nuances of fuzzing and Peach. The reason-

ing for writing a complete Section on Peach is due to the fact that this framework forms the

foundation of eFuzz. Therefore, having a thorough comprehension of its characteristics will

immensely facilitate the understanding of the following chapter.

Chapter 4 is solely dedicated to eFuzz. It details how the Peach syntax is used to model

the DLMS/COSEM protocol, as well as what modules were develop to compensate for the

deficits of the framework.

Results and analysis are described in Chapter 5. In addition to the results obtained with a

fuzzer, a quantitative and qualitative comparison with a manual security evaluation is shown.

Finally, concluding remarks, and potential avenues for future work are presented in Chap-

ter 6.

2
LITERATURE REVIEW

2.1. SMART GRID

In Europe and the United States a significant engineering effort is taking place that will sig-

nificantly transform the energy generation and distribution infrastructures. This investment,

which according to [6] is estimated to cost around $100 B, has been spurred by laws that lay-

out aggressive roll outs. For example, the European Parliament mandated that by 2020 80%

of the households should be equipped with next generation meters [7].

The upgraded grid is designated as the Advanced Metering Infrastructure (AMI)1. The AMI

should allow for monitoring and control of all grid activities, while ensuring the efficient bidi-

rectional flow of energy and data connecting utilities and consumers, including all nodes in

between. In addition, the Smart Meters must allow the final customers to track their energy

usage, typically on the Internet or on a meter-hosted local server. The AMI infrastructure ex-

pands the capabilities of the simpler (and older) system, dubbed Automated Meter Reading

(AMR), which simply collected meter readings and matched them with user accounts.

[8] summarizes the major benefits of Smart Meters over traditional metering equipments:

• Connectivity - smart meters can be remotely read, which implies they must be con-

nected to a network for communication of data.

1On this document the terms Smart Grid and Advanced Metering Infrastructure will be used interchangeably.

7

8 2. LITERATURE REVIEW

• Continuous Measurements - enables the creation of high resolution energy consump-

tion profiles.

• Complexity - devices must be capable to do verification of cryptographic signatures

and encrypt their readings. Moreover the meters must have enough resources to ac-

commodate communication modules that allow it to “speak” with other devices.

• Gateway functionality - should be able to deliver information to intelligent appliances

or directly control them, according to the preferences of the users.

• Remote actuation - the control of the household appliances may be forwarded to au-

thorized external entities.

Due to the described organization it is possible to operate the grid infrastructure remotely

by sending commands to the appropriate network nodes, this is known as Distribution Au-

tomation (DA).

Although the particular technologies employed are meter-specific there are several com-

mon features that span all vendors. The data is collected locally and transmitted via LAN

(Local Area Network) to a data concentrator. In turn, this equipment sends the information,

processed or not, to the utility via a WAN (Wide Area Network) where it can be used for billing

and other purposes. As previously mentioned, the opposite path is also possible and shall be

used to remotely control various devices in the network.

There are two main methods to transmit data: Radio Frequency (RF) or Power Line carrier

(PLC). The selection of the best option is necessarily tied to each scenario and should be

determined by the utility, after careful study. Each has its pros and cons although analyzing

these lays outside the scope of this document.

The authors of [18] claim that there is no single widely-accepted definition of Smart Grid

and that reaching an agreement is a work in progress. However, they highlight three main

Smart Grid goals that are consensual:

• Increased stability of the distribution network - aided by the ability of the grid operators

to receive high quality measurements in real-time.

• Green operation - allows variables tariffs in accordance to time of day in order to miti-

gate demand fluctuations.

• Efficiency - remote maintenance and operation of grid endpoints allows faster responses

with fewer personnel.

2.1. SMART GRID 9

Although the Smart Grid concept is typically associated with electricity metering, it is also

applicable to gas and water metering, apart from the ability to sell the commodity back to the

infrastructure operator.

The Smart Grid is widely regarded as a welcomed (and necessary) upgrade that is advan-

tageous to all parties involved. [4] does a good job of discriminating the main benefits for

each stakeholder. Table 2.1 summarizes the results.

Stakeholder Benefits

Utility Customers

Access to energy usage data

More accurate billing

Increased tariff options

Customer Service &

Field Operations

Reduced cost of Meter readings

Less need for hand-held reading equipments

Decreased manual connections/disconnections

Revenue Services
Early detection of meter tempering and fraud

Better billing estimates

Transmission and

Distribution

Improved load management

Better efficiency and reliability

Facilitated medium and long term grid planning/design

Marketing & Load

Forecasting

Detailed data on consumption usage & patterns

External stakeholders

General

Diminished environmental impact

Opens the door to value-added services on top of the

Smart Grid infrastructure

Table 2.1: Main advantages of AMI to the involved stakeholders. Adapted from [4].

As previously mentioned, the AMI aggregates several components that need to work to-

10 2. LITERATURE REVIEW

gether in order to fulfill the Smart Grid vision and deliver the advantages outlined in table 2.1.

One of these pieces can be the “Smart Meter gateway”. [19] investigates the deployment of

Smart Meters in Germany, where this component is required by law.

The main purpose of the gateway is to bridge the gap between the distribution and con-

sumption devices. In other words, interface between the smart meter systems and the con-

trollable household appliances, as well as the Internet connected remote systems (e.g. con-

sumption display devices).

On the bright side, gateways can enable greatly improved consumer experiences, and

consequently provide the utilities with new business cases. This is particularly important as it

allows companies that are trading a commodity to offer unique, distinguishable services. On

the negative side, they become responsible for vast amounts of sensitive information which

may make consumers reluctant, at least in an initial phase. Furthermore, they constitute a

desirable target for malicious attackers and therefore need to be resilient against a compre-

hensive class of attacks. To address these issues, the German Federal Office for Information

Security has introduced a Common Criteria profile for the gateways with stringent security

requirements.

The new functionalities enabled by the move to the Smart Grid help monitor, control, pre-

dict and plan energy usage and production. This is particularly important as various energy

producers are added to the grid, notably with the integration of renewable energy sources

whose production is dependent on weather conditions. Therefore, the amount of energy

generated by traditional plants must be adapted with respect to aforementioned weather

conditions and consumers’ usage in a cost efficient manner. The increase in precision made

possible by smart meters improves the quality of consumption predictions, and that helps

drive the efficiency of the network upward.

The consumers also stand to gain from this transformation. According to [20] it is es-

timated that average consumption will drop by up to 15% when clients are given access to

detailed monitoring. These savings will allow consumers to save money but also help com-

bat global warming as the emissions produced by power plants diminish.

2.1.1. MOTIVATION FOR SMART GRIDS

Traditional electricity meters use dual tariffs (i.e. day and night) for billing purposes. The

introduction of smart meters allows for much more refined tariffs, from 30 minute granularity

up to real-time (in the range of few minutes) in the not so distant future. The improvements

2.1. SMART GRID 11

in the resolution of measurements constitutes one of the cornerstone arguments for smart

meters proponents.

From the point of view of the producer it leads to increased efficiency as there is close to

real-time knowledge of the electricity consumption. In turn the customer can reduce costs,

for example by instructing heavy load appliances to run when the electricity is cheaper2. This

load-shifting capability significantly helps utilities as the peaks and valleys of the demand

curves become less prominent.

In addition, by having access to more information the generation efficiency could be

greatly improved as to better accommodate the actual (instead of the predicted) energy de-

mands. Currently, consumption predictions are used to help plan medium and long term

investments in the generation capacity. The short term variations are handled with the use

of generators that are less efficient but more flexible. Therefore, it is easy to understand that

the better the predictions, the more efficient the system. Smart meters have the potential to

improve the quality of those predictions, even more since they can act as both sensors and

actuators.

Notwithstanding the introduction of fine-grained tariffs, it is not realistic to assume that

customers will be constantly looking at their meter to determine the best time to use their

appliances. Thus, the process needs to be automated. In order to make this possible the

meters must be equipped with data communication modules to orchestrate the different ap-

pliances, as to obtain the beste/kWh ratio without neglecting the time sensitiveness of each

task. Obviously, the meter must also be able to query the utility for the present and future

tariffs. Finally, the customer should also have access to a control panel to, at least, monitor

electricity usage and set the preferred energy policies.

Smart grids shall allow for a better match between supply and demand. Being able to

control demand to some extent, is also likely to improve the stability and thus the availability

of the grid. Absorbing the large number of electric cars that are expected to enter the market,

and are likely to be plugged in at night is also facilitated by this change. A more subtle effect

is enabling better protection against cyber or offline attacks on the energy grid, as the new

found flexibility can help prevent cascading failures and prevent ripple effects. In addition,

this system will allow the infrastructure to better cope with micro-generation from alterna-

2Currently it is usual to find day and night tariffs in most countries. Therefore consumers can run some appli-

ances, e.g. washing machine, at night. However by having more price points, time-sensitive appliances can

also take advantage of the cost fluctuation. As an example, an air conditioning system may run in power-saving

mode for 30 minutes and then return to normal after that period has passed, and the cost has gone down.

12 2. LITERATURE REVIEW

tive (fluctuating) sources. For example, if there is a sudden increase of solar power injected

in the grid, the utility may decide to lower the sell rate thus enabling consumers to antedate

the use of certain devices that would otherwise run at a later time. Ideally, it would be indis-

tinguishable if the renewable power originates from the major utility-controlled photovoltaic

panels or from individual micro-producers.

2.1.2. MAJOR CHALLENGES

The most pressing question regarding the AMI model described in the previous sections re-

lates to privacy. One of the relevant questions is, should all measurements be sent to the

utility or should it only have access to sampled or aggregated data? In the former case, it

maybe possible to infer the user’s lifestyle and routine from the data, information with a high

value of monetization. Although these arguments are fascinating topics for discussion and

require the scrutiny of public debate before the Smart Grid vision becomes a reality, they do

not necessarily pose technical challenges, and are thus outside the scope of this thesis.

Other than the security issues already mentioned the heterogeneity of the smart meter

environment is bound to raise many complications, at least initially. There are several com-

peting standards aimed at this market with numerous implementations available. This un-

certainty in combination with the vast number of smart meter vendors results in a complex

infrastructure that needs to function correctly while still being secure.

In order to protect meters from potential attacks is important to understand which attack

vectors these systems are exposed to and categorize the type of entities that may try to exploit

them.

[20] outlines several attacks that smart metering systems can be subject to.

1. Attacks on communication module - the first option is to tackle the communication

module of the smart meter. It can be accomplished through physical access (typically

it is only protected by a seal) or through the communication network.

2. Attacks on utility server - the server must be available from any point in the network

and is thus exposed to attacks.

3. Attacks on service provider - instead of targeting the server directly the attacker may

try to infiltrate the utility network. This can be accomplished via a malicious email

attachment, infected USB drive, etc. This type of attack is similar to the one used by the

infamous Stuxnet malware that was able to penetrate the air gapped network of Iranian

2.1. SMART GRID 13

nuclear facilities.

4. Attacks on the communication network - another possibility is to infiltrate one of the

communication networks between the meters and the utility servers. Moreover a man-

in-the-middle type of attack is also possible in this scenario.

Moreover, the paper identifies three categories of attackers:

1. Outsiders - includes criminals, activist, terrorists or foreign states. These can be pow-

erful and resourceful adversaries that will likely go to great lengths to accomplish their

objectives, which can vary from provoking chaos to covert reconnaissance.

2. Homeowners - expected to be the origin of most attacks, similar to what happened

in the pay TV industry. Typical attacks aim to reduce the monthly bill and are often

performed by people with limited knowledge. However, if an exploit is made public

(e.g. through the Internet) these attacks can have a significant impact in the utility’s

ability to collect the correct fares.

3. Energy provider employees - disgruntled or former employees constitute one of the

more serious threats, as they have intimate knowledge of the infrastructure and may

even possess access permissions that can be leveraged to create significant harm. Their

motives can be born out of frustration with their employer or financial interests.

Some of the greatest risks to the successful implementation of the Smart Grid are related

to the vast amounts of private data that must be transmitted and the potential for meter tam-

pering and fraud. In particular, if a security vulnerability is found on a class of meters that

leads to widespread fraud (i.e. artificially lowering the usage or not reporting measurements)

it can have devastating consequences for the utilities.

Privacy concerns abound, nonetheless they and must be handled properly as the amount

of sensitive personal information that can potentially be disclosed is significant. According

to [6], equipment vendors claim that the move towards smart grids has provoked excessive

regulation that has increased the costs for little benefit. Additionally, the existence of a re-

mote off switch in all electricity meters makes them a desirable target for attackers, since a

successful denial-of-service attack could cause great disruption. Perhaps more importantly

it might create several issues which utilities have no experience addressing. The complexity

of the protocols involved and the new instructions, APIs, applets, etc. supported by the me-

14 2. LITERATURE REVIEW

ters make it likely that possible exploitable bugs arise which require speedy deployment of

firmware updates.

In order to mitigate some of those risks [8] recommends some measures. First, aggre-

gation of data according to its purpose (e.g. billing) or anonymization techniques. Second,

deployment of homomorphic encryption (i.e. performing calculations on encrypted data) to

prevent the need to decrypt or transmit plain-text information. Third, updated legislation.

Although the previous approaches are of technological nature, regulatory approaches, such

as financial penalties, are also worth investigating. The downside of the latter is that it can

only be applied retrospectively, while the previous can prevent the incidents from occurring

in the first place.

Moreover, there are severe conflicts of interest between the various Smart Grid stakehold-

ers. While in one hand the governments want to reduce energy usage, the utilities often rely

on confusion pricing to maximize sales and profits. Also the availability of vast hordes of

consumer data to utilities can adversely affect competition via increased lock-in.

Due to the sensitivity and potential monetization of consumer data it is crucial to enforce

access control rules. However it is first necessary to determine who owns the data: the util-

ity since they own the meters or the customer. [6] claims that due to pressure from privacy

groups some EU countries are giving ownership of the data to the customers and prohibiting

the utility from sharing any data without consent.

In [18] researchers from C4Security take a practical approach and attempt to demonstrate

the need to secure the smart grid by exposing nine critical attack vectors and vulnerabilities.

Their main goals are to raise awareness for these topics and instigate a discussion about po-

tential remedies.

In a Smart grid the distribution level can remotely read data from the meters and send

connect and disconnect commands that affect the supply of customers. Therefore it can be

viewed as a micro-SCADA command and control system. One of the biggest security chal-

lenges with the Smart Grid data network is the fact that the various nodes are not physically

protected. They are located at homes and businesses where there is no possibility to restrict

access or quickly detect tampering. Thus it is reasonable to assume they will be inspected

and tampered with by interested and curious customers.

Since each meter is a node in the Smart Grid network the management applications and

services are exposed and available for all nodes. Therefore an attacker can cause network-

wide changes if no explicit constraints are in place.

2.1. SMART GRID 15

The authors were able to encounter several meters that did not possess any authentica-

tion or encryption support which makes them vulnerable to an attacker impersonating the

control center and sending unauthorized commands to other meters. Moreover although

some of the protocols support encryption these features were routinely found to be disabled,

as they also support no authentication or no encryption modes.

Another issue identified by C4 was the potential for a man-in-the-middle attack that

could lead to artificially lowering the reported usage. The protocol between the master meter

and the slave is considered to be less important as its impact is restricted to one household.

The protocol implementations were found to be vulnerable to Buffer Overrun/Overflow

attacks through malformed requests as they made certain assumptions about the received

data that may be exploited. These vulnerabilities can be used to interfere with system stabil-

ity, change set parameters or even execute arbitrary code.

A final attack vector highlighted in the paper is firmware upgrades. Their existence is

important to fix vulnerabilities however if not properly secure can be abused by attackers to

deploy malicious versions. Thereafter the meter would be at the will of the attacker and most

likely could only be restored to the original state after being shipped back to the manufac-

turer.

[21] also investigates the security of Smart Metering, albeit focused on the Software De-

velopment Life-cycle.

The authors use a Threat Modeling process at the design phase of software develop-

ment to support the methodological creation of a trustworthy system design and architec-

ture. Thereafter the process is applied to a Smart Metering Gateway.

The gateways are used for prosumers (i.e. simultaneously producers and consumers) to

communicate with their consuming and generating devices as well as the Smart grid oper-

ators. They identify the gateway as representing the Smart Grid’s “security core” therefore

having great influence in the actual and the perceived security of the infrastructure.

The main goals of Threat Modeling, as defined by the Common Criteria profile are iden-

tifying potential attack vectors and associated risks and vulnerabilities. In addition to this

systematic process the authors suggest that extra steps should be considered before deploy-

ment of a product:

• Static Source Code Analysis

• Penetration Testing

16 2. LITERATURE REVIEW

• Dynamic Analysis and Fuzzing

• Exploratory testing and manual code auditing

• Back door Detection

[22] takes yet another approach to improve the security of the Smart Grid. The researchers

detail a framework to help mitigate the issues associated with privacy that arise with AMI.

The proposed frameworks allows Smart Grid stakeholders such as consumers, utilities,

and third parties to have access to spatially and temporal aggregated data. Thus protecting

the individual customers from being directly linked to specific readings.

The authors introduce a set of new functional nodes, namely the “Privacy Preserving

Nodes” (PPNs). The PPNs collect sensitive data masked by a shared schemed featuring ho-

momorphic properties. Thereafter they aggregate it in the masked domain according the the

consumer’s needs and access permissions. These can recover the original data by collecting

multiple shares from the PPNs.

The framework uses an Integer Linear Programming formulation and a greedy algorithm

to transmit information between the different entities. Moreover a study of the scalability of

this solution is also performed, under the assumption of error-free and error-prone networks.

As previously explained, the introduction of Smart Grid will enable new added-value ser-

vices to improve the customer experience. Therefore it is safe to assume new actors will play

a role in the management and creation of these services and the supporting infrastructure.

These parties include both the service providing enterprises and the regulatory authorities.

To accommodate for this scenario the framework must possess a service platform ready

to support new applications provided by traditional utility companies and third parties that

aim to offer new valuable services. The main difference with relation to the traditional system

is that both the resource itself (e.g. electricity) and the information of its use and production

are assets with economic value.

Taking the previous into account the authors recognize the following contributions:

• Design an high-level architecture for a privacy conscious infrastructure. It add new

functional components to the smart grid, namely the Privacy Preserving Nodes (PPNs).

In essence the PPNs collect and aggregate customer data masked by homomorphic

encryption to protect the final user’s privacy.

• Identification of design problems related to information flows and the PPNs.

2.1. SMART GRID 17

• Modeling of the aforementioned issues by means of an Integer Linear Programming

formulation. This model is NP-hard, thus a scalable greedy algorithm is also presented.

• Evaluation of the scalability of the infrastructure. This is performed for reliable and

non-reliable communication networks.

The different measurements belonging to a producer are divided in multiple shares us-

ing a homomorphic secret sharing scheme. Each of the individual shares is sent to different

PPNs. Assuming t shares exist, then to obtain individual measurements at least t PPNs would

need to collude.

Nonetheless they are still able to concurrently operate on the shares originating from dif-

ferent producers or at different times to determine the required information. In turn, the

consumer receives all shares and can run recovery algorithms to gain access to the complete

picture.

By virtue of the homomorphic properties of the scheme, the consumer obtains the ag-

gregated results (but no information relative to the individual measurements) by running the

recovery algorithm over the sum of shares.

The authors studied the scalability of the proposed framework and concluded that in an

error-free communication network the architecture can incorporate millions of smart me-

ters. On the other hand, when the communication medium is not ideal the number of nec-

essary PPNs increases rapidly which limits the overall scalability of this system.

[23] analyzes the privacy-energy efficiency when energy harvesting (e.g. photovoltaic

panels) and storage units (e.g. rechargeable batteries) are present. The authors quantify the

privacy of a user’s energy profile in terms of the information leakage rate. This metric is de-

fined in the paper as “the mutual information rate between the real energy consumption of

the appliances and the smart meter readings”.

The methods and models used in this paper are purely theoretical, in particular from an

information theory perspective. Therefore, in the context of this document, there is little

interest to delve into their details. Notwithstanding the main findings of the paper provide

interesting insights.

The authors conclude the information leakage rate can be significantly reduced when

both energy harvesting and storage units are present. In particular, energy harvesting in-

creases privacy by diversifying the energy source. While the storage unit is able to hide the

load signature from the utility provider. As a downside these units also lead to wasted energy.

18 2. LITERATURE REVIEW

To determine the best trade-off between energy efficiency and information leakage, the

researchers fixed the energy harvesting rate and numerically obtained the curve between the

information leakage and wasted energy rates. Using these results utility providers and other

interested parties are better equipped to find an adequate balance between acquiring de-

tailed metrology data and ensuring an acceptable level of privacy for their consumers.

[24] considers the large scale deployment of smart meters containing a remote off switch

constitutes an important new cyber-vulnerability. The main purpose of such a switch is to

act in situations when clients default on their payments, by redirect them to prepaid tariffs,

supporting interruptible tariffs or to assist in crisis situations when energy is in short supply

and should be directed to crucial infrastructure (e.g. hospitals).

This attack vector is of great importance and creates challenges that utilities have not yet

faced. From the perspective of an attacker (e.g. foreign state, terrorist organization, hacktivist

group) the value of being able to severely disrupt the power supply cannot be overstated,

since soon after electricity stops so does everything else. Thus far this could only be achieved

through an attack on critical generation, transmission and distribution assets, which are eas-

ier to defend.

The main contribution of the paper is a metering architecture that aims to institute trusted

parties in the system, in a similar fashion that is used for the Internet, i.e. using a Public Key

Infrastructure (PKI).

Communications between the meter and the head-end will be protected using cryptog-

raphy. The details of the protocols for the different metrology equipments are still a work in

progress.

A possibility for a PKI system would be for the private key of the regulator to be “hard-

coded” in the meter as trusted, and then use such key to sign and authenticate the energy

companies’ keys. This way adding new utilities or revoking compromised keys would be sim-

ple.

An alternative method would be for a set number of established energy providers to sign

the key of a new entrant. However, there is no benefit for the establishment to do so and

therefore the process would likely be slow and frustrating.

Yet another option would be for the meter vendors to embed their keys in the meters and

thereafter sign the keys of the utility companies operating in the country of sale. This scheme

is able to solve several issues related to authentication and trust in the system. However it

raises others, such as accountability and liability. Would vendors be willing to take the nec-

2.2. COMMUNICATION PROTOCOL 19

essary steps, and associated cost, to ensure the security of their private keys and to act swiftly

in case of breaches? This is particularly important as these players have little experience in

the area of PKI’s.

The authors conclude the paper urging for action, and reiterating that these issues should

be discussed prior to large-scale roll-outs.

2.2. COMMUNICATION PROTOCOL

This section will focus on introducing and analyzing the DLMS/COSEM protocol used by

various Smart Meters, based on published literature. In addition competing standards will

also be used to assist in this study. Further details on the DLMS/COSEM protocol are shown

in Section 3.1.

2.2.1. INTRODUCTION TO THE PROTOCOL

DLMS stands for Device Language Message Specification and consists of a general concept for

abstract modeling of communication entities. On the other hand, COSEM is derived from the

COmpanion Specification for Energy Metering. It includes a set of standards that defines the

rules for data exchange between devices, such as an energy meter and a data accumulator.

[25] is the official website of the DLMS User association and provides a simple introduc-

tion to the protocol. Registered members may also obtain the complete DLMS/COSEM spec-

ification, also known as the colored books, namely Blue book, Green book, Yellow book and

White book.

Not surprisingly each describes a part of the set of standards. The Blue book focuses on

the COSEM meter object model and the OBIS (OBject Identification System) codes. Next, the

Green book describes the Architecture and Protocols. Then the Yellow book pertains to con-

formance testing. The DLMS User Association is responsible for issuing the DLMS/COSEM

conformance certification. And lastly the White book is dedicated to the glossary of terms.

Together they provide several features:

• An object model to view and access the different functionalities of a meter.

• An identification system for all data.

• A method for communicating with the model.

• A transport layer to accommodate the information flows between the meter and other

devices.

20 2. LITERATURE REVIEW

The protocol is based on the OSI (Open System Interconnection) seven layer model. How-

ever they are collapsed in four: physical, data link, transport and application layers.

Prior to exchanging metering information an association must be set up, initiated by the

client, through the object model interface. From that moment the server is also able to send

notifications without explicit request.

Clock synchronization and transmission of measurement profiles are also features of DLMS/-

COSEM. Finally, it includes authentication and confidentiality services based on symmetric

key encryption.

Smart meters are fundamental for the success of AMI. The addition of new features to

these devices poses many unique challenges for the utility providers and for the manufactur-

ers. Adjusting current and future software and hardware to enable these services, ensuring

compatibility and interoperability are just some of those. DLMS/COSEM aims to help solve

these complications and facilitate the process of smart meter development.

Section 3.1 provides a more detailed study of the specifics of the DLMS/COSEM protocol.

2.2.2. COMPARISON WITH COMPETING ALTERNATIVES

According to [26], at the current moment DLMS/COSEM is the best option to address the

aforementioned difficulties and make meters smart and able to talk with each other. Despite

this conviction and the popularity of the standard, it is advantageous to compare it with sim-

ilar solutions, if only to understand what alternative approaches can be adapted or be used

as guidance to solve current DLMS/COSEM limitations.

[27] reviews DLMS/COSEM and IEC 60870-5, which the authors consider the most widely

accepted standards for smart grid industries in Europe and other parts of the World. The au-

thors aims to identify the main goals of each and demonstrate why they successfully accom-

plish them.

DLMS/COSEM is intended for interaction between revenue meters (including electric,

water, gas, etc.) and a remote center. On the other hand IEC 60870-5 targets systems used

for supervisory control and data acquisition (SCADA) and monitoring of power system au-

tomation applications. Both standards (or set of standards) are particularly tailored for the

equipment market and thus can potentially be used in the Smart Grid.

DLMS/COSEM supports a wide array of communication methods such as Ethernet, GSM/-

GPRS, WiFi, ZigBee and PLC. From the perspective of buyers it allows for great flexibility, how-

ever from vendors it increases the production cost and makes the certification process more

2.2. COMMUNICATION PROTOCOL 21

burdensome.

DLMS/COSEM is composed by thee logical layers:

1. COSEM layer - provides an object model that implements the necessary metering func-

tions.

2. DLMS Layer - this layer provides access to the COSEM objects. It is responsible for the

assembly and transport of messages.

3. Communication protocol layer - transforms the DLMS messages to the desired com-

munication protocol based on the lower layers.

IEC 60870-5 includes three layers of the OSI model: application, link and physical layer.

This suite enables two different transmission procedures, unbalanced and balanced.

For unbalanced operations, the controlling station (typically a SCADA system) controls

the data by inquiring all the controlled substations. This constitutes a slave-master model,

where the slaves can only reply to explicit requests by the SCADA system, the master.

Alternatively, in the balanced procedure each station can initiate a dialog. Stations can

act simultaneously as controlling or controlled stations.

The IEC 60870-5 application layer incorporates several basic functions. These include

data acquisition, event acquisition, clock synchronization, command transmission, among

others.

It expected that most often the meter (server) will assume a passive role and only respond

to requests from the utility controlled devices (client). However, it is sometimes necessary to

report unexpected or sudden situations hence the ability to trigger event notifications. As

previously stated, this feature is supported by the DLMS/COSEM suite.

Vendors wishing to adapt their meters to the standard can leverage existing efforts from

specialized businesses. Open-source projects backed by Gurux [28] and jDLMS [29] are avail-

able and can be readily integrated. However, they are often incomplete and require addi-

tional development. In contrast, proprietary solutions are mature and reliable. For example,

Kalkitech [30] is the most popular independent provider of such protocol stacks. Nonethe-

less some vendors, such as Texas Instruments [31], develop libraries compatible with their

equipment and make it available to clients.

[1] presents four application layer protocols in the AMI context: DLMS/COSEM, the Smart

Message Language (SML), the mappings to MMS and SOAP from IEC 61850. The emphasis of

22 2. LITERATURE REVIEW

the paper is placed on the protocols’ use over TCP/IP, thus suited for Internet communication

or for local traffic via Ethernet or WiFi.

Figure 2.1 illustrates a generic communication topology between metrology devices and

the utility provider. The application layer protocols described in the paper can be used for

TCP/IP traffic and therefore are applicable for Internet communication on (c) and (e) and

over local (i.e. within individual households) networks such as Ethernet and WiFi on (a).

Electricity Meter

Home Gateway Utility

Gas/Water/Heat Meter Concentrator

a

b

c

d
e

Figure 2.1: Communication Topology diagram, adapted from [1].

The Smart Message Language (SML) is particularly successful in Germany but is rarely

used in other countries. It was developed as part of the Synchronous Modular Meter (SyM2)

project. SML distinguishes itself from IEC 61850 and DLMS/COSEM in the sense that it de-

fines messages instead of an interface object model and services to access it. There are two

types of messages, requests and responses, however unsolicited responses also exist. These

messages enable the communication of load profiles and associated digital signatures. The

standard also supports firmware updates and clock synchronization. Encryption, on the

other hand, is not directly available for SML, but SSL/TLS can be used to secure TCP/IP traffic.

IEC 61850 was originally designed for use in the automation of electrical substations but

has been extended for hydroelectric power plants, wind turbines, and other distributed en-

ergy resources. It uses the same client-server principle as DLMS/COSEM. The server provides

an object model interface accessible through standardized services. The realization of these

services depends on the specific communication mapping used, e.g. MMS (Manufacturing

Message Specification) or SOAP (Simple Object Access Protocol).

From the three, SML is the most unique. Since it does not rely on a model interface it does

not standardize the functional capabilities. This allows for greater flexibility but in order to

guarantee interoperability other standardization bodies must specify more details.

One of DLMS/COSEM advantages is that it is already popular, in particular in Europe, and

2.3. FUZZING 23

therefore numerous parties are working together to add missing features to the specification.

A current limitation is that DLMS/COSEM requires symmetric key encryption which may be

a significant hindrance in various scenarios.

Finally, IEC 61850’s particular strength is that it may also be employed to control smart

grid applications, other than smart meters.

The authors conclude by stating all standards have their advantages and disadvantages

but no one is superior in all regards. With respect to encoding, DLMS/COSEM and SML stand

out as the best solutions. A similar study with protocols such as ZigBee Smart Energy 2.0 and

ANSI C12.19 is identified as promising future work.

2.3. FUZZING

This section briefly introduces the concept of fuzzing and is mostly dedicated to the state

of the art in the field. However, due to the importance of the topic in this thesis, there an

additional section, Section 3.2, which provides more information.

2.3.1. DISCOVERING SOFTWARE VULNERABILITIES

Software vulnerabilities are the main culprit for technology security incidents. These occur

with a worrying frequency and reports of such events are a recurring occurrence in media,

including mainstream newspapers and television channels. Therefore there is significant in-

terest originating from all corners of society on how to detect and fix software vulnerabilities

as quickly as possible.

[32] discusses three software vulnerability techniques, namely static analysis, fuzzing and

penetration testing.

Static analysis inspects the structure of the application in search for potential issues.

Therefore it requires access to the source code, although it does not involve program exe-

cution. Other drawbacks of this technique are the high number of false positives, no design

bugs detection and the need for human verification.

Fuzzing, on the other hand, is a highly automated testing technique. It is analogous to

brute-force testing as it involves using numerous inputs to provoke the target to crash. The

tests generated by the fuzzer can be based on permutations of valid inputs or created from

scratch based on a model of the target. Traditionally fuzzers do not expect access to the

source code of the target applications. Disadvantages of fuzzing include high randomness

which may require long running times to find bugs.

24 2. LITERATURE REVIEW

Finally, penetration testing involves simulated attacks on a system to assess its resilience.

There are several types of penetration testing depending on how much access to the system

the tester is awarded. This process is typically performed by an external entity, that special-

izes in security audits. Two problems with penetration testing are the thoroughness of the

test is completely dependent on the skills and experience of the involved professionals and

second, it exposes the system to an external party which may be dangerous.

[33] presents a new approach to guiding penetration testing of several devices deployed

into the Advanced Metering Infrastructure (AMI) to evaluate their security. They recognize

that current industrial penetration testing strategies have not been sufficiently adapted to

address the security concerns of the AMI stakeholders. For example the utilities’ concerns

regarding fraud and denial of service. In particular they show that focused penetration testing

identified various security issues with two popular AMI vendors, but can be applicable to

many more vendors.

In summary all three discussed options have advantages and disadvantages. To improve

the security of a system it is important to understand these and, most likely, employ a com-

bination of them.

In this thesis we will focus solely on fuzzing for three prime motives:

1. We do not assume access to the source code implementation of the DLMS/COSEM

protocol.

2. Fuzzing is particularly adequate for finding vulnerabilities in network protocols.

3. Since the protocol is somewhat recent it is expected that different vendors will have

slightly contrasting implementations. With fuzzing it is relatively inexpensive to ac-

commodate these variations thus increasing the applicability of such a fuzzer.

2.3.2. INTRODUCTION TO FUZZING

Fuzzing originated in the University of Wisconsin in the context of a 1988 class project [34].

The goal was to develop a command-line application to study the robustness of several UNIX

applications. In essence this program, the original fuzzer, simply generated a long stream of

random characters and used it as input to the programs under test. This work resulted in

the “Empirical Study of the Reliability of UNIX Utilities” [35] where the authors present and

analyze the results of applying this novel technique. It is interesting to note that even in this

preliminary stage, the fuzzer was able to crash 25 to 33% of the target programs.

2.3. FUZZING 25

Over the years fuzzing developed significantly and we can now consider various types of

fuzzers depending on the type of applications they target.

Network fuzzing is applied to network applications, typically packet based. This category

includes testing software that is not running on the local machine, or requires a network pro-

tocol. It is important to take some care in formulating input data for protocols otherwise the

packets will likely be dropped without further processing. In order to increase the efficiency

of such an attack, size fields or hashed values for example, must be correctly computed.

File fuzzers audit software that reads and writes data to files. The idea behind these

fuzzers is similar to the previous but instead of sending packets through a network, a file

fuzzer crafts local files and monitors the target application as it tries to open them.

When comparing fuzzers the crucial metric is efficiency. The basic idea behind this tech-

nique is simple, however to be able to write fuzzers that discover vulnerabilities in a reason-

able amount of time, enough intelligence must exist, either included in the tool, transmitted

by the auditor, or most often, a concoction of both. The next paragraphs showcase different

fuzzing techniques and tools that propose solutions for this problem using novel approaches.

The remainder of this Section focuses on the state of the art in fuzzing. In addition, Sec-

tion 3.2 provides more information on what fuzzing is and what it entails.

2.3.3. FUZZING FRAMEWORKS

The traditional way to perform black-box tests of network protocols is quite straightforward.

First one develops a crude version of a protocol client, and then manually picks values one

believes may cause software faults in the target system. Typical attempts include using incor-

rect types (e.g. if the protocols expects an integer, send a floating point number instead), or

using negative values when only positive are expected, among others.

This first, purely manual, approach may prove successful but it possesses various ineffi-

ciencies:

• If the protocol is accessible through API’s or the source code is available, the tester is

likely to make the same assumptions as the original developers, thus reducing the cov-

erage of the tests.

• Developing a client for a complex protocol involves a great effort which significantly

increases the cost of testing. In addition, it is probable that such a client can not be

easily ported to other protocols or architectures, reinforcing the cost argument.

26 2. LITERATURE REVIEW

• Often testers have limited knowledge of the protocol they are attacking.

To address these limitations Dave Aitel proposed a block-based fuzzing framework des-

ignated SPIKE [9]. The framework was developed to simulate network protocol clients and

automate black-box testing. It is implemented as a C-like API and scripting language which

is used to leveraged the tester’s knowledge of the protocol.

SPIKE is able to isolate lower level protocols from the higher levels. This allows the cal-

culation of size fields without constructing all higher layer protocols. In other words, the

process of determining the final size is deferred until the blocks are closed.

Another task where SPIKE can greatly reduced development time is dealing with differ-

ent representations of data types. To accomplish this the framework provides a collection of

encoding routines that can be used to accommodate the protocol’s specification.

According to the author, by using the SPIKE framework he was able to uncover dozens of

new vulnerabilities in different protocols of varying complexity. The paper claims that black-

box testing continues to be the major source of exploitable real-world vulnerabilities and thus

tools such as SPIKE can play an important role in auditing efforts. In addition, the flexibility

and relative simplicity of SPIKE allows software vendors to quickly and efficiently test their

solutions before deployment.

SNOOZE [2] is another network protocol fuzzer that implements a stateful fuzzing ap-

proach. Therefore a tester can describe the stateful operation of the protocol and specify the

messages to be generated in each state. Moreover, it provides fuzzing primitives that are spe-

cific to certain attacks and thus allow the user to direct her efforts solely on a class of vulner-

abilities. The authors use the Session Initiation Protocol (SIP), used for VoIP, to demonstrate

the aforementioned properties of SNOOZE.

SNOOZE has six high-level components: Fault Injector, the Protocol Specification Parser,

the Interpreter, the Traffic Generator, the State Machine Engine, and the Monitor. Figures 2.2

and 2.3 illustrate the architecture of SNOOZE.

The Fault Injector alters fields of valid messages to trigger faults on the target system. It

relies on values that typically cause issues to reduce the state space.

The Parser, not surprisingly, parses the protocol specification so it can be used by the

remaining SNOOZE components.

The Interpreter runs the fuzzing tests. It should receive three inputs. First, a set of proto-

col specifications that describe the protocol, e.g. the format of the headers. This file should be

written using the Extensible Markup Language (XML). Second, a set of user-defined fuzzing

2.3. FUZZING 27

User Defined
Fuzzing Scenarios

SNOOZE
Protocol

Specifications

Target System

Figure 2.2: High-level Architecture of SNOOZE. Adapted from [2].

scenarios, that are written as Python scripts. They are responsible for assembling the mes-

sages appropriate for the target based on the other components of SNOOZE. In practice it

means sending packets with some of the fields fuzzed. And finally a module implementing

scenario primitives. These are basic operations invoked by the user that the system uses to

derive test cases.

Next, the Traffic Generator assembles the packets prior to sending them to the target sys-

tem. It transforms the messages created by the aforementioned user scenarios into network

packets, while taking care to update their checksums, and other variable fields.

The State Machine engine, as implied by the name, keeps track of the state of the protocol

by logging the received and transmitted messages.

Finally the monitor keeps an eye on the target system to erroneous behavior, such as

segmentation faults, unexpected outputs, etc.

[5, 36] propose a theoretical approach for fuzzing the most traditional targets: large-size

applications, with proprietary source code, and with limited knowledge of the input spec-

ifications (obtained for example through reverse engineering). In particular, they focus on

improving fuzzing through taint analysis and increased coverage. This approach is suitable

for both file and protocol fuzzers.

The researchers’ method starts with analysis of the binary code. This step consists of iden-

tifying potentially unsafe assembly sequences by comparing them with known vulnerability

patterns. Thereafter the target is executed and analyzed using taint analysis.

The main principle behind this technique is first to mark untrusted data as tainted and

28 2. LITERATURE REVIEW

User Defined
Fuzzing
Scenarios

Fuzzing
scenario
primitives

Interpreter Parser
Protocol

Specifications

Fault Injector
State Machine

Engine

Tra�c
Generator

Target System

SNOOZE

Monitor

Figure 2.3: Detailed diagram of SNOOZE, illustrating its main components. Adapted from [2].

second to track its propagation and which variables are influenced by it during runtime. This

enables the user to discover the flows between data sources and sinks. The main purpose of

this information is to identify the most relevant paths of execution, which can later be used

to improve the efficiency of the fuzzer. To calculate this metric, coverage analysis techniques

are used. Another important component is a monitor to detect faults caused by the fuzzer. In

addition this method should be able to automatically determine if faults are exploitable.

The authors do no present any results of using their methods in real applications. Nonethe-

less this paper proposes advancements to the field of taint analysis, in particular, for large-

sized applications with a wide input domain. Therefore future work includes first, applying

the approach to real targets and investigate its efficiency and second, integrate it in a com-

prehensive fuzzing environment.

2.3. FUZZING 29

One of the typical issues with fuzz testing is handling of checksums. In order to have

meaningful coverage in protocols or file formats that employ checksums to verify integrity of

inputs, it is crucial that the fuzzer can properly handle these. TaintScope [37] uses dynamic

taint analysis and symbolic execution techniques to deal with those situations. It can inspect

both Windows and Linux binary executables.

The paper identifies the three prime traits of TaintScope:

1. The program tries to identify checksum fields by branch profiling and alter the control

flow to circumvent them.

2. In addition TaintScope uses dynamic taint analysis to uncover which bytes from valid

inputs are used for system or library calls. Thereafter those bytes are fuzzed in the

hope of triggering vulnerabilities. This way only the most promising data is fuzzed thus

significantly reducing the mutation space.

3. Finally, the previous steps are performed by TaintScope in a truly automatic fashion.

In particular, it leverages concrete and symbolic execution techniques to fix the check-

sums tests in the fuzzed inputs that was not able to bypass in the first step.

With this tool the authors discovered 27 previously undisclosed vulnerabilities in appli-

cation such as Google Picasa, Microsoft Paint, Adobe Acrobat family, etc.

2.3.4. AUTOMATIC PROTOCOL INFERENCE

[38] investigates a different aspect of fuzzing: protocol specification. When developing fuzzers

for network protocols expressing the protocol is often the most time consuming and error

prone step. Typically it entails describing the different fields using a predefined set of primi-

tives. In addition it requires access to the protocol definition which may not always be com-

pletely available. The main goal of this research is to present a system that automatically

infers the state machine of the target (through reverse engineering) and generates inputs for

a stateful fuzzer.

The paper lists four main contributions.

1. Identify various features to identify similar messages in a network session. This is nec-

essary to select and cluster messages of the same type.

2. Present novel techniques to infer the protocol state machine.

30 2. LITERATURE REVIEW

3. Produce results from real applications where the state machines were successfully ex-

tracted.

4. Leverage the previous points to automatically generate protocol specifications and con-

tribute such work to the Peach fuzzing platform.

The system developed by the authors was able to produce specifications for complex pro-

tocols such as SMTP, SMB, SIP, etc. In addition they successfully applied it to the Agobot mal-

ware and concluded that such a tool can be beneficial to malware analysts.

Peach [10], is often referred to as the most popular fuzzing framework and is capable

of both generation and mutation based fuzzing. Its structure is quite versatile as it allows

users to define modular components that can be used interchangeably in different fuzzers.

To define the data format, type information and relationships in the data to be fuzzed, Peach

uses manually crafted Peach Pit files. Due to the flexibility and maturity of Peach, it was

chosen for the development of a smart meter fuzzer. Thus Section 3.3 is solely dedicated to

this topic.

Despite the success and popularity of Peach there are a myriad of alternatives publicly

available [39]. One of these is Sulley.

The Sulley Fuzzing Framework tries to learn from the limitations of other fuzzers and

from Peach in particular, to make it easier to use and increase efficiency.

In [40] two researchers from Tipping Point, Pedram Amini and Aaron Portnoy present

the reasoning behind this framework, and its main features and advantages over competing

solutions. They claim that powerful frameworks suffer from a steep learning curve, while

simpler tools quickly reach their limitations. In addition most fuzzers cannot be reused for

different protocols and thus must be rewritten when the target changes.

Sulley introduces a simpler syntax with a block based data representation. In addition,

Sulley fuzzers are written in Python which is considerably easier than C-like languages, which

are typically used by other frameworks. To mitigate the difficulty in adapting fuzzers, Sulley

supports the abstraction of complex types and the creation of commonly used helper func-

tions, that can be programmed once and reused in different contexts.

Researchers at the University of Oulu in Finland have been working on black-box testing

of the protocol implementations under the project PROTOS [41] and its follow-up the PRO-

TOS Protocol Genome Project [42]. Particularly in the latter the focus is on automatically

inferring a model that would subsequently be used to generate test cases.

2.3. FUZZING 31

The PERMU algorithm described in [43] was used as a proof of concept to asses the feasi-

bility of this approach. The main principle behind PERMU is to build a domain model from

an input data set through a nondeterministic finite automaton.

Still within the PROTOS Genome project, [44] concentrates on determining the best com-

promise in terms of efficiency and developer effort between fully random testing and human

provided models. The idea is to identify structural building blocks common across most pro-

tocols that are typically poorly implemented and thus may lead to security flaws. They call

these small structures protocol genomes, hence the project name. The authors were able to

identify flaws using these techniques in three categories of programs: image parsers (GIF and

JPEG), office packages (DOC, RTS and XLS) and security software (ZIP, RAR, etc.).

Despite the simplicity and limitations (e.g. no domain specific knowledge) of this ap-

proach it was effective as it was able to detect several issues with little effort from the security

tester.

Viide et al. in [45] also focus on model inference. To accomplish it, they identify two

necessary steps: first, choose a formal system for this model and second, implement struc-

ture inference. For the former they developed a domain specific language called “functional

genes”. And to express the structure the researchers chose to use Context Free Grammars

(CFG) due to their ability to describes syntactic structure. To obtain the model they use train-

ing data that should provide enough coverage of the protocol under study. This approach

aims to provide the best balance between truly random fuzzing (diminutive cost of entry but

low coverage) and manual testing (labor intensive but provides best coverage).

After completion they apply the inferred model to a fuzzer. The software targets used to

test the models were anti-virus programs. These are capable of parsing various formats, by

definition process input from dubious sources, are usually run with administrator privileges

and can be found on most computers, including those in critical networks. Five anti-virus

programs were used with ten archive formats. For each format between ten to one hundred

training files were used that were subsequently employed to generate up to 320 000 fuzzed

files. Somewhat surprisingly they were able to find vulnerabilities in all but one of the soft-

ware targets.

As conclusion, the previous results show that automatically inferred models can be effec-

tively applied to reduce the cost of fuzz testing. However in the current form the provided

coverage is still minimal. Nonetheless this avenue of research presents a lot of potential as

even with all the aforementioned limitations it was able to identify flaws in targets that should

32 2. LITERATURE REVIEW

be the most resilient.

2.3.5. WHITE-BOX FUZZING

An alternative approach to fuzzing is entitled white-box fuzzing. [46] presents a comparison

between black-box and white-box fuzzing. This technique aims to address one of the main

limitations of the traditional methods, low coverage. As previously discussed, it is possible

to improve coverage up to a certain degree however white-box fuzzing will often, due to its

nature, outperform black-box in this regard.

The authors of [47] propose a methodology based on this alternative concept. First start

with a well-formed input, then symbolically execute the program while recording any con-

straints on inputs from conditional statements that may appear. These constraints are then

negated and solved with a constraint solver, yielding new inputs that will lead the program to

different execution paths. This step is repeated for increased coverage using a novel heuristic

algorithm. Everything comes together in a tool, SAGE (Scalable, Automated, Guided Execu-

tion) developed by the authors.

In a subsequent paper [48] the researchers present grammar-based white-box fuzzing to

enhance white-box fuzzing. The constraints are generated from the symbolic execution of the

target, via a dynamic test generation algorithm. This algorithm has two main components.

The symbolic constraints are expressed in term of tokens returned by the lexer instead of

symbolic bytes. And an adapted constraint solver suitable for symbolic grammar tokens. The

solver searches for solutions that satisfy the constraints and the given grammar. They applied

this concept to the JavaScript interpreter of Internet Explorer 7 and were able to obtain higher

coverage, than with black-box fuzzing, while using less tests.

SAGE [47, 49] performs dynamic symbolic execution at the x86 binary level. In practice

what this means is that one does not need access to the source code, which greatly increases

the usefulness of this tool. On the other hand access to SAGE is limited to internal Microsoft

projects, although there are some indications [50] that it may be released publicly in the fu-

ture.

The choice between white-box or black-box fuzzing depends on various factors. Black-

box is often simpler, lighter, easier and faster but has limited code coverage. Alternatively,

white-box can yield better results but it usually involves more complexity, requiring addi-

tional time to develop and run. Ideally both should be used, the former to quickly discover

the low hanging fruit and the latter to identify more sophisticated flaws, deeper within the

2.3. FUZZING 33

code.

The number of available fuzzers and fuzzing frameworks is quite significant as this area

is of great interest to both white and black hats. The interested readers are referred to [51]

and [52] for a comprehensive analysis of the most relevant frameworks available at the time

of their publication.

2.3.6. IDENTIFYING EXPLOITABLE VULNERABILITIES

After the fuzzing process is complete it is important to analyze the results. The procedure

may include going over the number of crashes or exceptions thrown by the target device to

assess if they pose a security vulnerability.

Lu et al. [53] propose a technique to facilitate the automation of this important step,

which is typically purely human. They introduce an “automatic fault localization” method

for fuzzing as well as an “automatic vulnerability analysis system” titled FuzzLoc. The main

objective is to save human effort, in other words, improve the efficiency of the process by

identifying and categorizing key instructions that may cause exceptions.

The authors applied their tool to Adobe Reader and were able to discover previously know

but also unknown (zero-day) vulnerabilities. FuzzLoc improved the efficiency of the fault

localization process since the total number of instructions analyzed by humans was reduced.

Notwithstanding some human guidance it is still crucial.

[54] proposes a procedure dubbed “fuzzing by weighting attack with markers” specifi-

cally developed to detect one of the most common class of vulnerabilities: buffer overflows.

Autodafé is the name given by the author to the proof of concept tool used to assess the effi-

ciency of this method.

Prior to explaining the routine it is important to define two key concepts. Tracer is a

debugger that monitors and reports all the dynamically functions invoked by a program. This

is useful to identify unsafe functions such as strcpy. The second concept is a marker. Every

variable (e.g. a string) directly controlled by users is considered a marker.

The main idea behind weighting attack with markers is to identify unsafe functions that

take markers as arguments. Autodafé does this by assigning a weight to each user controlled

value (i.e. a marker). The value of this weight increases every time an unsafe function in-

cludes the marker in its arguments. Thereafter markers are tested in order according to their

weights. With this technique it is easy to identify high potential markers hereby decreasing

the variable space that needs to be fuzzed.

34 2. LITERATURE REVIEW

The results section of this paper is surprisingly sparse making no mention of the type or

quantity of targets under study. It does however state that it discovered eighty known and 865

unreleased buffer overflow vulnerabilities in “modern” software.

3
BACKGROUND

3.1. COMMUNICATION PROTOCOL

The Device Language Message Specification (DLMS) consists of a general concept for abstract

modeling of communication entities. On top of this, the COmpanion Specification for Energy

Metering (COSEM) provides a set of standards that define the rules for data exchange between

smart grid devices, such as an energy meter and a data accumulator. Together they enable

several features, such as (a) an object model to view and access the different functionalities

of a meter, (b) an identification system for all data, (c) a method for communicating with the

model and (d) a transport layer to accommodate the information flows between the meter

and other devices. This combination is known as DLMS/COSEM.

The protocol is based on the Open System Interconnection (OSI) seven-layer model. How-

ever they are practically collapsed in four - physical, data link, transport and application lay-

ers.

In a similar fashion to the OSI model, the physical layer in DLMS/COSEM defines how to

transfer information to and from the meter. The data layer provides the messaging methods

to modify data and communicate with the device. The transport layer enables data transfer

based various interfaces. Finally the application layer represents the functional aspects of the

energy meter so applications can access them.

The DLMS/COSEM metering specification is described in the DLMS User Association col-

ored books:

35

36 3. BACKGROUND

• Blue book [55]: covers the COSEM interface classes and object model, as well as the

standardized OBIS codes.

• Green book [56]: details the different protocols used to access and manipulate the

COSEM objects.

• Yellow book [57]: describes the conformance requirement and procedures.

• White book [58]: contains the complete DLMS/COSEM glossary.

The summary of the protocol that follows is based on the aforementioned books, in par-

ticular the green and blue books. The reader interested in the complete details is advised to

consult the original sources. The goal of this Chapter is not to reproduce the content of said

references, but to provide enough background knowledge so the reader can fully understand

Chapter 4 on eFuzz.

DLMS/COSEM can be divided in three major components:

1. Modeling: abstract representation of the meter functionalities in the form of objects.

2. Messaging: mapping of the services to application layer protocol data units (APDUs)

and respective encoding.

3. Transporting: Physical-level communication channels used to carry messages between

devices.

With respect to the specification, modeling is described in the blue book, while messaging

and transporting are defined in the green book. It is important to note that in all communica-

tions profiles the COSEM application layer remains unchanged. However depending on the

communication interface between client and server, APDUs are assembled differently.

3.1.1. COSEM

The smart meter has evolved from a simple recording device to a hub that depends on com-

munication capabilities, interoperability and system integration. COSEM, aims to fulfill these

requirements by proving a standardized method to convey energy measurements over a spec-

trum of connecting interfaces. It also provides the necessary functionalities that enable con-

tinuous remote access.

Object modeling techniques are used to facilitate access and manipulation of different

types of data. Therefore one of most important parts of COSEM is to formally specify the

3.1. COMMUNICATION PROTOCOL 37

interface classes and objects used to accomplish such task. In particular to identify stan-

dard data items unambiguously in a vendor-independent manner, the OBject Identification

System (OBIS) was created. The identification of each object is regulated and provides the

unique mapping between the OBIS codes and the respective data items.

The standardized objects and interface classes can be modified by vendors to comply to

national requirements or fulfill contract requirements over an entire range of products target-

ing different customers, for example domestic, industrial or commercial. This way it affords

the necessary flexibility to adjust the product offerings according to the client’s requirements

without sacrificing interoperability.

COSEM INTERFACE CLASSES AND INTERFACE OBJECTS

An interface class (IC) is composed of attributes and methods and can be instantiated. These

instances are denominated interface objects, or simply objects. Attributes define the unique

characteristics of an object, e.g. the identification. And methods provide a way to access or

modify the values of the attributes.

Similarly to object oriented programming languages, one of the main advantages of ICs is

the abstraction they provide over objects that share certain characteristics. This aggregation

eases the process of accessing and modifying objects.

To accommodate for the aforementioned flexibility vendors may implement proprietary

methods and attributes to any object. Figure 3.1 depicts an example of an IC and its instances.

Metering equipment hosts a set of logical devices in a single physical device. Each of the

devices enables a subset of the complete functionality supported by the hardware depending

on the communication interfaces. These functionalities are accomplished through the use of

COSEM interface objects.

The register is identified by the value of logical_name which contains an OBIS identifier.

The value attribute holds the content of the register. Any COSEM meter is composed by a

set of such objects that act as a gateway to all its capabilities.

APPLICATION ASSOCIATION

In DLMS/COSEM the communication model follows the server/client paradigm. The me-

ter acts as a server, and replies to the client’s application requests to retrieve data, change

configurations, perform specific actions, etc.

Prior to gaining access to the COSEM objects in the server, both parties, client and server,

need to define the context, which includes:

38 3. BACKGROUND

Register: class id=3

logical name: octet-string
value: instance specific
. . .

reset

Register:
Total Positive Active Energy

logical name = [1 1 1 8 0 255]
value = 1483
. . .

Register:
Total Positive Reactive Energy

logical name = [1 1 3 8 0 255]
value = 57
. . .

Class

Class Identifier

Attributes

Methods

Object

Attribute Values

Instantiation

Figure 3.1: Example of an interface class with two instances.

• The application context.

• The authentication context.

• the xDLMS context.

xDLMS stands for extended DLMS and is a extension of the DLMS protocol, with empha-

sis on metering applications. In the context of this thesis, the differences between the two are

not pertinent and therefore both terms are used interchangeably.

The exchange of this information is called an application association (AA). Depending

on the AA, different access rights may be granted by the server. Permissions can be defined

with respect to object visibility but also with access to specific attributes and methods. To

that extent, the complete list of visible objects can be retrieved by the client and is called

association view.

In order to enforce access rights, DLMS/COSEM defines security policies for the access

and transport of data. Access controls restrict access to the data stored in the meter. While

data transport pertains to the use of cryptography to protect the data in transit. Ideally, only

the parties with the necessary keys can then decrypt the data and obtain access to the original

content, the plain text.

DATA ACCESS SECURITY

Access to data can be restricted in DLMS/COSEM. Therefore metering equipment must au-

thenticate the clients to ensure they are only awarded access to the data they have permis-

sion. The authentication context is negotiated between client and server at the AA stage.

3.1. COMMUNICATION PROTOCOL 39

DLMS/COSEM supports three categories of data access protection:

• Lowest level security (no security).

• Low Level Security (LLS).

• High Level Security (HLS).

Lowest level security is meant to retrieve basic information and it does not require any

type of authentication.

Low level security requires the use of a password. The server is not authenticated by the

client. This should only be used when the communication channel is protected and ensures

sufficient protection against eavesdropping and or other type of channel alteration (e.g. re-

play or man in the middle attacks). The client transmits the password during the AA estab-

lishment.

High level security provides mutual (client and server) authentication. Similarly to LLS,

the authentication takes place during the AA. The authentication process involves four steps

that consist of exchanging challenges and inspecting the results with cryptographic methods.

The HLS security context is indicated for all situations where no protection of the data com-

munication channels is expected. This mode can use four different algorithms, MD5, SHA-1,

GMAC (Galois Message Authentication Code) or a secret method known only by the meter

and the client.

DATA TRANSPORT SECURITY

In addition to client authentication, the data transport can be encrypted. These protections

are applied to APDUs to ensure they can not be deciphered on transit. The security policies

available for data transport are:

• No security.

• Authentication.

• Encryption.

• Authentication and encryption.

Figure 3.2 shows how the various structures are used to encrypt and authenticate an AP-

DUs.

40 3. BACKGROUND

xDLMS APDU AES-GCM

Security Context

Ciphered xDLMS APDU

Tag Len SH Encrypted xDLMS APDU TAuthenticated and Encrypted APDU

Figure 3.2: Example of an encrypted and authenticated APDU.

As Figure 3.2 shows, an encrypted and authenticated DLMS APDU is composed of five

segments. First, the tag identifies the APDU type. Second, the length field is self explanatory.

Third, the security header specifies which security policy for data transport shall be used.

The fourth field contains the ciphertext. And finally, the fifth field, carries the tag used for

authentication purposes.

For the policy with encryption only, the only differences is on the fifth field T , which is

dropped. On the other hand, for the policy with authentication only, T stays but the cipher-

text is replace by the plain text.

DLMS/COSEM only allows one security suite that is used for symmetric key cryptographic

block ciphers: Galois Counter Mode (GCM) with AES-128. It uses a shared block cipher keys

(EK), a shared authentication key (AK) and an initialization vector (IV). GCM was designed to

provide both data authenticity and confidentiality. Section 4.2.1 explains in more detail the

AES-GCM block cipher.

Figure 3.3 depicts what fields are required for encryption and decryption.

GCM
(Crypto Key)

Init Vector

Plaintext

Auth Data

Ciphertext

Auth Tag

(a) Encryption

GCM
(Crypto Key)

Init Vector

Ciphertext

Auth Data

Auth Tag

Plaintext

(b) Decryption

Figure 3.3: Encryption and authentication of xDLMS Application Layer Protocol Data Units (APDUs).

3.1. COMMUNICATION PROTOCOL 41

The initialization vector is the concatenation of the system title and frame counter. The

former is device specific and is announced in the configuration phases of the session. While

the latter is transmitted alongside the ciphertext. The key for the Galois Counter Mode is

specific for each device, in other words, both the meter and the PC have their own. Lastly,

the authentication data includes the symmetric authentication key. The decryption process

is similar but adds a verification steps for the authentication tag.

3.1.2. COSEM APPLICATION LAYER

The major part of the COSEM application layer is called the COSEM Application Service Ob-

ject (ASO). It is used to provide services to the COSEM Application Processes and leverages

the services provided by the layers underneath it. It is composed of at least three mandatory

components on the client and server sides:

1. The Association Control Service Element (ACSE), whose goals are to establish, maintain

and release application associations.

2. The extended DLMS Application Service Element (xDLMS_ASE), which provides data

transfer services between different COSEM application processes. As explained above,

xDLMS this is a backward compatible extension of the original DLMS protocol which

focuses on metering applications through the use of COSEM interface objects.

3. The Control Function (CF). This function specifies how the ASO services invoke ACSE

service primitives, xDMLS_ASE and other services of the supporting layer

Services are described in a standardized format to facilitate comprehension. Additionally

they include the primitives and parameters that characterize each service. Each service may

have one or more primitives that relate to the activity it performs. The service parameters

convey the type of data associated with a service. Each service can incorporate zero or more

parameters.

Services’ statuses are identified with the assistance of four generic terms:

• REQUEST - primitive from user to the layer to request the initialization of the service.

• INDICATION - Primitive from layer to user to indicate an event of significance to the

user. Typically it is used as a response to a previous request, but can exceptionally

indicate internal events of the layer.

42 3. BACKGROUND

• RESPONSE - primitive passed from user to layer with respect to an indication primitive

previously invoked.

• CONFIRM - confirmation primitive with direction layer to user to transmit the results

of one or more previous primitive service requests.

3.1.3. THE DLMS/COSEM COMMUNICATIONS FRAMEWORK

As mentioned, DLMS/COSEM uses the client/server model for communications. The me-

tering equipment assumes the role of server since its main function is to reply to requests

from other devices (clients). Nonetheless unsolicited services are also available to the meter

to allow notification of unexpected events.

Data exchange between server and client is accomplished by means of messages, APDUs.

These data units are modeled as SERVICE.requests and SERVICE.responses. Application pro-

cesses (APs) model the service requests and respective replies. Since most often server APs

and client APs do not live in the same device these messages need to be adapted according to

the interface connecting them and the respective protocol.

A typical communication flow would initiate with the client AP requesting a certain ser-

vice and the server AP provides it as show in figure 3.4. The communication profile defines

the supporting layers but the service primitives abstract over them. It is important to note

that a client AP may exchange data with multiple server APs concurrently, and vice-versa.

INTEROPERABILITY AND INTERCONNECTIVITY

Before proceeding to the description of the different communication profiles available in

DLMS/COSEM it is important to define interoperability and interconnectivity in the context

of APs. Interoperability and interconnectivity ensure devices from different manufacturers

can communicate with one another via DLMS/COSEM.

Interoperability relates to the application layer. A client AP is interoperable with a server

AP if they are able to establish AAs. On the other hand, interconnectivity is a protocol level

concept. For both parties’ APs to be able to successfully communicate they must be inter-

connectable and interconnected. Therefore interconnectivity is the ability of the COSEM AP

to establish a connection across all layers.

3.1. COMMUNICATION PROTOCOL 43

Physical Channel

Physical Layer

Intermediate Layers

Application Layer

Client AP Server AP

SERVICE.request

SERVICE.response

C
om

m
u
n
ic
at
io
n
P
ro
fi
le

.request .response

Figure 3.4: Client/server relationship and protocols with various communication profiles.

3.1.4. COMMUNICATION PROFILES

Communication profiles transcend single protocol layers and describe how to communica-

tion with COSEM APs. In fact, the COSEM APs rely solely on the application layer. They are

independent of the communication profile and are the only ones containing COSEM specific

elements. These are called Extended DLMS Application Service Elements (xDLMS_ASE) and

provide access to the COSEM interface object services. These services are independent of the

lower layers.

The communication profiles are defined by the number of protocol layers included, their

parameters and if they are connection oriented or connectionless. A single metering equip-

ments often supports multiple communication profiles, for example IP or PLC. Since clients

are often more restricted with respect to the interfaces available, they choose which one is

used.

44 3. BACKGROUND

Figure 3.5 shows the communication profiles defined in the green book.

The first supports data exchange via an optical or electrical port, PSTN or the GSM net-

work. It consists of 3-layers, connection oriented and based on HDLC.

The second is based on the Internet standards TCP-UDP/IP. Therefore traffic can flow

over any physical media that supports Internet communication such as Ethernet, GPRS, etc.

This is a connectionless profile and includes a wrapper in addition to the transport layer TCP

or UDP.

Finally the S-FSK PLC profile supports S-FSK modulated communication over power lines.

The transport layer can be the connectionless LLS or the LLC sub layer in addition to the

HDLC protocol.

The fuzzer described in Chapter 4 uses the communication profile shown in green tones.

Therefore the details of such profile are described in more detail than the remainder.

The xDLMS protocol is communication oriented which means a session needs to be es-

tablished between the client and the server before any requests can be placed.

There are three phases in this process:

1. An application association is established between client and server APs. The lower lay-

ers (physical and data link) must already be connected so that an application level PDU

can be transmitted.

2. Data exchange can take place provided by the xDLMS service elements.

3. When data exchange is concluded a request for disconnection is sent by one of the

parties (most often the client). The AA is then released.

POWER LINE COMMUNICATION

The DLMS/COSEM S-FSK PLC communication profile is designed for use over the electricity

grid network. This communication has limited range and typically is performed between

household meters and data concentrators on substations to aggregate the data from a subset

of metering equipments. It is thereafter communicated upstream via other communication

channels.

In the Power Line Communication (PLC) medium the client role is fulfilled by the data

accumulator while the server is performed by the meter.

This communication profile uses two sub layers for the data link layer: the Medium Ac-

cess Control (MAC) and the Logical Link Control (LLC). The MAC sub layer assumes respon-

3.1. COMMUNICATION PROTOCOL 45

3 Layer,CO HDLC TCP-UDP/IP IEC 61334-5-1 S-FSK PLC profiles

Phy Layer MAC + Phy layer
IEC 61334-5-1 S-FSK

LLC Layer
(protocol selection)

HDLC

Connectionless
LLC layer

IEC 61334-4-32

LLC Layer
(protocol selection)

HDLC
Supporting Layers

Wrapper

TCP

IPv4

A
p
p
li
ca
ti
on

L
ay
er A
L

A
p
p
li
ca
ti
on

L
ay
er

A
p
p
li
ca
ti
on

L
ay
er

COSEM Application Layer

Support Layer

COSEM Application Process

Figure 3.5: DLMS/COSEM communication profiles

sibility for controlling access to the physical lines and physical device address. The LLC sub

layer controls the logical links.

The LLC sub layer can assume one of two forms:

• Connectionless LLC sub layer

• LLC sub layer using the HDLC based data link layer

IP CONNECTIVITY

DLMS/COSEM also supports IP based networks. In particular it supports two modes. For

connectionless operation it uses the User Datagram Protocol (UDP), while for connection-

oriented communications it uses the Transport Control Protocol (TCP). These protocols are

covered in the respective standards however DLMS/COSEM defines an additional sub layer,

46 3. BACKGROUND

sitting between the TCP/UDP layer and the the COSEM application layer dubbed wrapper to

enable their use. Due to the use of IP layers a DLMS/COSEM application can live along other

Internet based applications such as HTTP or FTP clients.

The wrapper fulfills two main functions:

• Additional addressing capabilities.

• Length of data transported. This feature is useful when an APDU is split among various

TCP packets. It is then trivial to identify the reception of a complete APDU.

DIRECT LOCAL CONNECTION

Direct local connection typically accommodates devices such as hand held units used by

technicians for on-site visits or equipment installations. They use optical serial communi-

cations to interface with the meter.

Direct communication requires an initial serial handshake, the procedure of which is

shown in figure 3.6.

/? Device Address ! CR LF

/ XXX \W Ident CR LF

ACK 2 Z 2 CR LF ACK V Z Y CR LF

ACK 2 Z 2 CR LF Not accepted Mode Y

Metering HDLC protocol

W = 2

300 Bd 7E1

Z Bd 7E1

Z Bd 8N1

Client (HHU)

Server (Tariff Device)

Client

Server

Figure 3.6: Entering protocol mode E (HDLC)

First the client sends a request with the following message /? Device Address ! CR

LF. Obviously the device address changes between meters. This transmission is performed

with a baud rate of 300 bps, 7 data bits byte, even parity and one stop bit (7E1).

The server acknowledges the received message with the following / XXX \W Ident CR

LF. Where XXX is a 3-byte ASCII representation of the manufacturer identifier, and Ident

identifies the equipment model. If W equals 2, the protocol mode E is chosen, which is colored

blue in Figure 3.6. However, older devices that do not support this mode, switch over to

3.1. COMMUNICATION PROTOCOL 47

protocol mode C until terminated, shown in green. Only the former is of interest to fuzzing,

thus for the remainder of the document it is assumed that only protocol mode E exists.

After, the client sends with the following message ACK 2 Z 2 CR LF. Where Z is the same

Z indicated by the server. The mode identified by Z is then enforced for all forthcoming data

exchanges. Z is used to determine the serial configuration the meter would like to change to

for the remainder of the connection. For example a 5, means 9600 baud rate, 8 data bits, no

parity and 1 stop bit. The server repeats the message as acknowledgment.

From this point onward the HDLC metering protocol can now take over.

3.1.5. DATA LINK LAYER

Due to the fact that DLMS/COSEM supports both connection-oriented and connectionless

communications, the data link layer is divided in two sub layers: Medium Access Control

(MAC) and Logical Link Control (LLC). These sub layers are specified with respect to service

specifications and protocol specifications.

PROTOCOL SPECIFICATION FOR THE LLC SUB LAYER

The LLC protocol data unit is shown in figure 3.7.

Destination (remove) LSAP Source (local) LSAP LLC Quality Information

8 bits: 0xE6 8 bits: 0xE6 or 0xE7 8 bits: 0x00 n · 8 bits

Figure 3.7: LLC format as used in DLMS/COSEM.

The value for the Destination_LSAP (Local Service Access Point) is fixed at 0xE6. While

the the value of the Source_LSAP is 0xE6 (for command) or 0xE7 (for response). The LLC_Quality

field is reserved for future by the DLMS User Association and must be set always to 0x00. Fi-

nally the information field carries the PDU.

MAC SUB LAYER

The MAC sub layer uses the HDLC frame format depicted in Figure 3.8.

Flag Frame Format Dest. Address Src. Address Control HCS Information FCS Flag

Figure 3.8: MAC sub layer frame format.

48 3. BACKGROUND

The flag field is always one byte long and assumes the value 0x7E. If multiple frames are

sent continuously a single flag is used to terminate and initiate the subsequent frame.

The frame format field has a length of two bytes and is composed of three subfields, for-

mat type, segmentation bit and frame length sub-field. The format type (4 bits) is set to 1010

(binary). The segmentation field indicates if an APDU is split in various frames. In such a sit-

uation this bit is set to True (1) for all frames that contain the single APDU except the last one.

Finally the last subfield is the frame length which encodes the length of the frame excluding

opening and closing flags in 11 bits.

The control field occupies one byte and indicates the type of command or response as

well as sequence numbers carried by the frame. Table 3.1 enumerates the possible values

for this field. The following section goes into more detail on the different types of frames

available.

The Header Check Sequence (HCS) computes a checksum based only on the header of

the frame, excluding the opening flag. It spans over two bytes. If frames do not have an

information field, the HCS is not included in the frame.

The information field can assume any size and carries the payload.

Finally the Frame Check Sequence is very similar to the aforementioned HCS but com-

puted over the complete frame, excluding the opening flag. It is also two bytes long.

Figure 3.9 features an high-level aggregate view of the different layers that make up a

DLMS/COSEM request over serial port.

Flag Frame format Src & Dest · · · FCS Flag HDLC

Command/Response · · · LLC

Security Encrypted Request Message Auth Tag DLMS

Figure 3.9: DLMS/COSEM packet for direct connections.

As stated when using a direct connection in DLMS/COSEM, the High-Level Data Link

Control (HDLC) protocol is used. This data link layer, show in green, is composed of opening

and closing flags, the type of frame, source and destination identifiers, payload and check-

sum (Frame Check Sequence or FCS) to ensure data integrity. The Logical link control (LLC)

3.1. COMMUNICATION PROTOCOL 49

Command Response Encoding

I I R R R P/F S S S 0

RR RR R R R P/F 0 0 0 1

RNR RNR R R R P/F 0 1 0 1

SNRM 1 0 0 P 0 0 1 1

DISC 0 1 0 P 0 0 1 1

UA 0 1 1 F 0 0 1 1

DM 0 0 0 F 1 1 1 1

FRMR 1 0 0 F 0 1 1 1

UI UI 0 0 0 P/F 0 0 1 1

Table 3.1: Control field bit assignments of command and response frames

explained above, colored blue, is the upper sub-layer of the data link layer. It is short in length

and is used to specify is the payload is a response or a command. The application layer, tinted

red, contains the xDLMS protocol data unit. Its content specifies the level of security it is us-

ing and, if applicable, proceeds to transmit the encrypted request followed by the authenti-

cation tag.

FRAMES

The encoding of the command and response control fields, shown in Table 3.1, is used for the

control field of the MAC sublayer.

RRR is the receive sequence number N(R), SSS is the send sequence number N(S) and P/F

is the poll/final bit.

The I frame, or information frame is the most generic and shall be used to transfer infor-

mation between client and server.

Received ready or RR, indicates the server is ready to receive an information frame or to

acknowledge previously received I frames. It can be used after RNR (received not ready) to

signal the previous busy conditions not longer apply.

The set normal response mode (SNRM) command is sent by the client to indicate to the

server all control fields shall be one octet in length, which corresponds to the normal re-

sponse mode (NRM). To accept the change, the server responds with a UA (unnumbered

acknowledge) frame.

The disconnect command (DISC) is used to request the termination of a previously es-

50 3. BACKGROUND

tablished session. It is initiated by the client to signal it is about to suspend operations. The

server acknowledges the request with a UA frame.

The disconnected mode (DM) response is used by the server to signal it has lost the logical

connection to the data link. No further commands are accepted until the receipt of a mode

setting command (SNRM).

Frame reject (FRMR) response is used by the server to signal one of the following anoma-

lous conditions has occurred:

• Command or response that is not define or not implemented.

• I/UI command or response with an information field exceeding the maximum allowed

length.

• Wrong sequence number for an I frame.

• Frame containing an information field when no such field is permitted by the control

field.

Furthermore, these errors are not correctable by retransmission of the frame by the client.

Finally the Unnumbered information (UI) sent as command or as response does not af-

fect the receive sequence number or the send sequence number. It is used to send informa-

tion by the client or the server.

DESCRIPTION OF THE PROCEDURES

After establishing a physical connection but before establishing an active data like devices

are in is the Normal Disconnected Mode, NDM. In this mode no information or supervisory

numbered frames are transmitted or accepted. The server side is capable of accept and re-

sponse to SNRM commands, accept and transmit UI commands, and respond with a DM

response to DISC commands.

When the MAC connection is established the Normal Response Mode is activated. The

server after receiving permission from the client (Poll bit set) can initiate response transmis-

sions. The final response transmission in indicated by the server (with final bit set). Then it

stops transmitting until receiving permission from the client.

The client is responsible for the initialization of the HDLC link. It does so by sending an

SNRM command. The server replies with an UA response. If received correctly, the link is

successfully established. Otherwise, the client can retry to establish a link at a later stage.

In addition the SNRM/UA message exchange is also use to negotiate data link parameters:

3.1. COMMUNICATION PROTOCOL 51

• the Maximum information field length (default is 128 bytes, the maximum varies de-

pending on the physical medium).

• the Window size (the default is 1, and the maximum is 7).

Thereafter to disconnect the link the client sends a DISC command. The addressed server

responds with a UA response at its first opportunity and enters the NDM mode. If at the

moment of DISC reception the server is already in NDM mode it sends a DM response. The

client after receiving a UA or DM message as response to a DISC command shall proceed to

logically disconnect the data link.

3.1.6. COMPLETE FLOW

To assimilate the information presented in this section it is pedagogical to provide an exam-

ple. It succinctly describes the complete communication steps that a simple request over a

direct connect entails. Figure 3.10 shows the respective state diagram.

Serial
configuration

start

HDLC
parameter
negotiation

AARQ &
AARE

DLMS APDU
request

Request/ACK
disconnect

Figure 3.10: A complete DLMS/COSEM flow including establishing a connection, making a request, reading the

response and closing the connection. This example is for the physical interface.

Serial connection is divided in three distinct phases. First, a handshake takes place where

the meter identifies itself and announces the serial configuration it supports, including baud

rate and other serial related parameters.

Second, the client (PC) initializes the HDLC (High-Level Data Link Control, a data link

layer protocol) link by transmitting a frame to the meter. After reception the meter replies

52 3. BACKGROUND

with the frame configurations it supports. The third and last step to complete the connec-

tion establishment is the pair AARQ/AARE (Application Association Request and Response,

respectively). The former is sent by the PC and the latter is the response of the meter. This

exchange is used to establish more parameters specific to the DLMS layer (i.e. independent

of the outer-layers which depend on the interface). If defined in the security configurations,

these are the first packets to be encrypted and authenticated.

Finally, we are able to start the actual DLMS/COSEM communication. In this session, the

client may query the server for usage data, time and date, or modify the parameters of the

meter, such as increase the number of available tariffs, clear the logs, etc.

The last step is requesting the end of the session. This is done by sending a DISC frame.

3.2. FUZZING

Fuzzing is one of the premier techniques to uncover vulnerabilities through testing [5, 36] as

it does not require access to the source code of the target and it has a low cost. The most

common targets include network protocols and file formats.

Fuzz testing is a security technique used to detect bugs in software applications or net-

work devices. It is an automated process that feeds the target with malformed data to induce

malfunctions. In other words, it consists of trying numerous combinations of inputs, vio-

lating protocol or file format rules, to see how the target responds to unexpected requests.

To detect these erroneous actions, fuzzing includes monitoring activities like memory con-

sumption inspections, thrown exceptions, crashes or other unexpected behaviors.

Peach [10], the brainchild of Michael Eddington, has become one of the most mature and,

arguably, the most widely used fuzzing framework. Hence this framework was chosen for the

development of eFuzz. Peach is capable of both generation and mutation based fuzzing. To

define the structure, type information and relationships in the data to be fuzzed, Peach uses

manually crafted Peach Pit files. These files describe the protocol model and define how such

model will be used to test the target.

The modular architecture of Peach encourages code reuse and provides easy extendabil-

ity. The main advantages of using Peach, over of developing a fuzzer from the ground up, are

the abstraction of the mutation strategies, the simple way the protocol can be modeled and

the modularity of the various components (custom or built-in).

Fuzzing frameworks typically target software applications running on traditional com-

puting platforms, such as desktops. To monitor the working state of the targeted software,

3.2. FUZZING 53

they might for example attach debuggers to the process or inspect memory consumption.

Unfortunately, in embedded systems like smart meters, these capabilities are not always

available and the fuzzing framework is usually physically separated from the investigated

target. Therefore, to fuzz an embedded system like a smart meter, it is necessary to use a

framework that supports the communication protocols available in the target and that allows

specific types of monitoring developed for limited devices.

In general, fuzzers can be divided in three categories with respect to how they generate

new packets or files. The first one is to feed completely random data as input to the tar-

get. This method is simple but is less likely to yield good results. In the second category, the

mutation-based fuzzers alter pre-generated valid inputs in hope of discovering a vulnerabil-

ity. In the third category, generation-based fuzzers create files or packets from scratch with

the same intent based on a user specified model.

Compared to others, the main advantage of the second category is that little knowledge

of the file or protocol format is required and thus the preparation time is modest. However

the code coverage is dependent on the coverage provided by the original valid inputs. On

the other hand, constructing new files or packets can only be done if the tester has sufficient

knowledge of the file or protocol format. But this approach results in a more comprehensive

test case suite and thus, it is more likely to find vulnerabilities. eFuzz, the fuzzer developed

during the course of thesis and describe in Chapter 4, belongs in this category.

Table 3.2 provides a succinct summary of these advantages and disadvantages.

3.2.1. BASIC CONCEPTS

[59], a comprehensive book on fuzzing, uses the following definition: “a method for discov-

ering faults in software by providing unexpected input and monitoring for exceptions”. One

of fuzzing main advantages is that it can be run autonomously or semi-autonomously thus

requiring little human supervision.

Fuzzing involves successive attempts of data manipulation and modification, followed

by supplying this data to a target for processing. The most common scenarios where fuzzing

tools are used are file formats or network protocols. In the first case the input that is fuzzed

are the files themselves prior to being opened by a software application. While for the second

the protocol packets are interfered with before reaching the target application or network

device.

The other part of fuzzing, as stated in the previous definition, is the monitoring compo-

54 3. BACKGROUND

Type Advantages Disadvantages

Random Simple. Quick. Low cost. Attacks only the surface. Useless

with checksums. Poor coverage.

Mutation Relatively Simple. Reusable for

different SW.

Needs numerous valid inputs to

get a good coverage.

Generation Efficient (if well modeled). Time-consuming. Requires

knowledge of the file/protocol

format. Reusable only with the

same format.

Table 3.2: Advantages and disadvantages of the different fuzzing approaches. Adapted from [5].

nent. In order to detect whether the fuzzed input has a nefarious effect on the target it is

necessary to observe its health. There are various methods to accomplish this depending

on the type of target. If the target is a software application it can be inspecting its memory

consumption, attach a debugger to catch exceptions, monitor CPU usage, etc. On the other

hand, if it is an embedded system it can be based on JTAG information.

In setups where no monitor can be run on the target machine, monitoring activities can

consist of analyzing the communications, such as making sure the responses are valid, timing

the latency for unusual delays or inspecting power consumption. In essence, any metric that

may indicate the target is behaving in an anomalous manner.

The fuzzing process can be divided in various phases:

1. Identify target: selecting a particular application or specific file or library within an

application.

2. Identify inputs: enumerating input vectors is pivotal to the success of fuzzing since

most exploitable vulnerabilities are caused by applications accepting and processing

unsanitized user input, or applying validation routines.

3. Generate fuzzed data: use predetermined values, mutate existing data or generate data

dynamically (automated process).

3.2. FUZZING 55

4. Execute fuzzed data: e.g. sending a data packet to the target, opening a file, launching

a target process (automated process).

5. Monitor for anomalous behavior: use any metric that is able to detect performance is

deviating from normal. This help the fuzzer pinpoint which attempt was the root cause.

6. Determine exploitability: after identifying a fault it may be necessary to determine if

the uncovered bug can be further exploited. Typically this is a manual process that

requires expert security knowledge.

Fuzzing also has some limitations, in particular with respect to the type of vulnerabilities

it can not detect. Some of these are:

• Access control flaws (e.g. checking correct user permissions).

• Poor design logic (e.g. allowing access without authentication since it is just a design

bug).

• Back doors.

• Memory corruption (if they do not lead to crashes, e.g. when they are handled by the

application by spawning a new process).

• Multistage vulnerabilities (fuzzing identifies individual flaws but cannot identify a multi-

vector attack that chains together minor vulnerabilities).

3.2.2. FUZZING METHODS

Within the fuzzing categories laid out in the first paragraphs of the Chapter various tech-

niques can be used. The choice of the best technique is completely dependent on the type of

target and investment and commitment available for the fuzzing effort.

In its most basic form fuzzing can simply be based on random inputs, which consists of

sending pseudo-random data at the target. It is the least effective method but can be used as

a quick once over program to determine if the target has extremely fragile code.

The next option is manual protocol mutation testing. As the name suggests in involves

no automated fuzzer. After loading up the target application the researcher simply enters in-

appropriate data in an attempt to crash the target or induce some undesirable behavior. This

practice is capable of leveraging past experience and gut feeling during the audit with very

minimal setup. In contrast, the obvious limitations pertain to the amount of labor involved.

56 3. BACKGROUND

As a consequence, manual mutation testing is slow and expensive. Nonetheless it is capa-

ble of uncovering more sophisticated flaws in the target, than the previous, but it is highly

dependent on the tester’s expertise and luck.

Another labor intensive system is based on pre-generated test cases. The first step in-

volves studying a particular specification to understand data structures and acceptable value

ranges. Then the researcher can create a set of hard coded packets or files that test bound-

ary conditions or violate the specification altogether. On the bright side the test cases can be

used to uniformly test multiple implementations of the same protocol or file format across

different targets. However fuzz testing is bound to be limited as there is no randomness in

the set. Once again this form of fuzzing is time consuming as it requires understanding the

specification and manually writing the test cases.

The first automated method is called mutation or brute force testing. The starting point is

a valid sample (or set of samples) of a protocol or data format which is automatically mutated.

The mutation can be performed with various degrees of granularity, for example the scale of

bits, bytes, words, etc. Mutation is a great early approach as it requires very little up front

research and it is straightforward to implement. Nevertheless it can be inefficient as many

CPU cycles are wasted on data that cannot be interpreted in the first place and is immediately

dropped. As an example, checksums are notoriously problematic for mutation based fuzzers.

Furthermore code coverage is dependent on the collection of known good packets or files that

are tested. Since most protocol specifications or file definitions are relatively complex it takes

numerous samples to get a decent coverage. However these challenges and limitation are

offset by the fact that the process can be fully automated.

Finally, the most sophisticated technique is automatic protocol generation testing, an

evolved version of brute force testing. Up front research is required to understand and prop-

erly interpret the protocol specification or file definition. The researcher shall then create

a grammar or model to describe the protocol. This model identifies portions of the packet

that are supposed to remain static, or are computed based on other fields, and others that

represent freely fuzzable variables. Thereafter the fuzzer dynamically parses these templates,

generates fuzzed data and sends the resulting packet or file to the target. The success of this

approach is dependent on a researcher’s ability to pinpoint those portions of the specification

that are most likely to lead to faults in the target application during parsing. The downside

is the time it takes to generate the grammar or definition. The fuzzer described in Chapter 4

belongs in this class.

3.2. FUZZING 57

3.2.3. FUZZER TYPES

Each target lends itself to its own class of fuzzer. The types of fuzzers available can be grouped

in two larger sets: local fuzzers and remote fuzzers. Intuitively, in local fuzzers both the target

and the fuzzer run on the same machine, while remote fuzzers involve listening on a network

interface.

LOCAL FUZZERS

Locals fuzzers can be further refined in relation to how they work. Command-line fuzzers tar-

get applications that receive input from command line arguments. In this situation fuzzing

consists of experimenting with malformed arguments. As described in Section 2.3 the origi-

nal fuzzers were of this type.

A similar variation is called environment variable fuzzers. For this type, the researcher

modifies the user-defined environment variables, for example $HOME or $PATH. Despite the

simplicity, this approach can succeed when the developers of the target application overlook

environment variables as user controllable values.

Another instance of local fuzzers are file format fuzzers. As already explained, the in-

put for the target includes a set of user-defined malformed files, which are consequently

launched using the target application in an attempt to cause anomalous behaviors. This

is one of the most common techniques to fuzz test proprietary application such as the Mi-

crosoft Office Suite or Adobe Reader.

REMOTE FUZZERS

Remote fuzzers make up the second major class of fuzzers, they target software that listens on

network interfaces. Remote fuzzers can be further discriminated in network protocol fuzzers,

web browser fuzzers and web application fuzzers.

Network protocol fuzzers are dedicated to network devices. Targets include web servers

and routers.

Web browsers are extremely complex applications that support a myriad of file formats

and protocols. Moreover they are ubiquitous and are often the most used application in a

computing device. From the perspective of an adversary they are also one of the easiest gate-

ways to victims due to the Internet connection. As a consequence they are an important

target for fuzzing. This subclass of fuzzers is predictably referred to as web browser fuzzers.

A similar target that, from the point of view of attackers, shares many of the same appeal-

ing attributes are web applications, such as Gmail or Google Docs. They have also grown

58 3. BACKGROUND

in complexity and regularly process user data, making them a suitable target for fuzzing.

Fuzzers for this targets are designated web application fuzzer.

OTHERS

In addition to remote and local fuzzers, there are novel approaches to fuzzing that belong in

their own class or are flexible enough to span over these two. In memory fuzzers are capable

of taking a snapshot of a running process and then inject faulty data into one the parsing

routines. Another example is fuzzer frameworks or fuzzer libraries. These are not traditional

fuzzers but instead applications that simplify the creation of fuzzers. Frameworks provide, at

the least, a syntax for representation of different types of data and can be readily adapted to

support a variety of targets. Section 3.3 describes a framework, Peach, which is leveraged to

fuzz a DLMS/COSEM smart meter.

3.2.4. DATA REPRESENTATION

Communication protocols define a set of rules to facilitate communication across devices. To

model a protocol in a fuzzer, or in a fuzzing framework, it is important to understand those

rules and what components they include as well as the most common types of protocols

available.

FIELDS

Protocol rules are defined in a specification document which describes how individual com-

ponents, know as fields, are separated, ordered and chosen. Protocol delimitation assumes

three forms: fixed length fields, variable length fields and delimited fields.

Fixed length fields, as the name suggests, predefine a set number of bytes to be used by

each field. These type of fields are common in headers of network protocols, such as IP, TCP

UDP, and DLMS. Fixed length fields are useful when a highly structured and repetitive format

is beneficial, which is the case for headers.

Variable length fields address opposite needs, when the length of the content is not pre-

dictable. This is often the case for media files or web pages. These fields provide protocol

developers the flexibility required to accommodate a broad spectrum of use cases. Typically,

variable length fields are prefixed by headers that indicate what type and size to expect.

Finally, protocols or file formats that use delimited fields are capable of storing data sep-

arated with specific delimiter characters. An example is HTML which uses angle brackets ‘<’

and ‘>’ to enclose the different tags.

3.2. FUZZING 59

Due to the ubiquity of protocols, many share common elements:

• Name value pairs.

• Block identifiers: values that identify the type of data being represented in binary data.

Might be followed by variable or fixed length data. Fuzzing can be used to identify

undocumented block identifiers that might accept additional data types, which in turn

can also be fuzzed.

• Block sizes: generally consist of data such as name-value pairs that are preceded by

one or more bytes detailing the type of field and the size of the variable length data that

follows.

• Checksums: some file formats embed checksums throughout the file to help applica-

tions identify data that might be corrupted or invalid. Although checksums are not a

security measure, they can impact fuzzing results as applications will generally abort

file processing in the event of incorrect checksums. Thereafter it is meaningful fuzzers

take the checksums into account and recalculate them based on the appropriate data.

TYPES

The simplest protocols are encoded in plain text and are designed to be readable by humans.

They generally are less efficient than binary due to higher memory consumption. For exam-

ple, FTP is a plain text protocol and since it is human readable can be handled manually using

command-line tools. The readability also makes it easier to debug than binary.

Binary protocols are more common, in particular when considering complex protocols.

They are optimized for inter-machine communication, not for humans, and thus are more

difficult to manually decode. Without a deep understanding of the protocol the packets will

not be particularly meaningful.

Network protocols are used in a myriad of applications, in particular for Internet commu-

nications. Examples include data transfer, routing, email, streaming media, instant messag-

ing, among others. Similarly to protocols, file formats also specify a well defined set of rules

for communicating with machines. Both network protocols and file formats can be encoded

in binary format or in plain text.

60 3. BACKGROUND

3.3. PEACH

Peach is an open-source fuzzing framework, capable of doing both generation and mutation

fuzzing. It has a modular architecture which not only encourages code reuse, but also makes

it easily extensible; hence one can easily write custom mutators, fixups and mutation strate-

gies. Moreover, it has features like agents, monitors and data analyzers, which make Peach a

comprehensive tool to carry out fuzzing. Additionally it allows for the configuration of dis-

tinct fuzzing runs with specific publishers, logging interface, unique state machines, etc.

Peach provides various benefits over writing a fuzzer from scratch. It makes development

notably faster as it abstracts the actual mutation of individual protocol or file format fields.

The user is only required to provide a model for the packets or files. Furthermore, for com-

mon protocols it may not even require programming skills, as many standard components

are already included. Extensibility and reusability are other relevant features of Peach. They

ease the process of improving and expanding already existing fuzzers and development of

common modules can be shared across multiple targets. Finally, in Peach it is possible to use

deterministic strategies that make test suites repeatable. The importance of repeatability can

not be overstated since it crucial to narrow down the root cause of failures.

3.3.1. PEACH PITS

Pits are at the core of Peach. They are the standard way to define a protocol packet or file

format. Pits are XML files and can contain the following top level elements or sections:

• General Configuration - references external modules, sets global attributes, imports

custom code, and configures the path of python modules.

• Data Modeling - expresses the data block structure of the fuzzed protocol or file format.

• State Modeling - defines the state machine used by the protocol under test.

• Agent - outlines the processes that are employed for monitoring, inspecting memory

consumption, attaching debuggers to the target, etc.

• Test configuration - specifies the configuration for state models and agents, loggers,

among others.

• Run setup - selects which tests are executed.

3.3. PEACH 61

All of these elements can be used individually in various contexts or combined as nec-

essary in different Pit files. The rest of the Section will delve deeper into how to write each

top level element. For detailed information, the official documentation [60] along with the

source code are the definitive sources.

3.3.2. DATA MODEL

Data models are the sections in the Peach Pit that describe the structure of the data, be it a

TCP packet, or a CSV file. This element may contain type information, data relationships,

static fields, etc.

Data models can be reused and referred by others. Referrals are analogous to inheritance

in object oriented programming since the sub-model assumes all the fields defined in its

super-model. This capability to inherit from other data models allows the user to break up

complex data definitions into more readable portions. When a data model refers another

one it copies all its elements, but they can also be individually overwritten to adapt to the

user needs.

Peach primarily uses four elements for representing data: strings, numbers, flags and

blobs.

String The string element defines a single or double byte string and is used to indicate text,

or other human readable data. In addition, it can be used to represent strings composed of

numbers with the use of the NumericalString hint. In this situations the Peach engine will

supplement the ordinary string mutators with all the numerical mutators. It is also possible

to specify a default value, whether it should be fuzzed, if it is a token1, among other options.

Number The Number elements defines a number of lengths 8, 16, 24, 32, or 64 bits. In

addition to the same options available for strings, it is also possible to define the endianness

(the byte order of a number) and the number representation (e.g. hexadecimal).

Flags Flags are a data container that aggregates individual flag elements, which represent

single bit fields. Individual flag elements can assume various formats (i.e. hexadecimal,

string, or literal), and span an arbitrary range of bits.

1In Peach, tokens are data elements that should always exist and must be identified before continuing with the

rest of the data block. If a token is not present Peach moves on to the next available block.

62 3. BACKGROUND

Blobs Blob elements are applicable when the user is unaware of the proper type definition

for a certain field. They should be used as a last resort as Peach can only perform generic

mutations such flipping bits or sliding specific data values through the blob, one byte at a

time.

Blocks In addition to the four essential elements just described, Peach supports additional,

more sophisticated elements, without which would not be possible to fuzz any non-trivial

protocol. Blocks work as a container for other elements. Similar to data models they can also

refer and be referred to. Furthermore they improve the readability of pit files since complex

data definitions can be separated in different elements or reused.

Choice Elements Choice elements are similar to switch statements in programming be-

cause they allow users to choose only one block from a set of possible blocks. The branch

condition is implicit in the order of the blocks since Peach will choose the first that matches

the supplied data.

Relations Relations are important elements in Peach as they express relationships between

data types. There are four types of supported relations: Size-of Relation, Count-of Relation,

Offset-of Relation and When Relation. Size-of and Count-of relations are relatively straight-

forward to understand. A Size-of relation will be replaced with the size of the specified data el-

ement in the format chosen by the user. This type of relationship is very common in the head-

ers of protocols which use variable-length fields. A Count-of relation counts the instances of a

certain element. The next relation, Offset-of relation, represents data with specific offsets be-

tween various elements. Finally, a When-relation evaluates a user provided python boolean

expression to determine if an element shall be used.

Transformers Transformers perform static modifications or encoding of its parent elements.

Transformers can be used in situations when it is desirable to fuzz an encrypted part of a

packet, for example. In such a context the user would define the plain text format with the

previously explained elements and then use a transformer to encrypt them.

Fixups Fixups are similar to transformers but instead operate on data retrieved from an

another element other than their parent. In other words, while transformers replace other

elements, fixups add extra elements. A typical use case are checksums.

3.3. PEACH 63

3.3.3. STATE MODEL

State models are the elements Peach provides users to manage the flow of data during fuzzing,

in other words, to describe the protocol state machine. They are made up of one or more state

elements as well as at least one action element.

Action As hinted by its name Action elements perform numerous actions in the parent state

model. The set of available actions can vary between Publishers (see Section 3.3.5) but com-

mon ones are sending outputs, receiving inputs or changing states. Possible child elements

of Action are data models but also sets of data from individual files.

State States group together multiple Actions which are run sequentially.

3.3.4. AGENT

One of the critical steps of fuzzing an application is detecting when error conditions occur.

Only after such events it is possible to investigate the root causes and determine whether they

are exploitable. The definition of errors in fuzzing is highly dependent on the nature of the

target and consequently so are the monitors. Anomalous behaviors range from high mem-

ory usage, to increased power consumption, or unusual latencies. Choosing which metrics to

oversee plays a vital role in the success of a fuzzer, agents and monitors are used for these pur-

poses. Peach includes a multitude of debuggers and other type of monitors across Windows,

Linux and OS X for both local and remote fuzzers.

The Agent is a top level element that aggregates the definition of one or more monitor

configurations. Agents are instances that work in tandem with the fuzzer to monitor the be-

havior of the target. They can can run locally or remotely and perform tasks as distinct as

intercepting network traffic, attach debuggers or detect pop up windows.

3.3.5. TEST

Test elements link together the previously defined state models and publishers to configure a

unique test case. In addition, test elements are used to exclude elements from being fuzzed,

select agents, and choose which mutation strategy to use.

Publishers Publishers are responsible for the I/O communication. Peach includes some

Publishers for TCP or HTTP communication but it is also possible to program custom pub-

64 3. BACKGROUND

lishers who implement instances of generic I/O actions such as initialize, finalize, send, re-

ceive, etc.

Strategies There is a myriad of strategies built-in Peach that define how the model is mu-

tated. The existing mutation strategies are divided in two main categories: sequential and

random.

As indicated by the name, sequential mutations are deterministic and progress from the

first to the last fuzzable field. Each field is fuzzed only once. Within this category there is a

distinction between linear (SequentialMutationStrategy), and random progress (Random

DeterministicMutationStrategy) . These approaches are similar with only the order

changing, which may allow the fuzzer to detect flaws earlier on the test suite.

On the other hand, random strategies are not finite and fuzz up to N elements per iter-

ation which allows for more flexibility and bigger coverage since combinations of fields are

also fuzzed. The downside is the running time. Therefore, a typical test starts with sequential

strategies and then proceeds to random ones. For reproducibility purposes, it is also possible

to specify a seed for the internal random number generator.

In this category there are three mutators: RandomMutationStrategy, SingleRandom-

MutationStrategy and DoubleRandomMutationStrategy. The only distinction between

the first and the others is the maximum number of elements that are fuzzed per iteration,

which is 7 instead of 1 or 2. Nonetheless for RandomMutationStrategy the maximum value

can be arbitrarily chosen. Furthermore, it is possible for developers to program their own

strategies.

3.3.6. RUN

The last top level element available in Peach is the run. At the most essential level, this el-

ement ties together one or more test elements into a run. Optionally it can also include a

logging procedure to store intermediary information about the run.

If a pit file contains multiple runs, they can be invoked from the command line by passing

their name to the peach runtime. The default name for a run is DefaultRun.

4
EFUZZ

Available literature [11–16] on smart grid security is largely focused on higher level designs or

guidelines that aim to raise awareness, and assist stakeholders implementing this complex

network in a relatively secure way since this is a nascent field.

In comparison, few researchers have contributed tools to evaluate devices already in the

market. In particular for smart meters, one of the exceptions that is freely available is Ter-

mineter [61]. Termineter is a python framework for security testing that supports ANSI C12.18

and C12.19, standards that are commonly used for smart metering in the United States. On

the commercial side ProtoPredator for Smart Meters (PP4SM) [62] enables fuzzing of ANSI

C12.18 meters through the optical interface.

However in the European market, ANSI C12.18 is not as popular. Instead, DLMS/COSEM

is the de facto communication protocol for smart metering application. Still, to the best of

the author’s knowledge, there are no similar applications, commercial or non-commercial.

To address this meaningful void in smart grid security a fuzzer was developed particularly

for DLMS/COSEM smart meters. The main purpose of the fuzzer, affectionately called eFuzz,

is to improve the security of smart meters, specifically the implementation of DLMS/COSEM.

This tool can complement security evaluations of smart meters as well as assist OEM devel-

opers prevent unsafe code from reaching the market. To expedite the development, eFuzz

uses Peach has the underlying framework.

65

66 4. EFUZZ

4.1. FUZZING REQUIREMENTS

To obtain successful results with fuzzing it is beneficial to follow a set of guidelines and best

practices. The summary that follows is based on [59] and adapted to the specificities of eFuzz.

Reproducibility and reusability Reproducibility and reusability are fundamental for a tool

that is meant to be expanded and used in different contexts. To uncover security flaws with

fuzzing tests, crashes need to be easily reproduced. Peach provides deterministic mutation

strategies exactly for this purpose. Moreover it is also possible to specify exactly which test

cases should be included in a run, providing complete control to the user.

Reusability is relevant when expanding eFuzz and adapting it for different targets.As will

be further explained in the subsequent sections eFuzz is a proof of concept application and

thus only covers a subset of the DLMS/COSEM complete specification. Thereafter it is real-

istic to expect further improvements will increase the coverage of the standard. To accom-

modate for this requirement the Peach Pit makes frequent use of inheritance to improve

readability and encourage code reuse. Furthermore, during the development of eFuzz vari-

ous custom self-contained modules were written which can be reused without modifications

even if the Pit significantly changes.

Process state and process depth State and depth relate to state machine that makes up the

target protocol. Virtually all protocols, DLMS/COSEM included, go through a set of stages

and transitions that determine their actions. States can be responsible for tasks such as au-

thenticate, commit operation, retrieve data, etc. Furthermore certain states are deeper in

the decision tree than others, and can only be reached through a specific path. For example,

retrieving data may only be possible after successful authentication. In fuzzing, these paths

must be transmitted to the tool, so the generated test cases can penetrate into deep states of

the protocol state machine.

In eFuzz this consideration for the protocol state machine is reflected in different ele-

ments. As an example some of the protocol fields, such as opening and closing flags are not

fuzzed, and both checksums and size fields are computed correctly.

Code coverage Another aspect that is influential to fuzzing quality is code coverage. Code

coverage describes the amount of states and transitions a fuzzer can reach and execute. The

concept is similar to the aforementioned process depth but it is closely correlated to the un-

derlying code responsible for the implementation of the protocol. In the context of this thesis,

4.2. COMPONENTS 67

access to the source code of the DLMS/COSEM was not a possibility, therefore it is not pos-

sible to measure the coverage provided by eFuzz. Nonetheless for the original developers,

a tool like eFuzz, can be optimized for coverage and used in the quality assurance efforts.

Flaws detected at such an early stage are less costly to correct, and do not end up in produc-

tion products where they may pose as a latent vulnerability.

Error detection Detecting errors is as important as causing them. Monitoring of the target

in fuzzing is crucial to detect bugs and to collect enough information for further investiga-

tions. However monitoring is often target specific and thus not always easily portable. This

difficulty is exacerbated when the targets are embedded systems, since collection of metrics

is often more challenging than in traditional software applications. eFuzz does not presume

any access to internal meter data, therefore it relies on responses to reference queries to as-

certain the health of the fuzzed devices.

4.2. COMPONENTS

As described in detail in Section 3.3, Peach is divided in different components according to

their task which are all orchestrated by a Pit file. In this context, the most relevant ones are the

“transformers”, “fixups” and “publishers”. Peach comes pre-installed with several instances

of each component. However, since embedded systems are not typical targets for fuzzing, it

was necessary to develop custom versions to communicate with the meter under test.

Figure 4.1 shows an bird’s-eye perspective of the aforementioned components as well as

their interactions and dependencies. The Figure makes clear that the Transformer, topic of

Section 4.2.1, is responsible for the Galois Counter Mode (GCM) cryptography operations.

The same also section includes more details on GCM. Furthermore, the Fixup, discussed in

Section 4.2.2 computes the FCS (frame check sequence) checksum. Next, the Publisher im-

plements the serial I/O operations that are used to communicate with the smart meter, via

an Infrared optical port. Section 4.2.3 further explains publishers. Finally the Pit, which is ex-

amined in Section 4.2.4, coordinates the three components and provides the DLMS/COSEM

model to fuzz the target.

4.2.1. TRANSFORMERS

Very succinctly, transformers perform static modifications or encoding of the parent ele-

ments. They can also behave bidirectionally, i.e. encoding and decoding. In eFuzz, a custom

68 4. EFUZZ

Peach

Pit
GCM FCS

Serial

Smart meter

Transformer Fixup

Publisher

IR adapter

Figure 4.1: Different components used in eFuzz/Peach and their relationship.

transformer was written to encrypt and decrypt the APDU payloads.

The CryptoTransformer implements the Transformer class. The class consists of two

functions and the constructor.

To allow for easy portability eFuzz includes a configuration file that allows user to quickly

add support for new devices or edit the existing ones without having a deep understanding

of Peach or DLMS/COSEM itself.

The constructor reads the configuration file, opens it, and reads the fields it needs to en-

crypt and decrypt the APDUs. The first is the CRYPTO_KEY, the cryptography key for GCM.

The second, AUTH_KEY, corresponds to the authorization key used for authentication. This

key is used to generate the tag that verifies the authenticity of the sending party, be it the

server or the client. The third and fourth fields are PC_SYSTEM_TITLE and METER_SYSTEM_-

TITLE. These are public values that identify the client and the server, respectively. Both

strings are used as part of the initialization vectors along with a frame counter to avoid re-

play attacks.

The first function RealEncode transform the plain text requests into the encrypted equiv-

alent. The function returns this representation.

The second function RealDecode does the opposite, after receiving a request from the

meter (server) decodes it so it can be interpreted by eFuzz. The return value is a hex string of

the plain text version of the original APDU.

As explained, the transformer is used to encrypt the mutated plain text to the final form.

In the current context, all necessary keys and passwords to encrypt and decrypt the text were

4.2. COMPONENTS 69

available. Presuming access to this data can be acceptable or not depending on the context.

For an “ordinary” attacker, it is not a realistic premise. Moreover, since every meter should be

deployed with its own keys, in case of key disclosure only one device would be compromised.

However, in the context of a security evaluation this is an acceptable assumption. For exam-

ple, a company hired to assess the security of the device would be given access to the keys

and perhaps the firmware source code. Then, they would use eFuzz in an initial approach to

autonomously detect possible points of interest. The respective report would serve as a guide

to security experts and complement a full featured source code review. Moreover smart me-

ter manufactures can also greatly benefit from eFuzz by integrating it in their test suites, thus

detecting flaws early in the product development process.

GALOIS COUNTER MODE

The Galois Counter Mode (GCM) of operation combined with the Advanced Encryption Sys-

tem (AES) block cipher forms the basis of encryption and authentication in DLMS/COSEM.

Due to its importance, this section provides a summary of AES-GCM properties and underly-

ing algorithm, based on the information provided in [3].

GCM considers two operations: authenticated encryption and authenticated decryption.

Figures 4.2 and 4.3 show examples of authenticated encryption and authenticated decryption

in GCM, respectively.

The first operation, authenticated encryption, receives four inputs:

1. A secret key, K , with the appropriate length for the block cipher. In DLMS/COSEM

GCM is used with AES-128, hence K should be 128 bits long.

2. An initialization vector IV , with an arbitrary length between 1 and 264 bits. For effi-

ciency reasons, the authors recommend the use 96-bit vectors. DLMS/COSEM abides

by this recommendation. This vector is generated by the party that is responsible for

computing the encrypted authentication. It is important to note that using the same

IV with two different messages encrypted by the same key voids the security proper-

ties [63].

3. A plain text, P , between 0 and 256 bits.

4. Additional authenticated data (AAD), A. This value is authenticated but not encrypted,

thus is not included in the output. When using authenticated encryption in DLMS/-

COSEM, A is the concatenation of the security control and the authentication key. The

70 4. EFUZZ

Figure 4.2: The authenticated decryption operation. This Figure depicts a simple case with only a single block of

additional authenticated data (labeled Auth Data 1) and two blocks of plain text. EK denotes the AES encryption

using the key K , multH stands for the multiplication in GF (2128) by the hash key H , and incr designates the

counter increment function. This Figure is originally from [3].

security control is a byte long value that indicates the level of security to use.

And produces two outputs:

1. A cipher text, C .

2. An authentication tag, T , with length between 0 and 128 bits. In DLMS/COSEM, the

length is set at 96 bits.

Authenticated decryption has similar inputs: K , IV , C , A, and T . And only one input,

either the plain text P , or a FAIL symbol that indicates the authentication process did not

succeed.

4.2. COMPONENTS 71

Figure 4.3: The authenticated decryption operation, considering the same case as in Figure 4.2. This Figure is

originally from [3].

According to [64], GCM provides assurances with respect to confidentiality of the data,

and authenticity of confidential or non-confidential data using the aforementioned hash

function H , defined over a Galois field. Furthermore GCM can detect both accidental modifi-

cations of data as well as intentional, unauthorized alterations. With respect to performance,

GCM is very efficient and can be run in parallel. Consequently, high-throughput implemen-

tations for both software and hardware are possible.

The AES-GCM variant used in DLMS/COSEM, combines AES counter mode for encryp-

tion, and the GHASH algorithm for authentication. GHASH is defined in Equation 4.1.

GHASH(H , A,C) = Xm+n+1 (4.1)

72 4. EFUZZ

In Equation 4.1, H represents the is the Hash Key, encrypted using the block cipher (AES).

A and C are the same as explained above. m and n are the total number of 128 bit blocks in

A and C , respectively. Note that the last block of A or C , can be smaller than 128 bits. Finally,

Xi for i between 0 and m +n +1 is defined as follows:

Xi =

8
>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>:

0 for i = 0

(Xi°1 © Ai) ·H for i = 1, . . . ,m °1

(Xm°1 © (A§
mk0128°v)) ·H for i = m

(Xi°1 ©Ci) ·H for i = m +1, . . . ,m +n °1

(Xm+n°1 © (C§
mk0128°u)) ·H for i = m +n

(Xm+n © (len(A)klen(C))) ·H for i = m +n +1

(4.2)

In Equation 4.2 v is the length, in bits, of the final block of A and u is the corresponding

length over C .

4.2.2. FIXUPS

Fixups, which are similar to transformers, operate on data retrieved from other elements to

generate new values. In other words, fixups are used to produce values algorithmically, based

on data from other fields. Therefore fixups are ideal for checksums. In fact one of the built-in

Peach fixups is dedicate to CRC32.

In eFuzz a fixup is used to determine the Header Frame check sequence (HFS) or the

Frame check sequence (FCS). Both HCS and FCS use the same code but are computed over a

different set of data.

Just like the publisher, it is a modular implementation based on the abstract Fixup class.

The only function that is required to be implemented in Fixup instances is fixup. A reference

implementation in C of the algorithm can be found in [65].

In eFuzz this function simply calls the C-to-Python translation of the reference imple-

mentation, with the content of the corresponding APDU. The APDU fields are passed on the

class constructor which unpacks the arguments and makes them available for the rest of the

class, in this case the only method that it includes.

As return value the Fixup functions outputs the four-byte sequence that makes up the

FCS or HCS.

4.2. COMPONENTS 73

4.2.3. PUBLISHERS

Finally, publishers are responsible for the I/O communication, in this case serial. eFuzz uses

the pySerial [66] library to enable cross-platform serial communication. In addition the in-

frared port, the meter used as target is equipped with a GSM radio. However since the latter

relies on a complex infrastructure outside the control of the author, it was deemed advan-

tageous to use the optical port. The physical connection between the meter and the laptop

running eFuzz was accomplished with an appropriate ANSI type-2 optical probe with a serial

USB interface.

More publishers can be added for different connections without any need for changes

in other parts of the code. The abstract publisher class defines a set of functions that must

be implemented by the different instances. One of the functions, initialize, which opens the

session, is called at the start of each test run. The counterpart, finalize closes the session.

In addition, the send function publishes arbitrary data, passed as a function argument, to

the open port. And finally, received reads and returns the received data. This function can

optionally be invoked with the expected number of bytes.

INITIALIZATION

When the serial publisher is first started it assumes the following settings for the serial con-

nection:

• Baud rate - 300 bits per second

• Byte size - Seven bits

• Parity - Even parity

• Stop bits - One stop bit

These settings are defined in the specification and were introduced in Section 3.1.4.

Since the target sometimes does not reply to requests it is important to specify timeouts.

These values were determined experimentally as a good balance between speed (to avoid

waiting too long when the meter does not response) and reliability (to avoid false errors).

All serial communication is retrieved byte by byte regardless of the total size of the mes-

sage. This aspect allows eFuzz to always receive the complete message regardless of the size.

Not trusting the size announced by the meter adds to the robustness of the program, as the

meter may be malfunctioning.

74 4. EFUZZ

For receiving a response the timeout is set at 0.2 seconds. There is no timeout to write a

byte to the port (i.e. the program waits until the bytes are written to the port). Eliminating

the write timeout allows slower machines to run the fuzzer, which could otherwise trigger

exceptions.

eFuzz uses a common function to read content from the serial. If the size is known be-

forehand it tries to read that size, however if it fails to acquire that specific amount of bytes

after multiple attempts it signals an error. Alternatively, if the size is unknown (which is the

case every time a fuzzed request is sent) it will try to read as many bytes as possible.

Due to the context of this project it is crucial to have a robust program, in particular, as

the target may not always respond as expected or may take more time than anticipated. In

addition, the software is meant to be used in different configurations, which reinforces the

same argument.

Direct communication follows a set of procedures, as shown in Figure 4.4. This diagram

was originally shown in Section 3.1.4, and is repeated here to aid the reader.

/? Device Address ! CR LF

/ XXX \W Ident CR LF

ACK 2 Z 2 CR LF ACK V Z Y CR LF

ACK 2 Z 2 CR LF Not accepted Mode Y

Metering HDLC protocol

W = 2

300 Bd 7E1

Z Bd 7E1

Z Bd 8N1

Client (HHU)

Server (Tariff Device)

Client

Server

Figure 4.4: Entering protocol mode E (HDLC)

The first step of direct communication is to send the 1st handshake, which the server

should acknowledge with the message shown in Figure 4.4.

However if the response does not match the expected string, eFuzz will try again after

1 second. If after that time, the response is still invalid, the process repeats itself with an

exponentially growing waiting time. After reaching 32 seconds, the waiting time no longer

increases.

4.2. COMPONENTS 75

The following message exchanges to enable normal mode and define HDLC parameters,

with SNRM messages. This follows closely the process with the exponential back off.

To establish the session, only one step remains: the AARQ and AARE. Until this point all

the messages were sent unencrypted. This is the first exchange that takes into account the

security policy, and the respective encryption and authentication keys.

If all three steps are successfully executed, the initialization process is complete.

DLMS APDUS

After the initialization phase it is possible to send APDUs to the target. The publisher imple-

ments the function used to send the bytes with the correct serial port configurations. Assem-

bling the actual request is done in the Pit file.

TERMINATING OR RESTARTING THE SESSION

To close the session there is also a specific procedure, based on the DISC type frame, which

the publisher implements.

When eFuzz requests the publisher to terminate the session, the publisher simply sends

this message and disconnects by closing the serial port.

Alternately, the publisher can be instructed to restart the session. This occurs when the

meter has reached a state where it is not responding properly. Such behavior is signaled to the

publisher which sends the disconnect message followed by the initial handshake, described

in section 4.2.3.

4.2.4. PIT

The Pit brings everything together to start the fuzz testing. As explained in section 3.3 one of

the most important elements of Peach Pit files are Data Models. eFuzz uses several of these

data abstraction layers to construct its APDUs and it does so in a way that allows for great

flexibility to swap components. The most general data mode is called hdlc-wrapper as it

provides the necessary data for the transport and data link layers. The remaining four Data

Models all inherit hdlc-wrapper.

eFuzz uses a modular approach to generate the fuzzed requests. As mentioned, the most

abstract data model is a common wrapper. The block incorporates the HLDC and the LLC

layers. Some of the fields are randomly chosen while others, such as size and checksums, are

computed deterministically. The checksum, also known as frame check sequence, is handled

by the custom fixup instance described in Section 4.2.2. The DLMS payload is declared as

76 4. EFUZZ

well, but the actual contents are not specified.

There are two distinct models describing the APDUs sent from the PC to the meter. The

first APDU inherits the common wrapper and only replaces the necessary fields. The request

is fuzzed at the plain text level and is thereafter encrypted, through a user-defined trans-

former. This APDU is modeled after a request that queries the meter for the local time and

date. The second APDU defined by eFuzz is only used as a reference. It is similar to the pre-

vious one but none of the fields are modified.

The two APDUs that correspond to the answers from the meter serve different purposes.

The response to the fuzzed request is read but disregarded. The sole purpose of the first APDU

is to provoke faults in the target therefore the response has little relevance. The following

response is used to assess the health of the meter. Since it corresponds to a reference request

can be compared with a reference response. If the received and expected data do not match,

eFuzz logs the event.

4.2.5. STATE MACHINE

The response of the meter to the invalid queries is not necessarily relevant as there is not

correct or incorrect response. More interesting is observing how they might affect the meter

behavior thereafter. Given the specificities of DLMS/COSEM two main ways were chosen to

do so (see Figure 4.5).

The first approach is to send a reference request after each fuzzed packet. If the response

matches what is expected, the meter is functioning properly. Otherwise, this behavior should

be signaled and stored for human inspection. Thereafter the process is repeated. An excep-

tion to this cycle occurs when the target does not respond as expected. In this situation the

session is restarted. Otherwise, the subsequent tests would not be evaluated by the meter

as it was already in a faulty situation. As an example, assume request i causes the meter to

reach an unknown state that rejects all further communication in the session. Then even if

request i+1 would normally trigger a new problem it would go unnoticed. The state machine

describing this behavior is show in Figure 4.5a.

The second approach is similar but the session is restarted every time a fuzzing attempt

terminates, as portrayed in Figure 4.5b.

These contrasting approaches may yield different results. The former is expected to de-

tect more memory leaks or other memory related problems. For example, a memory leak

triggered by an attack may not be immediately noticeable and only have consequences later

4.2. COMPONENTS 77

Initiate
session

start

Send fuzzed
request

Read
response

Read &
evaluate
response

Send
reference
request

Terminate
session

i � N

i < N

(a) Fuzzed and reference packets are all sent within the same session.

Initiate
session

start

Send fuzzed
request

Read
response

Send
reference
request

Read &
evaluate
response

Terminate
session

i < N

(b) The session is restarted after each fuzzing attempt.

Figure 4.5: State machines describing the two approaches used to fuzz the target device. On these diagrams i

indicates the current fuzzing iteration while N is the total number of tests available. In both situations the first

iteration uses a reference request to ensure the target is in a known state.

on. If the session was terminated in between, there would be a chance for the meter to clear

its state and recover from such a problem.

The state machines are modeled in Peach using StateModel elements. eFuzz defines two

78 4. EFUZZ

of such elements, one corresponding to the scenario described in Figure 4.5a and another

corresponding to Figure 4.5b.

4.2.6. TESTS AND RUNS

Test elements combine the state models and the publisher. Furthermore in eFuzz they pre-

vent the reference Data Models from being fuzzed. eFuzz defines six instances of Test el-

ements, in order to integrate different mutation strategies and the pair of state machines

available.

Within the six tests, there are three for each state machine. The difference between this

three pertains to the mutation strategies. One uses a RandomDeterministicMutationStrategy,

another a DoubleRandomMutationStrategy, and the last uses a RandomMutationStrategy

with up to seven fields mutated at a time. The differences between these strategies are outline

in Section 3.3.5.

The last top level element in eFuzz’s Pit file are two Run instances. Again each run corre-

spond to one state machine. These elements are used to invoke the just described respective

tests. Moreover logging configurations, important for debugging and post fuzzing investiga-

tions, are also defined in these elements.

4.3. POST PROCESSING

eFuzz gathers data about all the test cases it executes, which results in rather long log files.

Therefore an auxiliary routine, named Reporter, was written to filter such files and present

only the situations where the target behave unexpectedly. The user can then use this file as

main reference, accessing the original complete traffic if necessary.

To detect whether a certain message exchange is valid or not the Reporter looks for a cor-

rectly decrypted APDU in the reference response for each sequence of four messages. The se-

quence corresponds to a complete state machine cycle, i.e. fuzzed request, fuzzed response,

reference request, reference response. If such strings can not be found then the meter re-

sponded with a different message which is then copied to the error report.

The resulting report can be used by an expert to assist in the post-fuzzing operations.

Depending on the specific context, there are various possibilities for what to do with the hy-

pothetical eFuzz findings. One option is to report the bug in its current state, for which case

no more effort from the user of the fuzzer is required. Alternatively, the user go one step

further and try to determine exactly what situation triggered the error. This requires further

4.3. POST PROCESSING 79

investigation and experimentation to pinpoint the exact cause. If the source code is available,

it might be fruitful to inspect the corresponding code, as well. After identifying the root cause

and determining it is exploitable, the following phase is to actually write the exploit.

The process of writing an exploit is intrinsically linked to the target and its specificities,

even more for embedded systems. Nonetheless, it typically relies on manipulating memory

values. At this point, it would probably be necessary to open the meter and try to gain access

to such low level memory information in order to proceed.

The readers interested in this process are referred to [67] which details how to develop an

exploit based on a vulnerability discovered through fuzzing with Peach.

5
RESULTS & ANALYSIS

To assess the performance of eFuzz, this Chapter presents the results obtained during various

experimental procedures. Although the main goal of eFuzz is to provide a versatile and easily

expandable application to fuzz DLMS/COSEM smart meters, it is, nonetheless, illustrative to

study preliminary results obtained during the development of said tool.

In general, one of the major goals of fuzzing is to provoke crashes or some other type of

malfunction in the target. In traditional software applications, where this technique origi-

nated, detecting anomalous behavior is relatively straightforward. For example, if the target

is a web browser several metrics can be easily monitored. For example, applications such

as WinDbg, a post-mortem debugger for Windows, can be used. Memory consumption and

CPU usage are other variables that can be observed to indicate if the target has been affected

by the fuzz testing. Furthermore, a Peach agent can be configured to kill and restart the pro-

cess if certain conditions are met. This is particularly beneficial for long running fuzzing

sessions, since it makes the tests completely autonomous.

In embedded systems, such as smart meters, those metrics are harder to observe. One

reason is that embedded systems are a much more heterogeneous class of devices. While in

software applications there is a shared operating system layer that the fuzzer can inquire to

monitor the target, for embedded devices the best way to handle target errors varies widely.

Certain devices possess JTAG ports for debugging purposes which can be used for monitoring

purposes. In other situations using optical sensors to monitor the status of certain LEDs is

81

82 5. RESULTS & ANALYSIS

the preferred method. Alternatively, studying the latency of the target response may be the

most fitting procedure.

In eFuzz, like in any other fuzzer, which aspects to monitor is crucial to its success. Based

on the requirements explained in Section 4.1, the monitoring technique has to respect a few

restrictions:

1. No physical modification of the target. For the identified attack scenarios it is not rea-

sonable to assume access to the meter internals. In particular, home owners, are not

likely to violate the meter seals as doing so becomes immediately evident and may lead

to direct penalizations. Furthermore physical modifications require personal access to

the meter which excludes remote attack vectors and are not scalable.

2. The monitored variable must be persistent across devices. Given the goals of eFuzz

that pertain to portability it is crucial that the chosen metric is available in all meters,

regardless of the communication interface it is used.

3. It must be simple to determine success or failure. In other words, it must be evident and

unambiguous whether the target is working properly or not. Imposing this rule may be

too restrictive with respect to the monitors available. However, for a first approach to

meter fuzzing, like eFuzz, it is advantageous to have a simple test to check the health of

the target.

Given the outlined selection criteria, it became evident that using a reference query, ref-

erence response message exchange would be an appropriate choice. It does not require phys-

ical access or alteration of the target since it only consists of protocol message exchange. In

addition, it is not specific to the current target. Instead, it is part of the DLMS/COSEM spec-

ification and thus is present across all meters that implement the standard. And finally it is

trivial to check for success or failure, either the response matches the reference or it does not.

The reference request that is used is requesting the meter’s date and time. This can be

retrieved with a simple, and short, dialog with the target that can be easily checked. There-

fore, the results, shown in Section 5.1, reflect the number of times the meter did not respond

correctly to the reference query.

5.1. DETECTION PERFORMANCE OF EFUZZ

This Section presents the amount of unexpected behaviors provoked in the target. The fuzzing

procedure follows the state machines shown in Figure 5.1. The Figure was originally featured

5.1. DETECTION PERFORMANCE OF EFUZZ 83

in Section 4.2.5 but it is repeated here for convenience.

Initiate
session

start

Send fuzzed
request

Read
response

Read &
evaluate
response

Send
reference
request

Terminate
session

i � N

i < N

(a) Fuzzed and reference packets are all sent within the same session.

Initiate
session

start

Send fuzzed
request

Read
response

Send
reference
request

Read &
evaluate
response

Terminate
session

i < N

(b) The session is restarted after each fuzzing attempt.

Figure 5.1: State machines describing the two approaches used to fuzz the target device. On these diagrams i

indicates the current fuzzing iteration while N is the total number of tests available. In both situations the first

iteration uses a reference request to ensure the target is in a known state.

As shown, after sending each fuzzed request, eFuzz sends a reference query and compares

the result with the correct response. If these values do not match, the dialog is stored as an

84 5. RESULTS & ANALYSIS

unexpected behavior and the session is restarted before continuing. The reference request

consists of asking the meter for its internal time and date.

5.1.1. RESULTS

Due to the detail used to model the protocol, the complete test suite of eFuzz when using

the sequential strategies includes 54727 distinct cases. Running all tests requires around 7

days. However to be able to obtain data for different configurations, within a reasonable time

frame, a subset of 500 tests was used. The subset completes within approximately 3 hours.

Table 5.1 shows the number of unexpected behaviors induced with three distinct strate-

gies. Sequential Random refers to the aforementioned RandomDeterministicMutation-

Strategy class. The other two use random strategies, where n specifies the maximum num-

ber of fields that are fuzzed per iteration.

Mutation strategy Number of unexpected responses

Sequential Random 40

Random n = 2 21

Random n = 7 10

Table 5.1: Overview of the number of unexpected responses caused by eFuzz discriminated by strategy. Variable

n indicates the maximum number of fields that are mutated in each iteration. In the sequential strategy this value

is by definition one.

The amount of invalid responses is significant, in particular considering the short amount

of time it required. The sequential strategy was the most fruitful, reinforcing the point made

above that this strategy should be used first.

With respect to the random strategies there are several possible explanations for the lower

number of unexpected responses. First, in these runs Peach includes iterations where it does

not mutate any of the fields. Therefore it sends two reference requests consecutively, which

results in a “wasted” iteration. A second reason, is that by increasing the number of invalid

APDU fields per request, it is more likely that at least one of the boundary checks included in

the code is triggered, causing the meter to ignore the request. This also helps explain why the

increase in n results in less invalid responses.

In addition to the quantity, it is also insightful to understand what the meter response

actually was. This information is condensed in Table 5.2. The responses are separated by

5.2. DISCUSSION 85

Mutation Strategy Exception-response Frame Reject Other

Sequential Random 50% 50% 0%

Random n = 2 57% 33% 10%

Random n = 7 50% 40% 10%

Table 5.2: Distribution of the unexpected meter responses by cause.

exception-response, frame reject (specific DLMS/COSEM messages) or other.

The Exception-Response APDU is an optional APDU sent by the COSEM server appli-

cation layer that indicates to the client application layer the service requested could not be

processed. Particularly for the case shown, the request was not processed as access to the

service was not allowed. Alternatively the server can simply discard the message without

sending this APDU.

The Frame Reject (FRMR) is used to report one of various conditions occurred and re-

transmission of the identical frame can not correct it. The situations that may trigger an

FRMR include the receipt of an undefined or not implemented command or response, re-

ceipt of a frame that is too long, receipt of an invalid frame, or receipt of a frame containing a

field that is not allowed.

Categorizing the meter responses shows a clear majority of exception-response and

frame-reject APDUs. These messages are used to signal errors and should not occur in re-

sponse to valid requests, which suggests one of the previous messages perturbed the internal

state of the server and has caused undesirable side effects.

5.2. DISCUSSION

DLMS/COSEM is a complex protocol, and consequently so is its implementation. In man-

ual evaluations such as source code reviews, it is very costly to inspect the complete code.

Furthermore, considering all possible combinations of inputs that lead to different execution

paths is virtually impossible for humans, due to its sheer complexity. In comparison, fuzzing

is an appropriate technique for such operations. Fuzzing is completely automated and often

consists of thousands of tests cases, providing excellent coverage.

On the other hand, fuzzing is not a security panacea. As explained in Section 3.2, fuzzing

is not capable of detecting certain flaws with security implications, such as check for correct

user permissions, detect poor design logic, discovering back doors, identify memory corrup-

86 5. RESULTS & ANALYSIS

tion (unless it leads to crashes) or expose multistage vulnerabilities. In fact, all of these issues

are more likely to be exposed by human inspections.

The results presented in Section 5.1 indicate this preliminary work exposes bugs that

would probably go unnoticed otherwise. Just like in traditional software applications, fuzzing

is a good technique to test proprietary code. The approach used can generate combinations

of inputs that would not be possible by a human tester, as she would be more inclined to

follow the same assumptions as the original developers.

A series of experiments performed on the target were able to provoke between 10 and

40 incorrect responses, depending on the mutation strategy selected, in a short period of

time. Although with this approach it is not possible to automatically determine if these bugs

have security consequences, it pinpoints areas of interest that a human expert can focus on.

Despite the high bug count it is expected that the underlying code has a lower number. The

overestimation happens because the same bugs are very likely triggered more than once by

the fuzzer, in different test cases. Nevertheless, it is remarkable that eFuzz was able to cause

mischief in a commercial product, despite the short time allocated for testing.

Regardless of its success, this method is not meant to replace professional human audi-

tors, or OEM developers, but instead complement them. The added value is accomplished by

means of an automated tool that exhaustively finds bugs with respect to diverse input com-

binations. Nonetheless, note that manual inspection by a human expert cannot achieve the

same level of testing within an acceptable time frame.

To better understand the complementarity of both approaches, the results of eFuzz and

an actual (manual) security evaluation are compared. Both studies used exactly the same

smart meter model. Table 5.3 compares the two with respect to four different parameters.

One of the main advantages of fuzzing is its automated nature. Automation makes it

faster, hours or days instead of weeks, than manual evaluations and requires little human su-

pervision. On the other hand eFuzz has a very specific coverage while a manual approach

can be much broader and detect classes of vulnerabilities that a fuzzer can not, for example if

keys are stored securely or if permissions are properly enforced. As previously shown eFuzz is

able to detect a large quantity of findings while manual inspections are typically more selec-

tive. This disparity is reflected in the quality of each discovery. Issues uncovered by fuzzing

need to be inspected by an expert to determine if they constitute a real security threat.

5.2. DISCUSSION 87

Parameter eFuzz Manual

Time Hours/few days Weeks

Coverage DLMS/COSEM logical

attacks

Physical attacks. Weaknesses in

configurations, key storage,

retrieval.

Quantity findings High Low

Quality findings Low High

Table 5.3: Comparison of automated and non-automated approaches to detecting smart meter vulnerabilities.

6
CONCLUSIONS

6.1. SUMMARY

The normal functioning of society depends heavily on the availability of certain resources.

Some of the most essential ones are delivered through large and complex infrastructures,

often referred to as critical, due to their vitality. One of the most fundamental resources to

the economic tissue and individual’s life is energy, in particular electricity.

The electricity grid is of particular importance, due to the structural evolution it is cur-

rently undergoing. The investments in the grid will provide networking capabilities to all its

constituents, as described in Chapter 3. For example, the ability to remotely monitor and

control all grid activities will become a reality.

With the advent of ubiquitous communication competences in smart grid devices, such

as smart meters, a large emphasis has been directed attention to the security of such devices.

Due to the new abilities, numerous adversaries that have paid little attention to devices such

as smart meters, have now reason to study them. In particular, with the ongoing escalation of

cyberwarfare activities, the narrative to secure critical infrastructures has gained a new sense

of urgency.

One of the most crucial components in the smart grid are the smart meters. In Europe,

these devices predominantly rely on the DLMS/COSEM protocol to communicate.

The Device Language Message Specification (DLMS) consists of a general concept for ab-

stract modeling of communication entities. On top of this, the COmpanion Specification for

89

90 6. CONCLUSIONS

Energy Metering (COSEM) provides a set of standards that define the rules for data exchange

between smart grid devices, such as an energy meter and a data accumulator. Together they

provide several features, such as (a) an object model to view and access the different function-

alities of a meter, (b) an identification system for all data, (c) a method for communicating

with the model and (d) a transport layer to accommodate the information flows between the

meter and other devices. The protocol is based on the Open System Interconnection (OSI)

seven-layer model. However in the case of smart meters they are practically collapsed in four

- physical, data link, transport and application layers.

DLMS/COSEM is complex protocol and that complexity is reflected in its implementa-

tion. Two consequences of writing complex code are, it is likely to have bugs (some with

security implications) and it is difficult to manually review it.

One technique that is widely used to find vulnerabilities in communication protocols is

fuzzing. It is an automated operations that constantly feeds the target, in this case a smart

meter, with malformed data to induce malfunctions. To detect these erroneous actions,

fuzzing includes monitoring activities like memory consumption inspections, thrown excep-

tions, crashes or other unexpected behaviors. Due to its automated nature, it can cover a

much wider gamut of inputs, mitigating the difficulties associated with the complexity of the

underlying code base.

This thesis proposes a fuzzer, based on the Peach fuzzing framework, for DLMS/COSEM

electricity meters, with the goal of testing the security of said devices, specifically their im-

plementation of the protocol.

It was observed that using Peach as the base for eFuzz was a beneficial decision as it re-

duced the development time. Nonetheless Peach was designed for software applications and

most built-in features reflect that. For example the ability to attach a debugger or other types

of real-time monitors to the target is not trivial in embedded systems but it is the principal

way for Peach to detect successful attacks. Moreover most of pre-installed components, such

as publishers, do not include typical features required to interact with embedded systems, for

example serial communication. Due to this limitation, users interested in testing these sys-

tems need to program the components themselves, which makes the process more arduous.

The fuzzer, described in Chapter 4, works autonomously by generating invalid or mal-

formed DLMS/COSEM packets derived from a model of the standard. By constantly sending

these requests to the meter followed by a reference query, one can assess if the fuzzed data

was able to interfere with the normal behavior of the target.

6.2. CONTRIBUTIONS 91

In the preliminary tests with a electricity meter currently in the market using a direct

optical interface, eFuzz was able to perturb the correct functioning of the target. In less than

3 hours, the tests revealed between 10 and 40 issues depending on the mutation strategy.

The majority of the invalid responses indicated that the client was trying to access a service

that was not allowed or that the request was malformed, which suggests previous messages

caused the meter to reach an invalid state.

Comparing the aforementioned results with the traditional techniques showed that the

approaches are complementary. The security evaluation performed by security experts un-

covered weaknesses related to the unencrypted storage of keys, proper enforcement of user

permissions, among others which are not detectable with fuzzing efforts. However, it did not

report any vulnerabilities in the code responsible for implementation of DLMS/COSEM, area

where eFuzz was able to provoke multiple errors.

The obtained results show that fuzzing approach is an efficient way to detect flaws in

the protocol implementation given the limited human effort it requires. Additionally, the

proposed application for fuzzing embedded systems, eFuzz, provides researchers the capa-

bility to apply fuzzing techniques as a vital step for the evaluation of smart meters and other

networked embedded systems. Ultimately, eFuzz will hopefully make smart meter commu-

nications harder to penetrate, and consequently elevate the bar for the security of critical

infrastructures.

6.2. CONTRIBUTIONS

This thesis contributes eFuzz, a fuzzing tool that includes a model of a subset of DLMS/COSEM

as well as various custom modules to ensure all communications, checksums and cryptogra-

phy operations are computed properly.

eFuzz can be used by security experts to assist in the evaluation of smart meters that

implement this specific communication protocol. It provides a low cost method to uncover

potential vulnerabilities in the target’s implementation of the complex standard. In addition,

it can also prove beneficial for OEM developers as a quality control aid. By incorporating

eFuzz in the testing procedures, it can uncover bugs long before they reach their customers.

At this initial phase, correcting errors has a marginal cost.

In the introductory Chapter 1, three research questions were introduced as the guiding

principles for the thesis work. The answers to these questions are implicit in the content of

the previous chapters, notably 4 and 5. Nonetheless, it is worthwhile to formally and directly

92 6. CONCLUSIONS

address them, which will be the purpose of the following paragraphs.

Research Question 1. Is it feasible to develop an automated tool with the goal of aiding se-

curity assessments of DLMS/COSEM meters, with sufficient flexibility to be easily adapted and

expanded to different devices?

eFuzz shows that efforts to develop an automated flexible tool are indeed feasible. Due

to the limited hardware available it was not possible to test the fuzzer across various smart

meters. However, test runs were successfully performed in two meters of the same model,

but with different configurations.

Research Question 2. Can such a tool be capable of uncovering vulnerabilities in said devices,

within a time frame that is competitive with the conventional approach?

Preliminary experiments on a commercially deployed electricity meter have shown that

eFuzz is capable of inducing errors. Moreover, three hours of testing were sufficient, to pro-

voke up to forty error instances. The promising results show that an automated tool can, in

fact, uncover vulnerabilities within a very short time frame. Comparing the results with a

non-automated security evaluation further reinforced the competitiveness of the proposed

approach.

Research Question 3. In comparison with manual approaches, are the sets of vulnerabilities

uncovered be each, largely overlapping or largely disjoint?

An interesting conclusion drawn from Chapter 5 is that fuzzing and human security eval-

uations expose different classes of bugs. Therefore tools such as eFuzz should not be used

as replacement to manual efforts, instead they are indicated to assist said efforts amplify the

quality and breath of the security experts’ findings. In summary, comparing the classes of

vulnerabilities uncovered by manual and automated approaches results in mainly disjoint

sets.

6.3. FUTURE WORK

As alluded to previously, there is ample room for improvements in eFuzz.

In its current version only a small part of the DLMS/COSEM is modeled, thus one of the

most obvious improvements is to expand the coverage of the protocol and consequently of

the underlying code.

6.3. FUTURE WORK 93

Another improvement left for future research is considering more nuanced parameters to

detect erroneous meter behaviors. Currently a binary comparison is used to check the health

of the meter. Considering other variables, such as the latency of the responses, the power

consumption, would improve the quality of the monitoring. Yet another possibility would be

to open the device and inspect signals closer to the processing units. The downside would be

a loss in portability as different meters are likely to have different internal architectures.

An additional possible advancement is exploring alternative communication interfaces,

notably GSM, since not all meters are equipped with an optical port. This capability would

permit fuzzing through different physical layers and would also enable hybrid test suites. For

example, use a direct physical connection to send the fuzzed requests, and the GSM connec-

tion to assess the well-being of the target.

At this time, the main fuzzers readily available are not optimized for embedded systems.

As networking capabilities are introduced to a growing number of micro-controller based

devices, it is fundamental to ensure security is preserved. Fuzzing can play a crucial role in

this task, but first it needs to expand its capabilities to these new classes of targets. Therefore,

the last suggestion is to investigate improvements that may allow better fuzzing of embedded

systems.

A
PAPER SUBMITTED TO SEGS 2014

In the context of this thesis, a paper was submitted to SEGS 2014: Smart Energy Grid Security

Workshop, and is here reproduced. The document was written together with Zekeriya Erkin

and Christian Doerr from Delft University of Technology, Raymond Hallie from the European

Network for Cyber Security and Gerrit van der Bij from Riscure.

95

eFuzz: A fuzzer for DLMS/COSEM electricity meters

Henrique Dantas, Zekeriya Erkin, and
Christian Doerr

Cyber Security Group, Depart. of Intelligent
Systems

Delft University of Technology
Mekelweg 4, 2628 CD, Delft, Netherlands

hndantas@gmail.com,{z.erkin,
c.doerr}@tudelft.nl

Raymond Hallie
European Network for Cyber Security (ENCS)

The Hague, Netherlands
raymond.hallie@encs.eu

Gerrit van der Bij
Riscure BV

Delft, Netherlands
vanderbij@riscure.com

ABSTRACT
Smart grids enable new functionalities like remote and micro
management and consequently, provide increased e�ciency,
easy management and e↵ectiveness of the entire power grid
infrastructure. In order to achieve this, smart meters are at-
tached to the communication network, collecting fine-granular
data. Unfortunately, as the smart meters are limited de-
vices connected to the network and running software, they
also make the whole smart grid more vulnerable than the
traditional grids in term of software problems and even pos-
sible cyber attacks. In this paper, we work towards an in-
creased software security of smart metering devices and pro-
pose a fuzzing framework, eFuzz, built on the generic fuzzing
framework Peach to detect software problems. eFuzz tests
smart metering devices based on the communication proto-
col DLMS/COSEM, the standard protocol used in Europe,
for possible faults. Our experiments prove the e↵ectiveness
of using an automated fuzzing framework compared to re-
source demanding, human made software protocol inspec-
tions. As an example, eFuzz detected between 10 and 40
bugs in di↵erent configurations in less than 3 hours while
a manual inspection takes weeks. We also investigate the
quality of the eFuzz results by comparing with the tradi-
tional non-automated evaluation of the same device with re-
spect to scope and e�ciency. Our analysis shows that eFuzz
is a powerful tool for security inspections for smart meters,
and embedded systems in general.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Verifi-
cation; D.2.5 [Software Engineering]: Testing and De-
bugging

Keywords
Automated Testing, Fuzz Testing, Software Vulnerabilities

General Terms
Security

1. INTRODUCTION
Critical infrastructures are essential assets to the correct
functioning of the economy and society. One of these in-
frastructures is the energy grid, which is one of the most
fundamental and visible commodities as any disruption in
its supply can have profound e↵ects on virtually everything
else. Currently, the energy grid is undergoing significant
transformation in the direction of smart grids that will en-
able a new range of applications, including but not limited
to fine grained tari↵s to decrease consumption fluxes, remote
access to metering data and better management of micro-
generation.

The evolution in the energy sector has undoubtedly potential
to improve the way society makes use of electricity however,
it also opens the door to a new class of threats. As the
current devices gain networking capabilities and the ability
to execute remote commands they also become more ex-
posed and more attractive to adversaries. Therefore, it is
important to perform security audits of the di↵erent grid
components.

Particularly, networked controllable electricity meters, typ-
ically referred to as smart meters, are a fundamental part
of the smart grid. Smart meters are situated in each house-
hold, hence are broadly available and can be easily probed
by many people. As the physical protection is limited, it is
safe to assume that curious customers will inspect the de-
vices to try and understand how they work. Furthermore,
its communication capabilities would also enable an adver-
sary of gaining control remotely. If a vulnerability is found
that, for example, allows tampering with the reported us-
age, it can have important repercussions. The impact will be
significant if the vulnerabilities are published online, thus en-
dangering a large installation base of meters to be exploited.
Since the smart meters are relatively new and there is little

96 A. PAPER SUBMITTED TO SEGS 2014

standardization with respect to security, many di↵erent ven-
dors develop their own software, and we envision that smart
meter software are vulnerable to attacks.

Some of the plausible attack scenarios are as follows.

• Disclosure of sensitive data - Vulnerabilities in the
smart meter that result in the leakage of consump-
tion information can be used to ascertain if the home
or shop owners are away.

• Meter tampering - Attackers may find desirable to in-
flate the utility bill of victims or unlawfully reduce
their own.

• Pivoting - Penetration of meter defenses can be used
for reconnaissance purposes or exploitation of other
parts of the system. If the meter is connected to a
domestic network the hacker could use the meter to
penetrate other devices in the house. Or, more cre-
atively, be used to make free calls or grant Internet
connectivity via the GSM connection that is common
in smart meters. Alternatively it can reveal valuable
information about sensitive parts of the smart grid net-
work.

• Remote command execution - If an adversary gains
complete access to a meter, it may be used to extort
individual victims, similarly to ramsonware. Meters
could be switched o↵, or internal security mechanisms
be silently disabled so the electric installation or the
meter itself would be damaged.

• Grid destabilization - Given the remote accessibility of
smart meters, an attacker could gain controller of hun-
dreds or thousands of identical metering devices and
exploit vulnerabilities to simultaneously switch heavy
loads such as electric cars on and o↵, with the intent
to destabilize and bring down the power grid.

One technique that is widely used to find vulnerabilities in
proprietary software is fuzzing. Very succinctly, it consists
of trying numerous combinations of inputs, violating pro-
tocol or file format rules, to see how the target responds to
unexpected requests. The simplest way to perform a fuzzing
attack is manually. First one develops a crude version of a
protocol client and then chooses a set of values the tester be-
lieves may cause software faults in the target system. How-
ever, this approach has various limitations: it is hard to fuzz
complex protocols, reuse of code is not always possible, and
the developers have to focus on more than the target pro-
tocol. To cope with such limitations, fuzzing frameworks
have been developed, such as SPIKE [1], SNOOZE [2] and
Peach [7].

These fuzzing frameworks typically target software appli-
cations running on traditional computing platforms, such
as desktops. To monitor the working state of the targeted
software, they might for example attach debuggers to the
process or inspect memory consumption. Unfortunately, in
embedded systems like smart meters, these capabilities are
not always available and the fuzzing framework is usually
physically separated from the investigated target. There-
fore, to fuzz an embedded system like a smart meter, it is

necessary to use a framework that supports the communica-
tion protocols available in the target and that allows specific
types of monitoring developed for limited devices.

In this paper, we address this void and present a new fuzzing
framework, developed particularly for smart meters. The
main purpose of eFuzz is to investigate vulnerabilities in
smart meter communication protocols. In the European
market, DLMS/COSEM is the de facto communication pro-
tocol for smart metering application, hence we present this
protocol as a use case in this paper to conduct our tests.

We provide an abstract, customizable and versatile fuzzing
framework for smart meters that is not restricted to any spe-
cific device. When evaluating the functionality and e↵ective-
ness of our framework, we present the results of a vulnera-
bility test performed on a smart meter currently deployed in
the Netherlands. The tests conducted on this specific smart
meter are also compared with traditional approach, analysis
made by a human inspector, and the results are given.

The outline of this paper is as follows: Section 2 highlights
relevant related work. Section 3 introduces fundamentals of
fuzzing, the DLMS/COSEM communication protocol and
our proposed prototype eFuzz. Section 4 evaluates the per-
formance of our automated fuzzing approach and discusses
the e↵ectiveness of di↵erent fuzzing strategies. Finally, we
conclude in Section 5.

2. RELATED WORK
Fuzzing was originally developed at the University of Wis-
consin in 1988 [15] and as one of the first applications,
command-line UNIX programs were tested [16]. The suc-
cess of this technique was astonishing as this approach in-
duced crashes in 25 to 33% of test cases. Since then, fuzzing
has grown in sophistication and scope. Recent literature de-
scribes several techniques such as taint analysis that aim to
increase the e�ciency of fuzzers [3, 4, 20].

In essence, this technique first marks untrusted data (e.g.
input forms) as tainted. Then it tracks its propagation and
which variables are a↵ected by it during runtime. This mark
and track method exposes the flows between data sources
and sinks. Such data progress information can be used to
identify the most relevant paths of execution, which can later
be used to improve the e�ciency of the fuzzer. Another im-
portant component is being able to monitor faults caused by
the fuzzer. However, such techniques, in the current state,
can not be readily applied in embedded systems. For exam-
ple, in these systems it is not always possible to have access
to the binaries running on the target.

With the prominence of the Internet of Things, there is a
growing need to evaluate the security of embedded devices.
These systems assume numerous shapes and sizes and sup-
port a myriad of protocols and interfaces. Particularly for
fuzzing, the heterogeneity of targets significantly increases
the cost of tests as fuzzers needs to be rewritten to support
the specific protocols and interfaces available on the device
under test. Currently the most common way to deal with
such di�culties is to use dedicated hardware to enable com-
patibility, both on the interface and protocol. [5, 17] feature
various examples of fuzzing setups.

97

Currently, available literature [11, 13, 18, 9, 8, 21] on smart
grid security is focused on higher level designs or guidelines
that aim to raise awareness and assist stakeholders imple-
menting this complex network in a relatively secure way
since this is a nascent field.

In comparison, few researchers have contributed tools to
evaluate devices already in the market. In particular for
smart meters, one of the exceptions that is freely available
is Termineter [12]. Termineter is a python framework for se-
curity testing that supports ANSI C12.18 and C12.19, stan-
dards that are commonly used for smart metering in the
United States. On the commercial side ProtoPredator for
Smart Meters (PP4SM) [14] enables fuzzing of ANSI C12.18
meters through the optical interface.

For DLMS/COSEM, the authors are not aware of any simi-
lar applications, commercial or non-commercial, further re-
inforcing the need for a tool such as eFuzz.

3. eFuzz: A FUZZER FRAMEWORK FOR
SMART METERS

This section first provides a high level overview of fuzzing
frameworks. After a description the DLMS/COSEM proto-
col used in European smart meters, we present details on
eFuzz and its fuzzing approach.

3.1 Fuzzing
Fuzz testing is a security testing technique used to detect
vulnerabilities in software applications or network devices.
It is an automated process that feeds the target with mal-
formed data to induce malfunctions. To detect these er-
roneous actions, fuzzing includes monitored activities like
memory consumption inspections, thrown exceptions, crashes
or other unexpected behaviors.

Fuzzing is one of the premier techniques to uncover vulnera-
bilities through testing [3, 4] as it does not require access to
the source code of the target and it has a low cost. The most
common targets include network protocols and file formats.

In general, fuzzers can be divided in three categories with
respect to how they generate new packets or files. The first
one is to feed completely random data as input to the target.
This method is simple but is less likely to yield good results.
In the second category, the mutation-based fuzzers alter pre-
generated valid inputs in hope of discovering a vulnerability.
In the third category, generation-based fuzzers create files or
packets from scratch with the same intent based on a user
specified model.

Compared to others, the main advantage of the second cate-
gory is that little knowledge of the file or protocol format is
required and thus the preparation time is modest. However
the code coverage is dependent on the coverage provided
by the original valid inputs. On the other hand, construct-
ing new files or packets can only be done if the tester has
su�cient knowledge of the file or protocol format. But this
approach results in a more comprehensive test case suite and
thus, it is more likely to find vulnerabilities. eFuzz belongs
in this category. Table 1 provides a succinct summary of
these advantages and disadvantages.

Type Advantages Disadvantages

Random Simple. Quick. Low
cost.

Attacks only the
surface. Useless
with checksums.
Poor coverage.

Mutation Relatively Simple.
Reusable for
di↵erent SW.

Needs numerous
valid inputs to get a

good coverage.

Generation E�cient (if well
modeled).

Time-consuming.
Requires knowledge
of the file/protocol
format. Reusable
only with the same

format.

Table 1: Advantages and disadvantages of the di↵erent
fuzzing approaches. Adapted from [4].

There are only a few fuzzing frameworks. Dave Aitel pro-
posed a block-based fuzzing framework designated SPIKE [1].
The framework was developed to simulate network protocol
clients and automate black-box testing. It is implemented
as a C-like API and scripting language. These are used to
leveraged the tester’s knowledge of the protocol.

SNOOZE [2] is a network protocol fuzzer that implements a
stateful fuzzing approach. Therefore, a tester can describe
the stateful operation of the protocol and specify the mes-
sages to be generated in each state. Moreover, it provides
fuzzing primitives that are specific to certain attacks and
thus allow the tester to direct her e↵orts solely on a class of
vulnerabilities.

Peach [7], the brainchild of Michael Eddington, has become
one of the most mature and, arguably, the most widely used
fuzzing framework. Hence this framework was chosen for the
development of eFuzz. Peach is capable of both generation
and mutation based fuzzing. To define the structure, type
information and relationships in the data to be fuzzed, Peach
uses manually crafted Peach Pit files. These files describe
the protocol model and define how such model will be used
to test the target.

The modular architecture of Peach encourages code reuse
and provides easy extendability. The main advantages of
using Peach instead of developing a fuzzer from the ground
up are the abstraction of the mutation strategies, the simple
way the protocol can be modelled and the modularity of the
various components (custom or built-in).

3.2 DLMS/COSEM Communication Protocol
The Device Language Message Specification (DLMS) con-
sists of a general concept for abstract modelling of communi-
cation entities. On top of this, the COmpanion Specification
for Energy Metering (COSEM) provides a set of standards
that define the rules for data exchange between smart grid
devices, such as an energy meter and a data accumulator.
Together they provide several features, such as (a) an object
model to view and access the di↵erent functionalities of a

98 A. PAPER SUBMITTED TO SEGS 2014

meter, (b) an identification system for all data, (c) a method
for communicating with the model and (d) a transport layer
to accommodate the information flows between the meter
and other devices. The protocol is based on the Open Sys-
tem Interconnection (OSI) seven-layer model. However in
the case of smart meters they are practically collapsed in
four - physical, data link, transport and application layers.

In a similar fashion to the OSI model, the physical layer
in DLMS/COSEM defines how to transfer information to
and from the meter. The data layer provides the messaging
methods to modify data and communicate with the device.
The transport layer enables data transfer based on the IPv4
network. Finally the application layer represents the func-
tional aspects of the energy meter so applications can access
them.

Prior to exchanging metering information an association must
be set up, initiated by the client through the object model
interface. From that moment, the server is also able to send
notification without an explicit request. DLMS/COSEM
supports authentication and confidentiality services based
on symmetric key encryption.

As explained above DLMS/COSEM is a connection oriented
protocol and it encapsulates its tra�c di↵erently depending
on the interface. Since eFuzz uses a physical connection the
following explanations will focus on the layers for this partic-
ular configuration. Figure 1 features an high-level overview
of DLMS/COSEM request over serial port.

Flag Frame format Src & Dest · · · FCS Flag HDLC

Command/Response · · · LLC

Security Encrypted Request Message Auth Tag DLMS

Figure 1: DLMS/COSEM packet for direct connections.

The outer layer is the physical layer, not shown in the fig-
ure. For the current set-up it consists of the serial com-
munication over USB. When using a direct connection in
DLMS/COSEM, the High-Level Data Link Control (HDLC)
protocol is used. This data link layer, show in green, is com-
posed of opening and closing flags, the type of frame, source
and destination identifiers, payload and checksum (Frame
Check Sequence or FCS) to ensure data integrity. The Log-
ical link control (LLC), colored blue, is the upper sub-layer
of the data link layer. It is short in length and is used to
specify is the payload is a response or a command. The
application layer, tinted red, contains the DLMS protocol
data unit. Its content specifies the level of security it is us-
ing and, if applicable, proceeds to transmit the encrypted
request followed by the authentication tag.

DLMS/COSEM supports three access security levels to al-
low the client to read data. First, no authentication is nec-
essary to access the device. Second, in the low level (LLS)

mode, the client authenticates using a password to the de-
vice. Third, in the high level security mode (HLS) access is
validated in both directions. This mode can use four di↵er-
ent algorithms, MD5, SHA-1, GMAC (Galois Message Au-
thentication Code) or a secret method known only by the
meter and the client.

In addition to client authentication, the data transport can
be encrypted. All possible four combinations of encryption
and authentication are supported. In case messages are both
encrypted and authenticated, only one algorithm is allowed:
Galois Counter Mode (GCM) with AES-128. Figure 2 de-
picts how encrypted and authenticated packets are gener-
ated.

GCM
(Crypto Key)

Init Vector

Plaintext

Auth Data

Ciphertext

Auth Tag

(a) Encryption

GCM
(Crypto Key)

Init Vector

Ciphertext

Auth Data

Auth Tag

Plaintext

(b) Decryption

Figure 2: Encryption and authentication of DLMS Applica-
tion Layer Protocol Data Units (APDUs).

The initialization vector is the concatenation of the system
title and frame counter. The former is device specific and is
announced in the configuration phases of the session. While
the latter is transmitted alongside the ciphertext. The key
for the Galois Counter Mode is specific for each device, in
other words, both the meter and the PC have their own.
Lastly, the authentication data includes the symmetric au-
thentication key. The decryption process is similar but adds
a verification steps for the authentication tag.

It is also insightful to have an understanding of the complete
communication flow that a simple request entails. A generic
example over physical connection is show in Figure 3. Serial
connection is divided in three distinct phases. First, a hand-
shake takes place where the meter identifies itself and an-
nounces the serial configuration it supports, including baud-
rate and other serial related parameters. Second, the client
(PC) initializes the HDLC (High-Level Data Link Control, a
data link layer protocol) link by transmitting a frame to the
meter. After reception the meter replies with the frame con-
figurations it supports. The third and last step to complete
the connection establishment is the pair AARQ/AARE (Ap-
plication Association Request and Response, respectively).
The former is sent by the PC and the latter is the response

99

Serial
configuration

start

HDLC
parameter
negotiation

AARQ &
AARE

DLMS
APDU
request

Request/ACK
disconnect

Figure 3: A complete DLMS/COSEM flow including estab-
lishing a connection, making a request, reading the response
and closing the connection. This example is for the physical
interface.

of the meter. This exchange is used to establish more pa-
rameters specific to the DLMS layer (i.e. independent of
the outer-layers which depend on the interface). If defined
in the security configurations, these are the first packets to
be encrypted and authenticated.

Finally, we are able to start the actual DLMS/COSEM com-
munication. In this session, the client may query the server
for usage data, time and date, or modify the parameters
of the meter, such as increase the number of available tar-
i↵s, clear the logs, etc. Although the previous steps may
change from meter to meter and from interface to interface,
the DLMS Application Layer Protocol Data Units (APDUs)
do not. This makes this layer the most interesting point of
attack for tools like eFuzz as it is prevalent across compliant
meters. Therefore, this makes the application very versatile
as it is simple to adapt it to di↵erent devices.

3.3 eFuzz
As previously mentioned eFuzz is built on top of Peach (ver-
sion 2.3.9) to facilitate the development of the fuzzer.

Peach is divided in di↵erent components according to their
task which are all orchestrated by the aforementioned Pit
file. In this context, the most relevant ones are the “trans-
formers”,“fixups”and“publishers”. Peach comes pre-installed
with several instances of each component. However, since
embedded systems are not typical targets for fuzzing, it was
necessary to develop custom versions to communicate with
the meter under test.

According to [6], transformers perform static modifications
or encoding of the parent elements. In eFuzz, a custom
transformer was written to encrypt the APDUs. Fixups
are similar to transformers but instead operate on data re-
trieved from an another element other than their parent.
When generating DLMS/COSEM packets, a fixup is used
to determine the frame check sequence (FCS). A reference
implementation in C can be found in [19]. Finally, pub-
lishers are responsible for the I/O communication, in this
case serial. eFuzz uses the PySerial [10] library to enable
cross-platform serial communication. Figure 4 illustrates the

aforementioned components as well as their interactions and
dependencies.

Peach

Pit
GCM FCS

Serial

Smart meter

Transformer Fixup

Publisher

IR adapter

Figure 4: Di↵erent components used in eFuzz/Peach and
their relationship.

As explained, the transformer is used to encrypt the mu-
tated plaintext to the final form. In the current context, all
necessary keys and passwords to encrypt and decrypt the
text were available. Presuming access to this data can be
acceptable or not depending on the context. For an “ordi-
nary” attacker, it is not a realistic premise. Moreover, since
every meter should be deployed with its own keys, in case
of key disclosure only one device would be compromised.
However, in the context of a security evaluation this is an
acceptable assumption. For example, a company hired to
assess the security of the device would be given access to
the keys and perhaps the firmware source code. Then, they
would use eFuzz in an initial approach to autonomously de-
tect possible points of interest. The respective report would
serve as a guide to security experts and complement a full
featured source code review. Moreover smart meter manu-
factures can also greatly benefit from eFuzz by integrating it
in their test suites, thus detecting flaws early in the product
development process.

Generating packets
eFuzz uses a modular approach to generate the fuzzed re-
quests. The most abstract data model is a common wrap-
per. The block incorporates the HLDC and the LLC layers.
Some of the fields are randomly chosen while others, such
as size and checksums, are computed deterministically. The
checksum, also known as frame check sequence, is handled
by a custom fixup instance. The DLMS payload is declared
as well, but the actual contents are not specified.

There are two distinct models describing the APDUs sent
from the PC to the meter.

1. The first APDU “inherits” the common wrapper and
only replaces the necessary fields. The request is fuzzed
at the plaintext level and consequently encrypted, through
a user-defined transformer. This APDU is modeled af-
ter a request that queries the meter for the local time
and date.

2. The second APDU defined by eFuzz is only used as a
reference. It is similar to the previous one but none of
the fields are modified.

100 A. PAPER SUBMITTED TO SEGS 2014

The two APDUs that correspond to the answers from the
meter serve di↵erent purposes.

1. The response to the fuzzed request is read but dis-
regarded. The sole purpose of the first APDU is to
provoke faults in the target therefore the response has
little relevance.

2. The following response is used to assess the health of
the meter. Since it corresponds to a reference request
can be compared with a reference response. If the
received and expected data do not match, eFuzz logs
the event.

There is a myriad of strategies built-in Peach that define
how the model is mutated. The existing mutation strategies
are divided in two main categories: sequential and random.

As indicated by the name, sequential mutations are deter-
ministic and progress from the first to the last fuzzable
field. Each field is fuzzed only once. Within this category
there is a distinction between linear (SequentialMutation-
Strategy), and random progress (Random Deterministic-

MutationStrategy) . These approaches are similar with
only the order changing, which may allow the fuzzer to de-
tect flaws earlier on the test suite.

On the other hand, random strategies are not finite and fuzz
up to N elements per iteration which allows for more flex-
ibility and bigger coverage since combinations of fields are
also fuzzed. The downside is the running time. Therefore,
a typical test starts with sequential strategies and then pro-
ceeds to random ones. For reproducibility purposes, it is also
possible to specify a seed for the internal random number
generator.

In this category there are three mutators: RandomMutation-
Strategy, SingleRandomMutationStrategy and DoubleRan-

domMutationStrategy. The only distinction between the
first and the others is the maximum number of elements
that are fuzzed per iteration, which is 7 instead of 1 or
2. Nonetheless for RandomMutationStrategy the maximum
value can be arbitrarily chosen. Furthermore, it is possible
for developers to program their own strategies.

The response of the meter to the invalid queries is not neces-
sarily relevant as there is not correct or incorrect response.
More interesting is seeing how they might a↵ect the meter
behavior thereafter. Given the specificities of DLMS/COSEM
two main ways were chosen to do so (see Figure 5).

The first approach is to send a reference request after each
fuzzed packet. If the response matches what is expected,
the meter is functioning properly. Otherwise, this behavior
should be signalled and stored for human inspection. There-
after the process is repeated. An exception to this cycle
occurs when the target does not respond as expected. In
this situation the session is restarted. Otherwise, the subse-
quent tests would not be evaluated by the meter as it was
already in a faulty situation. As an example, assume request
i causes the meter to reach an unknown state that rejects
all further communication in the session. Then even if re-
quest i + 1 would normally trigger a new problem it would

Initiate
session

start

Send fuzzed
request

Read
response

Read &
evaluate
response

Send
reference
request

Terminate
session

i � N

i < N

(a) Fuzzed and reference packets are all sent within the same
session.

Initiate
session

start

Send fuzzed
request

Read
response

Send
reference
request

Read &
evaluate
response

Terminate
session

i < N

(b) The session is restarted after each fuzzing attempt.

Figure 5: State machines describing the two approaches used
to fuzz the target device. On these diagrams i indicates
the current fuzzing iteration while N is the total number of
tests available. In both situations the first iteration uses a
reference request to ensure the target is in a known state.

go unnoticed. The state machine describing this behavior is
show in Figure 5a.

The second approach is similar but the session is restarted
every time a fuzzing attempt terminates, as portrayed in
Figure 5b.

These contrasting approaches may yield di↵erent results.
The former is expected to detect more memory leaks or other
memory related problems, for example, a memory leak trig-
gered by an attack may not be mediately noticeable and only
have consequences later on. If the session was terminated in
between, there would be a chance for the meter to clear its
state and recover from such a problem.

4. RESULTS
4.1 Detection Performance of eFuzz
To assess the performance of eFuzz, this Section presents the
amount of unexpected behaviors provoked in the target. As
explained before, after sending each fuzzed request, eFuzz
sends a reference query and compares the result with the

101

correct response. If these values do not match, the dialog is
stored as an unexpected behavior and the session is restarted
before continuing.

Due to the detail used to model the protocol, the com-
plete test suite of eFuzz when using the sequential strate-
gies includes 54727 distinct cases. Running all tests requires
around 7 days. However to be able to obtain data for di↵er-
ent configurations, within a reasonable time frame, a subset
of 500 tests was used. The subset completes within approx-
imately 3 hours.

Table 2 shows the number of unexpected behaviors induced
with three distinct strategies. Sequential Random refers to
the aforementioned RandomDeterministicMutationStrat-

egy class. The other two use random strategies where n
specifies the maximum number of fields that are fuzzed per
iteration.

Mutation strategy Number of unexpected
responses

Sequential Random 40
Random n = 2 21
Random n = 7 10

Table 2: Overview of the number of unexpected responses
caused by eFuzz discriminated by strategy. Variable n in-
dicates the maximum number of fields that are mutated in
each iteration. In the sequential strategy this value is by
definition one.

The amount of invalid responses is significant, in particular
considering the short amount of time it required. The se-
quential strategy was the most proliferous, reinforcing the
point made above that this strategy should be used first.

In addition to the quantity, it is also insightful to understand
what the meter response actually was. This information
is condensed in Table 3. The responses are separated by
exception-response, frame reject (specific DLMS/COSEM
messages) or other.

The Exception-Response APDU is an optional APDU sent
by the COSEM server application layer that indicates to the
client application layer the service requested could not be
processed. Particularly for the case shown, the request was
not processed as access to the service was not allowed. Alter-
natively the server can simply discard the message without
sending this APDU.

The Frame Reject (FRMR) is used to report one of vari-
ous conditions occurred and retransmission of the identical

Mutation
Strategy

Exception-
response

Frame
Reject

Other

Sequential Random 50% 50% 0%
Random n = 2 57% 33% 10%
Random n = 7 50% 40% 10%

Table 3: Distribution of the unexpected meter responses by
cause.

Parameter eFuzz Manual

Time Hours/few days Weeks

Coverage DLMS/COSEM
logical attacks

Physical attacks.
Weaknesses in

configurations, key
storage, retrieval.

Quantity
findings

High Low

Quality
findings

Low High

Table 4: Comparison of automated and non-automated ap-
proaches to detecting smart meter vulnerabilities.

frame can not correct it. The situations that may trigger
an FRMR include the receipt of an undefined or not im-
plemented command or response, receipt of a frame that is
too long, receipt of an invalid frame, or receipt of a frame
containing a field that is not allowed.

Categorizing the meter responses shows a clear majority
of exception-response and frame-reject APDUs. These
messages are used to signal errors and should not occur in
response to valid requests, which suggests one of the previ-
ous messages perturbed the internal state of the server and
has caused undesirable side e↵ects.

4.2 Discussion
The results presented in Section 4.1 indicate this preliminary
work exposes bugs that would probably go unnoticed oth-
erwise. Just like in traditional software application, fuzzing
is a good technique to test proprietary code. The approach
used can generate combinations of inputs that would not be
possible by a human tester as she would inclined to follow
the same assumptions as the original developers.

A series of experiments performed on the target were able to
provoke between 10 and 40 incorrect responses, depending
on the mutation strategy selected, in a short period of time.
Although with this approach it is not possible to automati-
cally determine if these bugs have security consequences, it
pinpoints areas of interest that a human expert can focus
on.

Nevertheless, this method is not meant to replace profes-
sional human auditors but instead complement them. The
added value is accomplished by means of an automated tool
that exhaustively finds all possible bugs with respect to di-
verse inputs. Note that manual inspection by a human ex-
pert cannot achieve the same level of testing within an ac-
ceptable time frame.

To better understand the complementarity of both approaches,
the results of eFuzz and a security evaluation made manu-
ally are compared. Table 4 compares the two with respect
to four di↵erent parameters.

One of the main advantages of fuzzing is its automated na-

102 A. PAPER SUBMITTED TO SEGS 2014

ture. Automation makes it faster, hours or days instead of
weeks, than manual evaluations and requires little human
supervision. On the other hand eFuzz has a very specific
coverage while a manual approach can be much broader and
detect classes of vulnerabilities that a fuzzer can not, for ex-
ample if keys are stored securely or if permissions are prop-
erly enforced. As previously shown eFuzz is able to detect a
large quantity of findings while manual inspections are typi-
cally more selective. This disparity is reflected in the quality
of each discovery. Issues uncovered by fuzzing need to be in-
spected by an expert to determine if they constitute a real
security threat.

5. CONCLUSION
This paper describes eFuzz, a DLMS/COSEM fuzzer built
on top of Peach to complement security evaluations of smart
meters. It works autonomously by generating invalid or mal-
formed protocol packets derived from a model of the stan-
dard. By constantly sending these requests to the meter
followed by a reference query, one can assess if the fuzzed
data was able to interfere with the normal behavior of the
target.

In the preliminary tests with a electricity meter currently in
the market using a direct optical interface, eFuzz was able
to perturb the correct functioning of the target. In less than
3 hours, the tests revealed between 10 and 40 issues depend-
ing on the mutation strategy. The majority of the invalid
responses indicated that the client was trying to access a
service that was not allowed or that the request was mal-
formed, which suggests previous messages caused the meter
to reach an invalid state.

The obtained results show that fuzzing approach is an ef-
ficient way to detect flaws in the protocol implementation
given the limited human e↵ort it requires. Additionally, our
framework for fuzzing embedded systems, eFuzz, will pro-
vide researchers the capability to apply fuzzing techniques as
a vital step for the evaluation of smart meters and other net-
worked embedded systems. Ultimately, we hope that eFuzz
will make smart meter communications harder to penetrate,
and consequently elevate the bar for the security of critical
infrastructures.

As alluded to previously, there is ample room for improve-
ments in eFuzz. For example, in its current version only a
small part of the DLMS/COSEM is modelled. To achieve
better results, it would be beneficial to increase the coverage
of the standard and consequently of the firmware code. Fur-
thermore considering more parameters, such as the latency
of the responses, when assessing the health of the meter is
also a possible improvement. Another advancement that is
currently being worked on is exploring other communication
interfaces, notably GSM, since not all meters are equipped
with an optical port. Finally, at this time, the main fuzzers
readily available are not optimized for embedded systems.
As networking capabilities are introduced to a growing num-
ber of micro-controller based devices, it is fundamental to
ensure security is preserved. Fuzzing can play a crucial role
in this task, but first it needs to expand its capabilities to
these new classes of targets.

6. REFERENCES
[1] D. Aitel. The advantages of block-based protocol analysis

for security testing. Immunity Inc., February, 2002.
[2] G. Banks, M. Cova, V. Felmetsger, K. Almeroth,

R. Kemmerer, and G. Vigna. SNOOZE: toward a Stateful
NetwOrk prOtocol fuzZEr. In Information Security, pages
343–358. Springer, 2006.

[3] S. Bekrar, C. Bekrar, R. Groz, and L. Mounier. Finding
Software Vulnerabilities by Smart Fuzzing. The Fourth

IEEE International Conference on Software Testing,

Verification and Validation, pages 427–430, Mar. 2011.
[4] S. Bekrar, C. Bekrar, R. Groz, and L. Mounier. A taint

based approach for smart fuzzing. The Fifth IEEE

International Conference on Software Testing, Verification

and Validation, pages 818–825, Apr 2012.
[5] Deja vu Security. Fuzzing Embedded Devices with Peach

Fuzzer. https://www.youtube.com/watch?v=yevXIDaI_SA.
Accessed: 2014-06.

[6] Deja vu Security. Peach fuzzing platform.
http://old.peachfuzzer.com/v2/peach23.html. Accessed:
2014-02.

[7] Deja vu Security. What is Peach?
http://old.peachfuzzer.com/WhatIsPeach.html.
Accessed: 2014-03.

[8] Z. Fan, P. Kulkarni, S. Gormus, C. Efthymiou,
G. Kalogridis, M. Sooriyabandara, Z. Zhu, S. Lambotharan,
and W. H. Chin. Smart grid communications: Overview of
research challenges, solutions, and standardization
activities. Communications Surveys & Tutorials, IEEE,
15(1):21–38, 2013.

[9] V. C. Gungor, D. Sahin, T. Kocak, S. Ergut, C. Buccella,
C. Cecati, and G. P. Hancke. A survey on smart grid
potential applications and communication requirements.
Industrial Informatics, IEEE Transactions on, 9(1):28–42,
2013.

[10] C. Liechti. pySerial’s documentation.
http://pyserial.sourceforge.net. Accessed: 2014-06.

[11] P. McDaniel and S. McLaughlin. Security and privacy
challenges in the smart grid. IEEE Security and Privacy,
7(3):75–77, May 2009.

[12] S. J. McIntyre. Termineter.
https://github.com/securestate/termineter. Accessed:
2014-06.

[13] A. R. Metke and R. L. Ekl. Security technology for smart
grid networks. Smart Grid, IEEE Transactions on,
1(1):99–107, 2010.

[14] MicroSolved Inc. Protopredator.
http://microsolved.com/protoPredator.html. Accessed:
2014-06.

[15] B. Miller. CS 736 Fall 1988 Project List, 1988.
[16] B. P. Miller, L. Fredriksen, and B. So. An empirical study

of the reliability of UNIX utilities. Communications of the

ACM, 33(12):32–44, Dec. 1990.
[17] MWR InfoSecurity. Usb fuzzing for the masses.

https://labs.mwrinfosecurity.com/blog/2011/07/14/

usb-fuzzing-for-the-masses/. Accessed: 2014-02.
[18] A. J. Paverd and A. P. Martin. Hardware security for

device authentication in the smart grid. In Smart Grid

Security, pages 72–84. Springer, 2013.
[19] W. Simpson. PPP in HDLC-like framing. July 1994. RFC

1662.
[20] T. Wang, T. Wei, G. Gu, and W. Zou. TaintScope: A

checksum-aware directed fuzzing tool for automatic
software vulnerability detection. IEEE Symposium on

Security and Privacy, pages 497–512, 2010.
[21] W. Wang and Z. Lu. Cyber security in the smart grid:

Survey and challenges. Computer Networks,
57(5):1344–1371, 2013.

103

BIBLIOGRAPHY

[1] S. Feuerhahn, M. Zillgith, C. Wittwer, and C. Wietfeld, Comparison of the communica-

tion protocols DLMS/COSEM, SML and IEC 61850 for smart metering applications, 2011

IEEE International Conference on Smart Grid Communications (SmartGridComm) , 410

(2011).

[2] G. Banks, M. Cova, and V. Felmetsger, SNOOZE: toward a Stateful NetwOrk prOtocol

fuzZEr, Information . . . , 343 (2006).

[3] D. McGrew and J. Viega, The galois/counter mode of operation (gcm), Sub-

mission to NIST. http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/

proposedmodes/gcm/gcm-spec.pdf (2004).

[4] EEI-AEIC-UTC, Smart Meters and Smart Meter Systems: A Metering Industry Perspective,

(2011).

[5] S. Bekrar, C. Bekrar, R. Groz, and L. Mounier, A Taint Based Approach for Smart Fuzzing,

2012 IEEE Fifth International Conference on Software Testing, Verification and Valida-

tion , 818 (2012).

[6] R. Anderson and S. Fuloria, Smart meter security: a survey, cl.cam.ac.uk , 1.

[7] Parliament, The European and Union, The Council Of The European, Directive

2009/72/EC of the European Parliament and of the Council of 13 July 2009 concerning

common rules for the internal market in electricity and repealing Directive 2003/54/EC

Text with EEA relevance, (2009).

[8] M. Jawurek and F. Freiling, Privacy threat analysis of smart metering, . . . of the 41th An-

nual Conference of the . . . (2011).

[9] D. Aitel, The advantages of block-based protocol analysis for security testing, Immunity

Inc., February (2002).

105

http://dx.doi.org/10.1109/SmartGridComm.2011.6102357
http://dx.doi.org/10.1109/SmartGridComm.2011.6102357
http://dx.doi.org/10.1109/SmartGridComm.2011.6102357
http://link.springer.com/chapter/10.1007/11836810_25
http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/proposedmodes/gcm/gcm-spec.pdf
http://csrc.nist.gov/groups/ST/toolkit/BCM/documents/proposedmodes/gcm/gcm-spec.pdf
http://dx.doi.org/10.1109/ICST.2012.182
http://dx.doi.org/10.1109/ICST.2012.182
http://www.cl.cam.ac.uk/~rja14/Papers/JSAC-draft.pdf
http://www.user.tu-berlin.de/komm/CD/paper/061312.pdf
http://www.user.tu-berlin.de/komm/CD/paper/061312.pdf
http://www.net-security.org/dl/articles/advantages_of_block_based_analysis.pdf
http://www.net-security.org/dl/articles/advantages_of_block_based_analysis.pdf

106 BIBLIOGRAPHY

[10] Dejavu Security, What is Peach? (2014).

[11] P. McDaniel and S. McLaughlin, Security and privacy challenges in the smart grid, IEEE

Security and Privacy 7, 75 (2009).

[12] A. R. Metke and R. L. Ekl, Security technology for smart grid networks, Smart Grid, IEEE

Transactions on 1, 99 (2010).

[13] A. J. Paverd and A. P. Martin, Hardware security for device authentication in the smart

grid, in Smart Grid Security (Springer, 2013) pp. 72–84.

[14] V. C. Gungor, D. Sahin, T. Kocak, S. Ergut, C. Buccella, C. Cecati, and G. P. Hancke, A

survey on smart grid potential applications and communication requirements, Industrial

Informatics, IEEE Transactions on 9, 28 (2013).

[15] Z. Fan, P. Kulkarni, S. Gormus, C. Efthymiou, G. Kalogridis, M. Sooriyabandara, Z. Zhu,

S. Lambotharan, and W. H. Chin, Smart grid communications: Overview of research

challenges, solutions, and standardization activities, Communications Surveys & Tuto-

rials, IEEE 15, 21 (2013).

[16] W. Wang and Z. Lu, Cyber security in the smart grid: Survey and challenges, Computer

Networks 57, 1344 (2013).

[17] M. HADLEY, N. Lu, and A. DEBORAH, Smart-grid security issues, IEEE Security and Pri-

vacy 8, 81 (2010).

[18] C4Security, The Dark Side of the Smart Grid - Smart Meters (in) Security, Tech. Rep.

[19] M. Gröne and M. Winandy, Applying a Security Kernel Framework to Smart Meter Gate-

ways, ISSE 2012 Securing Electronic Business Processes , 252 (2012).

[20] J. Chinnow, K. Bsufka, A.-D. Schmidt, R. Bye, A. Camtepe, and S. Albayrak, A simulation

framework for smart meter security evaluation, 2011 IEEE International Conference on

Smart Measurements of Future Grids (SMFG) Proceedings , 1 (2011).

[21] A. Lunkeit, T. Voß, and S. Augustin, Threat Modeling Smart Metering Gateways, 9, 5

(2013).

[22] C. Rottondi, G. Verticale, A. Capone, P. Milano, and P. Leonardo, A security framework for

smart metering with multiple data consumers, . . . INFOCOM WKSHPS), 2012 . . . (2012).

http://link.springer.com/chapter/10.1007/978-3-658-00333-3_24
http://dx.doi.org/10.1109/SMFG.2011.6125758
http://dx.doi.org/10.1109/SMFG.2011.6125758
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6193469

BIBLIOGRAPHY 107

[23] O. Tan, D. Gunduz, and H. Poor, Increasing smart meter privacy through energy harvest-

ing and storage devices, Selected Areas in . . . (2013), arXiv:arXiv:1305.0735v1 .

[24] R. Anderson and S. Fuloria, Who controls the off switch? Smart Grid Communications (

. . . (2010).

[25] DLMS User Association, Official DLMS website, (2014).

[26] G. Struklec and J. Marsic, Implementing DLMS/COSEM in smart meters, . . . 2011 8th In-

ternational Conference on the . . . , 747 (2011).

[27] N. Calamaro, E. Abramowitz, and Y. Beck, A General Review on DLMS / COSEM and IEC

60870-5 Smart Grid Standards, , 1 (2012).

[28] Gurux, Gurux Website, (2014).

[29] OpenMUC, jDLMS Documentation website, (2014).

[30] Kalkitech, SYNC 500 series - DLMS COSEM Protocol Library, (2014).

[31] T. Instruments, Application Report: Using TI’s DLMS COSEM Library, (2013).

[32] B. Liu, L. Shi, Z. Cai, and M. Li, Software Vulnerability Discovery Techniques: A Survey,

2012 Fourth International Conference on Multimedia Information Networking and Se-

curity , 152 (2012).

[33] S. McLaughlin, D. Podkuiko, S. Miadzvezhanka, A. Delozier, and P. McDaniel, Multi-

vendor penetration testing in the advanced metering infrastructure, Proceedings of the

26th Annual Computer Security Applications Conference on - ACSAC ’10 , 107 (2010).

[34] B. Miller, CS 736 Fall 1988 Project List, (1988).

[35] B. P. Miller, L. Fredriksen, and B. So, An empirical study of the reliability of UNIX utilities,

Communications of the ACM 33, 32 (1990).

[36] S. Bekrar, C. Bekrar, R. Groz, and L. Mounier, Finding Software Vulnerabilities by Smart

Fuzzing, 2011 Fourth IEEE International Conference on Software Testing, Verification

and Validation , 427 (2011).

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6547840
http://arxiv.org/abs/arXiv:1305.0735v1
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5622026
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5622026
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5953109
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5953109
http://dx.doi.org/10.1109/MINES.2012.202
http://dx.doi.org/10.1109/MINES.2012.202
http://dx.doi.org/10.1145/1920261.1920277
http://dx.doi.org/10.1145/1920261.1920277
http://research.cs.wisc.edu/adsl/Publications/starbox-hotstorage13.pdf
http://dx.doi.org/10.1145/96267.96279
http://dx.doi.org/10.1109/ICST.2011.48
http://dx.doi.org/10.1109/ICST.2011.48

108 BIBLIOGRAPHY

[37] T. Wang, T. Wei, G. Gu, and W. Zou, TaintScope: A Checksum-Aware Directed Fuzzing

Tool for Automatic Software Vulnerability Detection, 2010 IEEE Symposium on Security

and Privacy , 497 (2010).

[38] P. M. Comparetti, G. Wondracek, C. Kruegel, and E. Kirda, Prospex: Protocol Specification

Extraction, 2009 30th IEEE Symposium on Security and Privacy , 110 (2009).

[39] OpenRCE: The Open Reverse Code Engineering, Sulley: A pure-python fully automated

and unattended fuzzing framework. (2013).

[40] P. Amini and A. Portnoy, Fuzzing sucks! (2007).

[41] Oulu University Secure Programming, PROTOS - Security Testing of Protocol Implemen-

tations, (2003).

[42] Oulu University Secure Programming, PROTOS Protocol Genome Project, (2007).

[43] R. Leevi and S. Puupera, Domain Model Based Black Box Fuzzing Using Regular Lan-

guages, Ph.D. thesis, University of Oulu (2010).

[44] A. Helin, J. Viide, M. Laakso, and J. Röning, Model Inference Guided Random Testing of

Programs with Complex Input Domains, (2006).

[45] J. Viide, A. Helin, M. Laakso, and P. Pietikäinen, Experiences with Model Inference As-

sisted Fuzzing. WOOT (2008).

[46] P. Godefroid, Random Testing for Security : Blackbox vs . Whitebox Fuzzing, . . . of the 2nd

international workshop on Random testing: . . . , 59593 (2007).

[47] P. Godefroid, M. Levin, and D. Molnar, Automated Whitebox Fuzz Testing. NDSS (2008).

[48] P. Godefroid, A. Kiezun, and M. Levin, Grammar-based whitebox fuzzing, ACM Sigplan

Notices , 206 (2008).

[49] P. Godefroid, M. Y. Levin, and D. Molnar, SAGE: Whitebox Fuzzing for Security Testing,

Queue 10, 20 (2012).

[50] P. Godefroid, Automated Whitebox Fuzz Testing with SAGE, (2009).

[51] P. Amini and A. Portnoy, Sulley : Fuzzing Framework, Tech. Rep.

http://dx.doi.org/10.1109/SP.2009.14
http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:Fuzzing+Sucks+!#0
https://www.usenix.org/legacyurl/experiences-model-inference-assisted-fuzzing-0
http://dl.acm.org/citation.cfm?id=1292416
http://dl.acm.org/citation.cfm?id=1292416
http://dl.acm.org/citation.cfm?id=1375607
http://dl.acm.org/citation.cfm?id=1375607
http://dx.doi.org/10.1145/2090147.2094081

BIBLIOGRAPHY 109

[52] R. McNally, K. Yiu, D. Grove, and D. Gerhardy, Fuzzing: The State of the Art, (2012).

[53] Y. Lu, W. Lifa, P. Fan, Z. Honglin, and H. Zheng, Automatic Fault Localization for

Fuzzing, 2011 First International Conference on Instrumentation, Measurement, Com-

puter, Communication and Control , 388 (2011).

[54] M. Vuagnoux, Autodafe: An act of software torture, 22nd Chaos Communications

Congress, Berlin, . . . , 1 (2005).

[55] DLMS User Association, COSEM Interface Classes and the OBIS Identification System,

“Blue Book” (2010), ed. 10.0.

[56] DLMS User Association, DLMS/COSEM Architecture and Protocols, “Green Book” (2009),

ed. 7.0.

[57] DLMS User Association, DLMS/COSEM Conformance Testing Process, “Yellow Book”

(2010), ed. 3.0.

[58] DLMS User Association, COSEM Glossary of Terms, “White Book” (2003), ed. 1.0.

[59] M. Sutton, A. Greene, and P. Amini, Fuzzing: brute force vulnerability discovery (Pearson

Education, 2007).

[60] Deja vu Security, Peach fuzzing platform, http://old.peachfuzzer.com/v2/

peach23.html, accessed: 2014-02.

[61] S. J. McIntyre, Termineter, https://github.com/securestate/termineter, ac-

cessed: 2014-06.

[62] MicroSolved Inc., Protopredator, http://microsolved.com/protoPredator.html,

accessed: 2014-06.

[63] R. Housley, Using aes-ccm and aes-gcm authenticated encryption in the cryptographic

message syntax (cms), (2007).

[64] M. Dworkin, Recommendation for block cipher modes of operation: Galois/Counter Mode

(GCM) and GMAC (US Department of Commerce, National Institute of Standards and

Technology, 2007).

[65] W. Simpson, PPP in HDLC-like framing, (1994), rFC 1662.

http://oai.dtic.mil/oai/oai?verb=getRecord&metadataPrefix=html&identifier=ADA558209
http://dx.doi.org/10.1109/IMCCC.2011.104
http://dx.doi.org/10.1109/IMCCC.2011.104
http://old.peachfuzzer.com/v2/peach23.html
http://old.peachfuzzer.com/v2/peach23.html
https://github.com/securestate/termineter
http://microsolved.com/protoPredator.html

110 BIBLIOGRAPHY

[66] C. Liechti, pySerial’s documentation, http://pyserial.sourceforge.net, accessed:

2014-06.

[67] H. Rodriguez, From fuzzing to 0-day, http://blog.techorganic.com/2014/05/14/

from-fuzzing-to-0-day/, accessed: 2014-06.

[68] ABB, RER620 IEC 60870-5-101/104 Communication Protocol Manual, Tech. Rep. (2011).

[69] D. Vyas and H. Pandya, Advance Metering Infrastructure and DLMS/COSEM Standards

for Smart Grid, International Journal of Engineering Research & . . . 1, 1 (2012).

[70] I. software, DLMS communication packages provided by , (2014).

[71] A. P. Vidal, upcommons.upc.edu, Ph.D. thesis, Universitat Politécnica de Catalunya

(2012).

[72] J. Butts and S. Shenoi, IFIP Advances in Information and Communication Technology

(2011).

[73] M. Eddington, Black Hat Europe, Tech. Rep. (2009).

[74] C. Miller, Babysitting an Army of Monkeys: An analysis of fuzzing 4 products with 5 lines

of Python, (2010).

[75] P. Oehlert, Violating assumptions with fuzzing, Security & Privacy, IEEE (2005).

[76] I. V. Sprundel, Fuzzing: Breaking software in an automated fashion, Talk at: 22nd Chaos

Communication Congress: . . . , 1 (2005).

[77] D. Aitel, An introduction to SPIKE, the fuzzer creation kit, presentation slides), Aug

(2002).

[78] T. Nicol, Privacy protection through limited load signal distortion, Ph.D. thesis (2011).

[79] G. Tyler, Look out ! It’s the fuzz, IA newsletter - The Newsletter for Information Assurance

Technology Professionals 10, 1 (2007).

[80] T. Morris, R. Vaughn, and E. Sitnikova, Advances in the protection of critical infras-

tructure by improvement in industrial control system security, . . . Security Conference-

Volume 138 , 67 (2013).

http://pyserial.sourceforge.net
http://blog.techorganic.com/2014/05/14/from-fuzzing-to-0-day/
http://blog.techorganic.com/2014/05/14/from-fuzzing-to-0-day/
http://www.ijert.org/browse/december-2012-edition?download=1965%3Aadvance-metering-infrastructure-and-dlmscosem-standards-for-smart-grid&start=200
http://upcommons.upc.edu/handle/2099.1/16014
http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:IFIP+Advances+in+Information+and+Communication+Technology#3
http://e.sebug.net/paper/Meeting-Documents/Blackhat-USA2009/BHUSA09-Eddington-DemystFuzzers-PAPER.pdf
http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:Babysitting+an+Army+of+Monkeys:+An+analysis+of+fuzzing+4+products+with+5+lines+of+Python#0
http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:Babysitting+an+Army+of+Monkeys:+An+analysis+of+fuzzing+4+products+with+5+lines+of+Python#0
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1423963
http://85.214.111.134/congress/2005/fahrplan/attachments/582-paper_fuzzing.pdf
http://85.214.111.134/congress/2005/fahrplan/attachments/582-paper_fuzzing.pdf
http://pentest.cryptocity.net/files/fuzzing/spike/using_spike.pdf
http://pentest.cryptocity.net/files/fuzzing/spike/using_spike.pdf
http://www.ideals.illinois.edu/handle/2142/24158
http://dl.acm.org/citation.cfm?id=2525491
http://dl.acm.org/citation.cfm?id=2525491

BIBLIOGRAPHY 111

[81] P. Amini, Fuzzing Frameworks, (2007).

[82] Q. Lanlan, X. Dan, W. Zhiyong, and X. Qixue, New Development of Fuzzing-based Vul-

nerabilities Mining Research, 2011 First International Conference on Instrumentation,

Measurement, Computer, Communication and Control , 400 (2011).

[83] M. Sutton and A. Greene, The art of file format fuzzing, Blackhat USA Conference (2005).

[84] P. Godefroid, N. Klarlund, and K. Sen, DART: directed automated random testing, ACM

Sigplan Notices , 213 (2005).

[85] P. Kahlon, Security issues in system development life cycle of smart grid, Ph.D. thesis, Cal-

ifornia State University, Sacramento (2011).

[86] A. J. Delozier, Characterizations of Vulnerabilities and Countermeasures in Advanced Me-

tering Infrastructure Collectors, Ph.D. thesis, The Pennsylvania State University (2011).

[87] K. Paananen, Information Security In Smart Grid Demonstration, Ph.D. thesis, Tampere

University of Technology (2011).

[88] M. Eddington, Developing fuzzers with peach 2.0, Proceedings of CanSecWest Applied

Security Conference (2008).

[89] G. B. Frédéric Guihéry, Auto generation of Peach pit files/fuzzers, http://doc.netzob.

org/en/latest/tutorials/peach.html, accessed: 2014-01.

[90] Nullthreat Security, Fuzzing with Peach, http://www.nullthreat.net/2011/01/

fuzzing-with-peach-install-part-1.html, accessed: 2014-01.

[91] Ankcraz, Peach Fuzzing Framework, http://techank.blogspot.nl/2009/09/

peach-fuzzing-framework.html, accessed: 2014-02.

[92] J. S. Dhaliwal, Fuzz Testing, http://www.cse.iitd.ac.in/~cs5080212/Fuzz.pdf,

accessed: 2014-02.

[93] pyoor (Jason Kratzer), Fuzzing with Peach – Part 1, http://www.flinkd.org/2011/

07/fuzzing-with-peach-part-1/ (), accessed: 2014-02.

[94] pyoor (Jason Kratzer), Fuzzing with Peach – Part 2 (Fixups), http://www.flinkd.org/

2011/11/fuzzing-with-peach-part-2-fixups-2/ (), accessed: 2014-02.

http://dl.packetstormsecurity.net/papers/attack/fuzzing-frameworks.pdf
http://dx.doi.org/10.1109/IMCCC.2011.107
http://dx.doi.org/10.1109/IMCCC.2011.107
http://dl.acm.org/citation.cfm?id=1065036
http://dl.acm.org/citation.cfm?id=1065036
http://csus-dspace.calstate.edu:9000/handle/10211.9/1155
https://etda.libraries.psu.edu/paper/11846/7485
http://doc.netzob.org/en/latest/tutorials/peach.html
http://doc.netzob.org/en/latest/tutorials/peach.html
http://www.nullthreat.net/2011/01/fuzzing-with-peach-install-part-1.html
http://www.nullthreat.net/2011/01/fuzzing-with-peach-install-part-1.html
http://techank.blogspot.nl/2009/09/peach-fuzzing-framework.html
http://techank.blogspot.nl/2009/09/peach-fuzzing-framework.html
http://www.cse.iitd.ac.in/~cs5080212/Fuzz.pdf
http://www.flinkd.org/2011/07/fuzzing-with-peach-part-1/
http://www.flinkd.org/2011/07/fuzzing-with-peach-part-1/
http://www.flinkd.org/2011/11/fuzzing-with-peach-part-2-fixups-2/
http://www.flinkd.org/2011/11/fuzzing-with-peach-part-2-fixups-2/

	Acknowledgments
	Contents
	List of Figures
	List of Tables
	Introduction
	Goals and Contributions
	Thesis Overview

	Literature Review
	Smart Grid
	Motivation for Smart Grids
	Major Challenges

	Communication Protocol
	Introduction to the Protocol
	Comparison with Competing Alternatives

	Fuzzing
	Discovering Software Vulnerabilities
	Introduction to Fuzzing
	Fuzzing Frameworks
	Automatic Protocol Inference
	White-Box Fuzzing
	Identifying Exploitable Vulnerabilities

	Background
	Communication Protocol
	COSEM
	COSEM Interface Classes and Interface Objects
	Application Association
	Data access security
	Data transport security

	COSEM application layer
	The DLMS/COSEM communications framework
	Interoperability and interconnectivity

	Communication Profiles
	Power line communication
	IP connectivity
	Direct Local Connection

	Data Link Layer
	Protocol specification for the LLC sub layer
	MAC sub layer
	Frames
	Description of the procedures

	Complete flow

	Fuzzing
	Basic Concepts
	Fuzzing methods
	Fuzzer types
	Local Fuzzers
	Remote Fuzzers
	Others

	Data Representation
	Fields
	Types

	Peach
	Peach Pits
	Data Model
	State Model
	Agent
	Test
	Run

	eFuzz
	Fuzzing requirements
	Components
	Transformers
	Galois Counter Mode

	Fixups
	Publishers
	Initialization
	DLMS APDUs
	Terminating or restarting the session

	Pit
	State Machine
	Tests and Runs

	Post processing

	Results & Analysis
	Detection Performance of eFuzz
	Results

	Discussion

	Conclusions
	Summary
	Contributions
	Future Work

	Paper submitted to SEGS 2014
	Bibliography

