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Abstract
There are 10 algebraic time–independent integrals known for the gravitational n–body problem, of which the 3−body
problem is a special case. That problem in turn may be restricted to the circular restricted 3−body problem, which
has only the Jacobi–integral as a known time–independent integral. While interesting problems in their own right, in
this thesis we further extend the circular restricted 3−body problem with a time–dependent perturbation, modeling
the Moon by simple harmonic motion about the Earth in the Earth–Sun rotating coordinate system. This is motivated
by our earlier study of ballistic lunar capture trajectories, and serves as a model for the dynamics of a satellite under
the influence of the Sun, Earth and Moon. As such it incorporates the necessary features for the study of ballistic lunar
capture scenarios.

If these three models are formulated as explicit perturbation problems in a small parameter ε (related to the relative
influences of the bodies), the corresponding integrals likewise become structured and a natural hierarchy of effects is
found by successive expansion in powers of ε, which is the point–of–view which the work in this thesis will take.

We begin by introducing the major issues relevant to two new approaches to exploiting such integrals for more (nu-
merically and geometrically) accurate trajectory integration in astrodynamics. To this end we review the essentials of
Hamiltonian dynamics under perturbation, astrodynamics and the (ballistic) capture problem, a method of integrating
vectors for the determination of approximations of first integrals of the motion, and study numerical solution methods
which conserve such integrals and integral approximations.

Against this backdrop, the work is split into two parts.

1. In the first part, we apply the method of integrating vectors to our three gravitational problems in turn, demon-
strating the feasibility of the ab initio construction of the 10 known integrals and proving this reconstruction
for the Jacobi integral. The method is not limited to the construction of time–independent integrals, and we
derive and discuss the 1st –order linear system of partial differential equations governing integrating factors
for general time–dependent integrals, giving perspectives on the solution of the system for each of the three
problems.

We find in particular that the capture problem we have introduced may be expected to have a time–dependent
analogue of the Jacobi integral, of which the time–independent part we can solve the system of equations for
corresponds to the time–averaged motion of the Moon about the Earth. We suggest that methods based on har-
monic analysis may provide the tools necessary to solve the full time–independent partial differential equations
in further work.

2. In the second part, we implement and compare an algorithm which conserves the Jacobi integral for the re-
stricted 3−body problem, and three variations of an algorithm for the conservation of the energy integral in the
planar Jacobi 3−body problem (one of which also conserves angular momentum). We also outline a strategy
for incorporating integral–approximations found by the methods of the first part into conservative–integration
schemes, and implement these for the restricted 3–body and capture problems.

These schemes have the benefit of explicitly conserving the integrals up to floating–point accuracy, thus essen-
tially eliminating the out–of–manifold error for integrated trajectories, and have shown promise in application
to trajectories with sensitive dynamics in particular. We find however that their performance on problems in-
volving large masses is considerably better than on problems involving a small, fast–moving satellite, such as
in the ballistic lunar capture problem which motivated their implementation.

There are indications that in the former types of problems, there may be a particular niche for their application
in long time–span integration. On the other hand, for the “small satellite, large primaries” scenario which mo-
tivated our work, we find that they are performance–limited by their formulation as fixed time–step algorithms,
and are likely to exhibit singular perturbation phenomena, which may necessitate a reformulation in terms of
explicit force scales. We thus stress the need to extend the methods to variable time–step approaches which
implement error–control, and to investigate their long time–scale behavior in further work.

The implementations of algorithms in FORTRAN code, the MATLAB visualization code and the analysis notebooks
produced with MATHEMATICA are included on the accompanying CD, together with the raw data sets used to produce
the results presented in this thesis.

vii





Preface
This thesis is in a sense a detailed account of my research over the past two years, extending back to an internship

at the University of Texas at Austin in the fall semester of 2005, and in I find myself deeply indebted to a number of

people.

First, I would like to thank my advisors Ron Noomen and Wim van Horssen for both their guidance in this period, as

well as for giving me pretty much a free hand in determining what to study and how to approach it. Likewise, I am

deeply indebted to Cesar Ocampo at UT for introducing me to the fascinating study of ballistic capture trajectories,

and for the interesting discussions we had during my stay in Austin.

Likewise, I am grateful to a number of friends, among which Jeroen Melman, Kartik Kumar and Federico Gallo in par-

ticular, for the numerous interesting and irreverent discussions we had about mutual and mutually exclusive research,

and for always being willing to hear me out, no matter how mathematical it got. . .

Lastly, I am appreciative beyond words of the support of my family, and in particular my loving wife Vanessa, who

persevered with me throughout a rather difficult final year, and has given me space both to think and to breathe.

Before proceeding to the work ahead, I’d like to characterize that to which my readers are about to subject themselves.

This work is intended foremost in the spirit of exploratory research and we will approach our problems both with ana-

lytical and with computational tools. However, since even the analytical techniques were motivated by a computational

problem, it’s my deep conviction that the following remark, due to Hamming, can’t be emphasized enough, and should

be engraved in stone at engineering schools everywhere:

The purpose of computing is insight, not numbers.

Remembering always the physics underlying our models, it is my hope that my work on the problems of this thesis

can do the statement some justice, despite the complexity of the discussion and the sea of technical details we must

necessarily wade through. If nowhere else, may it shine through in the spirit and the conclusions of this thesis.

ix



x



Action is the pointer which shows the balance.
We must touch not the pointer, but the weight.

– Simone Weil

xi





Contents

1 Introduction 1
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Problem Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.4 Document Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.5 Division into AE and AM Theses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

I Preliminaries 7

2 Hamiltonian Dynamics under Perturbation 9
2.1 Hamiltonian Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.1 From Lagrangian to Hamiltonian Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.1.2 Structure of the Phase Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Integrability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2.1 First Integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2.2 Symmetry and First Integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3 Stability & Perturbation Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.3.1 Flows and Mappings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.3.2 Perturbation Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.3.3 The KAM Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.3.4 Small Denominators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3 Astrodynamics and the Capture Problem 23
3.1 The n−Body Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.1.1 Integrals of Motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.1.2 Non-Integrability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.2 The 2−Body Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.2.1 Standard Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.2.2 Lagrangian and Hamiltonian Formulations . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.2.3 Solution of the 2–Body Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.3 The 3−Body Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.3.1 Discussion of Perturbative Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
3.3.2 The General 3−Body Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.3.3 Reduction by First Integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3.3.4 Planar Jacobi Problem Summarized . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.3.5 The Restricted 3−Body Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.4 Ballistic Capture and Transfer Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.4.1 WSB–based Transfers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.4.2 DST–based Transfers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.5 The Capture Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
3.5.1 A Model for Ballistic Lunar Capture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
3.5.2 Remarks on the Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

xiii



4 Method of Integrating Vectors 63
4.1 Exact Equations and Integrating Factors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.2 A Nonlinear Method based on Integrating Factors . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
4.3 Treating Multiple Scales . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.3.1 Time–Scales . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.3.2 Mass– and Spatial–Scales . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
4.3.3 Force–Scales . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5 Numerical Trajectory Integration 75
5.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
5.2 Traditional Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.2.1 Simple Predictor–Corrector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
5.2.2 Single–Step: RKF4(5) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
5.2.3 Multi–Step: Adams–Bashforth–Moulton . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.3 Conservative Integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
5.3.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
5.3.2 Conservative Integrators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
5.3.3 Conservative vs. Symplectic Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.4 Error in Conservative Integration Schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
5.4.1 Basic Error Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
5.4.2 Exact Integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
5.4.3 Approximate Integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
5.4.4 On Efficacy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

II Approximations of First Integrals 95

6 The Jacobi 3−Body Problem 97
6.1 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
6.2 Review of the Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
6.3 The 10 Known Integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

6.3.1 Simplified Expansions of Terms in ε . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
6.3.2 On More Accurate Expansions in ε . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
6.3.3 Equations of Condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
6.3.4 Conservation of Linear Momentum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
6.3.5 Conservation of Angular Momentum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
6.3.6 Conservation of Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
6.3.7 On Uniqueness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
6.3.8 On Demonstration vs. Proof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

6.4 Approximations of New Integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
6.4.1 Full Equations of Condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
6.4.2 Solution Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

7 The Circular Restricted 3−Body Problem 115
7.1 Review of the Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
7.2 The Jacobi Integral . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

7.2.1 Expansions in ε . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
7.2.2 Equations of Condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
7.2.3 Construction of the Integral . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

7.3 Approximations of New Integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
7.3.1 Full Equations of Condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
7.3.2 Solution Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

xiv



8 The Capture Problem 125
8.1 Review of the Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
8.2 The Analogue of the Jacobi Integral . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

8.2.1 Analytical Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
8.2.2 Expansions in ε . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
8.2.3 Equations of Condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
8.2.4 On the Construction of the Integral Approximation . . . . . . . . . . . . . . . . . . . . . . . 132

8.3 Approximations of New Integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
8.3.1 Full Equations of Condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
8.3.2 Solution Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

III Integrator Performance 139

9 Conservative Integrator Design Notes 141
9.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
9.2 General Design Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

9.2.1 Models and Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
9.2.2 Conceptual Design Issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
9.2.3 Coding and Validation Issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

9.3 On Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
9.3.1 Approaches to Performance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
9.3.2 On Comparison with Higher–Order Integrators . . . . . . . . . . . . . . . . . . . . . . . . . 145
9.3.3 Present Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

10 Exactly Conservative Integrators 149
10.1 Design for Exact Conservation of the Hamiltonian . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149
10.2 Core Conservative Integration Scheme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150
10.3 An Integrator for the Circular Restricted 3−Body Problem . . . . . . . . . . . . . . . . . . . . . . . 153

10.3.1 Integrator Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153
10.3.2 Integrator Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155

10.4 Energy Conservative Integrators for the 3−Body Problem . . . . . . . . . . . . . . . . . . . . . . . . 171
10.4.1 Explicit Integrator Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
10.4.2 Implicit Integrator Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
10.4.3 Integrator Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

10.5 Doubly Conservative Integrator for the 3−Body Problem . . . . . . . . . . . . . . . . . . . . . . . . 189
10.5.1 Integrator Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
10.5.2 Integrator Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

10.6 On Conservation of Multiple Integrals in General . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202

11 Approximately–Conservative Integrators 205
11.1 Convergence of Integral Approximations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
11.2 Approximately Conservative Integrators for the CR3BP . . . . . . . . . . . . . . . . . . . . . . . . . 208

11.2.1 Integrator Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208
11.2.2 Approximation Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210
11.2.3 Integrator Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212

11.3 Approximately Conservative Integrators for Capture . . . . . . . . . . . . . . . . . . . . . . . . . . . 217
11.3.1 Integrator Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217
11.3.2 Integrator Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218

IV Conclusions 229

12 Conclusions 231
12.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231

12.1.1 Modeling Aspects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 231
12.1.2 On Approximations of First Integrals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232
12.1.3 On Integral–Conservative Numerical Simulation . . . . . . . . . . . . . . . . . . . . . . . . 232
12.1.4 Minor Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234

xv



12.2 Recommendations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235
12.2.1 Applied Mathematics Part . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235
12.2.2 Aerospace Engineering Part . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235

Bibliography 237

V Appendices 0

A Notational Conventions I

B Hamiltonian Formulations III
B.1 2−Body Problem Lagrangian and Hamiltonian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . III
B.2 Full 3−Body Problem Hamiltonian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V
B.3 Circular Restricted 3−Body Problem Hamiltonian . . . . . . . . . . . . . . . . . . . . . . . . . . . . V
B.4 Angular–Momentum Reduced 3−Body Problem Hamiltonian . . . . . . . . . . . . . . . . . . . . . VI
B.5 4−Body Capture Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . VII

C Simulation Suite Manual IX
C.1 Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . IX

C.1.1 Getting Started . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . IX
C.1.2 Fine–Tuning and Troubleshooting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . X

C.2 Code Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . XI
C.2.1 FORTRAN Simulation Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . XI
C.2.2 Output File Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . XII
C.2.3 MATLAB Visualization Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . XIII
C.2.4 MATHEMATICA Analysis Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . XIV
C.2.5 Code Validation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . XIV

xvi



Chapter 1

Introduction

This thesis reports on work performed at the faculties of Applied Mathematics and of Aerospace Engineering at Delft

University of Technology starting roughly in the summer of 2006 and continuing through the summer of 2007, building

on earlier work performed at the Center for Space Research at the University of Texas at Austin, in the fall semester of

2005.

1.1 Background

There are a number of what might be called “classical” problems of celestial mechanics and astrodynamics, among

which the full– and restricted 3−body problems feature prominently. Arising from Newton’s third law of motion using

the straightforward multi–body extension of the gravitational potential Gm1m2
r , these have been found, in some 300

years of active research, to contain a remarkable range of dynamical behavior. Yet in our age of quick–and–dirty com-

putational approaches to problems, we are often apt to overlook this and focus exclusively on the black–box calculation

of orbits.

Moreover, the problems themselves contain very interesting structure. They are essentially Hamiltonian dynamical

systems, a fact which has implications for the behavior of orbits, properly flows in a Hamiltonian phase–space. There

is also a limited set of 10 known integrals, and since these encapsulate key aspects of the behavior of the system, they

too should arguably play a role in any correct simulation, properly a numerical solution (integration) of the equations

of motion. Yet with the exception of the astronomy community, practical interest in the design of numerical algorithms

incorporating these features has been limited until the late 1990’s, and only recently have theoretical approaches again

been introduced into what had long become a computational field. This is largely due, however, to the difficulty of

treating the problems analytically.

Already in the case of just 3 bodies, we face a coupled system of 18 nonlinear ordinary differential equations. Even

after maximally reducing these using the known integrals of motion, we still retain 8 degrees of freedom, which can

model anything from simple circular near–Earth satellite orbits, to halo orbits rotating about empty space, and compli-

cated choreographies of trinary star systems and indeed, in this range of complexity lies both the beauty and challenge

of the problem.

In particular, the problems that the present work is concerned with share common roots in a study of a technique for

constructing ballistic lunar capture transfers in the Earth–Moon system performed by the author. While a numerical

solution using a standard technique was the obvious engineering approach, the question was quickly raised as to
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whether the solutions thus obtained were correct. This was a particularly relevant question given the characteristic

dynamics (linked to the recent work on Weak Stability Boundaries and dynamics on tubular manifolds interacting near

the Earth–Moon Lagrange points) and the extreme observed sensitivity to initial conditions.

1.2 Problem Definition

The question, as the present work will make clear, is considerably more difficult to answer than it at first seems, and

after considerable reflection, the problems the thesis is concerned with were defined as the following:

1. First, to consider the application of a new method of integrating vectors for the approximation of first integrals

[e.g. van Horssen, 1999a,b] of the motion to the problems noted above: the 3−body problem (3BP), the (circu-

lar) restricted 3−body problem (CR3BP) and the (ballistic) capture problem (CP).

The choice of these dynamical problems is by no means arbitrary; rather, the 3−body problem may be thought

of as a prototype of the full dynamics of the n−body problem, the CR3BP as its most useful restriction to man-

ageable levels of complexity, and the CP the simplest extension (or perturbation) of the CR3BP so as to include

the essential dynamics involved in ballistic lunar capture.

2. Second, to consider the application of a new framework for the integral–conservative numerical solution of the

equations of motion [e.g. Shadwick et al., 1999, Kotovych and Bowman, 2002] to the same problems. In par-

ticular the framework intended is one which lends itself for direct inclusion of not just the known integrals, but

also approximations of integrals such as would be generated by the method of integrating vectors above.

That the two approaches mesh in this way is of particular significance for the capture problem we define in the

present work, for which no integrals are in fact known. Moreover, the key motivation for the use of such conser-

vative numerical solution schemes for us lies in a better treatment of the sensitive dynamics we encounter with

ballistic capture trajectories, and the present work will examine whether such an approach is indeed worthwhile.

The reader will remark that these problems are somewhat broadly defined, as opposed to e.g. the “concrete” optimiza-

tion of a trajectory. This is consistent with the nature of the present work as exploratory research, and indeed, in the

course of this thesis a number of counterintuitive conclusions will be motivated, contrary to the expectations at the

outset.

1.3 Approach

Our main goal in this thesis, then, is exploratory: we seek to discover whether the two approaches, theoretical and

numerical, can be usefully applied to the 3 problems in astrodynamics we consider, and what insights can be gained

using them. Thus:

1. In Part I of this thesis we will lay out the rather extensive theoretical background necessary for the consideration

of the problems outlined above. In particular we will reconsider the modeling of the 3−body problems and

the 4–body capture problem, paying due attention to their interrelation as a series of successive perturbation

problems.
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2. Next, with regard to the method of integrating vectors, in Part II of this thesis we will consider the ab initio

construction of the known integrals of motion for both 3−body problems. Our goal in this is not to reproduce

known results per se, but rather to get a grip on the types of integrating factors which play a role in the analysis

of these problems in astrodynamics.

Using this knowledge, we then consider the problem of generating (approximations of) new integrals of the

motion, which is a considerably more complicated problem. The complication stems from the need to solve

not just the time–independent parts, but the full time–dependent system of coupled linear partial differential

equations.

3. Third, in Part III of this thesis, we consider the efficacy of conservative and approximately conservative numer-

ical integration schemes for solving the equations of motion of the problems. We are particularly concerned

with the relation of their performance in preserving the integrals of motion to the accuracy of the trajectories

integrated, and the scalings in the dynamics which influence this relationship.

In order to perform this comparative study in the absence of existing libraries of code for the simulation, it was

found necessary to code a simulation suite ourselves. This IntegrationMethods suite of FORTRAN code, to-

gether with MATLAB visualization code and MATHEMATICA analysis code form the foundation for the results

presented, and are included on the CD accompanying this thesis.

A few words are in order with regard to a number of intentional choices of approach taken in this work, so as to not

take the reader altogether by surprise:

• We have intentionally followed literature conventions as much as possible, to preserve comparability with other

work. In consequence, for example, we treat the full 3−body problem in dimensional Jacobi coordinates, while

we treat the CR3BP in the conventional normalized (dimensionless) coordinates. Moreover, while both may be

derived from appropriate Hamiltonians, we typically use and simulate in “natural” problem–derived coordi-

nates,1 rather than in canonical variables.

• While the above remarks apply to the actual modeling of the problems, our numerical results are presented

consistently across all models in dimensional kg− km− s units, and correspond to realistic trajectories for

Earth–Moon–Satellite and Sun–Earth–Moon (–Satellite) test cases.

• In contrast to a certain standard approach to problem definitions, however, we encounter a wide diversity of

notation in the literature, and have imposed a uniform approach in the present thesis. This is summarized in

appendix A, which the reader is asked to briefly skim.

• In the analysis of the chapters of Part II we have intentionally simplified the problems considered in certain

ways with regard to expansions in a small parameter ε. This has been done for purposes of clarity and is not

in any way essential. It is, moreover, corrected for in Part III when we consider numerical solutions, where

we have used full and correct expressions throughout to ensure comparability of results between problems and

coordinate systems.

1Though using the exactly equivalent expressions of the dynamics.
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• The numerical solutions for trajectories and orbits found using the methods of Part III are of course themselves

intended as the subject of discussion and analysis, but the question of what to benchmark them against is again

more involved than it would seem on the surface. A practical approach has been used in benchmarking against

a standard RKF7(8) integrator, but we would caution that this choice is nontrivial, and all results are to be

considered in the light of the comments of the detailed discussion of chapter 9 on the validity and drawbacks of

the approach.

1.4 Document Organization
We summarize here the organization of the thesis document into five parts as follows:

1. Part I treats the building blocks necessary to the development of the rest:

• We begin with a short review of Hamiltonian dynamics in chapter 2, highlighting the main characteristics

of this particular class of problems, of which the problems of the present work are an interesting subset.

• This is then followed by an extended treatment of the necessary astrodynamics including approaches to

ballistic capture trajectories in chapter 3. In particular the three core problems of this thesis are introduced

here, and discussed extensively from a modeling point–of–view.

• Next, chapter 4 treats the method of integrating vectors, and concludes with an extended discussion of

multiple–scales issues relevant to the particular problems of astrodynamics.

• Finally, chapter 5 treats the basics of numerical trajectory integration relevant to Part III of this thesis,

focusing in particular on single– and multi–step traditional methods and the conservative integration tech-

niques that form the basics of the work done in chapters 10–11.

2. Part II treats work done towards the use of the method of integrating vectors for the determination of approxi-

mations of first integrals in the general and restricted 3−body problems and the capture problem:

• Chapter 6 discusses the application of the method to the full 3−body problem, reduced using the known

integrals to the planar Jacobi problem. This is the most difficult problem, as it treats the motion of all 3

bodies on an equal footing, but there are 10 known integrals, which we discuss in detail.

• Chapter 7 does likewise for the restriction of the above to the circular restricted 3−body problem for

the motion of only a satellite in the presence of 2 primaries, which assume fixed positions in the rotating

coordinate system introduced for this problem. We discuss here in particular the Jacobi integral and the

integrating vectors which lead to it, also in connection with the chapter which follows.

• That is chapter 8, which treats the application of the method to the capture problem, for which there are

no known integrals, and we discuss in particular the modifications of the Jacobi integral induced by the

perturbation of the CR3BP to the CP. The chapter closes with a discussion of why the problem is particu-

larly interesting as an area for the concentration of future research efforts.
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In each of those three cases, the validity of the method in generating the known integrals will be demonstrated

(and in one case proven explicitly), after which a discussion of the problems posed encountered in trying to find

new integrals will follow.

3. Part III then proceeds to the discussion of conservative integration schemes and their performance:

• Chapter 9 discusses general design considerations and introduces the integration models and methods

coded in the IntegrationMethods suite code. The design considerations are split into conceptual issues

and coding & validation issues respectively. Additionally we have placed the discussion of performance

evaluation here, immediately preceding the presentation and discussion of results.

• Chapter 10 presents the results of simulations of the 3BP, CR3BP and CP with the different integra-

tors for 2 test cases. We present and compare a number of different implementations of Bowman’s

algorithms, as well as comparing our methods with the RKF7(8) benchmark and their simple predic-

tor corrector and RKF2(3) “competitors.” We close with considerations on the general formulation of

multiply–conservative algorithms, which again turns out to pose some challenges in the general setting.

• Our final chapter 11 then proceeds with the discussion of approximately conservative integrators of dif-

fering orders for the CR3BP and CP for a small satellite, focusing on performance relative to order of

approximation, and in comparison with the fully conservative integrator of the previous chapter in the

CR3BP–case. We also briefly consider the issue of convergence of the integral approximations in the

context of conservative solution of actual trajectories.

4. Part IV is formed by the conclusions and recommendations of the thesis.

5. Part V is composed of the appendices, which treat the notational conventions in appendix A, the derivations of

the Hamiltonian formulations (cited in chapter 3) in appendix B, and a brief manual for the IntegrationMethods suite

of simulation codes developed for the discussion of Part III in appendix C.
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1.5 Division into AE and AM Theses
The core of this work is formed by Parts I–III and can usefully be read as an integral whole: Parts II and III are strongly

related, and both draw on the results of Part I, which in particular with respect to astrodynamics issues in chapter 3 and

section 4.3 serves as more than just a summary of the literature.

Nonetheless, despite the strong relationships between different areas of the discussion, this work is primarily intended

to serve as a thesis for both the faculties of Applied Mathematics and of Aerospace Engineering, and so for organiza-

tional purposes it is to be divided into two separate bodies of work as follows:

1. The first, which is intended to serve as the body of work submitted to Applied Mathematics, is the union of Parts

I and II, together with this introduction and the appropriate remarks in the conclusions and recommendations,

as well as appendices A and B.

2. The second, intended to serve as the body of work submitted to Aerospace Engineering, is the union of Parts I

and III, together with this introduction and the appropriate remarks in the conclusions and recommendations, as

well as appendices A and C.
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Part I

Preliminaries
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Outline of Part I

The first part of this thesis reviews the theory essential to the development in the following two parts. In particular, we

desire to formulate the physical problems with due consideration for the nuances of the dynamics under perturbation,

and these first three chapters significantly extend the line of thought developed in the earlier literature study. We will

proceed as follows:

1. In chapter 2, we begin with a consideration of the characteristics of dynamical systems formulated using the

framework of Hamiltonian dynamics, and will consider such issues as symplectity and the integrability of

Hamiltonian systems in general, as well as discussing some relevant issues in relation to stability and per-

turbation theory.

2. In chapter 3 a review is given of astrodynamics and the capture problem. The n–body problem is introduced, af-

ter which the 2−body problem is stated and solved, as a baseline against which further problems are introduced

as perturbations. In particular:

• The classical 3−body problem is discussed with its reduction from 18 to 8 first-order ordinary differential

equations, and the modifications of the dynamics are discussed from the perspective of perturbations of

the 2−body problem.

• On taking the classical restrictions to the circular restricted 3−body problem, the consequences of the

restrictions are demonstrated, and we discuss a framework for other possible restrictions of the 3−body

problem as models for different physical phenomena and their consequences.

• The restricted 3−body problem in turn is also taken as a baseline for further perturbation by a 4th body.

In the simplest case an empirical modification is proposed analogous to the quasi-bicircular problem in

the literature.

3. In chapter 4, the method of integrating vectors introduced in [van Horssen, 1999a,b] is reviewed, and its appli-

cation as a method of constructing approximations of first integrals is discussed. The issues which arise when

treating problems with multiple scales are particularly relevant to the problems of this thesis, and multiple scales

issues will be discussed in detail, extending beyond multiple time–scales to mass–, spatial– and force–scales as

well.

4. Lastly, the discussion of numerical (trajectory) integration given in the literature study is briefly reviewed in

chapter 5, both to introduce conventions and to recall the issues relevant to integrator choice and design. In

particular the reader is requested to take note of the discussion of conservative integrators, and particularly the

consideration of error-propagation and implementation effectiveness, as these schemes lend themselves to the

goals of this thesis and will play a prominent role in the third part of the work.
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Chapter 2

Hamiltonian Dynamics under
Perturbation

This chapter briefly discusses Hamiltonian dynamics in the context of perturbed dynamical systems, and a relevant few

of the many results known for the dynamics of such a system (of which class almost all the problems of this thesis are

members). An overview of the results may be found in [Verhulst, 2000], while considerably more detailed treatments

may be found in e.g. [José and Saletan, 1998] from a modern physical perspective or [Arnold, 1989] from the more

traditional mathematical physics perspective.

2.1 Hamiltonian Dynamics

A Hamiltonian system is a dynamical system for which a Hamiltonian function H (q, p) can be defined H :R2n→R,

with generalized coordinates qi and momenta pi, i = 1, . . . ,n. The equations of motion are then derived from the

Hamiltonian by Hamilton’s canonical equations:

q̇i =
∂H
∂pi

, ṗi =−∂H
∂qi

. (2.1)

These equations of motion are a set of 2n×1st order ODE’s.

For the particular case of particles with kinetic energy T in a conservative potential U , it can be shown that the Hamil-

tonian becomes H = T +U . Hence H may be thought of as a function in the role of the energy of the system, though

the specific relation H = T +U generally does not hold.

Further, on setting x = (q, p)> ∈R2n, the equations of motion become
ẋk =

∂H
∂xk+n

for k = 1, . . . ,n

ẋk =− ∂H
∂xk−n

for k = n+1, . . . ,2n

, (2.2)
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and thus naturally induce a structure given by the matrix J:

ẋ =

(
0n In

−In 0n

)
∇H = J ∇H . (2.3)

It has the properties that:

J2 =−I2n and (2.4a)

J> =−J . (2.4b)

This is a specific example of a symplectic structure, discussed briefly in section 2.1.2 below.

2.1.1 From Lagrangian to Hamiltonian Dynamics

The conventional starting point for theoretical mechanics is typically Lagrangian dynamics, where the concepts of a

kinetic energy T and potential energy U have their conventional interpretations and L = T −U . The Hamiltonian

formulation above is necessarily linked with Lagrangian dynamics, as it is an equivalent description of the dynamics

of a typical mechanical system. This is made more specific as follows.

Consider the Lagrangian L(q, q̇, t), then:

• Hamilton’s canonical momenta p j are defined by

p j =
∂L(q, q̇, t)

∂q̇ j
. (2.5)

• The relation (for the general case including explicit time–dependence)

H (q j, p j, t) =
n

∑
j=1

p jq̇ j−L
(
q j, q̇ j(qk, pk), t

)
, (2.6)

demonstrates the formal construction of a Hamiltonian from the Lagrangian L(q, q̇, t), and is a Legendre trans-

form between the two (the canonical momenta p j come to replace the coordinate derivatives q̇ j as variables).

• Introducing these transformations, and viewing with regard to the formalism (vector) p, q as independent vari-

ables, the dynamics which were given by the Euler-Lagrange equations

d
dt

∂L
∂q̇ j
− ∂L

∂q j
= 0 , (2.7)

as n×2nd order equations are now given by equation (2.1) as 2n×1st order equations instead.

• In the language of dynamical systems, one considers the set of coordinates {q } as comprising a space Q, and

associated with each point q is the tangent space TqQ. The collection of all these TQ =
⋃

TqQ associates to

each coordinate on Q its tangent space, and thus forms a carrier manifold for the dynamics (parameterized by

q, q̇).

• In Hamiltonian dynamics, the coordinate derivatives q̇ are replaced by the conjugate momenta p which are for-

mally covariant vectors ( 1–forms ), and so p ∈ T∗Q =
⋃

T∗qQ, the cotangent space dual to the ordinary tangent
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space.

Thus there is a shift in perspective from Lagrangian dynamics on a manifold TQ to Hamiltonian dynamics on

T∗Q, and this T∗Q is what is formally intended as the phase space of a Hamiltonian system.

2.1.2 Structure of the Phase Space

As outlined in the previous section, Hamiltonian dynamics is a reformulation of the dynamics of a system as a flow in

the 2n dimensional phase-space T∗Q (or on the 2n dimensional manifold T∗Q). Part of the utility of this reformulation

stems from the fact that the phase space is structured in interesting ways, which are outlined briefly in the following

sections, and summarized in three theorems.

Symplectic Structure

Definition 2.1.1 (k-forms and Differential k-forms)

A k-form, or exterior form of degree k is a function of k vectors, which is k-linear and antisymmetric. The basic

examples are:

• 1–forms, commonly known as covariant vectors, dual to the usual contravariant vectors, which map ω :Rn→R
via the usual inner product ω(v) := (ω,v) = ∑k ωkvk; and

• 2–forms, ω[2] :Rn×Rn→R, typically defined via the exterior product of 1–forms, ω[2] := ω1∧ω2.

A differential k-form at a point x of a manifold M is an exterior k-form on the tangent space TxM, i.e. a skew-symmetric

function of k vectors v1, . . . ,vk tangent to M at x. Note also that the geometrical interpretation of a differential k-form

is that of an oriented area-element in the space on which it is defined. OnRn, we typically take coordinates xi and have

differential k-forms of the form dxi1 ∧·· ·∧dxik ; that every such differential k-form can be uniquely written in this way

is a theorem ([Arnold, 1989, section 34]).

Example 2.1.2 (k–Forms)

Some examples of k-forms are:

• The differential 1–form corresponding to unit length on a curve: dx

• The differential 2–form corresponding to unit area on a manifold: dx1∧dx2

• The volume or 3–current in electrodynamics: J = Ja εabcd dxb∧dxc∧dxd , with εabcd the Levi–Civita permuta-

tion symbol and a,b,c,d running through the coordinates.

Definition 2.1.3 (Symplectic Structure)

Let M2n be an even-dimensional differentiable manifold, e.g. T∗Q in the case of a Hamiltonian system. A symplectic

structure on M2n is a closed non-degenerate differential 2–form ω[2] on M2n.1 The set (M2n,ω[2]) is referred to as a

differential manifold.

Lemma 2.1.4 (Natural Symplectic Structure of a Hamiltonian System)

The tangent bundle T∗Q introduced for Hamiltonian systems has a natural symplectic structure. It has local coordinates

1i.e. a bilinear antisymmetric function of 2 vectors on a 2n–dimensional manifold M2n which is both closed and non–degenerate
in a topological sense.
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(q, p) at all points in T∗Q, on which the symplectic structure is given by

ω[2] = dp∧dq = ∑
i

dpi∧dqi . (2.8)

Proof. See [Arnold, 1989, section 37].

Example 2.1.5 (Recovery of the Hamiltonian Vector Field)

As an example (due to [Arnold, 1989]) one can construct an isomorphism J : T∗Q→ TQ by associating with each

ξ ∈ TQ:

ω[1,ξ](η) = ω[2](η,ξ) ∀ η ∈ TQ , (2.9)

which takes vectors from the tangent space to the cotangent space using the natural symplectic structure ω[2].

Then with H the Hamiltonian, define the vector field J dH using the differential 1–form dH ∈ T∗Q and J in the role

of ω[1,ξ] as a mapping to TQ. TakingR2n = {x = (q, p)ᵀ }, one obtains in this way:

ẋ = J dH (x)←→ q̇ =
∂H
∂p

, ṗ =−∂H
∂q

, (2.10)

which we refer to as the Hamiltonian vector field.

This shows, equivalently, that the isomorphism J is (in the (q, p) basis) precisely the matrix

(
0n In

−In 0n

)
introduced

in section 2.1.

Thus J dH ≡ J∇H as introduced earlier in section 2.1, and from the symplectic structure induced by the Hamiltonian,

one recovers precisely Hamilton’s equations of motion in this way.

In particular, note that in applications (almost exclusively in real coordinates), one uses the structure J to define a

matrix A or vector function f (x) to be symplectic if it holds that:

A> JA = J or (2.11a)

∇ f (x)> J∇ f (x) = J respectively. (2.11b)

Volume Preserving Flow

The flow in a Hamiltonian system is also volume preserving, as the following theorem asserts.

Theorem 2.1.6 (Liouville’s Theorem)

Consider the equation ẋ = f (x) and a domain D(0) ∈Rn which has a volume v(0). The flow of the system defines the
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“time advance mapping”2 gt :Rn→Rn such that D(t) = gtD(0). For a volume element v(t) then

dv
dt

∣∣∣∣
t=0

=
∫

D(0)
∇ · f (x)dx . (2.12)

When this flow is generated by a time–independent Hamiltonian system, it is volume preserving.

Proof. In such a system, we find that

∇ · f (x) =
n

∑
i=1

(
∂q̇i

∂qi
+

∂ ṗi

∂pi

)
=

n

∑
i=1

(
∂2H

∂qi∂pi
− ∂2H

∂pi∂qi

)
= 0 . (2.13)

In consequence, the system cannot have attractive equilibrium points (in positive or negative time),3 as these imply the

shrinking resp. expansion of a volume element as time progresses. Of course this does not prohibit a lower-dimensional

sub-manifold exhibiting attraction; an example would be the stable manifold of a saddle point.

Note that this theorem, understood as a geometric proposition about the flow in a Hamiltonian system, is also important

in the numerical study of any Hamiltonian system or class of flows therein (as opposed to the evolution of a single tra-

jectory) in that any computation should likewise not contain attractive equilibria, which would be un-physical. This is

a key issue discussed further in chapter 5. This result is in turn linked to the notion of a symplectic structure by the next.

Theorem 2.1.7 (Preservation of Symplectic Structure by Hamiltonian Flow)

If we use the Hamiltonian vector field J dH to define a phase flow, i.e. the vector field fulfills the role of f (x) in the

usual

ẋ = f (x) = J∇H ,

then this phase flow preserves the natural symplectic structure ω[2]. This can also be stated explicitly in terms of the

symplectic linear structure (remark that this is indeed an antisymmetric function of 2 vectors):

[v1,v2 ] := (J v1, v2 ) ,

with ( , ) the usual inner product, as:

[gt(x1), gt(x2)]︸ ︷︷ ︸
structure advanced by flow

= [x1, x2]︸ ︷︷ ︸
original structure

, (2.14)

with gt the time advance map of the Hamiltonian flow.

Proof. See [Arnold, 1989, section 38].

2This can be defined in terms of the stroboscopic map of dynamical systems theory. Alternatively, one could think of this operation
as the propagation operator D(t) = P t0→t(D(0)) as introduced in [Verzijl, 2006, 2005].

3Nodes or foci, stable (attraction in forward time) resp. unstable (attraction in negative time).
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Corollary 2.1.8
In the case n = 1 such that M2n =R2, this asserts that Hamiltonian flow preserves area, which is Liouville’s theorem

2.1.6 in 2 dimensions. For n > 1 it can likewise be shown that preservation of the symplectic structure corresponds

precisely to conservation of (oriented) volume, which is intuitive in light of the geometric interpretation of the structure

as an area element noted earlier.

A practical application of this theory is in the use of symplectic integrators which preserve this structure of the Hamil-

tonian dynamics, and thus phase–space volume in numerical integration. As discussed in [Verzijl, 2006] there is an

inherent tradeoff involved in choosing between the conservative integration schemes discussed in this thesis and sym-

plectic integrators, though both are motivated by the preservation of the underlying properties and structures of the

dynamical system in numerical integration.

2.2 Integrability

The issue of the analytical integrability of a system is the question of whether a system can be reduced to a set of

known functions of time. Ideally these are analytic functions by which the number of unknowns may be reduced such

that all are fixed by a single independent variable (typically the time t), but convergent series are also often admitted,

as well as the reduction to a form which can be integrated by quadratures.

However, while the concept is simple, the details are often quite technical, and the reader is referred the following

chapter on astrodynamics, as well as to [Szebehely, 1967] for an extended discussion in the context of the 3−body

problem of celestial mechanics. The concept is introduced here only in a general sense, applicable to any dynamical

system.

2.2.1 First Integrals

Definition 2.2.1 (First Integral)

Recall first the orbital derivative of a function F(y), where y = (x, t)> and x ∈Rn, t ∈R, and F :Rn+1→R:

Lt(F) =
∂F
∂y

ẏ =
n

∑
i=1

∂F
∂xi

ẋi +
∂F
∂t

. (2.15)

Then a first integral of a system is a function I(y) such that Lt(I)≡ dI
dt = 0.

Example 2.2.2 (Hamiltonian as First Integral)

An example, as noted above, is the Hamiltonian.

Lt(H (p,q)) =
n

∑
i=1

(
∂H
∂pi

ṗi +
∂H
∂qi

q̇i

)
=

n

∑
i=1

(
−q̇i ṗi + ṗi q̇i

)
= 0 .

Example 2.2.3 (Integrals in Action-Angle Variables)

Another example is the motivation for a canonical transformation to so-called action-angle variables. If the system
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can (via a suitable coordinate transformation) be written as

İ = 0, ϕ̇ = ω(I) ,

then clearly each (constant) action variable Ii is a first integral,

Lt(Ii) = ∑
j

∂Ii

∂I j
İ j +

∂Ii

∂ϕ j
ϕ̇ j = 0 , (2.16)

as the first set of terms is zero on substituting the Hamiltonian equations, while the second is zero by the hypothesis

that the I are constants independent of the time-varying ϕ. Moreover, in this formulation there are n such integrals, and

the system is integrable, as it is fully specified by the I and the n equations ϕ̇ = ω(I) given initial conditions ϕ(0).

In the above an explicit time dependence was considered for the first integral; this is often omitted in the literature, but

this need not be the case. It is important to note that when the literature speaks of a limited number of first integrals

existing for a given system, the writer is usually referring to integrals of the form I(x) and not I(x, t). Appendix C.3 of

[Verzijl, 2006] gives an example for a simple 2nd order system, the harmonic oscillator, which is completely charac-

terized by two first integrals, one of which must be explicitly time–dependent.

For the particular case of the n–body problem-class, it is known that there is a limit of precisely this kind (i.e. consid-

ering time–independence) on the number of first integrals, due to Bruns and Poincaré, which is discussed in section

3.1.2 in the context of the non-integrability of such systems.

Another result which should be noted in the context of Hamiltonian systems is the following.

Lemma 2.2.4 (First Integrals and Involution)

It follows from the Poisson bracket:

{ f , g}=
n

∑
i=1

∂ f
∂qi

∂g
∂pi
− ∂ f

∂pi

∂g
∂qi

,

that for an autonomous system with Hamiltonian H ,

0 = Lt(I(p,q)) = { I, H } , (2.17)

is an equivalent definition of a first integral, which is said to be in involution with the Hamiltonian H .

An issue to which we return in chapter 3 is that of the integrability or reducibility of a system by means of first integrals.

It is a theorem due to Liouville that a system with n degrees of freedom4 is integrable by quadratures if one can find n

functionally independent first integrals in involution, that is Ii, j such that:

{ Ii(p,q), I j(p,q) }= 0 ∀ i, j ∈ {1, . . . ,n}. (2.18)

Proof. The first part of this lemma is evident on using the definition of { I, H } the second is considerably more

complicated, and we refer the reader to [Arnold, 1989, section 40 & 49], or alternatively [Katok and Hasselblatt, 1996,

section 5.5].

4i.e. a 2n–dimensional phase–space.
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2.2.2 Symmetry and First Integrals

Before continuing, it should be mentioned that Noether’s theorem relates the symmetries of a dynamical system to its

first integrals in a very elegant way, and may be useful as a guide in the investigation of a system with as–yet–unknown

first integrals, by instead searching for the generating symmetries and invariance principles. While not central to

present work, we note the result here in connection with a remark at the end of section 6.4.2.

Theorem 2.2.5 (Noether’s Theorem)

We give the standard (Lagrangian) formulation following Arnold, which for the case of n-body dynamics is equally

applicable though the formulation is Hamiltonian. The principle itself is in fact more general.

Given a symmetry expressed by some mapping h : M→M,

L(h(x)) = L(x) , (2.19)

with a Lagrangian H and a vector x ∈ TQ; if the system admits the one parameter group of diffeomorphisms hs :

Q→Q, s ∈R, then the Lagrangian system of equations corresponding to L has a first integral I : TQ→R. In local

coordinates it takes the form:

I(q, q̇) =
∂L
∂q̇

dhs(q)
ds

∣∣∣∣
s=0

= p
dhs(q)

ds

∣∣∣∣
s=0

. (2.20)

Proof. Mathematically, this expresses the physical concept that a diffeomorphism to an alternate path via the

symmetry should not change the Lagrangian, or:

dL (hs(q))
ds

= 0 .

The result follows on substituting the Euler–Lagrange equations. Evaluating the expression at s = 0 expresses the

choice of taking the value of the integral in the untranslated system. For details, see e.g. [Arnold, 1989, José and

Saletan, 1998].

Examples of symmetries generated in this way are the conservation of linear momentum due to translational symmetry,

of angular momentum due to rotational symmetry and of energy due to translational symmetry in time.5 The interested

reader is also referred to [Golubitsky and Stewart, 2000] for a much more detailed discussion of new and ongoing

research in this area.

2.3 Stability & Perturbation Theory

This section reviews a few key notions from the theory of stability analysis and perturbation theory for ordinary dif-

ferential equations. We follow largely the treatment of [Verhulst, 2000], but also borrow from [Katok and Hasselblatt,

5For specific mechanical systems, we do not mean to assert that this can be assumed a priori.
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1996] and other sources where appropriate, with the goal of briefly introducing the minimum necessary basic defini-

tions and theorems needed further on.

It has also been attempted to impose a uniform convention and notation which will be followed throughout the thesis.

The reader with a grounding in these techniques may prefer to skim the chapter briefly for notational conventions only.6

2.3.1 Flows and Mappings

Consider the autonomous system of ordinary differential equations

ẋ = f(x) (2.21)

and let xc be some critical (equilibrium) point, which we may take to be the origin without loss of generality. We also

consider in the following periodic solutions φ(t) which exhibit the property that ∃T < ∞ such that φ(t) = φ(t +T ).7

Definition 2.3.1 (Time–Advance and Stroboscopic Map)

The stroboscopic map of a continuous flow x(t) in some space M, is the map gt0 : M→M, such that

gt1(x(t0)) = x(t0 + t1) and consequently (2.22a)

g(k)
t1 (x(t0)) = x(t + kt1) for the iterated map. (2.22b)

It is the most straightforward discretization of a flow, returning the solution to a continuous system of differential

equations advanced by time t0. The case t0 = 1 is also called the time-one map, and taking t0 arbitrary it is usually

referred to as the time–advance map gt :

gt(x(t0)) = x(t0 + t) (2.23)

Definition 2.3.2 (Poincaré Sections & Maps)

A Poincaré section is an at most (n− 1)-dimensional transversal to the flow described by equation (2.21). Let this

transversal be denoted V , a manifold which is punctured by the (periodic) orbit we consider and nowhere tangent to it.

P P(D0)

D0

V

Figure 2.1: Example of a Poincaré section V and flow-induced map P

The Poincaré map of a flow, then, is the return map P : V → V induced by the flow, often denoted the “map of first

return” (illustrated in figure 2.1). Note that if at a moment of intersection the point φ(t0) ∈ V then for a periodic or-

6See also appendix A in this regard.
7This is only some notation for the special case of a periodic orbit x(t;x0, t0) ≡ φ(t), of course. The same holds for γ(x0) below,

which are orbits x(t;x0, t0) puncturing the transversal manifold V at time t0 at x0 ∈V .
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bit φ(t0 + T ) = φ(t0) ∈ V as well, and we have a return of the flow, though in general it may return at some earlier

t0 < t1 < t0 +T as well.

By the continuous dependence of solutions on initial conditions, this defines the mapping P for some neighborhood in

V punctured by orbits γ(x0) passing near φ(t0), which also return to V if not exactly periodic. As usual, P2 denotes the

twice iterated Poincaré map, or the map of second return, and in general Pn the map of nth return to the section V .

This introduction of Poincaré maps allows the formulation of geometric approaches to stability which complements

the usual notions near a critical point, though these will not be pursued further here.8

2.3.2 Perturbation Theory

The goal of perturbation theory is to consider the effect of a small perturbation of a system. The classic example is a

disturbance δx to a solution x→ x + δx of the differential equation ẋ = f (x). In engineering, this is typically done in

the context of stability analysis of some particular solution to the differential equations, though the sense in which it is

discussed here is the study of small perturbations of the system itself, which may lead to qualitatively different behavior.

As motivated further on, this is in fact also the approach on which much of the work in this thesis will be based, though

both perspectives are useful in different contexts. Two typical examples of these kinds of perturbations are:

1. The perturbation of a simple Hamiltonian H0 to a more complex one modulated by some small parameter ε:

H0 → H0 + εH1 ; however, as the equations of motion are derived from the Hamiltonian, this is of course es-

sentially the same as the following:

2. The perturbation of a system of differential equations, e.g. the harmonic oscillator, by a small nonlinearity in

the system, e.g. ẍ+ x = ε(1− x2)ẋ (the Van der Pol oscillator).

Before considering these, we first define what it means for a perturbation to be O (ε) .

Definition 2.3.3 (Landau Order Symbol)

The Landau “big O” notation for the order O (. . .) is defined as follows:

δ1(ε) = O (δ2(ε)) as ε→ 0 if

∃ k ∈R such that
δ1(ε)
δ2(ε)

≤ k as ε→ 0

The qualification “as ε→ 0” is usually omitted, but always implicit. Remark that by this definition, aε3 +bε4 = O
(
ε3)

but not O
(
ε4) , as the term aε3 would lead to a bound k/ε which is no bound at all as ε→ 0. However, remark that the

converse is true: aε3 + bε4 = O
(
ε2) for example, as now any real number of the correct sign is a sufficiently strong

bound as ε→ 0.

There is a number of approaches to the study of perturbations of this latter kind above, i.e. of a system of differential

equations. We briefly discuss two in particular, for their relation to the approaches to problems in astrodynamics con-

8The interested reader may consult [Verzijl, 2006, chapter 2].
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sidered later:

1. Expansions of the equations and perturbation terms on a given timescale;

2. Normalization transformations which seek to recast the equations to a form as close as possible to a linear

system, which is in general obstructed by resonances in the equations.

Expansions

The starting point for the study of a perturbed system is usually its expansion in powers of the small perturbing param-

eter ε. Consider ẋ = f (x, t,ε).

A naive expansion9 would be to simply take both f and x expanded as a series in powers of ε:

f (x, t,ε) = f0(x, t)+ ε f1(x, t)+ ε
2 · · · , (2.24a)

x(t) = x0(t)+ εx1(t)+ ε
2 · · · . (2.24b)

Similarly, in seeking periodic solutions, one may take for the problem ẋ = f (x, t,ε) corresponding to the unperturbed

problem ẋ0 = f (x, t,0)

x(t0) = x0(t0)+µ with µ accounting for unknown deviations in initial condition. (2.25a)

x(t) = y(t)+ x0(t) is then a translation used to obtain (2.25b)

ẏ = f (y+ x0, t,ε)− f (x0, t,0)

ẏ≡ F(y, t,ε) with initial condition y(t0) = µ . (2.25c)

However, there is a problem with the expansion (2.24) and the formulation for periodic solutions so far presented, in

that such an expansion to order O (εm) provides an approximation of x(t) to order O
(
εm+1) accuracy, but only on a

timescale of order O (1) (in some appropriate units).

Theorem 2.3.4 (Poincaré Expansion Theorem)

Noting that the second formulation above contains the first, consider the problem

ẏ = F(y, t,ε), y(t0) = µ . (2.26)

Further let |t− t0|< h, y ∈ D⊂Rn, 0 < ε≤ ε0, 0 < µ≤ µ0.

If F(y, t,ε) is continuous with respect to its arguments for ||y|| < ρ for some radius ρ and ε bounded as above, then

the solution y(t) can be expanded in a convergent power series with respect to ε and µ in some neighborhood of the

unperturbed ε = µ = 0, convergent on a timescale of O (1).

Proof. See [Verhulst, 2000, section 9.4]

9See also [Verhulst, 2000, theorem 9.1 & 9.2] for details on the existence and convergence of such expansions.
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This result ensures that the naive approach works, but only in a very limited sense. What we typically seek, however,

is an expansion or approximation that is accurate on a longer timescale, e.g. O
(
1/εk) for k as large as possible. To this

end other techniques have been developed which are summarized here, of which the third will be discussed in detail

later in the thesis.

• The Poincaré-Lindstedt technique, also known as continuation.10 This technique seeks convergent series ap-

proximations of periodic solutions to a system. Part of its power lies in the ability to construct approximations

on time–scales considerably longer than that of the period T of the orbit being approximated. However, it is

beyond the scope of the present report to discuss the method in detail here.

• The method of averaging is another method, pioneered by Lagrange, specifically in the context of his study of

the 3–body problem as a perturbation of the 2–body problem.11 The approach is to seek asymptotic series12

solutions for an equation in Lagrange standard form, ẏ = ε f (y, t).

This is shorthand for

ẏ = εΦ
−1g(Φ(t)y, t ) with (2.27a)

x = Φ(t)y a transform using Φ(t) , the fundamental matrix of solutions (2.27b)

to the unperturbed (ε = 0) case of the system:

ẋ = A(t)x+ εg(x, t) . (2.27c)

Once in this form, the equations may be averaged over t by the argument that the variations are small enough in

magnitude, due to the leading ε term, to warrant this. This typically leads to O (ε) accurate approximations on

a time-scale of O (1/ε), and is detailed in [Verhulst, 2000, chapter 11], where the method is also illustrated for

the study of periodic orbits.

• The method of multiple time–scales, which recasts the equations of a problem in a form which makes the (often

different) time–scales explicit, through transformations of the type τ = εkt in the expansions. This then leads to

different validity time–scales O
(
1/εk) for each characteristic scale of the dynamics. We shall have considerably

more to say about this method and its extensions beyond application specifically to time in section 4.3, and so

will postpone the discussion to there.

2.3.3 The KAM Theorem

Next, we give a brief discussion of the KAM theorem, due to Kolmogorov, Arnold and Moser, which essentially de-

scribes what happens to the solutions of an integrable Hamiltonian system under small perturbations. While a very

technical theorem with regard to proof, what it asserts, in essence, is simple: that sufficiently small perturbations of a

dynamical system do not drastically alter the structure of the phase space.

The following summary is very brief; for deeper discussion, many texts are available, such as e.g. [Verhulst, 2000,

Arnold, 1989, José and Saletan, 1998] in general and [Siegel and Moser, 1995] with a detailed direct application to

10Which finds specialized application in software tools for the visualization of trajectories, periodic orbits and manifolds in such
tools as AUTO, Content, etc. in particular.

11The reader is referred also to the discussion of sections 3.3 and 8.2.4 in particular in connection with this approach.
12These are series which are not necessarily convergent, though truncation to a finite order may give (often arbitrarily) good results.
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celestial mechanics.

Theorem 2.3.5 (Kolmogorov–Arnold–Moser)

Suppose that for a Hamiltonian system with H (p,q) containing terms small to O (ε), one has a canonical transform to

action-angle coordinates (I,ϕ) such that

İ = 0+ ε f (I,ϕ) (2.28a)

ϕ̇ = ω(I)+ εg(I,ϕ) . (2.28b)

This system is of course integrable when ε→ 0, with n first integrals I, and can be studied by the methods of Birkhoff-

Gustavson normalization.13 As noted above, the motion of the system takes place on invariant tori parameterized by

the angle variables ϕi and frequencies ω(I). Suppose now additionally that14

H (I,ϕ) = H0(I)+ εH1(I,ϕ) . (2.29)

The KAM theorem then asserts that for ε > 0, many of the invariant tori which exist in the integrable case persist,

though they may be somewhat deformed by the perturbation. Specifically, if H0 is non-degenerate:∣∣∣∣∂2H0

∂I2

∣∣∣∣ 6= 0 , (2.30)

then most of the invariant tori which exist in the integrable case of the unperturbed system persist for ε > 0 and suffi-

ciently small; moreover the Lebesgue measure15 of the complement of the set of tori tends to zero as ε→ 0.

As the system is perturbed, we distinguish of the original invariant tori those resonant (with ωi
ω j
∈ Q ) and those

non-resonant (with ωi
ω j
6∈ Q ). The KAM theorem further asserts specifically that the resonant tori will in general

disintegrate into chaotic regions known as resonance gaps while it is the non-resonant tori which mostly persist with

slight deformation.

Proof. See e.g. [Arnold, 1989, José and Saletan, 1998]

Note that as ω = ∂H0
∂I , the non-degeneracy requirement is essentially that the frequencies be decoupled from one another

when considering the different tori, characterized by I, in phase space.

2.3.4 Small Denominators

In general, lacking the means to find a simple closed analytical expression for the solution of a given problem (whether

an n–body problem or a derived– or sub–problem of some form in the context of this thesis), we attempt to find a series

expansion for the solution instead, which solves the problem asymptotically, and ideally converges quickly.

13A normalization method specifically for Hamiltonians, see e.g. [Verhulst, 2000, chapter 13].
14The normalization to O (ε) ensures that we can eliminate ϕ (likewise to O (ε)) as a variable, from the term H0(I).
15Lebesgue measure might, for the unfamiliar reader be thought of as a formalization of the intuitive notion of the size of a set; for

details at an introductory level, see e.g. [Capinski and Kopp, 2004].
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In the case of the problems of celestial mechanics however, the search for general solutions in terms of series expansions

is often quickly obstructed by the presence of small denominators of the form:

1
((x− xi)2 +(y− yi)2 +(z− zi)2)k/2

,

(k integer) which explode on close approaches to bodies in the problem (e.g. body i in this example, when x,y,z →
xi,yi,zi during a close approach).

Likewise in the more general case of Hamiltonian systems with resonances (of which the above are a special case), we

typically encounter problems when we try to analyze the system by casting it in normal form via some canonical trans-

formation (see e.g. [Verhulst, 2000, section 13.3] and [Tuwankotta, 2002]). Non–resonant terms can be transformed

away, but corresponding to each resonance we get small denominators as well.16

In the present work our concern will primarily be with the fact that since forces typically take the form introduced

here, we may expect that force terms may grow by orders of magnitude during close approaches, and this is all the

more relevant given our interest in ballistic lunar capture,17 There is, however, a suitable method for dealing with the

resulting discrepancies in force magnitudes, which we will introduce in section 4.3.3 further on in this thesis.

16An interesting question, in modeling solar system dynamics, for example, is whether such resonances actually lead to instability
of the n–body system, and has been studied since the 1800’s. For a further discussion coupled to an informative historical review, we
refer the reader to [Giorgilli, 1998].

17In which a satellite will typically depart from a near–Earth orbit, possibly encounter the Moon on an outbound leg, and return to
it with a very close approach on the inbound leg leading to capture; cf. section 3.4.
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Chapter 3

Astrodynamics and the Capture
Problem

This chapter will treat a progression of relevant problems in astrodynamics, leading up to a model for considering the

4–body ballistic lunar capture problem. The emphasis will be on viewing the problems from the point–of–view of

perturbation theory, specifically as subsequent perturbations of the 2−body problem.

We first introduce the n−body problem as a framework and consider the reducibility of the system via first integrals.

After discussing the 2−body problem, the only case in which there is a closed, analytical solution, we discuss the

3−body problems and the 4–body capture problem as perturbations in some detail, as well as reductions, restrictions

and the rationale for them.

Treatments of all but the last problem may be found in e.g. [Wakker, 2002a,b], [Vallado, 2004] or [Szebehely, 1967],

while the literature on the latter capture problem in particular is referenced separately in sections 3.4 and 3.5.

3.1 The n−Body Problem

Consider first the n−body problem, which we approach here1 as generalizing Newton’s law of gravitation for the

attractive force k/r2 between two bodies at a distance r = ‖r‖ to n bodies, cf. figure 3.1. The force between any 2

bodies may be derived from a potential U :

U =−
Gmim j

ri j
and F =−∇U =

Gmim j

r3
i j

ri j , where (3.1)

ri j = ‖ri j‖= ‖r j− ri‖ “ from i to j ” such that

‖ri j‖=
√

(x j− xi)2 +(y j− yi)2 +(z j− zi)2 .

1It may equivalently be approached from the Lagrangian or Hamiltonian perspectives, and a number of the problems of this chapter
are given and/or derived from those in appendix B.
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In the n−body setting, this is generalized to the potential Ui for a body i, given as

Ui =−
n

∑
j=1,6=i

Gmim j

ri j
where (3.2a)

Fi =−∇iUi =−∂Ui

∂ri
, (3.2b)

with the convention of [Wakker, 2002a, Szebehely, 1967] that Fi is the force on body i, and thus a sum of components,

each aligned with the vector ri j = r j− ri for each pair of bodies i, j (cf. figure 3.1). Then with Newton’s second law

for n forces acting on body i, one obtains the n−body equations of motion as:

mi r̈i =
n

∑
j=1,6= j

Gmim j

r3
i j

ri j or with ρ j := Gm j (3.3a)

r̈i =
n

∑
j=1,6= j

ρ j

r3
i j

ri j for i = 1, . . . ,n . (3.3b)

x

y

z

mi

ri

rij

rj

mj

Figure 3.1: Inertial system and orientation for n−body problem

Throughout, the factor mi in the potential for body i will generally be omitted, and one instead considers the acceleration

potential Ui :=−∑
j 6=i

ρ j

ri j
. Thus, alternatively one can derive the accelerations from this scaled potential as:

r̈i =−∇iUi =− ∂

∂ri

(
−

n

∑
j=1,6=i

ρ j

ri j

)
=

n

∑
j=1,6=i

ρ j

r3
i j

ri j . (3.4)

These are the equations of motion in an inertial reference frame, and may need to be transformed to another reference

frame to facilitate analysis or numerical solution as in [Verzijl, 2005]. Rather than proposing a general reformulation

here, we will discuss these as needed in the following sections.

3.1.1 Integrals of Motion

An important result in the study of celestial mechanics has traditionally been the derivation of (first) integrals of motion.

10 are known for the general n−body problem (see e.g. [Vallado, 2004], [Wakker, 2002a]), which we formulate as a

theorem.

Theorem 3.1.1 (Known Integrals)

There are 10 known integrals of the n−body problem in an inertial coordinate system: linear momentum (6), angular
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momentum (3) and conservation of energy (1). That these are indeed first integrals will now be shown by constructive

proof.

Proof.

• Summing (3.3a) over all i, we obtain:

∑
i

mi r̈i = ∑
i

∑
j,6= j

Gmim j

r3
i j

ri j ,

which is zero as each of n(n−1)
2 pair terms is canceled by the relation ri j =−r ji (anti-symmetry),

whence with constant masses:

d2

dt2

( n

∑
i=1

miri

)
=

n

∑
i=1

mir̈i = 0 , and on integrating twice with respect to time, (3.5a)

n

∑
i=1

miri = at +b . (3.5b)

The 2× 3 scalar components of the linear momentum a and the constant b corresponding to the original (t=0)

center of mass are the first 6 integrals.

• A further 3 follow from the conservation of angular momentum, vector multiplying (3.3a) by ri and summing

∑
i

mi ri× r̈i = ∑
i

ri× ∑
j,i6= j

Gmim j

r3
i j

ri j

= ∑
i

∑
j,i 6= j

Gmim j

r3
i j

ri× r j ,

by the properties of the cross product. This is null by anti-symmetry, yielding:

d
dt

(
∑

i
mi ri× ṙi

)
= 0 , which on integrating yields (3.6a)

∑
i

mi ri× ṙi ≡H→ const . (3.6b)

• Lastly, there is the conservation of energy. Taking the potentials Ui =−∑ j,6=i
ρ j
ri j

as before, note that the poten-

tial U = ∑
i

Ui, while still conservative, does not correspond to a central force field, and this effective potential

at any point r will in general be time-varying, in contrast to the 2–body case.

It is, consequently, certainly not the case that the sum of kinetic and potential energy is a priori constant.

Nonetheless, an energy integral is found as follows: taking the inner product of (3.3a) with ṙi, and summing as

usual,

∑
i

mi r̈i · ṙi = ∑
i

∑
j, j 6=i

Gmim j

r3
i j

ri j · ṙi . (3.7)

Then using:

r̈i · ṙi =
1
2

d
dt

(
ṙi · ṙi

)
,
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and remarking that since Ui depends on time only through position coordinates:

∑
i

∑
j, j 6=i

Gmim j

r3
i j

ri j · ṙi = ∑
i

dUi

dri

dri

dt
= ∑

i

dUi

dt
,

one arrives (again assuming constant masses) at:

1
2 ∑

i
mi

d
dt

(
ṙi · ṙi

)
= ∑

i
∑

j, j 6=i
Gmim j

d
dt

(
1

ri j

)
. (3.8)

Integrating with respect to time, we finally obtain the following conserved expression (where we associate the

first term with the total kinetic energy and the latter with the total potential energy):

E = T +U = ∑
i

mi

(
ṙ2

i
2
− ∑

j, j 6=i

ρ j

ri j

)
= C . (3.9)

Note, however, that this expression for the conserved energy holds only in inertial coordinate frames, as the

velocities as seen in other frames contain components due to the rotation of the frame, the choice of which is

arbitrary. We return to the issue in section 3.3 below.

Note further that clearly each of these also satisfies the formal condition Lt(I) = 0 following the formal definition of

first integrals in section 2.2.

3.1.2 Non-Integrability

[Szebehely, 1967] discusses the notion of integrability in some detail. Essentially, the question is, for a general sys-

tem, whether a dynamical system such as those we treat here, can have all its variables expressed as known analytic

functions of time.

This is the case, for some problems in celestial mechanics (e.g. the planar restricted 3-body problem), when one allows

as ‘known functions’ convergent infinite series, and uses regularization techniques to remove singularities. However,

not much insight is gained from the complex expressions which result, as they do not lead to a better understanding of

such issues as stability, and the behavior of the system in general terms.

What one is typically interested in is the reduction of the complex problem to a simpler one, preferably one which has

an intuitive physical meaning. Nonetheless, a key negative result is known, (actually two results) due to Bruns and

Poincaré, which precludes further first integrals of the ‘nice’ variety we demonstrated in the previous section.

Theorem 3.1.2 (Bruns’ Nonexistence Theorem)

In the problem of n bodies, the only integrals which involve the coordinates and velocities algebraically, and which do

not involve the time explicitly, are the integrals of the center of mass, the angular momentum, and of energy.

Proof. The proof may be found in the original paper by Bruns in [Acta Mathematica 11, 25] or the more recent

[Whittaker, 1988, section 164].
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Theorem 3.1.3 (Poincaré Nonexistence Theorem)

Stated for the restricted 3−body problem, let H be the Hamiltonian of the system, which is expanded in a small

parameter ε as

H(q, p) = H0(p)+ εH1(q, p)+ ε
2H2(q, p)+ . . . , (3.10)

where (p,q) are the Hamiltonian momenta and coordinates with components {p1, p2,q1,q2}. The Hamiltonian is

periodic in q1,q2 with period 2π. Let now ϕ = ϕ(p,q,ε) be a likewise periodic function of the coordinates, and then

for sufficiently small ε, we expand in a convergent power series as

ϕ = ϕ0 + εϕ1 + ε
2
ϕ2 + . . . (3.11)

Poincaré’s theorem states that the restricted problem has no integral except the Jacobian integral, which is of the form

ϕ = const.

Proof. The full theorem and proof may be found in [Poincaré, 1957].

For a discussion of both, and their extensions (and relaxations of some conditions on the way the coordinates enter the

integral) by Painlevé and Siegel, see [Szebehely, 1967, p.43]. These have also been further generalized in the following

theorem.

Theorem 3.1.4 (Generalized Bruns’ Theorem)

In the Newtonian (n + 1)−body problem in Rp with n ≥ 2 and 1 ≤ p ≤ n + 1, every first integral which is algebraic

with respect to positions, linear momenta and time, is an algebraic function of the classical first integrals: the energy,

the p(p− 1)/2 components of angular momentum and the 2p integrals that come from the uniform linear motion of

the center of mass.

Proof. A detailed proof is given for this generalized theorem in [Juillard-Tosel, 2000].

Two final remarks may be made with regard to this discussion:

1. The theorems’ results preclude the existence of other algebraic integrals of motion, but they do not preclude

non-algebraic integrals, and more specifically, our construction of approximations to such;

2. The theorem, the reader will note, also does not preclude first integrals which are explicit functions of time –

see also our discussion of a toy problem in appendix C of [Verzijl, 2006].

3.2 The 2−Body Problem

The basic 2−body problem is well documented in the literature and will be discussed in some detail here, as it will

form the basis of our approaches to more difficult problems using perturbation methods.
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3.2.1 Standard Formulation

The 2−body problem is the restriction of the n−body problem to the following set of equations for bodies 1 and 2:

r̈1 =
ρ2

r3
12

r12 , (3.12a)

r̈2 =
ρ1

r3
21

r21 . (3.12b)

Body 2

r = r12 = r2 - r1

r2

r1

Body 1x

y

z

Figure 3.2: Basic 2−body problem dynamics

Viewed in isolation, there is no preferred coordinate system, and the most convenient is typically quasi–inertial and

centered at one of the bodies. This is traditionally done by translating via r := r12 = r2− r1 to:

r̈ = r̈2− r̈1 = +
ρ1

r3
21

r21−
ρ2

r3
12

r12 or

r̈ =−ρ1 +ρ2

r3 r . (3.13)

When ρ2� ρ1 (e.g. with body 1 a planet and body 2 a satellite), one can additionally drop ρ2 from the above to good

approximation, but this is not essential. It does, however, raise the following interesting point.

In the relative formulation (3.13), one still considers the full 2−body problem , but if one were to restrict this in a way

similar to the restriction of the 3−body problem (discussed in section 3.3.5), by simply assuming that the effect on

the primary is negligible and dropping ρ2, the equations of motion remain the same up to a constant. In this sense the

2−body problem and what we might term a “restricted 2−body problem” or “1−body problem” are equivalent.

However, conservation of linear momentum itself motivates a similar reformulation of the problem. Instead of dealing

with two 2nd –order equations in arbitrary inertial space, why not refer them to their common center of mass, which

is simply given by:

rc =
m1r1 +m2r2

m1 +m2
=

N=2

∑
i=1

miri

N=2

∑
i=1

mi

. (3.14)

By the demonstration in section 3.1.1, this is simply a scaled version of the linear momentum, and is conserved. In

fact, by simple Galilean relativity, we can take for our inertial system precisely the one moving with velocity a and

located at b at time t = 0, and so set rc ≡ 0. Combining this with a description of the dynamics in relative terms allows

one to reduce the system from a coupled 2nd order system to a single 2nd order ODE, as in equation (3.13).
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This gives the motion of the 2 primaries relative to each other as a single ODE, but note that the position of either

primary can be reconstructed if the ODE solution and the position of the center of mass are both known. To wit, define:

rc1 = r1− rc = r1−
m1r1 +m2r2

m1 +m2
=

m2(r1− r2)
m1 +m2

(3.15a)

rc2 = r2− rc = r2−
m1r1 +m2r2

m1 +m2
=

m1(r2− r1)
m1 +m2

, (3.15b)

and then with the definition of r, note that the reconstruction follows from:

r1 = rc + rc1 = 0− m2

m1 +m2
r =−µr (3.16a)

r2 = rc + rc2 = 0+
m1

m1 +m2
r = (1−µ)r , where (3.16b)

µ =
m2

m1 +m2
.

Remark that effectively what is being done here is the introduction of a uniformly moving inertial coordinate system

in which the positions of the two primaries lie along a single vector r at positions determined by their relative masses.

This observation is precisely what motivates the introduction of the parameters µ, 1−µ in the restricted 3−body prob-

lem.

Example 3.2.1 (Earth-orbiting Satellite)

As a special case of the above analysis, take for example m1�m2 as is typical for a satellite ‘2’ orbiting the Earth ‘1’;

then r2 ≈ r and r1 ≈ 0, and the motion is determined by r̈≈−Gm1

r3 r where m1 is the mass of the Earth.

This serves to underline the fact that we need only solve equation (3.13) to describe the solutions of the 2–body problem

(3.12), on introducing a coordinate transform motivated by the conservation of linear momentum. Indeed, while it is

usually not thought of in this way, we have in fact reduced the problem using the integral, and this perspective is one

to which we will return further on.

3.2.2 Lagrangian and Hamiltonian Formulations

In addition to the standard inertial formulation above, the 2−body problem may also be formulated using either the

Lagrangian or Hamiltonian formalism. These are given for reference, and may also be found in appendix B together

with the Hamiltonians for a number of other problems discussed in this chapter.

Lagrangian Formulation

Introducing:

M := m1 +m2 and µ̄ :=
m1m2

m1 +m2
,

the following generalized coordinates may be introduced:2,3

2The subscript on the center-of-mass coordinate rb carries the meaning binary, which will be used in the 3−body problem and
4−body problems to distinguish it from the true center of mass r0 in those cases. In the 2−body problem the two coincide.

3Note also that the use of µ̄ is a convention which is used only here, and is not to be confused with the parameter µ = m2
m1+m2

will
be a dimensionless parameter in the 3−body problem, cf. section 3.3.5.
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r := r2− r1 , (3.17a)

rb :=
m1r1 +m2r2

m1 +m2
=

N=2

∑
i=1

miri

N=2

∑
i=1

mi

. (3.17b)

With these it is found (cf. appendix B) that

T =
1
2

Mṙ2
b +

1
2

µ̄ṙ2 and U =−G
m1m2

r
, (3.18)

and so it follows that the Lagrangian is given by:

L = T −U =
1
2

Mṙ2
b +

1
2

µ̄ṙ2 +G
m1m2

r
. (3.19)

Hamiltonian Formulation

The Hamiltonian formulation approaches the problem as in the previous section, but introduces a slightly different set

of generalized coordinates, to match the problem description in terms of r, rb rather than r1,2. Introduce the same mass

conventions and kinetic and potential energy as in the previous section to obtain (3.19).

Note that Mµ̄ ≡ m1m2. Now, intuitively the Hamiltonian is simply T +U (and expressed in generalized coordinates

and momenta respectively), but this is demonstrated explicitly using the Legendre transform:

H = ∑
j

p jq̇ j−L(q, p) . (3.20)

With the same r, rb as generalized coordinates, the generalized momenta become:

q1 = rb, p1 =
∂L
∂q̇1

= Mṙb , (3.21)

q2 = r, p2 =
∂L
∂q̇2

= µṙ , (3.22)

and then as might be expected,

H = Mṙbṙb + µ̄ṙṙ−
(

1
2

Mṙ2
b +

1
2

µ̄ṙ2 +G
m1m2

r

)
=

1
2

Mṙ2
b +

1
2

µ̄ṙ2−G
m1m2

r
=

p2
1

2M
+

p2
2

2µ̄
−G

Mµ̄
‖q2‖

. (3.23)

The equations of motion are derived from the relations q̇i =
∂H
∂pi

, ṗi =−∂H
∂qi

, which give:

q̇1 =
p1

M
−→ ṙb = ṙb , (3.24a)

q̇2 =
p2

µ̄
−→ ṙ = ṙ , (3.24b)

ṗ1 = 0 −→ Mr̈b = 0 , (3.24c)

ṗ2 =− GMµ̄
‖q2‖3 −→ µ̄r̈ =−GMµ̄

r3 r . (3.24d)
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In addition to simply reformulating the problem, two conclusions may also be drawn:

1. The motion of the center of mass is indeed given by rb(t) = a t + b, i.e. uniform motion, corresponding to

conservation of the system’s linear momentum. Consequently we can take a uniformly moving inertial system

and set the origin to rb = 0.

2. Further, the relative motion of the bodies,4 is given by the equation of motion r̈ =−G(m1 +m2)
r3 r,

as was previously asserted.

3.2.3 Solution of the 2–Body Problem

This 2nd order nonlinear differential equation (3.13) is of course the staple of elementary orbital mechanics, whose

solutions [see e.g. Wakker, 2002a, Vallado, 2004] are conic sections given by:

r(θ) =
p

1+ e cos(θ)
, (3.25)

where e is the eccentricity, θ the true anomaly and p the semi-parameter H2/ρ with H the magnitude of the angular

momentum H = r× ṙ, which is of course normal to the orbital plane. It gives the relation between the pair (r,θ) which

describes the motion in the orbital plane. For a stable orbit H and e are constants and the time dependence enters only

via the true anomaly θ.

r pr a

a
2a

rsat

vsat

θ

e=0

0<e<1

e _ 1>

Figure 3.3: Definition of conic sections for a satellite m2 orbiting a primary m1 whose position is the center of the
inertial frame of reference (rp,a are pericenter and apocenter distances respectively, and a is the semi-major axis)

4and by extension relative to the center of mass, as explained above.
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The description of such a (planar) orbit in 3 dimensional space is conventionally done by means of Kepler elements;

this, as well as a far more detailed discussion of the properties of these solutions may be found in e.g. [Wakker, 2002a,

Vallado, 2004].

However, the proof that this is indeed the solution is instructive both for our purposes later on, and for the way in which

reduction of the solution can be performed explicitly using first integrals, and so it will be discussed here in full. A

derivation of the Runge–Lenz vector will be given first, after which the 2−body problem solution is formulated as a

theorem.

Lemma 3.2.2 (Runge–Lenz Vector)

The Runge–Lenz vector ṙ×H−ρ
r
r is a vector integral of the motion in the 2−body problem.

Proof. The proof begins by setting ρ := G(m1 +m2) for simplicity. Then taking the cross product of the equation

of motion with the angular momentum,

r̈×H =− ρ

r3 r× (r× ṙ) ; (3.26)

Observing that A× (B×C) = (A ·C)B− (A ·B)C, this can be rewritten as

r̈×H =− ρ

r3 ((r · ṙ)r− (r · r)ṙ) (3.27a)

=− ρ

r2 (ṙr− rṙ) , (3.27b)

where the identity r · ṙ = rṙ has been used.5 Recalling that H was an integral and so constant in time, we can integrate

with respect to time to find

d
dt

(ṙ×H) = ρ
d
dt

(r
r

)
and so

ṙ×H = ρ
r
r

+ c , (3.28)

with c an constant of integration.

The integral ṙ×H−ρ
r
r is normal to the angular momentum and so in the plane of motion. This implies that in scalar

components, it provides two independent integrals, which are precisely necessary to the full reduction of the 2−body

problem, equation (3.13).

Theorem 3.2.3 (Solution of the 2–Body Problem)

The 2−body problem is given by:

r̈ =−G(m1 +m2)
r3 r .

Its solution is given in a plane normal to the angular momentum (vector) integral H = r× ṙ by

r =
p

1+ e cos(θ)
,

where p, e, θ(t) are the semi-parameter, eccentricity and true anomaly as above.

5This identity concerns polar coordinates, where ṙ = ( ṙ, rφ̇ )ᵀ and the component ṙ//r while rφ̇⊥ r.
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Proof. The proof, following [Wakker, 2002a] and using the Runge–Lenz vector is as follows.6

First, noting that the angular momentum vector is conserved, it can be used to define a normal plane to which the

dynamics are confined, which will be referred to as the orbital plane (cf. figure 3.3). Let the z axis be aligned with the

vector H, and then observe that with some reference in the plane, we can introduce polar coordinates r, φ:

r = ‖r‖=
√

r2
x + r2

y and φ = atan(ry/rx) .

In these coordinates,

H = (0, 0, H ) where H = r2
φ̇ . (3.29)

Next, taking the outer product of the equation of motion with H, one may obtain as before the Runge–Lenz vector

ṙ×H−ρ
r
r = c, as shown above. Taking the inner product of this expression in turn with r:

r · (ṙ×H) = ρ(r + r · c) . (3.30)

Observe that:

H2 = H ·H =
(

r× dr
dt

)
·H =

(
dr
dt
×H

)
· r . (3.31)

Substituted into the Runge–Lenz vector:

H2 = ρ(r + r · c) or on rearranging and working out the inner product: (3.32)

r =
H2/ρ

1+ c cos(φ−ω)
, (3.33)

where ω is the offset of a reference direction from which φ is measured relative to the x-axis. The constant c can be

shown to be precisely the magnitude of the eccentricity vector e = ‖e‖ cf. [Wakker, 2002a, section 6.3], while the true

anomaly θ := φ−ω is taken measured from the x axis aligned with the eccentricity vector as in figure 3.3 (see also e.g.

[Wakker, 2002a, chapter 6]).

With the notation for the semi–parameter introduced earlier, the proof is complete.

It should be noted that one begins with 2× 2nd order vector equations in 3 coordinates, for a total of 12× 1st order

equations after reduction. There are 10 known integrals of motion, as discussed above, and thus the system is reducible

if 2 additional, functionally independent integrals are known.

For the 2−body problem, these are the in-plane components of the Runge–Lenz vector. In the general n−body problem

by contrast, n≥ 3, no such remaining integrals present themselves, and this is precisely why only the 2−body problem

can be solved analytically.

3.3 The 3−Body Problems
This section will make the first step in increasing complexity from the basis of the 2−body problem. After setting the

stage with some alternative formulations of the general 3−body problem, two alternative approaches will be taken.

6There is an alternative proof via the differential equations themselves which might be considered ‘traditional,’ but it does not
make the role of first integrals in the reduction of the problem as clear as the approach taken here.

33



On the one hand, it will be shown explicitly how the general problem can be reduced using the known integrals to the

planar Jacobi 3−body problem (pJ3BP). On the other hand, we will introduce a number of simplifying assumptions

(restrictions) which will motivate the planar circular restricted 3−body problem (pCR3BP).

3.3.1 Discussion of Perturbative Effects

Before moving on to the standard approaches to the 3−body problem, however, it is worthwhile to pause for a moment

and consider a modeling question. Suppose that we have all the integrals, and by extension a solution to the 2−body

problem. Then adding a small third body to the system can be thought of as a perturbation, but what kinds of perturba-

tions are a priori possible?7

A reasonable answer to this question is shown in table 3.1, which is based on the interactions with the 3rd body illus-

trated in figure 3.4; our intention is to show the different possible classes of perturbation of 2 interacting primaries by

a 3rd body.

Small Body 3
Influenced

Influenced

Influences

2-Body Problem
       Solution

Influences

Primary 2

Primary 1

Figure 3.4: Possible Interactions in 3–Body Model

The top row indicates the 4 possible mutual influences between bodies 1 and 3 in a candidate model, and taking any of

these fixed, there are likewise 4 possibilities for the interactions between 2 and 3 (for a total of 4×4 = 16 possibilities).

With regard to the contents, remark the following:

• With regard to the top row, body 1 with the options Y/Y or Y/N is perfectly plausible, corresponding to the 1st

primary influencing the small body and itself either being perturbed or not by the presence of the small body in

return.

By contrast, the options N/Y and N/N are inconsistent by what is intended by the label primary: if the 1st

primary (body 1) is influenced but does not influence, we are assigning it the role of a secondary body, while if

7The reader will note further that while we are presently concerned with the 3−body problem, this question can be asked for each
step from an n−body problem to an (n + 1)−body problem, and so forms a useful guide to modeling with what we might call the
“perturbation perspective.”

34



Influences Body 3 / Influenced by Body 3
1, 2→ 3 1, 2← 3

Body 1 Y/Y Y/N N/Y N/N

Body 2 Y/Y Y/Y NR NR
Y/N Y/N NR NR
N/Y N/Y NR NR
N/N N/N NR NR

Table 3.1: Matrix of Possible Modeling Choices in Perturbing the 2–Body Problem – Read as “Body 1 (or 2) Influences
Body 3? (Yes, No or Not Relevant) / Is Influenced By Body 3? (Yes, No or Not Relevant).” 2 Classes of interaction
marked Not Relevant due to the inconsistency of their implication with the modeling assumptions, as explained in the
text.

it neither influences nor is influenced it may as well be neglected in the discussion of multi–body gravitational

effects altogether.

• Having thus eliminated 2 classes of interaction for the 1st primary, it is clear that with regard to the choices for

the 2nd primary (body 2), likewise presumed to be a dominant mass when compared with the small 3rd body,

the following 8 scenarios are possible:

1:Y/Y, 2:Y/Y corresponds to the full 3−body problem, taking all influences into account, which may be re-

duced to the planar Jacobi 3−body problem used in present work as a model. We designate this [Case

A].

1:Y/N, 2:Y/Y corresponds to the 1st primary influencing the small body 3 but not being influenced by it, while

the 2nd primary both influences and is influenced. In principle there is nothing wrong with this as long

as it is interpreted as the 2nd primary being perturbed about its nominal 2−body orbit, rather than this

perturbation also affecting the primary. We designate this [Case B].

1:Y/N, 2:Y/N corresponds to the restricted 3−body problem: bodies 1 and 2, the primaries, are not influenced

by the small body 3 (and so may be assumed to satisfy a 2−body problem solution) while it is influenced

by them both. This may of course be further restricted to the pCR3BP as we will do in the present work.

We designate this [Case C].

The other cases are effectively reducible to these three, or irrelevant, as we proceed to show:

1:Y/Y, 2:Y/N where the 2nd primary influences the small body 3 but is not influenced by it is essentially the

same as Case B, which is easily seen by swapping the bodies 1 ↔ 2 here.

1:Y/Y, 2:N/Y is inconsistent in that the 2nd primary does not influence the small body 3 but is influenced by

it; if we here swap the bodies 2 ↔ 3 however, this becomes the same as the previous scenario and thus

falls under Case B as well.

1:Y/N, 2:N/Y in turn is likewise inconsistent in the same way as the previous case, and on reordering 2 ↔ 3

to resolve this, this is seen to be the equivalent of Case C.

1:Y/Y, 2:N/N however, is pointless in the same way as [1:N/N] above, as the 2nd primary now contributes

nothing to the discussion. Strictly taken, [2:N/N] only rules out mutual influence between bodies 2 and

3, but that is inconsistent with [1:Y/Y] where the small body 3 influences the 1st primary, which in turn

interacts with body 2 via the 2−body problemsolution: one cannot have it both ways.
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1:Y/N, 2:N/N likewise corresponds to [1:N/N] above, and while not impossible on physical grounds,8 the 2nd

primary does not participate in the 3−body problem dynamics, making it inconsistent with our modeling

assumptions (a 3–body perturbation of the 2−body problem).

Thus under the assumption of perturbation of the 2−body problem by a third small mass, there are effectively only 3

model choices possible, as summarized in table 3.2.

Case Body 1 
 3 Body 2 
 3 Problem Characterization

A Y/Y Y/Y Full 3−body problem
B Y/N Y/Y Perturbed 2nd Primary
C Y/N Y/N Restricted 3−body problem

Table 3.2: Summary of Consistent Modeling Choices in Perturbing the 2−Body Problem

In light of this analysis, we choose in the present work to consider only Case A (in section 3.3.3) and Case C (in section

3.3.5) as the limiting perturbations of the 2−body problem, and intentionally ignore B, as by studying cases A and C

we capture the extremes of a range in which B is expected to hold the middle.

3.3.2 The General 3−Body Problem

The equations for the general problems are simply (3.4) with the summation limit n = 3.

r̈i =−∇iUi =
n=3

∑
j=1,6=i

ρ j

r3
i j

ri j, i = 1, . . . ,3 . (3.34)

There are also, of course, Lagrangian and Hamiltonian formulations of this problem, and these are discussed briefly in

appendix B. For present purposes, however, it will serve better to set that issue aside, and to work from the standard

formulation towards a simpler one, first through reduction and then through restriction.

3.3.3 Reduction by First Integrals

It is worth pointing out that our point of departure is the unrestricted 3–body problem, which is a system of 3 coupled

2nd order equations for 3 vector components of each body’s position, which may be written as a system of 18× 1st

order ODE–equations.

Further, there are 10 known integrals (for this as a particular case of the n−body problem) in an inertial coordinate

system: linear momentum (6), angular momentum (3) and conservation of energy (1). Due to the complexity of the

equations as they stand, in theory, reduction is a sensible approach, and this system can be reduced to 18−10 = 8×1st

order ordinary differential equations (ODEs).

The following sections will develop these ideas properly, and the standard reference in what follows is the combination

of [Wintner, 1947] and [Szebehely, 1967].

8This option would correspond to a 2nd 2−body problem in which the 1st primary so dominates the 3rd small body that it is
essentially a quasi–1–body problem.
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Reduction by Linear Momentum

Consider first conservation of linear momentum for reduction. Taking inspiration from section 3.2’s approach, let us

introduce Jacobi coordinates. The usual equations (3.34) in the inertial frame are the starting point. The center of mass

(barycenter) of the system is given by:

r0 =
m1r1 +m2r2 +m3r3

m1 +m2 +m3
, (3.35)

while the binary barycenter only is likewise given by:

rb =
m1r1 +m2r2

m1 +m2
. (3.36)

Conservation of linear momentum, i.e. ∑i miṙi = a implies by integration that
∑i miri

∑i mi
= r0(t) = at +b where the con-

stants a,b are fixed at time t = t0 = 0, determining the evolution for all time. On changing to barycentric coordinates,

i.e. with origin at r0(t) for all t, the resulting system is inertial because it is moving uniformly, and the same equations

hold (are invariant) under the transformation r′i := ri− r0.

This barycentric system is now taken as the new point of departure, and all vectors are referred to the new origin

(dropping the convention of the prime on r′i).

Jacobi Coordinates

Remark first that the above is a coordinate transform, and so would be valid even without conservation of linear mo-

mentum. The trick to the conventional approach to reduction lies in subsequently changing coordinates to a new set

{ q,Q,r0 } such that while one still has 3 coordinate vectors, the third obeys r̈0 = 0 and so is redundant, reducing the

equations to 3×2 = 6.

To that end, let:

q = r2− r1 (3.37a)

Q = r3− rb . (3.37b)

The reconstruction from these new coordinates is given by:

r1 = rb−µq (3.38a)

r2 = rb +(1−µ)q (3.38b)

r3 = rb +Q , (3.38c)

and we will also have need of the relations

r12 = r2− r1 = q (3.39a)

r13 = r3− r1 = Q+µq (3.39b)

r23 = r3− r2 = Q− (1−µ)q , (3.39c)

where as in our discussion above, one introduces µ = m2
m1+m2

and 1−µ = m1
m1+m2

.

These definitions of the coordinates are illustrated in figure 3.5. Note in particular the similarity to the restricted 3–

body problem discussed in section 3.3.5 where rb = r0 = 0, which comes down to 2 primaries at −µ and 1−µ along
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Body 2

Body 3

q = r12 = r2 - r1

Q = rb3 = r3 - rb

Body 1

rb = m1r1 + m2r2

m1 + m2

r0 = m1r1 + m2r2 + m3r3

m1 + m2 + m3

Figure 3.5: Definition of Jacobi Coordinates

the q vector through the origin, and r3 free to move in their fixed gravity field (cf. our case C above).

Here however rb 6= 0, and in fact:

r0− rb =
( m1r1 +m2r2 +m3r3 )( m1 +m2 )− (m1r1 +m2r2)(m1 +m2 +m3)

( m1 +m2 +m3 )( m1 +m2 )

=
m3(m1 +m2)r3−m3(m1r1 +m2r2)

( m1 +m2 +m3 )( m1 +m2 )

=
m1m3(r3− r1)+m2m3(r3− r2)

( m1 +m2 +m3 )( m1 +m2 )
,

which can be rewritten in the new coordinates as:

r0− rb = m3 ·
m1(Q+µq)+m2(Q− (1−µ)q)

( m1 +m2 +m3 )( m1 +m2 )
. (3.40)

This can always be computed, and in the barycentric system is a vector from the binary center of mass to the origin.

However, if one expands the products in the expression m3(m1+m2)r3−m3(m1r1+m2r2)
( m1+m2+m3 )( m1+m2 ) and cancels terms, what remains is

considerably more insightful:

r0− rb =− m3

m1 +m2 +m3
rb +

m3

m1 +m2 +m3
r3 ,

which on rewriting becomes:

r0−
m1 +m2

m1 +m2 +m3
rb =

m3

m1 +m2 +m3
r3 . (3.41)
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Then recalling that in these coordinates the true 3–body barycenter is at the origin: r0 = 0, and

rb =− m3

m1 +m2
r3 and thus:

Q = r3− rb =
m1 +m2 +m3

m1 +m2
r3 . (3.42)

With this and letting υ = m3
m1+m2

, the reconstruction equations become:

r1 =− υQ
1+υ

−µq , (3.43a)

r2 =− υQ
1+υ

+(1−µ)q , (3.43b)

rb =− υQ
1+υ

, (3.43c)

r3 = +
Q

1+υ
. (3.43d)

Interpretation of Jacobi Coordinates

Keep in mind that the vector q through this binary barycenter at − υQ
1+υ

generates a line along which m1, m2 lie at fixed

positions determined by their mass ratio (−µ, 1− µ respectively). In a sense we begin to see a precursor of the ap-

proach taken for the restricted 3–body problem in building on a 2–body problem, but without the restrictions used there.

The restriction that naturally suggests itself is roughly equivalent to setting rb ≈ 0 in equation (3.43)), though based

on the treatment above one sees that in reality the two bodies are moving along a fixed line parallel to q which is

slightly offset from the origin and itself moving aligned with Q in time, its motion determined by the perturbing effect

of the third body (3.43d). In the cases we will consider, this will likely be more–or–less rotating; and we illustrate this

breakdown into a composite of two vectors in figure 3.6 below.

Jacobi Coordinate Equations of Motion

Using the Jacobi coordinates, and armed with an understanding of what the difference is between the full 2–body and

3–body problems in terms of the center of mass and its perturbation by the third body, we can now derive the equations

of motion. Straightforwardly, one simply rewrites the equations (3.34) for r̈1,2 in terms of the Jacobi coordinates using

the relations (3.39), to obtain:
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Body 2

Relative motion of r0, rb

small on scale of q, Q

(q = r12 = r2 - r1)
Nearly 2-Body Problem Solution

Q = rb3 = r3 - rb

Body 1

Figure 3.6: Motion in the 3−body problem as perturbed 2−body motion.

r̈1 = +
ρ2q
‖q‖3 +

ρ3(Q+µq)
‖Q+µq|‖3

r̈2 =− ρ1q
‖q‖3 +

ρ3(Q− (1−µ)q)
‖Q− (1−µ)q‖3 , which are subtracted from each other to obtain

q̈ =−(ρ1 +ρ2)
q
‖q‖3 +µ3

(
Q− (1−µ)q
‖Q− (1−µ)q‖3 −

Q+µq
‖Q+µq|‖3

)
. (3.44a)

r̈3 =−ρ1(Q+µq)
‖Q+µq‖3 −

ρ2(Q− (1−µ)q)
‖Q− (1−µ)q‖3 , and recalling the link between r3 and Q,

Q̈ =−ρ1(1+υ)(Q+µq)
‖Q+µq‖3 − ρ2(1+υ)(Q− (1−µ)q)

‖Q− (1−µ)q‖3 , (3.44b)

which checks against [Belbruno, 2004, sec 1.2] as well. Remark that these are indeed 2× 2nd order equations for 3

vector components, and so correspond to 12×1st order equations, a reduction by 6 from the original 18 as expected.

Reduction by Angular Momentum

The next reduction to consider is that via conservation of angular momentum, ∑
i

ri× ṙi = H0 (a constant), which would

seem simple enough to implement. Two approaches suggest themselves:

1. One can try to straightforwardly eliminate 3 variables by writing them in terms of the others, and use these

expressions for later reconstruction in place of the corresponding differential equations. With regard to this

however, it is quickly found that we are hindered by the facts that the the eliminations are not unique, and give

extremely complicated expressions in terms of coupled differential equations involving the unknown coordi-
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nates, as we see in:

h1 = m1(y1ż1− z1ẏ1 )+m2(y2ż2− z2ẏ2 )+m3(y3ż3− z3ẏ3 ) , (3.45a)

h2 = m1(z1ẋ1− x1ż1 )+m2(z2ẋ2− x2ż2 )+m3(z3ẋ3− x3ż3 ) , (3.45b)

h3 = m1(x1ẏ1− y1ẋ1 )+m2(x2ẏ2− y2ẋ2 )+m3(x3ẏ3− y3ẋ3 ) , (3.45c)

with H0 = (h1, h2, h3 )ᵀ constant. If we use an extended state vector and treat positions and velocities on equal

footing this need not be a problem per se, but it is generally accepted that such substitutions complicate rather

than clarify the situation.

2. Alternatively, the intuition developed with reduction by linear momentum suggests that it might be easier to find

a coordinate transformation analogous to the conservation of linear momentum approach above, such that the

reduction is implicit in the transformed system. Historically, this task has proven considerably harder than one

might initially imagine, and in fact no coordinate transformation has been found to effect such a reduction for

the general n−body problem, as detailed in [Wintner, 1947].

What has been found to be feasible is partial reduction by very complicated changes of variables (e.g. Poincaré’s

rectangular coordinates, Jacobi’s approach) and so–called contact transformations, cf. [Malige et al., 2002] and

cf. [Arnold et al., 1997]. Beyond their complexity, these carry the additional downside of costing us much of

our physical insight into the problem, in stark contrast to the introduction of Jacobi coordinates previously.

Due to what might be termed their effective complexity–to–insight ratio, we will not consider them further here.

We do point out, however, in the specific case of the 3−body problem that there is the additional geometric

fact that the 3 bodies at each point in time form a triangle and thus span a plane. This can be exploited to find a

coordinate transformation which Wintner [Wintner, 1947] gives for non-collinear configurations of the 3–body

problem, i.e. general triangle configurations4(t). The transform and resulting Hamiltonian is discussed briefly

in appendix B.4.

What is particularly interesting, however, is that such a triangle’s motion, on reflection, always determines an instanta-

neous plane, and in the more general setting, we recall that the constancy of angular momentum likewise determines a

plane perpendicular to H0, which is the analogue of the orbital plane for the 2−body problem. Now while this latter

perpendicular plane can always be defined, the dynamics need not necessarily be restricted to it. Turning that thought

around, we note that we effect explicit conservation of the angular momentum if we restrict motion to such a plane,

and by appropriate orientation of the coordinate system, we may choose the invariant z = 0 plane.

It is easily verified from the equations of motion that this is indeed an invariant plane for the 3−body problem, and

that the angular momentum vector becomes a single z−component perpendicular to it, h3 in equation (3.45) above.

While this is a special, restricted case, unlike the triangle-configuration approach just described it does scale beyond 3

bodies.9

Reduction by Energy Integral

The last of the 10 algebraic integrals is the conservation of energy, and its discussion will be brief as it does not help to

simplify the problem very much. The expression considered, expanded in full to demonstrate the roles of all variables

9Which is useful provided that the problem we wish to model can be considered planar to good approximation.

41



involved is:

E0 =
1
2

(
m1(ẋ2

1 + ẏ2
1 + ż2

1)+m2(ẋ2
2 + ẏ2

2 + ż2
2)+m3(ẋ2

3 + ẏ2
3 + ż2

3)
)

− Gm1m2√
(x2− x1)2 +(y2− y1)2 +(z2− z1)2

− Gm1m3√
(x3− x1)2 +(y3− y1)2 +(z3− z1)2

− Gm2m3√
(x3− x2)2 +(y3− y2)2 +(z3− z2)2

.

This would theoretically be of use in reducing the order of our equations by 1, and the method that comes to mind is

direct substitution, after isolating some variable. However, as before, the isolation of a velocity ẋi would result in a

square-root of a complicated expression involving potential terms and which would complicate our expressions signif-

icantly.

Conversely the isolation of a position xi may not even be possible in closed form, given that each occurs in a compli-

cated manner in the denominator of two of the potential terms. While a change of coordinates simplifying the form

sufficiently for our purposes may exist, none is available, to the best knowledge of the author.

Feasible and Infeasible Reductions

Against this backdrop, we might summarize as follows:

• Reducing by conservation of linear momentum is feasible and makes sense, but is effected not by direct sub-

stitution but by a change of coordinates (to barycentric inertial Jacobi coordinates) which gives conservation

implicitly.

• Reducing by angular momentum is at least partially feasible by very complicated transformations after which

we are left with a system which is more complicated and offers little or no physical interpretation. The same can

be said of the reduction via the energy integral, which offers at most the possibility of isolation of a velocity.

• Reducing by angular momentum by a relatively simple coordinate transform analogous to that used for reduction

by linear momentum is infeasible, and in fact “no such algebraic representation has ever been devised for n > 3”

[Wintner, 1947, §391]. For the n = 3 case, the only ‘nontrivial’ approach is by analyzing the time-evolution of

a triangle with the 3 masses at its vertices [Wintner, 1947, §394], for which Wintner gives a Hamiltonian, cf.

appendix B.4. This approach, however, does not scale beyond 3 bodies.

• As Wintner describes motion in a plane, the approach suggests an appropriate planar problem (which reduces

the problem to 2×2×2 = 8×1st–order equations), which as we have shown does explicitly conserve angular

momentum, taken perpendicular to the plane.10 Thus this is a feasible approach, though formally it is a restric-

tion rather than a reduction, albeit to the case of motion on an invariant manifold interesting in its own right.

We remark the following with regard to the latter approach, which we will take. For the Earth–Sun–Moon system

(which is for the moment our primary interest as the setting for ballistic lunar capture trajectories), the inclination

between the bicircular orbits (ES and EM) is approximately 23◦. The problem cannot strictly be said to be planar, but

10Moreover this is a priori an invariant plane of the system, as is easily demonstrated, and so interesting in its own right.
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the wealth of useful results, in particular those of Koon, Marsden et al. (e.g. [Koon et al., 2000, 2001, Gómez et al.,

2001] ) using the pCR3BP give us considerable reason to expect that it is a useful restriction for the problems we are

interested in. We return to their work in section 3.4 below.

3.3.4 Planar Jacobi Problem Summarized

With the last 4 integrals having proven to be of little use, the most promising option is to return to the particular coun-

terpoint of the planar problem, which has effectively been reduced to 8 equations from 12, by dropping 2×2nd order

equations. Remark, however, that from the perspective of the full problem this is not really a reduction by integrals so

much as a restriction.

Indeed from the perspective of the planar problem one has indeed reduced its 12 (= 3×2×2nd order) original equa-

tions by using the 4 (rather than 6) equations corresponding to conservation of linear momentum, without making use

of the conservation of angular momentum (now 1 equation) and energy. However, the barycentric system in the plane

now conserves both linear momentum and angular momentum.

Thus on these considerations we will consider as the maximally reduced system the following planar equivalent of the

equations (3.44), which we denote the planar Jacobi 3−body problem (pJ3BP):

q̈ =−(ρ1 +ρ2)
q
‖q‖3 +ρ3

(
Q− (1−µ)q
‖Q− (1−µ)q‖3 −

Q+µq
‖Q+µq|‖3

)
(3.46a)

Q̈ =−ρ1(1+υ)(Q+µq)
‖Q+µq‖3 − ρ2(1+υ)(Q− (1−µ)q)

‖Q− (1−µ)q‖3 . (3.46b)

3.3.5 The Restricted 3−Body Problem

Next we turn to the restricted 3−body problem, and in particular its circular, planar restriction which will be considered

in connection with new techniques for approximating first integrals further on. A full derivation of the problem is also

given, as it is instructive for the capture problems which are derived further on.

Restriction

The problem is referred to as restricted on the basis of a number of simplifying assumptions that distinguish it from the

general 3−body problem of the previous section, which will be discussed here.

1. To begin, one considers a system of 3 bodies, 2 of which have masses m1, m2� m3 and which are referred to

as primaries; the third body with its much smaller mass is sometimes referred to as the secondary (cf. case C,

table 3.2).

2. One then assumes, on the basis of these mass ratios, that the gravitational field of the 2 primaries is unaffected

by the third body (and hence they orbit as the analytical solutions of the 2–body problem above), while their

gravitational field (time-varying in inertial coordinates) in turn wholly determines the motion of the third body.

Nothing has yet been said about the nature of the motion of the primaries:
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• If this is restricted to circular motion, i.e. setting e = 0 in the solutions of the 2−body problem, the result is the

circular restricted 3–body problem, which is perhaps best tackled in the rotating coordinate system introduced

in the next section. Note however that:

1. This restriction does not force one of the primaries to rotate about the other per se: both still rotate

(circularly) about the common center of mass, and this will only (roughly) coincide with one of the

primaries for sufficiently large mass ratio m1/m2.

2. Also, the reader will note that this motion of the primaries is being explicitly prescribed, and so the usual

formulation in the literature effectively studies only the motion of the third body in the presence of the

gravity field induced by the primaries. Hence, one studies not a coupled system of 3 vector equations, but

only a single vector (or 3 scalar) equations.

• If one does not restrict the motion of the primaries to circular orbits, but rather only to those which are closed,

0≤ e < 1, the problem is called the elliptic restricted 3–body problem, and it is likewise best tackled in a rotating

coordinating system, with the additional modification of periodically pulsating axes. This is not the approach

which will be taken here, and indeed, though potentially a more realistic model, is not that common in the liter-

ature due to the small qualitative difference with the circular case for typical (e.g. solar system) configurations

having only small eccentricities.

• It should also be noted that the problem of the motion of the third body may be restricted to the plane; whether

this is a large or a small qualitative change likely depends on the application.

In principle this thesis will make the restriction on the grounds that as the rotation of the primaries is in the

x, y–plane, the effects of the rotating coordinate system are still captured in the planar problem, while one may

reasonably expect that the consideration of an additional dimension of motion will add nothing crucial to the

discussion, while its omission likewise does not oversimplify.11

Circular Restricted Problem Formulation

On these considerations it is proposed to consider the planar circular restricted 3–body problem in rotating coordinates

in detail. The derivation will follow [Szebehely, 1967]. Note that following his conventions, in this section z, Z will

denote complex variables for the planar problem, and not a third coordinate.

Rotating Coordinates

Recall that for the primaries, the motion is determined by the single vector r relative to the origin of the uniformly

moving inertial system, cf. equations (3.16). The primaries are located at − m2
m1+m2

r, m1
m1+m2

r respectively, as shown

above, which becomes −µr, (1−µ)r on introducing the usual µ = m2
m1+m2

.

The solutions of the 2−body problem for the vector r describe a Kepler-ellipse with constant angular velocity ω. A

direct consequence then, is that on keeping the same point of origin and introducing a co-rotating coordinate frame,

11The reader may want to compare in this regard the work of the Caltech group [Koon et al., 2000, 2001], where as section 3.5 will
briefly illustrate, a framework for ballistic capture has been developed using the techniques of Dynamical Systems Theory. Indeed,
the core of their work rests on just the planar circular restricted problem, which was later differentially corrected using ephemerides
for the planning of realistic solar system trajectories.
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Figure 3.7: Psuedo-inertial system and rotating coordinates for the restricted 3−body problem

also with ω, then in this system the primaries will take the above positions along a fixed r, which may be taken as the

x−axis. Letting r0 := ‖r(t = t0)‖= ‖r‖, this choice locates the primaries at(
−µr0

0

)
,

(
(1−µ)r0

0

)
, respectively. (3.47)

This considerably simplifies the form of the gravitational field, as it is no longer time-dependent. The price paid is that

the effects of the rotating coordinate system appear in the new equations of motion. To this end, consider a rotation

given by the matrix:

(
X

Y

)
=

(
cosωt −sinωt

sinωt cosωt

)(
x

y

)
with inverse

(
cosωt sinωt

−sinωt cosωt

)
, (3.48)

where x, y are used for positions in the ω−rotating frame and X , Y in the inertial axes, as illustrated in figure 3.7. Let

us denote the rotation matrix

Rir =

(
cosωt −sinωt

sinωt cosωt

)
and observe that: (3.49)

Rri = Rir−1
= Rir> , (3.50)

where the superscripts i and r refer to inertial and rotating frames respectively. The relative position vectors for the

third body are then given as:

r13 = (x+µr0, y)> , r23 = (x− (1−µ)r0, y)> (3.51)

in the rotating frame, and equation (3.48) gives the transformation back to inertial coordinates.

Equations of Motion

To simplify the analysis, introduce at this point complex coordinates to effectively deal with both vector components

in a single expression. Let complex z = x+ iy be the position in rotating coordinates, and a complex factor eiωt account
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for the rotation, i.e. Z = zeiωt = X + iY in inertial coordinates. Observe that all these coordinates refer to the third body

of mass m3. Now note that:

∂2Z
∂ t2 =

(
∂2z
∂ t2 +2iω

∂z
∂t
−ω

2 z
)

eiωt , (3.52)

and one requires that:

∂2Z
∂ t2 =

∂2X
∂ t2 + i

∂2Y
∂ t2 . (3.53)

For the latter the accelerations in the inertial system are needed:

Ẍ =−

(
ρ1(X +µr0 cosωt )

r3
1

+
ρ2(X− (1−µ)r0 cosωt )

r3
2

)
, (3.54a)

Ÿ =−

(
ρ1(Y +µr0 sinωt )

r3
1

+
ρ2(Y − (1−µ)r0 sinωt )

r3
2

)
where: (3.54b)

r1 = |Z−Z1|= |z+µr0|=
√

(x+µr0)2 + y2 ,

r2 = |Z−Z2|= |z− (1−µ)r0|=
√

(x− (1−µ)r0)
2 + y2 .

However, noting that:

• (x+µr0, y) in the rotating system refers to the same point as the above (X +µr0 cosωt, Y +µr0 sinωt),

• and also keeping in mind that distances are invariant under these transformations,12

it is of course evident that one can simply write the equations of motion in the complex inertial frame as:

Z̈ =−

(
ρ1(z+µr0 )

r3
1

+
ρ2(z− (1−µ)r0 )

r3
2

)
eiωt , (3.55)

And consequently, equating the above to expression (3.52) and canceling eiωt ,

∂2z
∂ t2 +2iω

∂z
∂t
−ω

2z =
(

∂2x
∂ t2 +2iω

∂x
∂t
−ω

2x
)

+ i
(

∂2y
∂ t2 +2iω

∂y
∂t
−ω

2y
)

. (3.56)

On collecting real and imaginary terms separately yields:

∂2x
∂ t2 −2ω

∂y
∂t
−ω

2x =−ρ1(x+µr0)
|z+µr0|3

− ρ2 (x− (1−µ)r0)
|z− (1−µ)r0|3

, (3.57a)

∂2y
∂ t2 +2ω

∂x
∂t
−ω

2y =− ρ1y
|z+µr0|3

− ρ2y
|z− (1−µ)r0|3

. (3.57b)

12Formally, the matrix is an isometric transformation between the two coordinate systems: it preserves distances with respect to
the Euclidean norm’s induced metric.
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Normalization

The convention in the literature, which is useful, is to take a step further in normalizing the equations by making them

dimensionless. This will also allow us further on to reuse the analysis and simulation code for both Sun-Earth–Moon

and Earth–Moon–Satellite configurations. To normalize following the standard convention [see e.g. Szebehely, 1967]

one takes:

M = m1 +m2 as a mass–scale, such that:
m1

m1 +m2
= 1−µ and

m2

m1 +m2
= µ which sum to 1;

L = r0 = 〈‖r‖〉 as a distance scale, and

T =
1
ω

as a time scale.

With these scaling factors, note in particular the resulting acceleration terms:

ρ1(x+µr0)(
(x+µr0)2 + y2

)3/2
−→ (1−µ)(x+µ)(

(x+µ)2 + y2
)3/2

,

ρ2(x− (1−µ)r0)(
(x− (1−µ)r0)2 + y2

)3/2
−→ µ(x− (1−µ))(

(x− (1−µ))2 + y2
)3/2

where the relation:

G(m1 +m2)
ω2 r3

0
≡ 1 has been exploited. (3.58)

This is in fact simply a restatement of Kepler’s third law for the primaries, which the reader will recall are indeed taken

to satisfy the 2−body problem exactly. The reader will note also that we do not take T = 2π

ω
as a time–scale, which is

the period associated with angular frequency ω. This is by no means essential, and our choice is nonetheless a correct

choice of time–scale.

Consequently, the equations of motion of the planar circular restricted 3−body problem (pCR3BP) in dimensionless

coordinates become:

ẍ−2ẏ =
∂Ω

∂x
= x− 1−µ

r3
1

(x+µ)− µ
r3

2
(x− (1−µ)) , (3.59a)

ÿ+2ẋ =
∂Ω

∂y
= y− 1−µ

r3
1

y− µ
r3

2
y where: (3.59b)

r1 = |z+µ|=
√

(x+µ)2 + y2

r2 = |z− (1−µ)|=
√

(x− (1−µ))2 + y2 .

It should be emphasized that as indicated, the forces can indeed be derived from the scaled potential:13

Ω =
1
2
(x2 + y2)+

1−µ
r1

+
µ
r2

. (3.60)

13That this should be so is by no means a priori certain, but is an expected consequence of the gravitational field becoming
conservative in the new rotating coordinates. Remark also at the same time that the left-hand-side expressions now contain velocities
as well as accelerations, which is never the case for a conservative field in inertial coordinates.
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For reference, the equations of motion in the full 3-dimensional rather than planar case, in the rotating coordinate

system become (cf. [Wakker, 2002a]):

ẍ−2ẏ =
∂Ω

∂x
= x− 1−µ

r3
1

(x+µ)− µ
r3

2
(x− (1−µ)) , (3.61a)

ÿ+2ẋ =
∂Ω

∂y
= y− 1−µ

r3
1

y− µ
r3

2
y , (3.61b)

z̈ =
∂Ω

∂z
= −1−µ

r3
1

z− µ
r3

2
z , (3.61c)

which is intuitive as the z-component is unaffected by the rotation.

Jacobi Integral

Note that the 10 integrals of the general problem do not actually hold in the circular restricted 3–body problem per se,

due to the assumptions placed on the third body and the restrictions of the role it plays for the motion of the other two.

There will always be an error term proportional to m3 with respect to exact conservation. However, conservation of

energy, though violated, has a clear analogue in the conservation of the Jacobi integral, which is formulated next, and

is the only known integral for the circular restricted 3−body problem.

Lemma 3.3.1 (Jacobi Integral)

Formulated for the full 3-dimensional case, there exists in these rotating coordinates a further constant of the motion

due to Jacobi, given in dimensionless coordinates by:

J = V 2−2Ω or equivalently: (3.62)

J =
(

ẋ2 + ẏ2 + ż2
)
−
(

x2 + y2
)
− 2(1−µ)

r1
− 2µ

r2
, (3.63)

where in the planar case z may be dropped from both the V term and the r1, r2.

Proof. Multiplying (3.61) by ẋi and summing one obtains:

ẋẍ+ ẏÿ+ żz̈ = ẋ
∂Ω

∂x
+ ẏ

∂Ω

∂y
+ ż

∂Ω

∂z
or

1
2

d
dt

(
ẋ2 + ẏ2 + ż2

)
= Lt(Ω) =

dΩ

dt
and so, on integrating:

ẋ2 + ẏ2 + ż2 = V 2 = 2Ω−C , (3.64)

where C is determined by the initial conditions of the 3rd body. C =−J , known as Jacobi’s constant, is a first integral

of the system in rotating coordinates, and plays a role analogous to the energy in inertial coordinates, as it can be shown

that C =−2E [cf. Wakker, 2002a].

This new integral is also linked to two other issues which will not be discussed in detail here, but are worth mentioning:

1. The discussion of Belbruno’s Weak Stability Boundaries in section 3.4.1, which are also to a certain extent

determined by the value of Jacobi’s constant C, [see e.g. Belbruno, 2004, chapter 3].

2. Hill’s surfaces, or the surfaces of zero velocity, follow from setting V = 0 = 2Ω−C, which gives an equation
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for manifolds which determine the boundary of the real-space regions accessible to a third body starting with

given initial velocity, via the set J−1(C). This issue is intimately linked with the Lagrange points, as discussed

in [Wakker, 2002a, Deurloo, 2003] among others, and is introduced briefly in section 3.4.2.

Hamiltonian Formulation

There is also a corresponding Hamiltonian formulation of the problem, as shown in appendix B. In 2 dimensions:

H(x,y, ẋ, ẏ) =
1
2
(ẋ2 + ẏ2)− x2 + y2

2
− (1−µ)

r1
− µ

r2
, (3.65)

which with canonical coordinates

q1 = x , q2 = y and (3.66a)

p1 = ẋ− y , p2 = ẏ+ x , (3.66b)

becomes

H(q, p) =
1
2
(p2

1 + p2
2)+ p1q2− p2q1−

(1−µ)
r1

− µ
r2

. (3.67)

The corresponding equations of motion are:

q̇1 =
∂H
∂p1

= p1 +q2 , (3.68a)

q̇2 =
∂H
∂p2

= p2−q1 , (3.68b)

ṗ1 =− ∂H
∂q1

= p2−
1−µ

r3
1

(q1−µ)− µ
r3

2
(q1 +1−µ) , (3.68c)

ṗ2 =− ∂H
∂q2

=−p1−
1−µ

r3
1

q2−
µ
r3

2
q2 . (3.68d)

3.4 Ballistic Capture and Transfer Techniques

This section discusses the two classes of Earth–Moon transfer techniques based on Ballistic (Lunar) Capture (BLC),

which we (as shorthand) refer to as ballistic capture transfers. While the underlying mathematical-physical structures

are the same, the issue of finding such transfer trajectories can be approached from two distinct points of view: that of

Weak Stability Boundaries (WSB’s) on the one hand, and that of the manifold structure associated with the Lagrange

point using the techniques of Dynamical Systems Theory (DST) on the other.

Note however, that

• Our focus here is not to give a comprehensive presentation of the issues. On the subject of WSB approaches,

the most up to date source for this is [Belbruno, 2004], while for the DST view, we refer to [Koon et al., 2000,

2001]. We also draw on the discussion in [Deurloo, 2002, chapter 3], but will focus here primarily on the un-

derlying concepts in continuity with the previous chapters.

• Consequently, our discussion will be largely qualitative, and our goal is to further motivate forward targeting

within the WSB context as an algorithmic approach, while noting the direct connection with the DST techniques

which underlie it.
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3.4.1 WSB–based Transfers

In this discussion we follow Belbruno’s presentation in Belbruno [2004], discussing first the concept of capture, and

then its relation to the WSB. We then discuss the framing of the problem as arising from a degenerate case of the

CR3BP which motivates an approach to finding and targeting the WSB, though a more robust approach exists which

obviates the need for this.

Capture

Definition 3.4.1 (Capture)

By capture we intend a certain type of bounded motion with respect to a body or a system of bodies. In particular we

define permanent capture as the case when as t → ∞ the relative position of the captured body is bounded ‖r‖ < ∞

while as t→−∞, ‖r‖→ ∞ may occur.

In practice, note that one may need to specify a more realistic bound ‖r‖ ≤ rmax < ∞ to formulate a tractable problem.

As an example, consider ballistic capture around the Moon: a body which transits the Earth–Moon region and remains

bounded at the Jupiter-radius about the Sun should not be considered captured for the purposes of such a problem,

despite the fact that it satisfies the definition based only on bounded-ness.

[Belbruno, 2004] shows that the set of orbits leading to permanent capture (barring maneuvers) is a non-empty set

of measure zero.14 Thus we may in general expect that in targeting capture we cannot expect to achieve permanent

capture.

With respect to a specific body (which we take w/o loss of generality to be the second primary), we may link the

concept of capture more concretely to orbital mechanics by noting that an object i at ri2 from it is ‘captured’ because

its kinetic energy cannot overcome the energy of gravitational well in which it is located; i.e. ignoring other bodies

than the secondary:

E = ∑
i

mi

(
ṙ2

i
2
− ∑

j, j 6=i

ρ j

ri j

)
→

E2(r, ṙ) =
mi

2
ṙ2

i2−
Gmi m2

ri2
, such that with: (3.69a)

ṙ2
i2
2

<
ρ2

ri2
it follows that: E2(r, ṙ) < 0 . (3.69b)

This provides a convenient definition of (instantaneous15) capture with respect to a body, even in an n−body model

of the solar system. Note that, in the context of conic sections, parabolic orbits are precisely those which escape the

central body with zero velocity at infinity, achieving equality, E2 = 0.

Thus let:

Σ1 = {r, ṙ |E2 ≤ 0} (3.70)

define the set (in phase space) on which the body we consider, typically a satellite, has negative energy with respect to

14A nonempty set of measure zero is typically a set consisting of disconnected mathematical points which form no contiguous area,
thus making them in practice impossible/useless to target due to the inherent uncertainties involved in the mechanics of spaceflight.
Actually hitting a point leading to stable capture would have more to do with luck than with planning, and for our purposes we need
only consider those leading to temporary capture.

15By this we intend ‘at the moment of evaluation.’ Belbruno also terms this ballistic capture, as the state of capture is achieved
without the use of a maneuver.
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the Moon in this case, and is instantaneously captured. Belbruno further considers the set of points

Σ2 = {r, ṙ | ṙi2 = 0} , (3.71)

where the radial velocity is zero, i.e. those points which are locally peri- or apoapse points. These are useful as a

practical consideration for defining the moment of capture as occurring at periselene (perilune).

Weak Stability Boundary

Noting that in a 3–body approximation of the dynamics, the points accessible to a satellite are bounded by the set

J−1(C), i.e. those where the Jacobi integral has the value C corresponding roughly to the current energy and angular

momentum of the satellite in the rotating system. On this set J−1(C)’s boundary, the velocity of a satellite arriving

from said current state goes to zero, and thus the set is the limit that can be reached with a given energy.

Thus he defines the set

W = J−1(C)∩Σ1∩Σ2 (3.72)

as the set on which ballistic capture occurs: the Weak Stability Boundary.

This set can be extended (as W̄ ) by allowing points where E2, ṙ marginally larger than 0, and a key result of Belbruno’s

work has been to establish, for the pCR3BP model, that the intersection of W̄ with a hyperbolic network Λ associated

with near-parabolic orbits near the central body 2, is non-empty:

W̄ ∩Λ 6= /0 . (3.73)

This implies that there exists a set of points on W̄ on which both permanent capture and unbounded oscillatory motion

occur, and further that there exists an invariant set on W̄ which gives rise to chaotic motion. We note these results in

particular because they underlie two qualitative phenomena observed:

1. The chaotic nature of the orbits and their sensitivity to small perturbations of their initial conditions. This is

understandable if we accept that the chaotic nature in these simple models extends to the more complicated ones

which are typically used, with our satellite typically transiting or being captured on or near W̄2 of the secondary.

2. The fact that all ballistic capture trajectories found numerically exhibit temporary capture only16 (and so prove

unstable over time), and require the execution of a (relatively small) maneuver in order to obtain permanent

capture. This is understandable given that the set on which permanent capture occurs is non–empty, but has

measure zero, implying an infinitesimally small chance of actually finding a permanent–capture trajectory that

requires no correction.

Patched Methods

The first approaches to the construction of ballistic capture trajectories involved the notion of patched methods, also

known as backward targeting. The basic idea in these approaches is

16This is both the author’s experience, as well as that of Belbruno and Ocampo, as related in private communications.
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• To first estimate the location of the WSB numerically. This is typically [cf. Belbruno, 1987, Belbruno and

Miller, 1993] done by noting that in a 2–body situation, the local velocity is coupled to the eccentricity of the

orbit, and thus the boundary for the stability of an orbit (in the 3–body situation) around the secondary body can

be estimated by increasing the eccentricity at given radial distance and velocity direction.

A typical criterium recurring in Belbruno’s work is the consideration of an orbit as stable when it completes at

least one full orbit of the secondary in the presence of the full 3–body gravitational field. Others are possible,

as [Deurloo, 2002] notes.

• Having determined the location of the WSB as a function W (r,e), to use e.g. a trajectory arc originating near the

secondary integrated backwards to a suitable point rp ∈W and an arc integrated forward from the primary to

the same rp,17and then incorporating a maneuver with ∆V = |ṙ+− ṙ−| to patch the two arcs together in velocity

as well as in position.

y

x

( x, y )- 

( x, y )+

WSB

m1

m2

departure

patch maneuver

capture

∆V

Figure 3.8: Patched (Backward) targeting principle; departing trajectory patched to capture trajectory in WSB, with
maneuver ∆V = ‖ṙ+− ṙ−‖

For a relatively detailed discussion of the implementation of a patched method in combination with optimization via

genetic algorithms, we refer to [Biesbroek, 1999, Biesbroek and Ockels, 1999] in particular. We remark also that

their results corroborate a number of qualitative features found using forward targeting (see below) and differential

correction alone in [Verzijl, 2005].

Forward Targeting

If one thinks of the above as a “backward” method, then a forward method would be an approach which avoids the

need to patch trajectory arcs by targeting directly from initial conditions. As discussed in [Verzijl, 2005], it has been

demonstrated by Belbruno and others, in addition to our own work, that with a suitable algorithm capture can success-

fully be targeted directly from initial conditions (i.e. from a parking orbit and initial epoch).

This method has been reported to be more robust than pure patched approaches (cf. [Belbruno and Carrico, 2000]),

though as noted above these have been shown to work well in combination with genetic algorithms, which go further

by than ‘simple’ patching by framing the problem as an exercise in optimization.

In [Verzijl, 2005] specifically however, we discussed the search for WSB-based ballistic capture transfers from the

perspective of forward targeting with differential correction algorithms, which was found there to be somewhat lacking

17This is typically hard to ‘get right the first time,’ and usually a differential correction algorithm is used on a candidate solution
found by trial and error.
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4 Body Simulation in Earth−Sun Rotating Coordinates
 
Start Date: 2454215.79
End Date:   2454327.5
 
Initial Conditions
X:   −6999.993 (km)
Y:   −9.8939 (km)
Z:   1.6099e−006 (km)
 
Initial Velocity
dX/dt:   −0.96851 (km/s)
dY/dt:   −10.5817 (km/s)
dZ/dt:   −0.44597 (km/s)
 

Figure 3.9: Example Ballistic Capture Trajectory (red) found in [Verzijl, 2005] – results in conventional units (kg–
km–s) in an Earth–Sun rotating coordinate system, generated using an analytical targeting algorithm and a DE405
ephemeride–based force–model [Standish, 1997]. Diamonds indicate initial conditions of solution, squares indicate
end–points.

in robustness. This was thought to be mainly a result of the differential correction approach itself, being a first-order

method applied iteratively to a highly nonlinear problem transiting an essentially chaotic region.

3.4.2 DST–based Transfers

In addition to establishing a framework for dynamics in the restricted 3–body problem in [Koon et al., 2000], the group

of Marsden et al. also discusses ballistic lunar capture from within said framework in [Koon et al., 2001]. The discus-

sion will highlight the salient points here, though without going into depth.18

In treating the pCR3BP, [Koon et al., 2000] find among many other results the following, which we use to briefly sketch

their approach to ballistic capture, which is detailed in [Koon et al., 2001].

1. Starting with the equations of motion in rotating coordinates (3.61) and the energy integral J =−C introduced

in section 3.3, the zero-velocity surfaces or Hill’s regions given by J−1(C) are the limits to the domain of mo-

18The reason for this is that while their results and techniques are essentially based on the methods of DST (reviewed in [Verzijl,
2006]), the motivation for present research was the efficient solution of the forward targeting problem. While the framework of
DST-based methods is powerful, it does not lend itself to this formulation as well, and the methods they propose are largely based on
patched-arc approaches.
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tion, and for critical values of the energy E , dissolve into the 5 Lagrange equilibrium points.19 This is illustrated

in figure 3.10.

Figure 3.10: Hill’s regions illustrated for increasing energy in the Sun-Earth-satellite pCR3BP
in rotating coordinates, adapted from [Koon et al., 2000]. As the energy of the massless 3rd

body (parameterized by C) increases, the grey forbidden regions become accessible. In the
bottom left figure, two necks about the Earth region are visible: the Lagrange point L1 is at the
center of the left neck and L2 is at the center of the right neck.

2. The Lagrange points Koon et al. are concerned with are L1 (center of right/inner neck) and L2 (center of left-

/outer neck), which are of course simply 2 of the 3 collinear equilibrium points of the problem in rotating

coordinates.

With these equilibrium points are associated stable W s
L1,2

and unstable W u
L1,2

manifolds, which are tubes in phase-

space. In their study, Koon et al. show that in a region around each Lagrange point there are a number of

different types of orbits determined by the initial conditions of the trajectory (which determine the values of the

constants α1,2 below in figure 3.11).

3. Using this knowledge, their approach is to construct a ballistic capture trajectory in two parts. First, a suitable

trajectory is constructed starting within the stable tube of the Sun-Earth L2 point near some Earth parking orbit,

which transits the region and leaves on the unstable manifold.

Then, by finding a suitable patch point in a Poincaré section as in figure 3.12, it is ensured that this orbit follows

the stable manifold associated with the Earth–Moon L2 point,20 leading to ballistic capture near the moon, as

illustrated in figure 3.13.

19Bear in mind that this does not contradict the earlier discussion on Hamiltonian systems, as equilibrium points in the rotating
system correspond to orbits in the inertial system. Remark also that in practice, a satellite will orbit this mathematical point in a
Lyapunov orbit, appearing to be orbiting empty space from the perspective of the Earth.

20The Moon is of course also within the Sun-Earth neck region, given the scale of the relative orbits.
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Figure 3.11: Types of orbits in a neck region, from [Koon et al., 2000]. α1 = α2 = 0 corre-
sponds to a periodic Lyapunov orbit, α1α1 = 0 correspond to orbits asymptotic to the periodic
orbit, α1α2 < 0 are transit orbits which flow in on a stable manifold and leave on an unstable
manifold in forward time, and α1α2 > 0 are non-transit orbits which return outwards without
traversing the region.

Figure 3.12: Figure on the left shows the Poincaré mapping demonstrating what Koon et al.
refer to as ‘twisting,’ whereby a small strip of variation in velocity near the unstable manifold
maps to hug nearly the entire (section of) the stable manifold. The geometry in the neck in
which this can used for considerably flexibility in targeting is shown in the figure on the right,
both taken from [Koon et al., 2001].
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Figure 3.13: Figure on the left shows an overlapping patch region found in the Poincaré section
where an initial condition may be found that goes from W u

L2,SE to W s
L2,EM , and allows the

construction of the orbit on the right, in which the trajectory continues all the way to capture
near the Moon’s neck region; both taken from [Koon et al., 2001].

4. Note that here by patch-point we mean a point where ideally the manifolds’ Poincaré sections naturally overlap,

because in that case no maneuver is needed for the ballistic trajectory. In other cases, such as e.g. that treated in

[Elvik, 2004], a maneuver may be necessary to bridge the velocity-mismatch determining the locations of the

manifolds, also as in section 3.4.1.

The approach taken has the advantage of working directly with the geometric structures which determine the flow in

the region in which it is desired to construct ballistic capture transfers. However, due to the need to construct and

analyze the geometry of the structures (which is comparatively simple only for the planar problem), pursuing their

techniques further was not envisioned in the motivation for present research.

3.5 The Capture Problem
This final section in this ongoing discussion of astrodynamics will treat a comparatively simple model for ballistic

capture devised by the author. It may be thought of as a stripped-down version of the bicircular problem which retains

the essentials of the quasi-bicircular problem introduced in [Andreu, 1998], an interpretation to which the discussion

returns at the end of the section.

3.5.1 A Model for Ballistic Lunar Capture

The model which will be considered is a simple restricted 4–body problem formulation, and will be derived as a

straightforward perturbation of the circular restricted 3−body problem. Of course, in general, one can simply model

the problem using the equations of the 4−body problem by setting n = 4 in equation (3.4). However, these carry

even more complexity than the 3−body problem discussed previously, and are less reducible (realistically, from

4× 2× 2 = 16× 1st order planar equations to 16− 4 = 12 planar equations, if one proceeds in parallel with the

earlier discussion).

When studying ballistic lunar capture, however, there is already a large body of knowledge of the dynamics of the

Earth–Moon region motivating much simpler models for the relative motion of the Earth, Moon and Sun, while what

one is really interested in is of course the motion of the satellite. This leads to the idea, under almost the same

assumptions as the circular restricted 3−body problem, of making a simple extension there to include the Moon in a

prescribed periodic orbit around the Earth.
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Perturbing the pCR3BP

To that end, recall the (non-normalized) planar circular restricted 3–body formulation above, and extend it in the natural

way for the equations of a massless 4th body (the new “secondary”) in the gravitational field of 3 primaries:

Ẍ =−

(
ρ1(X−X1 )

r3
1

+
ρ2(X−X2 )

r3
2

+
ρ3(X−X3 )

r3
3

)
, (3.74a)

Ÿ =−

(
ρ1(Y −Y1 )

r3
1

+
ρ2(Y −Y2 )

r3
2

+
ρ3(Y −Y3 )

r3
3

)
; (3.74b)

which again leads, on the choice of a preferred ω−rotating frame to:

Z = zeiωt ,

Z̈ =
(

z̈+2iω ż−ω
2 z
)

eiωt

=−

(
ρ1(z− z1 )

r3
1

+
ρ2(z− z2 )

r3
2

+
ρ3(z− z3 )

r3
3

)
eiωt . (3.75)

Above, Z j = X j + iY j, j = 1, . . . ,3 are the locations of the primaries, which we will return to in a moment.

Considerations

The following considerations are pertinent to the choices to be made in formulating the problem.

• Succinctly, the model desired is something that both:

1. works as an “extended perturbation”21 of the 2–body situation which is thoroughly understood, and

2. is formulated along the lines of the restricted 3–body problem, in line with the similar assumptions and

restriction, motivated by the success of that model in the Sun–Earth–Moon configuration.

• One must then consider the following physical motivation for this intuitive idealization.

Naively, supposing the desire to model specifically lunar capture, it would seem that the key is the motion be-

tween the Earth and the Moon, with a small gravitational perturbation due to the Sun which is very far away.22

There are a number of objections to this idea taken at face value:

– First, a technical objection: when constructing a perturbation formulation, the assumption underlying the

formulation is that the perturbation terms will be small. If the Sun is the perturbation term, one must deal

with its exceedingly large mass and sphere of influence somehow.23

21Perhaps a better term would be a “perturbation of a perturbation,” as (strictly taken) one perturbs the 3–body problem for which
there are limited integrals and no analytically closed solutions.

22The validity of this interpretation of the problem is not in question; extensive simulation by the group of Prof. Ocampo at the
University of Texas at Austin show that in a quasi-inertial frame co-moving with the Earth, a ballistic capture transfer resembles
very much a bi-elliptic transfer with the ∆V boost at apoapse provided by the gravitational interaction with the Sun. However, as a
perspective it does not lend itself well to the modeling approach taken in this thesis.

23The reader will note that we consider the issue in a more general setting in section 4.3.3, even though as we motivate here, it will
not be our approach.
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– Second, a more fundamental objection is that the Moon arguably orbits the Sun, not the Earth, from the

gravitational perspective. As a thought-experiment: remove the Earth, and ask what the Moon will do

relative to its current orbit. It is reasonable to expect, of course, that it will continue to orbit the Sun, and

will do so in roughly the same orbit, to good approximation.

– Third, a deeper observation, due to the work of the Caltech group, is that from the perspective of DST,

the mechanism for ballistic capture is, in reality, the flow on manifolds near the Earth–Sun L1,2 Lagrange-

points and neck regions, which happens to also be the region in which the Earth–Moon L1,2 points also

lie (and not the other way around, cf. figure 3.13).

Given the latter 2 considerations, it is not unreasonable to begin with the Earth–Sun rotating system, and then

consider the effect of the Moon (the smallest primary mass) as the perturbation of the system. However, the first

point requires some deeper consideration, and will be treated accordingly in section 4.3 during the discussion

of multiple scales inherent in the perturbation formulation of the problem.

• Given the mass ratios, roughly 1030 : 1024 : 1022 or as powers of 10, it is likewise not unreasonable to further

assume that the motion of the Moon, with mass ratio slightly over µ ≈ 0.0125, does not noticeably disturb the

Earth’s orbit about the Sun. To wit, the Earth essentially orbits the Sun as it would without the presence of the

Moon. The common barycenter is located approximately 3000 km from the Earth’s internal center of mass, or

at roughly half the Earth’s radius. Thus, it makes sense to further take the Moon as relevant to the satellite orbit

for capture purposes, but itself not significantly perturbing the Earth–Sun mutual gravitation.

Note also that this in no way changes the fact that the accelerations are proportional to 1/r2 for each body, and

so a relatively small mass may yet dominate depending on the distance between the bodies, i.e. the satellite’s

motion near the Moon is of course still dominated by the Moon in this formulation, reflected in equations with

terms like
εn m0

r2
0

.

• This then motivates a formulation based on the periodic motion of the bodies, in which:

– the frame rotates with the Earth–Sun ω (period ∼ 365.25 d), cf. [Wakker, 2002a, ch. 7]

ω =

√
ρ1 +ρ2

r3
0,ES

; (3.76)

(see also appendix C for the details of the constants used for simulation purposes; the subscripts 1, 2 refer

to Earth and Sun, as r0,ES refers to the Earth–Sun system).

– the Moon moves within the inertial system with ω̄ (period ∼ 27.28 d), determined by

ω =

√
ρ2 +ρ3

r3
0,EM

; (3.77)

where ρ3 corresponding to the Moon could arguably be omitted, just as with ρ2 in the Earth–Sun case.

This is the sidereal angular velocity.

– In addition, a distinction must be made with the Moon’s motion in the rotating system based on the Earth–

Sun line, relative to which the Moon moves not with the sidereal but with the synodic angular velocity
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such that that the period ∼ 29.35 d. The relation between the two is given by [?]:

1
Tsyn

= | 1
TEarth

− 1
Tsyn
| , (3.78)

from which one obtains ωsyn = 2π/Tsyn.

The Earth–Sun system is considered a 2–body problem with a closed circular solution, whose gravitational field

determines the motion of the Moon and satellite. The Moon does not influence these two, but orbits the Earth

and Sun circularly, and affects the satellite, which in turn orbits in the gravitational field of all 3 primaries,

influencing none. We propose to refer to this as the Ballistic Lunar Capture Problem formulation or simply, for

purposes of this thesis, the Capture Problem (CP).

Luckily this proposed formulation is easy to parameterize, first by noting the appropriate transformations to inertial,

based on the Sun as m1 at −µr0 along the x−axis at t = 0, the Earth as m2 at (1− µ)r0, and the Moon m3 at some

η = r0,EM
r0

relative to the position of the Earth (typically with an additional phase offset φ0 at t = 0, omitted here for

clarity) :

Z1 =−µr0eiωt , (3.79a)

Z2 = (1−µ)r0eiωt , (3.79b)

Z3 =
(

1−µ+ηeiω̄t
)

r0eiωt = (1−µ)r0eiωt +ηr0 ei(ω̄+ω)t . (3.79c)

Note that the latter implies that even in an Earth–Sun rotating coordinate system, the Moon indeed orbits the Earth

circularly in the model. This is borne out as a good first approximation by the simulations using ephemerides performed

in [Verzijl, 2005], supporting the approximations of circularity made here.

Equations of Motion

The equations of motion, then, are derived along the same lines as in section 3.3.5, with the Sun and Earth forming the

2−body problem basis with r0 = r0,ES and taking the restriction to motion in the plane. The key difference now is

that there are for present purposes24 two angular velocities ω, ω̄ in play. Substituting the parametrization of the bodies

as just motivated into expression (3.74), to find

Z̈ =
(

z̈+2iω ż−ω
2 z
)

eiωt

=−

(
ρ1(z+µr0 )

r3
1

+
ρ2(z− (1−µ)r0 )

r3
2

+
ρ3(z− (1−µ+ηeiω̄t)r0 )

r3
3

)
eiωt . (3.80)

Expanding with z = x+ iy, canceling eiωt and collecting terms real and imaginary:

ẍ−2ωẏ−ω
2x =−ρ1(x+µ)r0

r3
1

− ρ2 (x− (1−µ)r0)
r3

2
− ρ3 (x− (1−µ+ηcos ω̄t)r0)

r3
3

, (3.81a)

ÿ+2ωẋ−ω
2y =−ρ1y

r3
1
− ρ2y

r3
2
− ρ3(y−ηr0 sin ω̄t)

r3
3

. (3.81b)

24The Sun–Earth angular velocity which are denoted ω and the Earth–Moon angular velocity, which we will denote ω̄. One could
of course introduce another for the Sun–Moon rotation, but this would be some periodic ω̂(t) due to the back and forth about the
Earth, and needlessly complicate matters.
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Figure 3.14: Definition of Capture Problem Coordinates

For the motion in the rotating frame, however, the distance r3 = r3(t) explicitly:

r3 = |z− (1−µ+ηeiω̄t)r0|=
√

(x− (1−µ+ηcos ω̄t)r0)2 +(y−ηr0 sin ω̄t)2 . (3.82)

This complicates matters because it introduces a time-dependence, albeit the simplest periodic one possible, but which

enters nonlinearly both in the numerator and denominator making the gravitational field explicitly time-dependent.

Normalization

As with the circular restricted 3−body problem, normalization is carried out here using:

M = m1 +m2 as a mass scale, such that:
m1

m1 +m2
= 1−µ ,

m2

m1 +m2
= µ ,

m3

m1 +m2
= υ ;

L = r0 = 〈‖rES‖〉 as a length scale (using the Earth–Sun distance), and

T =
1

ωES
as a time scale.

Note that it is the ωES which is used to scale the time, and that there is a distinction between this and the synodic

angular velocity of the Moon about the Earth ωsyn which is also necessary (and must be taken into account during
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normalization as well). One thus introduces ω′ := ωsyn/ωES > 1 to account for the scaling with reference to the Moon.

Thus one finally obtains:

ẍ−2ẏ = x− 1−µ
r3

1
(x+µ)− µ

r3
2

(x− (1−µ))− υ

r3
3

(
x− (1−µ+ηcosω

′t)
)

, (3.83a)

ÿ+2ẋ = y− 1−µ
r3

1
y− µ

r3
2

y− υ

r3
3
(y−ηsinω

′t) where: (3.83b)

r1 = |z+µ|=
√

(x+µ)2 + y2 ,

r2 = |z− (1−µ)|=
√

(x− (1−µ))2 + y2 ,

r3 = |z− (1−µ+ηeiω′t)|=
√

(x− (1−µ+ηcosω′t))2 +(y−ηsinω′t)2 .

3.5.2 Remarks on the Model

The attentive reader will note that this is no longer a case of simply restricting the dynamics inherent in the 3−body

problem: it is rather an extension based on empirical grounds: the observed motion of the Moon around the Earth

and the relatively small effect that this has on the motion of the Earth around the Sun. It is worth remarking, in fact,

that a more accurate approach exists which is more closely tied to the actual dynamics: the model introduced as the

quasi-bicircular problem by the group of Simó in Barcelona: [Andreu, 1998].

The bicircular problem proper considers 2 coupled 3−body problems, wherein the Earth and Moon orbit their common

barycenter, which in turn orbits the Sun (or strictly, orbits the Earth-system–Sun barycenter, which is essentially the

same). The problem with this is that it is a stitching together of two 2−body problem solutions and not a true solution

of the 3−body problem.

The approach of Andreu’s work, instead, was to find a true 3−body problem solution for the Moon’s motion in terms

of Fourier series, which could then become the basis of his 4−body problem work. The model proposed here might

be thought of as the lowest harmonic of precisely such a Fourier series solution, restricting the lengthy approximations

found by Andreu using computer algebra to a single periodic oscillation about the Earth’s position. Indeed, we remark

that the lowest order harmonic listed at [Andreu, 1998, p. 33] has a weight of 0.990930, making this interpretation

quite reasonable

Clearly the approach to modeling above is then not the only approach, but we remark, anticipating the further develop-

ment in Part II of this thesis using perturbation methods for first integrals, that it might be expected that results found

using the above model based on simple harmonic oscillation promise to scale to the quasi-bicircular problem more

easily than to a patched model.
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Chapter 4

Method of Integrating Vectors

This chapter will discuss the method of integrating vectors as a framework for the search for approximations of analyt-

ical integrals of the equations of motion of a given problem ( in this thesis those of chapter 3).

The method is best thought of as a generalization of the use of an integrating factor to make a scalar ordinary differential

equation exact and hence integrable, cf. [Boyce and DiPrima, 2001, chapter 2]. Our discussion is based on [van

Horssen, 1997, 1999a,b, Waluya, 2003], and their notation is more or less adopted here.1

4.1 Exact Equations and Integrating Factors

In beginning this discussion a bit of perspective is useful, and it is prudent to consider what motivates the method

introduced in the next section. Consider an ordinary differential equation (ODE) of the form:

M(x, t)+N(x, t)
dx
dt

= 0 . (4.1)

This equation is exact if [see e.g. Boyce and DiPrima, 2001, section 2.1]

∃Ψ(x, t) such that

 ∂t Ψ = M(x, t)

∂x Ψ = N(x, t)
.

It is straightforward to show that this is equivalent to requiring that:

Lt

(
Ψ(x, t)

)
=

∂Ψ

∂t
+

∂Ψ

∂x
dx
dt

= 0 , (4.2)

and has as consequence the requirement (obtained by taking equality of mixed partial derivatives) that:

∂M
∂x

=
∂N
∂t

. (4.3)

This latter condition is in fact wholly equivalent as a definition of exactness.

The usefulness of exact differential equations lies in the implication that for a single scalar 1st -order ODE as suggested

here, the equation’s solution is (possibly implicitly) contained in any first integral; equation (4.2) then demonstrates

1Though the method is discussed only for the purpose of such approximations, note that it has been applied successfully there to
determine the existence and stability of periodic solutions as well.
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that Ψ(x, t) fulfills precisely this role.

In general, a given ODE will not be exact, and thus one seeks an integrating factor ν which will make it exact:

νM(x, t)+νN(x, t)
dx
dt

= 0 . (4.4)

In turn, the relevant conditions become:

∂(νM)
∂x

=
∂(νN)

∂t
or equivalently (4.5)

M ∂x ν−N ∂t ν+ν( ∂x M− ∂t N) = 0 ; (4.6)

the latter a partial differential equation (PDE) for the unknown factor ν which is typically as difficult to solve as the

original equations.

The method of integrating vectors considered in the references above can then schematically be described as the com-

bination of a generalization of an equation made exact by an integrating factor to a vector case, combined with getting

around the problematic PDE (now a system of 1
2 n(n + 1) PDE’s in fact, as we shall show in the next section) by con-

structing successive approximations in a small parameter ε which is inherent in the original ODE system.

Before outlining the method in detail, consider the following two examples which show the usual and a generalized

approach to the solution of a simple ordinary differential equation.

Example 4.1.1 (Exact Equations Approach)

Consider:

dx
dt

+2x = 3 with x(0) =
3
2

, (4.7)

which phrased as above implies N(x, t) = 1 and M(x, t) = 2x−3. Multiplying by ν := ν(t):

ν
dx
dt

= (3−2x)ν , and we now require that:

dxν

dt
= ν

dx
dt

+
dν

dt
x .

From this it follows on comparing with expression (4.7) that:

dν

dt
= 2ν ,

and consequently we readily find that:

ν(x, t) = c1(x)e2t and on letting c1(x) = 1 have found: (4.8)

3e2t = e2t dx
dt

+2e2t x , or:

d
dt

(
e2t x

)
= 3e2t .

On integrating, we obtain:

e2t x =
3
2

e2t + k or:

x(t) =
3
2

+ ke−2t , a family of solutions satisfying the initial condition, in fact. (4.9)
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Example 4.1.2 (Integrating Vectors Formalism)

We reprise:

dx
dt

+2x = 3 with x(0) =
3
2

and multiplied by ν to obtain:

ν
dx
dt

= (3−2x)ν .

Now, using the formalism of the method of integrating vectors for the 1-dimensional case:

∂ν

∂t
=−∇(ν · f )

=−(3−2x)
∂ν

∂x
+2ν , which we rewrite as:

2ν = ∂t ν+(3−2x) ∂x ν . (4.10)

This is a linear 1st –order PDE which is easily solved using the method of characteristics (see e.g. [Evans, 1997,

section 3.2]). On a characteristic parameterized by a variable s, ν(s) = const and so it follows that, on comparing the

above:

dν

ds
= 0 = ∂x ν

dx
ds

+ ∂t ν
dt
ds

from which it follows that:
dν

ds = 2ν ,

dx
ds = 3−2x ,

dt
ds = 1 .

Solving these 3 equations:

s = t + c1 ,

ν = c2(x)e2s , and

d(3−2x)
3−2x

=−2ds whence it follows that:

3−2x = c3e−2s or c3 = (3−2x)e2s .

Specifying c1 = 1 for simplicity, and setting c2(x) = g(c3 ) with g an arbitrary function, the general solution is:

ν(x, t) = g
(

(3−2x)e2t
)

e2t . (4.11)

This is now substituted into the equations for the integral:

∂ψ

∂x
= ν = g

(
(3−2x)e2t

)
e2t , (4.12)

∂ψ

∂t
=−ν · f = (2x−3)g

(
(3−2x)e2t

)
e2t . (4.13)

A general solution will be of the form ψ(x, t) = e2t
∫

x
g
(

(3−2z)e2t
)

e2t dz + (2x−3)
∫

t
g
(

(3−2x)e2z
)

e2z dt + k,

but for this problem we instead will specify a simpler form for g, namely set g(. . .) = 1.
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With this then,

∂ψ

∂x
= e2t ,

∂ψ

∂t
= (2x−3)e2t , and it follows that

ψ =
1
2
(2x−3)e2t + k . (4.14)

This form is precisely what we need, and now recalling that since ∂ψ

∂x
dx
dt + ∂ψ

∂t = 0, this is by construction an integral;

thus we can reduce the single 1st -order equation fully with just this single expression, defining the solution implicitly

by ψ(x, t) = const.

ψ =
1
2
(3−2x)e2t + k = const , from which it is easily found that the solution is:

x(t) =
3
2

+ ce−2t , again a family of solutions. (4.15)

This example illustrates a relatively complicated method for a relatively simple problem, but we would like to point

out that the problems introduced in the previous chapter, to which we intend to apply it, are considerably more com-

plicated, and cannot be handled using the naive approach.

The more complicated second method, by contrast, does generalizes satisfactorily, and it is useful to think of it as

mapping from the concepts for exact equations, as it were to the concepts we introduce properly in the next section:

x −→ x ,

t −→ t ,

M(x, t)
N(x, t)

−→ f(x, t) ,

Ψ(x, t) −→ I(x, t) ,

Lt

(
Ψ(x, t)

)
−→ Lt

(
I(x, t)

)
and

∂Ψ

∂t
+

∂Ψ

∂x
dx
dt

= 0 −→ ∂I(x, t)
∂t

+∇I(x, t) · ẋ = 0 : term for term equivalent to:

−∂(ν f )
∂t

+ν
dx
dt

= 0 −→ −ν · f+ν · ẋ = 0 .

4.2 A Nonlinear Method based on Integrating Factors

Consider a system of the form ẋ = f(x, t), where for this section the vector notation is kept explicit. An integrating

factor is a factor ν by which the equations may be multiplied such that the resulting new equations are exact and thus

integrable.

[van Horssen, 1999a] extends this approach to a general vector ẋ = f(x, t), with x, f ∈ Rn, and further it is as-

sumed that each element f1, . . . , fn is sufficiently smooth such that a twice continuously differentiable first integral

I(x1, . . . ,xn, t;c) = 0 exists with c an arbitrary constant of integration.

Element-wise one multiplies the vector DE by (continuously differentiable) integrating factors νi(x, t) which may
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conveniently be expressed using the inner product with the vector ν:

ν · dx
dt

= ν · f(x, t) . (4.16)

It is then required that this be equal to the expression obtained by differentiating the first integral, i.e.
ν1

dx1

dt
+ · · · + νn

dxn

dt
−ν · f = 0

∂I
∂x1

dx1

dt
+ · · · + ∂I

∂xn

dxn

dt
+

∂I
∂t

= 0 , or equivalently
(4.17a)

∇I = ν

∂I
∂t

=−ν · f .
(4.17b)

Now using the differentiability assumed above, note that on taking derivatives and using equality of mixed partials, one

obtains from the above that:

∂ν1

∂x2
=

∂(∇I)1

∂x2
=

∂2I
∂x2∂x1

≡ ∂2I
∂x1∂x2

−→ ∂ν2

∂x1
=

∂ν1

∂x2
, and:

−∂(v · f)
∂x1

=
∂2I

∂x1 ∂t
≡ ∂2I

∂t ∂x1
−→ ∂v1

∂t
=−∂(v · f)

∂x1
,

and so working through the relations (4.17) above:



∂ν1

∂x2
=

∂ν2

∂x1
,

∂ν1

∂x3
=

∂ν3

∂x1
,

∂ν2

∂x3
=

∂ν3

∂x2
,

...
∂ν1

∂xn
=

∂νn

∂x1
, . . . ,

∂νn−1

∂xn
=

∂νn

∂xn−1
,

∂ν1

∂t
=−∂(ν · f)

∂x1
, . . . ,

∂νn−1

∂t
=−∂(ν · f)

∂xn−1
,

∂νn

∂t
=−∂(ν · f)

∂xn
,

(4.18)

or equivalently
∂νi

∂x j
=

∂ν j

∂xi
,

∂ν

∂t
=−∇(ν · f) .

(4.19)

Thus the integrating vector ν must satisfy this system of 1
2 n(n+1) 1st -order, linear partial differential equations. On

determining ν from these, a first integral follows by integration of equation (4.17).

This formalism is applied to a perturbed system ẋ = f(x, t;ε) as follows.

Assume that f has the form:

f(x, t;ε) = f0(x, t)+ ε f1(x, t,ε) , (4.20)
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and then expand the integrating factor along the same lines, but explicitly in ε as:

ν(x, t;ε) = ν0(x, t)+ εν1(x, t)+ . . .+ ε
m

νm(x, t)+ . . . , (4.21)

where the subscripts now indicate the order of expansion of the vector ν (and not the scalar components2). On substi-

tuting this expansion into equations (4.17) and (4.19) one obtains what will be referred to throughout this thesis as the

“equations of condition”3 which the integrating factor must satisfy at each order:

∇I = ν

∂I
∂t

=−ν · f
−→

∇Ik = νk
∂Ik

∂t
=− [ν · f ]k

k = 0,1,2, . . . , (4.22)


∂νi

∂x j
=

∂ν j

∂xi

∂ν

∂t
=−∇ [ν · f ]

−→


∂νi,k

∂x j
=

∂ν j,k

∂xi

∂νk

∂t
=−∇ [ν · f ]k

k = 0,1,2, . . . . (4.23)

In these equations the key expression is ν · f. Its gradients determine the time–dependent part of the equations of con-

dition at the “low–level” (4.23), as well as the time–dependence of the final integral in the “high–level” (4.22).4

This latter point will be shown to be particularly relevant in constructing the time–independent integrals of the astro-

dynamics problems of chapter 3 in Part II of this thesis. In general finding an integrating factor will prove decidedly

complicated, but even there the “high–level” equations sometimes allow considerable limitation of the search-space

for candidates.

When the factors thus obtained are substituted into expression (4.17), one has the approximation truncated at order m:


∇Î = ν0(x, t)+ . . .+ εmνm(x, t)
∂Î
∂t

=−
[(

ν0(x, t)+ . . .+ εmνm(x, t)
)
· f
]
∗

,
(4.24)

where Î denotes the approximation of the first integral I, and the ∗ is used to indicate that terms of order higher than m

are neglected.5 Î then is obtained by setting

Î = I0(x, t)+ ε I1(x, t)+ · · ·+ ε
mIm(x, t) , (4.25)

and this forms an integral approximation accurate to O
(
εm+1) , as demonstrated in the following lemma.

Lemma 4.2.1 (Approximation Accuracy)

It may be noted here that this approximation of a first integral I is exact up to O
(
εm+1), i.e.

2These would be expanded as νi,0 + ενi,1 + · · ·+ εmνi,m + · · · etc.
3Strictly taken, these are nothing of the sort: they are simply the equations which an integral, integral expansion or integral

approximation and its integrating vectors must satisfy. However, we find it useful throughout this thesis to use the term for the
reader’s easy recollection of the system (4.22)–(4.23) to which we refer, and so we ask the reader’s patience with our sloppy use of it.

4The terms high–level and low–level are here likewise chosen for easy reference, and are motivated by the conceptual separation
between the integrating factor (which is determined by the so–called “low–level equations”) which is used as a building block for the
actual integral approximation (which must satisfy the so–called “high–level equations”).

5We note this explicitly, as there are terms in ε ‘hidden’ in f as well; i.e. it would not be sufficient to truncate the expansion of ν

only and then take the inner product.
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dÎ
dt

= 0+ ε
m+1Rm+1 and so (4.26a)

Î(x, t;ε) = Î(x(0),0;ε)+ ε
m+1

∫ t

t0
Rm+1dt , (4.26b)

for some remainder term Rm+1(x, t,ν0, . . . ,νm;ε). Consequently on a timescale t ≤ T = L this gives an O
(
εm+1)

approximation of a first integral, while on a timescale t ≤ T =
L
ε

the approximation is good to O (εm).

Proof. This is proven in e.g. [van Horssen, 1999a], and follows from a straightforward substitution of the expansion

into the formal expression dÎ
dt .

In the references given above, the method is applied to a number of instructive examples of both mildly and highly

nonlinear equations, and it is this success which motivates its consideration for the problems introduced in earlier

chapters.

4.3 Treating Multiple Scales

As the final tool needed in approaching part II of this thesis, this section will discuss the relevant issues when dealing

with multiple scales in the problems to be considered. In particular, the reader will note that the discussion is extended

beyond the usual analysis of multiple time–scales to spatial–, mass– and force–scales as well.

4.3.1 Time–Scales

In [van Horssen, 1999b] the method described in the previous section is extended to problems involving multiple time

scales, and here we take the opportunity to introduce this approach as well.

Definition 4.3.1 (Time-Scale)

Consider a constant C and g1,2(ε) functions of a small parameter ε, typically g1,2 = εm1,2 .

By a timescale, one intends some scale 1/g2(ε), such that for a function f , one has that

f (x, t;ε) = O (g1(ε)) as ε−→ 0, for 0≤ t ≤C/g2(ε).

The reason that multiple time scales are introduced is typically to gain a better understanding of the secular terms

which may appear in naive approximations such as those for the integrating vector introduced above. These terms are

relevant on a long timescale, and may reflect an issue with the modeling of a problem, such as the problem of small

denominators, first noted in section 2.3.4.

Example 4.3.2
As an example, [van Horssen, 1999a,b] treats the Van der Pol oscillator:

d2y
dt2 + y = ε(1− y2)

dy
dt

. (4.27)

Changing to polar coordinates and using the approach discussed in the previous section, it is found that:
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• An expansion of the form

I1 = r + ε

(
−(

1
2
− 3

8
r2)ϕ− r

4
sin(2ϕ)− r2

32
sin(4ϕ)

)
+O

(
ε

2
)

holds for a first integral.6 However, since ϕ = ϕ(0)+ t +O (ε), for time scales of the order O
(
ε−1), the ‘small’

term ε( 1
2 −

3
8 r2)ϕ in the integrating factor clearly becomes O (1).

• The multiple scales approach instead tries to make the approximation less naive by explicitly incorporating a

second (long) timescale τ = ε t, into a new expression7 x0(t,τ)+εx1(t,τ)+ . . .+εn xn(t,τ), computed such that

each term xi(t,τ) no longer contains secular terms.

• The method outlined in the previous section is then approached by first extending the system of equations with
dτ

dt = ε. Likewise adding an element to the integrating vector νn+1, the approximation method is carried out as

before, now keeping explicit track of the τ terms.

This approach now yields

I1 =−eτ

(
1

2r2 −
1
8

)
− ε

eτ

r3

(
r
4

sin(2ϕ)+
r3

32
sin(4ϕ)

)
+O

(
ε

2
)

.

Here, clearly there is no longer a ‘hidden’ secular term, but rather the behavior on long time scales has been

made explicit in the eτ pre-factors.

Also, in contrast to the first approximation, this is valid to O
(
ε2) on a O (1/ε) timescale, whereas the former

was valid to the same order but only on an O (1) timescale.

For details of the execution of the method, the reader is referred to the papers referenced above and Waluya’s disserta-

tion [Waluya, 2003] for these and a number of other examples.

It is also incumbent upon us to point out, as the astute reader has no doubt noted, that in the circular restricted 3−body

problem treated in the previous chapter, we have effectively introduced just such a timescale in normalizing the

equations with T = 1
ω

, an issue to which we will return in detail in Parts II and III of this thesis.

4.3.2 Mass– and Spatial–Scales

In formulating a perturbation problem one can analogously introduce both mass and spatial scales, by scaling the equa-

tions of motion relative to a reference mass m0 or reference distance r0. The former also has consequences for the

gravitational parameters ρi of course.

The formalism used to introduce the scaling is analogous to that used in setting τ = ε jt as a time scale, though this

must now be modified to be e.g. ρ2 = aε j2 ρ0, where a is some dimensionless constant that is used to correct to the true

values rather than just order of magnitude accuracy (which will be necessary for simulation purposes).

6The secularity is expressed via ϕ and already occurs in the integrating factors.
7In the case that the method is used to calculate an approximation to the solution of the system. We will continue to be concerned

mainly with approximations of first integrals in the present work.
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Thus, introduce the notations m̄i and r̄i for the scaled (dimensionless) masses and vector coordinates. For the latter,

one scales by some (scalar) r0 which has units of distance.

mi = ε
ji m̄i m0 where m̄i =

mi

m0 ε ji
or (4.28a)

ρi = ε
ji ρ̄iρ0 where ρ̄i =

Gmi

Gm0 ε ji
, (4.28b)

and likewise

ri = ε
ji r̄i r0 where r̄i =

ri

r0 ε ji
. (4.29)

Here, a scaling factor ε is chosen first, as above, and a given mass or position’s magnitude is reflected in the factors

m0 ε ji , r0 εki for each term i = 1, . . . ,n in the problem. This only gives the correct order of magnitude, though, and is

corrected by the dimensionless m̄, r̄ so that the true value can be recovered.

In particular, note that the dimensionless vector r̄i still plays the same role as before, also with respect to differentiation

and integration. However, as motivated in the next section, it makes more sense to consider these factors together in a

single force–scale rather than scaling them out separately.

4.3.3 Force–Scales

Taking the above considerations a step further, we recall that in problems typical of astrodynamics, it will not be a

mass– or distance–scale in isolation that determines the problem, but rather a force–scale, as reflected in the “competi-

tion” between acceleration terms. Introducing a structuring based on small factors not only for the mass ( εα ), but also

for the distance ( εβ ), one arrives at a net factor corresponding to the acceleration along the lines of εα−2β.

The motivation for this is as follows.

• As long as the masses are representative for the forces/accelerations, this structuring isn’t strictly necessary, but

the potential for small-denominators issues implies that this may not always be the case; indeed, in the region

determining lunar ballistic capture it most certainly is not, due to the balance of Earth, lunar and solar accelera-

tions discussed in [Verzijl, 2005, 2006].

• In particular, with the goal of discussing the implications for ballistic capture, it’s important that the model

makes explicit exactly what’s going on in the capture region, and precisely this case is sensitive to the bal-

ancing of accelerations mentioned in the previous point. To wit, the contributions are actually S:E:M −→
O
(
ε6 : ε6 : ε8), as will be shown below. The reader will that this fact is not readily apparent from the simple

scaling by masses that one would naively assume.

Let, for the moment, the order factors be (αi, βi ), i = 1, . . . ,3, and the references be the primary mass m0 = m1 and

some distance–scale r0. Then, for the acceleration terms of e.g. the 4–body equations one arrives at:
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Sun: − Gm1r14

‖r14‖3 =−Gm0

r2
0

m̄1r̄14

‖r̄14‖3 ε
α1−2β1 , (4.30a)

Earth: − Gm2r24

‖r24‖3 =−Gm0

r2
0

m̄2r̄24

‖r̄24‖3 ε
α2−2β2 , (4.30b)

Moon: − Gm3r34

‖r34‖3 =−Gm0

r2
0

m̄3r̄34

‖r̄34‖3 ε
α3−2β3 . (4.30c)

As with multiple time scales, the new formulation is still dimensional, though the further step to normalization is trivial

in that one simply cancels the terms −Gm0
r2

0
in the normalization process. In particular, for e.g. the CR3BP one takes

precisely this step, canceling the dimensional factors, and as such m̄1 ≡ 1 on normalizing by m0 = m1 (as in section

3.3.5). We give two examples.

Example 4.3.3 (CR3BP)

We note first, that in normalizing the circular restricted 3−body problem, we effectively chose a force scale following

the literature, by taking:

r0 = 〈‖r12‖〉 ,

m0 = m1 +m2 ,

with indices 1, 2 referring to the primaries in a 2−body problem orbit, following literature conventions. We shall have

more to say about this later, in particular in chapters 7 and 8 and in the performance considerations of chapters 10 and

11 of Part III of this thesis.

Example 4.3.4 (Near–Moon Region)

Suppose one considers the case that:

r0 = 〈‖r23‖〉 , (4.31)

corresponding to scaling by the average Earth-Moon distance. Further, note that r23 ≈ 2.57 ·10−3r12, and if one now

assumes that the satellite (body 4) is relatively near the Moon (say O
(
104 km

)
), then with ε = 10−1,

r14 ≈ ε
−3r0 ,

r24 ≈ ε
0r0 ,

r34 ≈ ε
1r0 .

Consequently using these with the following mass ratios:

α1 = 0, β1 =−3,

α2 = 6, β2 = 0,

α3 = 8, β3 = 1;

one arrives at:

r̈4 =−Gm0

r2
0

(
m̄1r̄14

‖r̄14‖3 ε
6 +

m̄2r̄24

‖r̄24‖3 ε
6 +

m̄3r̄34

‖r̄34‖3 ε
6
)

(4.32)
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as the “correct”8 expansion in terms of acceleration scales in this region, which we may remark corresponds more or

less to the illustration of the Weak Stability Boundary in figure 3.8 in section 3.4.1. If we were instead to take the body

quite near the Moon (say O
(
103 km

)
, β3 = 2 ), then the attraction of the Moon would come to dominate as an O

(
ε4)

–term instead:

r̈4 =−Gm0

r2
0

(
m̄1r̄14

‖r̄14‖3 ε
6 +

m̄2r̄24

‖r̄24‖3 ε
6 +

m̄3r̄34

‖r̄34‖3 ε
4
)

. (4.33)

Physical Regions

The preceding example illustrates that based on this choice of scalings, in the near-Moon region9 it is expected that the

Moon’s gravitation dominates (though falling off quickly), while the Earth’s influence is at most perhaps two orders of

magnitude smaller and so usually forms the dominant perturbation, while the Sun is possibly (though not necessarily)

less important. When very close, this motivates a characterization as the captured regime, though the picture looks

quite different in other regions, and the scaling indeed reflects this explicitly.

As noted above, there are two assumptions being made in the choice of scaling.

1. The first is the choice of a scaling factor for the distance, and in modeling two possibilities for the best choice

arise. On the one hand, if one is interested in capture, the most logical choice is the Earth-Moon distance, even

if this isn’t aesthetically consistent with normalizing by the largest mass in the numerator.

However it should be remarked that when performing numerical calculations in this formulation, the issue of

minimizing the amplification of errors by small denominators may become relevant, and it may become prefer-

able to instead scale such that the dimensionless terms in denominators are multiplied by the smallest possible

factor εk, to avoid unnecessarily amplifying the machine error. This has not, however, been investigated by the

author, and will not be pursued further in this thesis.

2. The second assumption being made (albeit implicitly) is about the region in which one assumes the satellite to

operate. In example 4.3.4, near the Moon, it was found that S:E:M influences are approximately O
(
ε6 : ε6 : ε6)

or O
(
ε6 : ε6 : ε4) depending on the proximity to the Moon. By analogous calculation, one finds the results in

table 4.1. Note in particular the ratios asserted earlier where the forces due to Earth and Sun approximately

balance, leading to ballistic lunar capture.

Near–Earth Near–Moon (1) Near–Moon (2) Capture Region

Body α β α−2β β α−2β β α−2β β α−2β

r14: Sun 0 −3 6 −3 6 −3 6 −3 6
r24: Earth 6 +1 4 0 6 0 6 0 6
r34: Moon 8 0 6 +1 6 +2 4 0 8

Table 4.1: Summary of force ratios corresponding to a single force-scaling in 4 different physical regions; capture
refers to the region where forces balance and exhibit capture dynamics, not the actual capture which occurs in the
near–Moon (1) region (after which ideally the satellite would proceed to and remain in the near–Moon (2) region.)

8Correct for a certain purpose, but in no way unique.
9Specifically one might have in mind here a sphere of ca. 50 000 km, which is the threshold for capture used in [Verzijl, 2005],

though it is apparent from the above that this threshold itself corresponds roughly to entering the region of triple balance described in
the preceding example, rather than to Moon–dominance, for which we need to be an order of magnitude closer.
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Remark in particular with regard to the above table that in the second and fourth cases there is an (order of magnitude)

balance between the dominant forces,10 suggesting the possibility of an actual balance of forces. It should then come

as no surprise that the remarks of section 3.4 fall into these two categories:

1. Exterior ballistic capture transfers could be effected in the capture region in the table, where the dominant Earth

and Sun forces would balance and a correct alignment with the Moon, and/or a small ∆V –correction would then

be sufficient to propel the spacecraft along a capture trajectory;

The reader will remark also that in this region, the Moon–Satellite distance has been estimated at O
(
ε0 r0

)
,

which is justified by the fact that during a typical ballistic capture trajectory, the distance to the Moon never

varies beyond ∼ 3× rEM , as is easily observed in figure 3.9 (or the equivalent figures in e.g. [Belbruno and

Carrico, 2000]).

2. Interior ballistic capture transfers on the other hand could be effected in the near-Moon (1) region where all

three forces could conceivably balance, but it should be remarked that the requirements for balance would now

be more complex, as the balance would be between 3 rather than 2 bodies of equal importance.

In fact this latter observation may be the reason why it has proven much easier to find exterior ballistic capture

trajectories, despite the initial results found by Belbruno [Belbruno, 1987, 1990] in the late 1980’s. In particu-

lar, as observed in [Belbruno and Carrico, 2000] the practical requirements for successful targeting of exterior

ballistic captures are relatively few (mainly limits on the relative Sun-Earth-Moon configuration at departure),

while very few interior trajectories are known in the literature.

In light of the above discussion, the reader is asked to note again that the scalings might be improperly chosen for

a particular region, or become improper as a body transitions between regions (e.g. scalings chosen for the capture

region being applied to the near-Moon captured region), does not imply that the equations are now suddenly incorrect.

The underlying equations have not changed, and simulate correctly in principle,11 but in other regions of the problem

other scalings may be considerably more appropriate for a proper understanding of the dynamics.

10For the near–Earth and very–near–Moon cases there is also a balance, but this is in the largest perturbations, rather than the
dominant forces.

11There may in practice, however, be large disadvantages to a bad scaling in connection with the roundoff error incurred by
computations involving terms with large differences in magnitude during a numerical integration.
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Chapter 5

Numerical Trajectory Integration

This chapter discusses 3 classes of integrators relevant to the work in Part III of this thesis:

1. Single-step methods against which we will later benchmark, illustrated using the Runge-Kutta-Fehlberg 4th

–order algorithm with step–size control;

2. Multi-step methods, particularly in the context of their adaptability to conservative schemes, illustrated using

the Adams–Bashforth–Moulton formulation of a 4th –order predictor-corrector algorithm with step–size control,

and

3. Conservative methods (with which we will be primarily concerned), illustrated using the Bowman formulation

of a 2nd –order fixed step–size algorithm which conserves the Hamiltonian for the circular restricted 3−body

problem exactly.

The key references for the algorithms are [Burden and Faires, 2001, sections 5.4–5.8] and [Kotovych and Bowman,

2002]. A discussion of symplectic integrators is omitted aside from some brief remarks in section 5.3, as they are not

relevant to the approach taken in this thesis, but the interested reader is referred to the discussion in [Verzijl, 2006,

section 6.4].

5.1 Preliminaries

The discussion here follows essentially the presentation of [Burden and Faires, 2001] with some customized notation

which better suits present purposes. Note in particular that throughout, x always denotes an exact solution,1 while w

denotes the approximation at the corresponding time / output point.

We first introduce the discretization of time and corresponding notation for the solution and approximation. Introduce

a constant step–size h = (t f − t0)/N based on the difference between initial and final times ti, t f and the number of

1In particular x(i) = x(ti) = x(t0 + i(t f − t0)/N) all refer to the same point along the exact solution.
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output points N. This motivates the shorthand:

ti = t0 +
i(t f − t0)

N
for the ith discretized step , and

x(i) := x(ti) = x
(

t0 +
i(t f − t0)

N

)
= x(t0 + ih) ,

w(i) := w(ti) = w
(

t0 +
i(t f − t0)

N

)
= w(t0 + ih) ,

for the exact solution x and its approximation w at the ith step in the integration process.

In this chapter the assumed general form for the (vector) differential equation is ẋ = f (x, t) and this will be further

specified where appropriate. Commonly used trajectory integrators essentially use a time discretization which may be

thought of as replacing the differential equation’s formal solution:

x(ti+1) = x(ti)+
∫ ti+1

ti
f (x(t), t) dt , (5.1)

by the difference method:

x(i+1) ≈ w(i+1) = w(i) +h f (w(i), ti) for single-step methods or (5.2)

x(i+1) ≈ w(i+1) =
m−1

∑
k=0

ai−kw(i−k) +h
m

∑
k=0

bi−k f (w(i−k), ti−k) , (5.3)

for a general (explicit) m-step method, following the convention of [Burden and Faires, 2001].

With this two key concepts of integration-scheme error are introduced.

Definition 5.1.1 (Local Truncation Error)

The local truncation error of a method is defined as the difference at each step between the (true) solution to the dif-

ferential equation and the approximation by the difference method, assuming the best-case scenario where all previous

values are known.

For a one step difference method, again following the convention of [Burden and Faires, 2001]:

τ
(i+1)(h) =

x(i+1)−
(

x(i) +h f (x(i), ti)
)

h
or for a multi–step method, (5.4a)

τ
(i+1)(h) =

x(i+1)−

(
m−1

∑
k=0

ai−kx(i−k) +h
m

∑
k=0

bi−k f (x(i−k), ti−k)

)
h

. (5.4b)

The division by h is by convention, so that the τ(i+1) corresponds roughly to errors in the derivative and the truncation

error in the solution is of the form hτ(i+1). Note in particular that this difference is indeed local in the sense that it

considers only the error induced by a single approximate step using perfect prior data.
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Definition 5.1.2 (Global Truncation Error)

The global truncation error, by contrast, is defined as the difference between the true and approximated solution:

τ̄
(i+1)(h) =

x(i+1)−w(i+1)

h
. (5.5)

Note here that, in contrast to the above, one compares only the exact solution with the (cumulative) approximation

at a time–step. The problem with this definition is immediately obvious: if x(t) were available, one wouldn’t need a

numerical scheme in the first place.

Definition 5.1.3 (Consistency of an Integration Method)

A method is said to be consistent with the differential equation governing the trajectories if for the local truncation

errors τ(i) it holds that as the step–size h→ 0:

lim
h→0

max
1≤i≤N

|τ(i)(h)|= 0 . (5.6)

Definition 5.1.4 (Convergence of an Integration Method)

A method is said to be convergent with respect to the differential equation if, similarly,

lim
h→0

max
1≤i≤N

|w(i)− x(i)|= 0 . (5.7)

Note that comparing equation (5.5), it is clear that convergence implies global stability.

Summarizing, a local truncation error can always be defined, though the quality of a method is determined by the

combination of its stability and its global truncation error. The latter is problematic by definition, though the two are

linked intuitively. For single-step methods, one has the result:

Lemma 5.1.5 (Stability, Convergence and Error Bound for Single Step Methods)

A Lipschitz condition on φ(w, t,h) as introduced above in the variable w on some domain D⊂R2 means

∃ L > 0 such that |φ(w(i), t,h)−φ(w( j), t,h)| ≤ L|w(i)−w( j)| ∀(w(i), t),(w( j), t) ∈ D . (5.8)

If ∃ h0 > 0 and φ(w, t,h) is continuous and satisfies a Lipschitz condition with constant L on the set

D = {(w, t,h)|a≤ t ≤ b, −∞ < w < ∞, 0≤ h≤ h0} . (5.9)

Then

1. The method is stable;

2. The method is convergent iff. it is consistent, which is equivalent to

φ(x, t,0) = f (x, t) ∀ a≤ t ≤ b .

3. If a function τ(h) exists such that for each i = 1,2, . . . ,N the local truncation error satisfies |τ(i)(h)| ≤ τ(h)

whenever 0≤ h≤ h0, then

|x(i)−w(i)| ≤ τ(h)
L

eL(ti−a) .
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Proof. See the references in section 5.10 of [Burden and Faires, 2001], or the discussion of the Gronwall inequality

in chapter 1 of [Verhulst, 2000].

This result connects consistency and the local truncation error with convergence and the global truncation error for

single-step methods, and is the foundation for strategies of local error control as a means of global error control.

Similar results for multi–step methods will not be discussed here; the reader is referred to section 5.10 of [Burden and

Faires, 2001] and the references given therein. It suffices to say that the gist of the approach remains that small enough

local errors lead to small global errors under certain conditions as above, though a key problem is typically that actual

error estimates are difficult to come by.

5.2 Traditional Methods

With these preliminaries in mind, this section will discuss in somewhat more detail two classical algorithms in wide use

as single-step and multi–step methods. Representative for the former will be the variable-step–size RKF4(5) method

and for the latter a 4th order Adams-Bashforth-Moulton variable-step–size method will be taken. We begin, however,

with the simple predictor–corrector, which will be the prototype for the conservative schemes discussed in section 5.3.

5.2.1 Simple Predictor–Corrector

We begin with arguably the simplest conceivable predictor–corrector method.

Let each step from x(t0 + ih) to x(t0 +(i+1)h) be given by the integrator as:

w(i+1)
p = w(i) +h f (w(i)) , (5.10a)

w(i+1)
c = w(i) +h

(
f (w(i))+ f (w(i+1)

p )
)

. (5.10b)

The Taylor expansion of the true solution is (we take x(t0) = x0 as usual):

x(t0 +h) = x0 +h f (x0)+
h2

2
f ′(x0) f (x0)+

h3

6
f (x0)

(
f ′′(x0) f (x0)+ f ′2(x0)

)
+ . . . , (5.11)

while we compare to find that the algorithm approximates this as:

xc(t0 +h) = x0 +
h
2

( f (x0)+ f (x0 +h f (x0)) ) which we Taylor–expand to find:

= h f (x0)+
h2

2
f ′(x0) f (x0)+

h3

4
f ′′(x0) f (x0)2 + . . . . (5.12)

Thus we see that it has local truncation error τ(h) = O
(
h2) using the definition (5.4a).
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5.2.2 Single–Step: RKF4(5)

The 4th (5th ) order Runge-Kutta-Fehlberg method is the workhorse of integration engines, usually being chosen as a

default due to its ease of implementation and relative accuracy. It is the integrator used in our previous internship work

[Verzijl, 2005] which motivated present work and this thesis, and its choice was discussed there in detail.

Consider again the vector differential equation: ẋ = f(x). The key step in Fehlberg’s method [Fehlberg, 1968, 1969]

is the use of two general expansions of the function about some x0 to orders n and n + 1 to derive an estimate of the

required step–size for stability of the O (hn) method.

Let each step from x(t0 + ih) to x(t0 +(i+1)h) be given by the integrator as:

w(i+1) = w(i) +h
4

∑
j=0

c j f j +O
(

h5
)

(5.13a)

ŵ(i+1) = ŵ(i) +h
5

∑
j=0

ĉ j f j +O
(

h6
)

. (5.13b)

Further, take the usual Runge-Kutta formulation for the functions f j:

f0 = f (w(i), ti) , (5.14a)

f j = f

(
j−1

∑
k=0

β jk fk, ti +α jh

)
. (5.14b)

Now this formulation yields a total of 4 sets of coefficients (α j, β jk, c j and ĉ j) which must be determined such that

the equations (5.13a) and (5.13b) represent 4th resp. 5th order Runge-Kutta formulas. The difference

ŵ−w≡ ∆ =
5

∑
j=0

(ĉ j− c j) f j (5.15)

then represents an approximation of the leading error term of the fourth order Runge-Kutta formula, which can be

used to effect step–size control by adjusting the step–size such that the difference between the fourth and fifth order

integrations (as an estimate for the local truncation error) never exceeds the user-specified error tolerance ε.

Specifically, taking a modified step–size qh and said error tolerance, choosing:

q <

(
hε

|w(i+1)
rk5 −w(i+1)

rk4 |

)1/4

ensures that the local truncation error is bounded: τ(i+1) < ε. See also [Burden and Faires, 2001, Fehlberg, 1969].

The above expression (5.14b) must be equivalent to the Taylor expansions of x, x̂ about x0. This requirement leads to

the equations of condition for the coefficients, discussed in Fehlberg [1969]. In principle, on solving these one obtains

an optimal set of coefficients, in the sense that they minimize the truncation error of the fourth order formula.2

With this approach, Fehlberg derived a combination of the coefficients α j, β jk, c j and ĉ j given in Fehlberg [1969].

However, there remain two degrees of freedom in the choice of parameters: α2, α5, and one implementation used in

our code is that given in table 5.1, corresponding to the [Shampine et al., 1976] formulation implemented in [Burkardt,

2At higher orders there may be some further degrees of freedom in the choice of coefficients, leading to equivalent formulations
at a given order, with slightly different properties and performance.
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2004].

j α j β jk ĉ j c j
k 0 1 2 3 4

0 0 0 16
135

25
216

1 1
4

1
4 0 0

2 3
8

3
32

9
32

6656
12825

1408
2565

3 12
13

1932
2197 − 7200

2197
7296
2197

28561
56430

2197
4104

4 1 439
216 −8 3680

513 − 845
4104 − 9

50 − 1
5

5 1
2 − 8

27 2 − 3544
2565

1859
4104 − 11

40
2
55 0

Table 5.1: RKF4(5) Coefficients for the Watts and Shampine Implementation of the RKF4(5) Method

It should be remarked that the industry-standard at the moment appears to be the code RKSuite introduced in [Brankin

et al., 1993] and provided via Netlib. This suite is implemented parallel to the Burkardt integrator in our simulation code

(cf. appendix C), and provides RKF2(3), 4(5) and 7(8) pairs, for integrations with O
(
h2, h4, h7) accuracy respectively.

5.2.3 Multi–Step: Adams–Bashforth–Moulton

We discuss multi–step predictor–corrector methods here primarily for what they offer as a building block towards

higher–order conservative schemes. We will have more to say in this regard in Part III of this thesis, but in order to

justify that discussion, introduce the methods here first together with a discussion of error control.

Following the notation of [Burden and Faires, 2001], Adams–Bashforth–Moulton methods take the following form (cf.

equation 5.3):

x(ti+1)≈ w(i+1) =
m−1

∑
k=0

akw(i−k) +h
m

∑
k=0

bk f (w(i−k+1), ti−k+1) .

The first term in the second part of the approximation is b0w(i+1), which is an implicit term, as one intends to solve for

precisely this next w(i+1). The methods are essentially a concatenation of an explicit Adams-Bashforth method and an

implicit Adams-Moulton method of the same order; the difference in the two schemes is what is done with the implicit

term.

Explicit Adams–Bashforth

The Adams–Bashforth class of integrators are explicit multi–step algorithms, and set the coefficient bm (the implicit

term) 0. A typical scheme is the 4th order Adams–Bashforth:

w(0) = α, w(1) = α1, w(2) = α2, w(3) = α3 initial data,

w(i+1) = w(i) +
h

24

(
55 f (w(i), ti)−59 f (w(i−1), ti−1)+37 f (w(i−2), ti−2)

−9 f (w(i−3), ti−3)
)

with i = 3, . . . ,N−1 (5.16a)

and local truncation error

τ
(i+1)(h) =

251
720

d5x
dt5

∣∣∣∣
µi

h4 for some µi ∈ (ti−3, ti+1) . (5.16b)

Here the α terms are initial data, which if not available empirically may need to be estimated with a different method,

e.g. Runge-Kutta-type algorithms (of at least the same order).
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Implicit Adams–Moulton

The Adams–Moulton class of integrators are implicit multi–step algorithms, and take bm 6= 0.

For example, a typical three step 4th order scheme:

w(0) = α, w(1) = α1, w(2) = α2 initial data,

w(i+1) = w(i) +
h

24

(
9 f (w(i+1), ti+1)+19 f (w(i), ti)−5 f (w(i−1), ti−1)

+ f (w(i−2), ti−2)
)

with i = 2, . . . ,N−1 (5.17a)

and local truncation error

τ
(i+1)(h) =− 19

720
d5x
dt5

∣∣∣∣
µ′i

h4 for some µ′i ∈ (ti−2, ti+1) . (5.17b)

In general, with an implicit scheme, it depends rather critically on the form of the differential equation, ẋ = f (x, t),

whether the scheme can in fact be solved to yield w(i+1). The following section outlines how the combination of the

two approaches can get around this caveat.

Predictor–Corrector Adams–Bashforth–Moulton Scheme

The schemes can efficiently be combined into a predictor-corrector scheme. The explicit Adams-Bashforth scheme

predicts an approximation, which is then corrected by the implicit Adams-Moulton scheme, re-cast as an update equa-

tion:3

w(i+1)
p = w(i) +

h
24

(
55 f (w(i), ti)−59 f (w(i−1), ti−1)+37 f (w(i−2), ti−2)−9 f (w(i−3), ti−3)

)
, (5.18a)

w(i+1)
c = w(i) +

h
24

(
9 f (w(i+1)

p , ti+1)+19 f (w(i), ti)−5 f (w(i−1), ti−1)+ f (w(i−2), ti−2)
)

. (5.18b)

Combining them in this way gets us around the potential difficulty with solving for the implicit term.

Error Control

Moreover, the concept may be extended a step further by noting the analogy with RKF-type algorithms, where the

relatively cheap availability of already evaluated function values from different order approximations was exploited to

derive a step–size control.

In [Burden and Faires, 2001] it is shown that given the assumption d5x
dt5

∣∣∣∣
µi

≈ d5x
dt5

∣∣∣∣
µ′i

, and assuming a step–size qh and

error tolerance ε,4 choosing:

q <

(
270
19

hε

|w(i+1)
c −w(i+1)

p |

)1/4

ensures that the local truncation error is bounded: τ(i+1) < ε.

It should, however, be noted that modifying the step–size to meet such a bound is computationally more expensive than

with e.g. RKF4(5), as the (equally spaced) points within the interval qh must be recalculated each time q is adjusted.5

3Here the subscripts p and c refer to predictor and corrector respectively.
4Strictly, one assumes that this error is much larger than the roundoff (machine) error.
5There are algorithmic workarounds discussed in the section 5.7 of [Burden and Faires, 2001] to minimize this, though these will
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5.3 Conservative Integration

Before outlining the algorithmic approach, we begin by considering the motivation for conservative integration.

5.3.1 Motivation

Against the background of single– and multi–step methods which in principle attain O (hn) accuracy, and which are

well-studied in the literature, the question might arise as to why other classes of integration methods are interesting to

study. However, the posing of this question neglects the following issues:

• The measure of an integration scheme is not its accuracy in terms of the local truncation error, which is the

accuracy to which is referred by the characterization O (hn) above; while this is a good first step, it says too

little.

• In fact, the accuracy sought is more complex. What is in fact desired is a simulation which best approximates a

given model, which is in turn only an approximation of the dynamics of a real-world system. Thus, two main

sources of error with respect to the model must be taken into account:

1. The global truncation error (rather than only the local truncation error), due to the finite approximation

used in the integration algorithm;

2. The cumulative numerical error, due to the buildup of roundoff error inherent to any numerical simulation.

However, even these skirt a deeper issue: how well does our simulation reproduce the features of the model

itself? Precisely this consideration leads to both conservative and symplectic integrators, despite the fact that

these may be considerably more complex (and possibly less efficient) than simple Runge-Kutta–type integra-

tors.6 The reader will note that this connection is reprised below, in section 5.3.3.

Specifically, in this section, our attention turns to the question of preserving integrals of motion, as introduced in sec-

tion 2.2. It stands to reason that a good numerical scheme should preserve the first integrals of a (Hamiltonian) system,

e.g. the conservation of energy in the n−body problem.7 At worst, the actual value of energy should perhaps oscillate

about the true value in some bounded manner.

But the reality is far more troubling, as it can be shown that for even Runge-Kutta schemes, the error in energy ∆E
may grow or decrease monotonically in time, [Yoshida, 1993], where it is shown that for just the simple 1-dimensional

harmonic oscillator

H =
1
2
(p2 +q2) = T +V integrated a time–step h further to (p′,q′) becomes:

(p′2 +q′2) = (1+h2)(p2 +q2) for an Euler scheme,

(p′2 +q′2) = (1− 1
72

h6 + . . .)(p2 +q2) for a RK4 scheme.

not be discussed here.
6The real ‘efficiency’ issue is of course the amount and type of computations required relative to how accurately the integrator

is reproducing the global trajectory, which is a fuzzy issue, and precisely the reason that traditional error analysis focuses on the
minimization of local truncation error.

7Actually, the issue is a bit more complicated than simply using the integral as a direct measure, as its value may not be represen-
tative for the actual error in the integrated solution, as discussed in [Huang and Innanen, 1983]. This does not however, take away
from the fundamental point that the energy integral should be conserved.
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Since it is known from classical mechanics and the theory of Hamiltonian systems that analytical first integrals are

key to understanding the structure of solutions and reducing the complexity of the dynamics, it seems a reasonable

approach to try to build this knowledge into the integrator itself somehow, in order to obtain better results in this regard.

5.3.2 Conservative Integrators

This is precisely what Bowman et al. have attempted, and this section presents an extended version of their main

theorem as a proposition, in addition to an example outlining their development of a conservative integration scheme

for the circular restricted 3−body problem.

The development of conservative integrators begins in [Shadwick et al., 1999] with the idea of integrating the modi-

fied equation ẋ(k) = f (x(k))+ s(k), and then deriving conditions such that a desired integral is conserved, and where

lim
h→0

s(k) = 0 for consistency. This intuition is generalized in [Kotovych and Bowman, 2002] with the following simple

but powerful proposition, which is here extended to the current formulation as well.8

Proposition 5.3.1 (Conservative Integration Theorem)

Given the usual (possibly non-autonomous) system of equations ẋ = f (x, t), let x, c ∈Rn be vectors.

If the left-hand side f :Rn+1→Rn has values orthogonal to c, i.e. c · f = 0, and one considers a linear integral I = c ·x
of the ODE, then each stage of the explicit m-stage discretization (in the formulation of Bowman):

w( j) = w(0) +h
j−1

∑
k=0

b jk f (w(k), t0 +a jh), j = 1, . . . ,m (5.19)

also conserves I during each time–step h.

In the present formulation:

x(i+1) ≈ w(i+1) =
m−1

∑
k=0

ai−kw(i−k) +h
m

∑
k=0

bi−k f (w(i−k), ti−k) .

Then setting a0 = 1 and ai−k = 0 ∀ k = 1, . . . ,m , and letting ti−k correspond to the partial steps t0 +a jh in Bowman’s

formulation, one has the m-stage integrator:

w(i+1) = w(i) +h
m

∑
k=0

bi−k f (w(i−k), ti−k) , (5.20)

which also exactly conserves I, as will now be proven.

Proof. For each stage j = 1, . . . ,m one has, first for Bowman’s formulation:

c ·w( j) = c ·w(0) +h
j−1

∑
k=0

b jk c · f (w(k), t0 +a jh) = c ·w(0) . (5.21)

For the full m–stage step in present notation:

c ·w(i+1) = c ·w(i) +h
m

∑
k=0

bi−k c · f (w(i−k), ti−k) = c ·w(i) , (5.22)

8We should remark that this idea has been around somewhat longer, and for example the work of Gear [?] already suggests some
of the features brought together here.

83



which by induction preserves the integral value back to the exact value c ·w(0) = c · x(0) = I|t=0.

The novelty of Bowman’s approach then, is to introduce a transformation ξ = T (x) of the dependent variables x to new

variables ξ, such that the the generally nonlinear integral I can be expressed as a linear function of the new variables:

or I′ = c ·ξ. Then by the above result, these transformed integrals I′ are exactly conserved by an integrator of the form

equation (5.19) or (5.20).9

For example, consider the second-order predictor-corrector algorithm introduced in [Shadwick et al., 1999]:

ŵ(i) = w(i) +h f (w(i), t) , (5.23a)

w(i+1) = w(i) +
h
2

(
f (w(i), t)+ f (ŵ(i), t +h)

)
. (5.23b)

The first equation (predictor) is kept, and introducing the transformation to the corrector,

ξ(t +h)≡ ξ
(i+1) ≈ ξ

(i) +
h
2

(
T ′(w(i)) f (w(i), t)+T ′(ŵ(i)) f (ŵ(i), t +h)

)
= ξ

(i) +
h
2

(
ξ̇
(i) + ˙̂

ξ
(i)
)

(5.24)

where ξ(i) = T (w(i)), ξ̂(i) = T (ŵ(i)) and T ′ is the derivative of the transformation with respect to x, w.10 The new

(estimated) value of the x is then obtained for the inverse transformation w(i+1) = T−1
(

ξ(i+1)
)

. This may in some

cases involve technical issues which we will not delve into here, but postpone until the discussion in chapter 9. The

conservation is implemented in the choice of the linearizing transformation T with regard to the integral.

In light of our earlier remarks in section 5.2.3, we draw the reader’s attention as well to the amenability of Adams–

Bashforth–Moulton schemes to this type of formulation, and note that only the corrector need be fully conservative.

Example 5.3.2 (Conservative Integrator for planar CR3BP)

As an illustration of the method, consider the planar (x,y) circular restricted 3−body problem, as in section 3.3.5 and

[Kotovych and Bowman, 2002]. The Hamiltonian in rotating coordinates is given by (cf. section 3.3):

H =
1
2
(ẋ2 + ẏ2)− 1

2
(x2 + y2)− 1−µ

r1
− µ

r2
or in generalized coordinates q, q̇:

=
1
2
(q̇2

1 + q̇2
2)−

1
2
(q2

1 +q2
2)−

1−µ
r1
− µ

r2
. (5.25)

Here µ = m2/(m2 +m1), while r2
1 = (x−µ)2 +y2 and r2

2 = (x+1−µ)2 +y2 are the scaled distances to the two primaries

in rotating coordinates (see also figure 3.7). One proceeds in the usual way. Introducing canonical variables q1 = x,

q2 = y, p1 = ẋ− y and p2 = ẏ+ x, the Hamiltonian becomes:

H =
1
2
(ṗ2

1 + ṗ2
2)+ p1q2− p2q1−

1−µ
r1
− µ

r2
. (5.26)

Now, as a predictor, take the following Euler step using the equations of motion (3.68) (subscripts refer to vector

9The approach is reminiscent of feedback linearization in control theory.
10Remark that the second formulation, advancing the corrector in transformed coordinates directly is simpler and less error-prone

to code.

84



components):

q̂( j)
i = q( j)

i +hq̇( j)
i , p̂( j)

i = p( j)
i +hṗ( j)

i for i = 1,2 . (5.27)

The (vector) transformation ξ for the corrector is taken as:

ξ1 =
1
2

q2
1, (5.28a)

ξ2 =
1
2

q2
2, (5.28b)

ξ3 =
1
2

q̇2
1−

1−µ
r1
− µ

r2
, (5.28c)

ξ4 =
1
2

q̇2
2 , (5.28d)

such that the integral conserved becomes:

H(ξ) =−ξ1−ξ2 +ξ3 +ξ4 . (5.29)

Comparing equation (5.25), H is now a linear function of the new variables with vector c = (−1,−1,+1,+1)ᵀ.

Differentiating the transformation gives:

ξ̇1 = q1q̇1, ξ̇2 = q2q̇2, ξ̇4 = q̇2(ṗ2− q̇1), ξ̇3 = ξ̇1 + ξ̇2− ξ̇4 , (5.30)

where the conservation of H has been used in obtaining ξ̇3 as a function of the others.

The reader may check that in these new variables one indeed has that:

c · f(ξ) =
4

∑
i=1

ci ξ̇i = 0 ;

i.e. orthogonality as required by the lemma above, and consequently each numerical step will preserve H(ξ) = c · ξ.

The corrector then, is as before the second-order relation:

ξ
( j+1)
i = ξ

( j)
i +

h
2

(
ξ̇i +

˙̂
ξi

)
∀ i = 1, . . . , 4 ,

which is inverted to obtain updates to the original coordinates as:

q1 = sgn(q̂1)
√

2ξ1 , (5.31a)

q2 = sgn(q̂2)
√

2ξ2 , (5.31b)

p1 =−q2 + sgn(p̂1 + q̂2)

√
2
(

ξ3 +
1−µ

r1
+

µ
r2

)
, (5.31c)

p2 = q1 + sgn(p̂2− q̂1)
√

2ξ4 . (5.31d)

The scheme can, moreover, be shown to be O
(
h2) accurate. In the latter paper, this approach is extended to the full

3−body problem and the general n–body problem in Jacobi coordinates as well, and the 3–body case has been imple-

mented in code, as discussed in appendix C. The corresponding algorithms and performance results form Part III of

the present thesis, and can be found in chapters 9–11.

The power of this method then, is its approach of building conservation into existing algorithms in a relatively simple

way. However, it should be remarked that in general two possible down-sides are:
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1. the difficulty involved in finding the linearizing transformation, and

2. the technical issue of inverting the transformation to obtain updates in the original coordinates (for all possible

cases).

In addition to these issues, the question of extending the method to incorporate multiple integrals is also open, and

may be complicated by the above as well. Consequently, our discussion will return to all of the above in Part III of this

thesis, where we treat them in some detail.

5.3.3 Conservative vs. Symplectic Methods

It is instructive, for purposes of context, to remark briefly on symplectic integration methods, despite the fact that this

thesis will not concern itself further with them.

A parallel motivation to that given for conservative integrators applies to the development of symplectic integrators,

in that one seeks to design an integrator which preserves (certain aspects of) the structure of the dynamical system for

which it is developed.11 The structure intended, in contrast to conservation of integrals of motion, is the symplectic

structure of a Hamiltonian phase–space, introduced earlier in section 2.1.2. Symplectic integrators are, however, spe-

cific to Hamiltonian systems in contrast to conservative integrators, which can be developed for any dynamical system

with known first integrals.12

Moreover, this preservation of the symplectic structure of the phase–space can, in fact, be shown to be equivalent to

the conservation of a discrete Hamiltonian, which is related to, though not the same as the conservation of the actual

Hamiltonian (cf. [Thijssen, 2007, section 8.4]).

Sadly, an integrator which is both symplectic and conservative, which is what one would ideally like, is out of reach in

general. The following result, due to Ge and Marsden [Ge and Marsden, 1988], is cited to summarize the problem.

Proposition 5.3.3 (Non–conservation in Symplectic Algorithms)

Let H be a Hamiltonian which has no conserved quantities other than functions of itself,13 or equivalently { I,H }= 0

and I(z) = I0(H (z)) for any first integral I and coordinates z. Let further P be an approximate solution algorithm

which is defined for small step–size h in time and is smooth.

If this algorithm P is symplectic, and conserves H exactly, then it is the time advance map gt(x) for the Hamiltonian

system (emphcf. section 2.3.1) up to a re–parameterization of time. This violates the assumptions of the proposition

and so in other words, approximate symplectic algorithms cannot preserve energy for non–integrable systems.

Proof. The proof, outlined in [Ge and Marsden, 1988], hinges on the fact that if a system is non–integrable, there

cannot be an approximate algorithm which is simultaneously the time advance map (up to a re–parameterization of

time, in general), as this would simply be a time discretization of the true solution to the system.

11An interesting discussion in this regard, it should be noted, is that in [Shadwick et al., 2001], which considers a number of
different approaches to structure preserving integration algorithms.

12In fact, as we shall argue in Parts II and III, we can extend this assertion to approximations of first integrals of the motion as well,
and shall discuss the application of the method of integrating vectors (cf. chapter 4) for finding these.

13In a given class, e.g. the analytic functions.
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Corollary 5.3.4
By the same argument, one cannot, for a non–integrable system, have a conservative (approximate) algorithm which is

also symplectic.

Example 5.3.5 (Application to a 4–Body Choreography)

Figures 5.1 and 5.2, taken from [Kotovych and Bowman, 2002], illustrate the application of the three types of tech-

niques as applied to the 4–body choreography recently studied by the group of Simó. The problem is very sensitive to

initial conditions, and a demanding reference. The schemes implemented are low-order, and benchmarked not using

the local truncation error, but relative to a 5th order Runge-Kutta scheme with very small fixed time–step.14,15

Figure 5.1: Basic Predictor-Corrector, Conservative and Symplectic Integration results on Simó’s 4–body choreog-
raphy, [Kotovych and Bowman, 2002] — PC: naive predictor-corrector, C-PC: conservative predictor-corrector and
SKP: a typical symplectic integrator; all are 2nd order schemes with h = 10−3 time–step, and integrated over 2 periods
of the choreography: t ∈ [0,4π].

14Presumed by them to be more accurate due to its higher order, an issue to which we return in section 9.3.
15 The attentive reader will note also that no consideration is given by Bowman et al. to the CPU time required by the methods,

and consequently little can be said about efficiency on this basis.
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Figure 5.2: Predictor-Corrector, Conservative and Symplectic Integrator Performance, [Kotovych and Bowman, 2002]
— Error for methods as in previous figure, computed relative to a 5th order Runge-Kutta scheme with time–step
h = 10−5.
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5.4 Error in Conservative Integration Schemes

We begin first with a discussion of the effect of conservative integration on the propagation of error.

5.4.1 Basic Error Analysis

Comparing the analysis of section 5.2.1, it is easily found that for a conservative scheme as outlined, a basic consider-

ation of the error leads to the expression (5.32) for the approximation, in contrast to the earlier expression (5.12).

x(t0 +h) = x0 +h f (x0)+
h2

2
f ′(x0) f (x0)

+
h3

4

(
f ′′(x0) f (x0)2 +

T ′′′(x0)
3T ′(x0)

f (x0)3
)

+ . . . , (5.32)

We remark that this shows that we may expect problems in the form of error blowup when T ′(x)≈ 0, which is precisely

when the inverse transformation would become singular with T−1 ′(ξ), T−1(ξ)→∞. We shall have more to say about

this in section 10.2 further on.

5.4.2 Exact Integrals

Such schemes preserve an integral of motion exactly, but from the discussion of Hamiltonian dynamics, we also rec-

ognize that exact conservation of such an integral implies the removal of the associated degree of freedom from the

dynamics being solved numerically.

In fact, this elimination of a degree of freedom was encountered earlier with e.g. the reduction of the 18× 1st order

3−body problem by means of coordinate transforms which eliminated the degrees of freedom associated with the

conservation of linear momentum. An integrator which exactly conserves an integral performs precisely the same

function, as the resulting numerical trajectory can have no error in precisely those same degrees of freedom.16

We propose then, that this leads to the physical interpretation illustrated in figure 5.3.

The removal of the k degrees of freedom associated with integrals being conserved, whether numerically (assume for

the moment infinite machine precision) or analytically (by suitable coordinate transforms) reduces the dynamics from

those on an n–dimensional manifold to those on an (n− k)–dimensional submanifold, by eliminating the in principle

arbitrary O (hp) error of the integrator normal to the manifold.

16This remark and all others in the same vein should be understood as bearing the qualification “up to machine precision and
roundoff error” throughout.
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Normal-to-ManifoldIn Manifold

In Manifold

Trajectory in n-dimensional Space

Trajectory On Manifold: Error Orientations

Trajectory constrained to (n-k)-dimensional Manifold

Figure 5.3: In– and Out-of–Manifold error for analytically conservative integration.

This would appear, then, to reduce the 2–norm local truncation error ‖τ(m)‖2 at iteration m as follows:

‖τ(m)‖2 =

(
n−k

∑
i=1
|τ(m)

i |
2 +

n

∑
i=n−k+1

|τ(m)
i |

2

)1/2

=


n−k

∑
i=1
|ci hp|2︸ ︷︷ ︸

in–manifold

+
n

∑
i=n−k+1

|ci hp|2︸ ︷︷ ︸
normal–to–manifold


1/2

using the accuracy of the integrator, such that: (5.33)

‖τ
(m)
cons ‖2 =

(
n−k

∑
i=1
|τ(m)

i |
2

)1/2

(
n−k

∑
i=1
|τ(m)

i |
2 +

n

∑
i=n−k+1

|τ(m)
i |

2

)1/2
· ‖τ(m)‖2

=

√
c2

1 + · · ·+ c2
n−k

c2
1 + · · ·+ c2

n
· ‖τ(m)‖2 , (5.34)

Remark that this consideration may be slightly naive in practice, due to the issues raised below in section 5.4.4.

Nonetheless, we may assert that in general terms, conservation of an integral reduces the numerically integrated motion

to a lower–dimensional sub-manifold on which only the in–manifold error component still plays a role. It of course

follows that the more integrals conserved by the numerical integration, the better our performance in this regard, up to

the limit of a fully integrable system in which all errors are eliminated up to machine precision.
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5.4.3 Approximate Integrals

Likewise, we may consider the question of what changes when our scheme conserves not an exact analytical integral

of motion, but an approximation to one, such as those generated using the method of integrating vectors of chapter 4.

Suppose that we have such an approximate integral, accurate to some O
(
εd) in the local error due to the truncation of

the approximation~ς(m) =~k(m)εd at order m.

By the rationale of the preceding section, we expect that the local truncation error will behave as:

‖τ
(m)
approx ‖2 =

(
n−k

∑
i=1
|τ(m)

i |
2 +

n

∑
i=n−k+1

|ς(m)
i |

2

)1/2

(
n−k

∑
i=1
|τ(m)

i |
2 +

n

∑
i=n−k+1

|τ(m)
i |

2

)1/2
· ‖τ(m)‖2

=

(
h2p

n−k

∑
i=1
|ci|2 + ε

2d
n

∑
i=n−k+1

|ki|2
)1/2

(
h2p

n−k

∑
i=1
|ci|2 + h2p

n

∑
i=n−k+1

|ci|2
)1/2

· ‖τ(m)‖2

=

√√√√( c2
1 + · · ·+ c2

n−k

c2
1 + · · ·+ c2

n
+

ε2d

h2p

k2
n−k+1 + · · ·+ k2

n

c2
1 + · · ·+ c2

n

)
· ‖τ(m)‖2 , (5.35)

The reader will remark also that the second term under the root in expression (5.35) is qualitatively different from

the truncation error due to the integration scheme. This is because the ε–dependent part of the expression is bounded

globally as well, since exact conservation of the approximate expression guarantees that all ς(m) are kept at this same

order of magnitude, which precludes secular growth of the out–of–manifold error over long time–scales.

5.4.4 On Efficacy

Despite the promise that this approach suggests, in particular with regard to the maximal exploitation of the available

knowledge about the dynamical system, there are some remarks to be made with respect to efficacy:

• First, it should be realized that the integrator formulations we present will be (sometimes considerably) com-

putationally more intensive than their non–conservative cousins, and whether this increase in complexity is

justifiable is an open (and problem–dependent) question.

• A second issue is potentially equally as important, and a likely objection to our approach. As Huang and In-

nanen discuss in [Huang and Innanen, 1983], the naive use of integral–conservation (typically conservation of

energy) as a benchmark for integrator accuracy is potentially misleading. This is because integrators in general

are naturally inclined to the preservation of integrals of motion, which will typically experience variations of a

much smaller magnitude than the coordinates x and velocities ẋ.

As is shown there, for problems amenable to Taylor-series expansions of the solution from a starting point

(which is to say solutions which behave smoothly in a mathematical sense17), the local truncation error reflected

17In this specific case, an analysis of their derivation requires Cp+2 smoothness in fact, which is an interesting issue that potentially
undermines their arguments in the presence of stochastic regions of phase–space, which they raise as an example.
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in an integral will behave as:

I(t+h) = I(t) + k hp+2 such that (5.36a)

τI = O
(

hp+1
)

, (5.36b)

where p is the order of the integrator.

This implies a slower variation than the coordinates which have an O (hp) local truncation error τx.18 As a re-

sult, the integral may be kept nearly constant over the time–span of the integration, while the coordinates deviate

wildly from the true trajectory, and indeed the stochastic regions of phase–space characteristic of the breakdown

of KAM tori for Hamiltonian systems are raised as an example where this could potentially be catastrophic.

However, the cautions raised by Huang and Innanen do not fundamentally change two key arguments in favor of the

use of conservative schemes.

1. First, from a purely theoretical point-of-view, conservative integration schemes remain interesting regardless of

practical concerns due to the fact that they promise an inherently better numerical representation of the dynam-

ics underlying the system by preserving more of its structure; this is essentially the same argument raised in the

justification of symplectic integrators.

This is all the more relevant in a situation rarely discussed in the astrodynamics literature, when we have mod-

eled a problem for which we have relatively little knowledge of the dynamics, and in particular lack the usual

integrals but may be able to find approximations of first integrals instead.

2. More practically, the work of Bowman et al. suggests that there are certain types of problems where a unique

combination of factors comes together:

• on the one hand the overhead involved in a conservative scheme may be worth the investment in obtaining

a better integration compared with similar integrators of the same order, and

• on the other the accumulation of error in the degrees-of-freedom associated with the integral is a suffi-

ciently serious issue in reproducing the true dynamics of the problem that it warrants the specific handling

a conservative scheme provides.

An example in this regard is that of a multi–body choreography, such as the 4−body problem choreography

discussed in [Kotovych and Bowman, 2002] and illustrated in figure 5.1. In this situation, moreover, we expect

that despite the extreme sensitivity to initial conditions, the actual trajectory itself is safely in a regular region

of phase–space, given the beautiful symmetry and regularity of the orbits, and indeed the comparison between

the simple conservative scheme and the symplectic integrator is intriguing.

The reader should not come away with the idea, then, that conservative integration schemes are always preferable to

e.g. Runge-Kutta–type integrators, but rather that there are certain classes of problems, typically those with regular

solutions exhibiting sensitive dynamics, which may warrant the extra effort.

18This does not, of course, preclude a secular effect t · k ·hp+1.
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It is this more holistic consideration which motivated this part of the present work, as ballistic capture trajectories may

conceivably fall in just this class of problems. In the following chapters then, we shall try to (begin to) answer just

that question, though we will build up to the goal by first laying a foundation using the standard problems and known

integrals.
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Part II

Approximations of First Integrals
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Outline of Part II

The second part of this thesis (which comprises the second major part of the thesis for Applied Mathematics) is con-

cerned with the application of the method of integrating vectors in the construction of the existing, and in the search

for novel integrals of the motion in problems in astrodynamics (and in particular the capture problem introduced in

section 3.5). We will proceed as follows:

1. Building on the techniques introduced in chapter 4, chapter 6 treats the application to the planar Jacobi problem

derived in chapter 3, which gave us insight into the dynamics cast as a perturbation of the 2−body problem. The

method of integrating vectors will be shown to facilitate a very natural method for the ab initio construction of

the known time–independent integrals, we will show how this may be exploited to easily reconstruct the known

integrals of motion to any desired accuracy. Moving from this to the general time–dependent case, the system

of PDE’s for integrating vectors for the Jacobi problem are derived and discussed.

2. Chapter 7 discusses the analogous application of the method to the circular restricted 3−body problem. The

method of integrating vectors is then shown again to very naturally reproduce the Jacobi integral for the problem.

Along the lines of the previous chapter, the general system of PDE’s for integrating vectors for the restricted

problem are then presented and discussed.

3. Finally, chapter 8 discusses the proposed model for the capture problem as a further (perturbative) extension

of the circular restricted 3−body problem. It is shown in detail how, for this new problem, an analogue of

the Jacobi integral may be constructed to O
(
ε4) , and where the method, at present, breaks down due to the

difficulty of dealing with the time–dependence. The results found up to that order have a particular interpretation

related to the method of averaging and are linked, as well, to Andreu’s quasi-bicircular problem, as remarked

in section 3.5.2. As before, the general system of PDE’s for integrating vectors for the capture problem are

presented and discussed in closing, together with perspectives for their solution.
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Chapter 6

The Jacobi 3−Body Problem

This chapter will treat the use of the method of integrating vectors in generating approximations of first integrals in the

planar Jacobi 3−body problem(pJ3BP), formulated as a perturbation problem. Note that the computations summarized

here are given in full in the MATHEMATICA notebook IntegratingVectors02-P3BP-Jacobi.nb, included on the CD

provided with this thesis.

6.1 Approach

The approach of this chapter is best thought of as a road map for the following two as well, and so before beginning

we outline the approach for each of the chapters in this part of the thesis. Beginning with a short review of the prob-

lem, and its casting as a perturbation problem, the method of integrating vectors will be applied to demonstrate the

viability of an ab initio construction of the known integrals of motion. It is also useful to recall, at this point, the dis-

cussion in section 3.3.1 of where the Jacobi problem fits into the larger scheme of perturbations of the 2−body problem.

Following this, the approach to be followed in the construction of new integrals will be mapped out for each problem,

by formulating the system of 1st –order PDE’s that must be solved. At the time of writing, it has not been possible to

solve these yet, but we shall also detail the solution approaches attempted and their shortcomings.

We remark also that in this chapter we use mass–scales only, subject to further a simplification introduced below, to

illustrate the main issues without introducing unnecessary complication to this already difficult problem. The mass–

scales approach is, as we have shown in section 4.3, a straightforward though naive perturbation approach, and we will

use somewhat more sophisticated approaches based around force–scales in the following two chapters after illustrating

the main issues first, in the present chapter.1

6.2 Review of the Problem

Beginning with the full 3−body problem, we recall equations (3.34):

r̈i =−∇iUi =
n=3

∑
j=1,6=i

ρ j

r3
i j

ri j, i = 1, . . . ,3 .

1Remark that if it is desired to reformulate using force–scales, the resulting analysis is relatively simple using our MATHEMAT-
ICA notebooks, and so we have focused our energies here on the conceptually simplest perturbation approach.
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This system was reduced in chapter 3 to the equations of the planar Jacobi problem, equations (3.46):

q̈ =−(ρ1 +ρ2)
q
‖q‖3 +ρ3

(
Q− (1−µ)q
‖Q− (1−µ)q‖3 −

Q+µq
‖Q+µq|‖3

)
,

Q̈ =−ρ1(1+υ)(Q+µq)
‖Q+µq‖3 − ρ2(1+υ)(Q− (1−µ)q)

‖Q− (1−µ)q‖3 .

It is these that will be considered in the following sections.

6.3 The 10 Known Integrals

In the following subsections, it will be shown how all 10 known integrals of the 3−body problem may be constructed

ab initio (i.e. specifically without prior knowledge of the dynamics and solution techniques for the system) using the

method of integrating vectors from a perturbation perspective.

6.3.1 Simplified Expansions of Terms in ε

To this end, recall first the governing equations (3.46) of this problem. It is clear that a certain number of terms depend

on the mass ratios and can be seen as perturbations; thus we require the following expansions of terms in what follows,

and present them first for that reason.

• Concerning the parameters in the equations of motion, remark that it will be assumed for simplicity that

m0 := m1, m2 = εk2 m0 and m3 = εk3 m0 with the ki corresponding to the mi and thus fixed by the physical system.

Typically, for the Sun–Earth–Moon system with ε = 10−2 we normalize by the Solar mass, and so take for the

mass ratios k1 = 0, k2 = 3, k3 = 4 to yield:

µ =
m2

m1 +m2
=

ε3m0

m0(1+ ε3)
= ε

3− ε
6 + ε

9 +O
(

ε
12
)

, (6.1a)

υ =
m3

m1 +m2
=

ε4m0

m0(1+ ε3)
= ε

4− ε
7 + ε

10 +O
(

ε
12
)

. (6.1b)

• Likewise, for the parameters used in the reconstruction of the original coordinates, (and which are needed in

constructing the conservation laws in this coordinate system):

υ

1+υ
= ε

4− ε
7− ε

8 + ε
10 +2ε

11 +O
(

ε
12
)

, (6.2a)

1
1+υ

= 1− ε
4 + ε

7 + ε
8− ε

10−2ε
11 +O

(
ε

12
)

= 1− υ

1+υ
. (6.2b)

• Next, we consider the consequences of these ε−dependencies for the denominator terms which contain µ resp.
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1−µ. First the potential terms:

1
‖r12‖

=
1
‖q‖

unchanged; (6.3a)

1
‖r13‖

=
1

‖Q+µq‖

=
1
‖Q‖

+
q1 Q1 +q2 Q2

‖Q‖3 ε
3 +O

(
ε

6
)

, (6.3b)

1
‖r23‖

=
1

‖Q− (1−µ)q‖

=
1

‖Q−q‖
+

q1 (Q1−q1)+q2 (Q2−q1)
‖Q−q‖3 ε

3 +O
(

ε
6
)

, (6.3c)

and then also the force terms:

1
‖r12‖3 =

1
‖q‖3 unchanged; (6.4a)

1
‖r13‖3 =

1
‖Q+µq‖3

=
1
‖Q‖3 −

3(q1 Q1 +q2 Q2 )
‖Q‖5 ε

3 +O
(

ε
6
)

, (6.4b)

1
‖r23‖3 =

1
‖Q− (1−µ)q‖3 ,

=
1

‖Q−q‖3 +
3(q1 (Q1−q1)+q2 (Q2−q1))

‖Q−q‖5 ε
3 +O

(
ε

6
)

. (6.4c)

• Lastly, note that the details of the expansion of the expression f(x;ε) will not be worked out in detail because it

will not be used in this explicit form.

6.3.2 On More Accurate Expansions in ε

In reality, as always, we need to strike a balance between model simplicity and model accuracy, and as we shall see

further on, the simplified expansions given above are not accurate enough for simulation purposes.

It was assumed that mi = εki m0 where m0 := m1 the normalizing mass and ki the exponent corresponding to body i’s

mass ratio. In practice it will generally not be possible to find an ε such that this holds exactly, and we must return to

the use of ε for order and dimensionless constants m̄i for correction to the exact values (as in section 4.3). Thus, taking

the ratios used above, the correct expressions are in fact:

m2 = ε
3 m̄2 m1 , m3 = ε

4 m̄3 m1 and so, for example:

µ =
m2

m1 +m2
=

m1ε3m̄2

m1(1+ m̄2ε3)
= m̄2 ε

3− m̄2
2 ε

6 + m̄3
2 ε

9 +O
(

ε
12
)

(6.5a)

υ =
m3

m1 +m2
=

m1ε4m̄3

m1(1+ m̄2ε3)
= m̄3 ε

4− m̄2 m̄3 ε
7 + m̄2

2 m̄3 ε
10 +O

(
ε

12
)

. (6.5b)

The expressions for the distances and force terms change in the same way.
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However, these m̄2, m̄3 are just O (1) multiplicative constants, and so it is not unreasonable to neglect them in the initial

analysis for purposes of clarity in this and the next two chapters. We must, however, keep in mind that when we want

to use the results for simulation the expressions must be corrected to their ‘real-world’ counterparts, which we will in

fact do in chapters 10 and 11 in Part III of this thesis.

6.3.3 Equations of Condition

Next (continuing to work with the simplified expansions) we derive the actual “equations of condition” which the

integral approximation must satisfy at each order by specification of the equations (4.22) – (4.23) for the current case,

in terms of the expansions of the ODE’s in orders k of ε:

∇Ik = νk and

∂Ik

∂t
=− [ν · f ]k k = 0,1,2, . . . implying for the integrating vector that:

∂νi,k

∂x j
=

∂ν j,k

∂xi
and

∂νk

∂t
=−∇ [ν · f ]k k = 0,1,2, . . .

In these equations the key expression is ν · f. Its gradients determine the time–dependent part of the equation for the

integrating vectors at the “low–level” expression (4.23), and the a priori existence of such a part at the “high–level”

expression (4.22) of the integral term Ik.2

This latter point is particularly relevant in constructing first the time–independent integrals of the problem, which have

been derived before by problem-specific methods in chapter 3. In general finding an integrating factor will prove

decidedly complicated, but even there the “high–level” equations sometimes allow for considerable limitation of the

search-space for candidates.

In general however, the approach is two-pronged:

1. First, solve the equations (4.23) for the integrating factor at a given order of the expansion of

ν(x, t; ε) =
∞

∑
i=0

νi(x, t)ε
i where (6.6)

νi(x, t) =
(

ν1,i(x, t), . . . , ν2n,i(x, t)
)ᵀ

, (6.7)

with 2n the number of components of x, and so also the number of first-order ordinary differential equations

that we obtain when we reduce the second–order system.

2. Then use this result to solve the equations (4.22) for the integral at a given order of the expansion

I(x, t; ε) =
∞

∑
i=0

Ii(x, t)ε
i , (6.8)

2Recall that the terms high–level and low–level are here chosen for easy reference, motivated by the difference between the
integrating factor νk (which is determined by the so-called “low–level equations”) and used as a building block for the actual integral
approximation Ik (which must satisfy the so-called “high–level equations”).
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which gives, order–by–order, an approximation to a first integral of the system (which, recalling the discussion

in previous sections, has been made exact by means of the integrating vector ν).

With regard to ν · f then, we expand in the current problem as:

ν · f = [ν · f ]0 +[ν · f ]1 ε+[ν · f ]2 ε
2 + . . . , where

[ν · f ]k=0,1,2 =−
ρ0ν5,k q1

‖q‖3 −
ρ0ν6,k q2

‖q‖3 −
ρ0ν7,k Q1

‖Q‖3 −
ρ0ν8,k Q2

‖Q‖3

+ν1,k q̇1 +ν2,k q̇2 +ν3,k Q̇1 +ν4,k Q̇2 , (6.9)

− [ν · f ]3 =
ρ0ν5,0 q1

‖q‖3 +
ρ0ν5,3 q1

‖q‖3 +
ρ0ν6,0 q2

‖q‖3 +
ρ0ν6,3 q2

‖q‖3 +
ρ0ν7,3 Q1

‖Q‖3 +
ρ0ν8,3 Q2

‖Q‖3

+ν7,0

(
−

3ρ0 q1Q2
1

‖Q‖5 − 3ρ0 q2Q1Q2

‖Q‖5 +
ρ0 q1

‖Q‖3 −
ρ0 q1

‖Q−q‖3 +
ρ0 Q1

‖Q−q‖3

)

+ν8,0

(
−3ρ0 q1Q1Q2

‖Q‖5 −
3ρ0 q2Q2

2
‖Q‖5 +

ρ0 q2

‖Q‖3 −
ρ0 q2

‖Q−q‖3 +
ρ0 Q2

‖Q−q‖3

)
−ν1,3 q̇1−ν2,3 q̇2− ν3,3Q̇1−ν4,3 Q̇2 , (6.10)

− [ν · f ]4 =
ρ0ν5,1 q1

‖q‖3 +
ρ0ν5,4 q1

‖q‖3 +
ρ0ν6,1 q2

‖q‖3 +
ρ0ν6,4 q2

‖q‖3 +
ρ0ν7,0 Q2

‖Q‖3 +
ρ0ν7,4 Q1

‖Q‖3

+
ρ0ν8,0 Q2

‖Q‖3 +
ρ0ν8,4 Q2

‖Q‖3 +ν5,0

(
ρ0 Q1

‖Q‖3 +
ρ0 q1

‖Q−q‖3 −
ρ0 Q1

‖Q−q‖3

)
+ν7,1

(
−

3ρ0 q1Q2
1

‖Q‖5 − 3ρ0 q2Q1Q2

‖Q‖5 +
ρ0 q1

‖Q‖3 −
ρ0 q1

‖Q−q‖3 +
ρ0 Q1

‖Q−q‖3

)

+ν6,0

(
ρ0 Q2

‖Q‖3 +
ρ0 q2

‖Q−q‖3 −
ρ0 Q2

‖Q−q‖3

)
+ν8,1

(
−3ρ0 q1Q1Q2

‖Q‖5 −
3ρ0 q2Q2

2
‖Q‖5 +

ρ0 q2

‖Q‖3 −
ρ0 q2

‖Q−q‖3 +
ρ0 Q2

‖Q−q‖3

)
−ν1,4 q̇1−ν2,4 q̇2− ν3,4Q̇1−ν4,4 Q̇2 , (6.11)

and so on for higher orders in ε.

These are only the first 5 orders, but they already show the clear effect of the explicit scaling of magnitudes in mass.

The first 3 equations are the same, and so are their low–level counterparts, since no perturbation enters the picture until

O
(
ε3) in mass. At that order the equations couple O

(
ε{3,0}

)
−terms.3 At the next order, both perturbations are active

for the first time, and now couple the O
(

ε{4,1,0}
)
−terms.

This qualitative relation remains valid on increasing the order. The O
(
ε5) equation, for example, is identical in form

to the O
(
ε4) equation since there are no 5th-order terms in f, and so there the previous coupling is the same, though

again ‘shifted’ such that O
(

ε{4,1,0}
)
→ O

(
ε{5,2,1}

)
. We might instead characterize this as preserving (unaltered)

the coupling O
(

ε{k, k−3, k−4}
)

as a general scheme for 0≤ k ≤ 5 in the present notation.4

3The reader will note that by this notation we intend a coupling between O
(
ε3) and O

(
ε0)= O (1) terms.

4Two comments are in order for this extension of the notation: first, this scheme is understood only to contain terms of order k≥ 0,
and second, the scheme is extended at higher orders as new ε–couplings enter the picture of our expansions.
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This pattern continues at each order where there are no explicit new contributions to the expression. However,

when this is not the case we find terms shifted up but also coupled to an additional order, as with the O
(
ε6) terms:

O
(

ε{6,3,2,0}
)

= O
(

ε{k, k−3, k−4, k−6}
)

for 0≤ k ≤ 6.

As indicated above, at each order k in ε we must first solve the 1
2 n(n + 1) system (4.23). As a first indication of what

these equations imply, let us derive the equations of condition for time. These are presumably critical for integrals

other than the 10 known time–independent algebraic integrals of section 3.1.1, as it is here that the approach becomes

interesting; indeed this is the main point where the explicit form of the differential equation, f(x;ε) enters the picture.

∂ν0

∂t
=



∂t ν1,0

∂t ν2,0

∂t ν3,0

∂t ν4,0

∂t ν5,0

∂t ν6,0

∂t ν7,0

∂t ν8,0


=−



ν6,0
3ρ0 q1q2
‖q‖5 +ν5,0

ρ0(2 q2
1−q2

2)
‖q‖5

ν5,0
3ρ0 q1q2
‖q‖5 +ν6,0

ρ0(2 q2
2−q2

1)
‖q‖5

ν8,0
3ρ0 Q1Q2
‖Q‖5 +ν7,0

ρ0(2 Q2
1−Q2

2)
‖Q‖5

ν7,0
3ρ0 Q1Q2
‖Q‖5 +ν8,0

ρ0(2 Q2
2−Q2

1)
‖Q‖5

ν1,0

ν2,0

ν3,0

ν4,0



=−∇[ν · f ]0 (6.12)

Any integral of the equations of motion will satisfy this set of 8 equations and the 36−8 = 28 spatial PDE’s, and their

correspondingly more complex counterparts at higher orders in ε.

However, it is immediately apparent that even at O
(
ε0) we lack any good means, or even an idea of where to start

in considering the general setting. To rectify that, the following sections will spend some time on first developing

solutions for the integrating vectors of the known algebraic integrals, which are time–independent.

While these integrals’ integrating factors do in principle follow from the above low–level equations (4.23), that ap-

proach itself turns out to be difficult for lack of a good idea of where to start. Instead, they are best approached using

the high–level equations which allow us to derive, if not immediately the correct integrating factor, at least a limitation

of the search space for valid factors. This is accomplished by setting the high–level expression ∂Ik
∂t = −[ν · f ]k ≡ 0,

which is a scalar rather than vector equation.5

6.3.4 Conservation of Linear Momentum

The first integrals we will briefly consider are those associated with conservation of linear momentum. However,

on considering equations (3.46) for the planar Jacobi formulation of the 3−body problem, it is intuitively clear that

linear momentum is automatically conserved, as the origin of the system is co-moving with the system barycenter

r0 = m1r1+m2r2+m3r3
m1+m2+m3

(cf. section 3.3.3 and in particular equation (3.35)).

Nonetheless it is instructive to consider the way in which this intuitive understanding manifests itself in the current

framework. If we consider the high–level equations (4.22) and the factors (6.9), it is clear that in order to obtain a

time–independent integral of the form k q̇ or k Q̇ where the constants correspond to the masses in ∑i miṙi, we must take

at order 0:

5Equivalently, one chooses to deal with the determining equation rather than its gradient.
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ν1...4; 0 = 0 corresponding to variablesq1...2, Q1...2 , (6.13a)

ν5...8; 0 = c1...4 constants corresponding to variablesq̇1...2, Q̇1...2 . (6.13b)

However, matching the intuition that ∑i miṙi = a = 0, it is clear that using the reconstruction equations (3.43):

m1ṙ1 = m1

(
− m3

m1 +m2 +m3
Q̇− m2

m1 +m2
q̇
)

,

m2ṙ2 = m2

(
− m3

m1 +m2 +m3
Q̇+

m1

m1 +m2
q̇
)

,

m3ṙ3 = m3

(
m1 +m2

m1 +m2 +m3
Q̇
)

,

such that

∑
i

miṙi = 0q̇+0Q̇ as expected. (6.14)

Consequently all 4 constants c1...4 ≡ 0, which is indeed seen to be precisely the trivial solution of equations (6.9), and

by extension of the high–level equation at each order, as the lower orders are substituted.

6.3.5 Conservation of Angular Momentum

The next step is to consider the conservation of angular momentum, again based on the simplified expressions in ε. For

reference, the ‘true’ expansion of the known integral is given first.

Expansion of the Angular Momentum in ε

First, for reference, we use the expansions given earlier to derive perturbation-expansion expressions for the angular

momentum. Given that the bodies move in a single plane, the relevant expression is scalar (the z-component of the

3-vector h = ∑i mi ri× ṙi ):

h = m1(x1ẏ1− y1ẋ1)+m2(x2ẏ2− y2ẋ2)+m3(x3ẏ3− y3ẋ3) (6.15)

in inertial coordinates. Transformed to Jacobi coordinates using the same expressions (3.43) and again substituting the

simplified choice m1 = m0, m2 = ε3 m0, m3 = ε4 m0 yields:

h = ε
3 m0(q1q̇2−q2q̇1)+ ε

4 m0(Q1Q̇2−Q2Q̇1)− ε
6 m0(q1q̇2−q2q̇1)+2ε

7 m0(Q1q̇2−Q2q̇1−q2Q̇1 +q1Q̇2)

− ε
8 m0(Q1Q̇2−Q2Q̇1)+ ε

9 m0(q1q̇2−q2q̇1)+O
(

ε
10
)

. (6.16)

Note in particular the lack of contributions below O
(
ε3) and the correspondence of that and the O

(
ε4) terms to what

would naively be expected using Q+µq≈Q and Q−(1−µ)q≈Q−q. Interesting also is the cross-coupling of terms

at O
(
ε7).
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Construction of the Angular Momentum in ε

With the above expression for comparison, we next consider the equivalent ab initio construction using the method

of integrating vectors. Beginning again with equation (6.9), it must be null (zero) for the time–independent angular

momentum integral:

[ν · f ]0 = 0 =−
ρ0ν5,0 q1

‖q‖3 −
ρ0ν6,0 q2

‖q‖3 −
ρ0ν7,0 Q1

‖Q‖3 −
ρ0ν8,0 Q2

‖Q‖3

+ν1,0 q̇1 +ν2,0 q̇2 +ν3,0 Q̇1 +ν4,0 Q̇2 ,

and there are a number of different ways to accomplish this. Two simple ones stand out, and in fact it is precisely these

two that lead (up to a certain intrinsic lack of uniqueness discussed further on) to the angular momentum and energy

integrals. The first, used in this section, is that of ignoring the factors related to the gravitational terms6 in equation

(6.9).

In that case, remark that the above expression (indeed, for k = 0,1,2 ) will be null if we:

• Disregard the gravitational factors by setting ν5...8;k = 0;

• Use the remaining factors ν1...4;k to cancel the expression internally, by setting:

ν1,k = q̇2 , (6.17a)

ν2,k =−q̇1 , (6.17b)

ν3,k = Q̇2 , (6.17c)

ν4,k =−Q̇1 . (6.17d)

The first pair leads (after multiplication with the factor m0), to the expansion term (q1q̇2−q2q̇1)m0εk, while the

second pair leads to (Q1Q̇2−Q2Q̇1)m0εk, on integration of the high–level equations.

• We remark that these pairs may be chosen independently, e.g. ν1,2;k as above and ν3,4;k = 0 or vice–versa.

These choices, however, are not the only way to cancel the remaining terms in the expression. There is also a

way in which the same 4 factors may be used, and again these may or may not be necessary independent:

ν1,7 = Q̇2 , (6.18a)

ν2,7 = Q̇1 , (6.18b)

ν3,7 =−q̇2 , (6.18c)

ν4,7 =−q̇1 . (6.18d)

This leads to the expansion term (Q1q̇2−Q2q̇1−q2Q̇1 +q1Q̇2)m0εk, and yields, unlike the previous possibility,

a coupling of the q, Q terms. The justification for this, however, can here only be physical, and is discussed after

the construction of the integral.

These observations, then, are the basis of the construction of the angular momentum integral in this perturbation

formulation. We now walk through the construction, resolving the issues of uniqueness on the basis of physical con-

6Gravitational factors are not essential to the angular momentum; though this would be a bad choice for e.g. the energy, it is a
valid approach here.
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siderations.

1. First, note that the first term in any correct expansion must be third-order in ε, as this is the lowest order at which

we may expect a contribution from the perturbed system; this is due to the fact that the O (1) effect of the primary

would be null, as an unperturbed primary would remain motionless. It is only when the perturbing O
(
ε3) effect

of a secondary (corresponding to the combined q in Jacobi coordinates) is added that the system begins to move.

On these grounds, we choose the vector νk = 0 for k = 0,1,2, and with this choice the spatial equations of

(4.23) are now satisfied trivially, and it follows that ∇I 0,1,2 = 0̄ and I 0,1,2 = c which may be taken null so that

the integral I(x; ε) is null up to third order.

2. The factors for k = 3 are now chosen using the first cancelation scheme worked out. Remark here that the ex-

pression [ν · f ]3 is of the same form due to the fact that the extra terms are null, as can be seen in equation (6.10).

3. The same process can be repeated at O
(
ε4) where the first perturbation due to q plays a role. Together with

the 3rd –order terms in step 2, this produces the first two parts of the expansion (6.16), ε3 m0(q1q̇2−q2q̇1) and

ε4 m0(Q1Q̇2−Q2Q̇1), in a quite natural way.

4. The next order to play a role is O
(
ε6) as it is the next order reflected in the force vector f(x; ε),7 and the first

to couple to a lower order which has not been fully set null: O
(

ε{6,3,2,0}
)

= O
(

ε{6,3}
)

. However, the terms

which couple are in fact ν5...8;3 and since those were set null, they do not influence the O
(
ε6) term, and here

choosing ν1,2;6 =−ν1,2;3 gives the expansion term −ε6 m0(q1q̇2−q2q̇1) sought.

5. Lastly, the furthest order discussed here is O
(
ε7), due to its cross-coupling of terms. In terms of the coupling

pattern derived from f(x; ε), the pattern here is O ({7,4,3,1,0}= {7,4,3}), reflecting a mixing of effects due to

the interaction between the secondary and the tertiary masses. However, on substituting the results from lower

orders, it is clear that the equation here (and indeed through O
(
ε9)) is the same as before.

Nonetheless, in order to obtain the correct result here, it is appropriate to change the choice of the factor to the

second possibility for cancelation:

ν1,7 = Q̇2 ,

ν2,7 = Q̇1 ,

ν3,7 =−q̇2 ,

ν4,7 =−q̇1 .

This reverses the usual pattern, but it is easily checked that:

[ν · f ]7 = ν1,7 q̇1 +ν2,7 q̇2 +ν3,7 Q̇1 +ν4,7 Q̇2

= Q̇2 q̇1 + Q̇1 q̇2− q̇2 Q̇1− q̇1 Q̇2

= 0 .

7One may think of this as arising from the expansion ε3(1− ε3 + ε6 + . . .), and on these grounds we would also expect a similar
contribution at O

(
ε9), which is indeed the case as reflected in the reference expansion.
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Multiplying each integrating factor by the same constant 2 does not alter the result, and thus the integral ap-

proximation (cf. equation 6.16):

h∗ = ε
3 m0(q1q̇2−q2q̇1)+ ε

4 m0(Q1Q̇2−Q2Q̇1)− ε
6 m0(q1q̇2−q2q̇1)

+2ε
7 m0(Q1q̇2−Q2q̇1−q2Q̇1 +q1Q̇2)+O

(
ε

8
)

(6.19)

is constructed after integrating out the factors νi,7.

There is a question of uniqueness which needs to be addressed however, which we postpone until section 6.3.7 below;

however, in practice some physical considerations should already help to reduce the seeming arbitrariness somewhat.8

The situation is, however, slightly different for the expansion of υ. Here, the first term is of course due to the tertiary

only, and so the form is Q1Q̇2−Q2Q̇1, but at the next order, even in the expansion of υ, which is properly

υ =
m3

m1 +m2
= m̄3ε

4− m̄2m̄3ε
7 + m̄2

2m̄3ε
10 +O

(
ε

12
)

.

It is clear that the O
(
ε7) effect is due to the interaction of secondary and tertiary. Letting this guide our choice of the

integrating vector, the second cancelation possibility is more sensible, as it is a relatively direct coupling:

ν1,2↔ Q1,2 recalling that ν1,2 =
∂I

∂q1,2
and

ν3,4↔−q1,2 recalling that ν3,4 =
∂I

∂Q1,2
.

The need for the factor 2, however, is not immediately apparent, and is considered further on.

6.3.6 Conservation of Energy

Finally, in this section we consider the conservation of energy, again based on the simplified expressions in ε. For

reference, the ‘true’ expansion of the known integral is given first.

Expansion of the Energy Integral in ε

First, we use the expansions given earlier to derive perturbation-expansion expressions for the energy (which is neces-

sary as it doesn’t take a very simple form in ε in Jacobi-coordinates). This is done by starting from the expressions in

inertial coordinates and substituting the reconstruction expressions (3.43) with their respective expansion-expressions

given above. Thus:

T = 1
2 m1 ṙ1 · ṙ1 + 1

2 m2 ṙ2 · ṙ2 + 1
2 m3 ṙ3 · ṙ3

= 1
2 m0

(∥∥∥∥− υQ̇
1+υ

−µq̇
∥∥∥∥2

+ ε
3
∥∥∥∥− υQ̇

1+υ
+(1−µ)q̇

∥∥∥∥2
+ ε

4
∥∥∥∥ Q̇

1+υ

∥∥∥∥2)
(6.20a)

= 1
2 m0

(
ε

3( q̇2
1 + q̇2

2 )+ ε
4( Q̇2

1 + Q̇2
2 )− ε

6( q̇2
1 + q̇2

2 )− ε
8( Q̇2

1 + Q̇2
2 )+ ε

9( q̇2
1 + q̇2

2 )
)

+O
(

ε
10
)

, (6.20b)

8It should be realized that an expansion of the force vector is made in ε, of the form ε3(1−ε3 +ε6 + . . .) resp. ε4(1−ε3 +ε6 + . . .).
In consequence, on this physical basis alone, the integrating vectors which should play a role at all can be deduced to a large extent.
The validity of this comment should be seen as limited to the present discussion, and is certainly subject to the discussion of uniqueness
in section 6.3.7; in general it would be incorrect to suppose that orders not reflected in the force vector may always be ignored in
generating an integral approximation, as orders of ν and f mix in [ν · f ]k .
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and

U =−Gm1m2

‖r12‖
− Gm1m3

‖r13‖
− Gm2m3

‖r23‖

=−
Gm2

0 ε3

‖q‖
−

Gm2
0 ε4

‖Q+µq‖
−

Gm2
0 ε7

‖Q− (1−µ)q‖
(6.21a)

=−
Gm2

0 ε3

‖q‖
−

Gm2
0 ε4

‖Q‖
−

Gm2
0 ε7

‖Q−q‖
+

Gm2
0 ε7 (q1Q1 +q2Q2 )

‖Q‖3 +O
(

ε
10
)

, (6.21b)

such that the energy,9 is E = T +U .

Note in particular that there are no contributions to the energy below O
(
ε3), and that to O

(
ε4) the terms are essentially

what would naively be expected using the mass ratios and assuming that Q+µq≈Q and Q− (1−µ)q≈Q−q, while

at O
(
ε7) new terms appear.

Construction of the Energy Integral in ε

The above is again given for reference, using the known integral. Let us now proceed instead to the construction of

the energy integral by the method of integrating vectors. As noted above, the integral is time–independent, and this

is the first requirement at the “high–level,” which will in turn help to find a useful approach to satisfy the “low–level”

equations for the integrating factor.

Note first that at the 0th – 2nd orders in ε, the equations (6.9) hold, which can be trivially set null (and thus
∂I 0,1,2

∂t
= 0)

by setting νi; 0,1,2 = 0 ∀ i = 0, . . . ,8. The motivation for this is as before, i.e. that at these orders there are no

physical effects represented in the force vector.

With this choice the spatial equations of (4.23) are now satisfied trivially, and it follows that ∇I 0,1,2 = I 0,1,2 = 0 and

the integral I(x; ε) is null up to third order. At the third order in ε things get interesting. Recalling equation (6.10),

− [ν · f ]3 =
ρ0ν5,3 q1

‖q‖3 +
ρ0ν6,3 q2

‖q‖3 +
ρ0ν7,3 Q1

‖Q‖3 +
ρ0ν8,3 Q2

‖Q‖3 −ν1,3 q̇1−ν2,3 q̇2− ν3,3Q̇1−ν4,3 Q̇2 ,

where the lower order νi, j’s have been substituted.

The null-solution which essentially “jumps right out” is of course:

ν =
(

0, 0, m0ρ0 q1
‖q‖3 , m0ρ0 q2

‖q‖3 , 0, 0, m0q̇1, m0q̇2

)ᵀ
. (6.22)

While this candidate-vector ensures that the integral will not depend explicitly on time, does it also satisfy the spatial

equations of (4.23)? To this end observe that:

∂ν1,3

∂q2
=−3m0ρ0 q1q2

‖q‖5 =
∂ν2,3

∂q1
,

9Equal to the Hamiltonian, though not formulated explicitly in those terms here.
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while all other relations are satisfied trivially. This is clearly a straightforward cancelation of terms, but we can now

exploit it to reconstruct the integral from the relation ∇I3 = ν3, obtaining:

I3 =
∫

ν3 ·dx =−
Gm2

0
‖q‖

+ 1
2 m0( q̇2

1 + q̇2
2 ) , (6.23)

which is readily confirmed to be the O
(
ε3) term of the energy E .

At the fourth order the process may be repeated (recalling that the O
(
ε1) terms of ν are likewise null) with:

− [ν · f ]4 =
ρ0ν5,4 q1

‖q‖3 +
ρ0ν6,4 q2

‖q‖3 +
ρ0ν7,4 Q1

‖Q‖3 +
ρ0ν8,4 Q2

‖Q‖3 −ν1,4 q̇1−ν2,4 q̇2− ν3,4Q̇1−ν4,4 Q̇2 .

Now, consider the following, noting that this approach is possible because the equations of condition are in a certain

sense ‘decoupled,’ which was not the case before the expansion in ε:

ν =
(

0, 0, m0ρ0 Q1
‖q‖3 , m0ρ0 Q2

‖q‖3 , 0, 0, m0Q̇1, m0Q̇2

)ᵀ
. (6.24)

It is easily seen that this satisfies the spatial equations of (4.23):

∂ν3,3

∂Q1
=−3m0ρ0 Q1Q2

‖Q‖5 =
∂ν4,3

∂Q2
,

and again all other relations are satisfied trivially, such that:

I4 =
∫

ν4 ·dx =−
Gm2

0
‖Q‖

+ 1
2 m0( Q̇2

1 + Q̇2
2 ) , (6.25)

which is confirmed to be the O
(
ε4) term of the energy E . The process is readily continued beyond this point, following

the approach of section 6.3.3 to recover the integral we gave as the sum of expressions (6.20) and (6.21).

6.3.7 On Uniqueness

In the above discussion of the different integrals, it is clear that there is some room for choices of the integrating vectors

which while different, would still lead to roughly the same integrals, e.g. the same up to an arbitrary function of the

integral.10 This raises the question of uniqueness, which this section will briefly address.

A first remark is in order with respect to the uniqueness of any first integral of motion. It is easily shown that any

integral is unique not only up to an additive or multiplicative constant, but up to any smooth function of the integral.

To see this, suppose that I(x, t) is an integral, i.e. Lt (I(x, t)) = 0. Then, for an arbitrary function φ(I) which depends

only on the integral (though implicitly on x, t through I(x, t)):

10Including the special cases of an additive or multiplicative constant.
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Lt (φ(I)) = ∂t φ(I)+∇φ(I) · ∂t I which of course is simply:

=
∂φ(I)

∂I
∂I(x, t)

∂t
+

∂φ(I)
∂I

∇I(x, t) · ẋ

=
∂φ(I)

∂I

(
∂I(x, t)

∂t
+∇I(x, t) · ẋ

)
=

∂φ(I)
∂I

Lt (I(x, t)) = 0 . (6.26)

Consequently it is not entirely unexpected that the process in the method of integrating vectors leaves some “wiggle-

room,” of which we briefly discuss three examples:

1. When, for example, a given choice (e.g. a choice of sign, or equivalently a constant ±1 in the vector) is made,

the fact that higher orders an expansion couple to lower orders forces the equations to incorporate that choice

further on, and themselves enforce a basic consistency.

2. A related question we encounter is what to do when at subsequent orders of an expansion, the expressions [ν · f ]k
are essentially the same because they are only shifted in order (e.g. the O

(
ε{6,0}

)
−coupling at k = 6 becomes

a O
(

ε{7,1}
)
−coupling at k = 7.

Intuitively, this means that the expansion has added no new information, and can probably be ignored; indeed,

this is typical of a model incorporating disparate effects at different orders in ε. Thus if we do not ignore these

orders as done in the preceding sections, they add only multiplicative constants, which is illustrated for the

energy integral in example 6.3.1.

Example 6.3.1 (Non–Uniqueness of the Constructed Energy Integral)

Recalling the construction of the energy integral and the integrating vectors chosen there, one could choose

analogously for the terms corresponding to Q at O
(
ε3) and q at O

(
ε4) respectively. As an example, why not

take:

ν =
(

m0ρ0 q1

‖q‖3 ,
m0ρ0 q2

‖q‖3 ,
m0ρ0 Q1

‖q‖3 ,
m0ρ0 Q2

‖q‖3 , m0q̇1, m0q̇2, m0Q̇1, m0Q̇2

)ᵀ

,

at one or both orders?

Taken at both, it follows by collecting the terms, that (accurate to O
(
ε6)):

Ĩ(x; ε) =
(

1
2 m1( q̇2

1 + q̇2
2 )−

Gm2
1

‖q‖

)
(1+ ε) ε

3 +
(

1
2 m1( Q̇2

1 + Q̇2
2 )−

Gm2
1

‖Q‖

)
(1+

1
ε
) ε

4 +O
(

ε
6
)

.

It is easily recognized that the terms obtained above are simply multiplied at each order k by a constant (1+ck(ε)

(ck(ε) at order k depending on the details of the expansion), the latter part of which is independent of both x
and t, and so contributes only a constant to the integral and so does not change the orbital derivative Lt (F (x; ε)).

This is consistent with the general non–uniqueness of integrals, in the sense that functions of integrals φ(I) are

themselves integrals, and in fact it is for this reason that one does not test the uniqueness but rather the functional
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independence of integrals of a problem.

However, while as a consequence the above modification would be a valid integral–approximation, the question

of whether it has value in terms of physical interpretation is dubious. The essential point here is simply that

while the integral isn’t unique, it is non–unique in a benign way: the additional terms that could be constructed

simply change the integral by a constant, and can be modified for a specific purpose simply by choosing an

appropriate combination of (functions of) factors such that the resulting φ(I) is the integral desired.

3. Likewise, we may consider the situation encountered in the construction of the conservation of angular momen-

tum, where we needed a multiplicative factor of 2. This factor is relevant for its physical significance, which

might not be guessed from first principles without knowledge of the dynamics being considered. Nonetheless,

given sufficient background knowledge to motivate it, this factor can always be safely added to obtain an equally

valid integral–approximation term at O
(
ε7) , as we have just discussed under point 2.

It should in fact be clear to the reader, that all 3 points are in fact slightly different examples of a a single issue

(i.e. whether the constant is ±1, 1+ ck(ε) or another number).

In practice this means that integrating vectors differing in such small details lead to integrals which may differ slightly

from the traditional formulations of the integrals of motion (though certainly not functionally independent of them).

This does not, however, change the fact that integrals thus constructed remain novel in their construction from first prin-

ciples,11 and just as useful, in principle, as the traditional formulations because functions of an integral are themselves

integrals, allowing us to reformulate them to suit our needs (e.g. to the traditional formulations).

6.3.8 On Demonstration vs. Proof

A further remark is in order with respect to the constructions of the previous sections.

The attentive reader has no doubt noticed that this thesis has asserted the sufficiency of the constructive approaches

to the known integrals of motion without proof. It should be intuitively clear, particularly in light of the previous

discussion, that there is no reason to doubt that the expansions may be continued with the above strategy to construct

the desired integral up to any desired degree of accuracy, up to the issues of uniqueness just raised.

Nonetheless, the reader is advised that this thesis will prove the asserted validity for the simpler case of the restricted

3−body problem in the next chapter (cf. proposition 7.2.1), by way of illustration. Analogous proofs for the present

chapter’s results are more involved, and so will be omitted in order not to excessively burden the reader with extensive

calculations.

6.4 Approximations of New Integrals

The previous sections considered the integrating vectors for the 10 known time–dependent integrals first, in order to

develop an idea of what we may expect in the general case, in hopes of suggesting some solution approaches.

A pertinent question raised by the earlier discussion is of course whether there is any other way to cancel the terms in

each [ν · f ]k (leading to different time–independent integrals), or alternately to satisfy the entire system of equations

11And so with no knowledge of the system beyond the equations of motion.
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which an arbitrary time–dependent integrating vector must satisfy. In discussing this, we begin by giving the full

equations of condition.

6.4.1 Full Equations of Condition

The foundation of these equations is a slightly more general version of expressions (6.9)–(6.11):

[ν · f ]k =−
ρ0ν5,k q1

‖q‖3 −
ρ0ν6,k q2

‖q‖3 −
ρ0ν7,k Q1

‖Q‖3 −
ρ0ν8,k Q2

‖Q‖3

+gk(q, Q, ν5,0≤l<k )+hk(q, Q, ν6,0≤l<k )+mk(q, Q, ν7,0≤l<k )+nk(q, Q, ν8,0≤l<k )

+ν1,k q̇1 +ν2,k q̇2 +ν3,k Q̇1 +ν4,k Q̇2 , (6.27)

where what might be referred to as the inhomogeneous terms of the expression (i.e. the terms in addition to the basic

terms of expression (6.9), which were shown to recur at each order) have been split into the 4 terms gk, hk, mk, nk

which collect the terms at order k that couple to lower orders 0≤ l < k.

The equations of condition then become:

∂t ν j,k = −ρ0

(
ν5,k ∂ j

q1

‖q‖3 +
q1

‖q‖3 ∂ j ν5,k

)
−ρ0

(
ν6,k ∂ j

q1

‖q‖3 +
q1

‖q‖3 ∂ j ν6,k

)
−ρ0

(
ν7,k ∂ j

q1

‖q‖3 +
q1

‖q‖3 ∂ j ν7,k

)
−ρ0

(
ν8,k ∂ j

q1

‖q‖3 +
q1

‖q‖3 ∂ j ν8,k

)
+ ∂ j ν1,k q̇1 + ∂ j ν2,k q̇2 + ∂ j ν3,k Q̇1 + ∂ j ν4,k Q̇2

+ ∂ j gk(· · ·)+ ∂ j hk(· · ·)+ ∂ j mk(· · ·)+ ∂ j nk(· · ·) (6.28a)

for j = 1, . . . ,4 ,

∂t ν j,k = −ρ0

(
ν5,k ∂ j

q1

‖q‖3 +
q1

‖q‖3 ∂ j ν5,k

)
−ρ0

(
ν6,k ∂ j

q1

‖q‖3 +
q1

‖q‖3 ∂ j ν6,k

)
−ρ0

(
ν7,k ∂ j

q1

‖q‖3 +
q1

‖q‖3 ∂ j ν7,k

)
−ρ0

(
ν8,k ∂ j

q1

‖q‖3 +
q1

‖q‖3 ∂ j ν8,k

)
+ ∂ j ν1,k q̇1 + ∂ j ν2,k q̇2 + ∂ j ν3,k Q̇1 + ∂ j ν4,k Q̇2 + 1 ·ν j,k︸ ︷︷ ︸

extra term

+ ∂ j gk(· · ·)+ ∂ j hk(· · ·)+ ∂ j mk(· · ·)+ ∂ j nk(· · ·) (6.28b)

for j = 5, . . . ,8 ,and:

∂i ν j,k = ∂ j νi,k for an additional 28 equations. (6.28c)

Thus, if an integrating vector νk can be found which satisfies these equations, it may be integrated out via the relations

(4.22) to obtain Ik, the O
(
εk) term in the integral approximation.
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6.4.2 Solution Perspectives

We will now briefly discuss the approaches attempted to the full equations of condition just presented, and conclude

with some remarks on further perspectives for solution.

Approaches Attempted

We remark that the primary difficulty in solving the system (6.28) lies in the fact that instead of a single linear 1st

–order partial differential equation, we are confronted with a 1
2 n(n + 1) system of coupled such equations, for which

there is no well–developed solution strategy. In place of this, a number of approaches were tried:

• The system, being a linear system of 1st –order partial differential equations, was approached using the method

of characteristics (see e.g. [Evans, 1997, section 3.2]), as in section 4.1, extended to the system 6.28. However,

this method leads to the original Jacobi–coordinate equations of motion (3.46).

In retrospect this should not surprise us: as the method of characteristics transforms a PDE system into a char-

acteristic ODE system, we find that applying the method to the above system recovers the “characteristic” ODE

with which we began: system (3.46). As these are the equations we invoked the method of integrating vectors

in solving originally, this is not a fruitful approach.

• The equations of the system were also checked against the extensive listing in the Handbook of Nonlinear Par-

tial Differential Equations [Polyanin and Zaitsev, 2003], in search of a (perhaps more complicated) equation or

system of equations with some form of usable similarity to our problem. This was done in hopes of finding a

nonlinear problem containing ours as a special case, and which might provide a viable solution strategy.

• We have also attempted to find a solution using the relatively straightforward, if naive vector extension of the

method of separation of variables, taking:

ν = ( ν̂1(x)ν̄1(t), . . . , ν̂8(x)ν̄8(t) )ᵀ (6.29)

as integrating vector and substituting into the usual “low–level” expressions above. This approach did not yield

a viable approach due to its still excessive generality for our problem.

Less naively, on the hypothesis that the forms of the integrating vectors found using the existing integrals might

serve as a building block towards new integrals, we have also tried a number of approaches using combinations

of the integrating vectors with the factors νE , νH found above for energy and angular momentum, as in the

method of integrating vectors, e.g.:

ν = ( ν̂1(x, t)νE ,1 (x), . . . , ν̂8(x, t)νE ,8 (x) )ᵀ . (6.30)

However, this approach has met with little success within the time–constraints of work on this thesis.

Further Perspectives

The fact that these approaches to a difficult class of equations from a 300–year old problem did not immediately meet

with much success should perhaps not surprise us, and it is also in that light that we will, in the next two chapters,

focus on the considerably simpler restricted 3 and 4−body problems introduced in sections 3.3.5 and 3.5.
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Nonetheless, we would like to comment on a somewhat different approach which strikes us as promising, and in that

regard suggestible as a further avenue of research: seeking an analogue of the Runge–Lenz vector for the 3−body

problem.

The reader will recall that this integral of the 2−body problem, ṙ×H−ρ
r
r , allowed us to fully reduce that problem

to the traditional solution in terms of Kepler’s conic sections. Its generalization to the full 3−body problem is a com-

plicated and open problem, and we would draw the reader’s attention specifically to [Dahl, 1997], which makes a link

between this integral and the question of a generating symmetry and invariance principle, as guaranteed by Noether’s

theorem.

It is known that the Runge–Lenz vector arises from a dynamical symmetry of the Kepler problem, which has been

studied using primarily the methods of group theory. What has been missing is the connection to a physical invariance

principle, which Dahl asserts arises from the generator of Lorentz transformations in the relativistic 2−body problem.

We would tentatively suggest the extension of his work to a 3−body problem, cast in a perturbed 2−body problem

formulation as in this thesis, and it would be our hope that by shedding light on the form sought, this might lead to more

fruitful approaches to integrating vectors and subsequent integral approximations than the “blind” methods outlined

above. Such work would, however, go considerably beyond the scope and level of this thesis.
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Chapter 7

The Circular Restricted 3−Body
Problem

This chapter treats the use of the method of integrating vectors in generating approximations of first integrals in the

planar circular restricted 3−body problem (pCR3BP), formulated in terms of perturbations. Before beginning, a brief

review of the problem’s equations is given. Note that the computations summarized here are given in full in the

MATHEMATICA notebook IntegratingVectors03-CR3BP.nb, included on the CD provided with this thesis.

7.1 Review of the Problem
The equations of motion are derived from the limiting case of the 3−body problem where the third body influences

neither the primary nor the secondary, which orbit as solutions of the 2−body problem, while its motion is determined

by them both (cf. case C in table 3.2). The equations are formulated in rotating coordinates, and are normalized for

purposes of analysis, cf. expression (3.59), repeated here:

ẍ−2ẏ =
∂Ω

∂x
= x− 1−µ

r3
1

(x+µ)− µ
r3

2
(x− (1−µ)) ,

ÿ+2ẋ =
∂Ω

∂y
= y− 1−µ

r3
1

y− µ
r3

2
y , where:

µ =
m2

m1 +m2
,

r1 = |z+µ|=
√

(x+µ)2 + y2 ,

r2 = |z− (1−µ)|=
√

(x− (1−µ))2 + y2 .

One takes for x the 4-element vector x =(x, y, ẋ, ẏ )ᵀ,1 and so the integrating vector sought is likewise ν =(ν1, ν2, ν3, ν4 )ᵀ,

where each element will be expanded in a small parameter.

With regard to the scaling approach used in this problem, we recall the reader’s attention to sections 3.3.5 and 4.3.3.

On consideration, it is readily apparent that when we performed the textbook normalization of the circular restricted

1In the notebooks the state-vector x = (y1, y2, y3, y4 )ᵀ is used instead, pursuant to the standard reduction of a n−dimensional
2nd order system to a 2n−dimensional 1st order system, but we have chosen for the real meanings of these here for notational clarity.
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3−body problem, we in fact implicitly introduced a force–scale mixed with a time–scale. We recall that we effectively

chose there, following [Szebehely, 1967]:

M = m1 +m2 as a mass–scale, such that:
m1

m1 +m2
= 1−µ and

m2

m1 +m2
= µ which sum to 1;

L = r0 = 〈‖r12‖〉 as a distance–scale, and

T =
1

ω12
as a time–scale,

where the subscripts 12 refer to the primaries orbiting in a 2−body problem–solution. This means that we have im-

plicity introduced the force–scale G(m1+m2)
r2

12
, in addition to making the time dimensionless using the scale T . Thus our

analysis here is in fact already a force–scales approach, save that the literature conventions have chosen the scale for us.

The problems that will concern us in Part III of this thesis are the Sun–Earth–Moon(–Satellite) and Earth–Moon–

Satellite cases. In principle, when considering the motion of the Moon in the Sun–Earth–Moon (SEM) model or of the

Satellite in the Earth–Moon–Sat (EMSat), the choice of scaling by the primaries is, if naive, not necessarily a bad first

choice, and for that reason we shall treat it without modification in the analysis of this chapter.

Nonetheless, the reader is asked to bear in mind the comments of section 4.3.3, as in particular for the motion of the

satellite in the Sun–Earth–Moon–Satellite (SEMSat) model we use for the Capture Problem, it is precisely the changing

force–scale regimes along a trajectory that make ballistic capture possible. We shall have more to say about the issue

later, as we consider the drawbacks to the naive scale used here in the next chapter and in Part III in particular.

7.2 The Jacobi Integral
The Jacobi integral is the only known integral for the circular restricted 3−body problem, and the reader will recall

that it was derived in section 3.3.5 as equation (3.62); it is given here in slightly modified form:

J =
1
2

V 2−Ω

=
1
2

(
ẋ2 + ẏ2

)
− 1

2

(
x2 + y2

)
− (1−µ)

r1
− µ

r2
.

7.2.1 Expansions in ε

The small parameter in the dimensionless formulation of the CR3BP is the small µ = m2
m1+m2

, and as before the “true”

perturbation description is found by setting:

m0 = m1

m1 = m̄1 ε
0 m0 → m̄1 =

m1

ε0 ·m0
= 1

m2 = m̄2 ε
1 m0 → m̄2 =

m2

ε1 ·m0
> 1 ,

where (since there’s only a single small parameter) ε is taken to reflect the order of the perturbation. This is typi-

cally 10−6 for the Sun–Earth 2−body problem and 10−2 for the Earth–Moon 2−body problem (the two cases of the

CR3BP which will concern us). In this section we will use the latter choice when relevant, but the reader will note that

the case ε = 10−6 =
(
10−2)3 may be obtained from it by the substitution ε−→ ε3 throughout.
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Consequently, the small parameter becomes:

µ =
m2

m1 +m2
=

m0εm̄2

m0(1+ m̄2ε)
= m̄2 ε− m̄2

2 ε
2 + m̄3

2 ε
3 +O

(
ε

4
)

,

though for simplicity, not much is lost by setting:

µ =
m2

m1 +m2
=

εm0

m0(1+ ε)
= ε− ε

2 + ε
3 +O

(
ε

4
)

instead,

as long as m̄2 = O (1).

Alternatively, we can also simply redefine ε := m̄2ε of course, though that approach would not scale to additional small

parameters with different constants m̄i, such as we encounter in the next chapter.

For purposes of clarity we will instead continue with the latter, simpler expression as in the previous chapter. Corrected

expressions are given in section 11.1 where we will discuss the convergence of the approximations constructed here

for the classes of trajectories of interest to us. Taking the simpler expressions for the moment, remark that the terms

r1, r2 have expansions in the small parameter, and in particular, the terms needed for the equations of motion are:

1
r3

1
=

1(
(x+µ)2 + y2

)3/2
which becomes:

=
1(

x2 + y2
)3/2

− 3x(
x2 + y2

)5/2
ε +

3(4x2 +2x3− y2 +2xy2)

2
(
x2 + y2

)7/2
ε

2 +O
(

ε
3
)

(7.1)

and

1
r3

2
=

1(
(x− (1−µ))2 + y2

)3/2
which becomes:

=
1(

(x−1)2 + y2
)3/2

− 3(x−1)(
(x−1)2 + y2

)5/2
ε +

3(2−2x2 +2x3−3y2 +2x(y2−1))

2
(
x2 + y2

)7/2
ε

2 +O
(

ε
3
)

. (7.2)

7.2.2 Equations of Condition

The equations of condition which the integrating vector must satisfy at each order k may be derived by specifying

equations (4.23) in terms of the expansions of the terms above and the force function f in orders k of ε. The equations

(4.23) are based, in turn, on the term ν · f, which is again expanded as:

ν · f = [ν · f ]0 +[ν · f ]1 ε+[ν · f ]2 ε
2 + . . . ,

and it is straightforward to show that for the CR3BP the first few terms are:

[ν · f ]0 = ẋ ν1,0 + ẏ ν2,0 +
(

x− x
(x2 + y2)3/2

+2ẏ
)

ν3,0 +
(

y− y
(x2 + y2)3/2

−2ẋ
)

ν4,0 , (7.3)
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[ν · f ]1 = ẋ ν1,1 + ẏ ν2,1 +

(
x− x(

x2 + y2
)3/2

+2ẏ

)
ν3,1 +

(
y− y(

x2 + y2
)3/2
−2ẋ

)
ν4,1

+

− −1+ x(
(−1+ x)2 + y2

)3/2
+

3x2(
x2 + y2

)5/2
− 1− x(

x2 + y2
)3/2

ν3,0

+

− y(
(−1+ x)2 + y2

)3/2
− y

(
− 3x(

x2 + y2
)5/2
− 1(

x2 + y2
)3/2

)ν4,0 , (7.4)

[ν · f ]2 = ẋ ν1,2 + ẏ ν2,2 +

(
x− x(

x2 + y2
)3/2

+2ẏ

)
ν3,2 +

(
y− y(

x2 + y2
)3/2
−2ẋ

)
ν4,2

+

− x−1(
(x−1)2 + y2

)3/2
+

3x2(
x2 + y2

)5/2
− 1− x(

x2 + y2
)3/2

ν3,1

+

− y(
(x−1)2 + y2

)3/2
− y

(
− 3x(

x2 + y2
)5/2
− 1(

x2 + y2
)3/2

)ν4,1

+

(
− 2− x(

(x−1)2 + y2
)3/2

+
3(x−1)x(
x2 + y2

)5/2
− −2+ x(

x2 + y2
)3/2

+
3(x−1)2(

(x−1)2 + y2
)5/2

−
3x
(
4x2 +2x3− y2 +2xy2)

2
(
x2 + y2

)7/2

)
ν3,0 +

(
− y

(
− 1(

(x−1)2 + y2
)3/2

− 3(x−1)(
(x−1)2 + y2

)5/2

)

− y

(
3x(

x2 + y2
)5/2

+
1(

x2 + y2
)3/2

+
3
(
4x2 +2x3− y2 +2xy2)

2
(
x2 + y2

)7/2

))
ν4,0 . (7.5)

Higher orders can be computed analogously, and these computations to O
(
ε4) are produced in the MATHEMAT-

ICA notebook IntegratingVectors03-CR3BP.nb, which is easily extended further. The orders shown here are suffi-

cient, however, to demonstrate the principles used in the construction of the Jacobi integral in the following section.

Before this, however, the following remarks should be made:

• First, we note that the orders are all coupled to each other: due to the expansion in ε no orders are skipped. In

consequence, each order influences the next, carrying the previous influences as well in the pattern described

in the previous chapter ( instead of coupling as e.g. O
(

ε{6,3,2,0}
)

as in the Jacobi 3−body problem, we obtain

O
(

ε{6,5,4,3,2,1,0}
)

, with 0 carrying the newest terms and the rest each shifted one order).

• This yields an interesting pattern: at each order k of the expansion, the terms

ẋ ν1,k + ẏ ν2,k +

(
x− x(

x2 + y2
)3/2

+2ẏ

)
ν3,k +

(
y− y(

x2 + y2
)3/2
−2ẋ

)
ν4,k

form the basis, and then each of the previous k−1 terms recur, each at ν3,4; i an order higher, followed by a final
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set of new terms multiplied by ν3,4;0.

• It also bears mentioning that the factors ν1,2;k only occur as ẋ ν1,k + ẏ ν2,k, while all the other components of

the expression multiply ν3,4;k; this effectively gives us less freedom in choosing the components to cancel each

other for a time–independent integrating vector.

7.2.3 Construction of the Integral

As in the previous chapter, the expansion of the Jacobi integral is briefly given for reference.

Expansion of the Jacobi Integral in ε

The integral may be expanded, using only the above expressions for the terms involving the small parameter µ, as

follows (to third order in ε ):

J =
1
2

(
x2 + y2− ẋ2− ẏ2 +

2(
x2 + y2

)1/2

)
+

 1(
(x−1)2 + y2

)1/2
− x(

x2 + y2
)3/2
− 1(

x2 + y2
)1/2

ε

+

 3x2

2
(
x2 + y2

)5/2
− 1

2
(
x2 + y2

)3/2
+

1(
x2 + y2

)1/2
+

1(
(x−1)2 + y2

)3/2
− 1(

(x−1)2 + y2
)1/2

+ x

 2(
x2 + y2

)3/2
− 1(

(x−1)2 + y2
)3/2


ε

2 +O
(

ε
3
)

. (7.6)

Construction of the Jacobi Integral in ε

In order to construct the integral (presuming that it were unknown and that the expansion of the previous section were

not available to us), the key again lies in observing that the goal is to find a time–independent integral, and for this it is

sufficient to require that

[ν · f ]k = 0 ∀ k = 0,1,2, . . .

Unlike the Jacobi 3−body problem’s energy integral in the previous chapter, here we cannot ignore the low orders in

ε, and must begin with the null-order equation. With a bit of trial and error, it is found that the simplest way to cancel

the terms consistent with the spatial equations (4.23) is the following:

ν0 =


−
(

x− x
(x2+y2)3/2

)
−
(

y− y
(x2+y2)3/2

)
ẋ

ẏ


. (7.7)

Remark that this is almost a straightforward pairing, except that the terms +2ẏ, −2ẋ are omitted, as they naturally

cancel when multiplied by ν3;0 resp. ν4;0 and subsequent summation, due to their opposed signs. Then, on integrating
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each factor with respect to the coordinates x = (x, y, ẋ, ẏ )ᵀ pursuant to equation (4.22), we find that:

I0 =
1
2

(
ẋ2 + ẏ2− x2− y2− 2(

x2 + y2
)1/2

)
, (7.8)

up to a constant. This matches up exactly with the expansion given above, and recalling the discussion of uniqueness

in the previous chapter, this is roughly what we expect, given that there is only one known time–independent integral

for this problem. At the next order in ε, with [ν · f ]1 as above, the equations may be canceled in the same way by

choosing the factors:

ν1 =



−
(
− −1+x

((−1+x)2+y2)3/2 + 3x2

(x2+y2)5/2 − 1−x
(x2+y2)3/2

)
−
(
− y

((−1+x)2+y2)3/2 − y
(
− 3x

(x2+y2)5/2 − 1
(x2+y2)3/2

))
0

0


. (7.9)

This choice is a strategic one: simply ignore the gravitational and coriolis terms by setting ν3,4;k>0 = 0 and cancel

the terms arising from order 0 using ν1,2;k>0. This approach turns out to not only cancel terms, but also to yield an

integrating vector satisfying (4.23) such that the integral approximation constructed on integrating (4.22) is precisely

the Jacobi integral. This observation is formalized in the following proposition.

Proposition 7.2.1 (Pattern Cancelation for Jacobi Integral)

The structure of the expansions (7.3)–(7.5) and their counterparts [ν · f ]k for k > 0 follows a specific pattern which

allows for the easy cancelation using only the factors ν1,2;k. It is precisely this naive choice which when combined

with the factor chosen above for k = 0 which leads to the approximation, by order ε, of the Jacobi integral.

Proof.

Recall the expression for ν · f, which is generalized for arbitrary order k > 0 as:

[ν · f ]k = ẋν1,k + ẏν2,k +

(
x+2ẏ− x(

x2 + y2
)1/2

)
ν3,k +

(
y−2ẋ− y(

x2 + y2
)1/2

)
ν4,k

+ ẋ gk(x, y)+ ẏ hk(x, y) .

The functions gk, hk, in particular, depend only on the first two coordinates, and contain terms coming from the lower-

order expressions for ν j<k. Consequently, in searching for stationary solutions ( ∂t Ik = 0), the following choice serves

to cancel the factor and obtain a candidate for the next integral approximation:

ν1,k =−gk(x, y) , (7.10a)

ν2,k =−hk(x, y) , (7.10b)

ν3,k = 0 , (7.10c)

ν4,k = 0 . (7.10d)

That this approach indeed yields not just a valid integral but precisely the Jacobi integral is demonstrated as follows.
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The expression determining the time–dependence of the integral via ∂t I is constructed as follows:

ν · f = [ν · f ]0 +[ν · f ]1 ε+[ν · f ]2 ε
2 + . . .

= ν0 · f0 +(ν0 · f1 +ν1 · f0)ε + (ν0 · f2 +ν1 · f1 + ν2 · f0)ε
2 + . . . (7.11)

Recall also that in this formulation, the equations of the circular restricted 3−body problem become:

dx
dt

=


ẋ

ẏ

ẍ

ÿ

= f(x ) =



ẋ

ẏ

x− 1−µ
r3
1

(x+µ)− µ
r3

2
(x− (1−µ))+2ẏ

y− 1−µ
r3

1
(x+µ)− µ

r3
2

(x− (1−µ))−2ẋ


.

In this, the reader will of course recognize that in the expansion f = f0 + f1ε+ f2ε2 + . . . there are contributions to the

higher orders only from the components involving µ in the equations of motion, and these occur only in the 3th resp.

4th vector components.

Thus given that ν3,4;k>0 = 0,

νi · f j =

ν3,0 f3, j +ν4,0 f4, j if i = 0

0 if i 6= 0
(7.12)

and so recalling that ν3,0 = ẋ and ν4,0 = ẏ, the above unknown functions are gk(x, y) = f3,k and hk(x, y) = f4,k, which

on integration with respect to the coordinates yields:

Ik =
∫

νk ·dx =
∫  [− 1−µ

r3
1

(x+µ)− µ
r3
2
(x−(1−µ)) ]k

[− 1−µ
r3
1

y− µ
r3
2

y ]k

 ·dx

=
∫

∇

[
1−µ

r1
+

µ
r2

]
k
·dx

=
[

1−µ
r1

+
µ
r2

]
k

up to a constant, (7.13)

as the integrand is of course simply the derivative with respect to x, y of the result. This in turn is the O
(
εk) part of the

potential term: precisely the next contribution to the expansion of J .

Thus it is established that precisely this naive approach (7.10) provides the reconstruction of the Jacobi integral (7.6).2

Furthermore, the approach can be used to construct the integral to arbitrary order, and so further expressions will be

omitted here.

7.3 Approximations of New Integrals
A pertinent question is of course whether there is any other way to cancel the terms in each [ν · f ]k (leading to different

time–independent integrals), or perhaps to satisfy the entire system of equations which an arbitrary time–dependent

integrating vector must satisfy. In discussing this, we begin by giving the full equations of condition.

2Subject to the usual understanding of limited uniqueness, cf. section 6.3.7.
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7.3.1 Full Equations of Condition

Before the brief discussion below, however, let us state the full set of equations (4.23) as applied to the circular restricted

3−body problem, for the case when the scope of the approach is not limited to the reconstruction of the Jacobi integral.

The foundation of these is a slightly more general version of what was used above:

[ν · f ]k = gk(x, y, ν3,0≤l<k )+hk(x, y, ν4,0≤l<k )++ẋν1,k + ẏν2,k

+

(
x+2ẏ− x(

x2 + y2
)1/2

)
ν3,k +

(
y−2ẋ− y(

x2 + y2
)1/2

)
ν4,k , (7.14)

where the inhomogeneous terms have been split into 2 terms which act as more general versions of the gk, hk introduced

earlier in proposition 7.2.1. Instead of always multiplying ν3,0 → ẋ resp. ν4,0 → ẏ, these now collect the terms

multiplying ν3,0≤l<k and ν4,0≤l<k, representing the couplings to all earlier orders (l < k). The equations of condition

then become:

∂t ν1,k = ẋ ∂1 ν1,k + ẏ ∂1 ν2,k +

(
1− ∂1

x(
x2 + y2

)1/2

)
ν3,k +

(
x+2ẏ− x(

x2 + y2
)1/2

)
∂1 ν3,k

− ∂1

(
y(

x2 + y2
)1/2

)
ν4,k +

(
y−2ẋ− y(

x2 + y2
)1/2

)
∂1 ν4,k + ∂1 gk + ∂1 hk , (7.15a)

∂t ν2,k = ẋ ∂2 ν1,k + ẏ ∂2 ν2,k− ∂2

(
x(

x2 + y2
)1/2

)
ν3,k +

(
x+2ẏ− x(

x2 + y2
)1/2

)
∂2 ν3,k

+

(
1− ∂2

y(
x2 + y2

)1/2

)
ν4,k +

(
y−2ẋ− y(

x2 + y2
)1/2

)
∂2 ν4,k + ∂2 gk + ∂2 hk , (7.15b)

∂t ν3,k = ν1,k + ẋ ∂3 ν1,k + ẏ ∂3 ν2,k +

(
x+2ẏ− x(

x2 + y2
)1/2

)
∂3 ν3,k

−2ν4,k +

(
y−2ẋ− y(

x2 + y2
)1/2

)
∂3 ν4,k + ∂3 gk + ∂3 hk , (7.15c)

∂t ν4,k = ẋ ∂4 ν1,k +ν2,k + ẏ ∂4 ν2,k +

(
x+2ẏ− x(

x2 + y2
)1/2

)
∂4 ν3,k

+2ν3,k +

(
y−2ẋ− y(

x2 + y2
)1/2

)
∂4 ν4,k + ∂4 gk + ∂4 hk and (7.15d)

∂i ν j,k = ∂ j νi,k for an additional 6 equations. (7.15e)

As usual, if an integrating vector νk can be found which satisfies these equations, it may be integrated out via the

relations (4.22) to obtain Ik, the O
(
εk) term in the integral approximation.

7.3.2 Solution Perspectives

As with the results of the previous chapter, we will now briefly discuss the approaches attempted to the full equations

of condition just presented, and conclude with some remarks on further perspectives for solution.
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Approaches Attempted

The same general remarks apply as in the case of the Jacobi problem: our difficulties stem from the necessity of solving

a 1
2 n(n + 1)–dimensional system of coupled linear 1st –order PDE equations, for which there is no well–developed

solution strategy. In place of this, a number of approaches were tried:

• Here too, an approach using the method of characteristics is fruitless, as the characteristic ODE system that the

method yields is simply the original ODE system of the CR3BP, which is too difficult to solve except in a few

special cases which are not our present concern.

• The equations of the system were again checked for similarity against [Polyanin and Zaitsev, 2003] for the

existence a (perhaps more complicated) equation–type which might contain our problem as a special case, and

provide a viable solution strategy; this was again without fruit.

• As in the previous chapter, we note as hopeful the attempt to find a solution using the straightforward extension

of the method of separation of variables, taking:

ν = ( ν̂1(x)ν̄1(t), . . . , ν̂4(x)ν̄4(t) )ᵀ , (7.16)

or using the existing vectors as building blocks for new integrals, using combinations of the integrating vectors

with the factors νJ found above for the Jacobi integral as:

ν = ( ν̂1(x, t)νJ ,1 (x), . . . , ν̂4(x, t)νJ ,4 (x) )ᵀ . (7.17)

However, this approach has likewise met with little success within the time–constraints of work on this thesis.

Further Perspectives

The main further approach which suggests itself for the CR3BP is one based on Fourier analysis, motivated by the

roughly periodic motion of e.g. the Moon about the Earth and the two about the Sun. While we will not go into this

further here, we discuss it in somewhat more detail in the next chapter for the Capture Problem, which is in essence

only a small perturbation of the present problem, making the roughly periodic motion explicit as simple harmonic

motion, cf. section 3.5.

An analogue of the idea proposed for the full Jacobi 3−body problem under the present restrictions is sufficiently

speculative that we will not remark further.
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Chapter 8

The Capture Problem

This chapter treats the use of the method of integrating vectors in generating approximations of first integrals in the

Capture Problem (CP) formulated in section 3.5, formulated in terms of perturbations. Note that the computations sum-

marized here are given in full in the MATHEMATICA notebook IntegratingsVectors04-CaptureProblem-mod.nb,

included on the CD provided with this thesis.

8.1 Review of the Problem

The capture problem discussed and derived in section 3.5, stated in rotating (synodic) dimensionless coordinates (and

normalized by the Earth–Sun distance and mass ratios) is given by equation (3.83):

ẍ−2ẏ = x− 1−µ
r3

1
(x+µ)− µ

r3
2

(x− (1−µ))− υ

r3
3

(
x− (1−µ+ηcosω

′t)
)

,

ÿ+2ẋ = y− 1−µ
r3

1
y− µ

r3
2

y− υ

r3
3
(y−ηsinω

′t) , where:

µ =
m2

m1 +m2
,

υ =
m3

m1 +m2
,

r1 = |z+µ|=
√

(x+µ)2 + y2 ,

r2 = |z− (1−µ)|=
√

(x− (1−µ))2 + y2 ,

r3 = |z− (1−µ+ηeiω′t)|=
√

(x− (1−µ+ηcosω′t))2 +(y−ηsinω′t)2 .

Remark in particular that the parameter η is a scaled distance in this model, and is in fact given by η = r0,EM
r0,ES

, which in

practice becomes η≈ 2.5 ·10−3 = 0.25 ε in magnitude for the conventional choice of ε = 10−2 for Sun–Earth–Moon

system.1

With regard to the scaling approach used in this problem, we recall the reader’s attention to sections 3.5 and 4.3.3. On

consideration, it is readily apparent that as with the normalization of the circular restricted 3−body problem, we have

in fact implicitly introduced a force–scale mixed and a time–scale in the Capture Problem as well. We have effectively

1In consequence, it is both O
(
ε2) and O

(
ε3) though we shall use the latter in keeping with the convention of letting the constant

1≤ k ≤ 10.
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chosen:

M = m1 +m2 as a mass–scale, such that:
m1

m1 +m2
= 1−µ and

m2

m1 +m2
= µ ,

and additionally υ =
m3

m1 +m2
derives from M analogously;

L = r0 = 〈‖r12‖〉 as a distance–scale, and

T =
1

ω12
as a time–scale,

where the subscripts 12 refer to the Sun and Earth as primaries orbiting in a 2−body problem–solution. This means

that we have implicity introduced the force–scale G(m1+m2)
r2

12
, in addition to making the time dimensionless using the

scale T . Thus our analysis here is in fact already a force–scales approach, save that the literature conventions of the

CR3BP have chosen the scale for us.

Thus, since the parameter η here refers to a distance–scale rather than a mass–scale, it makes sense to incorporate it

as in equation 8.1. Note that in doing this, we now take ε = 10−1, with −1 as the greatest common divisor of the

magnitudes 10−3, 10−6 and 10−8.

η =
rEM

r0
=

rEM

rES
≈ 2.57 ·10−3 = η̄ε

3 = O
(

ε
3
)

. (8.1)

With this in mind, we will for the moment use the scales introduced implicitly in our derivation in section 3.5. However,

we must first lay some groundwork for the discussion to follow, which will consider the possibilities for perturbations

of the Jacobi integral in some detail (as the only known integral for the CR3BP which the present CP is a further

perturbation of).

8.2 The Analogue of the Jacobi Integral

Recall that the Jacobi integral of the circular restricted 3−body problem was given by:

J =
1
2

V 2−Ω

=
1
2

(
ẋ2 + ẏ2

)
− 1

2

(
x2 + y2

)
− (1−µ)

r1
− µ

r2
,

and had the expansion of equation (7.6). It was further proven that this was precisely the integral–approximation con-

structed using the method of integrating vectors naively (in the search for a time–dependent integral) in the previous

chapter, cf. proposition 7.2.1.

The fact that the Capture Problem proposed in this thesis is simply a small further perturbation of the circular restricted

3−body problem from the perturbation–perspective, motivates trying first a similar approach in deriving an integral

for the problem. We remark though, that the problem is not Hamiltonian, otherwise, as we showed in chapter 2, the

hypothetical Hamiltonian HCP would itself be an integral.
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8.2.1 Analytical Considerations

The Jacobi integral was derived using an approach traditionally motivated by conservation–of–energy considerations,

multiplying (3.59) by the velocities ẋi and summing to obtain (in the planar case) :

ẋẍ+ ẏÿ = ẋ
∂Ω

∂x
+ ẏ

∂Ω

∂y
or

1
2

d
dt

(
ẋ2 + ẏ2

)
= Lt(Ω)≡ ∇Ω · ẋ ,

and on integrating with respect to time:

1
2

(
ẋ2 + ẏ2

)
= Ω+ k .

This is possible specifically because we can write:

Lt (Ω) = ∇Ω · ẋ and∫
Lt (Ω) dt = Ω+ k , with k some constant of integration.

For the capture problem, on considering the equations of motion (3.83), it is easy to see that an analogous potential can

be formulated in normalized rotating coordinates:

Ω̄(t) =
1
2

(
x2 + y2

)
− (1−µ)

r1
− µ

r2
− υ

r3(t)
, (8.2)

which fulfills exactly the same role here as Ω in the CR3BP. The key difference is the introduction of time dependence

to Ω̄(t), as a result of which it now holds that:

Lt
(
Ω̄(t)

)
= ∇Ω̄(t) · ẋ + ∂t Ω̄(t) .

Naively proceeding as before, on multiplying by ẋi and summing, we now obtain:

ẋẍ+ ẏÿ = ẋ
∂Ω̄(t)

∂x
+ ẏ

∂Ω̄(t)
∂y

, which leads to:

1
2

d
dt

(
ẋ2 + ẏ2

)
= ∇Ω̄(t) · ẋ ≡ Lt

(
Ω̄(t)

)
− ∂t Ω̄(t)︸ ︷︷ ︸

now explicitly Ω̄(t)

.

Integrating with respect to time, this yields:

1
2

(
ẋ2 + ẏ2

)
= Ω̄(t)− k−

∫
∂t Ω̄(t) dt where: (8.3)

∫
∂t Ω̄(t) dt =

∫
∂

∂t

(
υ

r3(t)

)
dt

= ηυ

∫ yω′ cosω′ t− (x− (1−µ))ω′ sinω′ t(
(x− (1−µ+ηcosω′ t))2 +(y−ηsinω′ t)2

)3/2
dt , (8.4)

where the integral is understood to also take x = x(t) and y = y(t) into account, for which no analytically closed

expression is known. It is pertinent to remark here that due to the multiplication by the product ηυ, this can in fact be
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seen as an O
(
η(ε)×υ(ε) = ε kυ+kη

)
correction to the Jacobi integral:

J ′ =
1
2

V 2 − Ω̄(t) + ε
kυ+kη ·

∫
(· · ·)dt , (8.5)

where kυ, kη correspond to the order in ε of the parameters υ, η respectively.

While this is a useful illustration, it does little for our practical problem of finding a new integral for the capture

problem. It does, however, suggest the possibility of approaching integral approximations by superposition of the

Jacobi integral results of the previous chapter with new integrating vectors corresponding to only the time–dependent

part of the integral.

8.2.2 Expansions in ε

In this section the approach will focus on extending that of section 7.2.1. However, in this problem, the distance pa-

rameter cast as η = η(ε) is quite relevant, and it makes sense to incorporate it into our force–scales, though we do so

naively for the moment, continuing with the conventional scaling based on the primaries.

Our goal in this section is mainly to discuss the departures from the derivations already given in section 7.2.1, and the

reader will note that we do so only for the simplified expansion-expressions (i.e. neglecting the scaling constants m̄i),

to keep the discussion clear. Corrected expressions are given in section 11.1 where we will discuss the convergence of

the approximations constructed here for the classes of trajectories of interest to us.

The definitions of the parameters µ, υ is as before, and we take ε = 10−1. However, the masses mi, i = 1,2,3,4 now

correspond to the Sun, Earth, Moon and Satellite respectively, and we take m0 := m1.2 Thus the Earth enters with mass

of order O
(
ε3m0

)
while the Moon is O

(
ε8m0

)
, such that:

µ =
m2

m1 +m2
=

ε6m0

m0(1+ ε6)
= ε

6− ε
12 + ε

18 +O
(

ε
24
)

, (8.6)

υ =
m3

m1 +m2
=

ε8m0

m0(1+ ε6)
= ε

8− ε
14 + ε

20 +O
(

ε
24
)

. (8.7)

Likewise, the expressions for r1, r2 change accordingly to:

1
r3

1
=

1(
(x+µ)2 + y2

)3/2
which becomes:

=
1(

x2 + y2
)3/2

− 3x(
x2 + y2

)5/2
ε

6 +
3(4x2 +2x3− y2 +2xy2)

2
(
x2 + y2

)7/2
ε

12 +O
(

ε
18
)

(8.8)

and

2We might take m1 +m2 but this is the same up to the sixth decimal place due to the huge mass of the Sun.
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1
r3

2
=

1(
(x− (1−µ))2 + y2

)3/2
which becomes:

=
1(

(x−1)2 + y2
)3/2

− 3(x−1)(
(x−1)2 + y2

)5/2
ε

6 +
3(2−2x2 +2x3−3y2 +2x(y2−1))

2
(
x2 + y2

)7/2
ε

12 +O
(

ε
18
)

. (8.9)

The above cases do not depend directly on how η is handled, but the r3(t) term does. We remark that on introducing it

into a force–scales framework, there are two possible approaches:

1. We can make a complete switch to force–scales from first principles, and consequently completely re–derive

the equations of motion for the capture problem along the lines of the discussion in section 4.3.3. We then

seek a new scaling in which the question of an appropriate m0, r0 must again be faced; which is coupled to the

issue that the Kepler-relation used to derive the CR3BP normalization is only strictly applicable to the 2−body

problem being perturbed (here: Earth–Sun). Choosing e.g. r0 = rEM 6= rES to make another distance scale

explicit, as suggested by section 4.3.3, leads to highly nontrivial modifications of the equations of motion which

we prefer to avoid for the moment, though we return to it below in section ??.

2. Alternately, keeping the primary goal of studying the equations as a perturbation problem, we may accept the

scaling as before based on the CR3BP formulation with the Sun and Earth as primaries, and choose to modify

only η to make its nature as a distance–scale in this context explicit. This choice involves only expression

(8.1).3 It is justified to make “just” this substitution rather than a full re–derivation of the equations of motion

only because the normalized equations were made dimensionless, introducing distance–scales implicitly.

Preferring the latter approach for both its simplicity and the advantage of comparability with the previous chapter, we

proceed by substitution, though omitting the factor η̄ to simplify notation (as we did with the m̄i terms). Thus:

1
r3

3
=

1(
(x− (1−µ+ηcosω′ t))2 +(y−ηsinω′ t)2

)3/2
which now becomes:

=
1(

(x−1)2 + y2
)3/2

+
3((x−1)cosω′ t + y sinω′ t)(

(x−1)2 + y2
)5/2

ε
3

+
3
(
7+5cos2ω′ t +5(3+ cos2ω′ t)x2−4x3−10y sin2ω′ t

)
4
(
(x−1)2 + y2

)7/2
ε

6

+
3
(
(7−5cos2ω′ t)y2−2x

(
9+5cos2ω′ t−5y sin2ω′ t +2y2))

4
(
(x−1)2 + y2

)7/2
ε

6 + O
(

ε
9
)

. (8.10)

Note that on taking this into account, the time–dependencies now occur only in the numerator at each order, due to the

fact that we are expanding the terms around a time–independent position in the denominator.

3With ε = 10−1 as remarked above.
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8.2.3 Equations of Condition

Using the above expansions, the equations of condition may be derived which the integral approximation must satisfy

at each order, by specifying equations (4.22) – (4.23) in terms of the expansions of the ODE’s in orders k of ε. In order

to discuss this in more detail, however, we must first derive the key terms in those equations: [ν · f ]k, and that will be

treated first, before discussing the equations of condition proper.

In line with the approach taken above, let us here take η = η(ε) into account as well. As before we naively set

η = 10−3, and as the parameters η, µ, υ are now O
(
10−3, 10−6, 10−8), and take ε = 10−1 to obtain integer powers in

the expressions to follow.

The above expansion of ν · f then takes the following form:

[ν · f ]k=0,...,5 = ẋ ν1,k + ẏ ν2,k +
(

x− x
(x2 + y2)3/2

+2ẏ
)

ν3,k +
(

y− y
(x2 + y2)3/2

−2ẋ
)

ν4,k , (8.11)

[ν · f ]k=6,7 = ẋ ν1,k + ẏ ν2,k +
(

x− x
(x2 + y2)3/2

+2ẏ
)

ν3,k +
(

y− y
(x2 + y2)3/2

−2ẋ
)

ν4,k

+

− −1+ x(
(−1+ x)2 + y2

)3/2
+

3x2(
x2 + y2

)5/2
− 1− x(

x2 + y2
)3/2

ν3,k−6

+

− y(
(−1+ x)2 + y2

)3/2
− y

(
− 3x(

x2 + y2
)5/2
− 1(

x2 + y2
)3/2

)ν4,k−6 , (8.12)

[ν · f ]k=8,9,10 = ẋ ν1,k + ẏ ν2,k +
(

x− x
(x2 + y2)3/2

+2ẏ
)

ν3,k +
(

y− y
(x2 + y2)3/2

−2ẋ
)

ν4,k

−
(x−1)ν3,k−8(

(−1+ x)2 + y2
)3/2

+

− −1+ x(
(−1+ x)2 + y2

)3/2
+

3x2(
x2 + y2

)5/2
− 1− x(

x2 + y2
)3/2

ν3,k−6

−
yν4,k−8(

(−1+ x)2 + y2
)3/2

+

− y(
(−1+ x)2 + y2

)3/2
− y

(
− 3x(

x2 + y2
)5/2
− 1(

x2 + y2
)3/2

)ν4,k−6 ,

(8.13)
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[ν · f ]k=11 = ẋ ν1,k + ẏ ν2,k +
(

x− x
(x2 + y2)3/2

+2ẏ
)

ν3,k +
(

y− y
(x2 + y2)3/2

−2ẋ
)

ν4,k

−
(x−1)ν3,k−8(

(−1+ x)2 + y2
)3/2

+

− −1+ x(
(−1+ x)2 + y2

)3/2
+

3x2(
x2 + y2

)5/2
− 1− x(

x2 + y2
)3/2

ν3,k−6

−
yν4,k−8(

(−1+ x)2 + y2
)3/2

+

− y(
(−1+ x)2 + y2

)3/2
− y

(
− 3x(

x2 + y2
)5/2
− 1(

x2 + y2
)3/2

)ν4,k−6

+

3(−1+ x)(−2cosω′ t (−1+ x)−2y sinω′ t)

2
(
(−1+ x)2 + y2

)5/2
+

cosω′ t(
(−1+ x)2 + y2

)3/2

ν3,k−11

+

3y(−2cosω′ t (−1+ x)−2y sinω′ t)

2
(
(−1+ x)2 + y2

)5/2
+

sinω′ t(
(−1+ x)2 + y2

)3/2

ν4,k−11 . (8.14)

Higher orders can be computed analogously, and these computations to O
(
ε11) are produced in the Mathematica

notebook IntegratingVectors04-CaptureProblem-mod.nb. The orders shown here are sufficient, however, to il-

lustrate the pattern of the couplings between orders in the expansion, which has been emphasized in the above notation.

A few observations may be made:

• The equations are the same for k = 1, . . . ,5, corresponding to the influence of the 2nd primary not entering until

O
(
ε6) . Thus the first perturbing terms enter at O

(
ε6) due to the influence of mass m2 (Earth) at x = 1−µ.

• The next order of the expansion adds no perturbations and so just follows the pattern, while the second per-

turbing term now enters at O
(
ε8) . This term represents only the O (1) contribution of the expansion of the m3

terms in ε, and introduces no time–dependence.

• The pattern again stays the same through orders 9 and 10, whereupon the first time–dependent correction by

the O
(
ε3) term from the time–dependent part of the equations of motion is observed at O

(
ε11) .

• Beyond this the expressions of course continue to increase in complexity as different parts of the expansions

of each mass mi’s contribution interact with themselves and each other. Note that the patterns do, of course,

continue to build on the basis of equations (8.11)–(8.14).

Common Parts of Equations of Condition

The actual equations of condition are of course simply equations (4.22) and (4.23); the key to finding valid integrating

vectors lies in satisfying the latter, and that system of 1
2 4(4+1) = 10 equations can be compactly stated as follows, at
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each order k:

∂νk

∂t
=−∇[ν · f ]k 4 equations,

∂ν j,k

∂xi
=

∂νi,k

∂x j
1≤ i < j ≤ 4 a further 6 equations.

This is in general a time–dependent system, though in the case of e.g. the Jacobi integral of chapter 7 we took precisely

a stationary (time–independent) solution of these equations at each order k in the construction (and likewise for the 10

integrals of the 3−body problem treated in chapter 6).

8.2.4 On the Construction of the Integral Approximation

With the above tools in hand, it remains to consider the construction of an integral-approximation parallel to the Jacobi

integral of the previous chapter. Recall that the form any such integral must take (if it exists) was given by equation

(8.5). On this basis we find that the equations of condition are separable into two parts, one reproducing J and only

the latter contributing to the corrections:

J ′ =
1
2

V 2 − Ω̄(t) + ε
kυ+kη ·

∫
(· · ·)dt

= J − υ

r3(t)
+ ε

kυ+kη ·
∫

(· · ·)dt ,

= J − ε
8
(

1− ε
6 +O

(
ε

12
))
·
(

1
r3(t; ε)

)
+ ε

11
(

1− ε
3 +O

(
ε

9
))
·
∫

(· · ·)dt︸ ︷︷ ︸
Capture Problem Correction

, (8.15)

which has been obtained using the ε–dependencies as in the discussion thus far, such that:

ε
kυ+kη ·

∫
(· · ·)dt = ε

3
(

ε
8− ε

14 +O
(

ε
20
))
·
∫

(· · ·)dt .

Remark also that in the above 1/r3(t) depends explicitly on ε as well, though this term has leading O (1), and so

does not change the leading order of the expression. This is seen in expression (8.15) to be O
(
ε8) for a single time–

independent term which is easy to find, and a common O
(
ε11) in all time–dependent terms, which pose considerably

more difficulty, as will become clear.

The discussion that follows is split into two parts, each playing a role at every order k of the expansion: the discussion

of the homogeneous part which is reflected in terms multiplying the ν1,...,4;k–term in expressions (8.11)–(8.14), and

the inhomogeneous part reflecting the choices of integrating vector components at previous orders of the expansion.

Homogeneous Part

At every order k, on substituting the earlier terms νi, j, j = 0, . . . ,k−1, we obtain the PDE equations for νi,k, and find

them composed of a common homogeneous part and inhomogeneous terms resulting from the substitution of earlier

νi, j. The homogenous part of the PDE’s in time at every order derives from:

∂νk

∂t
=−∇[ν · f ]k ,

where:

ν · f = ẋν1,k + ẏν2,k +

(
x+2ẏ− x(

x2 + y2
)1/2

)
ν3,k +

(
y−2ẋ− y(

x2 + y2
)1/2

)
ν4,k . (8.16)

132



Taking the gradient one obtains the homogeneous PDE system for ν(x, t):

∂t ν1,k = ẋ ∂1 ν1,k + ẏ ∂1 ν2,k +

(
1− ∂1

x(
x2 + y2

)1/2

)
ν3,k +

(
x+2ẏ− x(

x2 + y2
)1/2

)
∂1 ν3,k

−ρ ∂1

(
y(

x2 + y2
)1/2

)
ν4,k +

(
y−2ẋ− y(

x2 + y2
)1/2

)
∂1 ν4,k , (8.17a)

∂t ν2,k = ẋ ∂2 ν1,k + ẏ ∂2 ν2,k− ∂2

(
x(

x2 + y2
)1/2

)
ν3,k +

(
x+2ẏ− x(

x2 + y2
)1/2

)
∂2 ν3,k

+

(
1− ∂2

y(
x2 + y2

)1/2

)
ν4,k +

(
y−2ẋ− y(

x2 + y2
)1/2

)
∂2 ν4,k , (8.17b)

∂t ν3,k = ν1,k + ẋ ∂3 ν1,k + ẏ ∂3 ν2,k +

(
x+2ẏ− x(

x2 + y2
)1/2

)
∂3 ν3,k

−2ν4,k +

(
y−2ẋ− y(

x2 + y2
)1/2

)
∂3 ν4,k , (8.17c)

∂t ν4,k = ẋ ∂4 ν1,k +ν2,k + ẏ ∂4 ν2,k +

(
x+2ẏ− x(

x2 + y2
)1/2

)
∂4 ν3,k

+2ν3,k +

(
y−2ẋ− y(

x2 + y2
)1/2

)
∂4 ν4,k and (8.17d)

∂i ν j = ∂ j νi for an additional 6 equations. (8.17e)

While we showed previously that the Jacobi integral may be constructed precisely a time–independent solution of this

system, at present, there is to the best of the author’s knowledge no general (time–dependent) solution for this coupled

system of PDE’s in the literature, nor have the author’s best efforts yielded one within the limited time–frame of work

on this thesis (cf. section 8.3).

However, these equations are the same in both the CR3BP and the Capture Problem, and form the basis of the expansion

which was proven to lead to the construction of J in the former problem. As noted in the previous section, that would

necessarily be a part of an analogous integral in the current problem, and so it stands to reason that the correct choice

in this approach is the same as it was there, choosing again:

ν0 =


−
(

x− x
(x2+y2)3/2

)
−
(

y− y
(x2+y2)3/2

)
ẋ

ẏ


, (8.18)

which is easily checked to satisfy the equations of condition, thus leading to the O (1) integral approximation

I0 =
∫

ν0 ·dx =
1
2
( ẋ2 + ẏ2 )− 1

2
(x2 + y2 )− 1(

x2 + y2
)1/2

(8.19)

as before. Likewise, the usual remarks on uniqueness apply, as only the homogeneous part is relevant for order

k = 0, . . . ,5; at each order we could of course pick analogous factors, but these only contribute a constant, rather than

any new information.
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Inhomogeneous Part

In both the CR3BP and in the Capture Problem, at higher orders of ε, these homogenous equations are extended in the

following way (which was also exploited in proposition 7.2.1):

[ν · f ]k = ẋ gk(x, y, t)+ ẏ hk(x, y, t)+ ẋν1,k + y4 ν2,k

+

(
x+2ẏ− x(

x2 + y2
)1/2

)
ν3,k +

(
y−2ẋ− y(

x2 + y2
)1/2

)
ν4,k . (8.20)

The functions gk, hk, notably, now depend on the first two coordinates and time in general, and contain terms coming

from the lower-order expressions for ν j<k. When searching for the stationary parts of the solution, we may take:

ν1,k =−gk(x, y) , (8.21a)

ν2,k =−hk(x, y) , (8.21b)

ν3,k = 0 , (8.21c)

ν4,k = 0 , (8.21d)

for those parts which do not contain a time–dependence, which gives approximations which in the circular restricted

3–body problem yielded the Jacobi integral (with ε−→ ε6 for the effects due to m2).

In the capture problem, however, there are new time–independent terms due to m3 starting at O
(
ε8) which can be

found in exactly the same way, but also new terms which are periodic and time–dependent, starting at O
(
ε11) , which

are numerous.

Taking for example equation (8.14):

[ν · f ]11 = ẋ ν1,11 + ẏ ν2,11 +
(

x− x
(x2 + y2)3/2

+2ẏ
)

ν3,11 +
(

y− y
(x2 + y2)3/2

−2ẋ
)

ν4,11

−
(x−1)ν3,3(

(−1+ x)2 + y2
)3/2

+

− −1+ x(
(−1+ x)2 + y2

)3/2
+

3x2(
x2 + y2

)5/2
− 1− x(

x2 + y2
)3/2

ν3,5

−
yν4,3(

(−1+ x)2 + y2
)3/2

+

− y(
(−1+ x)2 + y2

)3/2
− y

(
− 3x(

x2 + y2
)5/2
− 1(

x2 + y2
)3/2

)ν4,5

+

3(−1+ x)(−2cosω′ t (−1+ x)−2y sinω′ t)

2
(
(−1+ x)2 + y2

)5/2
+

cosω′ t(
(−1+ x)2 + y2

)3/2

ν3,0

+

3y(−2cosω′ t (−1+ x)−2y sinω′ t)

2
(
(−1+ x)2 + y2

)5/2
+

sinω′ t(
(−1+ x)2 + y2

)3/2

ν4,0 ,

it is clear that these time–dependent terms complicate the homogenous equations considerably. One can construct a

partial solution in the way outlined above (using pattern cancellation as with the Jacobi integral in the previous chapter),
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which then eliminates all terms but the time–dependent ones, leaving:4

[ν · f ]∗11 = ẋ ν
∗
1,11 + ẏ ν

∗
2,11 +

(
x− x

(x2 + y2)3/2
+2ẏ

)
ν
∗
3,11 +

(
y− y

(x2 + y2)3/2
−2ẋ

)
ν
∗
4,11

+

3(−1+ x)(−2cosω′ t (−1+ x)−2y sinω′ t)

2
(
(−1+ x)2 + y2

)5/2
+

cosω′ t(
(−1+ x)2 + y2

)3/2

 ẋ

+

3y(−2cosω′ t (−1+ x)−2y sinω′ t)

2
(
(−1+ x)2 + y2

)5/2
+

sinω′ t(
(−1+ x)2 + y2

)3/2

 ẏ .

With regard to possible solutions of these remaining equations, the following may be remarked:

1. It is important to recall that the equation given is essentially a stand-in for ∂t I11 =−[ν · f ]11, and so realize that

we cannot in general choose ν1,11(t), ν2,11(t) in such a way that they simply cancel the terms above to yield

∂t I11 ≡ 0. Since the calculation proceeds by effectively setting I11 = · · ·+
∫

∂I11
∂t dt, this would, barring some

unlikely serendipitous cancelation at integration time, lead to I11(t) = const and thus contradiction.

2. A different approach would involve the method of averaging (cf. section 2.3.2), but without going into detail it

is immediately clear that:∫
T= 2π

ω′

(
g1(x,y)cosω

′ t +g2(x,y)sinω
′ t
)

dt = 0

due to the inherent periodicity of the terms in [ν · f ]∗11. This also holds for higher harmonics (e.g. sin(mω′ t )

for integer m > 1), and so this approach yields no new information, as what remains after averaging is simply

the homogeneous equations.

This result can be extended somewhat, as an observation regarding the project of averaging itself. It tells us,

in effect, that while we can average the equations, we remain with only the time–independent terms due to the

Moon since the averages of all harmonics are in principle 0. These terms have an interesting geometric inter-

pretation, illustrated in figure 8.1.

Essentially, they represent the addition of the mass of the Moon (as an O
(
ε8(1+ · · ·)

)
term) to the influence

of the Earth, which corresponds geometrically to the simple harmonic motion of the Moon around the average

(i.e. fixed) position of the Earth in the rotating coordinate system of our model.

3. A third approach rests on remarking that as the time–derivative of the equations contains periodic terms, it is

reasonable to expect that any correct integrating vector must contain the same periodicity, albeit via a combina-

tion of higher harmonics of the base frequency ω′.

In light of the above, would be to try Fourier series instead of simply straightforward matching of the low-

est harmonic, which does not work. This idea is analogous to the method used in [Andreu, 1998], noted earlier

4The ∗ superscript here denotes that these terms are to be added in superposition to the partial solution obtained by the procedure
outlined above.
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Averaged effect of Moon
 added to Earth
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Figure 8.1: Averaging of Moon’s simple harmonic motion about Earth in Capture Problem rotating coordinate system

in section 3.5, and we discuss this idea and the link with Andreu’s approach in more detail below in section 8.3.2.

Thus it appears that at least for the moment the question remains open, and the strongest result that can be stated

incorporates the time–independent m3–term at O
(
ε8) in addition to the m1,2 results of the Jacobi problem:

I(x,y,ε) =
1
2

(
ẋ2 + ẏ2

)
− 1

2

(
x2 + y2

)
− 1(

x2 + y2
)1/2

−

 1(
(x−1)2 + y2

)1/2
− x(

x2 + y2
)3/2
− 1(

x2 + y2
)1/2

 ε
6

− 1(
(x−1)2 + y2

)1/2
ε

8 +O
(

ε
11
)

, (8.22)

where time–dependent and time–independent terms mix starting at O
(
ε11) .

We remark, in that light, that it does not make sense to pursue the analysis further (i.e. isolating the time–independent

terms, as we did with expression (8.14)) without being able to solve the time–dependent parts of the integral. Given

that those terms may in general become influential to the same magnitude as any time–independent terms we could

solve for, further work would not necessarily increase the accuracy of the approximation.

8.3 Approximations of New Integrals

In this final section, we briefly consider the issue of finding approximations of new integrals using the method of

integrating vectors. The reader will remark that the negative results of the previous section give cause for a measure of

pessimism, but there is reason for some optimism as well.
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8.3.1 Full Equations of Condition

Before the brief discussion below, however, let us state the full set of equations (4.23) as applied to the capture problem,

for the case when the scope of the approach is not limited to extensions of the Jacobi integral. The foundation of these

is a slightly more general version of expression (8.20):

[ν · f ]k = gk(x, y, t, ν3,0≤l<k )+hk(x, y, t, ν4,0≤l<k )++ẋν1,k + ẏν2,k

+

(
x+2ẏ− x(

x2 + y2
)1/2

)
ν3,k +

(
y−2ẋ− y(

x2 + y2
)1/2

)
ν4,k , (8.23)

where the inhomogeneous terms have been split into 2 terms which act as more general versions of the gk, hk introduced

earlier. Instead of always multiplying ν3,0 resp. ν4,0, these now collect the terms multiplying ν3,0≤l<k and ν4,0≤l<k,

representing the couplings to earlier orders (l < k), including possible time–dependence. The equations of condition

then become:

∂t ν1,k = ẋ ∂1 ν1,k + ẏ ∂1 ν2,k +

(
1− ∂1

x(
x2 + y2

)1/2

)
ν3,k +

(
x+2ẏ− x(

x2 + y2
)1/2

)
∂1 ν3,k

− ∂1

(
y(

x2 + y2
)1/2

)
ν4,k +

(
y−2ẋ− y(

x2 + y2
)1/2

)
∂1 ν4,k + ∂1 gk + ∂1 hk , (8.24a)

∂t ν2,k = ẋ ∂2 ν1,k + ẏ ∂2 ν2,k− ∂2

(
x(

x2 + y2
)1/2

)
ν3,k +

(
x+2ẏ− x(

x2 + y2
)1/2

)
∂2 ν3,k

+

(
1− ∂2

y(
x2 + y2

)1/2

)
ν4,k +

(
y−2ẋ− y(

x2 + y2
)1/2

)
∂2 ν4,k + ∂2 gk + ∂2 hk , (8.24b)

∂t ν3,k = ν1,k + ẋ ∂3 ν1,k + ẏ ∂3 ν2,k +

(
x+2ẏ− x(

x2 + y2
)1/2

)
∂3 ν3,k

−2ν4,k +

(
y−2ẋ− y(

x2 + y2
)1/2

)
∂3 ν4,k + ∂3 gk + ∂3 hk , (8.24c)

∂t ν4,k = ẋ ∂4 ν1,k +ν2,k + ẏ ∂4 ν2,k +

(
x+2ẏ− x(

x2 + y2
)1/2

)
∂4 ν3,k

+2ν3,k +

(
y−2ẋ− y(

x2 + y2
)1/2

)
∂4 ν4,k + ∂4 gk + ∂4 hk and (8.24d)

∂i ν j,k = ∂ j νi,k for an additional 6 equations. (8.24e)

As usual, if an integrating vector νk can be found which satisfies these equations, it may be integrated out via the

relations (4.22) to obtain Ik, the O
(
εk) term in the integral approximation.

8.3.2 Solution Perspectives

As with the results of the previous chapters, we will now briefly discuss the approaches attempted to the full equations

of condition just presented, and conclude with some remarks on further perspectives for solution.
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Approaches Attempted

The same general remarks apply as in the case of the Jacobi and circular restricted 3−body problems: our difficulties

stem from the necessity of solving a 1
2 n(n + 1)–dimensional system of coupled linear 1st –order PDE equations, for

which there is no well–developed solution strategy. In place of this, the usual approaches were tried, with the following

results.

• Here too, an approach using the method of characteristics was shown to be fruitless, as the characteristic ODE

system that the method yields is simply the original ODE system.

• The equations of the system were again checked for similarity against [Polyanin and Zaitsev, 2003] for the

existence a (perhaps more complicated) equation–type which might contain our problem as a special case, and

provide a viable solution strategy; this was again without fruit.

• As in the previous chapter, we note as hopeful the attempt to find a solution using the straightforward extension

of the method of separation of variables, taking e.g.:

ν = ( ν̂1(x)ν̄1(t), . . . , ν̂4(x)ν̄4(t) )ᵀ . (8.25)

This has likewise met with little success within the time–constraints of work on this thesis.

• Lastly, of course, the approach of section 8.2 was tried, and we have described in detail the difficulties involved,

due to the time–dependence of the modified potential Ω̄(t).

Further Perspectives

In light of the discussion of the problems arising in the already restricted approach of section 8.2, where we sought

an analogue of the Jacobi integral, the strongest option for finding a time–dependent solution to the equations for the

integrating vectors would seem to lie with the final approach suggested there: the use of Fourier techniques expanding

in higher harmonics of the frequency ω′ of the Moon’s motion.

The motivation for this is that while the problem is perturbed from the simpler and already difficult circular restricted

3−body problem, the perturbation is of a particularly simple periodic nature. While in the present work we found that

simple sine/cosine terms cannot satisfy the equations (4.23), Andreu’s work in [Andreu, 1998] suggests that superposi-

tion of such terms may be adequate to the task, recalling that he considered a similar problem in seeking near–circular,

near–oscillatory motion of the Moon about the Earth as a true (rather than approximate) solution of the 3−body prob-

lem.

Thus, though his approach is sufficiently involved that it must be seen as beyond the scope of this thesis, we highly

recommend its investigation in any future work.
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Part III

Integrator Performance
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Outline of Part III

The final part of this thesis (which comprises the second major part of the thesis for Aerospace Engineering) is con-

cerned with the implementation of approximations of astrodynamic first integrals in conservative integration schemes,

and their performance relative to baseline Runge–Kutta–(Fehlberg) schemes.

1. In chapter 9, general design considerations will be discussed against the background of the motivation for con-

servative integrators. In particular, we introduce the design approach, the rationale of the integral–benchmarks

used, and give a summary of the coding issues involved, which are treated in more detail in appendix C.

2. In chapter 10, the design of integrators which are conservative with regard to the exact (known) first integrals is

discussed for the Jacobi 3−body problem and the circular restricted 3−body problem. Our approach is based

on Bowman et al.’s earlier work on integrators conservative of the exact energy integral for the 3−body problem

[Shadwick et al., 1999, Kotovych and Bowman, 2002].

We present results for the Sun–Earth–Moon and Earth–Moon–Satellite systems and give considerably more

detailed performance data than Bowman et al., as well as considering three different formulations of the inte-

grators and their relative merits. We discuss observed instabilities in a particular class of problems. Further, we

also discuss the possibilities for integrators which are multiply conservative within Bowman et al.’s framework.

3. In the final chapter 11, the approach of the previous chapter is extended to the use of approximations of integrals,

rather than the actual integrals, motivated by the capture problem for which we have only such an approximation

(from Part II of this thesis). We illustrate the approach using the circular restricted 3−body problem first (as

we have the full integral available), and then present the results for the capture problem.
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Chapter 9

Conservative Integrator Design Notes

This chapter sets the stage for the results presented in the next two chapters by briefly recapping the background raised

earlier in chapter 5. We then present two related sections, the first summarizing issues related to the design of the code

used to obtain the results of the following chapters, and the second giving a brief discussion of the approach taken in

evaluating integrator performance.

9.1 Background

The general issues and contrasts between classical and conservative methods have already been summarized in chapter

5, and the reader will recall that conservative methods are relatively flexible, in that they can be combined with both

single-step and multi-step methods, provided the integrator prototype can be cast in the form of proposition 5.3.1.

In the following chapters we will focus on conservative formulations based on a simple prototype 2nd –order predictor–

corrector algorithm, following [Kotovych and Bowman, 2002]. The remarks of section 5.3 remain applicable to higher–

order and multi–step methods, but these are beyond the scope of present work, as our goal is to establish the feasibility

and possible desirability of the conservative–integration approach even at low orders in accuracy.

Note that for the conservative integration algorithms, we reference the discussion in [Shadwick et al., 1999, 2001],

[Kotovych and Bowman, 2002] and we have coded a number of implementations of the algorithms for our few–body

astrodynamics problems. For comparison we take primarily reference Runge–Kutta–Fehlberg integrators which are

standard implementations of the Netlib package RKSuite, documented in [Brankin et al., 1993], and based on the

theory discussed in [Fehlberg, 1968, 1969, Shampine et al., 1976, Burden and Faires, 2001].

9.2 General Design Notes

In the consideration of exactly and approximately conservative integration schemes, we have coded an extensive suite

of integrators for the Jacobi 3−body problem, the circular restricted 3−body problem and the capture problem intro-

duced in chapter 3. This IntegrationMethods code is in a sense a ‘deliverable’ for this thesis project as a whole, and

this section will discuss a number of design issues relevant to the development.

A more detailed discussion of the simulation suite itself is given in appendix C.
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Remark also that when discussing the integration schemes, that by “implicitly–formulated” and “explicitly–formulated”,

we intend here the design choice of whether to formulate the coordinate transformations of the conservative scheme

with explicit coordinates (making one of the coordinates ξi = xi +U), or whether to treat one of the coordinates im-

plicitly, sacrificing it for increased control over the potential (taking ξi = U and xi = g
(

x j 6=i, U(x j 6=i, xi)
)

implicitly,

which must be reconstructed using e.g. Newton-Raphson nonlinear root–finding).

9.2.1 Models and Methods

The models and methods implemented for IntegrationMethods are the following:

1. For the planar Jacobi 3−body problem model, the methods:

(a) The Runge–Kutta–Fehlberg pairs 2(3), 4(5) & 7(8) from RKSuite.

(b) An explicitly formulated implementation of Bowman’s pJacobi–integrator in natural Jacobi coordinates.

(c) An implicitly formulated implementation of Bowman’s pJacobi–integrator in natural Jacobi coordinates.

(d) An implicitly formulated implementation of Bowman’s pJacobi–integrator in polar Jacobi coordinates
(which should be conservative of both the energy and angular momentum).

Models were implemented for both Sun–Earth–Moon and Earth–Moon–Satellite test problems.

2. For the circular restricted 3−body problem model, the methods:

(a) The Runge–Kutta–Fehlberg pairs 2(3), 4(5) & 7(8) from RKSuite.

(b) An explicitly formulated implementation of Bowman’s CR3BP–integrator in natural dimensionless model
coordinates (rather than canonical variables corresponding to the Hamiltonian formulation).

(c) An approximately conservative integrator developed specifically for this model, with approximation order
O
(
εk) , k = 0, . . . ,3.

Models were implemented for both Sun–Earth–Moon and Earth–Moon–Satellite test problems.

3. For the capture problem model, the methods:

(a) The Runge–Kutta–Fehlberg pairs 2(3), 4(5) & 7(8) from RKSuite.

(b) An approximately conservative integrator developed specifically for this model.

4. For the ephemeride model coded for and used in the Internship report [Verzijl, 2005]:

(a) Burkardt’s [Burkardt, 2004] 4(5) Runge–Kutta–Fehlberg integrator, for reference.

(b) The Runge–Kutta–Fehlberg pairs 2(3), 4(5) & 7(8) from RKSuite.

9.2.2 Conceptual Design Issues

Next, we discuss a number of conceptual issues arising in the design of the integrators:

• An important first remark is reserved for the lack of actual implementations in the Bowman et al. papers,1 and

as will become clear in the next chapter, this leaves considerable ambiguity with regard to the design choices

not determined by the integration scheme. We discuss 3 different implementations there, and will give some

suggestions as to best practice.

1The author has had brief communication with dr. Bowman, but the issues encountered have not yet been fully resolved.
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• It should also be remarked in light of the above that the implementations have been coded primarily for accu-

racy at this point, and considerable time was necessary for debugging. As a result, they have explicitly not been

performance–tuned yet, and may be somewhat slower in execution than is strictly necessary. Note, however,

that we will gauge performance mostly by function evaluations and RMS–error estimates rather than CPU time,

and so while this would be an important step in the future development of the code, it is highly unlikely to

qualitatively change our present conclusions.

• The rationale for the algorithms introduced in the previous section was the following:

1. We have made 3 different implementations of Bowman’s algorithms for the planar Jacobi 3−body prob-

lem in order to develop both experience and intuition for the differences between them, as well as to get

a better picture of the relative differences in performance between the three approaches.

2. We have chosen to work towards our interest in the capture problem, and for that reason developed ap-

proximate implementations only for it and the circular restricted 3−body problem; this in the expectation

that the behavior on the planar Jacobi problem would not be qualitatively different.

3. We have based our test problems on actual ephemeride data for initial conditions where applicable, and

have included reference ephemeride–model code for a 3−body problem and a 4−body problem based

on the “internship code” described in [Verzijl, 2005].

• There is an open issue regarding the choice of appropriate benchmarks. The ideal case for any numerical method

is to benchmark against a known solution, which is unavailable to us. In the case of the RKF integrators, one

can presumably test the accuracy against Kepler orbits, though we must immediately raise the objection that the

results on such stable 2−body problem solutions are by no means necessarily representative for the 3−body

problem–dynamics, let alone the dynamically sensitive trajectories of the 4–body capture problem that moti-

vated this work. We return to this issue below in section 9.3.

• Lastly we should remark that with our approach to benchmarking and the choice of algorithms, we are essen-

tially making an “unfair” comparison: we compare a 2nd –order fixed step–size scheme with variable step–size

Runge–Kutta integrators that implement error–control, and within this category 2 out of 3 of the integrators we

compare with are also higher-order methods in the step–size. Our goal with this is to provide what might be

thought of as worst–case performance data, in that changing either aspect of this unfair comparison is likely to

result in significant improvements in performance, while the current formulations should demonstrate the key

potential drawbacks to the conservative schemes as a class of integrators.

Remark that to somewhat balance this unfair comparison, we have chosen for a relative error tolerance of 10−6

for the RKF–methods, corresponding to roughly 1 mm in physical units, in order to give our “error–naive”

conservative schemes a “fighting chance.”

• The reader is nonetheless advised to recall that a conservative scheme can easily be formulated for higher–order

methods, and in particular that we can formulate such methods using error–control as well, by choosing multi-

step predictor–corrector methods as our prototype, cf. section 5.2.3.
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9.2.3 Coding and Validation Issues

The following are more practical issues concerning the actual coding and validation of the IntegrationMethods suite,

which also bear remarking:

• The front–end to the IntegrationMethods suite of implementations is the FORTRAN code IntegrationMeth-
ods.f90, and the suite and its structure are described in more detail in appendix C.

• With regard to the validation of the code, we have followed and built on the approach taken in [Verzijl, 2005]:

– Testing RKF2(3), 4(5) & 7(8) implementations against test–cases from the Ephemeride problems in the

above document, which were obtained using Burkardt’s RKF 4(5) and validated there.

– Testing new integrators against test–cases based on two standard sets of initial conditions with trajectories

verified with the RKF7(8) codes from the Netlib RKSuite.

– Testing for scaling with time–step, and due to the formulation of the conservative schemes on the basis of

an explicit predictor-corrector method, it should be remarked that there is a model–dependent threshold

for the time–step to ensure the stability of the integration; see also section 9.3 below.

– Testing scaling with satellite mass (using masses below a threshold of O
(
1020 kg

)
at which the “satellite”

would be expected to noticeably perturb the primaries).

– Testing convergence of the Newton–Raphson process for the implicitly–formulated conservative integra-

tion schemes.

– We have also coded coordinate–transform functions based on work in the above document, and tested

different methods with the same initial conditions for comparability of results in multiple coordinate sys-

tems, all validated qualitatively against comparable ephemeride–model results.

• As remarked in the previous section, the code has not yet been performance tweaked, and so despite a large

measure of standardization across the modules and procedures, it is to be expected that there remains consider-

able room for improvement in terms of CPU time.

Particularly relevant in this regard is the potential speed–up resulting from shifting the code back to double–

precision for actual orbit analysis. Before doing this, however, due consideration should be given to the question

of whether terms are appropriately balanced in the integrator to avoid loss of significance at double precision

(particularly when treating the potential term U , cf. the discussion of algorithms 10.4.1 and 10.4.2).

• Lastly, we remark that the astrodynamic constants used in the new integrators have been taken from

[Montenbruck and Gill, 2001], and are standardized across all models and methods.

9.3 On Performance Evaluation
Lastly, before moving on to the results, we will briefly discuss the methods available for the evaluation of the perfor-

mance of the integrators for our problems. This is a surprisingly thorny issue, and Berry & Healy give an excellent

summary, [Berry and Healy, 2003], of the methods available for the accuracy assessment of numerical trajectory inte-

gration.
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9.3.1 Approaches to Performance Evaluation

We discuss first the primary approaches in common use,2 in relation both to our validation process and the performance

discussion of the next chapters. These are:

1. Testing against a problem with a known analytical solution, typically a Kepler 2−body problem. The difficulty

with this in our present work is that the integrators we consider are model–specific, tailored algorithms, and so

cannot usefully be tested in this way.

2. Comparison with integral invariants of the motion, which while we do not make use of in the traditional man-

ner, is of course intimately connected to the present work. The key difference is that we are trying to make the

conservation of the integral internal to the method as opposed to functioning as an external benchmark.

3. Time–reversal of the trajectory, a method which is not universally accepted, due to its susceptibility to (i.e.

failure to identify) time–reversible integration errors. This approach has not played a role in the present work.

4. Step–size halving, as a test of the convergence of the solution, which is based on the fact that the local trunca-

tion error is step–size dependent (by convention τ = O (hp) for a p–order integrator); as noted in section 9.2.3,

we have indeed used this method to validate trajectory integration in the validation phase of both present and

previous work.

5. Comparison with a higher–order integrator; as remarked in the same section 9.2.3, we have chosen to make ex-

tensive use of this technique in the present work, as will be clear from the results presented in the next chapters.

9.3.2 On Comparison with Higher–Order Integrators

However, it is incumbent upon us to point out a critical weakness in this last approach, which we must consistently

bear in mind:

• First of all, it assumes that the higher–order integrator is better than the integrator being tested, and even in

present work, while it is tempting to consider e.g. RKF7(8) as a “gold–standard” against which to test con-

servative schemes, it is far wiser to consider correspondence between the results of the two methods, validated

independently,3 as confirmation that RKF7(8) is giving correct results, and vice–versa.

• Secondly, and more subtly, if both the integrator in testing or validation and the higher–order integrator share a

common fundamental approach, e.g. both based on expansions in terms of Taylor series, presuming smoothness

of the solutions near each starting point, then both will be susceptible to pathological trajectories which cannot

be handled on the basis of those fundamentals.

2An interesting method also discussed in [Berry and Healy, 2003] is Zadunaisky’s method, which involves the construction of an
analytic function near an integrated solution, and then the construction of corresponding differential equations which together with
the function form a quasi–exact solution in the neighborhood of interest, which can be used in the same way as testing against a
known solution such as the Kepler 2−body problem solution. Its application is involved however, and will not be discussed here.

3In particular also ideally with a conservative scheme of the same order, which is, however, somewhat beyond the scope of this
thesis.
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Moreover, while tempting to reach for exotic regions in complicated dynamical systems, a very telling and much

simpler example of this type of pathology is already clearly visible in the following system.

Example 9.3.1 (Exponential Decay and Singular Perturbations)

Consider the system:

ε
dx
dt

=−x with initial condition: (9.1)

x(0) = x0

It is easy to find, separating as dx
x =− dt

ε
, that the solution is given by:

x(t) = x0 e−
t
ε . (9.2)

However, let us now consider the effect of discretization on the solution. We reprise the notation of chapter 5.

Any correct discretized solution must behave (with time–step h at iteration n) as:

w(n) = w(0) e−
nh
ε . (9.3)

Suppose first that we integrate using Heun’s implicit discretization (analogous to the Trapezoidal rule, cf. [Bur-

den and Faires, 2001, chapter 4]), with time–step h:

ε
w(n+1)−w(n)

h
=−1

2

(
w(n) +w(n+1)

)
such that:

w(n+1) =

(
ε− h

2

ε+ h
2

)
w(n) .

This is a difference equation with solution:

w(n) =

(
ε− h

2

ε+ h
2

)n

w(0) = e
n ln
(

ε− h
2

ε+ h
2

)
w(0) .

We remark two things. First, this solution is stable iff. 2ε > h, otherwise we get power–law decay modulated

by oscillatory behavior about 0, which is certainly not present in the solution (9.2). Second, it is clear that this

is a qualitatively different solution than what we expected. In fact we remark that for any h, as ε ↓ 0:

lim
ε↓0

nh
ε

= O
(

ε
−1
)

while

lim
ε↓0

n ln

∣∣∣∣∣ ε− h
2

ε+ h
2

∣∣∣∣∣= n ln
∣∣∣1+O

(
ε

1
)∣∣∣= O

(
ε

1
)

.

So the behavior exhibits completely different asymptotics, which means that naive application gives an incorrect

solution. Perhaps the issue is the method, after all it is not A–stable. We use the following implicit method,

which is A–stable, and discretize instead as:

ε
w(n+1)−w(n)

h
=−w(n+1) such that:

w(n+1) =
(

ε

ε+h

)
w(n) .
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This is again a difference equation, with solution:

w(n) =
(

ε

ε+h

)n
w(0) = en ln( ε

ε+h )w(0) .

The asymptotic behavior here, in turn, is:

lim
ε↓0

n ln
(

ε

ε+h

)
= O ( ln ε ) .

This is arguably closer to correct as limε ↓ 0, and not subject to un–physical oscillations, but still not the true

O
( 1

ε

)
behavior of the analytical solution.

The reason that even this ostensibly “better” method still gets the solution wrong, is that this is a classic ex-

ample of singularly perturbed behavior. The correct solution combines two qualitatively different regimes: a

constant null–solution for almost all time corresponding to the omission of the ε–terms in equation (9.1), and

an exponential fall–off from x0 to 0 over a very short time–space immediately preceding it due to the singular

perturbation by the O (ε) term. The reader will note that this behavior is in fact typical for what are known as

stiff equations, and the discussion in e.g. [Press et al., 1992] is illustrative of the phenomena.

Equation (9.1) is a pathological system for the method because no matter how small the time–step h is chosen,

there will always be cases as ε ↓ 0 that the method returns errors beyond whatever error bounds are set, simply

because the solution it is returning is close but not equal to the true solution, with the discrepancy determined

by the value of ε.

The solution though, is intuitive, particularly in light of our discussion in section 4.3: one makes the problem-

atic distance scale explicit. Typically one introduces a new variable y such that y := e−
t
ε x(t), making the scale

associated with the singular perturbation explicit, and then integrates the new ε
d
(

e−
t
ε x
)

dt = · · · system using a

normal integrator.

• The point we wish to make with the preceding example is that it is not always enough to rely on the known

behavior of an integrator in terms of its local truncation error τ(h). In the case of singularly perturbed problems,

one should, in principle, investigate whether the discretization actually provides the correct asymptotic behavior

in the singular–perturbation regime.

The problem, in practice, is that the investigation of the asymptotic behavior of the discretization may be a very

difficult process when the form of the equations is not as simple as in example 9.3.1, and moreover, an analytical

solution is not available. For our present problems, it might be suspected that the introduction of a small mass

moving through multiple force–scale regions at high velocities, typical of ballistic lunar capture trajectories,

might give rise to singular perturbation issues. Indeed, as we discuss in the next chapters, and in appendix C,4

we find some indications of this in our numerical investigations. However, the difficulty of the analysis for our

much more complicated systems of equations places an explicit singular perturbations investigation beyond the

scope of this thesis.

4The reader may wish to peruse this, and in particular section C.2.5 in connection with the present discussion, and that of the
results to follow in the next 2 chapters.
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9.3.3 Present Approach

Against the background of the above discussion, the reader is further advised that the numerical aspects of the present

work rely primarily on:

1. Time–step halving and comparison with alternate integrators (both same–order and higher–order Runge–Kutta–

Fehlberg types) for validation on comparatively well–known trajectories, for lack of exact solutions along the

lines of the Kepler problem (e.g. circular and near–Earth orbit solutions of the 3−body problem which should

be near Kepler orbits, but also comparison with ephemeride–based solutions of actual planetary motion for the

Sun–Earth–Moon case).

2. Comparison with the RKF7(8) integrations for performance analysis, where in the next chapter we will focus on

the accuracy of coordinates and velocities, the required number of function evaluations to produce the trajectory

and on the conservation of integrals of the motion.

In light of the above discussion then, we stress again that strictly taken, our results are by no means “absolute”

in the sense of certainty with regard to the true solution of a system; instead, they merely compare performance

between our conservative integrators and the Runge–Kutta schemes, although this is justified somewhat by the

considerable evidence that good performance may be expected from higher–order RKF–type integrators based

on e.g. the issues raised in [Berry and Healy, 2003].
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Chapter 10

Exactly Conservative Integrators

In this chapter we discuss a number of exactly conservative integrators and their performance both against simple

3−body problem test-cases, as well as against Ballistic–Lunar–Capture (BLC)–like departure trajectories from the

near-Earth region.1 The integrators considered are implementations of those introduced by Bowman et al. [Shadwick

et al., 1999, Kotovych and Bowman, 2002, Shadwick et al., 2001], but to the author’s best knowledge this is the first

detailed consideration of their performance,2 and particularly so with regard to BLC–type trajectories, which involve

a small mass transiting regions with markedly differing force-scales, which we introduced in section 4.3.3.

Note that we structure the discussion slightly differently here, in order of increasing complexity of the integrator for

variants of the 3−body problem, starting from the circular restricted 3−body problem and continuing through the dif-

ferent approaches to the Jacobi 3−body problem, and finally discussing a doubly-conservative integrator for the same.

After discussing the approach and the integrators themselves, we will also give some consideration to the general prob-

lem of constructing multiply–conservative integrators for astrodynamics problems, which is a more troublesome issue

than it might seem at first glance.

10.1 Design for Exact Conservation of the Hamiltonian

The approach to the design of each integrator is based on conservation of the Hamiltonian (effectively the energy),

and we will see that for the Jacobi 3−body problem this also allows us to incorporate the conservation of angular

momentum “for free.” The building block for the integrators discussed is the conservation of energy, in principle, but

remark that we have formulated all integrators in classical x, y and Jacobi q, Q coordinates in keeping with the theory

introduced in chapter 3, and so omit the formulation in Hamiltonian canonical variables that e.g. Bowman uses for the

circular restricted 3−body problem.

Nonetheless, as the classical energy here coincides with the Hamiltonian in either set of coordinates, we are essentially

using the Hamiltonian as a building block even when we don’t use a Hamiltonian formulation. In section 10.5 we

exploit this further in polar coordinates to obtain a doubly conservative integral, but will consider the limits of extending

this building block in section 10.6 when we then discuss the problem of incorporating an integral that isn’t amenable

1Full BLC–trajectories such as the one indicated in figure 3.9 do not occur in the 3−body problem, and the reader will recall that
their study was the motivation for the derivation of the capture problem in section 3.5. Consequently true BLC–trajectories will not
occur in this chapter, but we discuss them in the next when we turn to approximately conservative integrators for the Capture Problem.

2Despite the fact that our discussion here and in the next chapter will be driven by our concerns with BLC–type trajectories and
so is by no means comprehensive.
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to that same extension due to the form of the quadratic terms and inverse transforms.

10.2 Core Conservative Integration Scheme

Remark that throughout the discussion, vectors will be purposely emphasized as x to avoid confusion with the scalar

coordinate x. Also, we occasionally reference elements of a vector in computer memory using block parentheses as

x[1] = x, x[2] = y, etc. With this in mind, the first two algorithms we present take a simple predictor–corrector step

respectively a “naive” conservative predictor–corrector step as follows:

Algorithm 10.2.1 (Simple Predictor Corrector)

for t = t0 : h : t f do

ẋ← f (x) . Evaluate current derivative at current state x

xp← x+h · ẋ . Generate predictor

ẋp← f (xp) . Evaluate predictor derivative

xc← x+
h
2
(
ẋ+ ẋp

)
. Update original state with corrector

x← xc

end for

Algorithm 10.2.2 (Naive Core Conservative Integrator)

for t = t0 : h : t f do

ẋ← f (x) . Evaluate current derivative at current state x

xp← x+h · ẋ . Generate predictor

ẋp← f (xp) . Evaluate predictor derivative

ξ← T (x) . Transform variables

ξp← T (xp)

ξ̇← fξ(x)≡ T ′(x) · ẋ . Evaluate derivatives in transformed coordinates

ξ̇p← fξ(xp)≡ T ′(xp) · ẋp

ξc← ξ+
h
2

(
ξ̇+ ξ̇p

)
. Update transformed state

xc← T−1 (ξc) . Update original state with corrector

x← xc
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end for

A few comments are in order:

• First, note that this latter integrator is, in our terminology, explicitly–formulated with regard to the coordinates.

For the CR3BP we have taken this approach in algorithm 10.3.1 below with the third transformed variable ξ3

containing the sum of a transformed coordinate and the CR3BP potential. This is in contrast to algorithm 10.4.2

where the transformed coordinates use U in place of a coordinate, such that the inverted result xc must be passed

through a Newton–Raphson solver in order to reconstruct the actual coordinate value; we refer to this approach

as implicitly–formulated.

• Note in the above that we have given a formal expression for the derivative of the transform. In practice, how-

ever, we form the transform derivatives ~fξ(x, ẋ ) from the original coordinates rather than using the equivalent

matrix vector expression T ′(x) · ẋ encountered in the theoretical setting; this for reasons of efficiency and nu-

merical stability. The above expression on the other hand, is useful in the error–analysis of the methods, which

is discussed in [Kotovych and Bowman, 2002, appendix A].

• There is however another issue, raised in the above reference and also in [Shadwick et al., 1999] which is quite

important in practice: that of turning points of the transformation (i.e. where T ′(x) = 0). When inverting the

transformation back from original variables, we need T−1(ξ), which is related to T ′(x) as follows. Implicitly

differentiating T−1 (T (x)) = x :

d
(
T−1 (T (x))

)
dx

=
dx
dx

we find that:

T−1 ′(ξ) =
1

T ′(x)
. (10.1)

This is a relation between the derivatives of the forward and inverse transformations, and we note that at turning

points, we expect that T−1 ′(x)→ ∞ and then likewise T−1(x)→ ∞, implying a singularity. This is more than

just a hypothetical issue; if we recall the expression (5.32) introduced earlier in chapter 5:

x(t0 +h)− x(t0) = h f (x0)+
h2

2
f ′(x0) f (x0)

+
h3

4

(
f ′′(x0) f (x0)2 +

T ′′′(x0)
3T ′(x0)

f (x0)3
)

+ . . . ,

we see that we may indeed expect problems in the form of error blowup when T ′(x) ≈ 0, which is precisely

when the inverse transformation becomes singular. This has, furthermore, been our experience in practice as

well, though its occurrence is difficult to predict.3

Bowman et al. suggest two alternative approaches to this situation: either reducing the time–step to just prior

to the turning point, such that steps may be safely taken, or switching to a non–conservative scheme such as the

3It appears, however, to be related to the “balance” of scales in a problem, occurring more frequently in the Earth–Moon–Satellite
problems than in the Sun–Earth–Moon problems, possibly indicating issues stemming from a singular perturbation scenario, cf.
section 9.3. Also, we remark that similar problems manifest when the time–step of the integrator is chosen too large, though this may
be due simply to the instabilities of the explicitly formulated algorithm.
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simple predictor–corrector for a single point in the integration.4

Our experience has been somewhat different however: we have found the first solution sometimes unworkable

in practice, and have opted for the latter, with the caveat that in order to preserve integration accuracy, we

combine it with time–step reduction by a factor r f , and we use this to integrate over the singular point of the

transformation (effectively a 2h = 2×r f × h
r f step) before continuing with the conservative scheme. We include

data on this in our performance benchmarks below.5

Incorporating these changes, we arrive at the following core integration scheme, for an explicitly–formulated problem:

Algorithm 10.2.3 (Core Conservative Integrator)

for t = t0 : h : t f do

ẋ← f (x) . Evaluate current derivative at current state x

xp← x+h · ẋ . Generate predictor

ẋp← f (xp) . Evaluate predictor derivative

ξ← T (x) . Transform variables

ξp← T (xp)

ξ̇← fξ(x)≡ T ′(x) · ẋ . Evaluate transform-derivatives

ξ̇p← fξ(xp)≡ T ′(xp) · ẋp

ξc← ξ+
h
2

(
ξ̇+ ξ̇p

)
. Update transformed transformed state

if T nonsingular then . Accept conservative step – singularity test by elements of vector T−1(ξc )

xc← T−1 (ξc)

else . Reject, reduce step–size by r f and take non–conservative step

h← h/r f

for t = t : h/r f : t +2h do
Execute 2× r f predictor–corrector steps from current state x . Algorithm 10.2.1

end for
h← h · r f . Restore original time–step

end if

x← xc

end for

4Private communication with Bowman suggests that it may be enough to use this approach for only the coordinate experiencing
blowup, rather than the entire state vector, based on numerical experiments.

5We remark that in general when the time–step is chosen appropriately for a problem, we typically need little to no non–
conservative steps, and in practice, an excess of these steps is more likely an indicator of an unsuitable choice of h.
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10.3 An Integrator for the Circular Restricted 3−Body Problem

We now turn to the design for the circular restricted 3−body problem specifically, and the reader will recall our

derivation of the Jacobi integral J in section 3.3.5 as the only known integral, which we also constructed via the

method of integrating vectors in section 7.2.

10.3.1 Integrator Design

This first algorithm is also the simplest: it is a relatively straightforward implementation of Bowman’s conservative

integrator for the circular restricted 3−body problem of section 3.3.5. The vector x is used here to denote the extended

state vector x = (x, y, ẋ, ẏ )ᵀ, and consequently ẋ = ( ẋ, ẏ, ẍ, ÿ )ᵀ.

The core algorithm is as given above as algorithm 10.2.3. This is then extended by the specification of the necessary

procedures in the following algorithm 10.3.1:

Algorithm 10.3.1 (CR3BP Conservative Integrator Implementation)

t := t0 . Initial time

x := (x0, y0, ẋ0, ẏ0 )ᵀ . Initial state

k := 0 . Output counter

Xout[k]← x . First entry in 2D output array

h :=
t f − t0

N
. Determine step size

for t = t0 : h : t f do

Take Conservative Integration Step . Algorithm 10.2.3

if (Intermediate Output Point k) then
Xout[k]← x . Next entry in output array

k← k +1 . Increment counter

end if

end for

Procedures:

function f (x)

f ←


ẋ = x[3]

ẏ = x[4]

2ẏ+ x− 1−µ
r3

1
(x+µ)− µ

r3
2
(x− (1−µ))

−2ẋ+ y− 1−µ
r3

1
y− µ

r3
2
y

 . 1st derivatives already available!

end function

function T (x)
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T ←


1
2 x2

1
2 y2

1
2 ẋ2− 1−µ

r1
− µ

r2

1
2 ẏ2

 . Potential terms absorbed into 3rd coordinate

end function

function fξ(x)

fξ←


x ẋ = x[1]ẋ[1]

y ẏ = x[2]ẋ[2]

fξ[1]+ fξ[2]− fξ[4]

ẏ ÿ = x[4]ẋ[4]

 . 3rd element using Hamiltonian conservation

end function

function T−1(xp, ξ)

T−1←


sgn(xp)

√
2ξ1

sgn(yp)
√

2ξ2

sgn(ẋp)
√

2
(

ξ3 + 1−µ
r1

+ µ
r2

)
sgn(ẏp)

√
2ξ4


end function

End Procedures

Note the following in algorithm 10.3.1:

• r1 and r2 are of course as in section 3.3.5, and the reader will note that the terms are evaluated sequentially,

guaranteeing that r1, r2 can be formed before they are needed in the reconstruction of the third element of xc.

• The terms sgn(xp) are used to pick the correct sign for the root based on the predicted value. This can usually be

done with sufficient accuracy, but can in principle form a problem near a zero–crossing of a coordinate; the ap-

propriate solution would then be to reduce the time–step so that the signs of predictor and corrector again agree.6

• As remarked above, T (x) is somewhat different from the form given in [Kotovych and Bowman, 2002, p. 253],

where the canonical7 state vector x = (q1 = x, q2 = y, p1 = ẋ− y, p2 = ẏ+ x )ᵀ was used. This choice makes

essentially no difference to the normalized equations of motion,8 and we prefer the formulation above as it lends

itself somewhat more easily to the analysis of chapter 7.

Note also that comparing with example 5.3.2, the integral being conserved here can be cast in the appropriate

form c ·ξ using the vector c = (−1,−1, +1, +1 )ᵀ (while of course ξ = T (x), as given in the algorithm).

• As remarked above, the derivative of the transformed variables, given as T ′(x) · ẋ, is not evaluated in this form

for reasons of numerical stability (i.e. numerical experiments showed the matrix T ′(x) to be a significant source

6For a small enough time–step, the predictor and corrector will both indicate a point just before the zero–crossing for the next
iterate, and on the subsequent step both indicate a point just after the zero–crossing.

7i.e. corresponding to the CR3BP Hamiltonian.
8The two may be exchanged by simple coordinate substitution.
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of error, likely due to ill-conditioning). Instead, in this problem and the others treated in this thesis, the deriva-

tive denoted fξ(x) is worked out in the original coordinates, which are of course readily available during the

computation.

Moreover, the reader will note that we have side–stepped the calculation of the derivative of the potential in

fξ[3] by exploiting the conservation of the Hamiltonian to formulate it from the other terms, and consequently

this step is performed last in actual code.9

10.3.2 Integrator Performance

With this algorithm in mind, and implemented as the routine bowman cr3bp (cf. appendix C), we can consider its

performance on our two test problems.

Sun–Earth–Moon

Our first test–case is the Sun–Earth–Moon circular restricted 3−body problem, integrated over a period of 3 months

(roughly 3 full revolutions). The initial coordinates are taken from the DE405 ephemerides relative position of the

Moon on 01/01/2007, and in dimensional (km resp. km/s) coordinates become:

x0 =


(1−µ)rES +3.136850 ·105

−2.019042 ·105

+5.483922 ·10−1

+8.062581 ·10−1


The resulting orbit in the rotating system is near–circular as expected (coming from a more complicated model, the

initial condition does not correspond exactly to a circular orbit, compare also figure 10.15), shifting slightly relative

with respect to the Earth–Sun line, and is illustrated in figure 10.1.

We consider the performance of algorithm 10.3.1 with initial time–steps 100s and 1000s against the same–order

RKF2(3) pair and the reference higher–order RKF7(8) pair in order to gain an idea of the performance of our algorithm.

Table 10.1 gives the function evaluations, counts for the number of non–conservative steps, and the RMS–deviation

from the RKF7(8) solution (as an estimate of the true error).

Integrator: RKF7(8) RKF2(3) Conservative h = 1000s Conservative h = 100s
fevals 1.24E+5 1.21E+4 4.42E+4 3.39E+5
NC–steps – – 0 0

Moon
∆x RMS – 1.49E+1 2.06E+1 1.81E-1
∆y RMS – 1.56E+1 2.13E+1 2.13E-1
∆ẋ RMS – 3.68E-5 5.07E-5 4.66E-7
∆ẏ RMS – 3.75E-5 5.20E-5 4.83E-7

Table 10.1: Comparison of performance metrics for Sun–Earth–Moon pCR3BP

We see in the table that with a time–step of 1000 seconds we have the same order of function evaluations as the

RKF2(3) pair, and similar performance with respect to the position and velocity differences. When we proceed to 100

9The actual potential–derivatives were calculated with MATHEMATICA and then implemented for comparison; agreement was
found to be good, though not to machine precision.
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Figure 10.1: Circular restricted 3−body problem motion of the Moon relative to the Earth in Earth–Sun–rotating
coordinates.

second steps, the number of function evaluations goes up by slightly less than a factor 10, and is now comparable to

the RKF7(8) pair, and the errors in the state vector have gone down by approximately 2 orders of magnitude, as we

expect from a 2nd –order integrator. Remark also that no non-conservative steps were necessary.

Figures 10.2 – 10.4 give the actual state vector differences (our estimate of the error, cf. section 9.3) plotted on a

logarithmic scale, and we note that the RMS difference is indeed a good measure of the actual performance, gauged

by the average level of the “error” with respect to RKF7(8). We note in these that on a logarithmic scale we have large

negative dips corresponding to the difference between the integrator and the RKF7(8) benchmark becoming ≈ 0. This

corresponds to the periodic oscillation of the RKF2(3) and algorithm 10.3.1–solutions about the reference RKF7(8)

solution, with a period of roughly 1 month (2 zero–crossings of the difference per month for a total of 6 dips over a 3

month simulation).

We note also that it appears, on comparing the similar–performance figures 10.2 and 10.3 that the growth of the error

is slower for the conservative scheme, though it would be premature to draw general conclusions based on this.

In order to investigate slightly further, we have also simulated a 3–year span of orbits, and find the very interesting

results of figures 10.5 and 10.6. The estimated error in the RKF2(3) solution grows as expected, but the conservative

scheme first experiences a jump in the error at a single non–conservative step,10 and then demonstrates a subsequent

tendency toward correction of the error back to a lower level over time.

We remark that this suggests that while, as we shall see, the conservation of the integral is not representative for the

position– and velocity–errors over short time–spans, it can have a significant positive effect on error control over a long

10This occurs beyond the first 3 months, and so was not apparent in the earlier figures.
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Figure 10.2: State difference magnitude for Moon: Algorithm 10.3.1 (h = 1000s) vs. RKF7(8)
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Figure 10.3: State difference magnitude for Moon: RKF2(3) vs. RKF7(8)
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Figure 10.4: State difference magnitude for Moon: Algorithm 10.3.1 (h = 100s) vs. RKF7(8)
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Figure 10.5: State difference magnitude for Moon over a longer 3 year simulation: Algorithm 10.3.1 (h = 1000s) vs.
RKF7(8) – Note the jump in the error at a non–conservative step, and the subsequent tendency toward correction over
time.
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Figure 10.6: State difference magnitude for Moon over a longer 3 year simulation: RKF2(3) vs. RKF7(8) – Note the
continuing growth of the error.
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Next, we consider the performance of the conservative scheme against the RKF2(3) pair specifically with regard to the

conservation of the Jacobi integral, and find the results of figures 10.7 and 10.8, where we see that the conservative

scheme, as promised, indeed conserves the Jacobi integral up to essentially machine precision (as does RKF7(8)),

while the same–order RKF2(3) code induces a clear secular drift. This, while it may not be significant over the short

term, is cause for concern in longer time–scale simulations.11
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Figure 10.7: Integral–Conservation Performance: Algorithm 10.3.1 (red, h = 100s) vs. RKF7(8) (blue); also included
is a dashed black line for the true value of the integral.

11Unlike the figure given at the beginning of this section, these values are of course calculated in the natural i.e. rotating CR3BP
coordinate system, in order to obtain the correct values of the Jacobi integral.
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Figure 10.8: Integral–Conservation Performance: RKF2(3) (red) vs. RKF7(8) (blue); also included is a dashed black
line for the true value of the integral.
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Earth–Moon–Satellite

Our second test–case is the Earth–Moon–Satellite circular restricted 3−body problem, likewise integrated over a pe-

riod of 3 months. The initial coordinates are taken from the DE405 ephemerides relative position of the Moon on

01/01/2007, and in dimensional (km resp. km/s) coordinates become:

x0 =


−µrEM−6.999993 ·103

−9.893934

+9.685109 ·10−1

+1.058167 ·101


The resulting orbit is considerably more complex than the previous one, and includes a near-Earth swingby encounter;

the orbit is illustrated in figure 10.9 in EM–rotating coordinates.
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Figure 10.9: Circular restricted 3−body problem motion of the Satellite relative to the Earth and Moon in Earth–
Moon–rotating coordinates.

We consider the performance of algorithm 10.3.1 with initial time–steps 100s and 10s against the same–order RKF2(3)

pair and the reference higher–order RKF7(8) pair, in order to gain an idea of the performance of our algorithm. We note

that the integration fails (i.e. becomes unstable) for O (1000s) time–steps. Table 10.2 gives the function evaluations,

counts for the number of non–conservative steps, and the RMS–deviation from the RKF7(8) solution (as an estimate

of the true error).

We see in the table that in contrast to the previous test–case, the step–size necessary to get RKF–comparable results

with the conservative scheme is now no longer on the order of 1000s, but roughly 2 orders of magnitude smaller than

before. As a result, we now need 2 orders of magnitude more function evaluations in order to match the estimated

accuracy in position of the RKF2(3) pair, though as we shall see our performance with respect to the integral is a
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Integrator: RKF7(8) RKF2(3) Conservative h = 100s Conservative h = 10s
fevals 1.24E+5 1.60E+4 3.48E+5 3.21E+6
NC–steps – – 1 0

Satellite
∆x RMS – 1.34E+2 2.51E+4 1.32E+2
∆y RMS – 1.40E+2 2.59E+4 1.30E+2
∆ẋ RMS – 1.74E-2 3.65E-1 1.25E-2
∆ẏ RMS – 2.16E-2 4.10E-1 1.34E-2

Table 10.2: Comparison of performance metrics for Earth–Moon–Satellite pCR3BP

slightly different story.

Figures 10.10 and 10.11 give the actual state vector differences plotted on a logarithmic scale. We note also that it

appears, on comparing the similar–performance between the two with respect to the error magnitude, that the error

grows slowly for the conservative scheme, staying at roughly the same magnitude throughout the orbit. This is in line

with our previous test–case, but here the RKF2(3) solution appears to be considerably more location–dependent with

regard to the magnitude of the error, confirming our suspicion that the apparent advantage of the conservative scheme

in the SEM–case may not be a universal property, though it would be useful when it occurs.

We note in particular the sudden spike in estimated error occurring in all the plots, at step 6060. This is due to a

close–approach swing–by of Earth, which can be seen in figure 10.9. We note on comparing the two integrators that

it appears that the RKF2(3) integrator is considerably more sensitive to this maneuver. Moreover, the error grows

noticeably at both transits (departure near step 0 and return near step 6060) of the region of the primaries, in contrast

to the conservative algorithm, which exhibits only the spike.

Next, we consider the performance of the conservative scheme against the RKF2(3) pair specifically with regard to the

conservation of the Jacobi integral, and find the results of figures 10.12 – 10.14, where we observe, in addition to the

drift of the RKF2(3) pair two very different phenomena:

1. First, we notice for the first time an offset in the value of J even in the RKF7(8) pair. This is due to an initial

jump at departure from the Earth–Moon region, and we see at step 6060 that the integrator manifests a second

discontinuity in the integral at this second close–approach to the primaries. Both times, this is reflected in a

permanent shift for the RKF–type integrators.

2. With regard to the conservative scheme we also see a very interesting effect at the departure from Earth near step

0: using h = 100s the algorithm no longer conserves the integral, and this is here manifests again as a permanent

shift due to a single non–conservative step. Numerical investigation confirms that the single non–conservative

step taken is in fact the same 1st step, and by slightly altering the step–size downwards, this may be avoided,

as is evident from figure 10.13.

Coupled with the qualitative difference in estimated RMS–error, this behavior on the part of the conservative scheme is

indicative of a heightened susceptibility to subsequent error of the method if problems occur at–or–near initial condi-

tions.12 We note, however, that when we take an appropriately small time–step, the integral is conserved properly, and

the method does not exhibit any discontinuities in the integral, despite the rapid changes at the swing–by. It is readily

12It also suggests that it may in such cases be worthwhile to implement the more complex corrective approach suggested in
[Shadwick et al., 1999] instead of taking a non–conservative step.
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Figure 10.10: State difference magnitude for Satellite: Algorithm 10.3.1 (h = 10s) vs. RKF7(8)

checked that the swing–by is correctly simulated by the conservative integrator, and in combination with the behavior

of the RKF pairs on integral conservation, this should make us suspicious of their behavior at the swing–by, and more

generally at close approaches.

In principle the simplest remedy for both problems is related: for the RKF integrator pairs, we must decrease the error

tolerance (forcing a smaller time–step), as it appears that in these close approaches the integrators do not track the

dynamics accurately enough. For the conservative scheme, we must reduce the time–step sufficiently in the current

formulation, but given the excessive computational cost over an entire trajectory, this strongly motivates the intro-

duction of step–size adjustment for error control, e.g. via the use of Adams–Bashforth–Moulton—based conservative

schemes, as suggested in section 5.2.3.
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Figure 10.11: State difference magnitude for Satellite: RKF2(3) vs. RKF7(8)
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Figure 10.12: Integral–Conservation Performance: Algorithm 10.3.1 (red, h = 100s) vs. RKF7(8) (blue); also in-
cluded is a dashed black line for the true value of the integral.
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Figure 10.13: Integral–Conservation Performance: Algorithm 10.3.1 (red, h = 10s) vs. RKF7(8) (blue); also included
is a dashed black line for the true value of the integral.
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Figure 10.14: Integral–Conservation Performance: RKF2(3) (red) vs. RKF7(8) (blue); also included is a dashed black
line for the true value of the integral.
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10.4 Energy Conservative Integrators for the 3−Body Problem

In this section we discuss 2 approaches to the design of conservative integrators for the planar Jacobi 3−body problem.

In both cases the vector x is used here to denote the extended state vector x = (q1, q2, Q1, Q2, q̇1, q̇2, Q̇1, Q̇2 )ᵀ. The

reader will note that we will focus more on the performance metrics and in contrast to the previous section include

only those figures that give insight into specific aspects of the discussion.

10.4.1 Explicit Integrator Design

The first algorithm is an implementation of Bowman’s conservative integrator which integrates all coordinates explic-

itly. (As remarked in the previous chapter, we use the terms explicit and implicit to refer to the treatment of coordinates

here, and not to the method itself, cf. section 5.2.3.)

Algorithm 10.4.1 (Explicit Implementation of Bowman’s 3BP Conservative Integrator)

t := t0 . Initial time

x := (x0, y0, ẋ0, ẏ0 )ᵀ . Initial state

k := 0 . Output counter

Xout(k)← x . First entry in 2D output array

h := t f−t0
N . Determine step size

g1 := m1 m2
m1+m2+m3

g2 := m3(m1+m2 )
m1+m2+m3

for t = t0 : h : t f do

Take Conservative Integration Step . Algorithm 10.2.3

if (Intermediate Output Point k) then
Xout[k]← x . Next entry in output array

k← k +1 . Increment counter

end if

end for

Procedures:

function f (x)

171



f ←



q̇1 = x[5]

q̇2 = x[6]

Q̇1 = x[7]

Q̇2 = x[8]

−(ρ1 +ρ2)
q1
‖q‖3 +ρ3

(
Q1−(1−µ)q1
‖Q−(1−µ)q‖3 − Q1+µq1

‖Q+µq|‖3

)
−(ρ1 +ρ2)

q2
‖q‖3 +ρ3

(
Q2−(1−µ)q2
‖Q−(1−µ)q‖3 − Q2+µq2

‖Q+µq|‖3

)
−ρ1(1+υ) (Q1+µq1)

‖Q+µq‖3 −ρ2(1+υ) (Q1−(1−µ)q1)
‖Q−(1−µ)q‖3

−ρ1(1+υ) (Q2+µq2)
‖Q+µq‖3 −ρ2(1+υ) (Q2−(1−µ)q2)

‖Q−(1−µ)q‖3



. 1st derivatives already available!

end function

function T (x)

T ←



q1

q2

Q1

Q2

1
2 g1 q̇2

1
1
2 g1 q̇2

2
1
2 g2 Q̇2

1
1
2 g2 Q̇2

2 +U



. Potential absorbed into 8th element; spatial coordinates unmodified

end function

function fξ(x)

fξ←



q̇1 = x[5]

q̇2 = x[6]

Q̇1 = x[7]

Q̇2 = x[8]

g1 q̇1 q̈1 = g1 x[5] ẋ[5]

g1 q̇2 q̈2 = g1 x[6] ẋ[6]

g2 Q̇1 Q̈1 = g2 x[7] ẋ[7]

−
(

f ξ[5]+ fξ[6]+ fξ[7]
)



. 8th element last using Hamiltonian conservation

end function

function T−1(xp, ξ)

T−1←



ξ1

ξ2

ξ3

ξ4

sgn(q̇1,p )
√

2g1 ξ5

sgn(q̇2,p )
√

2g1 ξ6

sgn(Q̇1,p )
√

2g2 ξ7

sgn(Q̇2,p )
√

2g2 (ξ8−U )



. U reconstructed from first 4 elements
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end function

End Procedures

We make a number of observations with regard to algorithm 10.4.1:

• Note first that again comparing example 5.3.2, the integral being conserved here can be cast in the appropriate

form c ·ξ using the vector c =
(

0[1×4], +1, +1, +1, +1
)ᵀ

(and of course ξ = T (x) as given in the algorithm).

• We have chosen here to incorporate the potential U into the energy term ξ[8] corresponding to Q̇2; in light of

the remarks here and in the next section on the issue of balancing contributions such that the magnitude of the

potential doesn’t dwarf the other contributions, this may be an unlucky choice for problems involving a small

parameter (such as our 2nd test–case for a small satellite).

• A related issue is that when the contributions are unbalanced, as we expect for a small–mass satellite, this has

consequences for the choice of machine representation. If e.g. U = O
(
1022)while the kinetic energy associated

with even a large (m∼ 104 kg) satellite leaving the Earth near escape-velocity, some T = O
(
105), then in dou-

ble precision the energy E = T +U ≡U . The contribution of the satellite is completely lost due to insufficient

machine precision, and this may be expected to cause issues with the inverse transformation.13

In practice, we have avoided this issue by using quadruple precision (which can track approximately 32 digits),

but this incurs a noticeable performance penalty in code–execution times. An alternative would be to at least

couple U to the coordinate with the largest kinetic energy in a given problem, though whether this would be a

viable solution would still depend on the specifics of the problem.

• We also remark briefly that instead of the simple expression for the 8th element using the conservation of the

Hamiltonian, we might instead use the full expression for dξ8
dt :

−
(

fξ[5]+ fξ[6]+ fξ[7]
)
≡ g2 Q̇2 Q̈2 + ∑

i=1,2

(
∂U
∂qi

q̇i +
∂U
∂Qi

Q̇i

)
. (10.2)

As we noted earlier, we have chosen not to do this mainly because it is computationally more intensive, but as

we shall see in the next chapter, when we conserve an integral only approximately, we shall have no choice, and

use a formulation closely linked to the above expression.

10.4.2 Implicit Integrator Design

Given the above issues, an even better work–around with respect to the balancing of magnitudes is to integrate U

separately and recover one of the coordinates implicitly. Our considerations above, moreover, suggest that this should

still be done with the coordinate which would have the largest “leverage” on U in terms of the derivative ∂U
∂xi

, and so

we suggest using a coordinate from one of the primaries.

Thus, consider the following variation on the above where the coordinate q2 is sacrificed and U is integrated instead,

followed by using a Newton’s algorithm as a nonlinear root finder for the reconstruction of q2 from {U, q1, Q1, Q2 }
(with q2,p as initial guess):

13Issues which would conceivably mimic the “turning point” behavior remarked on previously, even in the absence of such points.
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Algorithm 10.4.2 (Implicit Implementation of Bowman’s 3BP Conservative Integrator)

t := t0 . Initial time

x := (x0, y0, ẋ0, ẏ0 )ᵀ . Initial state

k := 0 . Output counter

Xout(k)← x . First entry in 2D output array

h := t f−t0
N . Determine step size

g1 := m1 m2
m1+m2+m3

g2 := m3(m1+m2 )
m1+m2+m3

for t = t0 : h : t f do

Take Conservative Integration Step . modified from Algorithm 10.2.3 as follows:

xc← T−1 (ξc) . Update original state with corrector

xc← NR(xc, q2,p , U = ξ[2] ) . Newton-Raphson Solver for q2,c

x← xc

if (Intermediate Output Point k) then
Xout[k]← x . Next entry in output array

k← k +1 . Increment counter

end if

end for

Procedures:

function f (x)

f ←



q̇1 = x[5]

q̇2 = x[6]

Q̇1 = x[7]

Q̇2 = x[8]

−(ρ1 +ρ2)
q1
‖q‖3 +ρ3

(
Q1−(1−µ)q1
‖Q−(1−µ)q‖3 − Q1+µq1

‖Q+µq|‖3

)
−(ρ1 +ρ2)

q2
‖q‖3 +ρ3

(
Q2−(1−µ)q2
‖Q−(1−µ)q‖3 − Q2+µq2

‖Q+µq|‖3

)
−ρ1(1+υ) (Q1+µq1)

‖Q+µq‖3 −ρ2(1+υ) (Q1−(1−µ)q1)
‖Q−(1−µ)q‖3

−ρ1(1+υ) (Q2+µq2)
‖Q+µq‖3 −ρ2(1+υ) (Q2−(1−µ)q2)

‖Q−(1−µ)q‖3



. 1st derivatives already available!

end function

function T (x)
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T ←



q1

U

Q1

Q2

1
2 g1 q̇2

1
1
2 g1 q̇2

2
1
2 g2 Q̇2

1
1
2 g2 Q̇2

2



. Potential as separate 2nd coordinate

end function

function fξ(x)

fξ←



q̇1 = x[5]

−
(

fξ[5]+ fξ[6]+ fξ[7]+ fξ[8]
)

Q̇1 = x[7]

Q̇2 = x[6]

g1 q̇1 q̈1 = g1 x[5] ẋ[5]

g1 q̇2 q̈2 = g1 x[6] ẋ[6]

g2 Q̇1 Q̈1 = g2 x[7] ẋ[7]

g2 Q̇2 Q̈2 = g2 x[8] ẋ[8]



. 2nd element last using Hamiltonian conservation

end function

function T−1(xp, ξ)

T−1←



ξ1

ξ2

ξ3

ξ4

sgn(q̇1,p )
√

2g1 ξ5

sgn(q̇2,p )
√

2g1 ξ6

sgn(Q̇1,p )
√

2g2 ξ7

sgn(Q̇2,p )
√

2g2 ξ8



. U passed as element 4

end function

function NR(xc, q2,p , Uref = ξ2,c)

maxit := 20 . Maximum iterations to perform

tol := 10−6 . Tolerance for q2 convergence

q2← q2,p . Initial guess based on q2,p

while i < maxit do

Form: ‖q‖, ‖Q− (1−µ)q‖, ‖Q+µq‖
U =−G

(
m1 m2
‖q‖ + m1 m3

‖Q+µq‖ + m2 m3
|Q−(1−µ)q‖

)
dU = G

(
m1 m2
‖q‖3 + m1 m3 µ(Q2+µq2)

‖Q+µq‖3 − m2 m3(1−µ)(Q2−(1−µ)q2)
‖Q−(1−µ)q‖3

)
δq2 =

U−Uref

dU
. Newton-Raphson Correction to q2
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if |δq2|< tol then
NR← Q2

Exit While Loop . q2,c acceptable

else
q2← q2 +δq2

i← i+1 . Increment counter towards maxit

end if

end while
end function

End Procedures

Note that the integral being conserved by the algorithm is cast in the appropriate form c · ξ using the vector c =

(0, +1, 0, 0, +1, +1, +1, +1 )ᵀ and the usual ξ = T (x).

With regard to the Newton-Raphson procedure NR(xc, q2,p , Uref = ξ2,c ), a few issues require comment:

1. First, the algorithm as implemented performs a maximum of e.g. 20 iterations, based on experience both by the

author and in [Shadwick et al., 1999, Kotovych and Bowman, 2002] that the method usually converges in very

few iterations (typically 3–5), but may be relaxed to e.g. 100 to allow for slower convergence.

2. Second, convergence is based on a tolerance which applies to q2 and so carries a dimension of km, thus the cited

criterium requires convergence to within 10−6km = 1mm, which is expected to be accurate enough to prevent

the accumulation of significant numerical error.

3. Typically in the literature [e.g. Press et al., 1992], it is suggested that a “safe Newton–Raphson”–algorithm be

used preferentially, which brackets the root and forces the iterative process to remain bounded by the brackets.

We have omitted this here due to the fact that in our practice, we are confronted with the following either/or

situation.

Either the routine converges very quickly due to a sufficiently good initial guess, or it doesn’t converge at all,

which appears (on investigation with exactly such a bracketing approach) to be due to the absence of a root near

our guess, which would seem to indicate that either the step–size is too large near a turning point, or that we

have lost the root due to difficulties with balancing and rounding error in the components of our transformation.

10.4.3 Integrator Performance

We now turn to the performance of the algorithms introduced in the preceding section.

Sun–Earth–Moon

As with the CR3BP in section 10.3, we again begin the discussion of the results for the planar Jacobi 3−body problem

with the Sun–Earth–Moon test case integrated over a period of 3 months. The initial coordinates are now taken from a
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hypothetical circular Moon orbit (based on the Kepler expressions for velocity)14 and as we now treat a full 3−body

problem, the initial conditions are thus given in Jacobi variables x = (q, Q, q̇, Q̇)ᵀ as:15

x0 =



rES

0

(1+υ)(1−µ)rES− rEM

0

0

ωES rES

0

−ωEMrEM +(1−µ)ωESrES


.

The resulting orbit is illustrated in the Earth–centered Earth–Sun–rotating frame in figure 10.15.
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Figure 10.15: Motion of the Moon relative to the Earth in the Earth–centered, Earth–Sun–rotating coordinate system,
solution from planar Jacobi 3−body problem.

We begin our discussion with a summary of the estimated RMS–errors, that is to say the RMS–differences with the

RKF7(8) results calculated for this test case, given in table 10.3. The features which stand out are that:

1. For a step–size of about 100s, which we also took in section 10.3, we still have estimated errors roughly 2

orders of magnitude smaller than the RKF2(3) integrator pair, at the cost 1 order of magnitude greater number

14This test–case was introduced for validation purposes, and is included here as a slight contrast to the case used in the discussion
of the CR3BP.

15The numerical values of the constants can, as always, be found either in [Montenbruck and Gill, 2001] or in the
IntegrationMethods code.
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of function evaluations;

2. In some cases this advantage is increased to 3 orders of magnitude smaller error, where we refer particularly to

the results for this problem’s small body, the Moon;

3. We also note that there is essentially no difference between the performance of the explicit and implicit methods.

This is not surprising given our discussion of the algorithms, as the major gains favoring the implicit method

would come from precision–limited calculations, which we have purposely taken out of the picture for the

moment.

Integrator: RKF7(8) RKF2(3) Explicit h = 100s Implicit h = 100s
fevals 1.24E+5 9.88E+3 3.62E+5 3.62E+5
NC–steps – – 0 0

Sun
∆x RMS – 7.32E-06 4.99E-08 4.99E-08
∆y RMS – 3.33E-06 5.64E-08 5.65E-08
∆ẋ RMS – 1.01E-12 1.99E-14 1.99E-14
∆ẏ RMS – 5.82E-13 1.98E-14 1.98E-14

Earth
∆x RMS – 5.98E+00 1.76E-02 1.76E-02
∆y RMS – 4.34E+00 1.84E-02 1.84E-02
∆ẋ RMS – 1.17E-05 1.27E-08 1.27E-08
∆ẏ RMS – 1.30E-05 1.39E-08 1.39E-08

Moon
∆x RMS – 4.01E+02 3.26E-01 3.26E-01
∆y RMS – 3.54E+02 3.11E-01 3.11E-01
∆ẋ RMS – 9.46E-04 8.28E-07 8.28E-07
∆ẏ RMS – 1.05E-03 8.76E-07 8.78E-07

Table 10.3: Comparison of performance metrics for Sun–Earth–Moon planar Jacobi Problem – RKF2(3), RKF7(8)
and Algorithms 10.4.1 and 10.4.2.

We present a few illustrations of this performance in figures 10.16 – 10.17, in line with the earlier discussion. We note

here also the difference in magnitude between the estimated errors in the 3 bodies, corresponding prominently to their

relative motion in the problem, figures 10.16 and 10.17, which appears to confirm our expectation that smaller, faster

moving bodies are prone to a larger magnitude of error.

Next, we consider the performance of the conservative scheme against the RKF2(3) pair specifically with regard to the

conservation of the energy integral,16 and find the results of figures 10.18 and 10.19, where we see that the conservative

scheme again conserves the integral up to essentially machine precision (as does RKF7(8)), while the same–order

RKF2(3) code again induces clear drift.

16Calculations made in natural (i.e. planar Jacobi) coordinate system with integral expression in Jacobi coordinates.

178



0 2000 4000 6000 8000 10000
10

−15

10
−10

10
−5

10
0

10
5

Integration Step

Y
−

P
os

iti
on

 D
iff

 (
km

)

0 2000 4000 6000 8000 10000
10

−15

10
−10

10
−5

10
0

10
5

Integration Step

X
−

P
os

iti
on

 D
iff

 (
km

)

0 2000 4000 6000 8000 10000
10

−20

10
−15

10
−10

10
−5

10
0

Integration Step

X
−

V
el

oc
ity

 D
iff

 (
km

/s
)

0 2000 4000 6000 8000 10000
10

−20

10
−15

10
−10

10
−5

10
0

Integration Step

Y
−

V
el

oc
ity

 D
iff

 (
km

/s
)

Figure 10.16: State difference magnitude: Algorithm 10.4.1 (h = 100s) vs. RKF7(8) – Sun in magenta, Earth in blue
and Moon in green. Figure also representative for Algorithm 10.4.2.
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Figure 10.17: State difference magnitude: RKF2(3) vs. RKF7(8) – Sun in magenta, Earth in blue and Moon in green.
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Figure 10.18: Integral–Conservation Performance: Algorithm 10.4.1 (red, h = 100s) vs. RKF7(8) (blue); also in-
cluded is a dashed black line for the true value of the integral. Figure also representative for Algorithm 10.4.2.
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Figure 10.19: Integral–Conservation Performance: RKF2(3) (red) vs. RKF7(8) (blue); also included is a dashed black
line for the true value of the integral.
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Earth–Moon–Satellite

We continue with the analogous presentation of results for the Earth–Moon–Satellite case. The results are along the

lines of the 3−body problem but somewhat more troublesome, in that particularly small time–steps are necessary to

get a solution comparable to the RKF integrator pairs, where comparability is judged by the observed convergence

towards RKF7(8) when we reduce the step–size. As we shall see, this is largely due to repeated close encounters with

the Earth, followed by an orbit–altering swing–by of the Moon which is difficult to track correctly.

The initial conditions are given in Jacobi variables x = (q, Q, q̇, Q̇)ᵀ as:17

x0 =



rEM

0

−µ(1+υ)rEM−6.999993 ·103

−9.893934

0

ωEM

−9.685109 ·10−1

−1.058167 ·101


.

The resulting orbit is illustrated in the Earth–centered psuedo–inertial frame in figure 10.20.
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Figure 10.20: Planar Jacobi 3BP motion of the Earth, Moon and Satellite, in the Earth–centered psuedo–inertial frame
– RKF7(8) integrator pair solution.

In figure 10.20 we see the solution found using the RKF7(8) integrator pair. Figures 10.21 and 10.22 by contrast, give

17The numerical values of the constants can, as always, be found either in [Montenbruck and Gill, 2001] or in the
IntegrationMethods code.
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Figure 10.21: Planar Jacobi 3BP motion of the Earth, Moon and Satellite, in the Earth–centered psuedo–inertial frame
– Algorithm 10.4.2 solution with h = 10s.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1

x 10
6

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
x 10

6

Trajectory for Model [2] Method [4]
Integration Step: 5 s, Output Steps: 8833 x 899.8981 s

JD 2454282.5 to JD 2454374.5

X−Position (km)

Y−
Po

si
tio

n 
(k

m
)

0

0

Figure 10.22: Planar Jacobi 3BP motion of the Earth, Moon and Satellite, in the Earth–centered psuedo–inertial frame
– Algorithm 10.4.2 solution with h = 5s.
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the solutions found using the implicit conservative scheme of algorithm 10.4.2, where we see that even at 10s steps

(cf. tables 10.4 – 10.5 for an impression of the relative computational effort), the solution returned by the integrator is

bad. Only on taking steps below 5s is the swing–by of the Moon on the return leg modeled correctly, and results for

the explicit algorithm 10.4.1 are similar.

Integrator: RKF7(8) RKF2(3) Explicit h = 100s Implicit h = 100s
fevals 1.24E+5 2.04E+4 8.66E+4 3.62E+4
NC–steps – – 100% 0

Earth
∆x RMS – 4.58E-02 2.47E-04 3.94E-03
∆y RMS – 4.07E-02 2.31E-04 3.69E-03
∆ẋ RMS – 1.04E-07 6.15E-10 9.84E-09
∆ẏ RMS – 1.19E-07 6.59E-10 1.05E-08

Moon
∆x RMS – 3.79E+00 2.01E-02 3.21E-01
∆y RMS – 3.30E+00 1.88E-02 3.00E-01
∆ẋ RMS – 8.48E-06 5.00E-08 8.00E-07
∆ẏ RMS – 9.73E-06 5.36E-08 8.57E-07

Satellite
∆x RMS – 8.49E+03 2.44E+05 3.90E+05
∆y RMS – 1.56E+04 5.23E+05 5.10E+05
∆ẋ RMS – 2.88E-02 1.07E+00 1.13E+00
∆ẏ RMS – 2.93E-02 6.67E-01 6.69E-01

Table 10.4: Comparison of performance metrics for Earth–Moon–Satellite planar Jacobi 3−body problem – RKF2(3),
RKF7(8) and Algorithms 10.4.1 and 10.4.2 – Note that the explicit algorithm 10.4.1 needs 100% non–conservative
steps for this integration, indicating step–size issues.

We note that while in table 10.4 the required work in terms of function evaluations is comparable with the RKF7(8)

integrator pair, the estimated error is worse for both algorithms. The explicit integrator in particular needs 100% non–

conservative steps. Moreover, this difficulty persists down to a 10s step–size, and indicates that the implicit formulation

is indeed somewhat more robust in this case.

Table 10.5 next compares the effect of time–step reduction for the implicit integrator at steps of 50, 10 and 5 seconds.

We note there that the position differences remain of magnitude 1 ·105 km for the satellite, and are not reduced as the

primaries. This we ascribe to the different source of error for the primaries, which are not subject to the high–velocity

dynamics the satellite experiences (relative to their much larger mass), as we discuss next.

Comparing figures 10.23 and 10.24, we may draw the conclusion that in this respect this problem presents a difficult

test case for the algorithms. It comprises a high velocity departure from the near–Earth area, multiple close–approaches

corresponding to the perigee of a high–eccentricity Kepler orbit, and lastly an orbit–altering swing–by which deter-

mines the behavior beyond roughly step 6000 (cf. figure 10.20).

The near–Earth apogees account for the series of peaks in the estimated error observed in the figures, while the last

swing–by where the satellite encounters the Moon accounts for the sudden jump near step 6000. The difference in

performance illustrated shown between the RKF integrator pairs and the conservative schemes is in this case, however,

indicative of an issue with the latter, because cumulative error up to the encounter of the Moon prevents correct timing

of the swing–by. This conclusion is also borne out by the the convergence of the conservative algorithms to the correct

trajectory with decreasing time–step.
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Integrator: RKF7(8) Implicit h = 50s Implicit h = 10s Implicit h = 5s
fevals 1.24E+5 6.80E+5 3.22E+6 6.40E+6
NC–steps – 0 0 0

Earth
∆x RMS – 9.86E-04 3.94E-05 9.86E-06
∆y RMS – 9.23E-04 3.69E-05 9.23E-06
∆ẋ RMS – 2.46E-09 9.84E-11 2.46E-11
∆ẏ RMS – 2.63E-09 1.05E-10 2.63E-11

Moon
∆x RMS – 8.02E-02 3.21E-03 8.02E-04
∆y RMS – 7.50E-02 3.00E-03 7.50E-04
∆ẋ RMS – 2.00E-07 8.00E-09 2.00E-09
∆ẏ RMS – 2.14E-07 8.57E-09 2.14E-09

Satellite
∆x RMS – 3.07E+05 1.54E+05 5.16E+04
∆y RMS – 5.29E+05 3.99E+05 1.27E+05
∆ẋ RMS – 1.37E+00 5.54E-01 2.67E-01
∆ẏ RMS – 8.60E-01 4.06E-01 2.20E-01

Table 10.5: Comparison of performance metrics for Earth–Moon–Satellite planar Jacobi 3−body problem – RKF2(3),
RKF7(8) and Algorithms 10.4.2 for h0 = 50, 10, 5s.

We remark further that In using the explicit integrator, we see in fact that the performance is considerably worse than in

the implicit formulation, in that even down to 10 second steps, a few hundred loops are still made non–conservatively.

These ensure that the integral is not conserved, whereas for the implicit formulation, it is conserved to machine accu-

racy, as we saw earlier in e.g. figure 10.18.

With regard to conservation of the energy integral, we obtain the same results as in earlier sections, with conservation

to machine precision as long as there are no non–conservative steps. For the explicit algorithm, this means that we

in fact see numerical drift of the value of the integral throughout our numerical experiments, in stark contrast to the

implicit formulation. Remark, however, that the drift over the three month integration period accumulates to O
(
10−12)

relative to the true value, while for the RKF2(3) pair it accumulates to O
(
10−6) .
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Figure 10.23: State difference magnitude: Algorithm 10.4.2 (h = 5s) vs. RKF7(8) – Earth in blue, Moon in green
and Satellite in black. Figure also essentially representative for Algorithm 10.4.1, and the results of both at higher
time–steps.
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Figure 10.24: State difference magnitude: RKF2(3) vs. RKF7(8) – Earth in blue, Moon in green and Satellite in black.
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10.5 Doubly Conservative Integrator for the 3−Body Problem
Finally, we will consider of Bowman’s doubly conservative integrator for the (Jacobi) 3−body problem. We will first

introduce the coordinate transformation, and then give the algorithm. A few details regarding the force function are

left to the comments after algorithm 10.5.1.

10.5.1 Integrator Design

As we discussed earlier, this algorithm is based on a change of coordinates from the usual Jacobi variables

{q1, q2, Q1, Q2, q̇1, q̇2, Q̇1, Q̇2 } to a new (double) set of polar coordinates {q, θ, p, l, Q, Θ, P, L }, where the linear

and angular momenta take the place of the velocities.

This is effected via the coordinate transformation:

q =
√

q2
1 +q2

2 , (10.3a)

Q =
√

Q2
1 +Q2

2 , (10.3b)

θ = arctan
q2

q1
, (10.3c)

Θ = arctan
Q2

Q1
, (10.3d)

p = g1( q̇1 cos θ+ q̇2 sin θ) , (10.3e)

P = g2( Q̇1 cos Θ+ Q̇2 sin Θ) , (10.3f)

l = g1 q( q̇2 cos θ− q̇1 sin θ) , (10.3g)

L = g2 Q( Q̇2 cos Θ− Q̇1 sin Θ) , (10.3h)

and so from this point on, let x = (q, θ, p, l, Q, Θ, P, L )ᵀ. Associated with the new variables are of course transformed

equations of motion, as well as a new choice of variables, which we summarize in the procedures of the following

algorithm:

Algorithm 10.5.1 (Implementation of Bowman’s 3BP Conservative Integrator in Polar–Coordinates)

t := t0 . Initial time

x := (x0, y0, ẋ0, ẏ0 )ᵀ . Initial state

k := 0 . Output counter

Xout(k)← x . First entry in 2D output array

h := t f−t0
N . Determine step size

g1 := m1 m2
m1+m2+m3

g2 := m3(m1+m2 )
m1+m2+m3

for t = t0 : h : t f do

Take Conservative Integration Step . modified from Algorithm 10.2.3 as follows:

xc← T−1 (ξc) . Update original state with corrector

xc← NR(xc, qp, U = ξ[1] ) . Newton-Raphson Solver for q2,c

x← xc
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if (Intermediate Output Point k) then
Xout[k]← x . Next entry in output array

k← k +1 . Increment counter

end if

end for

Procedures:

function f (x)

f ←



p
g1

l
g1q2

l2

g1q3 − ∂U
∂q

− ∂U
∂θ

P
g2

L
g2Q2

L2

g2Q3 − ∂U
∂Q

− ∂U
∂Θ



. All quantities available from state vector

end function

function T (x)

T ←



p2

2g1
+ l2

2g1 q2

P2

2g2
+ L2

2g2 Q2

U

Q

l

L

θ

Θ



. Potential a separate coordinate as in algorithm 10.4.2

end function

function fξ(x)

fξ←



pṗ
g1

+ l q2 l̇−ql2q̇
g1 q4

PṖ
g2

+ LQ2L̇−QL2Q̇
g2 Q4

∂U
∂q + ∂U

∂θ
+ ∂U

∂Q + ∂U
∂Θ

=−
(

fξ[1]+ fξ[2]
)

Q̇ = ẋ[5]

l̇ = ẋ[4]

L̇ = ẋ[8]

θ̇ = ẋ[2]

Θ̇ = ẋ[6]



. 3rd element last using Hamiltonian conservation

end function

function T−1(xp, ξ)
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T−1←



ξ3

ξ7

sgn(ṗ,p )
√

2g1

(
ξ1− l2

2g1q2

)
ξ5

ξ4

ξ8

sgn(Ṗ,p )
√

2g2

(
ξ2− L2

2g2Q2

)
ξ6



. U passed as 1st element

end function

function NR(xc, qp, Uref = ξ3,c)

maxit := 20 . Maximum iterations to perform

tol := 10−6 . Tolerance for q2 convergence

q← qp . Initial guess based on q2,p

while i < maxit do

Form: ‖q‖, ‖Q− (1−µ)q‖, ‖Q+µq‖
U =−G

(
m1 m2
‖q‖ + m1 m3

‖Q+µq‖ + m2 m3
|Q−(1−µ)q‖

)
dU = ∂U

∂q . See notes below for ∂U
∂q expression

δq =
U−Uref

dU
. Newton-Raphson Correction to q2

if |δq|< tol then
NR← Q2

Exit While Loop . qc acceptable

else
q← q+δq

i← i+1 . Increment counter towards maxit

end if

end while
end function

End Procedures

There are now 2 integrals being conserved by the algorithm, which we may cast in the appropriate form c ·ξ using the

vector c =
(

+1, +1, +1, 0[1×5]

)ᵀ
and the usual ξ = T (x), such that:

E = T +U =
p2

2g1
+

P2

2g2
+U and (10.4a)

H =
l2

2g1 q2 +
L2

2g2 Q2 (10.4b)
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(where we intend by H the angular momentum, rather than the Hamiltonian) are summed together to form the integral:

I = E +H =
p2

2g1
+

P2

2g2
+U +

l2

2g1 q2 +
L2

2g2 Q2 , (10.5)

which is now exactly conserved by the integrator.

Lastly, as we mentioned in the beginning of the section, we also need the following expressions for the evaluation of

the force model in polar coordinates:

∂U
∂q

= G
(

m1m2

q2 +
m1m3µ(µq+Qcos(θ−Θ ))

‖Q+µq‖3 − m2m3(1−µ)((µ−1)q+Qcos(θ−Θ ))
‖Q− (1−µ)q‖3

)
, (10.6a)

∂U
∂θ

= G
(
−m1m3(µqQsin(θ−Θ ))

‖Q+µq‖3 +
m2m3((1−µ)qQsin(θ−Θ ))

‖Q− (1−µ)q‖3

)
, (10.6b)

∂U
∂Q

= G
(

m1m3(Q+µqcos(θ−Θ ))
‖Q+µq‖3 +

m2m3(Q− (1−µ)qcos(θ−Θ ))
‖Q− (1−µ)q‖3

)
, (10.6c)

∂U
∂Θ

= G
(

m1m3µqQsin(θ−Θ )
‖Q+µq‖3 − m2m3(1−µ)qQsin(θ−Θ )

‖Q− (1−µ)q‖3

)
, (10.6d)

and with this we may consider the presentation of this third conservative integration scheme complete.

10.5.2 Integrator Performance

Now, using algorithm 10.5.1, we reprise our discussion of conservative schemes for the planar Jacobi 3−body problem,

though our discussion will be more brief than in the previous sections.

Sun–Earth–Moon

For both this and the following test–case, we use the same initial conditions as for the explicit and implicit integrators

discussed previously. We begin our discussion with a summary of the estimated RMS–errors, which is to say the

RMS–differences with the RKF7(8) results calculated for this test case, given in table 10.6. The features which stand

out are that:

1. For a step–size of about 300s, comparable in terms of function evaluations to the the RKF7(8) pair, we find

that the error is still more or less an order of magnitude better than the RKF2(3) pair, at the cost of 2 orders of

magnitude greater number of function evaluations, in addition to more complicated function evaluations for the

transformation T (x) and the overhead of the Newton–Raphson solver;

2. In some cases this advantage is increased to 2 orders of magnitude smaller error, where we refer particularly to

the results for this problem’s small body, the Moon;18

3. We also note that there is essentially no difference between the performance of the polar algorithm compare with

the explicit and implicit methods. This is somewhat surprising, though it will be less so in light of our remarks

on the conservation of the second integral further on. We may summarize them as follows, however: conserva-

tion of the angular momentum appears to be much less important to the current problems than the conservation

18The reader will note further on in this chapter that for the Earth–Moon–Satellite configuration it is typically the satellite which
causes problems!
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of energy, and consequently shows much less deviation from constant for all algorithms except the RKF2(3) pair.

Integrator: RKF7(8) RKF2(3) Polar h = 300s Polar h = 100s
fevals 1.24E+5 9.88E+3 1.50E+5 3.62E+5
NC–steps – – 0 1

Sun
∆x RMS – 7.32E-06 1.00E-06 4.62E-08
∆y RMS – 3.33E-06 5.56E-07 2.64E-08
∆ẋ RMS – 1.01E-12 2.80E-13 1.37E-14
∆ẏ RMS – 5.82E-13 2.22E-13 1.04E-14

Earth
∆x RMS – 5.98E+00 3.27E-01 1.50E-02
∆y RMS – 4.34E+00 1.89E-01 9.65E-03
∆ẋ RMS – 1.17E-05 1.08E-07 8.94E-09
∆ẏ RMS – 1.30E-05 9.00E-08 8.47E-09

Moon
∆x RMS – 4.01E+02 2.17E+00 2.63E-01
∆y RMS – 3.54E+02 1.96E+00 2.43E-01
∆ẋ RMS – 9.46E-04 5.33E-06 6.57E-07
∆ẏ RMS – 1.05E-03 5.63E-06 6.96E-07

Table 10.6: Comparison of performance metrics for Sun–Earth–Moon planar Jacobi Problem – RKF2(3) ,RKF7(8)
and Algorithm 10.5.1 with h = 300s and h = 100s respectively.

We present illustrations of this performance in figures 11.1 and 10.26, in line with the earlier discussion. We note

here also the difference in magnitude between the estimated errors in the 3 bodies, corresponding prominently to their

relative motion in the problem.

We also indicate the performance with respect to the energy integral in figure 10.27. We note that here the conservative

integrator does not actually conserve the integral up to machine precision; it is not far off, though still differing roughly

two orders of magnitude (as indicated by the red curve). We remark that the curve appears to be relatively constant in

magnitude, as opposed to a secular growth, though it had an interesting ‘stepped’ profile corresponding to the period-

icity of the Moon’s motion (6 steps over 3 lunar cycles, cf. the dips in figures 11.1 and 10.26 as well).

In light of this discussion and the results presented, it appears that while the algorithm shows good performance relative

to the RKF2(3) pair (traded against a higher RKF7(8)–like number of function evaluations), there is no clear reason

to prefer this particular implementation. This seems particularly so given that it has the highest overhead of the three

variants.
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Figure 10.25: State difference magnitude: Algorithm 10.5.1 (h = 300s) vs. RKF7(8) – Sun in magenta, Earth in blue
and Moon in green.
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Figure 10.26: State difference magnitude: Algorithm 10.5.1 (h = 100s) vs. RKF7(8) – Sun in magenta, Earth in blue
and Moon in green.
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Figure 10.27: Energy Integral–Conservation Performance: Algorithm 10.4.1 (red, h = 300s) vs. RKF7(8) (blue); also
included is a dashed black line for the true value of the integral. Figure also representative for Algorithm 10.4.2 and
the smaller h = 100s time–step.
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Earth–Moon–Satellite

For the Earth–Moon–Satellite case, we find results for algorithm 10.5.1 in polar Jacobi coordinates roughly in line with

the explicit and implicit algorithms 10.4.1–10.4.2 discussed in section 10.4. We would expect, however, on the basis

of the double conservation, and the previous test–case, to find slightly better results, and that is borne out by table 10.7

and figure 10.29 below.
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Figure 10.28: Planar Jacobi 3BP motion of the Earth, Moon and Satellite, in the Earth–centered psuedo–inertial frame
– Algorithm 10.5.1 solution with h = 5s – Note the subsequent trajectory after swing–by, where a slightly different
approach of the near–Earth region leads to a second swing–by and subsequent escape from the system.

We note that here the RMS–measure is not a very good one, as the error behaves very differently during different parts

of the trajectory. In fact the trajectory is a very good match (significantly better than the explicit and implicit algorithms

considered in the previous section) up to the swing–by encounter with the Moon, as we see on comparing figures 10.20

and 10.28. The subsequent trajectory after swing–by, however, is very different, in that a slightly different approach of

the near–Earth region leads to a second swing–by and subsequent escape from the system.

Further, the energy integral is not properly conserved for this problem, as we see in figure 10.30, which is representa-

tive for the range of time–steps 2.5s≤ h≤ 50s. This indicates the need for a yet–smaller time–step, which we have not

investigated further. Lastly, figure 10.31 gives an indication of the performance with respect to the conservation of the

angular momentum integral. In contrast to the energy integral, we find that this is conserved very well, which is in fact

typical of all three algorithms on both test–cases.

Again, it seems that we may tentatively conclude that there is no clear advantage to this formulation of the algorithm,

despite our expectations in light of its doubly–conservative nature. In light of the picture that emerges from evaluating

the integral, as in figure 10.31, this is perhaps understandable.
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Figure 10.29: State difference magnitude: Algorithm 10.5.1 (h = 2.5s) vs. RKF7(8) – Earth in blue, Moon in green
and Satellite in black. Compare figure 10.23.
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Integrator: RKF7(8) Polar h = 50s Polar h = 5s Polar h = 2.5s
fevals 1.24E+5 6.80E+5 6.40E+6 1.28E+7
NC–steps – 0.015% 0.014% 0.014%

Earth
∆x RMS – 3.92E+00 3.65E+00 1.83E+00
∆y RMS – 3.89E+00 3.21E+00 1.61E+00
∆ẋ RMS – 9.94E-06 8.58E-06 4.31E-06
∆ẏ RMS – 1.02E-05 9.78E-06 4.90E-06

Moon
∆x RMS – 3.19E+02 2.97E+02 1.49E+02
∆y RMS – 3.16E+02 2.61E+02 1.31E+02
∆ẋ RMS – 8.08E-04 6.98E-04 3.50E-04
∆ẏ RMS – 8.30E-04 7.95E-04 3.99E-04

Satellite
∆x RMS – 1.63E+06 8.01E+06 1.68E+06
∆y RMS – 7.80E+05 2.23E+07 1.81E+06
∆ẋ RMS – 8.33E-01 4.89E+00 9.89E-01
∆ẏ RMS – 5.48E-01 1.26E+01 9.30E-01

Table 10.7: Comparison of performance metrics for Earth–Moon–Satellite planar Jacobi 3−body problem – RKF2(3),
RKF7(8) and Algorithms 10.5.1 for h0 = 100, 10, 5s.
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Figure 10.30: Energy Integral–Conservation Performance: Algorithm 10.5.1 (red, h = 10s) vs. RKF7(8) (blue); also
included is a dashed black line for the true value of the integral. Performance representative for range 2.5s≤ h≤ 50s
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10.6 On Conservation of Multiple Integrals in General

Let us make some closing remarks on the conservation of multiple integrals in general.

Essentially, the above case of double conservation is a “lucky” side–effect of the formulation in polar coordinates,

which makes the conservation of the angular momentum easy to implement. It is important to note, however, that ex-

pression (10.5) is a single function of two integrals. This is in principle always possible if the linearizing transformation

for the two integrals is the same, for then:

I1 = c1 ·ξ = c1 ·T (x) and

I2 = c2 ·ξ = c2 ·T (x) can be combined as:

I3 = (c1 + c2 ) ·T (x) . (10.7)

At the very least, the transformations must be compatible in the sense we outline below, and this is the benefit of polar

coordinates. In general however, the quadratic forms involved of the transformation for conservation of the Hamilto-

nian makes it difficult to envision further compatible integrals.

Some possibilities and difficulties do present themselves:

• The exception to this difficulty which Bowman et al. exploit is that, much as with our explicit formulation of

a singly–conservative integrator, we can always add a term to one of the transformed variables, as long as it

does not obstruct the reconstruction sequence in the inverse transformation (this is the sense of compatibility

we intended above).

We remark that it does appear, however, that this may have some consequences for the conservation of both, as

the effects of machine error become coupled in a non–trivial way. Indeed this may explain the stepping behavior

observed in figure 10.27.

• Further, one way in which such an obstruction could occur also happens to set practical limits on what we can do

with the other coordinates. A reason that we are able to formulate an implicit algorithm along the above lines,

is that we can reconstruct the coordinate using the potential and the remaining coordinates using an efficient

algorithm: Newton–Raphson.

This is no longer possible (at least, not efficiently in a robust sense) if we remove a further coordinate from the

set on which U depends, such that we must consider instead an e.g. 2–dimensional root–finding problem. In

that case there are no known “good” algorithms, and we would be reliant on 2– or multi–dimensional Newton–

Raphson type codes which are very strongly dependent on the initial guess, and in the limit of this dependence

we would hypothetically no longer need a correction–step in our algorithm, i.e. we undermine the assumptions

of the prototype on which our framework is built.

• That leaves the possibility of conservation of an integral which can be part of the transformation T (x) analogous

to the potential, but which leads to a root–finding problem in different variables than those determining U(x),

such that the root–finding routines can be run if not in parallel, then at least sequentially, we may have a way

out of the above dilemma. While this is certainly possible, it is not to say that nature will oblige by providing

us with such a useful integral of course.
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Despite the above, rather abstract discussion, it is prudent to bear the following in mind. A doubly–conservative in-

tegrator as formulated in algorithm 10.5.1 applies to the Jacobi problem, which was in a sense already maximally

reduced with the other 8 integrals of motion, effectively exploiting all the known integrals. There is a caveat in that

this is only true for the planar restriction of the problem, but the extension of the above integrator by the addition of

a z–coordinate seems a straightforward next step. Barring unforeseen difficulties with the formulation of the angular

momentum in these coordinates, it should be possible to extend to the 3–dimensional case.

That this does not change when we extend the model itself beyond 3 bodies implies that the “low–hanging fruit” has

already been picked, and that for the foreseeable future, the best candidate for similar conservative approaches would

lie with new integral–approximations of the kind discussed in Part II of this thesis.

Supposing of course that headway can be made in that area, it further implies that any additional integrals being

incorporated into a multiply–conservative integrator will likely be of a relatively complex form, and consequently, it is

unlikely that true multiply–(approximately)–conservative algorithms can be formulated that are not so computationally

complex that their implementation poses a problem of diminishing returns.
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Chapter 11

Approximately–Conservative
Integrators

In this chapter we discuss the design and performance of 2nd –order integrators which conserve an approximation (to

a given order1) to an integral of motion. We present results for the circular restricted 3−body problem and the capture

problem only; the process of design for the Jacobi 3−body problem is exactly analogous, with its discussion differing

mainly in details of implementation, which are of lesser interest.

11.1 Convergence of Integral Approximations

Before formulating the two approximately conservative integrators we discuss in this chapter, let us briefly consider

the convergence of the corresponding integral approximations constructed in Part II of this thesis (sections 7.2 and 8.2).

It is not possible, nor is it useful, for present purposes, to give a general consideration of the convergence of integral

approximations (even for analytically known integrals) for an arbitrary orbit of the 3−body problem, whether full

or restricted. However, we can predict the performance of integral approximations for our test–cases, using e.g. our

RKF7(8) integrator pair solutions as input. We have done this for the CR3BP in particular.

The approximations we consider are (in their naive formulation):

J =
1
2

(
x2 + y2− ẋ2− ẏ2 +

2(
x2 + y2

)1/2

)
−

 1(
(x−1)2 + y2

)1/2
− x(

x2 + y2
)3/2
− 1(

x2 + y2
)1/2

ε

−

 3x2

2
(
x2 + y2

)5/2
− 1

2
(
x2 + y2

)3/2
+

1(
x2 + y2

)1/2
+

1(
(x−1)2 + y2

)3/2
− 1(

(x−1)2 + y2
)1/2

+ x

 2(
x2 + y2

)3/2
− 1(

(x−1)2 + y2
)3/2


ε

2 +O
(

ε
3
)

,

with ε = 10−2 for the CR3BP. For the capture problem, with ε = 10−1:

1In a small parameter ε resulting from a perturbation formulation of the system, as discussed extensively in Part II of this thesis.
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I =−1
2

(
x2 + y2− ẋ2− ẏ2 +

2(
x2 + y2

)1/2

)
−

 1(
(x−1)2 + y2

)1/2
− x(

x2 + y2
)3/2
− 1(

x2 + y2
)1/2

 ε
6

− 1(
(x−1)2 + y2

)1/2
ε

8 +O
(

ε
11
)

.

However, as remarked earlier in chapters 6 – 8 these expressions were derived under simplifying assumptions for pur-

poses of clarity. When comparing with real simulations based on real initial conditions, we must of course correct them

to the true expressions, which is easily done in MATHEMATICA . The calculations are provided on the CD included

with this thesis as the notebook IntegralApproxExpressions.nb, for reference.

We find there that the correct expressions are:

J =−1
2

(
x2 + y2− ẋ2− ẏ2 +

2(
x2 + y2

)1/2

)
−

 1(
(x−1)2 + y2

)1/2
− x(

x2 + y2
)3/2
− 1(

x2 + y2
)1/2

 m̄2ε

−

 3x2

2
(
x2 + y2

)5/2
− 1

2
(
x2 + y2

)3/2
+

1(
x2 + y2

)1/2
+

1(
(x−1)2 + y2

)3/2
− 1(

(x−1)2 + y2
)1/2

+ x

 2(
x2 + y2

)3/2
− 1(

(x−1)2 + y2
)3/2


( m̄2ε)2 +O

(
( m̄2ε)3

)
, (11.1)

and

I =−1
2

(
x2 + y2− ẋ2− ẏ2 +

2(
x2 + y2

)1/2

)
−

 1(
(x−1)2 + y2

)1/2
− x(

x2 + y2
)3/2
− 1(

x2 + y2
)1/2

 m̄2ε
6

− 1(
(x−1)2 + y2

)1/2
m̄3ε

8 +O
(

ε
11
)

. (11.2)

Here, as earlier in the work of Part II of this thesis:

m0 = m1 for each problem, and so: (11.3)

m̄2 =
m2

m0 ε
for the CR3BP, while (11.4)m̄2 = m2
m0 ε6

m̄3 = m3
m0 ε8

for the CP. (11.5)

These approximate integral expressions (11.1)–(11.2) have been used in the approximately conservative integrators

discussed in this chapter, but we also use them to obtain the qualitative impression of the speed of convergence for the

integrators.

1. The results for the Sun–Earth–Moon circular restricted 3−body problem are given in figure 11.1.
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Figure 11.1: Estimation of the convergence of the integral by O (ε) using the Sun–Earth–Moon CR3BP test–case.

We see that the convergence is quite quick, and reaches 10 digits of precision by the third term in the approxi-

mation for these types of trajectories. We also note that not all terms of the approximation contribute in the same

way, with the expansion’s RMS–deviations appearing to stagnate at alternating orders, which may of course be

useful computationally.

2. The situation for the Earth–Moon–Satellite configuration is illustrated in figure 11.2, and we will postpone the

discussion it until later. However, we note briefly that the convergence appears to be considerably slower, which

is in line with the much smaller magnitudes of the εk terms at each step in the approximation, since the correc-

tions by powers of ε are much larger for this problem than in a Sun–Earth–Moon configuration.

3. The convergence in the capture problem in turn cannot strictly be estimated, as we do not have a limit to which it

converges. However, qualitatively, we remark that it is based on the Jacobi integral J for the Sun–Earth–Moon

CR3BP, and we might naively expect the convergence to be comparable. The caveat lies in the fact that the
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O
(
ε8) term corresponds precisely to the O

(
ε0) term of the Moon, and has a relatively small impact, as we

shall see, so we effectively have only 1 contributing term. This makes convergence slower than we might have

hoped.

11.2 Approximately Conservative Integrators for the CR3BP

We first consider the algorithm we have developed for the circular restricted 3−body problem.

11.2.1 Integrator Design

In order to formulate the approximately conservative integrator for the circular restricted 3−body problem, we base

ourselves on the core algorithm 10.2.3 and algorithm 10.3.1 for the CR3BP specifically. This is then modified to

algorithm 11.2.1.

Algorithm 11.2.1 (CR3BP–based Approximately Conservative Integrator)

t := t0 . Initial time

x := (x0, y0, ẋ0, ẏ0 )ᵀ . Initial state

k := 0 . Output counter

Xout[k]← x . First entry in 2D output array

h :=
t f − t0

N
. Determine step size

for t = t0 : h : t f do

Take Conservative Integration Step . Algorithm 10.2.3

if (Intermediate Output Point k) then
Xout[k]← x . Next entry in output array

k← k +1 . Increment counter

end if

end for

Procedures:

function f (x)

f ←


ẋ = x[3]

ẏ = x[4]

2ẏ+ x− 1−µ
r3

1
(x+µ)− µ

r3
2
(x− (1−µ))

−2ẋ+ y− 1−µ
r3

1
y− µ

r3
2
y

 . 1st derivatives already available!

end function

function T (x)
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T ←


1
2 x2

1
2 y2

1
2 ẋ2 +Uapp

1
2 ẏ2

 . Approximate potential terms absorbed into 3rd coordinate

end function

function fξ(x)

fξ←


x ẋ

y ẏ

ẋ ẍ+
∂Uapp(x,y,ε)

∂x
+

∂Uapp(x,y,ε)
∂y

ẏ ÿ

 . ∂U
∂x , ∂U

∂y must now be formed explicitly

end function

function T−1(xp, ξ)

T−1←


sgn(xp)

√
2ξ1

sgn(yp)
√

2ξ2

sgn(ẋp)
√

2
(
ξ3−Uapp

)
sgn(ẏp)

√
2ξ4


end function

End Procedures

Note the following in algorithm 10.3.1:

• The reader will note that in being based on the CR3BP–integrator of algorithm 10.3.1 this integrator is explicitly

formulated with respect to the coordinates, but this is not an essential point.

• As noted above, for the Earth–Moon–Satellite problem we take ε = 10−2. This too is not essential, in that the

same algorithm works for the Sun–Earth–Moon problem if we adjust ε to that problem, and we remark that for

purposes of the algorithm, we may there directly take ε = 10−6.

• In formulating conservation of the approximate integral, we note that the approximate nature comes from the

Jacobi integral’s potential terms, which we have denoted Uapp above. In contrast to the earlier cases, we can

no longer enforce the conservation of this using the other coordinates, since conservation is only approximate.

Instead, we must form the terms ∂Uapp
∂x and ∂Uapp

∂y explicitly. We give the expressions below in section 11.2.2.

• In forming these terms, we note that Uapp(x,y,ε) and its derivatives are formed by the order, which is passed

to the algorithm as a variable of the same name by the IntegrationMethods driver routine. Algorithm 11.2.2

outlines the construction.

• Lastly, we note that our approximate integral is determined by the linearizing transformation ξ = T (x) and the

vector c = (−1,−1, +1, +1 )ᵀ, which the reader will note is indeed in the appropriate form c · ξ of section

5.3.2, if we take Uapp as discussed in the next section.
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11.2.2 Approximation Construction

The necessary approximations are given by the following expressions:

[Uapp ]0 =− 1(
x2 + y2

)1/2
(11.6a)

at O
(
ε0) , which we denote order=0 in terms of the variable passed,

[Uapp ]1 =−

 1(
(x−1)2 + y2

)1/2
− x(

x2 + y2
)3/2
− 1(

x2 + y2
)1/2

 m̄2ε (11.6b)

at O
(
ε1) , which we denote order=1 in terms of the variable passed,

[Uapp ]2 =−

 3x2

2
(
x2 + y2

)5/2
− 1

2
(
x2 + y2

)3/2
+

1(
x2 + y2

)1/2
+

1(
(x−1)2 + y2

)3/2
− 1(

(x−1)2 + y2
)1/2

+ x

 2(
x2 + y2

)3/2
− 1(

(x−1)2 + y2
)3/2


( m̄2ε)2 (11.6c)

at O
(
ε2) , which we denote order=2 in terms of the variable passed.

Consequently for the approximation derivatives, we find that:

[
∂Uapp

∂x
]0 =

x(
x2 + y2

)3/2
(11.7a)

at O
(
ε0) , which we denote order=0 in terms of the variable passed,

[
∂Uapp

∂x
]1 = m̄2ε

 (−1+ x)(
(−1+ x)2 + y2

)3/2
− 3x2(

x2 + y2
)5/2

+
1(

x2 + y2
)3/2
− x(

x2 + y2
)3/2

 (11.7b)

at O
(
ε1) , which we denote order=1 in terms of the variable passed,

[
∂Uapp

∂x
]2 =

1
2

m̄2
2ε

2

(
15x3(

x2 + y2
)7/2
− 9x(

x2 + y2
)5/2
− 4(

x2 + y2
)3/2

+
2x(

x2 + y2
)3/2

+
3(−2+2x)(

1−2x+ x2 + y2
)5/2

+
2(

1−2x+ x2 + y2
)3/2
− −2+2x(

1−2x+ x2 + y2
)3/2

+x

(
12x(

x2 + y2
)5/2
− 3(−2+2x)(

1−2x+ x2 + y2
)5/2

))
(11.7c)

at O
(
ε2) , which we denote order=2 in terms of the variable passed,

with respect to x and:
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[
∂Uapp

∂y
]0 =

y(
x2 + y2

)3/2
(11.8a)

at O
(
ε0) , which we denote order=0 in terms of the variable passed,

[
∂Uapp

∂y
]1 = m̄2ε

 y(
(−1+ x)2 + y2

)3/2
− 3xy(

x2 + y2
)5/2
− y(

x2 + y2
)3/2

 (11.8b)

at O
(
ε1) , which we denote order=1 in terms of the variable passed,

[
∂Uapp

∂y
]2 =

1
2

m̄2
2ε

2

(
15x2y(

x2 + y2
)7/2
− 3y(

x2 + y2
)5/2

+
2y(

x2 + y2
)3/2

+
6y(

1−2x+ x2 + y2
)5/2

− 2y(
1−2x+ x2 + y2

)3/2
+ x

(
12y(

x2 + y2
)5/2
− 6y(

1−2x+ x2 + y2
)5/2

))
at O

(
ε2) , which we denote order=2 in terms of the variable passed,

with respect to y.

The actual construction is then performed stepwise by the following algorithm:

Algorithm 11.2.2 (Approximation Constructor)

Uapp← 0
∂Uapp

∂x ← 0
∂Uapp

∂y ← 0

for i = 0 : 1 : order do

Uapp←Uapp +
[
Uapp

]
i . Add order i term

∂Uapp
∂x ←

∂Uapp
∂x +

[
∂Uapp

∂x

]
i

. Add order i term

∂Uapp
∂y ←

∂Uapp
∂y +

[
∂Uapp

∂y

]
i

. Add order i term

end for

In the above algorithm terms of the form
[

∂Uapp
∂y

]
i

refer to the ith term in the approximation of the potential, or the

derivative thereof, cf. equations (11.6)–(11.8).
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11.2.3 Integrator Performance

We next turn to a consideration of integrator performance.

Sun–Earth–Moon

Given our interest in the phenomenon of capture, our design for the CR3BP is best seen as a stepping stone to the

capture problem, for which the reader will recall that we have only an approximate integral to work with. As a result,

in the performance considerations below, we will focus on the performance on satellite trajectories in the Earth–Moon

region, and so a omit discussion of the results of the approximate conservation scheme for the Sun–Earth–Moon circu-

lar restricted 3−body problem.

We do remark, however, that given the dominance of the main masses, the simulation results confirm that with ε = 10−6

in this case (cf. section 7.2.1), the approximate integrals converge quickly, as we suspected in section 11.1. The cor-

rections of the O
(
ε3) terms are already beyond the double–precision level of accuracy available to us in the MAT-

LAB environment, and at O
(
ε2) we reach machine precision in our deviations from ideal.2

The interested reader will find simulation output in the directory model3-approx on the CD included with this thesis,

which can be visualized using the included MATLAB scripts (for details, see appendix C).

Earth–Moon–Satellite

We thus focus in this section on the same Earth–Moon–Satellite test–case as in section 10.3.2. The trajectory in the

(natural) Earth–Moon–rotating system has already been given in figure 10.9, corresponding to initial condition:

x0 =


−µrEM−6.999993 ·103

−9.893934

+9.685109 ·10−1

+1.058167 ·101

 .

Here, we compare the performance of the algorithm 11.2.1 for 4 different approximations of the Jacobi integral J , con-

structed as explained in section 11.2.2. Let us begin by considering the predicted convergence based on the RKF7(8)

solution of the CR3BP, given in figure 11.2. We see, on the basis of both the RKF7(8) pair and the solution via al-

gorithm 10.3.1, that we may expect convergence to be considerably slower than that of the above test–case. This is

understandable as now ε = 10−2 rather than3 ε = 10−6 (again cf. section 7.2.1), and as such the deviation from the

initial value goes down more slowly.

Remark though, that in figure 11.2 we give the RMS–deviation from the initial value by order, and this means that the

results are worse than might be expected for general trajectories in the CR3BP, since this test–case involves phenomena

such as the swing–by near step 6060 which are difficult for the integrator to handle, increasing the error considerably,

as discussed earlier in section 10.3.2.

We note also, considering this figure, that there is a divergence between the predictions of convergence due to the

conservative scheme and the RKF integrator pair. Comparing the actual reduction by order in table 11.1, it appears

that the reduction estimated by algorithm 10.3.1 was too optimistic, and that the actual performance is closer to that

predicted by the RKF7(8) data.

2This could of course, already be estimated using expressions (11.6)–(11.8).
3In the Sun–Earth–Moon configuration.
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Figure 11.2: Predicted convergence of integral approximations based on Algorithm 10.3.1 and RKF7(8) solutions of
the CR3BP – First plot shows error at departure which converges to a stable value, second plot shows disturbance from
this stable value by swing–by of Moon (Ordering is O

(
ε0) –red, O

(
ε1) –green, O

(
ε2) –blue, O

(
ε3) –magenta). Third

plot shows expected convergence behavior of the RMS–deviation from the Jacobi integral’s true value, by order of the
approximation (red is algorithm 10.3.1, blue is the RKF7(8) pair).

When we consider the usual performance metrics for the approximately conservative scheme, we find the results of

table 11.1, and give the corresponding state magnitude difference plots (as an estimate of the error) for the different or-

ders in figure 11.3. The reader may compare these with figures 10.10 and 10.11 for the fully conservative and RKF2(3)

integrator pair solutions respectively.

We note, on comparing with the earlier fully–conservative algorithm 10.3.1 that the estimated error is roughly an order

of magnitude higher than previously, which is in line with what we expect for relatively slow convergence of the ap-

proximate integral.

It is, however, incumbent upon us to point out that using the integral approximations rather than the true integral in

closed analytical form adds considerably to the computational effort involved. This is particularly so in terms of float-

ing point operations per (transformed) force function evaluation fξ = T ′(x) · ẋ, which is not yet reflected in the ‘fevals’

count in table 11.1. In consequence, it would probably not be worthwhile to proceed along these lines in practice, at

least in this type of problem involving a small satellite.

213



Integrator: RKF7(8) Approx O
(
ε0) Approx O

(
ε1) Approx O

(
ε2) Approx O

(
ε3)

fevals 1.24E+5 3.21E+6 3.21E+6 3.21E+6 3.21E+6
NC–steps – 2 0 0 0

Satellite
∆x RMS – 1.56E+4 1.03E+4 6.23E+3 3.30E+3
∆y RMS – 1.63E+4 1.08E+4 6.61E+3 3.52E+3
∆ẋ RMS – 3.32E-1 3.04E-1 2.64E-1 2.14E-1
∆ẏ RMS – 3.83E-1 3.49E-1 3.00E-1 2.37E-1

Table 11.1: Comparison of performance metrics for Earth–Moon–Satellite pCR3BP with approximately conservative
algorithms of varying order for a 10 second time–step.
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Figure 11.3: State difference magnitude for Satellite: Algorithm 11.2.1 at varying orders for a 10 second time–step vs.
RKF7(8) – Ordering of integral approximations conserved is O

(
ε0) –red, O

(
ε1) –green, O

(
ε2) –blue, O

(
ε3) –black.
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For comparison of what these plots mean in practice, we give for comparison figures 11.4 and 11.5, which show the

RKF7(8) trajectories and an approximately conservative scheme together in one plot, with the order=0 approximation

in 11.4 and the highest order=3 approximation in 11.5.
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Figure 11.4: Comparison of trajectories in Earth–Moon–rotating system – Algorithm 11.2.1 with order=0 (i.e. O
(
ε0)

) approximation in black, reference RKF7(8) integrator pair in blue.

In these we see that while the function evaluations necessary are relatively high, the rough form of the trajectory is

already present in the O
(
ε0) approximate integrator. However, this will typically not track the details of the swing–

by accurately enough, forcing us to use a higher–order approximation anyway (assuming we were to persist in this

approach for this particular problem).
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Figure 11.5: Comparison of trajectories in Earth–Moon–rotating system – Algorithm 11.2.1 with order=3 (i.e. O
(
ε3)

) approximation in black, reference RKF7(8) integrator pair in blue.
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11.3 Approximately Conservative Integrators for Capture

Finally, we shall consider the design and performance of the approximately conservative algorithm we have developed

for the Capture Problem.

11.3.1 Integrator Design

In order to formulate the approximately conservative integrator for the Capture Problem, we base ourselves on algo-

rithm 11.2.1 in the previous section. The key change, remarking the structural similarity between expressions (11.1)

and (11.2), is that now the terms we denoted as an “approximate potential” change form, and so algorithm 11.2.1 is

unchanged, as is the approximation constructor 11.2.2.

What does change, however, are the expressions used in the algorithms to form the approximations:

[Uapp ]0 =− 1(
x2 + y2

)1/2
(11.9a)

at O
(
ε0) , which we denote order=0 in terms of the variable passed,

[Uapp ]1 =−m̄2ε
6

 1√
(−1+ x)2 + y2

− x(
x2 + y2

)3/2
− 1√

x2 + y2

 (11.9b)

at O
(
ε6) , which we denote order=1 in terms of the variable passed,

[Uapp ]2 =− m̄3ε8√
(−1+ x)2 + y2

(11.9c)

at O
(
ε8) , which we denote order=2 in terms of the variable passed.

Consequently for the approximation derivatives, we find that:

[
∂Uapp

∂x
]0 =

x(
x2 + y2

)3/2
(11.10a)

at O
(
ε0) , which we denote order=0 in terms of the variable passed,

[
∂Uapp

∂x
]1 =−m̄2ε

6

− −1+ x(
(−1+ x)2 + y2

)3/2
+

3x2(
x2 + y2

)5/2
− 1(

x2 + y2
)3/2

+
x(

x2 + y2
)3/2

 (11.10b)

at O
(
ε6) , which we denote order=1 in terms of the variable passed,

[
∂Uapp

∂x
]2 = m̄3ε

8 (−1+ x)(
(−1+ x)2 + y2

)3/2
(11.10c)

at O
(
ε8) , which we denote order=2 in terms of the variable passed,

with respect to x and:
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[
∂Uapp

∂y
]0 =

y(
x2 + y2

)3/2
(11.11a)

at O
(
ε0) , which we denote order=0 in terms of the variable passed,

[
∂Uapp

∂y
]1 =−m̄2ε

− y(
(−1+ x)2 + y2

)3/2
+

3xy(
x2 + y2

)5/2
+

y(
x2 + y2

)3/2

 (11.11b)

at O
(
ε6) , which we denote order=1 in terms of the variable passed,

[
∂Uapp

∂y
]2 = m̄3ε

8 y(
(−1+ x)2 + y2

)3/2
(11.11c)

at O
(
ε8) , which we denote order=2 in terms of the variable passed,

with respect to y. The actual construction is then performed stepwise by the algorithm 11.2.2 given above.

11.3.2 Integrator Performance

In order to evaluate the performance of the approximate integrator in the capture problem, we of course first need a

ballistic lunar capture trajectory. While the initial conditions given in the previous chapter are close (being based on

initial conditions used in [Verzijl, 2005]), they do not lead to capture in the CP model. This is due to the fact that

the initial conditions used there were based on the full DE405 ephemeride model [Standish, 1997], in contrast to the

simplified Capture Problem model we introduced in section 3.5 and treat here.

However, as the model we introduced indeed reproduces all the essential features necessary for ballistic capture trajec-

tories, it is not that difficult to find a suitable set of initial conditions in CP–model coordinate system as:

x0 =


(1−µ)rES +6.999993 ·103

−9.893934000

+9.719510960 ·10−1

+1.059463426 ·101


The resulting orbit has the geometric form typical of exterior ballistic capture trajectories (cf. figure 3.9), is illustrated

in figure 11.6 in Sun–Earth–rotating coordinates. Figure 11.7 gives some further detail of the capture, and we see that

the radial distance goes down below 10000 km during the capture phase. Likewise this capture is unstable, and after a

period of some days the satellite leaves the vicinity of the Moon, its Moon–relative energy E2 again becoming positive

(cf. section 3.4).

Let us begin by again considering the predicted convergence based on the RKF7(8) solution of the CR3BP, given in

figure 11.8. We see there that while the integral is near constant throughout, it diverges considerably at departure

and in the capture region, where if we assume that it is converging back to the constant solution, it is doing so quite

slowly. Thus, on the basis of the RKF7(8) pair data, we may expect convergence to be slower, as in the previous

CR3BP test–case (though for different reasons, as outlined in section 11.1: while the basis of the capture problem is

the Sun–Earth–Moon CR3BP, this slow behavior is due to the availability of so few terms in our approximation.)

When we consider the actual performance of the approximately conservative scheme, we find the results of tables 11.2
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Figure 11.6: Capture Problem motion of the Satellite relative to the Earth and Moon in Earth–Sun–rotating coordinates
– trajectory demonstrates unstable ballistic lunar capture effected by a direct impulse transfer from a 600 km parking
orbit, as in [Verzijl, 2005] (Earth in blue, Moon in green, Satellite in black).

and 11.3, and give the corresponding state magnitude difference plots (as an estimate of the error) for the different

orders of approximation in figures 11.9–11.10 for h = 10s resp. h = 1s integration steps.

Integrator: RKF7(8) Approx O
(
ε0) Approx O

(
ε1) Approx O

(
ε2) Approx O

(
ε2) (h = 10s)

fevals 1.56E+5 4.01E+7 4.01E+7 4.01E+7 4.04E+6
NC–steps – 2 0 0 0

Satellite
∆x RMS – 8.58E+3 5.42E+3 5.70E+3 1.15E+5
∆y RMS – 1.02E+4 5.91E+3 6.21E+3 1.63E+5
∆ẋ RMS – 8.89E-2 5.47E-2 5.74E-2 3.89E-1
∆ẏ RMS – 9.07E-2 5.55E-2 5.84E-2 3.83E-1

Table 11.2: Comparison of performance metrics for Capture Problem with approximately conservative algorithms of
varying order for a 1 second time–step (O

(
ε2) term included with both 1 and 10 second time–steps for reference ).
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Figure 11.7: Capture Details – illustrated are negative 2–body energy E2, very close approach in terms of radial
distance, and an extended period of close coupling of velocities (relative velocity near 0).

Integrator: RKF7(8) RKF2(3) Simple Predictor Corrector Approx O
(
ε2)

fevals 1.24E+5 1.76E+4 2.00E+7 4.01E+7
NC–steps – 0 0 0

Satellite
∆x RMS – 7.60E+3 8.58E+3 5.70E+3
∆y RMS – 8.25E+3 1.01E+4 6.21E+3
∆ẋ RMS – 7.66E-2 8.90E-2 5.74E-2
∆ẏ RMS – 7.81E-2 9.07E-2 5.84E-2

Table 11.3: Comparison of performance metrics for Capture Problem Algorithm 11.2.1 at order 2 (i.e. O
(
ε8) ) and

h = 1s with RKF2(3) pair and Simple Predictor–Corrector, also h = 1s.
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Figure 11.8: Predicted behavior of integral approximations based on Algorithm 10.3.1 and RKF7(8) solutions of the
Capture Problem – First plot shows error at departure which converges to a stable value followed by disturbance from
this stable value during capture by Moon. Second plot is scaled to emphasize the features of the first (Ordering is
O
(
ε0) –red, O

(
ε1) –green, O

(
ε2) –blue).
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Figure 11.9: State difference magnitude for Satellite: Algorithm 11.2.1 at varying orders for h = 10s time–step vs.
RKF7(8) – Ordering is O
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(
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Figure 11.10: State difference magnitude for Satellite: Algorithm 11.2.1 at varying orders for h = 1s time–step vs.
RKF7(8) – Ordering is O

(
ε0) –red, O

(
ε6) –green, O

(
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We see in these plots that the conservative scheme performs roughly the same as the simple predictor–corrector for the

O
(
ε0) term, though it becomes considerably better with the O

(
ε6) –correction. What is interesting is that it appears

to stagnate there (an issue we raised earlier), and there is no noticeable improvement on adding the O
(
ε8) –correction,

at least for this capture trajectory. Noting that the computational effort scales with the order of the approximation, we

find in this good reason to neglect the latter term.

For comparison of what these plots mean in practice, we give for comparison figures 11.11 and 11.12, which show the

RKF7(8) trajectories and an approximately conservative scheme together in one plot, with the order=0 (i.e. O
(
ε0) )

approximation in figure 11.11 and the highest order=2 (i.e. O
(
ε8) ) approximation in figure 11.12.
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Figure 11.11: Comparison of trajectories in Earth–Moon–rotating system – Algorithm 11.2.1 with order=0 (i.e.
O
(
ε0) ) approximation in black, reference RKF7(8) integrator pair in blue.

We also give a comparison of the error of the best approximately conservative scheme (second order or O
(
ε8) accu-

rate, and taking 1 second steps) with the simple predictor corrector of algorithm 10.2.1 (likewise 1 second time–step)

and the RKF2(3) integrator pair. This is illustrated in figure 11.13.

We also consider, along the lines of the above discussion, the qualitative difference in the trajectory found using these

three methods in figures 11.14–11.15. It is clear that the extra computational effort makes a difference relative to the

simple–predictor corrector, which finds capture, but not the moment at which it occurs, which might be important for

the timing of maneuvers.

We thus develop, by the above considerations, a picture of relatively slow convergence due to the rather basic integral

approximation available to us, though it does appear that the conservative formulation improves the results relative

to the simple predictor–corrector. However, in light of the fact that the integrals converge to the same solution found

with the Runge–Kutta-Fehlberg pair for much higher computational effort, the advantages of conservative integration

likewise seem a moot point in the capture problem as well.
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Figure 11.12: Comparison of trajectories in Earth–Moon–rotating system – Algorithm 11.2.1 with h = 10s and
order=2 (i.e. O

(
ε8) ) approximation in black, reference RKF7(8) integrator pair in blue.
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Figure 11.13: State difference magnitude for Satellite: Algorithm 11.2.1 order 2 (h = 1s, black) vs. Simple Predictor–
Corrector (h = 1s, red) vs. RKF7(8) (blue).
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Figure 11.14: Trajectory Difference: Algorithm 11.2.1 order 2 (h = 1s, black) vs. Simple Predictor–Corrector (h = 1s,
red) vs. RKF7(8) (blue).
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Figure 11.15: Trajectory Difference zoomed in on capture region: Algorithm 11.2.1 order 2 (h = 1s, black) vs. Simple
Predictor–Corrector (h = 1s, red) vs. RKF7(8) (blue).
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Chapter 12

Conclusions

In the preceding chapters, we have presented a body of interrelated work on open problems in astrodynamics and

celestial mechanics. We have developed the 3−body problem, the circular restricted 3−body problem and a simple

model for 4–body ballistic lunar capture as a series of successive perturbation problems. To these, we have taken a new

approach to the problem of finding integrals of the motion on the one hand, and considered the possibilities offered by

a new approach to the integral–conservative numerical solution of the equations of motion of each problem.

The sum of this work constitutes the author’s thesis work at the faculties of Applied Mathematics and Aerospace

Engineering. Consequently, in this chapter, we summarize the conclusions of the work performed, and will give a

number of recommendations for future work.

12.1 Conclusions

We summarize our conclusions by subject area, roughly coinciding with the division of this thesis into parts submitted

for Applied Mathematics and for Aerospace Engineering.

12.1.1 Modeling Aspects

With regard to the modeling aspect of the thesis problem posed in the introduction:

• We have provided a detailed analysis of the links between the three key problems (planar Jacobi 3−body prob-

lem, the circular restricted 3−body problem and the capture problem), and have demonstrated that they can be

conceived as a set of successive perturbations and restrictions starting from the known solution of the 2−body

problem.

• We have derived and given an analysis of a simplified capture problem (3.83), which functions as a perturbation

of the circular restricted 3−body problem, and shown that it is a limiting case of the more realistic quasi–

bicircular problem treated by Andreu (specifically, our periodic term is the lowest, dominant harmonic in that

model). In particular we note that in light of the results presented in chapter 11 for the capture problem, we

may conclude that our model is indeed suited to the task of studying ballistic lunar capture for which it was

developed, preserving the essential features which make such trajectories possible.
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• We have introduced a framework for treating problems in astrodynamics in terms of multiple force–scales and

considered the implications of its application to the capture problem. In this we have shown that a key to under-

standing the dynamics of the capture problem lies in the fact that an exterior ballistic capture trajectory passes

through at least 3 distinct regions of physical space, which each involve different force–scales.

However, due to the time–constraints of this thesis work, our approach to the subsequent problems has been

largely in terms of mass scales for the planar Jacobi 3−body problem, and the naive force–scales of the CR3BP

and CP. Thus this conclusion has served us more for its explanatory power than for its application in the present

work.

12.1.2 On Approximations of First Integrals

With regard to the application of the method of integrating vectors in the search for approximations of integrals of the

motion:1

• We have demonstrated the ab initio construction of all the known integrals for the 3−body problem and circular

restricted 3−body problems, and it is hoped that the types of integrating factors found in chapters 6–8 may serve

as a guide in future work.

• We have constructed the approximation (8.22) of a first integral in the specific case of the capture problem,

using the integrating vectors found for the CR3BP’s Jacobi integral as a foundation. The approximation is valid

to O
(
ε8) , formulated in mass–scales based on the Sun–Earth 2– and 3–body problems, and we have shown

that the O
(
ε8) term, which is the O (1) contribution of the Moon, corresponds to the time–averaged influence

of the Moon in our capture problem.

This approach is, however, limited by the time–dependence of the equations for the integrating vectors, but

remains promising as a subject of further study, as we discuss in the recommendations below.

• We have also given the derivation of the systems (6.28), (7.15) and (8.24) of linear 1st –order partial differential

equations which any novel approximations of new integrals must satisfy for each of our three key problems, and

have pointed out the difficulties in solving them, as well as discussing possible approaches for further work.

12.1.3 On Integral–Conservative Numerical Simulation

With regard to the integral–conservative integration of the equations of motion for our three key problems:2

• We have given algorithms for the implementation of (three) 2nd –order energy–conservative integrators for the

planar Jacobi 3−body problem (algorithms 10.4.1–10.5.1) and a fourth for the circular restricted 3−body prob-

lem(algorithm 10.3.1). These have been implemented in FORTRAN and benchmarked against Runge–Kutta–

Fehlberg integrator pairs, where we have discussed the strengths & weaknesses of the conservative integrators.

1Together with section 12.1.1: the Applied Mathematics work of this thesis project.
2Together with section 12.1.1: the Aerospace Engineering work of this thesis project.
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In particular, we have noted the robustness of the implicit formulation in practice,3

• We further conclude that somewhat counter to our intuition4 the algorithms do not perform very well on prob-

lems involving a small satellite:

1. They require considerably larger5 time–steps than RKF–type methods to achieve similar accuracy, by our

estimation. This is caused primarily by their difficulty in dealing with close–approaches to the primary

bodies by the small satellite, which require a small time–step to be resolved properly. Our algorithms are

formulated without step–size adjustment, and so must integrate the entire trajectory with a fixed small

time–step. This causes a large disadvantage with respect to the step–size adaptive RKF algorithms.

2. Further, we observe not only the numerical instabilities due to a too large choice of time–step typical of

an explicit integration scheme, but also observe evidence for singularly perturbed behavior in test cases

involving a small satellite and large primaries.

Specifically, we observe that the stability of the integrator appears to be dependent on the mass of the

satellite (improving with increasing mass) and the velocities during close encounters with the primaries

during e.g. high–velocity departure and/or later swing–bys. This appears to emphasize the need for mak-

ing the force–scales in a problem explicit in its numerical solution, though for the capture problem this

would imply coupling solutions obtained separately in different force–regimes.

• We contrast this behavior, however, with the Sun–Earth–Moon simulations, which we might consider more typ-

ical of larger scale planetary systems. Here we find comparatively good performance, in line with the earlier

findings of Bowman et al.. In particular, we find that the algorithms are better than the prototype on which they

are based, and can hold their own against an RKF2(3) pair by trading function evaluations against increased

accuracy.

This, in line with the remarks above on the potential for long time–scale error–constraint suggests the conclu-

sion that a more promising field of application for conservative integration schemes may indeed be precisely

long–timescale planetary simulations.

• We have also implemented integrators conservative of approximate integrals for the circular restricted 3−body

problem and the capture problem, (algorithm 11.2.1 together with problem–specific variants of algorithm

11.2.2).

We note that with regard to performance, the approximately conservative integrators are strongly dependent

on the speed of convergence, which is high for the Sun–Earth–Moon 3−body problem, but low for the Earth–

Moon–Satellite 3−body problem. The capture problem forms an exception in that it is based on the Sun–Earth–

Moon configuration, but performs badly due to the availability of only a few low–order terms.

We note moreover that the convergence appears to plateau in some cases, and in particular we observe that for

the capture problem, the additional computational effort of taking the O
(
ε8) term into account does not appear

3In comparison with the explicit and polar formulations presented in chapter 10, in addition to its advantages with respect to
numerical roundoff error.

4And our motivation of this approach.
5Order of magnitude larger than the reference RKF7(8) integrator, and often multiple orders of magnitude larger than the RKF2(3)

pair.

233



worthwhile. We expect however, that the corrections at O
(
ε11) which follow would make a large contribution,

based on our experience with the Sun–Earth–Moon CR3BP (cf. figure 11.1).

• For the planar Jacobi 3−body problem in particular we have also implemented an integrator in polar coor-

dinates, which is conservative of both the energy and the angular momentum. It appears that this integrator

performs on par with the other implementations in the Sun–Earth–Moon configuration, and can perform some-

what worse in the Earth–Moon–Satellite configuration. This is likely due to a discrepancy between the role that

angular momentum plays in the two problems (the satellite having little to no influence in the latter).

In consequence, for the problems studied it does not appear to be worth the additional computational effort,

though the opposite may be the case in our revised conception of its application to long–scale planetary simula-

tions.

• Finally, we remark that these implementations are themselves part of a software–development effort which has

resulted in the IntegrationMethods suite of simulation and visualization code for the methods of this thesis,

and which we discuss briefly in appendix C.

12.1.4 Minor Results

Finally, with regard to some minor new results developed in this thesis:

• We have clarified and slightly extended the proof of Bowman et al.’s conservative integration theorem slightly,

which result is our proposition 5.3.1.

• We have proved the construction of the Jacobi integral of the circular restricted 3−body problem by the method

of integrating vectors (cf. our proposition 7.2.1), in addition to demonstrating the construction of the ten 3−body

problem integrals in the planar Jacobi 3−body problem.

• We have shown explicitly that any integral playing a role analogous to that of the Jacobi integral in the cap-

ture problem must necessarily be time–dependent, and contain as its time–independent part the Jacobi integral

proper. This knowledge cannot, however, be used effectively at present, due to the fact that the time–dependent

corrections to the integral are in principle of the same order of magnitude as the Jacobi–like terms.

• We have also discussed the relationship between local truncation error and integral approximation error in ex-

actly and approximately conservative algorithms in section 5.4. An exactly conservative algorithm essentially

forces the solution onto a lower–dimensional manifold in phase–space, since the conservation of the integral

eliminates normal–to–manifold errors in the degrees of freedom corresponding to the integral.

In practice this is only true up to machine precision, but unlike the local truncation error, this normal–to–

manifold error is not free to grow, but in principle remains constrained to the same order of magnitude through-

out the course of the integration. We have observed (cf. figure 10.5) that this fact may enable the integrators to

constrain the error over long time–span integrations more effectively than Runge–Kutta–based methods, though

further work is necessary to establish this and the conditions under which it might hold true.
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12.2 Recommendations
Against the background of the above conclusions of our work, we present the following six recommendations for future

work.

12.2.1 Applied Mathematics Part

We make two key and one minor recommendation in light of our work for Applied Mathematics:

• First, with regard to the capture problem, we would like to emphasize that while we have not succeeded in

solving the time–dependent PDE system for the integrating vectors within the time–constraints of work on this

thesis, we envision this as being very much a tractable problem.

In particular, as we have eliminated simple lowest–harmonic time–dependence of integrating vectors, we highly

recommend the application of Fourier techniques (harmonic analysis) in order to study the possibilities for a

series solution which may itself be expressible in terms of our perturbation–formulation.

• Second, and more tentatively, we recommend the further investigation of 3−body problem–extensions of the

Runge–Lenz vector theory, for possible approaches to developing new integral approximations in the 3−body

problem. This issue, which we raised in section 6.4, is motivated by our modeling perspective in that we assume

to have only slightly perturbed the 2−body problem.

We have seen the effects of this perturbation on all the integrals of the 2−body problem except the Runge–Lenz

vector, suggesting that we can push the idea a bit further. We recall our earlier discussion however, and note

that this may require a different approach than the techniques of this thesis, particularly recommending a study

based on the perturbation of the underlying dynamical symmetry which gives rise to the integral in the 2−body

problem.

• Lastly, we also recommend, in particular for our restricted CR3BP and capture problems, their extension to

3–dimensional problems in future work, for better correspondence of the model to the physical reality, in so far

as the problems remain tractable.

12.2.2 Aerospace Engineering Part

We make two key and one tentative recommendation in light of our work for Aerospace Engineering:

• In light of the difficulties experienced with all the lower–order integrators (and in particular the conservative

schemes) in handling of close approaches by a small satellite to large primaries, we strongly recommend two

approaches to dealing with this type of trajectory, which are not necessarily mutually exclusive:

1. First, the development of (implicitly formulated6) conservative algorithms which incorporate the estima-

tion of local truncation error and subsequent step–size adjustment. It is nearly certain that this would

eliminate the largest performance roadblock observed, in that the time–step is determined by the most

6That is with an implicit coordinate and explicit potential to minimize rounding issues; coupled to this, we recommend taking
the coordinate with the greatest influence on the potential U implicit, to improve the performance of the nonlinear solver, cf. section
sec:energyconservative.
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critical parts of a trajectory, while it could safely be higher elsewhere.

We suggest, further, that this may be fruitfully implemented on the basis of a Adams–Bashforth–Moulton

type multi–step predictor–corrector pair. As remarked in section 5.2.3, this also provides a clear path to

higher–order integration schemes, and so would remove the second major drawback to the methods of

this thesis (as being only O
(
h2) methods in time).

2. Second, the reformulation of problems involving a satellite, in particular our capture problem, in terms of

explicit force–scales for different regions of a trajectory for small satellites (in particular for any future

work on the ballistic lunar capture problem).

This is motivated by the analysis of section 4.3.3 together with the remarks on singularly perturbed be-

havior, in that it may be that certain types of instabilities persist even in higher–order methods, even with

step–size control, due to inappropriate modeling of the local dynamics. The best known approach to such

a situation is to make the local dynamics explicit, and we have shown that in the present class of problems,

a force–scales approach is a suitable way to handle the problem.

The potential down–side to this, however, is the need to couple solutions of different formulations of the

same problem in different physical regions, though this should not be an insurmountable problem.

• Lastly, we make a tentative recommendation concerning a hybrid approach to the numerical simulation of

Hamiltonian systems. It was remarked in our brief comparison of conservative and symplectic methods in

section 5.3.3 that both are motivated as structure preserving algorithms for Hamiltonian systems. It is understood

that they are, strictly speaking, mutually exclusive, but we would tentatively suggest that fully symplectic,

approximately conservative algorithms are not ruled out by theorem 5.3.3, suggesting the possibility of a best

of both worlds approach. We suggest this very carefully however, and note that such an approach would be very

complicated, and quite possibly not worth the return on investment in terms of computational effort.
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Appendix A

Notational Conventions

A few notes on the notational conventions in this thesis.

• We use the common convention ‘iff.’ as shorthand for the phrase ‘if and only if,’ and ‘resp.’ as shorthand for

respectively. Latin shorthand is typeset in italics.

• We also draw the reader’s attention to the distinction between lemmas, theorems and propositions. Following

the convention in mathematics, the term lemma has been reserved for theorems of lesser importance, while the-

orem refers to a principal result.

However, to make a distinction between results in the literature and new results presented in this thesis, we have

reserved use of the term proposition for theorems either given here for the first time, or significantly extended

from the literature.

• We use the counting convention ‘a×bth’ to denote the combination of the number of equations a and order of

each equation b in a system of differential equations. This is used in order to facilitate the analysis of transfor-

mations of the order of a system, e.g. from a 9×2nd–order to a 18×1st–order system, where the product must

be conserved.

• We also use the shorthand O
(

ε{k,k−2,k−4 }
)

to denote a coupling between orders of an expansion in ε; thus, the

above is intended as shorthand for the statement “a coupling between O
(
εk) , O

(
εk−2) and O

(
εk−4) terms in

the expansion.”

Two comments are in order for this extension of our notation: first, this scheme is understood only to contain

terms of order k ≥ 0 (i.e. we neglect any terms that are < 0), and second, it is understood that the scheme is

extended at higher orders as new ε–couplings enter the picture in our expansions (cf. chapter 4 and Part II of

this thesis).

• We use boldface vectors such as x only occasionally to emphasize the vector character of the variable being

discussed, preferring in general x with the vector character implied, which will usually imply an extended state

vector x = (x1, . . . , xn, ẋ1, . . . , ẋn )ᵀ. When x refers only to the coordinate x, this will be clear from the context.
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• The exception to the above rule is the convention in the discussion of astrodynamics in chapter 3 where r := ‖r‖
is always scalar and in a slight departure from convention elsewhere, vector quantities are emphasized in bold-

face to distinguish them clearly from their scalar magnitudes.

• We use || · || to denote the Euclidean norm and | · | to denote the complex norm or magnitude. The latter is also

used to denote the absolute value when applied to reals, a distinction which should be clear from context.

• We use the angled braces 〈 x 〉 to denote the average of a quantity, where the type of average taken will be clear

from context (typically the time–average).

• We use subscripts xi to denote the scalar components i of a vector; where on occasion xi is used, the subscript

denotes the order of an expansion of a vector quantity.

• We use superscripts w(i) to denote iteration, whether in a numerical integration scheme or an iteration of a map-

ping. In particular, we will use w(i) ≈ x(i) ≡ x(ti) for the approximation to the solution given by a numerical

integrator.

• We also draw the reader’s attention to the distinction between the symbols ν and υ. Throughout the thesis, ν

will be reserved for integrating factors and integrating vectors, cf. chapter 4, while υ = m3
m1+m2

a dimensionless

parameter corresponding to a small secondary or tertiary mass.

• We will not use f (3)(x) for d3 f
dx3 but write the derivative explicitly, while ‘clean’ superscripts x5 are reserved for

powers. We do, however, use the shorthand ∂i for component derivatives, e.g. the derivative of the scalar f (x)

with respect to the third vector component of x: ∂3 f (x) := ∂ f (x)
∂x3

.

• We lastly draw the reader’s attention to the distinction between Q, the rational numbers and Q, the generalized

coordinate space in the context of Lagrangian and Hamiltonian mechanics.
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Appendix B

Hamiltonian Formulations

We give, for reference, the Hamiltonians for the problems discussed in this thesis.

B.1 2−Body Problem Lagrangian and Hamiltonian

For the 2−body problem the inertial formulation is simplest; the n–body equations (3.3a) are specified for the case

n = 2, resulting in:

r̈1 =
ρ2

r3
12

r12 (B.1a)

r̈2 =
ρ1

r3
21

r21 (B.1b)

Lagrangian Formulation

Introducing:

M := m1 +m2 and µ̄ :=
m1m2

m1 +m2
,

the following generalized coordinates may be introduced:1,2

r := r2− r1 , (B.2a)

rb :=
m1r1 +m2r2

m1 +m2
=

N=2

∑
i=1

miri

N=2

∑
i=1

mi

. (B.2b)

1The subscript on the center-of-mass coordinate rb carries the meaning binary, which will be used in the 3−body problem and
4−body problems to distinguish it from the true center of mass r0 in those cases. In the 2−body problem the two coincide.

2Note also that the use of µ̄ is a convention which is used only here, and is not to be confused with the parameter µ = m2
m1+m2

will
be a dimensionless parameter in the 3−body problem, cf. section 3.3.5.
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With these it is found that:

T =
1
2

Mṙ2
b +

1
2

µ̄ṙ2 and (B.3)

U =−G
m1m2

r
, (B.4)

and so it follows that the Lagrangian is given by:

L = T −U =
1
2

Mṙ2
b +

1
2

µ̄ṙ2 +G
m1m2

r
. (B.5)

Hamiltonian Formulation

The Hamiltonian formulation approaches the problem as in the previous section, but introduces a slightly different set

of generalized coordinates. We introduce the same mass conventions and kinetic and potential energy as in the previous

section to obtain (B.5).

Note that Mµ̄ ≡ m1m2. Now, intuitively the Hamiltonian is simply T +U (and expressed in generalized coordinates

and momenta respectively), but this is demonstrated explicitly using the Legendre transform:

H = ∑
j

p jq̇ j−L(q, p) . (B.6)

With the same r, rb as generalized coordinates, the generalized momenta become:

q1 = rb , (B.7a)

p1 =
∂L
∂q̇1

= Mṙb , (B.7b)

q2 = r , (B.7c)

p2 =
∂L
∂q̇2

= µṙ , (B.7d)

by which:

H = Mṙbṙb + µ̄ṙṙ−
(

1
2

Mṙ2
b +

1
2

µ̄ṙ2 +G
m1m2

r

)
=

1
2

Mṙ2
b +

1
2

µ̄ṙ2−G
m1m2

r

=
p2

1
2M

+
p2

2
2µ̄
−G

Mµ̄
‖q2‖

. (B.8)

The equations of motion are derived from the relations q̇i =
∂H
∂pi

, ṗi =−∂H
∂qi

, which give:

q̇1 =
p1

M
−→ ṙb = ṙb , (B.9a)

q̇2 =
p2

µ̄
−→ ṙ = ṙ , (B.9b)

ṗ1 = 0 −→ Mr̈b = 0 , (B.9c)

ṗ2 =− GMµ̄
‖q2‖3 −→ µ̄r̈ =−GMµ̄

r3 r . (B.9d)
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B.2 Full 3−Body Problem Hamiltonian

The full 3−body problem Hamiltonian is derived as follows. In the coordinates of figure 3.1, the reader will recall the

formulation of the equations of motion as:

r̈i =−∇iUi =
n=3

∑
j=1,6=i

ρ j

r3
i j

ri j, i = 1, . . . ,3 . (B.10)

We take as generalized coordinates qi simply the position vectors r1, r2, r3, and with the usual convention ri j = r j−ri,

we obtain the Lagrangian L = T −U as:

L =
1
2

(m1 r1 · r1 +m2 r2 · r2 +m3 r3 · r3 )+
Gm1m2

‖r12‖
+

Gm1m3

‖r13‖
+

Gm2m3

‖r23‖
(B.11)

It is easily verified that the momenta corresponding to these coordinates via pi = dL
dq̇i

are simply

pi = miṙi .

Consequently, the kinetic energy terms of the Lagrangian L are reformulated as:

1
2

mi ri · ri =
pi ·pi

2mi
=

p2
1,i + p2

2,i + p2
3,i

2mi
,

such that the Hamiltonian for the full 3−body problem (cf. equation B.6) is given by:

H =
p1 ·p1

2m1
+

p2 ·p2

2m2
+

p3 ·p3

2m3
− Gm1m2

‖r12‖
− Gm1m3

‖r13‖
− Gm2m3

‖r23‖
. (B.12)

B.3 Circular Restricted 3−Body Problem Hamiltonian

The derivation of the (planar) CR3BP Hamiltonian follows the same outline as the above, save for the derivation of the

Lagrangian. We use the coordinates of figure 3.7 In dimensionless inertial coordinates, it is given by:

L =
1
2

(
Ẋ2 + Ẏ 2

)
+

1−µ
r1

+
µ
r2

+
1
2

µ(1−µ) (B.13)

where: (B.14)

µ =
m2

m1 +m2

r1 =
√

(X +µ cosω t )2 +(Y +µ sinω t )2

r2 =
√

(X− (1−µ)cosω t )2 +(Y − (1−µ)sinω t )2 .

We remark that this of course implies that the potential U = U(X ,Y, t) in inertial coordinates. On changing to the

rotating frame (which we will not derive, though the interested reader may consult e.g. [José and Saletan, 1998]):

L =
1
2

(
(ẋ− y)2 +(ẏ+ x)2

)
+

1−µ
r1

+
µ
r2

(B.15)

where: (B.16)

r1 =
√

(x+µ)2 + y2

r2 =
√

(x− (1−µ))2 + y2 .
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Here, the potential U = U(x,y) only, as we expect given that the change of coordinates to the rotating system makes

the gravity field time–independent. Taking as canonical coordinates q1 = x, q2 = y, we find via pi = dL
dq̇i

that:

p1 = ẋ− y , (B.17a)

p2 = ẏ+ x . (B.17b)

Consequently, the Lagrangian may be transformed to the Hamiltonian using B.6 to find:

H =
1
2

(
p2

1 + p2
2

)
+ p1q2− p2q1−

1−µ
r1
− µ

r2
. (B.18)

B.4 Angular–Momentum Reduced 3−Body Problem Hamiltonian

As remarked in section 3.3.3, one can try to find a coordinate transform analogous to the conservation of linear mo-

mentum approach used in chapter 3, such that the reduction is implicit in the transformed system. Historically, this

task has proven considerably harder than one might initially imagine. No coordinate transform has been found to effect

such a reduction for the general n−body problem, as detailed in [Wintner, 1947].

However, in the specific case of the 3−body problem the fact that the 3 bodies at each point in time span a plane can,

however, be exploited to find a coordinate transformation which Wintner gives for non-collinear configurations of the

3–body problem, i.e. general triangle configurations4(t).

Specifically, letting m1,m2,m3 be at the vertices of the triangle, which has an area |4(t)|; and their corresponding

exterior angles θi(t), he introduces new coordinate ρi corresponding to the length of the vertex opposite mi (and the

variables i, j,k run through the cyclic permutations of 1,2,3.)

Then,

sinθi =
2|4|
ρiρk

(B.19a)

cosθi =
ρ2

i +ρ2
j +ρ2

k

2ρ jρk
(B.19b)

|4|= ∏(ρ j +ρk−ρi)1/2

4/

(
∑ρi

)1/2
> 0 (B.19c)

and it is observed that the motion of the triangle, which instantaneously defines a plane, is fully determined by these

three vectors ρ plus the inclination of said plane w.r.t. the barycentric coordinate system through the center of mass (as

above), which is introduced as the fourth coordinate ι.

This leads to the Hamiltonian formulation:

H = H ( ι,ρ1,ρ2,ρ3, I,P1,P2,P3 )

=
‖H0‖2 sin2

ι

4|4| ∑
ρ2

i
mi

sin2
(

I
‖H0‖sin ι

+
θ j−θk

3

)
+ ∑

P2
j +P2

k −2PjPk cosθi

2mi

+‖H0‖cos ι∑

(
Pj

ρk
− Pk

ρ j

)
sinθi

3mi
+ ‖H0‖2 cos2

ι∑
ρ2

j +ρ2
k −

1
2 ρ2

i

36miρ
2
j ρ

2
k
− ∑

m jmk

ρi
. (B.20)
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And the usual Hamiltonian equations hold:

I′ =−Hι, ι
′ = HI , ρ

′
i =−HPi , P′i = Hρi . (B.21)

On consideration, while this is interesting from a historical point of view, it is pretty clear that due to the explicit

triangle formulation, this does not scale to multi-body n > 3 problems, which means that it is not a useful basis for our

extensions to 4−body problems later on. Moreover, its value in light of explicit complexity is perhaps dubious, and so

has been included only for completeness.

Noteworthy and discussed in section 3.3.4, however, is that this triangle’s motion always determines an instantaneous

plane, though its orientation w.r.t. inertial space is changing; hence ι = ι(t). However, there is a particular invariant

case (ι = ι0 for all time), where the plane is perpendicular to the constant vector H0. Now while this plane can always

be defined (specifically, by the relation H0 · x = 0 −→ h1x + h2y + h3z = 0), the motion need not necessarily be re-

stricted to it.

We remark, then, that you also have explicit conservation of angular momentum if we restrict motion to such a plane,

and by appropriate orientation of the coordinate system, we may choose the invariant z = 0 plane. It is easily verified

that this is an invariant plane, and that the angular momentum vector becomes a single z−component perpendicular to

it. While this is a special case, unlike the triangle-configuration approach we have just described, it does scale beyond

3 bodies.

B.5 4−Body Capture Problem
We remark that the Capture Problem is not Hamiltonian; otherwise, as we showed in chapter 2, the hypothetical

Hamiltonian HCP would itself be an integral.
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Appendix C

Simulation Suite Manual

This appendix presents the simulation suite used in obtaining the results pertaining to numerical integration methods,

as presented in the third part of this thesis. It begins with a section on the usage of the main simulation code, and

then discusses the structure of the FORTRAN simulation, MATLAB visualization and MATHEMATICA analysis codes

in turn, closing with a section on code validation.

C.1 Usage
We first discuss the basic parameters controlling the IntegrationMethods FORTRAN code, and then give a brief

discussion of the options for fine tuning available to the user.

C.1.1 Getting Started

The suite’s entry point is the driver program IntegrationMethods.f90 in which the user specifies the force model,

integration method, the input and output coordinate systems, initial conditions, simulation time–frame and output fre-

quency.

The parameters to be set by the user are the following:

t start is the simulation start time given as a Julian date; the function JD( yyyy,mm,dd,hh,mm,ss ) is available for

the conversion of normal date+time–stamps to Julian dates.

t stop is the simulation stop time given as a Julian date.

n step is the number of steps at which the simulation will provide output.

model is the force model to be used in the integration:

1. planar Jacobi 3BP [SEM]

2. planar Jacobi 3BP [EMSat]

3. planar CR3BP [SEM]

4. planar CR3BP [EMSat]

5. planar Capture Problem [SEMSat]

6. 3BP with ephemerides in 3D [EMSat]

7. 4BP with ephemerides in 3D [SEMSat]
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method is the integration method to be used with the above force model; note that there are 3 different exact ap-

proaches coded to the Jacobi 3−body problem, but the others take only 2 (exact and approximate), while the

RKF–pairs and the simple predictor–corrector can be used for any problem.

1. Burkardt’s RKF4(5) Integrator pair

2. Netlib RKF2(3),4(5),7(8) Integrator pairs

3. Bowman’s planar Jacobi 3BP Conservative Integrator (explicit variant)

4. Bowman’s planar Jacobi 3BP Conservative Integrator (implicit variant)

5. Bowman’s planar Jacobi 3BP Conservative Integrator (implicit polar variant)

6. Bowman’s planar CR3BP Conservative Integrator

7. Simple Predictor–Corrector

8. Our planar CR3BP Approximately Conservative Integrator

9. Our planar Capture Problem Approximately Conservative Integrator

rk is the setting ’l’, ’m’, ’h’ which determines the (low–, medium– or high–order) pair chosen for the Netlib

RKF integrator pairs; for other choices this is a dummy variable. Note also that the error tolerances for the RKF

pairs can be set at the beginning of the Traj subroutine, via the variables abserr and relerr.

order is the order of the integral approximation to be conserved for the approximate integrators. Valid settings are

0–3, referring to the lowest orders of approximation (though depending on the problem, not necessarily the

O
(
ε0) –O

(
ε3) terms specifically).

csys0 is the coordinate system chosen for the input initial conditions:

0 selects the model–based coordinate systems, which is valid only for models 1–5

1 selects the Earth co–moving coordinate system using the coordinate orientations of the inertial system.

2 selects the Earth–Moon rotating coordinate system.

3 selects the Earth–Sun rotating coordinate system.

csys is the coordinate system chosen for the simulation output. Note that for problems not including the Sun in the

simulation, csys=3 is not a valid choice.

x[ 1:neqn ] finally, is the initial state at t start; neqn is the number of the variables in the state vector (4 for planar

CR3BP, 8 for planar Jacobi 3BP’s, set automatically once model is chosen by the user).

The driver then sets the appropriate constants, and calls the subroutine Traj, which in turns sets up the integration and

makes calls to the appropriate integrator, force model and output routines. While running, the program displays the

current and total output points, and a successful simulation run ends with the display of the total number of force func-

tion evaluations performed during the integration. The program pauses to display unrecoverable errors for traceability

purposes, and then aborts execution.

C.1.2 Fine–Tuning and Troubleshooting

In order to go beyond the basics outlined above, the user will find it necessary to make additions and alterations to the

code. For this purpose an understanding of the code structure outlined in the next section is essential, but we note first

a few fine–tuning parameters which are not too complicated.
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h 0 is the time–step used internally by the exactly and approximately conservative integrators. This is found in the

variable declarations of each integrator subroutine, and declared as a parameter, which the user must tweak at

runtime. A good initial setting for both problems has been found to be h 0=1D2 or 100 seconds.

rfac is the reduction factor used when a non–conservative step must be made due to the inverse transformation re-

turning a bad state vector. This is typically due to a turning point, though if it occurs repeatedly during an

integration, it is often an indicator of a too–large time–step h 0, leading to integrator instability.

Beyond this, the user will note that the most likely cause of bad integration results are, in order of expected occurrence:

1. A bad choice of time–step for the problem (h0 too large),

2. A badly formulated transformed force function fξ,

3. A badly formulated state transformation T (x),

4. A badly formulated inverse state transformation T−1(x).

Consequently these should always be checked first when unexpected output is encountered.

C.2 Code Structure
This section outlines the code structure for the simulation, visualization and analysis portions of the code provided on

the accompanying CD.

C.2.1 FORTRAN Simulation Code

The IntegrationMethods code suite has been developed following FORTRAN 90/95 conventions, and is written us-

ing routines either wrapped in a module for global accessibility, or included with the driver program for its local

accessibility. All code was compiled in quadruple precision on the Intelr FORTRAN Compiler Version 9.1.3192.2005,

integrated into Microsoft Visual Studio 2005.1

The main components of the IntegrationMethods suite are as follows.

• The IntegrationMethods driver program IntegrationMethods.f90 in which the user specifies the force model,

integration method, the input and output coordinate systems, initial conditions, simulation time–frame and out-

put frequency. The driver then sets the appropriate constants, and calls the subroutine Traj.

• The subroutine Traj is in turn the driver for the integration. The settings outlined above are either local and

passed explicitly (start & stop-times, initial conditions, output frequency), or global modular. Traj uses them,

in particular the force model and integration method to call the appropriate integrator and return the trajectory.

Each force model is integrated in its natural coordinates, and Traj performs the necessary scaling of variables

from conventional positions and velocities to those used by the models, as well as calling the appropriate co-

ordinate transforms to first transform the initial conditions to the model input, and subsequently at each output

point to transform from the (rescaled) model output frame to the appropriate user defined output frame.

1For comparison, the trajectory integration codes were also validated in double precision on the G95 open–source FOR-
TRAN compiler.
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• A number of subroutines are local to the IntegrationMethods.f90 driver, and provided as local includes.

rkf45.f90 – The integrator code which provides Burkardt’s implementation of the Runge-Kutta-Fehlberg 4(5)

integrator pair, used in [Verzijl, 2005].

rksuite.f90 The integrator suite which provides the standard Netlib implementation of Runge-Kutta-Fehlberg

2(3), 4(5) and 7(8) integrator pairs.

BowmanPC.f90 – The integrator suite which provides four implementations (designed by the author) of Bow-

man et al.’s 2nd order conservative predictor corrector algorithms. Specifically, it provides their planar

CR3BP integrator, and three implementations of their general 3−body problem integrator: two using nor-

mal Jacobi coordinates which conserves energy and one using polar Jacobi coordinates which conserves

both energy and angular momentum.

ApproxPC.f90 – The integrator suite ApproxPC.f90 which provides two 2nd –order predictor-corrector inte-

grators. The first is conservative of an approximate Jacobi integral of varying orders, and the second is

conservative of an approximate Jacobi–like integral for the Capture Problem, as discussed in Part II of

this thesis.

JPLSub.f90 – The subroutine collection provided by Standish et al. at JPL [Standish, 1997] as a driver for the

retrieval and interpolation of their (binary) DE405 ephemeride data; this is necessary for the ephemeride–

based integrations.

• A number of subroutines, by contrast, are more usefully defined global, and provided as module includes.

ForceModel.f90 The collection of the 7 force models used in the simulations:

– f Jacobi: the three body problem force model in Jacobi coordinates for both the Sun–Earth–Moon

and Earth–Moon–Satellite problems;

– f Jacobi p: the same as the above in polar Jacobi coordinates;

– f cr3bp: the CR3BP force model in scaled (dimensionless) coordinates for both the Sun–Earth–

Moon and Earth–Moon–Satellite planar CR3BPs;

– f Capture: the Capture Problem force model in scaled (dimensionless) coordinates, and

– two ephemeride–based implementations: f 3bp eph of the Earth–Moon–Satellite restricted 3−body

problem and the Sun–Earth–Moon–Satellite restricted 4−body problemused in [Verzijl, 2005],

f 4bp eph respectively.

Coordinates.f90 – The subroutine collection which contains functions and subroutines for coordinate transfor-

mations and the generation of the necessary rotation matrices, as well as for handling time (e.g. conver-

sions to and from Julian dates).

Output.f90 – The subroutine which takes the output array generated by Traj and writes to a file on disk. This

in turn is loaded by a separate set of scripts implemented in MATLAB for visualization, discussed next.

C.2.2 Output File Format

The output file, by default IntegrationMethods.out is a plain ASCII text file with the following structure:

1. First, the number of output steps n steps,

2. the step–size h 0 (only for the fixed time–step integrators) and the
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3. Julian start date t start are indicated.

4. The next fields record the four vector–elements x, y, ẋ, ẏ of the output for the Earth, the Moon, the Sun and

the Satellite, in that order. When a body does not play a role in the simulation, the output is a 4×n steps zero

matrix.

5. Following this, the driver outputs the Julian end date t stop,

6. the model: model,

7. the method: method,

8. the number of force evaluations, tracked by the variable counter,

9. the number of internal loops (only for conservative integrators), tracked by the variable loop1,

10. the number of these loops which were used for non–conservative steps, tracked by the variable loop2,

11. and finally the mass of the satellite m[4] (where applicable).

This file is then post–processed in MATLAB .

C.2.3 MATLAB Visualization Code

MATLAB Version 7.0.1.24704 (R14) Service Pack 1 was used for the visualization of the simulation output, as pre-

sented in Part III of this thesis. Note that the visualizations of data are based on double–precision data, as MAT-

LAB appears unable to handle quadruple precision, and so the routines round the raw results as they are loaded, before

post–processing. The data may be loaded in MATLAB in three ways:

1. The simulation output file is loaded using subroutines QuickLoadEMSat.m, QuickLoadSEM.m or Quick-
LoadEph.m, which generate a simple x, y–plot for the Earth–Moon–Satellite, Sun–Earth–Moon(–Satellite) or

ephemeride–model geometries, centered at the Earth.

2. The simulation output file can be processed into an MPEG movie using the subroutine Animation2D.m, which

generates an animation from the simulation data.

3. Most importantly, for analysis purposes, the function postprocess.m is the driver for a set of post–processing

routines which loads 2 input files, given as arguments, and then generates the following plots:

• Two x, y–plots of the trajectories as integrated;

• A four–subfigure plot of the along–track absolute difference between the two integrations, as a function

of the integration step (roughly corresponding to the time);

• A three-subfigure plot consisting of the value of the integral as compared with the reference initial value

for the two integrations, a plot of the absolute difference between integral values, and a plot of the relative

variations about the initial value for both integrators;

• A three-subfigure plot consisting of the estimated values of approximations of the integral to different

orders, plotted separately for the two integrators, and a third subfigure plotting the reduction of the differ-

ence between these approximations and the true value of the integral.

postprocess.m needs the subroutines:
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• loaddata.m – the routine which actually loads the data, as in QuickLoadEMSat.m above;

• trimspikes.m – a routine which (optionally) trims upward spikes from the trajectory differences;2

• makeplots.m – the routine which processes the data into the forms required for plotting and which gen-

erates the resulting plots, which are then displayed on–screen.

Additionally, postprocess.m outputs a single cell structure containing the simulation data and data labels, a

matrix of the RMS trajectory differences, and 4 large matrices containing the actual simulation data. All except

these latter 4 are also output to the screen.

C.2.4 MATHEMATICA Analysis Code

MATHEMATICA 5.2 was used for purposes of analysis, in particular for the calculations of Part II of this thesis.

• The key MATHEMATICA notebooks used are:

IntegratingVectors01-3BP.nb – notebook briefly treating the traditional 3−body problem;

IntegratingVectors02-P3BP-Jacobi.nb – notebook treating the planar Jacobi 3−body problem;

IntegratingVectors03-CR3BP.nb – notebook treating the planar circular restricted 3−body problem;

IntegratingVectors04-CaptureProblem-mod.nb – notebook treating the Capture Problem;

IntegratingVectors05-2BP.nb – notebook treating the 2−body problem.

IntegralApproxExpressions.nb – notebook treating the corrected expressions for the approximate integrals

(cf. chapters 10–11.

• Further, we have included for completeness a further number of utility–notebooks which give some useful sub–

calculations supporting the approach in the above five. We mention in particular the notebooks ReductionAn-
gularMomentum.nb treating the reduction of the angular momentum, Averaging the Potential.nb treating the

effects of averaging in the Capture Problem as discussed in section 8.2.4 and Waluya-2.3.nb treating some of

the analysis in [Waluya, 2003] for reference.

C.2.5 Code Validation

The reader will note that for the purposes of validation, we have built on the approach taken earlier in developing

simulation code for ballistic lunar capture trajectories. That code has been used as a validation reference, and for a

discussion of its validation, the reader is referred to [Verzijl, 2005, appendix B]. Beyond this basis, code validation in

the present work was done against two primary references:

1. qualitative analytical considerations for closed (Kepler) orbits (e.g. for the Moon in the Earth–Sun system) and

2. validation against RKSuite results and ephemeride–based code for other cases.

We remark also in this context that the astrodynamic constants used in the new integrators have been taken from

[Montenbruck and Gill, 2001], and are standardized across all models and methods. Validation tests were roughly

performed successively as follows:

2These have been found to be numerical artifacts due to a sub–optimal tolerance choice for the RKF7(8) pair (the user would
encounter this as a series of alternating error messages in IntegrationMethods –output indicating that either too much or too little
computational effort was required over a series of output steps).
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• Validation of the simulation with 3BP and 4BP ephemeride force models using new the RKF pairs against

Internship code to verify the correct implementation of the RKSuite package.

• Using these RKF integrator pairs in turn as a reference, we validated the conservative schemes against the RKF–

pair results for the same initial conditions. In this we used a number of test–cases:

– First, test–cases of simple circular orbits for the Moon resp. satellite were checked to integrate as expected

based on the initial conditions.

– We next coded coordinate–transform functions based on earlier work, and tested different methods with

same initial conditions for comparability of results across multiple coordinate systems, all validated qual-

itatively against comparable ephemeride–model results.

– The new integrators were then used with test–cases based on two standard sets of initial conditions for

the Sun–Earth–Moon and Earth–Moon–Satellite configurations (so total 4 sets of initial conditions), with

trajectories verified against the RKF7(8) codes.

• We further tested the methods for scaling with time–step, and noted a qualitative picture of convergence to the

RKF7(8) solutions. Due to the formulation of the conservative schemes on the basis of an explicit predictor-

corrector method, it should be remarked that there is a model–dependent stability threshold for the time–step;

see also section 9.3.

• We also tested scaling with satellite mass for the Earth–Moon–Satellite configurations in particular (using

masses below the threshold of O
(
1020 kg

)
at which the satellite would be expected to noticeably perturb

the primaries), as well as with changing the magnitude of the initial velocity.

From this test, we found behavior in the RKF integrator pairs indicating that the system had become stiff: the

RKSuite routines gave repeated warnings that alternated between on the one hand warning that the work re-

quired to achieve the O
(
10−6) relative tolerance was too high, and on the other that too many output points

were desired, indicating that too much work was being done. Both issues are “resolvable” by increasing the

error tolerance to e.g. O
(
10−3) , which would significantly degrade the quality of the solution.

As we remarked earlier in section 9.3.2, stiff behavior is expected to be linked to singular perturbation issues,

and indeed on physical grounds it might be suspected that the introduction of a small mass moving through mul-

tiple force–scale regions at high velocities, typical of ballistic lunar capture trajectories, might give rise to such

problems.3 This is indeed what we observe, in that the problems encountered are more pronounced for models

involving the Satellite than those concerning only the Sun–Earth–Moon system, and conversely, the problems

were noticeably less on taking a higher satellite mass mSat or lower initial velocity VSat,0.

By themselves bad results would raise the question of the stability of the integrator, and indeed we found that

reducing the step–size (often by a factor 100 or more) resolved the problem; however, the fact that the problems

were mSat– and VSat,0–dependent does seem to indicate a mismatch in the scales of the dynamics of the primaries

and the small satellite, as we expect from a singular perturbation scenario.

3This might also account for the alternating nature of the warnings, which we have not yet investigated in full.
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• Lastly. as remarked above, the code has not yet been performance tweaked, and so despite a large measure of

standardization across the modules and procedures, it is to be expected that there remains considerable room

for improvement in terms of performance. Particularly relevant in this regard is the potential speed–up result-

ing from shifting the code back to double–precision for actual orbit analysis, though we recall the remarks of

section 9.2.3 on the need for ensuring by proper formulation of the force model that this does not lead to loss of

significance at machine precision.
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