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Summary

In our modern daily life, many activities require electricity, for example, the us-
age of domestic appliances, manufacturing, communication, and transportation. It
is therefore essential to maintain a reliable supply of electricity to ensure the op-
eration of such activities. The electricity supply, in a large part, depends on the
underlying electrical networks that transfer electricity from power plants to meet the
demand of end users. In the past, electricity consumption has grown over time and,
at some point, the electricity demand will exceed the current capacity of certain net-
work assets, causing overloads on parts of the networks. Functioning under overload
conditions reduces the reliability of the networks and also damages network assets.
Network reinforcement is thus required. This incurs substantial investment costs
and time-consuming activities, such as acquisitions of new assets, constructions of
substations, and installations of suitable cables and other electrical devices. Network
operator companies, therefore, need to properly predict the growth of electricity de-
mand and make suitable expansion plans to enhance the capacity of their networks.
In addition, the recent emergence of renewable energy sources and smart grid tech-
nologies changes electricity consumption behaviors of users, the growth of electricity
demand in general, and also the directions of network flows (due to local generation).
This poses additional challenges that need to be addressed by the network opera-
tors. In this dissertation, we are interested in medium-voltage distribution networks,
which are electrical networks that deliver electricity from high-voltage transmission
networks to low-voltage distribution networks. Medium-voltage distribution net-
works typically have more complicated structures than low-voltage networks and
require more frequent reinforcement activities than high-voltage transmission net-
works. We aim to develop robust computational methods to assist distribution
network operators (DNOs) in tackling network expansion planning problems.

Electricity distribution network expansion planning (DNEP) is often formulated
as an optimization problem, which involves finding the optimal expansion plan ac-
cording to some objective. Solving such optimization problems requires many com-
putational challenges to be properly addressed because they involve a set of non-
convex, nonlinear equations that can give rise to many local optima in the search
space. Also, there is no gradient information available due to the discrete nature
of the choices to be made in solving DNEP problems, such as, the choice of which
electrical devices to install from a list of standardized equipment. Another source
of problem hardness comes from the fact that the planning process in practice typ-
ically involves multiple objectives that conflict with each other, such as minimizing
investment cost as well as energy losses. However, there exists no utopian solution
that optimizes all such objectives at the same time. Network operators often need
to consider multiple alternative expansion plans that represent different trade-offs
between involved objectives before determining which one is the desired trade-off
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Summary

for a specific network.

Evolutionary algorithms (EAs) are a promising type of optimization algorithm
to tackle the aforementioned challenges. EAs are population-based optimizers that
maintain multiple candidate solutions at the same time, which is well-suited for
efficiently and effectively obtaining a set of multiple trade-off solutions in one single
optimization run. EAs normally do not require problem-specific knowledge, such
as gradient information, in their operations. This makes them straightforward to
use for black-box optimization where domain knowledge is not available or not
straightforward to be efficiently exploited. If such domain knowledge is available for
exploitation, the performance of EAs can be further enhanced.

However, there exist two major challenges in applying EAs to real-world opti-
mization tasks, namely the setting of control parameters and achieving scalability.
First, the settings of EA control parameters are crucial to the success of EAs in
solving a specific problem instance. For real-world optimization, proper parameter
settings for an EA, which depend on the structure of the problem instance and the
operators of the EA itself, are very hard to be determined before running the EA.
Practitioners thus often need to perform multiple optimization runs with different
parameter settings in a time-consuming trial-and-error manner. Second, EAs that
are employed for solving real-world problems like DNEP should be designed with
good scalability in mind to ensure being able to efficiently handle a wide range
of network sizes and structures. Regarding these challenges in the design and ap-
plication of scalable EAs for solving DNEP problems, the following four research
questions are formulated.

1. How can we model distribution network expansion planning (DNEP) as an
optimization problem such that the outcomes of solving this problem are prac-
tically relevant while the optimization models are computationally feasible?

2. How can we design scalable EAs for solving (multi-objective) real-world ap-
plications, and in particular for solving (multi-objective) DNEP problems?

3. How can we solve DNEP problems when multiple conflicting objectives need
to be taken into account such that DNOs are provided with insight into the
trade-off relationship between the involved objectives?

4. How can we eliminate the troublesome requirement of control parameter set-
tings when applying (multi-objective) EAs in practice?

This dissertation presents our research on the above questions and the obtained
results.

In Chapter 1, we introduce the DNEP problem and explain the computational
challenges that are involved in efficiently solving DNEP problems. We look into
the current practice as well as the research literature on DNEP and explain why
we choose to tackle DNEP problems with EAs. We then point out the challenges
of designing and applying EA methods in practice, namely the scalability issue and
the setting of EA control parameters.

xii
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In Chapter 2, we describe model-based evolutionary algorithms (MBEAs) that
exploit models of problem structures during the optimization process. We focus
on a major class of MBEAs that build linkage models to capture the dependency
structure among problem variables and use the learned models to guide EA operators
during optimization. Specifically, we present how the Genetic Algorithms (GAs) can
be implemented as model-based EAs. We further consider two other types of model-
based EAs: the Estimation-of-Distribution Algorithms (EDAs), and the Gene-pool
Optimal Mixing Evolutionary Algorithms (GOMEAs). Using the Family-Of-Subsets
(FOS) concept, we show how different types of linkage models can be employed in
all of these EAs to customize their search capability.

In Chapter 3, we design a novel GOMEA for multi-objective discrete optimiza-
tion (MO-GOMEA) by extending the original single-objective GOMEA. Specifically,
we identify components that are crucial to the scalability of multi-objective evolu-
tionary algorithms, namely the elitist archive of trade-off solutions, clustering of
candidate solutions in the population, linkage learning, and exploiting the learned
linkages during optimization. We then further enhance the usability of MO-GOMEA
by eliminating the need of setting parameters. Experimental results on benchmark
problems demonstrate the scalability and usability of our MO-GOMEA.

In Chapter 4, we introduce a novel single-objective formulation for the static
DNEP problem that is both practically relevant and computationally efficient. The
model, which considers optimization of the total cost of capital investment and
operational expenditure, includes operation and design constraints as well as en-
gineering rules that are considered in DNEP practice. We employ three classes of
EAs, namely GAs, EDAs, and GOMEAs, to solve the optimization model instan-
tiated with real-world distribution network data. Experimental results exhibit the
superior performance of GOMEAs in solving DNEP compared to GAs and EDAs,
even when being used out-of-the-box. The performance of GOMEAs can be further
enhanced when their variation operator is customized with DNEP problem-specific
knowledge.

In Chapter 5, we propose a novel decomposition heuristic to efficiently handle
the dynamic DNEP problem that involves determining investment moments over a
planning period. Using our decomposition heuristic, a suitable installation sched-
ule can be obtained in an efficient manner for each static plan without explicitly
modeling all time-related factors. Based on this, our problem formulation proposed
in Chapter 4 for the static DNEP problem can be straightforwardly used for the
dynamic DNEP problem without major modifications. Experimental results with
three classes of EAs, namely GAs, EDAs, and GOMEAs, confirm the effectiveness
of the decomposition heuristics for solving dynamic DNEP, and again, the excellent
performance of GOMEAs. Furthermore, in this chapter, we consider and model Bat-
tery Energy Storage Systems (BESS) as a smart grid investment option together
with the traditional assets such as electrical cables. The results demonstrate that
BESS is a viable investment option for distribution network operators to consider
in combination with the traditional option of installing electrical cables.

In Chapter 6, we demonstrate that the (dynamic) DNEP problem in practice
involves multiple conflicting objectives, and should thus be solved in a true multi-
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objective manner, approximating the Pareto-optimal front of trade-offs between dif-
ferent objectives. We additionally consider and model Demand Side Management
(DSM) as a smart grid investment option together with the traditional physical as-
set installation. We employ the MO-GOMEA from Chapter 3 for solving different
multi-objective DNEP problem models that involve multiple objectives, namely the
investment cost, the energy losses, and the network reliability in terms of the aver-
aged customer minutes lost. The resulting Pareto fronts provide DNOs with useful
insights into the trade-offs between the objectives and can assist DNOs in choosing
the expansion plan that exhibits the desired trade-off.

Concluding, the contribution of this dissertation is twofold. First, we show
how the DNEP problem with real-world constraints can be modeled effectively and
efficiently. Our problem formulation is highly customizable such that it can be
straightforwardly modified by network operators to suit their needs: static or dy-
namic planning, employing only traditional assets or also smart grid technologies,
and optimizing with respect to one objective or handling multiple objectives at the
same time. Second, the dissertation proposes guidelines for constructing scalable
and user-friendly EAs, that do not require users to tune their control parameters.
Following the guidelines, we have designed the MO-GOMEA, which is shown to be
capable of efficiently and effectively tackling real-world optimization tasks, such as
different versions of the DNEP problem considered in this dissertation.
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Samenvatting

In ons moderne dagelijks leven hebben veel activiteiten elektriciteit nodig, zoals het
gebruik van huishoudelijke apparaten, productie, communicatie en transport. Het
is daarom essentieel om voor een betrouwbare levering van elektriciteit te zorgen,
zodat dergelijke activiteiten uitgevoerd kunnen blijven worden. De levering van
elektriciteit hangt voor een groot deel af van onderliggende elektriciteitsnetten die
elektriciteit transporteren vanaf energiecentrales om aan de vraag van eindgebruikers
te voldoen. In het verleden is ons elektriciteitsverbruik gegroeid en zal het op een
gegeven moment de huidige capaciteit van netwerkmaterieel overschrijden, wat resul-
teert in overbelasting van delen van het netwerk. Wanneer een netwerk functioneert
in een situatie van overbelasting, verlaagt dit de betrouwbaarheid en beschadigt dit
het netwerkmaterieel. Versterking van het netwerk is dus vereist. Dit vereist aan-
zienlijke investeringskosten en tijdrovende activiteiten, zoals de aanschaf van nieuw
materieel, de bouw van transformatorstations en installaties van geschikte kabels
en ander elektrisch materieel. Netbeheerders moeten daarom de toename van het
elektriciteitsgebruik goed voorspellen en geschikte uitbreidingsplannen maken om
de capaciteit van hun netwerken te vergroten. Bovendien verandert de recente op-
komst van hernieuwbare energiebronnen en smart grid-technologieën het gedrag van
elektriciteitsgebruikers, de groei van de elektriciteitsvraag in het algemeen en ook de
richtingen van netwerkstromen (als gevolg van lokale elektriciteitsopwekking). Dit
resulteert in nieuwe uitdagingen die moeten worden aangepakt door de netbeheer-
ders. In dit proefschrift zijn we geïnteresseerd in middenspanningsdistributienetten.
Dit zijn elektrische netwerken die elektriciteit overdragen van hoogspanningstrans-
missienetten naar laagspanningsdistributienetten. Middenspanningsdistributienet-
ten hebben doorgaans gecompliceerdere structuren dan laagspanningsnetten en heb-
ben frequenter versterkingsactiviteiten nodig dan hoogspanningstransmissienetten.
We streven ernaar robuuste rekenmethoden te ontwikkelen om distributienetbeheer-
ders te helpen bij het aanpakken van planningsproblemen bij netwerkuitbreidingen.

Het plannen van uitbereidingen aan distributienetten, in het Engels distribution
network expansion planning (DNEP), wordt vaak geformuleerd als een optimalisa-
tieprobleem, waarbij het optimale uitbereidingsplan gevonden moet worden aan de
hand van een bepaalde doelstelling. Bij het oplossen van dit optimalisatieprobleem
moeten veel rekenkundige uitdagingen worden aangepakt. In de probleemformu-
lering komen niet-convexe, niet-lineaire vergelijkingen voor die veel lokale optima
in de zoekruimte kunnen vormen. Ook is er geen gradiëntinformatie beschikbaar
vanwege de discrete aard van de keuzes die gemaakt moeten worden in het op-
lossen van DNEP-problemen, zoals de keuze welk elektrisch materieel in een lijst
met gestandaardiseerde apparatuur moet worden geïnstalleerd. Wat het probleem
daarnaast vermoeilijkt is het feit dat het planningsproces typisch meerdere tegen-
strijdige doelstellingen heeft, zoals het minimaliseren van investeringskosten alsook
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het minimaliseren van energieverliezen. Er bestaat echter geen utopische oplos-
sing die al deze doelen tegelijkertijd optimaliseert. Netbeheerders moeten daardoor
vaak rekening houden met meerdere alternatieve uitbreidingsplannen die verschil-
lende compromissen tussen de betrokken doelstellingen vertegenwoordigen voordat
ze bepalen wat de gewenste afweging is voor een specifiek net.

Om bovengenoemde uitdagingen aan te pakken, zijn evolutionaire algoritmen
(EA’s) een veelbelovend type optimalisatie-algoritme. In EA’s wordt een popula-
tie van meerdere kandidaat-oplossingen tegelijkertijd beheerd, wat goed geschikt is
om op efficiënte en effectieve wijze een verzameling oplossingen die verschillende
afwegingen representeren, te verkrijgen in één enkele optimalisatierun. In de ope-
raties die een EA uitvoert, is doorgaans geen probleemspecifieke informatie nodig,
zoals gradiëntinformatie. Hierdoor zijn deze algoritmen gemakkelijk te gebruiken
in het geval van black-box optimalisatie waarbij geen probleemspecifieke kennis be-
schikbaar is of het niet eenvoudig is om deze informatie efficiënt te gebruiken. Als
dergelijke domeinkennis wel uitgebuit kan worden, kunnen de prestaties van EA’s
verder worden verbeterd.

Er zijn echter twee grote uitdagingen bij het gebruiken van EA’s om praktijk-
gebaseerde optimalisatietaken uit te voeren, namelijk het instellen van regelpara-
meters en de behalen van schaalbaarheid. Ten eerste spelen de instellingen van EA
regelparameters een cruciale rol bij het succes van EA’s bij het oplossen van een
specifiek probleem. Voor optimalisatie in de praktijk zijn de juiste parameterinstel-
lingen voor een EA, die afhankelijk zijn van de structuur van de probleeminstantie
en het operatoren van het EA zelf, zeer lastig te bepalen voordat het EA wordt
uitgevoerd. In praktijk moeten dus vaak meerdere optimalisatieruns worden uit-
geprobeerd met steeds verschillende parameterinstellingen, wat tijdrovend is. Ten
tweede moeten EA’s die worden gebruikt voor het oplossen van praktijk-gebaseerde
problemen zoals DNEP worden ontworpen met schaalbaarheid in het achterhoofd,
om een breed scala aan netwerkgroottes en -structuren op efficiënte wijze aan te
kunnen. Met betrekking tot deze uitdagingen bij het ontwerpen en toepassen van
schaalbare EA’s voor het oplossen van DNEP-problemen, zijn de volgende vier on-
derzoeksvragen geformuleerd.

1. Hoe kunnen we distribution network expansion planning (DNEP) zodanig als
optimalisatieprobleem modelleren dat de uitkomsten van het oplossen van dit
probleem praktisch relevant zijn terwijl de optimalisatiemodellen rekenkundig
haalbaar zijn?

2. Hoe kunnen we schaalbare EA’s ontwerpen voor (meerdoelige, ofwel met meer-
dere doelstellingen) praktijk-gebaseerde toepassingen en in het bijzonder voor
het oplossen van (meerdoelige) DNEP-problemen?

3. Hoe kunnen we DNEP-problemen oplossen wanneer rekening gehouden moet
worden met meerdere conflicterende doelen, zodanig dat netbeheerders inzicht
krijgen in de wisselwerking tussen de betrokken doelen?

4. Hoe kunnen we het instellen van regelparameters elimineren bij het toepassen
van (meerdoelige) EA’s in de praktijk?
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Dit proefschrift presenteert ons onderzoek naar de bovenstaande vragen en de
verkregen resultaten.

In Hoofdstuk 1 introduceren we het DNEP probleem en leggen we uit wat de
rekenkundige uitdagingen zijn bij het efficiënt oplossen hiervan. We onderzoeken de
huidige praktijk alsook de onderzoeksliteratuur van DNEP en leggen uit waarom we
ervoor kiezen om de DNEP problemen met EA methoden aan te pakken. Vervolgens
wijzen we op de uitdagingen van het ontwerpen en toepassen van EA methoden in
de praktijk, namelijk het schaalbaarheidsprobleem en het instellen van EA regelpa-
rameters.

In Hoofdstuk 2 beschrijven we modelgebaseerde evolutionaire algoritmen (MBEA’s)
die modellen van probleemstructuren uitbuiten tijdens het optimalisatieproces. We
concentreren ons op een grote klasse MBEA’s die modellen maken om de afhankelijk-
heidsstructuur tussen probleemvariabelen vast te leggen en om de geleerde modellen
vervolgens te gebruiken om EA operatoren te leiden tijdens optimalisatie. In het
bijzonder presenteren we hoe Genetic Algorithms (GA’s) geïmplementeerd kunnen
worden als model-gebaseerde EA’s. We nemen voorts nog twee andere type model-
gebaseerde EA’s in ogenschouw: de Estimation-of-Distribution Algorithms (EDA’s),
en de Gene-pool Optimimal Mixing Evolutionary Algorithms (GOMEA’s). Met het
Family-Of-Subsets-concept (FOS) laten we zien hoe verschillende typen afhankelijk-
heidsmodellen in al deze EA’s kunnen worden gebruikt om de zoekcapaciteit van
deze EA’s toe te snijden.

In Hoofdstuk 3 ontwerpen we een nieuwe GOMEA voor meerdoelige discrete
optimalisatie (MO-GOMEA) door de originele enkeldoelige GOMEA uit te brei-
den. Specifiek identificeren we hierbij componenten die cruciaal zijn voor de schaal-
baarheid van meerdoelige EA’s, namelijk het elitist archive waarin oplossingen met
verschillende afwegingen van de hoogste kwaliteit worden bewaard, het klusteren
van kandidaat-oplossingen in de populatie, en het leren van afhankelijkheden en
deze benutten tijdens optimalisatie. We verbeteren vervolgens de bruikbaarheid
van MO-GOMEA verder door de noodzaak van het instellen van regelparameters
te elimineren. Experimentele resultaten van benchmarkproblemen tonen de schaal-
baarheid en bruikbaarheid van onze MO-GOMEA aan.

In Hoofdstuk 4 introduceren we een nieuwe enkeldoelige formulering voor het
statische DNEP-probleem dat zowel praktisch relevant als rekenkundig efficiënt is.
Het model beschrijft de optimalisatie van de gezamenlijke totale kosten van ka-
pitaalinvesteringen en operationele uitgaven en neemt randvoorwaarden mee met
betrekking tot de werking en het ontwerp van het netwerk zoals die ook in de
praktijk gebruikt worden. We maken gebruik van drie klassen van EA’s, namelijk
GA’s, EDA’s en GOMEA’s om het optimalisatiemodel, geïnstantieerd met data van
distributienetten uit de praktijk, op te lossen. Experimentele resultaten laten de
uitstekende prestaties van GOMEA’s zien bij het oplossen van DNEP in vergelij-
king met GA’s en EDA’s, zelfs wanneer deze worden gebruikt zonder aanpassingen
aan dit specifieke probleem. Door gebruik te maken van specifieke kennis van het
DNEP-probleem in de variatie-operatoren van GOMEA’s, kunnen de prestaties nog
verder worden verbeterd.

In Hoofdstuk 5 stellen we een nieuwe decompositie-heuristiek voor om efficiënt
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om te gaan met het dynamische DNEP-probleem, waarbij investeringsmomenten ge-
durende een planningsperiode bepaald worden. Met behulp van onze decompositie-
heuristiek kan voor elk statisch plan op een efficiënte manier een geschikt instal-
latieschema worden verkregen zonder expliciet alle tijdgerelateerde factoren te mo-
delleren. Op basis hiervan kan onze probleemformulering, voorgesteld in Hoofdstuk
4 voor het statische DNEP-probleem, eenvoudig worden gebruikt voor het dyna-
mische DNEP-probleem zonder grote wijzigingen. Experimentele resultaten met
drie klassen van EA’s, namelijk GA’s, EDA’s en GOMEA’s, bevestigen de effectivi-
teit van de decompositie-heuristieken voor het oplossen van het dynamische DNEP-
probleem, en de wederom uitstekende prestaties van GOMEA’s. Verder beschouwen
en modelleren we in dit hoofdstuk Battery Energy Storage Systems (BESS) als een
smart-grid-investeringsoptie samen met de traditionele materialen zoals elektrische
kabels. De resultaten tonen aan dat BESS een haalbare investeringsoptie is voor
netbeheerders om in overweging te nemen in combinatie met de traditionele optie
om elektrische kabels te installeren.

In Hoofdstuk 6 laten we zien dat het (dynamische) DNEP-probleem meerdere
conflicterende doelen omvat en dus op een meerdoelige manier moet worden opgelost,
door het benaderen van het Pareto-optimale front van afwegingen tussen verschil-
lende doelstellingen. We beschouwen en modelleren daarnaast Demand Side Mana-
gement (DSM) als een smart grid investeringsoptie samen met de traditionele fysieke
materiaalinstallatie. We gebruiken de in Hoofdstuk 3 ontworpen MO-GOMEA voor
het oplossen van verschillende meerdoelige DNEP-probleemmodellen, waarbij de
doelstellingen investeringskosten, energieverliezen en netwerkbetrouwbaarheid, uit-
gedrukt in verloren gemiddelde klantminuten, zijn. De resulterende Pareto-fronten
bieden netbeheerders nuttige inzichten in de afwegingen tussen de doelstellingen die
kunnen helpen bij het kiezen van het uitbreidingsplan met de gewenste afweging.

Concluderend is de bijdrage van dit proefschrift tweeledig. Eerst laten we zien
hoe het DNEP-probleem met praktijk-gebaseerde randvoorwaarden effectief en ef-
ficiënt kan worden gemodelleerd. Onze probleemformulering is in hoge mate aan-
pasbaar, zodat deze eenvoudig kan worden toegesneden op de behoeften van net-
beheerders: statische of dynamische planning, enkel traditioneel materieel of ook
smart grid-technologieën, en optimaliseren met betrekking tot één doel of meerdere
doelen tegelijkertijd. Daarnaast stelt het proefschrift richtlijnen ten behoeve van
het ontwerpen van schaalbare en gebruiksvriendelijke EA’s voor, waarbij gebruikers
geen regelparameters hoeven af te stemmen. Aan de hand van deze richtlijnen heb-
ben we MO-GOMEA ontworpen, waarvan wordt aangetoond dat deze in staat is
om praktijk-gebaseerde optimalisatietaken met meerdere doelen op efficiënte en ef-
fectieve wijze aan te pakken, zoals de verschillende versies van de DNEP-problemen
die in dit proefschrift aan bod zijn gekomen.
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1
Introduction

’t Begin van alle dingh is swaer,
Maer ’t wert veel lichter achter naer.

The beginning of everything is hard,
But it becomes much easier later.

De Brune

1.1. Distribution network expansion planning
1.1.1. Electricity, power systems, and expansion planning
Electricity has a central position in our modern daily life. Electric power enables
the operation of household appliances, the manufacturing activities at industrial
sites, the control of transportation systems, the transmission of information in com-
munication networks, and also the functioning of numerous other industries. Such
omnipresence of electricity is brought about by the underlying power systems. A
traditional power system [1] starts from power plants, often at remote areas, where
primary energy sources like coal, oil, gas, nuclear fuels, or hydro, are converted into
electricity. To efficiently transport electricity over long distances, step-up trans-
formers are used to increase the voltage before transferring the generated electric-
ity through the high-voltage (HV) transmission networks to demand centers [2].
Step-down transformers are then used to decrease the voltage before electricity is
transferred to residential areas or industrial customers through the medium-voltage
(MV) distribution networks. Step-down transformers again decrease the voltage be-
fore electricity is distributed to household consumers through the low-voltage (LV)
distribution networks. Transformers are normally located in substations, where
other electrical equipment, such as circuit breakers, switches, or regulators, can also
be found. Full-scale power systems therefore can be seen as complex networks that
are made of interconnected devices to generate, transport, and distribute electricity.

1
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Electrical networks (i.e., transmission and distribution networks) are essential to
the delivery of electricity generated at power plants to end-consumers. Failure of a
network component (e.g., lines/cables, transformers) can lead to cascading failures,
causing massive power outages. The switching off of the 380 kV line over the river
Ems in Germany triggered a big cascade of line failures across Europe in 2006,
disrupting the power supply of more than 15 million European households [3]. The
contact of the overloaded Stuart-Atlanta 345 kV line with an overgrown tree was
part of the causes for the widespread blackout in the United States’ Midwest and
Northeast regions and Canada’s Ontario province in 2003, affecting about 50 millions
people [4]. While transmission network failures often hit the media’s headlines
because of their massive scopes of effect, they seldom happen due to the N-1 or N-2
redundancy of HV networks (i.e., the network can still operate normally when one or
two transmission lines fail). Outages of MV distribution networks, in fact, account
for the largest contribution to the total system interruption (i.e., the total System
Average Interruption Duration Index SAIDI) [5]. There are many more outages on
LV parts of the network, but each of those affects only a small number of customers
compared to less-frequent but larger-scaled MV outages [5].

To ensure normal and secure operation, the magnitude of power flows (i.e., elec-
tricity currents) from MV transmission substations (or HV/MV transformer sub-
stations) to electric power consumers should stay within the capacity of distribution
network components (e.g., cables and transformers). Electricity consumption in-
creases gradually over time, and the peak power demand, at a certain point in
the future, will exceed the currently available network capacity, causing bottlenecks
and thereby overloads. Long-time overloads on network assets are detrimental to
power supply, network security, and assets’ lifetime. Distribution network opera-
tors (DNOs) often draw out expansion plans to prevent such bottlenecks on the
networks by reconfiguring the networks, replacing old and low-capacity network as-
sets, installing new cable connections, or building new transformer substations. The
new network configuration needs to have enough capacity to handle the forecasted
growth of the peak power demand and also to satisfy other network constraints as
well. For example, in the Netherlands, the network configuration should maintain a
radial topology due to protection reasons. Urban distribution networks might also
require the capability to reconfigure the network when network failures occur. Re-
placing only potentially overloaded assets might not be sufficient because the power
demands can then be satisfied but the network reconfigurability is compromised.
Therefore, feasible expansion plans might require more than locally solving network
bottlenecks. The procedure that DNOs perform to design feasible expansion plans
can be termed distribution network expansion planning (DNEP), which is the focus
of this thesis.

For a given network, there are many possible expansion plans that satisfy the
growth in power demand, but not all of them are equally good. For example,
the simplest, and probably the most expensive, solution is upgrading all assets in
the whole network, which also results in overcapacity and inefficiency of network
facility usage. In practice, it is important to know the optimal expansion plan with
respect to some objective. Finding the best solution out of all possible solutions
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(i.e., the search space) is the goal of optimization. DNEP can be formulated as
an optimization problem. The most common objective in DNEP is arguably to
minimize the investment cost or the total cost (e.g., the combination of investment
and operation cost). Solving what is known as the static DNEP then involves finding
the most economical expansion plan that answers the questions where, on the grid,
network capacity should be enhanced, and what kinds of network assets should
be installed there to satisfy network constraints regarding the peak power demand
predicted for the planning year. Dynamic DNEP problems also involve the question
when enhancement activities should be carried out during the planning period. The
difficulty of solving DNEP increases steeply in the dynamic case because potential
expansions are considered in every year during the planning period, instead of only
in the final horizon year.

1.1.2. Smart grid technologies
The European Commission’s energy strategy aims to reduce greenhouse gas emis-
sions by 80-95% of the 1990 level by 2050 [6]. Such transition toward low-carbon
energy consumption will involve the increasing presence of renewable energy gen-
eration, like wind farms or photovoltaics systems, and the participation of electric
vehicles (EVs). Besides growths in power demands, these new technologies impose
additional challenges for DNOs. Distributed generation (DG) systems such as pho-
tovoltaics (PV) are connected to distribution networks, and during noon times, high
PV penetration can exceed local demands, causing reverse power-flow and voltage-
rise problems [7]. Uncontrolled EV charging might substantially raise peak loads on
network assets such that overloads would happen sooner, resulting in more network
component replacements [8]. Consequently, DNOs might need to continuously en-
hance the network capacity by installing more cables and building new substations
to catch up with the development of peak loads. Such excessive network expansion
is definitely undesirable and uneconomical because the duration of sharp peak loads
is normally much shorter than that of lower base loads. It would be more efficient
in use of existing capacity if parts of peak electricity consumption are shifted to
off-peak hours, flattening the load profile.

Demand side management (DSM) and battery energy storage system (BESS) are
smart grid technologies that can achieve such a peak-shaving effect. DSM involves
incentivizing electricity consumers to schedule some of their energy consumption
activities, e.g., heating, cooling, dish/cloth washing, or tumble drying, out of peak
power demand periods [9]. BESS absorbs energy during off-peak hours and injects
the stored energy into distribution networks during peak load hours [10]. The energy
injection of BESS needs to be properly performed to satisfy local energy consump-
tion without causing overloads on the network. BESS can also be used to store
the surplus of PV penetration and to mitigate other network impacts due to sudden
changes in PV output [7]. In this thesis, we assume that DNOs are allowed to employ
DSM and BESS as alternatives to traditional assets like cables and transformers.
It is of interest to investigate if smart grid technology can help DNOs to maintain
the magnitude of peak loads within the current network capacity, and thereby, to
postpone costly network expansions. Also, it could be that mixtures of both smart
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grid technologies and traditional asset reinforcements are the better choices.

1.1.3. Multiple conflicting criteria
Besides minimizing the investment cost, DNOs often need to take other criteria
into account when performing DNEP such as reducing energy losses or increasing
network reliability. These objectives often conflict with each other, e.g., expansion
plans that have low investment costs normally install thin electric cables, resulting
in more energy losses, and vice versa. It is not expected that a single expansion
plan exists that has the smallest cost, the least energy losses, and the highest re-
liability all at the same time. Usually, all these objectives are considered in the
optimization process by capitalizing the non-financial objectives like energy losses
and reliability and then combining them with the investment cost to form a single
total cost objective function. Solving this single-objectivized problem yields the ex-
pansion plan with the least lump sum cost. This expansion plan, however, is not
the overall optimal solution because a utopian solution that optimizes all objectives
at the same time does not normally exist. Instead, the obtained expansion plan
is only the best possible solution in the case that a DNEP practitioner considers
only the total financial picture. If, for example, another DNEP practitioner finds
network reliability more important, (s)he would expect a different expansion plan.
Considering all possible preferences, we get a collection of equally-good expansion
plans that are all optimal in the sense that any improvement in one objective would
deteriorate other objectives. Such a collection of so-called Pareto non-dominated so-
lutions is termed the Pareto-optimal set, which is the optimum of a multi-objective
optimization problem (MOOP) [11]. Solutions not belonging to the Pareto-optimal
set are called dominated solutions, which are not desirable because there exist other
solutions that are strictly better than them in at least one objective and are not
worse than them in all the remaining objectives. The goal of multi-objective opti-
mization (MOO) is then to find the Pareto-optimal set out of all possible sets of
solutions.

Instead of having a single objective value as in single-objective optimization, the
quality of an MOOP candidate solution is indicated by a vector of multiple ob-
jective values. For an m-objective optimization problem with n decision variables,
in addition to the n-dimensional decision variable space, we have the so-called m-
dimensional objective space that contains the objective-value vector of all MOOP
candidate solutions. The image of the Pareto-optimal set in the objective space is
termed the Pareto-optimal front. Figure 1.1 shows an example of a Pareto-optimal
front of Pareto non-dominated solutions for a multi-objective DNEP aiming to min-
imize investment cost and energy loss at the same time. Traversing the solutions
along the Pareto-optimal front of a multi-objective DNEP problem informs DNOs
about the most efficient ways to improve one objective at the cost of other objec-
tives. For example, having the Pareto-optimal front can answer the question what
are the best possible expansion plans to reduce energy losses if DNOs are willing to
invest more in network enhancement, or how much network reliability and energy
efficiency must be compromised if DNOs pursue less costly solutions. The results of
solving DNEP as a multi-objective optimization problem are, therefore, much more
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informative than those of solving DNEP as a single-objective problem. Because
there potentially exist numerous non-dominated solutions on the Pareto-optimal
front, obtaining exactly the whole front is prohibitively time-consuming. Instead, it
is often expected to obtain an approximation set of solutions that is representative
of the Pareto-optimal front in the sense that the range of the whole front should
be covered, the approximate set should be as close as possible to the front, and the
non-dominated solutions in the approximation set should be as diverse as possible
(i.e., evenly distant from each other) [12]. Note that diversity here is defined in
the objective space because the interesting trade-offs between all objectives under
concern are expressed in the objective space.
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Figure 1.1: An example of a multi-objective DNEP with two objectives: minimizing investment
cost and minimizing energy loss. Each solution corresponds to an expansion plan. Solution F costs
as much as solution C but solution C has less energy loss → solution C dominates solution F.
Solution G has the same amount of energy loss as solution C but solution C is more economical →

solution G is dominated by solution C. Solution F is dominated by solution C, but is not dominated
by solution D. Solution H is dominated by both solutions C and D. Solutions A, B, C, D, and E
are not dominated by any solution, and are thus Pareto non-dominated solutions. If there are no
other Pareto non-dominated solutions, then the set {A,B,C,D,E} is the Pareto-optimal set and its
image in the objective space is the Pareto-optimal front.

Having presented the challenges in DNEP, we will discuss the algorithms that
can be used to solve DNEP problems in the following section.

1.2. Optimization methods
DNEP is often regarded as being a hard problem. Basically, this classification comes
from two sources: the complicated power flow constraint and objective functions,
and the discrete nature of DNEP. First, the power flow constraint involves a set of
non-linear power flow equations [13], and the formulations of energy losses on cables
and transformers (considered an operation cost) have some quadratic terms [14].
Non-linearity can form many local optima in the search space, i.e., it can result in
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non-convex search space. Second, all network asset types that can be considered for
installation must be chosen from a collection of standardized devices. It is impossible
to install a cable of an arbitrary thickness or a transformer of any fractional amount
of capacity. Choices of network assets are then discrete (i.e., integer values), for
which derivatives do not exist to guide the search. DNEP normally has a vast search
space that grows exponentially with the network size. For example, suppose we
have to decide whether or not to upgrade each existing cable in a network of n cable
connections, we then have to find the optimal solution from a total of 2n possible
options. There currently exists no efficient algorithm to find the optimal expansion
plan in general. It was proved in [15] that transmission network expansion planning
(TNEP) is NP-hard. Although we have not learned about a dedicated complexity
proof for DNEP yet and this thesis does not focus on complexity analysis either,
it is conceivable that the complexity result of TNEP also applies to DNEP since
the two problems have many features in common. In the following sections, we will
introduce two classes of optimization algorithms that are commonly used to solve
DNEP problems.

1.2.1. Mathematical programming methods

Mathematical optimization methods have a long history of research and real-world
applications. Some of the most popular methods in discrete optimization are, e.g.,
branch and bound, cutting plane algorithms, and interior point methods [16]. Due
to their long-established developments, they have been implemented in many profes-
sional/commercial optimization software packages, which can be employed to solve
a wide range of real-world problems, including DNEP. Users normally are not in-
volved in the operation of the solvers but need to write a mathematical program of
the original problem that fits the the solvers’ capability and the computation budget
(e.g., time and computing resources). Writing proper mathematical programs, how-
ever, is not a trivial task. For example, the non-linear power flow equations need to
be linearized so that DNEP is then modeled as a mixed-integer linear programming
(MILP) problem, which can be solved by an MILP solver like CPLEX [17]. Similarly,
if the objective function involves energy losses, quadratic terms in the formulation of
the cost associated with energy losses need converting to linear terms by piecewise
linear approximation since CPLEX is not efficient in handling quadratic objectives
[14]. While it is possible to use a non-linear solver, e.g., a Sequential Quadratic
Programming (SQP) solver, in combination with a branch and bound method to
handle the discrete decision variables [18], such an approach in general still requires
a convex approximation of the original non-convex problem for the sake of efficiency
[19]. It can happen that the solutions obtained from solving models of linearized
(or approximated) constraints might not be feasible if evaluated against the original
non-linear constraints. The solutions must then be enhanced to attain feasibility,
possibly resulting in poor solutions. DNEP can be modeled as a mixed-integer non-
linear programming (MINLP) problem without any linearization as in [20], but it is
then not guaranteed to find the globally optimal solution in an efficient manner [14]
due to the non-convex search space. Writing proper mathematical models requires
practitioners to have a certain degree of optimization and mathematics expertise.
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Furthermore, if the problem is extended to include an additional constraint or to
consider a new type of network component then the model needs to be reformu-
lated. It is not always easy to formulate some distribution network constraints in
mathematical forms that can be handled by the solver, e.g., the radiality constraint
[21] or the reconfigurability constraint. Also, some new types of network compo-
nent, such as battery energy storage systems, are currently on-going research and it
would take time to reach a certain maturity before their structures in DNEP (e.g.,
interactions between peak power demand and battery charging/discharging) can be
clearly understood and properly modeled to fit the solvers’ capability.

To find the approximation set of non-dominated solutions for multi-objective
optimization problems by mathematical programming methods, the weighted sum
approach and the ǫ-constrained approach are frequently used [11, 22]. The weighted
sum approach combines all (conflicting) objectives of interest into a single objective
function by assigning each objective a coefficient. For example, a practitioner can
define the a set of coefficients weighting the relative importance of energy losses and
network reliability [23]. The original multi-objective problem is then transformed
into a single-objective problem, which can be solved by available solvers to obtain
a single non-dominated solution. To find other non-dominated solutions, different
sets of coefficients need to be proposed and tried out. This weighted sum approach
cannot obtain solutions on the non-convex parts of the Pareto-optimal front if such
parts do exist [24]. The ǫ-constrained approach keeps one objective as the master
objective and converts other objectives into problem constraints bounded by ǫ values,
i.e., an objective function fi which is not chosen as the master objective is converted
into a problem constraint fi(x) ≤ ǫi for the minimization case [11, 22]. Similarly,
this single-objectively reformulated problem is then solved by available solvers to
obtain a single solution, and different sets of ǫ values must be proposed to find
other solutions. Both weighted sum and ǫ-constrained approaches require running
the solver multiple times, each time with a different set of input parameters (i.e.,
a set of weight coefficients or ǫ values), which is time-consuming [22]. It is also
not straightforward to generate these sets of input parameters in such a way that
the set of finally obtained non-dominated solutions well-approximates the Pareto-
optimal front. In other words, equally-distant coefficient sets might not correspond
to evenly-spread non-dominated solutions.

1.2.2. Metaheuristics and evolutionary algorithms
Compared to mathematical programming approaches, metaheuristics offer practi-
tioners a greater flexibility to handle, in general, the complexity of real-world opti-
mization problems, and in particular, the uncertainty of future power system designs
with the participation of many upcoming smart-grid technologies. Metaheuristics
are loosely defined as algorithms that have some notable features as follows. First,
metaheuristics require little or no problem-specific information (e.g., derivatives,
continuity, convexity) in their operation apart from the solution evaluation func-
tion, which is naturally available for solving problems in a quantitative manner.
Therefore, metaheuristics can be used to tackle a wide range of problems, and es-
pecially in black-box optimization, where problem structures are not available or
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cannot be efficiently exploited. Second, if problem-specific information is known,
it should be used to improve the solving performance, and the implementations of
metaheuristics usually offer great flexibility to incorporate such domain knowledge
effectively. Metaheuristics can then take the role of high-level frameworks to inte-
grate expert knowledge, heuristics, and local search into the optimization process.
Third, metaheuristics do not require the original problems to be oversimplified (lin-
earized or approximated), and the obtained solutions are thus much more likely to be
real-world feasible. The exact model of DNEP can be straightforwardly handled by
metaheuristics [13]. For example, the original MINLP formulation of DNEP in [20]
was solved by Genetic Algorithm (i.e., a metaheuristic algorithm) in [25]. Fourth,
instead of processing a single solution, many metaheuristics employ a population
of solutions. The simultaneously processing of multiple solutions induces an im-
plicit parallel operation, approaching different local optima at the same time, which
increases the probability that the finally obtained solution is the global optimum
[11]. Furthermore, the population-based operation is well-suited for multi-objective
optimization in terms of obtaining a set of different non-dominated solutions in
one single optimization run. Based on the discussion here, we choose to employ
metaheuristics for developing optimization engines to solve DNEP problems.

Metaheuristics have been widely applied in different optimization tasks for elec-
tric distribution networks [26]. Some of the most popular methods are, e.g., evolu-
tionary algorithms (EAs [27]) in [28–32], Particle Swarm Optimization (PSO [33])
in [34, 35], Ant Colony Optimization (ACO [36]) in [37, 38], Differential Evolution
(DE [39]) in [40, 41]. Many metaheuristics are inspired by phenomena in biology
and nature, and biological terminologies are often borrowed to intuitively convey
their operation mechanisms. For example, the Genetic Algorithm (GA [27]), i.e.,
an evolutionary algorithm, is often described using the terminology of heredity and
natural selection. In essence, a GA starts from a collection of initial “guesses”
about some possible solutions. The collection is referred to as population and the
candidate solutions are termed individuals. Candidate solutions are represented as
strings (or arrays) of values that encode the potential values for the problem decision
variables. Solution strings are thus often called chromosomes and their constituent
elements are termed genes. Each chromosome is associated with a fitness value,
which corresponds to the optimization function value yielded by the candidate so-
lution that chromosome encodes, quantitatively indicating how good the candidate
solution is. A GA then operates in a sequence of generations until a predefined
computing budget is used up or some other termination criteria are satisfied. Each
generation, a number of promising solutions, often termed parent solutions, which
have higher fitness values than others, are selected. New candidate solutions, often
termed offspring solutions, are created then by performing some variation on the
selected solutions, replacing the unselected ones. It is assumed that promising solu-
tions contain good building blocks (i.e., partial solutions) and if variation is effective,
better solutions can be synthesized by juxtaposing building blocks existing in the
selected solutions. While the operation details of population-based metaheuristics
widely differ from each other, their overall behaviors share some resemblance in the
idea that the quality of solutions in subsequent iterations (generations) is gradually
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improved by exchanging information/contents of promising solutions in previous it-
erations (generations). A simple GA implementation for DNEP can be outlined as
in Figure 1.2.

A Simple Genetic Algorithm for DNEP
1. [Initialization] Randomly generate a population of n chromosomes,

i.e., n initial candidate solutions (network configurations).
Evaluate the fitness values of the initial chromosomes,
i.e., compute objective values and constraint violations.

2. [Selection] Based on fitness values, select the top Γ% chromosomes,
i.e., identify the best promising candidate networks.

3. [Crossover] With some crossover rate Pcr, recombine the selected
(parent) chromosomes by exchanging their gene values
to generate n× (1 − Γ/100) new (offspring) chromosomes,
i.e., exchange network assets between promising
candidate networks to create new network configurations.

4. [Mutation] With some small mutation rate Pmu,
alter the gene values of offspring chromosomes,
i.e., induce small changes in new candidate networks.

5. [Evaluation] Evaluate the fitness values of the offspring chromosomes,
i.e., compute objective values and constraint violations.

6. [Replacement] Replace the unselected chromosomes with the offspring,
i.e., replace low-quality solutions with new candidates.

7. [Termination] Go back to step 2 if computing budget still remains;
otherwise, stop and report the best found solution.

Figure 1.2: A simple Genetic Algorithm solving DNEP

In this thesis, we particularly focus on evolutionary algorithms (EAs) but the
methodologies presented here can be straightforwardly customized and incorporated
with other metaheuristics. This is due to the facts that many other metaheuristics,
e.g., PSO, ACO, or DE, have a population-based operation mechanism, and their
variation operators, that alter currently existing solutions to create new candidate
solutions, bear some resemblance to each other such that it is often possible to
modify the ideas developed for one metaheuristic to work with other metaheuristics.
Not aiming to cover the entire EAs corpus, we specifically state that the scope of
EAs includes, but is not limited to, Genetic Algorithm (GA [27]), Estimation-of-
Distribution Algorithm (EDA [42]), and Gene-pool Optimal Mixing Evolutionary
Algorithm (GOMEA [43]), all of which target specifically at discrete variables. Note
that each of these algorithms actually has different variants/implementations, which
can be considered as different methods in their own respect. While having many
advantages, there exist several challenges in the development and application of EAs
and metaheuristics in industrial optimization, and particularly in DNEP, that need
to be addressed.
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1.3. Challenges in design and application of EAs
1.3.1. Parameter settings
While metaheuristics have been designed such that they can be straightforwardly
employed by practitioners to solve their problems at hand, the current applications of
metaheuristics in practice usually require users to spend a certain amount of time to
do parameter tuning. For example, GA users need to set several parameters, such as
the population size (i.e., the number of candidate solutions in each generation), the
crossover rate (i.e., how often parent solutions are recombined to generate offspring),
or the mutation rate (i.e., the probability that a decision variable can randomly
change its value) [44] as shown in Figure 1.2. A PSO also needs a proper initialization
for its control parameters: the swarm size, the acceleration coefficients, the inertia
weight, the velocity clamping [45]. A typical ACO requires a number of parameters
to be determined by practitioners: the number of ants, the initial pheromone values,
the evaporation rate, the weights controlling the relative importance between the
pheromone and heuristic information [36]. Similarly, a basic DE needs some user-
defined parameters: the population size, the differential weight, and the crossover
probability [39].

Proper control parameter setting is essential for the efficient performance of
EAs and metaheuristics; otherwise the solvers operate inefficiently, resulting in slow
convergence, or ineffectively, resulting in converging to subpar solutions and even
leading to divergent or cyclic behavior in some cases. However, parameter setting
is difficult because there exists no method to determine the optimal values of con-
trol parameters in general. Their suitable values depend on the mechanism of the
solver being employed and also on the structure and the size of the specific problem
instance under concern. In practice, users often need to manually try out different
parameter values before obtaining acceptable results. To overcome this troublesome
parameter setting problem, there exists a line of research into parameter adaptations
for EAs [46]. Parameter adaptation schemes normally initialize control parameters
with some random values or by following some guidelines, and then gradually change
the parameters’ values during the optimization process regarding the current status
of the solver. The users are thus exempt from the requirement of parameter settings.
In this thesis, we focus on eliminating the parameter setting for the class of evo-
lutionary algorithms (EAs), and in particular, for GA, EDA, and GOMEA. These
three EAs have a parameter in common, i.e., the population size, which can be con-
sidered as one, if not the most, crucial parameter of population-based EAs. If the
population size is too small, there are not enough building blocks to synthesize the
optimal solution, and the solver might suffer from premature convergence to some
suboptimal solutions. If the population size is too large, the solver might overly
diversify its search effort into many directions, and consequently, within a limited
computing budget, promising regions of the search space cannot be reached due to
lack of exploitation. Knowledge about proper population size settings for real-world
applications is difficult to transfer from one problem instance to another because
the same EA requires different population sizes for different problem instances. It
is also inappropriate to employ the optimal population size of one EA solver for
another because different EAs have different population size requirements even for
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the same problem instance. This fact makes it difficult for EA users to reuse legacy
results and troublesome for EA designers to compare the performance of algorithms
in industrial optimization. In this thesis, besides handling other control parame-
ters based on established research for each EA, we focus on a common scheme to
get rid of this notoriously-difficult-to-set population size parameter. Our goal is
twofold. Firstly, we aim to design parameter-less EAs that can be straightforwardly
employed by non-EA-expert users to solve their optimization tasks. Secondly, by
employing a common scheme for different EAs, we can put them on an equal foot-
ing, and thereby, conduct performance comparison in a fair manner to understand
which solver is best-suited to DNEP problems.

1.3.2. Scalability
Most research on real-world applications of EAs focuses on the effectiveness of EAs
to solve a specific problem while scalability issue is often omitted. Scalability, in
essence, requires the employed solvers to maintain their effectiveness and efficiency
when the problem size enlarges. For example, a non-scalable algorithm might be
able to solve the DNEP problem for a small network, but it would need an exponen-
tially larger amount of computing time even if the network size is linearly increased.
Similar to the case of control-parameter settings, non-scalable solvers cannot be
straightforwardly reused to tackle problem instances of larger sizes, and modifica-
tions in the solvers’ design will thus be required. For combinatorial optimization as
in the case of DNEP, the scalability of EAs typically depends on their capability for
preserving and recombining good partial solutions (also known as building blocks)
in the population to create new candidate solutions. Building blocks, however,
are prone to disruption due to the stochastic nature of classic variation operators
(e.g., crossover and mutation operators of the simple GA). For example, random
crossovers of connected network configurations usually yield new network configu-
rations of unconnected topologies, which are infeasible solutions. If the crossover
operator takes account of the connectivity knowledge during recombination, net-
work cables can be exchanged in such a way that the resulting networks are kept
connected. Variation operators of EAs, therefore, are rarely used out-of-the-box in
practice but are firstly customized with as much domain knowledge as possible so
that they exploit problem-specific structures as much as possible. In this thesis, we
will show how DNEP domain knowledge can be employed to modify the variation
operators. The methodology then serves as a guideline for practitioners to adapt
EAs to their specific needs.

While the specialization of EAs as aforementioned is often done by domain ex-
perts, from the perspective of (general-purpose) algorithm designers, or especially,
black-box optimization, problem-specific knowledge is unavailable or difficult to be
straightforwardly exploited. In such cases, a viable option is to infer problem struc-
tures from the candidate solutions in the working population of EAs. Usually,
the structure of interest is the dependency structure that indicates which problem
variables are dependent on each other and should thus be treated together when
performing variation. Dependency structures can be obtained by employing statis-
tical/machine learning techniques to fit a linkage model to the current population
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in every generation. The learned linkage model is then used to guide the variation
operators in creating new candidate solutions. Different types of linkage models can
capture different types of dependency structures. Different EAs also have differ-
ent capability in exploiting the learned model to efficiently generate new solutions.
In this thesis, we consider three linkage models, namely the univariate model that
assumes all problem variables are independent, the marginal product model that
assumes problem variables form non-overlapping groups of dependency, and the
linkage tree model that captures hierarchical dependencies. We will investigate
which combination of linkage model-EA is best-suited to DNEP problems.

Designing scalable multi-objective evolutionary algorithms (MOEAs) has addi-
tional challenges to overcome. Instead of a single best solution, the optimum of a
multi-objective optimization problem is the Pareto-optimal set, which might con-
tain numerous (or even an infinite number of) trade-off alternatives. Then goal then
is to find an approximation set that is representative of the Pareto-optimal front.
Considering the limited size of the working populations of EAs (and of physical com-
puter memory), many trade-off solutions must be discarded during the optimization
process and we thus need a procedure to ensure that the remaining solutions are the
best representatives. Also, the Pareto-optimal front might have a very wide range,
and the search effort therefore must be equally divided into each direction so that
the approximation set is not skewed toward some particular regions and the entire
front can be evenly approached. Furthermore, the trade-off solutions located in var-
ious parts of the Pareto-optimal front might have different characteristics, and they
can only be efficiently obtained if these local structures are learned and exploited
in a dedicated manner. For example, it can be seen that the expansion plans which
minimize investment costs often differ a lot from the plans that aim to decrease
energy losses or increase network reliability (e.g., economical expansion plans typ-
ically favor the installations of small-diameter cables, which have lower acquisition
costs and higher energy losses than cables of larger diameters). Considering the
size of DNEP problems (i.e., the number of cable connections in large networks and
the number of locations where smart grid technologies can be employed) and its
complicated structure (i.e., the interactions between electric cables, network capac-
ity, power demand, and peak-shaving effects of smart grid technologies), we need a
scalable multi-objective optimization algorithm. In this thesis, we will construct a
scalable parameter-less MOEA, which can be conveniently used by practitioners to
solve multi-objective DNEP problems.

1.4. Research questions
In this section, we present the research questions that are addressed by this thesis
and their related literature.

1. How can we model distribution network expansion planning (DNEP) as an
optimization problem such that the outcomes of solving this problem are prac-
tically relevant while the optimization models are computationally feasible?

The AC power flow model, that describes the operation of a distribution net-
work, involves a system of non-linear equations characterizing the nodal power
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balance [1]. These non-linear terms are often linearized, resulting in DC-like
models, so that DNEP can be handled by mathematical programming solvers
[47]. The quality and feasibility of solution expansion plans obtained from solv-
ing such simplified models are not guaranteed when being evaluated against
the original non-linear AC power flow model. Infeasible solutions must then
be repaired to attain the feasibility, which is a non-trivial task, regarding the
fact that DNEP is a combinatorial problem where gradient information is not
available to be exploited. Therefore, state-of-the-art DNEP research employs
metaheuristic methods, e.g., EAs [48], PSO [49], or ACO [37], as the opti-
mization solvers so that the AC power flow model can be directly taken into
account and the feasibility of the solution expansion plans can be guaran-
teed. Nevertheless, the important reconfigurability constraint, which requires
that the network can be re-configured to resume normal operation when fail-
ure occurs on a network cable [50], is not available in current optimization
models [37, 48, 49]. The evaluation of the reconfigurability constraint is es-
pecially computationally expensive because the network operation must be
checked against the failure of each network cable, which each corresponds to
solving an AC power flow model. Reconfigurability is an essential requirement
of distribution networks in urban areas, which typically supply electricity to
a larger number of customers, and should thus be taken into account when
solving DNEP.

The search space of DNEP, i.e., the set of all expansion plans, is prohibitively
large, regarding the numerous possibilities of cable connections in combina-
tion with transformer upgrade at substations. Furthermore, the inclusion of
smart grid technologies in DNEP increases the number of decision variables
[34, 51], which enlarges the optimization model. To enhance the search effi-
ciency, impractical or undesirable expansion options should be excluded from
optimization models, e.g., substations that are far away from each other should
not be connected, existing cables should not be replaced by new cables of lower
capacities, or not all substations are suitable for installing storage systems.

The difficulties in modeling and solving DNEP are considerably increased
when the investment/installation times of required assets during the plan-
ning period need to be determined (i.e., the dynamic DNEP), which is the
real-world planning task that DNEP practitioners have to tackle. Tradition-
ally, dynamic DNEP is solved by a two-phase approach [52, 53]: 1) solve the
static DNEP problem to obtain a good (or near-optimal) expansion plan re-
garding the peak loads at the final year in the planning period, then 2) find
a good (or near-optimal) installation schedule for the solution plan obtained
in phase 1. Because of the facts that the cost of a dynamic plan (in which
the required assets are installed along the planning period) is more economi-
cal than its corresponding static plan (that assumes all required assets to be
installed at the same time) and that the time factors are ignored in phase 1,
the result of this two-phase approach is typically far from optimal [54]. Recent
DNEP research tackle directly the dynamic planning problem by encoding the
installation schedule in the optimization model [31, 51]. The most common
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approach is to represent the status of a network component in each year as
a decision variable. Such overdetailed approach, however, suffers from poor
scalability, e.g., DNEP over a period of 10 years for a network of 100 possible
cable connections (i.e., both existing and potential cable connections) results
in an optimization model of 1000 decision variables. For long-term DNEP
(with planning periods of 10-30 years), proper modeling methods need to be
developed. In this thesis, we will propose optimization models for both static
and dynamic DNEP problems such that the models are computationally fea-
sible without being oversimplified in order to obtain solution expansion plans
that are practically relevant.

2. How can we design scalable EAs for solving (multi-objective) real-world appli-
cations, and in particular for solving (multi-objective) DNEP problems?

While EAs can operate as black-box optimization algorithms that require little
or no problem-specific knowledge, the capability in exploiting problem struc-
tures of the problem under concern is crucial to the scalability of an EA. EA
solvers employed for solving DNEP are thus often customized with expert
knowledge so that the search can be performed in an efficient manner [30, 55].
However, these customizations are not out-of-the-box features of EAs because
they are specific to the DNO or the networks under concern. DNEP prac-
titioners thus need to implement these customizations, and while EA solvers
are typically highly customizable, modifying their mechanisms to incorporate
expert knowledge is non-trivial (e.g., variation operators need re-designing).
Therefore, in order to build a general EA framework for real-world applica-
tions like DNEP, it is highly beneficial to have a foundation EA that is capable
of automatic recognition of problem structures during the EA run and then
employs these learned structures to guide the search. Such an EA can be used
out-of-the-box and can reasonably function in the general case, where problem-
specific knowledge is not available or not straightforward to be exploited (e.g.,
like in the black-box optimization context).

Linkage learning EAs (LLEAs) are a class of EAs that learn linkages (i.e., de-
pendencies) between problem decision variables and then exploit these learned
linkage information to inform the variation operators [56–58]. More specifi-
cally, problem variables that exhibit dependency on each other to some degree
(i.e., a linkage set) should be treated together when existing solutions are
varied to create offspring solutions (e.g., during solution recombination or mu-
tation). Good partial solutions are thereby not disrupted too frequently and
can be juxtaposed together to create high-quality solutions [43, 59]. While
it has been shown that different classes of problems can be scalably solved if
linkage information is properly exploited [58, 60, 61], applications of LLEAs
in DNEP have been scarce so far. It is therefore worthwhile to investigate the
applicability of LLEAs in DNEP, especially their out-of-the-box performance.
Besides, LLEAs can also be customized with expert knowledge, which further
enhances the efficiency of the search. Exploiting both linkage information
and problem-specific knowledge is a promising methodology to address the
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scalability issue in employing EAs for real-world optimization.

Elitism, which relates to maintaining the best solutions so far during an EA
run, is essential to a steady convergence of the employed EA solver [62]. In-
stead of finding a single solution, the multi-objective optimization aims to ob-
tain a set of multiple solutions that approximates the Pareto-optimal front ex-
hibiting the trade-off relationship between the involved objectives [12]. While
the size of the working population is limited, the number of trade-off solutions,
which are equally good, can be numerous or even infinite. The implementation
of elitism for multi-objective optimization is thus non-trivial [63]. A common
and efficient elitism method is to employ a so-called elitist archive [64], which
is an external population, to maintain an overview of non-dominated solutions
obtained so far during the run.

Niching, which relates to maintaining diversity within the population in order
to find multiple optima [65], is essential to obtaining trade-off solutions on
different parts of the Pareto-optimal fronts [66]. Solutions on different parts
of the Pareto-optimal fronts are typically different from each other, e.g., an
expansion plan that has lower investment cost has different network topology
and installed assets compared to an expansion plan that yields low energy
losses. Therefore, it might not be beneficial to recombine such different solu-
tions during variation. Similarly, a single linkage model is often not enough to
sufficiently capture relevant dependencies pertaining to solutions in different
parts of the fronts. Clustering-based operation is a straightforward implemen-
tation of niching and is often employed by state-of-the-art MOEAs [67, 68].
The working population is partitioned into multiple equal-sized clusters (in the
objective space), and solution variation can then be tailored to each cluster
[68] (e.g., linkage learning is performed per cluster, recombination is applied
to solutions belonging to the same cluster). Each part of the Pareto-optimal
front are thereby approached by an equal amount of search effort in a dedicated
manner.

We pinpoint the components that are crucial to the scalability of (multi-
objective) EAs, namely the exploitation of linkage information and problem-
specific knowledge, elitism, and niching. In this thesis, we will show how
to integrate these components for building scalable (multi-objective) EAs for
real-world optimization, and for (multi-objective) DNEP in particular.

3. How can we solve DNEP problems when multiple conflicting objectives need
to be taken into account such that DNOs are provided with insight into the
trade-off relationship between the involved objectives?

DNEP typically involves multiple planning criteria that conflict with each
other, e.g., investment cost, energy losses, and network reliability. The most
common approach is to capitalize and aggregate all those criteria into a single
optimization function, for which the optimal solution corresponds with the
most economical expansion plan with respect to the chosen capitalization pa-
rameters [31, 69, 70]. This approach requires DNEP practitioners to specify
the prices of non-monetary criteria (e.g., how to capitalize energy losses or
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network reliability). These user-input parameters, however, are not always
available or might be subject to uncertainties. Because only the financial as-
pect is optimized and only the most economical expansion plan is obtained,
trade-off relationships between the involved planning criteria, which typically
provides DNOs with better insights into the network under concern, cannot
be achieved with this aggregation approach. A generalization of this aggre-
gation approach is the weighted sum method, in which each (capitalized) cri-
terion is multiplied with a weighting factor and all the weighted criteria are
then summed into an optimization function. Each vector of weighting factors
thus yields a single-objective optimization problem that the optimal solution
is also a Pareto-optimal solution. To approximate the Pareto-optimal front,
multiple weight vectors are generated, often equally-spaced, to create multi-
ple corresponding single-objective optimization problems, and each of these is
then solved to obtain the associated Pareto-optimal solution. Several multi-
objective DNEP problems have been tackled by this weighted sum method
[71, 72]. However, obtaining a good approximation of the Pareto-optimal front
by the weight sum method can be very time-consuming because separately
solving each single-objective DNEP problem is still a hard optimization task
due to its non-linearity, non-convexity, and non-differentiability [49]. Further-
more, equally-spaced weight vectors are not guaranteed to yield a well-spread
approximation set, and if the Pareto-optimal front contains non-convex parts,
solutions on such parts cannot be obtained by the weighted sum method [11].

The state-of-the-art methodology to expansion planning with conflicting crite-
ria is to treat the involved criteria as separate optimization objectives and then
to solve such a multi-objective optimization problem with true multi-objective
optimization algorithms [22, 73]. Due to their advantages, multi-objective
evolutionary algorithms (MOEAs) are often employed to solve multi-objective
DNEP problems [30, 73], obtaining a set of multiple candidate expansion plans
that approximate the trade-off relationship between the involved objectives,
from which DNOs can investigate and select the plan corresponding with their
desired trade-off. However, most applications of MOEAs in DNEP are per-
formed in an ad hoc manner and the published literature overlooks many sys-
tematic issues as follows. A specific MOEA, normally some well-known MOEA
like NSGA-II, is typically chosen to solve the problem instances at hand while
the advantages and disadvantages of the employed MOEA in DNEP (compared
with other alternative MOEAs) are often not discussed. Besides, the con-
trol parameters of MOEAs are often determined specifically for the networks
under concern [30, 74] and are not guaranteed to yield efficient performance
when being applied to other networks of different characteristics. Furthermore,
MOEAs employed in DNEP literature are not the out-of-the-box variants but
have been customized with expert/problem knowledge that might be specific
to the involved DNO or the networks under concern [30, 73]. The efficiency
enhancements of these customizations are often not reported, so that it is
difficult to understand the performance of the original algorithm. Such infor-
mation is important for building an EA framework for solving DNEP because
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DNO-specific customizations would not be available in the more general case.
In this thesis, we propose a systematic approach such that our methodology
can serve as a general framework for tackling DNEP with multiple conflicting
planning criteria.

4. How can we eliminate the troublesome requirement of control parameter set-
tings when applying (multi-objective) EAs in practice?

In general, there exist two methodologies to handle the setting of EA param-
eters in real-world applications: parameter tuning [75] and parameter control
[44, 46]. Parameter tuning aims to obtain a good setting of the parameters
of the employed EA by running multiple experiments with different combina-
tions of parameter values on test problem instances, for which the optimal, or
high-quality, solutions are known. The combination of parameter values that
yields the best performance (among all the considered combinations) will then
be employed for the actual optimization runs. Parameter tuning is commonly
used in practice due to its straightforward implementation. However, parame-
ter tuning is time-consuming because a sufficient number of experiments must
be carried out regarding that the number of possible combinations of param-
eter values are numerous, or even infinite. In the context of DNEP, because
the evaluation of a candidate expansion plan is computationally expensive,
parameter tuning can take a prohibitive amount of time. Besides, if the dis-
tribution networks in the actual expansion planning have different network
characteristics or larger sizes than the ones used for parameter tuning, the
obtained parameter value results might not yield the desired performance.

Instead of trying to find a good setting of EA parameters beforehand and using
these obtained parameter values for the actual optimization run (where the
parameter values remain fixed), parameter control methods start the optimiza-
tion process with some initial parameter values and then adapt the parameter
values during the run regarding the feedback from the search [44, 46]. Because
the parameter values are adapted during the optimization run, practitioners
are not required to configure EAs with good parameter values for the problem
instance at hand before the run. Implementing parameter control methods,
however, is non-trivial because original EA solvers often need to be re-designed
to incorporate a parameter adaptation scheme. Besides, a parameter control
method developed for a specific EA might not be compatible with other EAs
because each EA has different operation mechanism and different parameters.

A population-sizing-free scheme has been developed to remove the requirement
of setting the population size parameter, which is a crucial parameter to the
performance of all EAs [76, 77]. The scheme operates multiple populations of
different sizes in an interleaved fashion such that each population is run for a
number of generations before the population of the next larger size is run for
one generation. A population is terminated when the average quality of its in-
dividuals is worse than that of a population having larger size. The scheme was
firstly employed to remove the population size parameter setting for the simple
GA [76], and later for the two EDAs Extended Compact Genetic Algorithm
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(ECGA) [78] and hierarchical Bayesian Optimization Algorithm (hBOA) [79].
Compared to parameter tuning, this population-sizing-free scheme does not
require a time-consuming overhead for determining a good population size be-
fore the actual optimization run. Compared to parameter control methods,
this scheme has a straightforward implementation, which can be employed for
any population-based EAs, and does not require EA solvers to be re-designed.
The scheme was employed to remove the parameter settings of the simple GA
and the ECGA solving a hypothetical DNEP problem variant, in which com-
pletely new distribution networks needed to be developed for regions that had
no electricity previously [80]. However, the scheme was developed for single-
objective EAs and thus needs certain modifications in order to be employed
in the multi-objective optimization context, e.g., it is uninformative to com-
pute the average quality of a multi-objective population. In this thesis, we
will modify and investigate the practicality of this scheme in eliminating the
requirement of control parameter settings when applying MOEAs to tackling
the real-world multi-objective DNEP problem.

1.5. Outline of the thesis
The remainder of this thesis is organized as follows.

Chapter 2 introduces three typical EAs: Genetic Algorithm (GA), Estimation-
of-Distribution Algorithm (EDA), and Gene-pool Optimal Mixing Evolutionary Al-
gorithm (GOMEA). We then present three linkage models, namely the univariate
model, the marginal product model, and the linkage tree model, that can be em-
ployed by EA solvers to match different types of dependency structures between
problem variables. We show that each combination of EA and linkage model corre-
sponds to an EA variant with some specific capability. Chapter 2 also introduces a
population-sizing-free scheme that can be used with all population-based EAs, elim-
inating the requirement of tuning the population size parameter. Chapter 2 thus
lays the foundation for addressing the linkage learning issue of the research question
2 and the parameter setting issue of the research question 4 for single-objective EAs.

Chapter 3 presents how to design a scalable multi-objective evolutionary al-
gorithm (MOEA). Based on established research studies, we pinpoint the essential
features of a robust MOEA, namely elitist archiving, population clustering, linkage
learning, and exploiting the learned linkage to efficiently generate higher-quality
candidate solutions. Following the guideline, we construct the Multi-objective Gene-
pool Optimal Mixing Evolutionary Algorithm (MO-GOMEA). Experimental results
on a wide range of benchmark problems suggest that MO-GOMEA has a superior
scalability, compared to other available MO solvers. We then make MO-GOMEA
a parameter-less MOEA so that MO-GOMEA can be straightforwardly employed
to solve hard problems without the need of parameter tuning. Chapter 3 addresses
the multi-objective optimization aspect of the research questions 2 and 4.

Chapter 4 formulates the static DNEP as an optimization problem: the ob-
jective, the constraints, and the decision variables. The vast combinatorial search
space of the DNEP problem can be narrowed by considering expert knowledge to
disregard impractical solutions. A random network generator is used to initialize the
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population of EA solvers with good initial candidate solutions, and the efficiency
of EAs in solving DNEP is thereby considerably improved. We propose how the
general-purpose variation operators of EA solvers presented in Chapter 2 can be cus-
tomized with domain knowledge to obtain different problem-specific operators. We
then perform experiments for different benchmark networks, using all the proposed
EA solvers with both out-of-the-box variants and customized variants. Chapter 4
addresses the modeling of realistic DNEP constraints issue stated in the research
question 1 and also the exploitation of linkage information and expert knowledge
issue stated in the research question 2.

Chapter 5 formulates the dynamic DNEP as an optimization problem. We
propose a decomposition heuristic that can find an asset installation schedule for
any feasible static expansion plan. Consequently, the dynamic DNEP can be solved
by EA solvers available for the static DNEP, without compromising on their origi-
nal performance. We then present how a smart-grid technology, i.e., battery energy
storage systems (BESS), can be considered and modeled as network reinforcement
options for DNOs, along with traditional electric cables. Experimental results show
that BESS can be used to postpone costly cable expansions, and under certain con-
ditions, mixtures of both electric cables and BESS are more economical than solely
installing cables. In this chapter, we also briefly discuss the intrinsic limitations of
single-objective optimization when having to deal with multiple conflicting criteria
at the same time in DNEP. Chapter 5 addresses the dynamic DNEP with smart grid
technologies stated by the research question 1 and partly indicates why the multi-
criteria DNEP presented by the research question 3 must be properly answered.

Chapter 6 formulates the dynamic DNEP as a multi-objective optimization
problem. We assume that DNOs can (financially) contribute to the demand side
management (DSM) as a means to achieve the peak-shaving effect. Therefore, be-
sides physical network asset expansion options, DSM is a policy option for DNOs
to handle the growth of peak power demand. We then present some typical ob-
jectives that are of interest to DNOs: investment cost, DSM cost, energy losses,
and network reliability (quantified as customer minutes lost). We solve the multi-
objective DNEP for several benchmark networks with the proposed MO-GOMEA
as the solver. For each case, the obtained result is a diverse set of equally good
alternatives, informing DNOs about possible trade-offs between different objectives
under concern. Experimental results show that DSM policies can be effective in
delaying expensive physical network reinforcements and that MO-GOMEA can be
used by DNOs to investigate the best possible options in various scenarios. Chapter
6 presents the answer to the research question 3.

Chapter 7 concludes the thesis. We recap the modeling and computational
challenges in DNEP problems. We summarize our solutions to each of those chal-
lenges. We also mention several interesting (remaining) problems for future research.
Finally, we present our insights about the design and application of evolutionary al-
gorithms in general.
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1.6. Publications
Parts of Chapters 2, 4, and 5 appeared in:

N.H. Luong, H. La Poutré, P.A.N. Bosman (2018). Exploiting Linkage Informa-
tion and Problem-Specific Knowledge in Evolutionary Distribution Network Expan-
sion Planning. Evolutionary Computation (journal), vol. 26, no. 3. Publisher: MIT
Press.

Parts of Chapter 3 appeared in:

N.H. Luong, P.A.N. Bosman (2012). Elitist Archiving for Multi-objective Evolu-
tionary Algorithms: To Adapt or Not to Adapt. In: Proceedings of the 12th Interna-
tional Conference on Parallel Problem Solving from Nature (PPSN ’12). Publisher:
Springer. pp. 72-81.

N.H. Luong, H. La Poutré, P.A.N. Bosman (2014). Multi-objective Gene-pool
Optimal Mixing Evolutionary Algorithms. In: Proceedings of the 2014 Annual Con-
ference on Genetic and Evolutionary Computation (GECCO ’14). Publisher: ACM.
pp. 357-364.

N.H. Luong, H. La Poutré, P.A.N. Bosman (2018). Multi-objective Gene-pool
Optimal Mixing Evolutionary Algorithm with the Interleaved Multi-start Scheme.
Swarm and Evolutionary Computation (journal), vol. 40. Publisher: Elsevier. pp.
238-254.

Parts of Chapters 4 and 5 appeared in:

N.H. Luong, M.O.W. Grond, P.A.N. Bosman, and H. La Poutré (2013). Medium-
Voltage Distribution Network Expansion Planning with Gene-pool Optimal Mixing
Evolutionary Algorithms. In: Artificial Evolution 2013. Publisher: Springer. pp.
93-105.

N.H. Luong, M.O.W. Grond, H. La Poutré, P.A.N. Bosman (2014). Efficiency
Enhancements for Evolutionary Capacity Planning in Distribution Grids. In: Pro-
ceedings of the Companion Publication of the 2014 Annual Conference on Genetic
and Evolutionary Computation (GECCO ’14). Publisher: ACM. pp. 1189-1196.

M.O.W. Grond, N.H. Luong, J. Morren, P.A.N. Bosman, J.G. Slootweg, and H.
La Poutré (2014). Practice-oriented Optimization of Distribution Network Plan-
ning using Metaheuristic Algorithms. In: Power Systems Computation Conference
(PSCC ’14). Publisher: IEEE. pp. 1-8.

N.H. Luong, H. La Poutré, P.A.N. Bosman (2015). Exploiting Linkage Infor-
mation and Problem-Specific Knowledge in Evolutionary Distribution Network Ex-
pansion Planning. In: Proceedings of the 2015 Annual Conference on Genetic and
Evolutionary Computation (GECCO ’15). Publisher: ACM. pp. 1231-1238.

Parts of Chapter 6 appeared in:

N.H. Luong, M.O.W. Grond, H. La Poutré, P.A.N. Bosman (2015). Scalable and
Practical Multi-objective Distribution Network Expansion Planning. In: Proceed-
ings of Power & Energy Society General Meeting (PES-GM ’15). Publisher: IEEE.
pp. 1-5.
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2
Model-Based

Evolutionary Algorithms

Wie A zegt, moet ook B zeggen.
Who says A must say B.

Dutch proverb

Model-based evolutionary algorithms (MBEAs) differ from classical EAs in the usage
of models to exploit problem structures during the optimization process. In this chap-
ter, we focus on a major class of MBEAs that build models to capture the linkages
(i.e., dependency structures) among problem variables and use the learned linkage
models to inform variation operators in generating new candidate solutions. Link-
age learning addresses the problem that stochastic variation operators of classical
EAs are prone to disrupt building blocks (i.e., good partial solutions) due to their
lack of linkage knowledge. Exploiting linkage information is therefore one of the
biggest issues in EAs and is crucial to the scalability of EAs, especially when solv-
ing problems that exhibit efficiently exploitable linkage structures. We describe three
types of linkage models, namely the univariate model, the marginal product model,
and the linkage tree model, which have different capabilities of matching the problem
variable dependency structure. We then outline the implementation of three MBEAs:
the Genetic Algorithm, the Estimation-of-Distribution Algorithm, and the Gene-pool
Optimal Mixing Evolutionary Algorithm. We show how different EA variants can be
constructed by customizing an EA with various linkage models. Lastly, we describe
a population-sizing-free scheme that can be employed by any population-based EAs
so that practitioners are exempt from the requirement of setting the population size
parameter.

Sections 2.2, 2.3, and 2.4 of this chapter have been published in [1].
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2. Model-Based Evolutionary Algorithms

2.1. Introduction
While evolutionary algorithms (EAs) have found numerous applications in various
optimization tasks for electric distribution networks [2], it might not be easy for
(non-EA) practitioners to choose a particular EA to tackle their specific problem
at hand. The reason is that EAs are a very broad class of diverse solvers with dif-
ferent operation mechanisms, ranging from the simple Genetic Algorithm (GA [3])
with biologically-inspired operators to the more complex Estimation-of-Distribution
Algorithms (EDAs [4]) that build and sample probabilistic graphical models for gen-
erating offspring [5]. Choosing suitable EAs is important since a problem instance
can only be (efficiently) solved if the employed solver can (efficiently) exploit the
problem structure. While GA is arguably the most popular EA in real-world ap-
plications, it is rarely used out-of-the-box without any modification. Instead, the
simple GA is usually hybridized with problem-specific local search techniques or
customized with domain expert knowledge (e.g., see [6, 7]). Such an adapted GA
can be seen as a specialized solver for a specific problem. However, it is not always
straightforward to exploit domain knowledge for solver customization, for exam-
ple, if the problem involves complicated inter-dependent factors, like the operation
problem of smart distribution grids that takes into account residential loads, power
injections of distributed generation, electric vehicles [8]. If problem-specific knowl-
edge is not available or cannot be modeled by the users, we say the problem is a
black-box problem. When solving such black-box optimization problems, it is highly
beneficial if problem structures can be detected along the optimization process. In
this thesis, we advocate for the model-based evolutionary algorithms (MBEAs [9]),
which differ from classical EAs in the explicit use of models that capture problem
structures to guide the (stochastic) operators of EAs.

The advantages of MBEAs are manifold. First, because the model is explicitly
defined, it is easier to see if the model of an EA solver can match the problem struc-
ture, and thereby, assess if that solver is suitable for solving the problem. Second,
practitioners can directly design the model by using problem-specific knowledge so
that the solver is adapted to the problem structure. Third, if domain knowledge
is not available, the model can be learned from the working population of EAs
by statistical methods or machine learning techniques. Furthermore, it is possi-
ble to replace the model type of an MBEA, creating a new EA variant that has
different assumptions about the problem structure but the working mechanism of
the original EA solver is still retained. While there exist many problem-specific
types of structure, we focus on the (general-purpose) linkage structure (i.e., depen-
dency) among decision variables, that indicates which variables have some degrees
of dependency and should thus be treated together when generating new candidate
solutions. Learning and exploiting linkage information benefit the search efficiency
of EA solvers by protecting building blocks (i.e., good partial solutions) from be-
ing too frequently disrupted by EAs’ stochastic operators, and thereby enhancing
the juxtaposition of building blocks to form new (and potentially better) candidate
solutions [10, 11]. To encode the linkage information that can be learned during
the optimization process, we consider the general linkage model Family of Subsets
(FOS [12]) and three specific types of FOS, namely univariate, marginal product,
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and linkage tree. We then describe three MBEAs: GA, EDA, and Gene-pool Op-
timal Mixing Evolutionary Algorithm (GOMEA [12]). We will demonstrate how
different EA variants can be created by mixing and matching an EA with different
types of linkage model.

Since EAs are population-based optimization algorithms, the population size
is one, if not the most, essential parameter. If the population size is too small,
there might not be enough information (e.g., good partial solutions) in the popu-
lation to synthesize the optimal solution. Also, small populations generally have
low diversity, and due to the selection pressure, EA solvers will then prematurely
converge to suboptimal solutions. On the other hand, if the population size is too
large, EA solvers might overly explore the search space, which leads to inefficient
performance. Consequently, the allowed computing time budget might be used up
before any good solutions are found. Efficiency is of great importance, especially
in real-world applications like DNEP, where the evaluations of candidate solutions
are (computationally) expensive. Proper population size setting is, therefore, a
necessary condition for EAs to achieve good performance. However, the optimal
population size depends on the size of the specific problem instance at hand, on the
problem structure, and also, on the particular components of the EA solver being
employed. For example, in [12], experimental results showed that the minimally re-
quired population size for a solver to reliably solve a problem instance varies across
problem sizes, problem structures, and working mechanisms of different EA variants.
Therefore, in practice, it is nearly impossible to determine the optimal population
size before actually solving the problem. Although there exist several guidelines of
parameter settings for each EA, their effectiveness is not guaranteed when carried
from laboratory benchmarks to industrial optimization tasks, or from one real-world
problem to another. Practitioners often have to run their chosen EA solver multi-
ple times with different population sizes before (accidentally) getting a value that
yields acceptable results. In this thesis, we will consider a population-sizing-free
scheme that was originally proposed for the parameter-less GA [13]. This scheme
has been shown to be an effective method to eliminate the requirement of tuning
the population size for different population-based EAs. We also present how to use
the scheme as a framework for running experiments and providing a fair comparison
of the performance of different EAs in solving real-world problems, where neither
the optimal solutions nor the optimal population sizes are known.

The remainder of this chapter is organized as follows. Section 2.2 describes three
linkage models and the type of dependency structure that each can capture. Section
2.3 outlines three EA solvers and how they can be customized with different linkage
models to create multiple EA variants. Section 2.4 presents the population-sizing-
free scheme that can be used to make all EA variants proposed in this chapter
parameter-less. Finally, Section 2.5 concludes the chapter.

2.2. Problem structures and linkage models
A key part that characterizes an evolutionary algorithm (EA) is its variation op-
erators (VOs), i.e., how new solutions are generated. VOs can be model-based,
meaning that the way variation is performed is governed by a (learnable) model.
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Models of particular interest are linkage models, which are used to encode the link-
age information of the optimization problem instance at hand. A linkage model
often contains information about groups of inter-dependent decision variables, also
known as linkage sets. Variables in the same linkage set are dependent on each
other in the sense that when being considered together, they have a significant con-
tribution to the quality of a solution [12]. These variables should thus be jointly
considered when performing variation. Variation operators can, for instance, make
use of the information in linkage models to juxtapose partial solutions from existing
solutions to generate new solutions. A linkage model that matches correctly with
the problem dependency structure is crucial for variation operators to efficiently
mix and preserve good partial solutions (i.e., building blocks) in the population in
order to efficiently create high-quality solutions. Problem-specific knowledge (PSK),
if available, can be used to directly construct the linkage model of the problem. If
such valuable PSK is not available, or difficult to transcribe into linkage information,
linkage information can be inferred from the working population of EAs by linkage
learning (LL) procedures [12], in which problem variables having some degree of
dependency are identified. In the following we give a general definition of a linkage
model, called the Family of Subset (FOS) model, and subsequently describe three
variants that can be used in practice.

2.2.1. Family of subset linkage model
Let L = {1, 2, . . . , l} be the set of all l decision variables of the problem instance
at hand. We use the Family of Subsets (FOS [12]) concept to encode different
linkage models. A FOS, denoted F , consists of subsets of the set L, i.e., F =
{F 1, F 2, . . . , F |F|} where F i ⊆ L, i ∈ {1, 2, . . . |F|}. Thus, F ⊆ P(L), i.e., F is a
subset of the power set of L. Each subset F i is a linkage set containing decision
variables that exhibit some degree of dependency and should thus be jointly treated
when performing variation. A FOS F is said to be complete if every problem variable
is contained in at least one linkage set, i.e., ∀i ∈ L, ∃j ∈ {1, 2, . . . , |F|} : i ∈ F j .
The completeness property ensures that all problem variables are considered when
performing variation following linkage sets in F . We here consider three complete
FOS models: univariate, marginal product, and linkage tree.

2.2.2. Univariate model
The univariate factorization (UF) model contains only singleton sets. It therefore
expresses the assumption that all problem variables are independent from each other,
i.e., F i = {i}, i ∈ L = {1, 2, . . . , l}. Because there is only one possible configuration,
the univariate model does not require any linkage learning.

2.2.3. Marginal product model
The marginal product (MP) model is a partitioning of the set L of all problem
variables, i.e.,

⋃

F i∈F F i = L and ∀F i, F j ∈ F , F i 6= F j : F i ∩ F j = ∅. Variables
in the same linkage set have some degree of dependency while variables in differ-
ent linkage sets are considered to be independent [12]. The well-known Extended
Compact Genetic Algorithm (ECGA [14]) employs the MP as its linkage model.
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The MP model is often learned from a population P of n individuals using
a greedy algorithm that optimizes a model scoring metric as follows. First, the
FOS F assumes the univariate structure and is then scored by the chosen metric.
Next, all possible merges of two linkage sets F i and F j are tried out and the
merge that improves the scoring metric the most is chosen. The merged linkage
set is added into F , replacing the two constituent linkage sets, i.e., F ← (F \
{F i, F j})∪{F i∪F j}. This procedure continues until no merging event can improve
the scoring metric anymore. The scoring metric employed by ECGA is named
the Combined Complexity Criterion (CCC), which is the sum of the Compressed
Population Complexity and the Model Complexity [14]. CCC needs to be minimized.
The Compressed Population Complexity (CPC) is the cost of representing the whole
population of n individuals with FOS model F and is calculated as

CP C = n

|F|
∑

i=1

H(XF i ) (2.1)

where XF i is a set of random variables, in which each random variable Xk corre-
sponds with a problem variable xk in the linkage set F i. The entropy of a random
variable measures the uncertainty associated with that random variable or, quan-
titatively speaking, the number of bits required to describe that random variable
[15]. H(XF i) is the joint entropy of the marginal distribution of XF i . We have

H(XF i ) = −
∑

x∈Ω(X
F i )

P (XF i = x) log2 P (XF i = x) (2.2)

where Ω(XF i) is the the sample space for random variables XF i , i.e., all possible
string values of the problem variables in F i when being jointly considered. The
probability P (XF i = x) can be computed by counting the frequency of x in the
population P . Because the entropy of a collection of random variables is less than
or equal to the sum of individual entropies [15], minimizing CPC favors FOS models
that contain large linkage sets. In contrast, minimizing the Model Complexity (MC)
favors simpler FOS models that contain smaller linkage sets [16]. The MC is the
cost of representing or storing FOS model F and is calculated as

MC = log2(n + 1)

|F|
∑

i=1

(|Ω(XF i)| − 1) (2.3)

The greedy model building algorithm, which has a worst-case runtime O(nl3),
needs to minimize the CCC metric. Instead of computing this scoring metric for the
whole FOS F at every merging trial, the CCC metric improvement (i.e., CCC metric
decrease) can be computed more efficiently considering only problem variables in
the two involved linkage sets F i and F j [12] as

CCC(F i, F j) = n[H(XF i ) + H(XF j )−H(XF i∪F j )]+

log2(n + 1)[(|Ω(XF i)| − 1) + (|Ω(XF j )| − 1)− (|Ω(XF i∪F j )| − 1)]
(2.4)
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2.2.4. Linkage tree model
Because each configuration of the MP model is a partitioning of the set L, every
problem variable can exist in only one linkage set. Therefore, any two variables are
either dependent (if they are in the same linkage set) or independent (if they are
in different linkage sets). In the LT model, a problem variable can exist in multiple
linkage sets. The LT model is thus more expressive than the MP model in the sense
that any two variables can be both dependent and independent. While the MP
model has a flat structure, the LT model arranges its linkage sets in a hierarchical
tree structure. The lowest level (i.e., leaf nodes) contains univariate linkage sets of
each variable separately, i.e., F i = {i}, i ∈ L = {1, 2, . . . , l}. Higher levels contain
multivariate linkage sets, in which each linkage set F i is formed by merging two
mutually exclusive linkage sets F j and F k at lower levels, i.e., F j ∩F k = ∅, |F j | <
|F i|, |F k| < |F i| and F j ∪F k = F i. The highest level (i.e., the root node) contains
the set L itself. Thus, an LT can encode different levels of dependency, from the
totally independent state in the leaf nodes to the all-dependent state in the root
node [17]. An LT over a set of problem variables {1, 2, 3, 4, 5, 6, 7, 8} can be, e.g.,
{{1}, {2}, {3}, {4}, {5}, {6}, {7}, {8}, {1, 3}, {2, 5}, {4, 6}, {1, 3, 7}, {4, 6, 8}, {2, 4, 5, 6,
8}, {1, 2, 3, 4, 5, 6, 7, 8}}, which is visualized as a binary tree with the root node in
Figure 2.1. An LT model configuration for a set L of l problem variables is thus a
FOS F of exactly 2l− 1 linkage sets.

1 3 7 2 5 8 4 6

1,2,3,4,5,6,7,8

2,4,5,6,8

4,6,8

2,5
4,61,3

1,3,7

Figure 2.1: An example linkage tree with the root node for a problem of eight decision variables.

The LT model can be learned from the population of n individuals by a hi-
erarchical clustering procedure named the Unweighted Pair Group Method with
Arithmetic Mean (UPGMA). The FOS F is built in a bottom-up manner. First,
F is initialized with l univariate linkage sets F i = {i}, i ∈ L = {1, 2, . . . , l}. Then,
UPGMA iteratively merges the two linkage sets F i and F j that are the most simi-
lar. The newly created linkage set F i∪F j is added to the F . The two constituents
linkage sets F i and F j are still kept in the LT F but they are not considered for
merging anymore. The merging operations continue until the root node (i.e., the
set L itself) is created. To calculate the similarity between two linkage sets F i and
F j , we take the average of the mutual information (MI) over all pairs of problem
variables (X, Y ) where X ∈ F i and Y ∈ F j [17] as follows
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MIUP GMA(F i, F j) =
1

|F i||F j |

∑

X∈F i

∑

Y ∈F j

MI(X, Y ) (2.5)

where MI(X, Y ) = H(X) + H(Y ) − H(X, Y ). MI(X, Y ) measures the mutual
dependence between the two random variables X and Y [18]. UPGMA can be
optimally implemented by using the reciprocal nearest-neighbor chain technique
such that an LT can be built in O(nl2) time [19].

2.3. Evolutionary algorithms
2.3.1. Genetic Algorithm

GA //population size n
1 for i ∈ {1, 2, . . . , n} do
2 Pi ← CreateRandomSolution()
3 EvaluateFitness(Pi)
4 while ¬TerminationCriteriaSatisfied() do
5 F ← LearnModelFromPopulation(P)
6 π ← RandomPermutation({1, 2, . . . , n})
7 k ← 0
8 for i ∈ {1, 2, . . . , n} do
9 Oi ← Recombine(Pπk

,Pπk+1
)

10 EvaluateFitness(Oi)
11 k← k + 2
12 if k ≥ n− 1 then
13 k ← 0
14 π ← RandomPermutation({1, 2, . . . , n})
15 P ← TournamentSelection(P +O, n, 4)

Recombine(p0, p1)
1 for i ∈ {1, 2, . . . , |F|} do
2 if Random01() < 0.5 then
3 oF i ← p0

F i

4 else
5 oF i ← p1

F i

6 Return(o)

Figure 2.2: Genetic Algorithm

The Genetic Algorithm (GA) is started with a population P of n randomly gen-
erated candidate solutions. Next, for every generation, a FOS F is learned from
the current population P . An offspring population O of n new solutions is cre-
ated from P by performing recombination (i.e., crossover), guided by the linkage
information in F , n times on two parent solutions that are randomly picked each
time, giving one offspring solution. Then, both the parent population P and the
offspring population O are combined into a selection pool P +O of 2n solutions in
total. Tournament selection with tournament size 4 is performed on this pool to
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select n survivor solutions, which form the new parent population P for the next
generation, ensuring convergence by logistic growth of the best solution [12]. If the
univariate factorization (UF) model is chosen for linkage learning, we automatically
have the simple GA with uniform crossover, in which all dependencies among prob-
lem variables are disregarded. If the marginal product (MP) model is employed,
we have a GA variant with a recombination operator that can exchange blocks of
values at the positions indicated by the linkage sets in F . We do not combine the
LT model with GA because the simple crossover operator is not compatible with
the hierarchical structure of an LT FOS. Figure 2.2 outlines the pseudo-code for
our GA implementation. Even though GA does not originally have a model, Figure
2.2 shows that the GA can easily be represented as a model-based EA (MBEA). In
particular, we here can create two specific MBEA variants: GA-UF and GA-MP.

Note that a different implementation of GA exists, in which two offspring solu-
tions are created from two parent solutions in every recombination event. In this
thesis, recombining two parent solutions results in one offspring. We use this imple-
mentation so that GA can be presented in sync with both EDA and GOMEA in the
sense that one offspring solution is constructed each time. There is no significant
difference in performance if two offspring were to be generated in recombination.

2.3.2. Estimation-of-Distribution Algorithm
The Estimation-of-Distribution Algorithm (EDA) starts with a population P of n
randomly generated candidate solutions. Every generation, a FOS F is learned from
the current population P . The EDA also derives a probability distribution from the
population P following the obtained structure F . In the case of the UF model
or the MP model, all linkage sets of F are mutually exclusive, so the probability

distribution can be formulated as PF (X) =
∏|F|

i=1 PF (XF i) where a random variable
Xi corresponds with each problem variable xi. Each linkage set F i corresponds to a
marginal XF i whose distribution PF (XF i) can be estimated by counting frequencies
of all possible value strings of the variables in F i in the population P . Note that for
the LT model such a joint distribution PF (X) cannot be defined directly in terms
of PF(XF i). The EDA does not use the recombination operator (i.e., crossover) like
the GA to create offspring from existing solutions. Instead, the offspring population
O of n new solutions is generated by sampling the estimated probability distribution.
The selection pool P + O of 2n solutions is again created by combining P and O.
A tournament selection with tournament size 4 is performed on P +O to select n
survivors, forming the new population P for the next generation. If the UF model
is employed, we have an EDA-UF that corresponds with the Univariate Marginal
Distribution Algorithm (UMDA) [20]. If the MP model is used, we have an EDA-
MP, which can be considered to be similar to the ECGA [14]. Figure 2.3 shows
pseudo-code for the EDA.

2.3.3. Gene-pool Optimal Mixing Evolutionary Algorithm
The Gene-pool Optimal Mixing Evolutionary Algorithm (GOMEA) starts with a
population P of n randomly generated candidate solutions. Every generation, the
linkage model building procedure is performed on P to construct a FOS F . Using
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EDA //population size n
1 for i ∈ {1, 2, . . . , n} do
2 Pi ← CreateRandomSolution()
3 EvaluateFitness(Pi)
4 while ¬TerminationCriteriaSatisfied() do
5 F , PF (X)← LearnDistributionFromPopulation(P)
6 for i ∈ {1, 2, . . . , n} do
7 Oi ← SampleDistribution()
8 EvaluateFitness(Oi)
9 P ← TournamentSelection(P +O, n, 4)

SampleDistribution
1 for i ∈ {1, 2, . . . , |F|} do
2 oF i ← SampleSubsetDistribution(F i, PF (XF i ))
3 Return(o)

Figure 2.3: Estimation-of-Distribution Algorithm

the obtained FOS F , GOMEA transforms each existing parent solution p ∈ P into
a new offspring solution o ∈ O whose fitness value is equal to or better than the
fitness value of p. The offspring population O completely replaces P and becomes
the new parent population P for the next generation. Figure 2.4 shows pseudo-code
for GOMEA.

Instead of fully creating new solutions and then evaluating them like in GA, the
variation operator of GOMEA, called Gene-pool Optimal Mixing (GOM) [12], uses
the learned FOS to evolve each existing parent p into a new offspring o in an iterative
manner. First, o and a backup b are cloned directly from p. Then, each linkage
set in the FOS F is traversed iteratively in a random order. For each linkage set,
a donor d is randomly selected from the current population P . If the values of the
donor d for the variables indicated by the linkage set differ from those in o in at least
one position, these values are copied from d into o. This partially-altered solution
o is evaluated and compared against its backup b. If o is equally good or better
than b (i.e., fitness[o] ≥ fitness[b]), the changes are accepted (i.e., the values are
copied from d) and updated into b as well. Otherwise, the changes are undone and
o reverts to its backup state b. Note that the acceptance of solutions having equal
fitness can be beneficial to move across a fitness plateau [17]. It can be seen that
each linkage set corresponds with a mixing event, in which the current solution is
recombined with a random donor solution and the variables in the same linkage set
are treated together, preserving the BB structure (insofar correctly represented by
the FOS). After traversing the whole FOS, an offspring o is then fully constructed,
replacing the original parent p in the next generation. Note that GOMEA does not
need to perform selection over the combined pool P + O like GA or EDA because
the GOM operator ensures that the quality of the offspring solution is better or at
least equal to the parent solution.

It can happen that GOM cannot improve the current parent solution p or that,
because of a significant plateau, GOM keeps transforming back and forth solu-
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tions of different genotypes but with the same fitness value. To overcome this, if
GOM cannot yield a new offspring or when the number of subsequent generations
that the best solution at the end of generation t xbest(t) does not change, i.e., the
no-improvement stretch (NIS), exceeds a certain threshold, we invoke the Forced
Improvement (FI) procedure [17]. In essence, FI is similar to GOM but we always
use xelitist as the only donor solution. xelitist is the best-found-so-far solution,
which is constantly checked for possible updates every time a fitness evaluation is
performed. FI only accepts the mixing event that results in a strict improvement
(i.e., fitness[o] > fitness[b]) and FI stops as soon as such mixing event occurs
Previous research on GOMEA suggests a threshold for NIS of 1 + ⌊log10(n)⌋ [17].
If FI does not succeed in improving p, xelitist is returned as the new offspring.

The GOMEA-LT with the linkage tree model is the most popular variant of
GOMEA, and is also known as the Linkage Tree Genetic Algorithm (LTGA) [12].
The concept of constructing an offspring in a step-wise manner by iteratively im-
proving a parent solution is compatible with the hierarchical structure of linkage
trees. Note that the linkage set associated with the root node of the linkage tree (i.e.,
the set of all problem variable indices) can be disregarded because it assumes that
all variables should be jointly copied when performing variation, which means no
new solution is created. GOMEA can also be straightforwardly combined with the
UF model (which we will refer to as GOMEA-UF) or the MP model (which we will
refer to as GOMEA-MP). Note that the local search-like mechanism of the GOM
operator causes GOMEA to use more fitness evaluations per generation compared
to the GA or the EDA. However, it has been shown that, for problems that are effi-
ciently solvable with correctly detected linkage structures, GOMEA has population
sizing requirements that are much smaller than those of GA and EDA, resulting in
far fewer necessary generations and a more efficient overall performance [12].

2.4. Parameter-less evolutionary algorithms
EAs are population-based solvers and, in most cases, the population size is an essen-
tial parameter that needs to be set properly in order to obtain good performance.
Moreover, population size often has a strong impact on the performance of an EA.
Therefore, it could be argued that to ensure fair comparisons of the performance
of different EAs in solving a problem, the optimal population size of each solver
should be determined and employed. A suitable population size setting depends on
the structure of the specific problem instance at hand and also on the EA being used.
For a real-world application with complicated structure, unknown optimal solutions,
and a computationally expensive evaluation function, bisection methods to find the
minimally-required population size are not practically feasible. Practitioners often
need to experiment with different population sizes in an ad hoc manner to find a
setting that works well, given the amount of time available to solve the problem.
Parameter tuning for each solver and every problem instance is inefficient and its
results are non-transferable to other cases. Here, we therefore employ a scheme that
can eliminate the requirement of setting a fixed population size for population-based
EAs.
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GOMEA //population size n
1 for i ∈ {1, 2, . . . , n} do
2 Pi ← CreateRandomSolution()
3 EvaluateFitness(Pi)
4 xbest(0)← arg minx∈P{fitness[x]}; t← 0; tNIS ← 0
5 while ¬TerminationCriteriaSatisfied() do
6 F ← LearnModelFromPopulation(P)
7 for i ∈ {1, 2, . . . , n} do
8 Oi ← GenepoolOptimalMixing(Pi)
9 P ← O

10 t← t + 1
11 xbest(t)← arg minx∈P{fitness[x]}
12 if fitness[xbest(t)] > fitness[xbest(t− 1)] then
13 tNIS ← 0
14 else
15 tNIS ← tNIS + 1

GenepoolOptimalMixing(p)
1 b← o← p; fitness[b]← fitness[o]← fitness[p];
2 changed← false
3 for i ∈ {1, 2, . . . , |F|} in a random order do
4 d← Random({P1,P2, . . . ,Pn})
5 o← CopyValues(o, d, F i)
6 if o 6= b then
7 EvaluateFitness(o)
8 if fitness[o] ≥ fitness[b] then
9 b← o; fitness[b]← fitness[o]; changed← true

10 else
11 o← b; fitness[o]← fitness[b]
12 if ¬changed or tNIS > 1 + ⌊log10(n)⌋ then
13 changed← false
14 for i ∈ {1, 2, . . . , |F|} in a random order do
15 o← CopyValues(o, xelitist, F i)
16 if o 6= b then
17 EvaluateFitness(o)
18 if fitness[o] > fitness[b] then
19 b← o; fitness[b]← fitness[o]; changed← true
20 else
21 o← b; fitness[o]← fitness[b]
22 if changed then breakfor
23 if ¬changed then
24 o← xelitist; fitness[o]← fitness[xelitist]
25 Return(o)

CopyValues(x, d, F i)
1 o← x

2 for k ∈ F i do
3 ok ← dk

4 Return(o)

Figure 2.4: Gene-pool Optimal Mixing Evolutionary Algorithm
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The parameter-less GA (P-GA) with a population-sizing-free scheme was firstly
proposed in [13]. The scheme was then revised and employed with the hierarchical
Bayesian Optimization Algorithm [21]. Recently, the revised implementation of the
scheme has been used as a framework for several parameter-less EAs [22]. We refer to
this population-sizing-free mechanism as the Harik-Lobo scheme in reference to the
original authors that first proposed the idea. In essence, we run multiple instances
of the EA in parallel. Each instance has a different population size but larger
populations have a slower generational cycle. We start with the first population P1

of some small size n1. Then, by doubling the population size, the next population Pi

is twice as large as the previous one, i.e., ni = 2ni−1 for i > 1. All the populations
are scheduled with the principle that for every b generations of population Pi, one
generation of population Pi+1 is run. If Pi+1 does not exist yet, it will be initialized
before running its first iteration. Having no maximum population size, the EA
runs and grows its populations until the computing time budget is used up. The
pseudo-code for the Harik-Lobo scheme is given in Figure 2.5.

Population-Sizing-Free Framework
1 P1 ← InitializeNewPopulation(n1)
2 generation[1]← 0
3 max_population_index← 1
4 i← 1
5 while ¬TerminationCriteriaSatisfied() do
6 ExecuteOneGeneration(Pi)
7 generation[i]← generation[i] + 1
8 if generation[i] mod b = 0 then
9 i← i + 1

10 if i > max_population_index then
11 Pi ← InitializeNewPopulation(2ni−1)
12 generation[i]← 0
13 max_population_index← i
14 else
15 i← 1

Figure 2.5: Harik-Lobo Population-Sizing-Free Framework [22]

The generation base b = 4 is recommended, which indicates that smaller popu-
lations are allocated more solution evaluations than larger populations [13, 22]. In
[21, 23], a different generation base b = 2 is used, which ensures that all populations
are given the same number of evaluations. Because the parameter-less GA did not
implement the mutation operator, any converged population, whose individuals be-
come identical, will be terminated as no new offspring can be generated. Also, a
population Pi can be considered inefficient if its average fitness is worse than that
of a larger population Pj , for j > i. Once a smaller population is “overtaken” by a
larger one as such, the smaller population should thus be terminated. The reason
behind this is that even though Pj is started after Pi, because Pj has a larger size,
with likely more diversity and thus better odds at finding high-quality solutions than
Pi, we don’t need to run Pi anymore. Therefore, Pi and all other smaller populations
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Pk, for k < i, will be terminated. It can be seen that all population-based EAs can
be straightforwardly put into the Harik-Lobo scheme without any major modifica-
tions to their implementation. Consequently, when combined with the Harik-Lobo
scheme, all EA variants presented in this chapter become parameter-less EAs since,
apart from the population size, we have well-tuned other parameters by considering
established research.

2.5. Conclusions
In this chapter, we used the Family of Subset (FOS) concept as the basis to con-
struct model-based evolutionary algorithms (MBEAs). An MBEA can be system-
atically composed by addressing two questions: 1) what kind of model the solver
employs to match the problem structure; 2) how the solver exploits the model to
generate new candidate solutions to bias the search toward promising regions in
the search space. We described three linkage models that can be used by EAs to
match the dependency structure of the problem at hand as follows. The univari-
ate factorization (UF) model assumes that all variables are independent from each
other. The marginal product (MP) model assumes that problem variables can form
non-overlapping linkage sets where dependencies exist among constituent variables
of each group. The linkage tree (LT) model assumes hierarchical dependencies in
which any two variables are either dependent or independent according to differ-
ent levels of linkage sets. These linkage models can be learned from the working
population of EAs to derive a specific configuration in each generation. We then
presented the model-based implementation of three EAs, namely the Genetic Algo-
rithm (GA), the Estimation-of-Distribution Algorithm (EDA), and the Gene-pool
Optimal Mixing Evolutionary Algorithm (GOMEA). We showed how their typical
variation operators can be guided by the learned linkage model to create offspring
solutions: GA with the classical crossover, EDA with the model sampling, and
GOMEA with the Gene-pool Optimal Mixing. EA solvers of different capabilities
can be synthesized by combing an EA with a linkage model. Particularly, we created
seven EA solvers: GA-UF, GA-MP, EDA-UF, EDA-MP, GOMEA-UF, GOMEA-
MP, and GOMEA-LT.

Lastly, we discussed parameter-tuning problems of EAs, especially the problem
of finding an appropriate population size for a specific EA to efficiently solve a
specific problem instance at hand. We described the Harik-Lobo scheme, which
has previously been shown to be an effective method to eliminate the notoriously-
difficult-to-set population size parameter. We argued that EAs should be designed
parameter-less so that EAs can be straightforwardly employed by practitioners with-
out the need of parameter tuning.
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3
Multi-objective

Gene-pool Optimal Mixing
Evolutionary Algorithms

Wie op twee hazen tegelijk jaagt, vangt geen van beide.
Who goes after two hares at the same time will catch neither of them.

Dutch proverb

In this chapter, we bring the strengths of the Gene-pool Optimal Mixing Evolutionary
Algorithm (GOMEA) to the multi-objective (MO) optimization realm. We modify
the linkage learning procedure and the variation operator in GOMEA to better suit
the need of approximating the Pareto-optimal front rather than finding a single best
solution. Based on state-of-the-art studies on MOEAs, we further pinpoint and in-
corporate two other components that are essential for a scalable MO optimizer. First,
the use of an elitist archive of non-dominated solutions is beneficial for keeping track
of the non-dominated front when the main population size is limited. Second, clus-
tering techniques can be crucial if different parts of the Pareto-optimal front need
to be handled differently. By combining these elements, we create a multi-objective
GOMEA (MO-GOMEA). Experimental results on various MO optimization prob-
lems confirm the capability and scalability of our MO-GOMEA that compare favor-
ably with those of the well-known multi-objective Genetic Algorithm NSGA-II and
the more recently introduced multi-objective Estimation-of-Distribution Algorithm
mohBOA. We then modify MO-GOMEA to remove the need to specify important
parameters a priori, namely the population size and the number of clusters, without
severely compromising the performance of MO-GOMEA. This makes MO-GOMEA
convenient to use for practitioners, which is important for real-world applications.

Parts of this chapter have been presented at GECCO ’14 [1] and published in [2].
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3.1. Introduction & background
3.1.1. Multi-objective optimization & evolutionary algorithms
Many real-world optimization problems involve two or more conflicting objectives
(i.e., the optimization function is then a vector function). A typical example is when
we need to draw up a manufacturing plan that maximizes the quality of a product
and, at the same time, minimizes its production cost. For such a multi-objective
problem, a single utopian solution that simultaneously optimizes all objectives does
not exist. Instead, the optimum is a set of equally favorable trade-off alternatives
that are all optimal in the sense that an improvement in any objective degrades other
objectives. This chapter is about the design of an efficient and practical evolutionary
algorithm, especially for solving the class of multi-objective optimization problems
that exhibit certain efficiently exploitable structures. Considering the combinato-
rial nature of the Distribution Network Expansion Planning (DNEP) model in this
thesis, we focus on the class of discrete optimization problems.

A multi-objective optimization problem consists of m objective functions fi(x), i ∈
{1, 2, . . . , m} that, without loss of generality, all need to be maximized with x as
decision vector. We assume that solutions x’s for the combinatorial optimization
problem at hand involve l decision variables that comprise a discrete search space.
In particular, we focus on Cartesian search spaces, meaning that for each variable we
have a domain (e.g., a set of integers) and the space of entire solutions is the Carte-
sian product of these individual domains. We here restrict each variable domain to
the binary domain B = {0, 1}, but all methodologies presented in this chapter can
be easily extended to higher cardinality (see Chapter 6). A solution x can then be
represented as a binary vector x = (x1, x2, . . . , xl) ∈ Ω = ×l

i=1B. The vector of
objective values of x is f(x) = (f1(x), f2(x), . . . , fm(x)).

Optimality in multi-objective optimization is defined by employing Pareto con-
cepts (see, e.g., [3]).

1. Pareto dominance. A solution x Pareto dominates a solution x′ (denoted
x ≻ x′) if and only if ∀i ∈ {1, 2, . . . , m} : fi(x) ≥ fi(x

′) ∧ f (x) 6= f(x′).

2. Pareto optimality. A solution x is said to be Pareto optimal if and only if
¬∃x′ : x′ ≻ x.

3. Non-dominated set. A set P is called a non-dominated set if and only if
¬∃x, x′ ∈ P : x ≻ x′.

4. Non-dominated front. The set of the objective value vectors of all solutions
in a non-dominated set P is called the non-dominated front f (P) of P:
f(P) = {f(x) = (f1(x), f2(x), . . . , fm(x)) | x ∈ P}.

5. Pareto-optimal set. The set PS of all Pareto-optimal solutions: PS =
{x|¬∃x′ : x′ ≻ x}.

6. Pareto-optimal front. The set PF is the set of the objective value vectors
of all Pareto-optimal solutions in PS :
PF = {f(x) = (f1(x), f2(x), . . . , fm(x)) | x ∈ PS}.
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Multi-objective evolutionary algorithms (MOEAs) have been widely used for
solving multi-objective optimization problems [4, 5]. Because the number of solu-
tions on the Pareto-optimal front PF can be numerous (or even infinite in case
of, e.g., continuous optimization), most MOEAs focus on finding a non-dominated
set that yields a good approximation of the Pareto-optimal front PF . The quality
of approximations is often assessed based on both proximity to the optimal front
(i.e., as close as possible) and diversity along the front (i.e., as well-spread as possi-
ble) [5, 6]. Commonly studied MOEAs, such as the Nondominated Sorting Genetic
Algorithm II (NSGA-II) [7], the improved Strength Pareto Evolutionary Algorithm
(SPEA2) [8], the Multiobjective Evolutionary Algorithm based on Decomposition
(MOEA/D) [9], and the Nondominated Sorting Genetic Algorithm III (NSGA-III,
especially for problems with more than three objectives) [10], have been demon-
strated to be effective in achieving this two-fold goal for a wide range of problems.
However, the efficiency and the usability of MOEAs remain two challenging research
topics.

3.1.2. Efficiency of MOEAs
Scalability, linkage learning, and gene-pool optimal mixing

The important issue of scalability is often overlooked in multi-objective optimiza-
tion research [11]. Corresponding to the general algorithmic notion of computa-
tional complexity, scalability requires that optimization algorithms maintain their
effectiveness and efficiency when the problem size (e.g., the number of decision vari-
ables) increases, leading to a use of resources (i.e., time, memory) that scales only as
a (low-order) polynomial function. For combinatorial EAs, their scalability is typi-
cally highly dependent on their capability for mixing and preserving building blocks
(i.e., good partial solutions) in the population to create new solutions [12]. Sim-
ple variation operators (e.g., uniform/1-/2-point crossover and mutation) of classic
MOEAs normally need to be customized with problem-specific expert knowledge
so that they respect problem structures and do not disrupt building blocks too of-
ten during the optimization process (e.g., see [13]). However, domain knowledge is
not always straightforward to be exploited or might even be unavailable as in the
case of black-box optimization. Without respecting dependency structures between
problem variables (e.g., by using classic crossover and mutation operators), MOEAs
cannot solve some decomposable problems efficiently [11, 14]. Addressing this scal-
ability issue of general-purpose MOEAs, there exist multi-objective Estimation-of-
Distribution Algorithms (MOEDAs) that replace classic variation operators with
model-based variation operators [11, 14, 15]. (MO)EDAs use probabilistic models
to estimate the distribution of promising solutions and then sample the learned
models, which contain information about variable dependencies, to generate new
candidate solutions [16]. Exemplary MOEDAs are the Multi-objective Adapted
Maximum-Likelihood Model (MAMaLGaM) [17] for continuous variables and the
Multi-objective Hierarchical Bayesian Optimization Algorithm (mohBOA) [11] for
discrete variables.

Although MOEDAs are robust optimizers, similar to EDAs in single-objective
optimization, the probabilistic model building procedures typically require larger
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population sizes and more CPU time as a result of large computational complex-
ity for probabilistic model building [15]. Furthermore, the estimation of complete
probability distributions may be unnecessary if linkage information (i.e., knowledge
about which problem variables should be jointly copied during recombination) by it-
self suffices to perform variation effectively. Gene-pool Optimal Mixing Evolutionary
Algorithms (GOMEAs) [12] are a class of state-of-the-art single-objective EAs that
focus on learning and exploiting linkage information. GOMEAs have been found
to efficiently and reliably solve a variety of well-known benchmark problems with
far smaller population size requirements and much better scalability compared to
classic GAs and EDAs [12]. Chapters 4 and 5 of this thesis also show that GOMEAs
outperform GAs and EDAs when solving the single-objective DNEP, a complicated
real-world optimization problem. Moreover, certain classes of linkage models in
GOMEAs can be learned in O(Nl2) time [18] whereas learning comparable higher-
order probabilistic models in EDAs typically requires O(Nl3) time (where l is the
number of decision variables and N is the population size). It is these strengths of
GOMEAs that we attempt to transfer to multi-objective optimization, ultimately
aiming to tackle the multi-objective version of the DNEP problem.

Elitist archiving
State-of-the-art MOEAs are characterized by implementations of the elitism con-
cept [19] in the context of multi-objective optimization (i.e., when there exist mul-
tiple equally good trade-off solutions). A common realization of elitism is obtained
by the use of a secondary population, termed the elitist archive, for retaining non-
dominated solutions found so far during the search. An elitist archive can be bene-
ficial because the sizes for the main population may be smaller than the number of
solutions on the Pareto-optimal front. Especially in such cases, some non-dominated
solutions can be lost due to selection [20].

Objective-space clustering
The goal of multi-objective optimization is two-fold: finding an approximation set of
non-dominated solutions that is both close to the Pareto-optimal front (i.e., proxim-
ity) and as diverse as possible (i.e., diversity, especially in the objective space) [6, 21].
Standard MOEAs steer the population toward the optimal front while trying to pre-
serve diversity by different mechanisms, such as selection based on crowding distance
in NSGA-II [7] or the environmental selection in SPEA2 [8]. However, it has been
shown that these mechanisms are insufficient for achieving good scalability and that
different parts of the optimal front should be processed separately [11]. State-of-
the-art MOEDAs therefore often implement mixture probability distributions by
clustering the selected solutions in the objective space and building a model for
each cluster separately (e.g., in mohBOA [11] and in MAMaLGaM [17]). Studies
[11, 22] have noted the difficulty for finding the entire optimal front of some de-
composable problems. This difficulty holds especially for the extreme regions of
the optimal front, as for the studied problems the number of solutions that map to
the vicinity of the extremes becomes exponentially smaller compared to the middle
part of the Pareto-optimal front. Furthermore, for multi-objective optimization in
general, selection tries to exploit all objectives simultaneously, thus reducing the
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pressure towards approaching the optimal front [17]. This problem was solved in
MAMaLGaM-X+ [17] by adding a separate single-objective optimizer for each ob-
jective and injecting the best solutions found by these single-objective optimizers
into the elitist archive. We adopt the idea of clustering from MAMaLGaM-X+ but
adapt the process to fit well with GOMEA.

3.1.3. Usability of MOEAs

State-of-the-art MOEAs requires users to set two important parameters that in-
fluence its performance: its population size and the number of clusters into which
the population will be partitioned. While population size setting is crucial for any
population-based EA, it is difficult to determine the optimal population size before-
hand in practice. Normally, EAs cannot solve problems well when using populations
of inadequate sizes. If the population size is too big, EAs may overly diversify their
search efforts and the allowed budget of fitness evaluations or running time is used up
before good solutions are obtained. Practitioners often need to run EAs many times
with different parameter settings in a trial-and-error manner. Several mechanisms
have been proposed to eliminate the population size setting for single-objective EAs
with promising results, such as [23, 24]. Similar works, however, are not established
for MOEAs. For clustering-based MOEAs, the number-of-clusters parameter ever
adds another layer of complexity in terms of usability, since this parameter influ-
ences the cluster size, which needs to be sufficient so that the probabilistic/linkage
model of each cluster can be properly learned. We argue that complicated parameter
settings undermine the usability of MOEAs and therefore should be eliminated.

3.1.4. Contributions

Based on the aforementioned established research on the components that are cru-
cial for the scalability of MOEAs, namely elitist archiving, population clustering,
and linkage learning, we construct the multi-objective Gene-pool Optimal Mixing
Evolutionary Algorithm (MO-GOMEA). We then make MO-GOMEA an easy-to-
use MOEA by removing the requirement to set key parameters: the population size
and the number of clusters. The remainder of this chapter is organized as follows.
Section 3.2 describes the key components of MO-GOMEA. Section 3.3 introduces
all benchmark problems that we use to perform experiments. Section 3.4 describes
the indicator that is used to assess the performance of MOEAs. Section 3.5 shows
the performance of MO-GOMEA under optimal (or favorable) parameter settings.
Section 3.6 shows how the requirement for setting the population size parameter
and the number-of-clusters parameter of MO-GOMEA can be eliminated. Section
3.7 demonstrates the performance of MO-GOMEA and the influence of mutation
operators. Section 3.8 compares the performance of MO-GOMEA with a version
of NSGA-II in which the population size parameter is eliminated similarly and fur-
ther discusses the parameter-less scheme for EAs in the multi-objective optimization
context. Section 3.9 discusses what makes MO-GOMEA a scalable and practical
MOEA and concludes the chapter.
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3.2. Multi-objective GOMEA
MO-GOMEA is started by randomly initializing a population P of N candidate
solutions. All N solutions are evaluated to obtain their objective values. The
population P is then clustered (in the objective space) into k clusters Cj’s (j ∈
{1, 2, . . . , k}) of equal sizes (see Section 3.2.2). For each cluster Cj , selection is
performed separately to obtain the corresponding selection set Sj . From each Sj , a
separate linkage model Fj is learned (see Section 3.2.3). Finally, for each solution
Pi in the population P , the cluster Cj that it belongs to is determined. Variation
is then performed on the solution Pi by recombining it with other solutions in the
same cluster Cj , using the linkage relations captured by the corresponding linkage
model Fj (see Section 3.2.4). This transforms each solution in the population into an
offspring solution. These offspring completely replace the population. The pseudo-
code for the outline of MO-GOMEA is given in Figure 3.1.

MO-GOMEA //population size N, k clusters
1 t← 0; tNIS ← 0
2 for i ∈ {1, 2, . . . , N} do
3 Pi ← CreateRandomSolution()
4 EvaluateFitness(Pi)
5 At ← UpdateElitistArchive(Pi)
6 while ¬TerminationCriteriaSatisfied do
7 t← t + 1
8 {C1, C2, . . . , Ck} ← ClusterPopulation(P)
9 for j ∈ {1, 2, . . . , k} do

10 Sj ← TournamentSelection(Cj)
11 Fj ← LearnLinkageModel(Sj)
12 for i ∈ {1, 2, . . . , N} do
13 Cj ← DetermineCluster(Pi, {C1, C2, . . . , Ck})
14 if ¬IsExtremeCluster(Cj) then
15 Oi ←MO-GenepoolOptimalMixing(Pi, Cj ,Fj,At)
16 else
17 Oi ← SO-GenepoolOptimalMixing(Pi, Cj,Fj ,At)
18 P ← O = {O1,O2, . . . ,ON}
19 if f(At) 6= f(At−1) then
20 tNIS ← 0
21 else
22 tNIS ← tNIS + 1

Figure 3.1: Pseudo code for MO-GOMEA.

3.2.1. Elitist archive
We use a basic, but effective, implementation of the elitist archive. We denote the
elitist archive in generation t by At in the decision-variable space and by f (At) in
the objective space. Every newly generated solution is checked to see if it can be
added into the archive. If the new solution is dominated by any archive member,
it will be discarded. If it is a new non-dominated solution, it will be added into
the archive, and archive members that are dominated by this new solution will be
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removed. In the case that there exists an archive member with the same objective
values, the existing solution will be replaced by the new one if such replacement
results in a diversity improvement for the archive in decision-variable space. To this
end, we use a simple diversity metric for a solution: the Hamming distance to the
nearest neighbor in the archive. Between the existing archive member and the new
solution, the one having greater value for this metric will be chosen.

The elitist archive size is normally bounded by physical capacities and/or prefer-
ences of practitioners. Because the number of non-dominated solutions are numerous
(or even infinite in, e.g., continuous domains), it can happen that the archive size
is exceeded and some non-dominated solutions need to be removed to maintain the
archive within its allowed capacity. The Adaptive Grid Discretization (AGD) [25]
mechanism is implemented into MO-GOMEA to select which solutions should be
kept during archive truncations. The AGD discretizes the objective space into equal
hypercubes, and each hypercube is allowed to contain at most one solution at a time.
Each time the AGD is triggered, the discretization level is computed based on the
ranges of the non-dominated front formed by the current elitist archive such that
the elitist archive is maintained around the size desired by users. However, because
of the nature of our benchmarks and experiment settings (see Section 3.3), we set
the elitist archive size to be as large as the Pareto-optimal front, i.e., the size of our
elitist archive is unbounded in this thesis.

3.2.2. Clustering
We employ the balanced k-leader-means clustering as in MAMaLGaM [17] to cluster
the population into k clusters of equal sizes where clusters may overlap. Note that
clustering is performed in the objective space. First, a heuristic is used to select k
leader solutions that are as well spread as possible. To do so, the first leader is the
solution with maximum value in an arbitrary objective. The nearest-leader distances
of all remaining solutions are computed as the distances to this first leader. The
solution with the largest distance is chosen as the next leader. For every remaining
solution, its nearest-leader distance is then updated if the distance to this new leader
is smaller than the previous value. This process is repeated until k leaders are
obtained. Second, k-means clustering is performed with the k leaders as the initial
cluster means. Third, the distance from every solution to every final cluster mean
is computed. Each cluster is then expanded to contain exactly c closest solutions,
starting from each cluster mean. It was previously suggested to use c = 2

k |P|,
where P are the solutions being clustered, resulting in overlap between neighboring
clusters [17]. This reduces the probability that some solutions are not covered by any
clusters. Moreover, it is beneficial to have equal-sized clusters so that a comparable
amount of resources is used to handle each part of the Pareto-optimal front, thereby
supporting that the whole Pareto-optimal front can be evenly approached.

Instead of clustering the selection set as in mohBOA [11] and MAMaLGaM [17],
in MO-GOMEA the whole population is clustered. This is done because MO-
GOMEA does not generate offspring solutions by sampling new solutions from the
learned models as is the case in MOEDAs. Instead, the variation operator in MO-
GOMEA is used to improve each solution in the population in a more local-search
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like fashion (see Section 3.2.4). To do so, each solution in the population needs to
be associated with a cluster.

Clustering helps to handle different parts of the Pareto-optimal front separately.
This can be of major importance, especially for the extreme regions of the front
where solutions maximize a single objective. This is because solutions from different
extreme regions typically differ a lot, and a single search direction (as in the case that
no clustering is employed) would not be sufficient nor efficient to approach all regions
simultaneously. Moreover, in some problems the number of available solutions in
the extreme regions can be much smaller than in the middle regions of the optimal
front [22]. The additional use of separate single-objective optimizers to specifically
obtain solutions in extreme regions of the front as used in MAMaLGaM-X+ has been
shown to be highly beneficial [17]. Although these separate optimizers can be tied in
with the MOEA by running them generationally-synchronously parallel, putting the
best solutions found by the separate optimizers into the elitist archive, and having
the elitist archive participate in variation, such interaction between the populations
of the single-objective and multi-objective optimizers is still very limited. Therefore,
instead of using external single-objective optimizers, in MO-GOMEA we use only a
single population. However, in every generation, for each objective, in MO-GOMEA,
the cluster having the largest mean value in that objective is designated to perform
only single-objective optimization in that objective during variation. If a single
cluster happens to have the largest mean in more than one objective, we choose an
objective arbitrarily. Moreover, while the selection procedure for learning linkage
models in middle clusters is based on the Pareto-domination concept, the selection
for each extreme cluster is based on the corresponding objective only. Figure 3.2
illustrates the clustering concept and the cluster-based operation of MO-GOMEA.
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Figure 3.2: The cluster-based operation of MO-GOMEA. Different clusters approach different parts
of the Pareto-optimal front. MO: Multi-objective optimization on the basis of Pareto dominance.
SO: Single-objective optimization with respect to the corresponding objective.
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3.2.3. Linkage learning
Linkage learning is performed for each cluster separately. Similar to the single-
objective GOMEA [12], linkage learning is performed on a selection set that is
obtained using tournament selection with tournament size 2 to have a beneficial
bias in the model toward solutions that have better fitness values.

Let L = {1, 2, . . . , l} be the set of indices of all l decision variables. To capture
the interactions between these decision variables, GOMEAs use a general linkage
model termed the Family Of Subset (FOS). A FOS F consists of subsets of set L,

i.e., F = {F 1, F 2, . . . , F |F|} where F i ⊆ {1, 2, . . . , l}, i ∈ {1, 2, . . . , |F|}. A FOS F
is thus a subset of the powerset of L, i.e., F ⊆ P(L). Every subset F i can be seen
as a linkage set of problem variables that exhibit some degree of joint dependency
and that should thus be copied jointly when performing variation.

Various GOMEA instances exist with different FOS structures [12, 26]. Here,
MO-GOMEA employs the Linkage Tree (LT) structure, which is the most commonly
used in literature. The LT contains all singleton subsets as its leaves, i.e., F i =
{i}, i ∈ {1, 2, . . . , l}, capturing decision variables as being fully independent. The
LT also contains combinations of variables, organized in a tree-like fashion. A
branch node of the LT is a bivariate or multivariate subset F i, which is created by
combining two subsets F j and F k such that F j ∩ F k = ∅, |F j | < |F i|, |F k| < |F i|
and F j∪F k = F i. The root node, which contains all the decision variable indices, is
the set L itself and is disregarded as it does not generate any new offspring solution
when doing recombination. The LT without the root node has 2l − 2 linkage sets.
Details about how a LT model is learned are presented in Chapter 2.

3.2.4. Gene-pool optimal mixing
Classical EAs use blind crossover and mutation to create offspring solutions. EDAs
sample the learned probability distribution to generate new solutions. GOMEAs
perform an intensive mixing procedure aimed at efficiently exploiting the FOS link-
age model to improve all population members, one by one; the resulting solutions
are offspring solutions.

Aimed at covering the whole Pareto-optimal front by discerning and exploiting
structure in different regions, the population is clustered in MO-GOMEA and for
each cluster Cj , a dedicated linkage model Fj is learned. Therefore, before improving
a population member, we need to determine which cluster that solution belongs to.
Although the clustering algorithm used here constructs equally-sized clusters, some
solutions in P might actually not be covered by any cluster and some solutions
may be covered by more than one cluster. Uncovered solutions are assigned to the
cluster with the nearest mean. In case of multiple cluster assignments, ties are
broken randomly. Every cluster thereby can be used to improve a more or less equal
number of solutions.

Given cluster Cj that an existing (parent) solution p belongs to, and the cor-
responding FOS Fj of that cluster, MO-GOMEA changes p incrementally by the
Gene-pool Optimal Mixing (GOM) procedure into an offspring solution as follows.
First, the offspring solution o is created by cloning p and a backup b of o is created.
We then traverse the linkage sets in FOS Fj in a random order. For every F i ∈ Fj,
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a donor solution d is randomly chosen from the same cluster Cj . The values of the
problem variables whose indices are indicated by the linkage set F i are copied from
the donor d to the current solution o. The objective values of this partially-altered
solution o are evaluated and are compared with the backed-up state b. If such mix-
ing results in an improvement (i.e., the altered solution dominates the backed-up
state o ≻ b) or an equally good solution (i.e., the altered solution has the same
objective values as the backed-up state f(o) = f(b)) or a side step (i.e., the altered
solution may not dominate the backed-up state but it is not dominated by any solu-
tions in the elitist archive A ⊁ o), the changes are accepted and recorded as the new
backup. Otherwise, the current solution is reverted to its backed-up state. When all
linkage sets in the linkage tree are traversed, an offspring is then fully constructed.

It can happen that all the mixing steps of Gene-pool Optimal Mixing do not im-
prove nor at least change the parent solution or that there exist significant plateaus
in the problem causing solutions to be changed back and forth. In GOMEA this
problem was tackled by using a procedure termed Forced Improvement [26]. Forced
Improvement is essentially a second round of Optimal Mixing but the donor solution
then is always the currently best found solution. In [26], Forced Improvement is trig-
gered when a parent solution is not changed after going through Optimal Mixing or
when the no-improvement stretch (NIS), i.e., the number of subsequent generations
that the best solution did not change, exceeds the threshold 1 + ⌊log10(N)⌋. Here,
we implement a multi-objective version of Forced Improvement through the follow-
ing modifications. First, NIS is redefined as the number of consecutive generations
that the non-dominated front (in the objective space) formed by non-dominated
solutions in the elitist archive stayed the same. Second, a new donor solution is
now selected randomly from the elitist archive for each linkage set. Third, because
Forced Improvement aims to strictly improve the parent solution, a mixing step
in the Forced Improvement phase is only accepted if it results in a direct domi-
nation (i.e., the altered solution dominates the backed-up state o ≻ b) or a non-
dominated-front improvement (i.e., a truly new non-dominated solution is found:
At ⊁ o∧f (o) /∈ f(At)). Similar to the single-objective version, rather than travers-
ing the whole linkage tree, the Forced Improvement procedure is stopped as soon
as the first change is accepted. If the parent solution is still unchanged after Forced
Improvement, we simply replace it by a solution randomly chosen from the elitist
archive. Pseudo-code is given in Figure 3.3.

Gene-pool Optimal Mixing (GOM) in MO-GOMEA can be seen as a direct ex-
tension of Gene-pool Optimal Mixing in GOMEA by replacing fitness improvement
checking with Pareto-domination checking in every mixing step, and using multiple
solutions from the elitist archive instead of a single best solution for the Forced
Improvement phase. Multi-objective Gene-pool Optimal Mixing is employed for
improving solutions that are determined as belonging to the middle-region clus-
ters. However, as discussed earlier in Section 3.2.2, having a mechanism that puts
extra pressure on the individual objectives can be highly beneficial because the
Pareto-domination improvement may not give enough pressure to find the extreme
solutions (the solutions that maximize a single objective). Therefore, to improve
solutions that belong to extreme-region clusters, we employ single-objective Gene-
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MultiObjective-GenepoolOptimalMixing(p, C,F ,At)
1 b← o← p; f(b)← f (o)← f(p); changed← false
2 for i ∈ {1, 2, . . . , |F|} do
3 d← PickRandomDonorFromCluster(C)
4 oF i ← dF i

5 if oF i 6= bF i then
6 f (o)← EvaluateFitness(o); updated← false; improved← false
7 if [At ⊁ o and f (o) /∈ f(At)] or
8 [f (o) ∈ f (At) and IsDiversityIncreasedByAdding(At, o)] then
9 updated← true; improved← true

10 else if o ≻ b or f(o) = f(b) or At ⊁ o then
11 improved← true
12 if updated then
13 At ← UpdateElitistArchive(o)
14 if improved then
15 bF i ← oF i ; f(b)← f(o); changed← true
16 else
17 oF i ← bF i ; f(o)← f (b)
18 if ¬changed or tNIS > 1 + ⌊log10(N)⌋ then
19 changed← false
20 for i ∈ {1, 2, . . . , |F|} do
21 d← PickRandomDonorFromElitistArchive(At)
22 oF i ← dF i

23 if oF i 6= bF i then
24 f(o)← EvaluateFitness(o); updated← false; improved← false
25 if At ⊁ o and f(o) /∈ f(At) then
26 updated← true; improved← true
27 else if f(o) ∈ f(At) and IsDiversityIncreasedByAdding(At, o) then
28 updated← true
29 if o ≻ b then
30 improved← true
31 if updated then
32 At ← UpdateElitistArchive(o)
33 if improved then
34 bF i ← oF i ; f(b)← f (o); changed← true
35 else
36 oF i ← bF i ; f(o)← f(b)
37 if changed then breakfor
38 if ¬changed then
39 d← Random(At); o← d; f(o)← f(d)

Figure 3.3: Pseudo code for multi-objective Gene-pool Optimal Mixing

pool Optimal Mixing and single-objective Forced Improvement of the as reported
in [26]. In other words, if a parent solution p belongs to the extreme cluster that is
associated with optimizing single objective fi, p will be improved by Gene-pool Op-
timal Mixing in the single-objective manner, and the solution xbest

fi
that stores the

current maximum observed value for fi will be considered as the single donor solu-
tion in Forced Improvement. Note that, however, the NIS concept is still defined in
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the overall multi-objective optimization context with regard to the non-dominated
front formed by the elitist archive members. Figure 3.2 illustrates the cluster-based
operation of MO-GOMEA, in which middle-region clusters employ multi-objective
GOM with improvement checks on the basis of Pareto dominance while extreme-
region clusters employ single-objective GOM with improvement checks on the basis
of their corresponding objectives.

3.3. Benchmark problems
3.3.1. Problems
Because we will use benchmark problems throughout subsequent sections to test and
decide on various design choices for MO-GOMEA, we present all problems that we
consider in this chapter in this section first. We also describe how the Pareto-optimal
front PF of each problem instance can be obtained, which is used to evaluate the
performance of MOEAs.

Scalable benchmark problems
Zeromax-Onemax
Zeromax-Onemax [11] has two objectives that are defined over a binary string x of
l bits as follows:

fOnemax(x) =

l
∑

i=1

xi; fZeromax(x) = l − fOnemax(x) (3.1)

Objective fOnemax counts the number of bits set to 1 while fZeromax counts the
number of bits set to 0, making the objectives conflicting. Every candidate solution
is a Pareto-optimal solution; any increase in the number of bits set to 1 will be a
decrease in the number of bits set to 0, and vice versa. The Pareto-optimal front
PF of Zeromax-Onemax consists of l + 1 points PF = {(i, l − i) | i ∈ {0, 1, . . . l}},
on a straight line. A point on PF can correspond to many different solutions, with
the exception of the two extreme points that correspond to exactly a string of all 1s
(maximizing Onemax) and a string of all 0s (maximizing Zeromax). It can be seen
that the niches of the solutions having objective values in the middle regions of the
front PF are exponentially larger than the niches in the extreme regions of PF .

Trap-Inverse Trap
Trap-Inverse Trap [11] also has two objectives. A Trap-k is the well-known mutually
exclusive, additively decomposable composition of the order-k deceptive subfunc-
tions. In this thesis, we consider Trap-5:

fTrap-5(x) =

l/5
∑

i=1

f sub
Trap-5





5i
∑

j=5i−4

xj



 (3.2)

where

f sub
Trap-5(u) =

{

5 if u = 5
4− u if u < 5

(3.3)

56



3.3. Benchmark problems

Inverse Trap-5 comprises the same partitions as Trap-5 but each partition is
evaluated “inversely”:

f sub
Inverse Trap-5(u) =

{

5 if u = 0
u− 1 if u > 0

(3.4)

A candidate solution for which each partition has one objective subfunction that
evaluates to 5 is Pareto-optimal. The Pareto-optimal front PF consists of l/5 + 1
points PF = {(5i + 4(l/5− i), 5(l/5− i) + 4i) | i ∈ {0, 1, . . . l/5}}, on a straight line.
It is well-known known that in order to solve additively decomposable trap func-
tions, it is crucial to preserve the linkage relations between problem variables during
variation. Therefore, this benchmark is often used to demonstrate the importance
of linkage learning.

Leading Ones Trailing Zeros (LOTZ)
The LOTZ problem consists of two objectives: maximizing the number of consecu-
tive bits set to 1 at the beginning and maximizing the number of consecutive bits
set to zero at the end.

fLO(x) =
l

∑

i=1

i
∏

j=1

xj ; fTZ(x) =
l

∑

i=1

l
∏

j=i

(1 − xj) (3.5)

A candidate solution that consists of a substring of all 1s followed by a substring
of all 0s, i.e., having the form of 11 . . . 100 . . . 0, is Pareto-optimal. The two extreme
solutions are all 1s (maximizing Leading Ones) and all 0s (maximizing Trailing
Zeros). The Pareto-optimal front PF of LOTZ consists of l + 1 points P

i
F =

{(i, l− i) | i ∈ {0, 1, . . . l}}, on a straight line. However, different from the Zeromax-
Onemax problem, any point on the Pareto-optimal front PF of LOTZ corresponds
to exactly one Pareto-optimal solution.

Multi-objective MAXCUT
Definition
Weighted MAXCUT is defined over a weighted undirected graph G = (V, E), where
V = (v1, v2, . . . , vl) is the set of l vertices, and E is the set of edges (vi, vj) with
corresponding weights wij ’s. A maximum cut is a partition of l vertices into two
disjoint subsets A and B = V \A such that the combined weight of all edges (vi, vj)
having vi ∈ A and vj ∈ B is maximized. A cut can be encoded as a binary string x

of l bits, in which each bit xi corresponds to a vertex, and all 0-valued bits indicate
vertices of set A while all 1-valued bits indicate vertices of set B. The objective
function of the weighted MAXCUT problem is defined as follows

fMAXCUT(x) =
∑

(vi,vj)∈E

{

wij if xi 6= xj

0 otherwise
(3.6)

We construct a multi-objective version of the weighted MAXCUT problem by
optimizing a different MAXCUT instance in each objective. The instances have
identical vertices but different edge weights.
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Problem Instances
We experiment with four multi-objective MAXCUT problem instances of size l =
12, 25, 50, 100. Each MAXCUT instance is a fully connected graph having 1

2 l(l− 1)
edges. The edge weights are set by following the approach described in [26]. For the
12-vertex and 25-vertex problem instances, we can easily obtain the true Pareto-
optimal fronts PF by enumeration. For the 50-vertex and 100-vertex problem in-
stances, because PF ’s are unknown, we can only obtain reference fronts by consult-
ing the results of [26] as follows. We use the maximum population sizes of GOMEA,
that reliably solve the single-objective MAXCUT, reported in [26] to set as the
cluster size for MO-GOMEA. We then run five different instances of MO-GOMEA
with different number of clusters k ∈ {1, 3, 5, 7, 10}. Each MO-GOMEA instance
is run 100 times, each time with a budget of 20 million function evaluations. We
take the non-dominated front of all results in all these runs over all five instances of
MO-GOMEA to be PF in this case. A degree of reliability can be taken from the
fact that the optimal extreme points were always found to be in the final reference
fronts PF so constructed.

Multi-objective Knapsack
Problem Definition
The multi-objective knapsack problem involves l items and m knapsacks. Each
knapsack k has a specific capacity ck. Each item i has a weight wi,k and a profit
pi,k corresponding to each knapsack k. A solution of the knapsack problem can
be encoded as a binary string x = (x1, x2, . . . , xl) ∈ {0, 1}l, where each bit xi

corresponds to an item i, and xi = 1 indicates that item i is selected. Selecting an
item i in the multi-objective knapsack context means the item i is placed in every
knapsack. A feasible solution is a selection of items such that the total weight does
not exceed the capacity of any knapsack. The objectives are to maximize the profits
of all knapsacks at the same time as follows.

maximize
x

(f1(x), f2(x), . . . , fm(x))

where fk(x) =

l
∑

i=1

pi,kxi k = 1, . . . , m

subject to

l
∑

i=1

wi,kxi ≤ ck k = 1, . . . , m

(3.7)

Constraint Handling
If a solution violates the capacity constraint of any knapsack, we use the repair
mechanism proposed in [27] to iteratively remove items until all constraints are
satisfied. The item removal order follows the principle that the items with the lowest
maximum profit/weight ratio should be discarded first.The maximum profit/weight
ratio ri of an item i as follows (as in [27]).

ri =
m

max
k=1

{

pi,k

wi,k

}

(3.8)
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This repair mechanism tries to satisfy the capacity constraints while diminishing
the overall profit as little as possible by considering all knapsacks when removing
items. This multi-objective repair works well for approaching middle regions of
the Pareto-optimal front, where trade-off solutions that balance all objectives are
located. It can be intuitively noticed that Pareto-optimal solutions in the extreme
regions, which maximize the profit of a specific knapsack, can be approached more
efficiently if they are targeted by employing a repair mechanism dedicated to that
knapsack. A repair function dedicated to a knapsack k also iteratively removes
items until all constraints are satisfied but the item removal order biases toward
knapsack k, such that items with lowest profit/weight ratio ri,k = pi,k/wi,k should be
discarded first. The question is which repair mechanism should be used for a specific
infeasible solution. The answer is straightforward for MO-GOMEA: middle-region
clusters should employ the multi-objective repair mechanism while each extreme-
region cluster should employ the single-objective repair mechanism that corresponds
to its target objective.

Problem Instances
We use the bi-objective knapsack problem instances of 100, 250, 500, 750 items pro-
posed by [27]. The true Pareto-optimal fronts PF ’s of the 100-, 250-, and 500-item
problem instances have been reported in [27]. For the 750-item problem instance,
PF is unknown and we replace it by a reference set, which is created by combining
all non-dominated fronts obtained by all optimizers in all runs.

3.4. Performance indicator
To compare the performance of different MO-GOMEA variants, we evaluate the
quality of the Pareto-optimal front approximation obtained by each variant. In our
case, this approximation equals the elitist archive. For our settings, we employ the
inverse generational distance performance (IGD) indicator DPF →S [6]:

DPF →S(S) =
1

|PF |

∑

f 0∈PF

min
x∈S
{d(f(x), f0)} (3.9)

where PF is the true Pareto-optimal front (or a reference front), S is the final
approximation set (i.e., the outcome of that optimizer), and d(·, ·) computes the
Euclidean distance. The DPF →S performance indicator is the average distance in
the objective space from a point in PF to its nearest point in S. A smaller value of
DPF →S indicates a better performance result, and the value 0 is achieved if and only
if the front formed by the approximation set equals the Pareto-optimal front. Note
that calculating the average distance in “reversed order” yields a different indicator
DS→PF

, also known as the generational distance (GD). However, obtaining a low
DS→PF

value does not mean that a good approximation set has been found because
the GD indicator only considers the proximity of a front to the Pareto-optimal front.
An approximation set S(|S| = 1) that contains only a single Pareto-optimal solution
in PF can yield the best GD value 0. On the other hand, the IGD DPF →S indicator
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takes into account both proximity (i.e., how close S is to the front PF ) and diversity
(i.e., how well-spread S is along the front PF ) of the approximation set S.

3.5. Benchmarking MO-GOMEA
3.5.1. Experiment setup
We compare the performance of MO-GOMEA with a commonly used instance
of NSGA-II [7] (2-point crossover with probability 0.9 and bit-flipping mutation
with probability 1/l). We also consider the best results obtained by the EDAs
(MO)UMDA and mohBOA as reported in [11]. We want to assess scalability, i.e.,
how the population size requirements and the required number of evaluations grow
as the problem size increases. For the problems Zeromax-Onemax, Trap-Inverse
Trap, and LOTZ, the Pareto-optimal fronts are known, so to this end, we perform
bisection [28]. Bisection is a binary-search inspired procedure that aims to find the
minimally required population size to solve a problem instance reliably. Here, we
define reliable as achieving DPF →S = 0 (i.e., the entire Pareto-optimal front is
found) in all 100 out of 100 independent runs. We perform 10 independent bisection
searches for every problem size l ∈ {25, 50, 100, 200, 400}.

For MO-MAXCUT, because we do not know the Pareto-optimal front for certain,
it is difficult to perform bisection. Moreover, MO-MAXCUT is a (NP-)hard prob-
lem, for which polynomial scalability may not be expected, so we wish to observe
how good of an approximation can be achieved. Therefore, we set the population
sizes for MO-GOMEA and NSGA-II by consulting the results in [26], which solved
SO-MAXCUT reliably. For each problem size, we use the average required popula-
tion size of LTGA as the cluster size in MO-GOMEA and as the base population size
in NSGA-II. We run MO-GOMEA with the number of clusters k ∈ {1, 3, 5, 7, 10}.
Similarly, we run NSGA-II with the base population size scaled by 1, 2, 4, 8, and 16
times. For every MAXCUT problem instance l ∈ {12, 25, 50, 100}, we perform 100
independent runs. We determine performance on the basis of the average conver-
gence graph of the DPF →S indicator. The budgets of function evaluations are also
set by consulting [26]. For every problem size, we set the maximum number of eval-
uations to be 10 times the average number of evaluations that LTGA required to
solve SO-MAXCUT (we multiply by 10 because we have an MO-GOMEA instance
with at most k = 10 clusters). Note that we always consider one function evaluation
to include evaluating both objectives.

The knapsack problem is a constrained problem. Different constraint-handling
methods, which are problem-specific, can have different effects on the performance
of optimization algorithms. Because we would like to focus on benchmarking the
scalability of general-purpose MOEAs in this section, we prefer unconstrained prob-
lems. Therefore, we do not perform experiments on the knapsack problem here but
save it for Sections 3.7 and 3.8.

To support our conclusion from experimental results, we perform the Mann-
Whitney-Wilcoxon statistical hypothesis test for equality of medians with p < 0.05
to see whether the final result obtained by one optimizer is statistically different
from that of another optimizer.
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3.5.2. Results & discussions
Zeromax-Onemax

# Evaluations Population size
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UMDA (clustering)

Figure 3.4: UMDA, NSGA-II, and MO-GOMEAs solving Zeromax-Onemax. Horizontal axis:
problem size.

Figure 3.4 shows that MO-GOMEA with clustering (i.e., k > 1) outperforms
UMDA with clustering in terms of number of evaluations as well as scalability. Note
that, in [11], UMDA with clustering did not have an elitist archive and the required
population size was not reported. It can be inferred however, that in order to cover
all points of the Pareto-optimal front, the population size of UMDA without elitist
archive must be at least as large as the Pareto-optimal front. Our MO-GOMEA
instances require a smaller population size that grows quite slowly as the problem
size increases. It can furthermore be observed that for solving this problem we do
not really need many clusters in MO-GOMEA because all problem variables are
independent from each other in all regions of the search space. That explains why
MO-GOMEA with k = 3 has the best performance, and as we increase the number of
clusters (k = 5, 7, 10), the number of evaluations also increases accordingly, but the
scalability is relatively the same. However, MO-GOMEA without clustering (k = 1),
and thus without internal SO optimizers, solves the problem much less efficiently.
This is because the two extreme solutions (maximizing Zeromax vs. maximizing
Onemax) are in very small niches that contain only one solution. Without clustering
to distribute enough resources and without SO optimizers to approach these extreme
regions efficiently, it is much harder to cover the entire Pareto-optimal front. The
differences in the required numbers of fitness evaluations of all MO-GOMEA variants
(k = 1, 3, 5, 7, 10) solving each Zeromax-Onemax instance (l = 25, 50, 100, 200, 400)
are found to be statistically significant. However, there is no significant difference
between the minimally-required population sizes of MO-GOMEAs k = 3, 5, 7, and
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10. In [11], an NSGA-II version without an elitist archive was found to hardly be
able to solve the problem up to 50 problem variables. Here, being equipped with an
elitist archive, NSGA-II can solve all Zeromax-Onemax instances with the smallest
possible population size for NSGA-II of 4 individuals and with a performance much
better than UMDA. This confirms the necessity of elitist archiving for scalable MO
optimization.

NSGA-II does not have clustering nor SO optimizers. MO-GOMEA with k = 3
requires (statistically significantly) fewer fitness evaluations than NSGA-II in solving
instances l = 25, 50, 100, and 200. However, on the problem instance l = 400, there
is no statistically significant difference between the performance of MO-GOMEA
k = 3 and NSGA-II. The fact that NSGA-II can solve all Zeromax-Onemax of
various problem sizes with such a small population size (and with better scalability
than MO-GOMEA) can be explained by its use of bit-wise mutation, which is not
by default employed in MO-GOMEA. To validate this, we equip MO-GOMEA with
a simple mutation operator: the mixing step at singleton linkage sets is replaced by
randomly assigning a 0 or a 1 value (i.e., not genepool-based). The performance of
MO-GOMEAs with this mutation operator is shown in Figure 3.5. The differences
in the required numbers of evaluations of all optimizers are found to be statistically
significant (except between MO-GOMEA k = 3 and k = 5 on the instance l = 100).
With mutation, indeed the MO-GOMEAs now have a scalability relatively similar
to NSGA-II. Moreover, the MO-GOMEAs need a fewer number of evaluations. The
fact that MO-GOMEA with mutation but without clustering (k = 1, and thus
without SO optimizers) still has worse performance indicates that clustering and
internal SO optimizers are important features of MO-GOMEA. It is however also
a result of the fact that mutation here is key to finding the extreme points. This
however requires time in terms of generations and all higher-order mixing operations
attempted by MO-GOMEA that follow from the use of the full linkage tree in the
meantime are not useful.

Trap-Inverse Trap
Figure 3.6 clearly demonstrates that MO-GOMEA outperforms both mohBOA and
NSGA-II. Different from the Zeromax-Onemax benchmark of all-independent prob-
lem variables, Trap - Inverse Trap requires linkage learning to detect and preserve
linkage relations between problem variables during recombination processes. Link-
age learning is not employed in NSGA-II and even though it uses a recombination
operator (two-point crossover) that is linkage friendly because we have encoded
the trap functions tightly, it is still highly inefficient in finding the optimum. The
strengths of the linkage model and optimal mixing procedure of GOMEA, which
are known to contribute to its superior performance in solving the SO version of
Trap-5 [12], is successfully extended to the MO realm. Given a properly learned
linkage model, the GOM procedure helps MO-GOMEA achieve successful mixing
events which respect the dependencies between problem variables. The intensive
local-search-inspired characteristic of the GOM procedure moreover results in MO-
GOMEA requiring only a small and slow-growing population size, similarly to the
SO case [12]. The differences in the required numbers of evaluations of all MO-
GOMEA variants (k = 1, 3, 5, 7, 10) and NSGA-II solving each Trap-Inverse Trap
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Figure 3.5: MO-GOMEAs with mutation solving Zeromax-Onemax. Horizontal axis: problem size.
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Figure 3.6: mohBOA, NSGA-II, and MO-GOMEAs solving Trap-Inverse Trap. Horizontal axis:
problem size.

instance (l = 25, 50, 100, 200, 400) are found to be statistically significant (except
between MO-GOMEAs k = 1, 7, and 10 on the instance l = 25). The minimally-
required population sizes of all MO-GOMEA variants solving each Trap-Inverse
Trap instance, however, are not statistically significantly different from each other.

The best results are again obtained with MO-GOMEA with three clusters. Us-
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ing more clusters again leads to similar scalability but requires larger numbers of
evaluations. This is again because the Pareto-optimal front of Trap-Inverse Trap
has the same linkage structure (i.e., concatenated groups of five inter-dependent
problem variables) in both objectives, resulting in redundant behavior when adding
more clusters. However, MO-GOMEA with k = 1 clearly performs worse (but still
better than NSGA-II) because the extreme regions of the front have again very
small niches (similar to Zeromax - Onemax). Figure 3.6 also shows the performance
of the MOEDA mohBOA with restricted tournament replacement and clustering,
which had the best performance reported in [11]. Here, we obtain similar behavior
for k = 1 but we obtain clearly better results for k > 1. Because in [11] mohBOA
did not have an elitist archive, it is difficult to directly compare MO-GOMEA and
mohBOA, which we did not re-implement. However, it has been reported in [12]
that, in SO optimization for Trap-5, GOMEA had better performance than a typical
EDA. Even if we assume that the probabilistic model building and sampling in mo-
hBOA are as effective as the LT building and the GOM procedure in MO-GOMEA,
the elitist archive and internal SO optimizers cause MO-GOMEA to have better
scalability.

Lead Ones Trailing Zeros (LOTZ)
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Figure 3.7: NSGA-II, and MO-GOMEAs solving LOTZ. Horizontal axis: problem size.

Figure 3.7 shows that LOTZ is a challenge for MO-GOMEA. The reason is that
we aim to cover the entire Pareto-optimal front reliably while LOTZ has a peculiar
linkage structure. Only substrings of consecutive 1 bits at the beginning (Leading
Ones) and the substring of consecutive 0 bits at the end (Trailing Zeros) contribute
to the objective values. This means that all the mixing events of 0s and 1s in the
middle are useless and can be considered as noise, affecting the effectiveness of link-
age learning in MO-GOMEA. Moreover, the LT model fails to capture efficiently
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the type of operations needed to solve LOTZ. What further makes LOTZ a compli-
cated problem is that selection pressure based on Pareto dominance makes it very
difficult to obtain the extreme solutions of LOTZ (i.e. a string of all 1s and a string
of all 0s). For example, a string x beginning with a 0 will be dominated by any
strings beginning with a 1 and ending with a 0. This string x will therefore soon be
deleted from of the population. The GOM of GOMEA cannot improve x while still
keeping the leading 0 bit because GOM will prefer any dominating solutions x′ ≻ x

with a leading 1 bit. Even the SO version of GOM in the extreme clusters cannot
efficiently preserve this leading 0 bit because the leading 0 bit is only useful when it
is combined with the substring of trailing 0s to create the extreme solution of all 0s.
Figure 3.7 shows however that NSGA-II has little difficulty in solving LOTZ, requir-
ing a population size of only 4. This is due to the mutation operator of NSGA-II.
It can be inferred from Figure 3.7 that, e.g., in order to solve LOTZ of 400 bits,
NSGA-II needs to be run over than 300,000 generations, waiting for mutation to flip
the right bit at the right time to obtain a Pareto-optimal solution. It should further
be noted that the two-point crossover operator of NSGA-II has a favorable search
bias here because it can preserve and recombine very large substrings of all 1s or all
0s at the beginning and end of a solution. Figure 3.8 validates this by showing that
NSGA-II with uniform crossover performs (statistically significantly) worse.

LOTZ clearly poses additional challenges, which for MO-GOMEA include finding
more appropriate linkage models and filtering useless subsets. However, LOTZ can
still be solved fairly efficiently using a simple local search (LS) operator. Following
the typical design of genetic local search, we apply LS at the end of every generation
on each offspring solution by traversing the variables of a solution in a random
order and flipping every variable, followed by a Pareto-improvement check. If a
flip does not result in a solution dominated by the previous state nor dominated
by the beginning state, it is accepted. Otherwise, it is reverted to the previous
state. Figure 3.8 shows the performance of MO-GOMEA and NSGA-II with this
LS. LS greatly improves the performance of MO-GOMEA, but not that of NSGA-II
in terms of number of evaluations. These results underline just how beneficial it can
be to use a proper problem-specific LS operator to bring back diversity that might
have gotten lost.

Multi-objective MAXCUT
Although Zeromax-Onemax, Trap-Inverse Trap and LOTZ are interesting bench-
mark problems with known Pareto-optimal fronts, they are fairly artificial in the
sense that the Pareto-optimal fronts always have the shape of a straight line. We
therefore also perform experiments on the MO-MAXCUT problems where the Pareto-
optimal front can be shaped very differently. The convergence graphs in Figure 3.9
show that for l = 12, only NSGA-II 16×, the one with the largest population size,
outperforms MO-GOMEA. As the problem size increases however, the picture starts
to change. For l = 25, only NSGA-II 16× has a convergence result as good as MO-
GOMEA with k = 5, 7, but it is still (statistically significantly) outperformed by
MO-GOMEA with k = 10. For larger problem sizes, l = 50, 100, MO-GOMEAs
with clustering (k > 1) distinctly outperform all NSGA-II instances, and the dif-
ferences are found to be statistically significant. The facts that MO-GOMEA with
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Figure 3.8: MO-GOMEAs with local search and NSGA-IIs solving LOTZ. Horizontal axis: problem
size.

clustering exhibits better convergence for problem sizes l > 25 and that the bigger
the problem, the wider the performance gap between the various MO-GOMEAs
k > 1 and NSGA-IIs becomes, indicate the intrinsic superior scalability of MO-
GOMEA over NSGA-II. MO-GOMEA without clustering (k = 1) has performance
results relatively the same as those of NSGA-IIs, which do not have clustering ei-
ther. This emphasizes again the importance of clustering to handle different parts
of the Pareto-optimal front separately. Also, although we did not perform bisection
to find the minimally required population size for each instance (because the true
Pareto-optimal front is unknown), it can be inferred, to a certain degree, from MAX-
CUT l = 12, 25, 50 that the more clusters MO-GOMEA has the better the result
is although it may take more time to obtain this result. This is because, different
from the other benchmark problems, the structures of the objectives may now differ,
causing different structures to be required to be exploited along the front, which is
supported by clustering.

Discussions
The experimental results on the scalable benchmark problems and MAXCUT prob-
lem presented in this section demonstrate that MO-GOMEA is a robust multi-
objective optimization algorithm with superior scalability compared to the state-
of-the-art MOEAs NSGA-II. However, similar to other MOEAs, the robustness of
MO-GOMEA is maximally attained only if its parameters (i.e., the population size
N and the number of clusters k) are optimally set. For scalable benchmark prob-
lems, we can perform bisection to find the minimally required population size. For
a small MAXCUT problem instance, we have a reliable reference for setting the
population size. But for many optimization problems in practice, we do not have a
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solid guideline for setting this important parameter because the optimal population
size depends on the problem instance at hand, the employed optimization algorithm
itself, and the time available. This is particularly true for the DNEP problem in
this thesis, for which there exists no result on optimal population sizes of MOEAs
solving DNEP. Besides, even though the tournament selection operator for linkage
learning with tournament size 2 appears to be a good choice in the experiments
here, it can be argued that this is also a parameter that practitioners might need to
consider in general. Practitioners often need to experiment with all these different
parameter values in a trial-and-error manner, which is far from efficient. Therefore,
in the following section, aiming to make MO-GOMEA an easy-to-use optimizer,
we propose an approach to remove all parameter setting requirements that might
discourage practitioners from employing MO-GOMEA.
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3.6. Removing the requirement of parameter set-

tings in MO-GOMEA

In this section, we present how we remove the requirement of parameter settings in
MO-GOMEA. First, we perform experiments to show that the selection phase for
linkage learning can be omitted. We then propose different potential parameter-less
schemes and perform experiments to verify their performance. Based on the experi-
mental results, we pick the scheme that has the most similar performance compared
to MO-GOMEA where the population size is set to its ideal value for each prob-
lem anew. We employ two scalable benchmark problems, namely Zeromax-Onemax
and Trap-Inverse Trap. The true Pareto-optimal fronts of these two problems can
be deterministically calculated, which is convenient for comparing performance of
different optimizers. We do not employ the LOTZ problem here for benchmarking
parameter-less MO-GOMEAs because, as demonstrated in Section 3.5, it is much
more efficient to solve LOTZ by mutation or local search, which does not exist in
the standard version of MO-GOMEA. We will return to LOTZ in Section 3.7 when
we discuss the influence of mutation operators.

3.6.1. Eliminating the selection operator

The original implementation of MO-GOMEA performed linkage learning on selec-
tion sets obtained by using tournament selection in each cluster with tournament size
2 (see Section 3.2.3). However, it can be argued that the selection pressure is already
effectively enforced by Gene-pool Optimal Mixing because the quality of an offspring
solution is always better or at least equal to its parent solution (see Section 3.2.4).
Furthermore, linkage learning on the entire cluster is better for diversity preserva-
tion, which is important in MOEAs. Therefore, different from other MOEAs where
the selection typically introduces a required search bias toward promising solutions,
the selection phase for model building might not be necessary for MO-GOMEA. Fig-
ure 3.10 supports our claim. For each problem instance l ∈ {25, 50, 100, 200, 400}
and each MO-GOMEA variant k ∈ {1, 3, 5, 7, 10} with/without selection, we per-
form 10 independent bisections to find the minimally-required population size and
its corresponding number of fitness evaluations to reliably solve the problem in-
stance. Figure 3.10 shows no deterioration in the scalability of all MO-GOMEA
variants. There is no statistically significant difference in the required numbers of
evaluations between the MO-GOMEA variants with and without the selection op-
erator when solving Zeromax-Onemax. On Trap-Inverse Trap problem instances,
the MO-GOMEA variants without selection perform slightly better than ones with
selection. The differences between MO-GOMEAs k = 5, 7, 10 with and without
selection are found to be statistically significant. Therefore, we deem the addi-
tional selection for model building to be unnecessary for MO-GOMEA and decide
to remove the selection operator in all following experiments.

3.6.2. Eliminating the population size parameter
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Figure 3.10: Scalability in terms of the required number of fitness evaluations for MO-GOMEAs
with and without selection solving Zeromax-Onemax and Trap-Inverse Trap. Horizontal axis:
problem size.

Adapting the Harik-Lobo population-sizing-free scheme for MO-GOMEA
Because of the proven effectiveness of the Harik-Lobo scheme in designing population-
sizing-free variants of single-objective EAs [23, 29, 30], we here similarly employ the
Harik-Lobo scheme to remove the population size parameter for multi-objective EAs,
and in particular, for our MO-GOMEA. Note that related approaches such as de-
signing an adaptive parameter control mechanism or in-depth studies for parameter
tuning are interesting for future work but not in the scope of this thesis.

In an MOEA with the Harik-Lobo scheme, multiple populations Pi’s of different
sizes Ni’s are maintained and are operated in an interleaved fashion. The first
population P1 has some small size N1 (e.g., N1 = 8). Next, every population Pi+1

is created by doubling the size of the previous population Pi, i.e., Ni+1 = 2Ni for
i ≥ 1. For every b generations of population Pi, one generation of population Pi+1

is run. In other words, population Pi executes a generational step every bi−1-th
generation of population P1. When a population Pi converges, it will be terminated
because, for the sake of simplicity, mutation operators are not employed. Converged
populations, therefore, cannot explore the search space any further. The Harik-Lobo
scheme has been experimented with on single-objective optimization problems with
two commonly-used generation bases b = 2 in [24, 29] and b = 4 in [23, 30]. We
will perform experiments to determine which generation base is more suitable in the
multi-objective optimization context.

While the Harik-Lobo scheme works well for single-objective optimization, it
requires some adaptations for multi-objective optimization. First, we do not nec-
essarily need to employ the termination criterion of converged populations because
MOEA populations normally do not converge to a single solution. In single-objective
population-sizing-free EAs, because smaller populations are given a bigger or at least
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equal number of fitness evaluations (i.e., generation base b = 4 or b = 2, respec-
tively), if the average fitness of a population Pi is less than that of a larger population
Pj (j > i), then that population Pi is regarded as costly and inefficient, and should
be terminated. For population-sizing-free MOEAs, we do not employ the termina-
tion criterion of small populations based on average fitness values. Calculating the
average fitness value for a population is not sensible in the multi-objective context.
All populations of parameter-less MOEAs are thus kept running without termina-
tion of small populations. However, we will further discuss this issue in Section 3.8.
Third, instead of establishing a race among completely independent populations as
in single-objective population-sizing-free EAs, we share the elitist archive among all
running populations so that the final approximation set is built from all populations
of different sizes.

We also experiment with another population-sizing-free scheme with a different
mechanism that has the advantage of requiring only a single population, albeit with
a dynamically changing size. At the end of every generation i, the next population
Pi+1 is created as follows. If the current elitist archive size is bigger than the size
Ni of the current population Pi, Ni well-spread solutions can be chosen from the
archive by the leader selection heuristic presented in Section 3.2.2. If the current
elitist archive size is smaller than Ni, a combined pool of solutions is formed by
combining the population and the archive, and discarding duplicated solutions. If
the size of this combined pool is still smaller than Ni (which might happen because
of the deletion of duplicated solutions), new solutions are randomly generated to fill
the remaining spots. If the size of the combined pool is larger than Ni, Ni solutions
are then chosen from the best non-dominated fronts in the pool. This scheme was
reported to alleviate a potential problem of MO-GOMEA that the new population
might not be well-spread along the obtained-so-far non-dominated front [31]. This
is due to the fact that only the last altered version of each parent solution is kept
in the population, while all the intermediate solutions that have been accepted into
the elitist archive during the Gene-pool Optimal Mixing procedure are not retained
in the population [31]. After every generation, the population size is increased
by adding new N1 randomly-generated solutions, i.e., Ni+1 = Ni + N1 (N1 is the
initial population size, which can be set to some small number, e.g., N1 = 8). In
accordance with the fact that the Harik-Lobo scheme increases the population size
in an exponential fashion, we name this mechanism the linear scheme. An MO-
GOMEA variant with this linear scheme has been employed to solve the real-world
multi-objective optimization of wind farm layouts [31].

Results

We put MO-GOMEA into the Harik-Lobo (HL) scheme to create two population-
sizing-free MO-GOMEA variants with generation bases b = 2 and b = 4. We also
create another population-sizing-free MO-GOMEA variant with the linear scheme
as discussed above. For the sake of simplicity, we fix the number of clusters k = 5,
which was previously found to give good results. We use these three MO-GOMEA
variants to solve Zeromax-Onemax and Trap-Inverse Trap with different sizes l =
25, 50, 100, 200, 400. For every problem instance, we run each optimizer 100 times
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independently and obtain the number of fitness evaluations until the whole Pareto-
optimal front is found in each run. We perform the Mann-Whitney-Wilcoxon sta-
tistical hypothesis test for equality of medians with p < 0.05 to see whether the
number of evaluations required by one optimizer is statistically different from that
of another optimizer.
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Figure 3.11: Experiments on eliminating the population size parameter for MO-GOMEA. Hori-
zontal axis: Problem size. Vertical axis: The number of evaluations until the whole Pareto-optimal
front is obtained.

Figure 3.11 shows the performance of MO-GOMEA implemented with differ-
ent population-sizing-free schemes compared to the MO-GOMEA using the optimal
population size settings found by bisection as aforementioned. The Harik-Lobo
scheme with base 2 and 4 has similar performance on Zeromax-Onemax while the
scheme with base 2 is the (statistically significantly) better one in solving Trap-
Inverse Trap. This is due to the fact that diversity maintenance is of higher impor-
tance for multi-objective EAs compared to single-objective EAs. Smaller generation
bases are faster in introducing larger populations with more diverse information.
Both population-sizing-free MO-GOMEAs with base 2 and base 4 show some over-
head compared to the MO-GOMEA using the optimal populations as a few gener-
ations are needed before populations with proper sizes are initialized. The linear
scheme has the worst scalability in solving Zeromax-Onemax and Trap-Inverse Trap.
This is for a large part due to the fact that this scheme constantly focuses on in-
crementally improving the non-dominated front formed by the elitist archive. To
some extent, this can limit the ability of the optimizer to explore other regions of the
Pareto-optimal front that might have structures very different to the obtained-so-far
non-dominated front.

Based on the results in Figure 3.11, we decide that the Harik-Lobo scheme with
generation base b = 2 is the most suitable population-sizing-free scheme for MO-
GOMEA (among all the schemes tested here).

71



3. Multi-objective GOMEA

3.6.3. Eliminating the number of clusters parameter
Design of The Number-of-clusters-free Scheme

In this section, we aim to remove the number of clusters k parameter for MO-
GOMEA. Every population Pi is characterized by its population size Ni and the
number of clusters ki. Because of the effectiveness of the Harik-Lobo population-
sizing-free scheme, we accordingly propose three similar k-free mechanisms as fol-
lows.

The first mechanism starts with the initial population P1 of some small size N1

(we use N1 = 8) and the number of clusters k1 = 1 (i.e., no population cluster-
ing). For every even-indexed population Pi (i = 2, 4, 6, . . .), the population size Ni

doubles the size of the preceding population Pi−1 while the number of clusters ki

remains the same, i.e., Ni = 2Ni−1, ki = ki−1. For every odd-indexed population Pi

(i = 3, 5, 7, . . .), the population size Ni equals the size of the preceding population
Pi−1 while the number of clusters ki increases by m clusters (m is the number of
objectives), i.e., Ni = Ni−1, ki = ki−1 + m.

The second mechanism starts with the initial population P1 of size N1 and the
number of clusters k1 = m + 1 (m is the number of objectives). Section 3.5.2 shows
that MO-GOMEA works better when employing population clustering with single-
objective optimization for m extreme clusters and multi-objective optimization for
middle clusters, which means every population should have at least m + 1 clusters.
For every even-indexed population Pi (i = 2, 4, 6, . . .), the population size Ni doubles
the size of the preceding population Pi−1 while the number of clusters ki remains
the same, i.e., Ni = 2Ni−1, ki = ki−1. For every odd-indexed population Pi (i =
3, 5, 7, . . .), the population size Ni equals the size of the preceding population Pi−1

while the number of clusters ki increases by (m + 1) clusters (m is the number of
objectives), i.e., Ni = Ni−1, ki = ki−1 + (m + 1).

The third mechanism starts with the initial population P1 of size N1 and the
number of clusters k1 = m + 1 (m is the number of objectives). For every succeed-
ing population Pi (i = 2, 3, 4, . . .), the population size Ni doubles the size of the
preceding population Pi−1 while the number of clusters ki increases by 1 cluster,
i.e., Ni = 2Ni−1, ki = ki−1 + 1.

Results

Figure 3.12 shows the experimental results on solving Zeromax-Onemax and Trap-
Inverse Trap with the base population-sizing-free MO-GOMEA k = 5 and its three
k-free variants. For every problem instance, we run each optimizer 100 times in-
dependently and obtain the number of evaluations until the whole Pareto-optimal
front is found in each run. The differences in the numbers of evaluations of all
MO-GOMEA variants solving each problem instance are found to be statistically
significant (except in the cases of Zeromax-Onemax l = 25 and Trap-Inverse Trap
l = 100). The first variant MO-GOMEA 1→ +m has a slightly better performance
in solving Trap-Inverse Trap but the worst performance in case of Zeromax-Onemax.
The second variant MO-GOMEA m + 1→ +(m + 1), on the other hand, performs
slightly better in solving Zeromax-Onemax but it has the worst scalability in case
of Trap-Inverse Trap. The third variant MO-GOMEA m + 1 → +1 has balanced
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Figure 3.12: Experiments on eliminating the population size parameter for MO-GOMEA. Hori-
zontal axis: Problem size. Vertical axis: The number of evaluations until the whole Pareto-optimal
front is obtained.

results on both test problems and also the most similar performance with the base
population-sizing-free MO-GOMEA k = 5. Therefore, we decide that the third k-
free scheme m + 1 → +1 is the most suitable method (among the methods tested
here) to remove the number of clusters parameter.

3.7. Performance of the MO-GOMEA and the influ-
ence of mutation operators

In this section, we conduct experiments on all benchmark problems (as presented in
Section 3.3) to study the performance of our newly created parameter setting-free
MO-GOMEA and the influence of the use of different mutation operators.

3.7.1. Design of mutation operators
The standard version of MO-GOMEA works well without any mutation operators.
However, empirical results showed that mutation could be beneficial to the per-
formance of MO-GOMEA on some problems. We here implement mutation as an
additional component that the user can easily switch on or off as desired. Muta-
tion is employed with some probability pm on every problem variable in the linkage
set at every mixing step during the Optimal Mixing procedure. Mutation should
be performed after copying values from a donor to the current solution and before
fitness evaluation of the intermediate solution. We propose two mutation opera-
tors: weak mutation and strong mutation. Weak mutation uses a fixed mutation
probability pm = 1/l (l is the number of problem variables). Strong mutation uses
an adaptive mutation probability pm = 1/lF i , where lF i =

∣

∣F i
∣

∣ is the number of
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problem variables in a linkage set F i.

3.7.2. Scalable benchmark problems
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Figure 3.13: Performance of MO-GOMEA without mutation and with weak/strong mutation on
scalable benchmark problems. Horizontal axis: Problem size. Vertical axis: The number of evalu-
ations until the whole Pareto-optimal front is obtained.

Figure 3.13 shows that MO-GOMEA with the strong mutation operator is the
fastest solver for Zeromax-Onemax. As all problem variables are independent from
each other, linkage learning is not required to solve Zeromax-Onemax and a muta-
tion operator with high mutation probability pm will help obtain the whole Pareto-
optimal front quicker by simply performing bit-flips to try out different alternatives
without disrupting any building blocks. Such aggressive mutation operators, how-
ever, worsen the performance of MO-GOMEA on problems that require linkage
learning such as Trap-Inverse Trap. Weak mutation has little influence on the scal-
ability of MO-GOMEA in solving Zeromax-Onemax and Trap-Inverse Trap because
its mutation probability becomes increasingly smaller as the problem size increases.
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While MO-GOMEA with weak mutation performs slightly better than MO-GOMEA
without mutation in solving Zeromax-Onemax, there is no statistically significant
difference between the two optimizers in solving Trap-Inverse Trap.

MO-GOMEA without mutation operators has difficulties in solving the LOTZ
problem, especially in approaching two extreme solutions (i.e., a string of all 1s and
a string of all 0s). As discussed in Section 3.5.2, only leading 1 bits and trailing
0 bits contribute to the objective values during the optimization process. It can
be seen that all solutions containing trailing 1 bits and leading 0 bits can easily
be dominated and replaced by any solutions ending with a 0 and beginning with
a 1. Those trailing 1s and leading 0s, however, are essential to the construction of
the extreme solutions at the later stage of the optimization process when they meet
the leading 1s and trailing 0s. Gene-pool Optimal Mixing, therefore, cannot find
any donor with trailing 1s nor leading 0s remaining in the populations when neces-
sary. This problem, however, can be alleviated by employing mutation operators.
Both weak and strong mutation operators significantly improve the performance of
MO-GOMEA when solving the LOTZ problem by bringing back the prematurely
disappeared bit values.

While these three benchmarks are convenient for scalability benchmarking be-
cause all Pareto-optimal solutions can be computed analytically, their Pareto-optimal
fronts always have the shape of a straight line and they therefore do not resem-
ble real-world optimization problems. In the following section, we will consider
MAXCUT, a problem whose Pareto-optimal fronts can have multiple regions with
different shapes, and knapsack, an optimization problem with constraints.

3.7.3. MAXCUT & Knapsack
Figure 3.14 shows the average convergence behavior of MO-GOMEA and the in-
fluence of weak and strong mutation in solving four MAXCUT problem instances.
The weak mutation operator has little influence on the performance of MO-GOMEA.
The strong mutation operator improves the convergence in the 100-vertex instance
but worsens the performance in the 50-vertex instance; the differences are found
to be statistically significant. Nevertheless, all the performance gaps between MO-
GOMEA without mutation and MO-GOMEA with mutation are small. In these
MAXCUT problem instances, the linkage information-guided solution recombina-
tion of Gene-pool Optimal Mixing is effective enough for MO-GOMEA to explore
the search space without requiring any mutation operators.

Figure 3.15 shows the average convergence performance of MO-GOMEA and the
influence of mutation operators in solving four multi-objective Knapsack problem
instances. MO-GOMEA without mutation has the best convergence performance
in all cases. The weak mutation operator exhibits little effects while the strong
mutation operator severely degrades the performance of MO-GOMEA. Mutation
operators with high mutation rates pm can disrupt important building blocks ac-
quired by the linkage learning and Gene-pool Optimal Mixing procedures.

While mutation is a crucial variation operator of other MOEAs, it is not a
required component for MO-GOMEA. Among all benchmark results, mutation op-
erators only significantly deliver positive improvements when solving the LOTZ
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problem. Therefore, we conclude that the type of mutation and the probability of
mutation should be, much like local search operators, considered as highly problem-
specific and, therefore, should not be seen as a default component of MO-GOMEA.
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Figure 3.14: Average convergence performance of MO-GOMEA without mutation and with
weak/strong mutation on MAXCUT. Horizontal axis: number of evaluations (both objectives
per evaluation). Vertical axis: DPF →S .

3.8. Comparison with the NSGA-II and the influ-

ence of stopping (inefficient) small populations
3.8.1. A population-sizing-free NSGA-II
For comparison purposes, we place the well-known NSGA-II [7] into the Harik-Lobo
scheme that we developed for MOEAs in Section 3.6 to construct a population-
sizing-free NSGA-II. We conduct experiments for this NSGA-II version with both
generation base 2 and 4 as we do not yet know which values would be more ap-
propriate for the operation of NSGA-II. Note that we only need to remove the
population size parameter for NSGA-II because the standard version of NSGA-
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3.8. Comparison with the NSGA-II and the influence of stopping
(inefficient) small populations

 0

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

0e+00 1e+06 2e+06 3e+06 4e+06 5e+06

KNAPSACK 100

 0.005

 0.01

 0.015

 0.02

 0.025

 0.03

 0.035

 0.04

 0.045

 0.05

0e+00 2e+06 4e+06 6e+06 8e+06 1e+07

KNAPSACK 250

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

0e+00 3e+06 6e+06 9e+06 1e+07 2e+07

KNAPSACK 500

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0.08

0e+00 4e+06 8e+06 1e+07 2e+07 2e+07

KNAPSACK 750

MO-GOMEA no mut. MO-GOMEA weak mut. MO-GOMEA strong mut.

Figure 3.15: Average convergence performance of MO-GOMEA without mutation and with
weak/strong mutation on Knapsack. Horizontal axis: number of evaluations (both objectives
per evaluation). Vertical axis: DPF →S .

II does not employ objective-space population clustering. While mutation is not
a required component in MO-GOMEA, it is crucial for the search mechanism of
NSGA-II. Therefore, we keep the mutation operator with probability pm = 1/l (l is
the number of problem variables) as in the original NSGA-II [7].

3.8.2. A termination criterion for (inefficient) small popula-
tions

Research on population-sizing-free EAs for single-objective optimization, as in [23,
30], emphasized the importance of terminating smaller populations when they are
found to be less efficient compared to a larger population. More specifically, when
a population of size Ni reaches an average fitness at least as good as the average
fitness of the population of size Ni−1, all populations of size Nk with k < i will
be terminated [30]. It is not directly clear however that this requirement transfers
to the multi-objective case, especially for MO-GOMEA. This is because the elitist
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archive is shared among all populations and the Forced Improvement phase in MO-
GOMEA causes substantial interaction with the elitist archive, and thus substantial
interaction between populations that may increase the efficiency of smaller popula-
tions. In this section, we therefore explicitly wish to study the impact of stopping
smaller populations in MO-GOMEA. It is more difficult, however, to derive a proper
metric to measure and compare the qualities of different populations during a multi-
objective optimization process. The average fitness of a population is not a suitable
metric in the multi-objective optimization context because the fitness value of each
candidate solution involves multiple conflicting objectives. Even the popular hy-
pervolume performance indicator [27] is not an appropriate metric. A population
Pi−1 of size Ni−1 can have a smaller hypervolume value than the population Pi

of size Ni but Pi−1 is then not necessarily worse than Pi because they could be
approaching different regions of the Pareto-optimal front. Furthermore, the choice
of a reference point that is needed to calculate hypervolume values is against our
purpose of designing a parameter-less MOEA.

We here employ the Pareto domination concept to determine when a small pop-
ulation should be terminated due to inefficiency. A population Pi of size Ni is
considered to be inefficient compared to a population Pj of size Nj > Ni if the front
formed by Pi is totally Pareto-dominated by the front formed by Pj or if all points
on the front formed by Pi also exist on the front formed by Pj . We incorporate
this condition into both MO-GOMEA and NSGA-II, and perform the experiments
again to observe its influence on the optimizers.

3.8.3. Experimental results
Scalable benchmark problems

Figure 3.16 shows the average number of evaluations (over 100 independent runs)
spent by MO-GOMEA and NSGA-II on scalable benchmark problems until the
whole Pareto-optimal fronts are obtained. MO-GOMEA variants clearly outperform
NSGA-II variants on solving the Trap-Inverse Trap problem. Trap functions can
only be efficiently solved by optimizers that have linkage learning abilities, which
NSGA-II does not employ. For the Zeromax-Onemax problem, where all variables
are independent and linkage learning is not necessary, MO-GOMEA variants still
have a better scalability than NSGA-II variants. NSGA-II variants perform better
than MO-GOMEA variants, however, when solving the LOTZ problem due to the
mutation operator as discussed in Section 3.5.2. Section 5 above shows that if MO-
GOMEA is coupled with a mutation operator, it can also solve LOTZ easily and
does so more efficiently than NSGA-II. For these three scalable benchmark problems,
the termination criterion of small populations shows no influence on MO-GOMEA
while it does result in small improvements for NSGA-II (the differences are found
to be statistically significant).

Section 3.5.2 shows that NSGA-II with a population of size 4 can solve all
Zeromax-Onemax and LOTZ problem instances more efficiently compared to MO-
GOMEA. In fact, for these two problems, NSGA-II does not need to employ any
solution recombination but only a mutation operator. NSGA-II simply needs to
run many generations and wait for the right bits to be flipped at the right time
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(inefficient) small populations
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Figure 3.16: Performance of MO-GOMEA and NSGA-II when terminating small populations on
scalable benchmark problems. Horizontal axis: Problem size. Vertical axis: The number of evalu-
ations until the whole Pareto-optimal front is obtained.

to obtain a Pareto-optimal solution. The population-sizing-free NSGA-II variant,
however, cannot solve Zeromax-Onemax nor LOTZ as efficiently as the original
NSGA-II. The population-sizing-free scheme that we employ here introduces too
many large populations for NSGA-II too quickly and all fitness evaluations are used
up before the meaningful mutation events occur.

MAXCUT & Knapsack

Figures 3.17 and 3.18 show the performance of MO-GOMEA and NSGA-II with and
without terminating inefficient populations on MAXCUT and knapsack respectively.
In almost all cases, the termination criterion improves (statistically) significantly the
performance of NSGA-II. This confirms the fact that when small populations are
inefficient for NSGA-II, they should be terminated as soon as possible so that fitness
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Figure 3.17: Average convergence performance of MO-GOMEA and NSGA-II when terminating
small populations on MAXCUT. Horizontal axis: number of evaluations (both objectives per
evaluation). Vertical axis: DPF →S .

evaluations would not be wasted on them. Additionally, Figures 3.17 and 3.18 show
again that base 2 is a better setting for NSGA-II than base 4. It was suggested
that smaller base values are more suitable for the parameter-less GA if it suffers
from the effects of genetic drift [29]. Diversity preservation is an important task
in multi-objective optimization, and the base-2 parameter-less scheme introduces
larger population sizes with more diverse candidate solutions at a faster rate than
the base-4 scheme. NSGA-II with base 2 coupled with the termination criterion
of small populations can get rid of small and inefficient populations and move to
sufficiently larger populations more quickly.

The termination criterion of small populations, however, shows little or insignifi-
cant influence on the performance of MO-GOMEA. This suggests that MO-GOMEA
can operate effectively with small populations and that indeed the shared use of the
elitist archive in all populations make terminating smaller, inefficient populations
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Figure 3.18: Average convergence performance of MO-GOMEA and NSGA-II when terminating
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unnecessary. What we observe here conforms with previous research on the scalabil-
ity of GOMEAs in single-objective optimization, in which GOMEAs generally have
minimally required population sizes that are much smaller than other population-
based EAs [12, 26].

3.9. Conclusions
We have presented the multi-objective GOMEA (MO-GOMEA). We have shown
that for the combination with the linkage tree model, superior scalability for solv-
ing different classes of MO optimization problems can be achieved as compared to
classic GAs (i.e. NSGA-II) and even state-of-the-art EDAs (i.e. mohBOA). Our ex-
perimental results further support that the key features of scalable MO optimizers
that we identified and incorporated into MO-GOMEA are indeed responsible for
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the observed performance. These features are: an elitist archive to keep track of
the non-dominated front, clustering to process different regions of the front differ-
ently, linkage learning and an efficient mechanism for exploiting the learned linkage
relations to generate offspring solutions.

Population clustering ensures that MO-GOMEA allocates an equal amount of
search effort to every region and the whole Pareto-optimal front can thus be evenly
approached. Especially the cluster-based operating mechanism of MO-GOMEA is
convenient for dedicated adaptations if different regions of the Pareto-optimal front
have different characteristics and thus require different strategies to exploit problem
structure effectively and efficiently. In the multi-objective knapsack benchmark (see
Sections 3.7 and 3.8), by clustering the working population, it is straightforward
to assign the multi-objective repair mechanism to the middle-region clusters and
the suitable single-objective repair mechanism to the corresponding extreme-region
cluster. Population clustering helps MO-GOMEA score on the diversity part of the
DPF →S performance indicator.

As each cluster of MO-GOMEA approaches a specific region of the Pareto-
optimal front, linkage learning captures problem-variable dependencies that are
relevant to that region. Following the structure of the linkage tree dedicatedly
learned from a cluster, the Gene-pool Optimal Mixing operator creates new can-
didate solutions by juxtaposing currently existing building blocks in a way that is
specifically suitable to that cluster. The genetic local search nature of Gene-pool
Optimal Mixing also ensures that an offspring is better or at least as good as its
parent solution. Linkage learning and Gene-pool Optimal Mixing together ensure
that the building blocks relevant to each cluster are detected and propagated to
ensure effective convergence toward the Pareto-optimal front, helping MO-GOMEA
score on the proximity part of the DPF →S performance indicator.

The combined effect of clustering the population and exploiting linkage infor-
mation results in the better performance for MO-GOMEA over other MOEAs.
We then made MO-GOMEA an easy-to-use solver by placing MO-GOMEA in a
population-sizing-free framework that eliminates the required setting of the popu-
lation size parameter, which is notoriously difficult for any population-based EA,
and the number-of-clusters parameter. As a consequence, users now only specify
how long the algorithm is allowed to run. Alternatively, MO-GOMEA can be used
as an anytime algorithm, i.e., the more time it runs, the better solutions would be
found, and it can be terminated when a satisfying solution is obtained. The pa-
rameter setting-free MO-GOMEA was shown to retain the scalability of the original
MO-GOMEA and to have excellent performance on a wide range of benchmark prob-
lems. The scalability and usability of MO-GOMEA suggest that MO-GOMEA is a
promising solver for tackling complicated (real-world) multi-objective optimization
problems. We look at the application of MO-GOMEA to solving the multi-objective
DNEP problem later in Chapter 6.
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4
Static Distribution Network

Expansion Planning

Meet driemaal eer gij eens snijdt.
Measure thrice, cut once.

Dutch proverb

This chapter tackles the Distribution Network Expansion Planning (DNEP) problem
that has to be solved by distribution network operators to decide which enhancements
to electricity networks should be introduced to satisfy the future power demands.
We consider three types of evolutionary algorithms (EAs) for optimizing expansion
plans: the classic Genetic Algorithm (GA), the Estimation-of-Distribution Algo-
rithm (EDA), and the Gene-pool Optimal Mixing Evolutionary Algorithm (GOMEA).
Not fully knowing the structure of the problem, we study the effect of linkage learning
through the use of three linkage models: univariate, marginal product, and linkage
tree. We furthermore experiment with the impact of incorporating different levels
of problem-specific knowledge in the variation operators. Based on experimental
results, we suggest that when selecting optimization algorithms for real-world ap-
plications like DNEP, EAs that have the ability to effectively model and efficiently
exploit problem structures, such as GOMEA, should be given priority, especially in
the case of black-box or grey-box optimization. The best performance is obtained
when both linkage information and problem-specific knowledge can be exploited.

Parts of this chapter have been presented at EA ’13 [1], PSCC ’14 [2], GECCO ’15 [3] and
published in [4].
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4. Static Distribution Network Expansion Planning

4.1. Introduction
Peak loads on distribution networks normally increase every year due to devel-
opments in residential and industrial electricity consumption. Consequently, the
magnitude of the power flows that are carried through network components (e.g.,
cables, transformers) to satisfy customers’ power demands will at some point exceed
the currently existing network capacity. In order for distribution networks to work
properly, distribution network operators (DNOs) have to ensure that the capacities
of network assets are sufficient to handle the magnitude of the required power flows.
Otherwise, bottlenecks can cause overloads, which heat up the cable wires. This
is detrimental to the normal operation and safety of the networks, and may cause
blackouts or earlier asset replacements. Therefore, DNOs need to perform distri-
bution network expansion planning (DNEP) to determine where on the networks
asset reinforcements should be made and what types of devices should be installed
there. The dynamic DNEP formulation also involves the question when those en-
hancement activities should be started during the planning period while in the static
DNEP formulation this time-dependent decision making issue is omitted. The static
DNEP problem is the focus of this chapter, and its dynamic version will be tackled
in Chapter 5. The goal of DNEP is to find the most economical expansion plan,
in terms of investment and/or operation costs, for which the network satisfies the
power demand over the planning period.

Evolutionary algorithms (EAs) have been widely applied and achieved practical
results in DNEP, see e.g., [5–8]. This is mostly due to the straightforward imple-
mentation and broad applicability of EAs. However, most DNEP studies in liter-
ature overlook several important issues when employing EAs. First, experiments
are usually conducted by using only one, arbitrarily chosen, EA with a customized
problem-specific variation operator (VO), omitting both questions why that spe-
cific EA should be chosen over other available EAs and what the advantages that
VO has compared to other alternatives. Second, the comparison of how effective
various constraint-handling mechanisms help the solvers traverse the search space
is often disregarded. In this chapter, while aiming to solve a formulation of the
DNEP problem that captures many important real-world considerations, we also
address these issues. We employ three EA solvers: a classic Genetic Algorithm
(GA), a Estimation-of-Distribution Algorithm (EDA), and a Gene-pool Optimal
Mixing Evolutionary Algorithm (GOMEA) [9, 10]. The GA is arguably the most
popular EA in DNEP literature, but it is rarely used out of the box in practice.
Practitioners often customize its VOs (i.e., crossover and mutation) with expert
and problem-specific knowledge (PSK) so that important problem structures are re-
spected during variation, e.g., cables in the same feeder group in the network should
be treated together when constructing new networks. Taking the perspective of
black-box optimization, where such PSK is assumed to be hardly available, linkage
learning (LL) can be performed to identify, during optimization, which variables
are inter-dependent and should thus be jointly considered when generating new so-
lutions. EDAs, such as BOA [11] or ECGA [12], are well-known examples of EAs
that build probabilistic models that exhibit a degree of variable dependency that
is aligned with variable linkage to effectively generate high-quality solutions. How-
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ever, large population sizes are often required so that probabilistic models can be
properly constructed. Building a high-order probabilistic model also introduces sig-
nificant additional computation time requirements. Being a recently-developed LL
EA, GOMEA focuses specifically on linkage, without estimating associated proba-
bility distributions, allowing higher-order models to be built much more efficiently.
GOMEA also has an efficient variation operator that exploits the learned linkage
model to create new solutions that are better or at least equal to existing solutions.
GOMEA has been shown to have superior performance and scalability on labora-
tory benchmarks and recently in power system optimization as well [1, 2]. Linkage
learning does not exclude the possibility of combining linkage knowledge with PSK
if available. In this chapter, we show how to combine the strength of LL with PSK
exploitation.

Population size parameter settings have big impacts on how effective and how
efficient problem instances are solved. Population sizes of EAs are often chosen
arbitrarily or are customized to the specific problem instance at hand in DNEP
literature [5–7]. Practitioners often need to manually try different population sizes
to figure out a suitable population size for each problem instance, which is both
time-consuming and difficult for comparing the performance of different EAs fairly.
This approach is also difficult to generalize to other applications. To get rid of
this troublesome parameter, the so-called parameter-less GA with a population-
sizing-free scheme was firstly proposed in [13]. A simplified implementation of this
scheme was then presented in [14, 15]. The population-sizing-free scheme (hereafter
referred to as the Harik-Lobo scheme in reference to the first authors), however, has
been mainly applied to unconstrained problems. Here, we adapt the Harik-Lobo
scheme in the context of DNEP, a highly constrained optimization problem. We
then also employ the adapted Harik-Lobo scheme as a framework for comparing the
performance of GA, EDA, and GOMEA.

The remainder of this chapter is organized as follows. Section 4.2 formulates the
DNEP problem. Section 4.3 presents the benchmark networks and our experiment
setup. Section 4.4 shows the benefit of employing PSK for population initialization
on the performance of different solvers. Section 4.5 presents how we adapt the Harik-
Lobo population-sizing-free scheme for the DNEP problem. Section 4.6 describes
how PSK can be used to design different variation operators and constraint-handling
techniques for EAs solving DNEP. The performance of GA, EDA, and GOMEA
in combination with different variation operators is also presented in Section 4.6.
Finally, Section 4.7 concludes the chapter.

4.2. Optimization problem formulation
In this thesis, distribution network modeling is based on the specifications for
medium voltage distribution (MV-D) networks in the Netherlands [2], which are
also common for other highly urbanized regions/countries. A typical MV-D network
contains lines/cables branching out of MV transmission substations (or HV/MV
transformer substations) connecting MV nodes (i.e., MV/LV transformer substa-
tions or MV customer substations) into distribution rings or mesh structures. Some
specific lines/cables, called normally open points (NOPs), are opened on one side
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Figure 4.1: An example MV distribution network. The three collections of cables having red,
green, and blue colors are three feeders.

and carry no power flow in normal operation. Therefore, the physical topology of
an MV-D network is a mesh grid but its operational topology is a radial grid. An
MV-D network consists of a number of feeders. The commonly used term feeder is
formally defined as follows. A feeder is a collection of lines/cables that corresponds
to a maximal subnetwork that does not contain any NOP or supply substation (i.e.,
a subtree). Normally, lines refer to overhead connections, and cables refers to un-
derground connections in the network. Here, without loss of generality, we consider
MV-D networks containing only underground cables, which are typically found in
urban areas. Figure 4.1 shows an example of an MV-D network.

Cables and MV/LV transformers are two typical types of assets in MV-D net-
works. They can be modeled by their equivalent impedances so that both can be
abstractly seen as branches in a network [16]. In this study, we focus on MV-D cables
as our main asset category but the inclusion of transformers can be done without
significant changes to the problem formulation. Each cable has a nominal capacity
that defines the maximum apparent power that it can carry. Increasingly higher
power demands require increasingly greater power flows, and bottlenecks happen
when any cable is overloaded. The network should be enhanced beforehand to avoid
such bottlenecks. Enhancement options consist of activities to increase the network
capacity: replacing legacy cables with higher-capacity cables, installing new cables
to connect neighboring distribution networks, or installing a new cable to connect
the MV transmission substation (or HV/MV transformer substation) with an MV
node [2]. Note that, within an MV distribution network, installing a new cable that
connects an MV transmission substation (or HV/MV transformer substation) with
an MV node results in a significant increase in network capacity, and is typically
preferable to installing a new cable that connects two MV nodes. Installations of
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new cables require additional placements of corresponding NOPs to keep the net-
work operating radially [2]. In the remainder of this section we define the variables,
objectives, and constraints that are required to define an optimization problem to
be solved that corresponds to making the best decision to expand a distribution
network.

4.2.1. Decision variables
Let le denote the number of currently existing cables in MV-D a network. Let lp
denote the number of potential cable connections (i.e., pairs of nodes that are not
directly connected at the moment but are eligible to become directly connected by
a cable in the planning horizon). As the possible cable connections are numerous,
expert knowledge should be applied here to disregard impractical or undesirable
cable connections, such as connections between distant nodes. Let l denote the
total number of branches (cable connections) to be considered in the optimization
process, i.e., l = le + lp. A distribution network can be represented as a vector of l
integer elements:

x = (x1, x2, . . . , xl), |xk| ∈ Ω(k) ∪ {0}, k ∈ {1, 2, . . . , l} (4.1)

where Ω(k) is the set of cable types that can be installed at the kth branch (Ω(k) ⊆
N). The value of xk indicates the status and the type of cable installed:

• xk = ID > 0: A cable of type ID ∈ Ω(k) is installed.

• xk = 0: No cable is installed at the kth branch.

• xk = −ID < 0: A cable of type ID ∈ Ω(k) is installed but is out of normal
operation. This is an NOP.

If x0 = (x0
1, x0

2, . . . , x0
l ) is the configuration of the currently existing network,

then each x0
k for which k corresponds to a potential branch is assigned the value 0.

Regarding the predicted annual peak load growth rate R, we calculate the peak load
profile for each year from the beginning year t0 until the final year of the planning
period thorizon. We can determine the year tX when the first bottleneck happens in
the current network, which is also the year that the first reinforcement activity is
needed. At the end of the planning period thorizon, all reinforcement activities in a
solution plan will have been carried out, resulting in the final network configuration.

For the static DNEP problem, in which the time of reinforcement is disregarded,
we assume that all reinforcement activities in the solution plan are implemented
at the same time in year tX . Any x 6= x0 can be seen as a candidate expansion
plan. The element-wise differences between x0 and x indicate which reinforcement
activities need to be carried out to transform the current network x0 into the final
network x (the new assets typically have equal or greater capacities than the old
ones). It is of interest to find the most economical x that satisfies the peak power
demand at the final year of the planning period thorizon.

4.2.2. Constraints
The following constraints must be satisfied for any candidate network to be consid-
ered feasible:
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1. Connectivity: For each consuming node (i.e., an MV/LV network substa-
tion or MV customer substation), there exists a path of concatenating cables
connecting that consuming node to an HV/MV supplying substation.

2. Power flow constraint: During normal operation, the voltage at each node
is within allowable ranges (i.e., 0.9∗V nom

i ≤ Vi ≤ 1.1∗V nom
i , i ∈ {1, 2, . . . , n})

and the magnitude of the power flow through each cable is within the nominal
capacity of the that cable (i.e., |Si| ≤ Snom

i , i ∈ {1, 2, . . . , l}).

3. Radiality constraint: In normal operation, the power demand of each node
is supplied by a single feed path.

4. Reconfigurability constraint: When an active cable (xk > 0) fails, the
part of the feeder group (from an HV/MV substation with circuit breaker to
an NOP) containing the failed cable is disconnected from the network. All
customers connected to that feeder group are then out of service. The DNO
has to bring the network back to operation by closing NOPs to temporarily
re-route the power flow through other paths while the failed cable is being
repaired. During this emergency situation, the radial operation constraint
can be compromised and the network is allowed to endure a mild overload of
130% nominal capacity (as in [2]). Figure 4.2 shows an example of the network
reconfigurability.

5. Substation capacity constraint: Each HV/MV substation has limited
physical space to install new outgoing cables. We assume that at most three
new outgoing cables are allowed for each HV/MV substation (as in [2]).
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Figure 4.2: An example of network reconfigurability. Cable 7-8 fails and is isolated for repair. The
NOP on cable 5-6 is then temporarily closed so that MV nodes 6 and 7 can be re-supplied through
a different path.

Constraints 1, 3, and 5 can be verified by checking the topology of the network
in each stage. Alternating-current (AC) power flow calculations (PFCs) [17] are
required to check constraints 2 and 4 for each solution plan. PFCs, which involve
solving AC power flow models, are computationally expensive and dominate the
computing time of the optimization process. Note that the simpler DC model is not
accurate enough for PFCs in distribution networks since the condition that branch
resistance is negligible compared to reactance ([18]) does not hold for distribution
networks. However, a complete verification of the reconfigurability constraint (i.e.,
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4.2. Optimization problem formulation

constraint 4), that requires an AC PFC to calculate the power flow for each failure
of an active cable in the network, is too cumbersome. Here, we employ the Line
Outage Distribution Factor (LODF [19]) method to verify this constraint. LODFs
provide rapid assessment of multiple branch outage impacts and require only one
(pre-contingency) PFC. LODFs in combination with an AC power flow were shown
to require much less computing time while having an acceptable accuracy for the
capacity evaluation of MV-D networks [19].

Note that PFCs can only be performed for connected networks. The connec-
tivity constraint is a crucial constraint because constraints 2 and 4 can only be
evaluated if the candidate network is connected. Therefore, if the network encoded
in a solution plan is unconnected, we do not evaluate other constraints but we quan-
tify its disconnectivity by comparing it with the topology of the existing network
x0. Specifically, we loop through all the decision variables and count the number
of positions where the existing network has a positive value (i.e., an active branch)
but the solution has a negative value (i.e., an NOP), or where the existing network
has a non-positive value (i.e., no cable connection or an NOP) and the solution
has a positive value. This number is considered to be the disconnectivity value.
Note that the case when a position in the existing network has a positive value and
that position in the candidate solution has value 0 does not exist because such a
case implies that an existing cable connection would be removed, which is gener-
ally undesirable according to network operators (see more details in Section 4.4).
Connected networks do not need this disconnectivity quantification and are assigned
the disconnectivity value 0. Intuitively, the disconnectivity quantification procedure
measures, in terms of cable connections, how an unconnected network differs from
the currently existing network (which has a connected topology). Disconnectivity
values can be employed when two unconnected networks need to be compared during
the optimization process because the other constraints cannot be evaluated. Figure
4.3 shows the pseudo-code for the disconnectivity quantification procedure.

DisconnectivityQuantification(x)
1 if CheckConnectivity(x) then
2 Return( 0 )
3 count← 0
4 for k ∈ {1, 2, . . . , l} do
5 if [x0

k > 0 and xk < 0] or [x0
k ≤ 0 and xk > 0] then

6 count← count + 1
7 Return(count)

Figure 4.3: Disconnnectivity Quantification

To deal with solutions that violate constraints, we will, as a basis, consider the
use of constraint domination [20]. Because we have a cascade of importance in the
constraints, we modify constraint domination slightly to work as follows. When
comparing two networks, if both networks are unconnected, the one with a smaller
disconnectivity value is the better one. If only one network is unconnected, then
the connected network is the better solution. If both networks are connected, they
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can then be compared by using the other evaluated constraint values and their
objective values. The network with smaller total constraint violation (constraints
2,3,4,5) is the better one. If both candidate networks are feasible (i.e., no constraint
violation), the one having smaller cost is preferred. Figure 4.4 shows the pseudo-
code for our implementation of constraint domination in DNEP. The total constraint
violation of a candidate network is taken as the aggregate of the amounts of violation
of constraints 2, 3, 4, and 5. The radiality constraint and the reconfigurability
constraint are evaluated as Boolean values, i.e., 1-value indicates the constraint is
satisfied while 0-value indicates the constraint is violated. More refined methods to
quantify DNEP constraint violations are worth further investigation but are outside
the scope of this work.

4.2.3. Objective function
We employ the annuity method [21] to calculate the capital expenditure CAPEX for
new assets. The investment cost on a new cable is converted into a series of uniform
annual payments, called annuities. We assume the length of this series to be equal
to the (uniform) economic lifetime of the new asset tlife. Since electric cables are
considered to be the main asset category in this thesis, we can also assume that the
economic lifetime of all new assets is tlife = 30 years. The annuity of a cable c with
the discount rate i = 4.5% (as in [2]) can be computed as:

Annuity(c) = P rice(c)×
i

1− (1 + i)−tlife
(4.2)

where P rice(c) is the acquisition cost for the new cable c, which depends on the
cable type and the length of that connection. CAPEX for cable c in year t can be
calculated as:

CAP EXcable(c, t) =

{

Annuity(c) if tinstc ≤ t < tinstc + tlife

0 else
(4.3)

with tinstc is the time of installing the cable c. Note that for static DNEP, tinstc =
tX , the year when the first bottleneck happens in the current network. Let C denote
the set of all new cables c’s that will be installed in the planning period [t0, thorizon].
The total CAPEX on the whole network in year t is defined as:

CAP EX(t) =
∑

c∈C

CAP EXcable(c, t) (4.4)

We want to minimize the net present value (NPV) (i.e., at time t0) of the in-
vestment cost over the planning period [t0, thorizon] with a discount rate i.

CAP EXNP V =

thorizon
∑

t=t0

CAP EX(t)

(1 + i)t−t0
(4.5)

The energy losses can be taken into account in the objective function as the
operational expenditure OPEX. The energy loss of the network in year t can be
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IsBetter(x, x′)
1 dq ← DisconnectivityQuantification(x)
2 dq′ ← DisconnectivityQuantification(x′)
3 if dq < dq′ then
4 Return (TRUE)
5 else if (dq > dq′ ≥ 0) or (dq = dq′ > 0) then
6 Return (FALSE)
7 else
8 con ← ConstraintViolationCalculation(x)
9 con′ ← ConstraintViolationCalculation(x′)

10 if con < con′ then
11 Return (TRUE)
12 else if (con > con′ ≥ 0) or (con = con′ > 0) then
13 Return (FALSE)
14 else
15 cost ← TotalCostCalculation(x)
16 cost′ ← TotalCostCalculation(x′)
17 if cost < cost′ then
18 Return (TRUE)
19 else
20 Return (FALSE)

ConstraintViolationCalculation(x)
// n: number of nodes; l: number of branches
// V = (V1, V2, . . . , Vn): vector of voltage at each node
// S = (S1, S2, . . . , Sl): vector of power flow through each branch
1 con← 0
2 V , S ← PowerFlowCalculation(x)
3 for i ∈ {1, 2, . . . , n} do
4 con← con + max(V min

i − Vi, Vi − V max
i , 0)

5 for i ∈ {1, 2, . . . , l} do
6 con← con + max(Si − Snom

i , 0)
7 if con > 0 then
8 con← con + 1
9 else

10 con← BooleanToInt(¬ReconfigurabilityCheck(x))
11 con← con + BooleanToInt(¬RadialityCheck(x))
12 for i ∈ {1, 2, . . . , n} do
13 con← con + max(NumberOfOutgoingCables(i)− 3, 0)
14 Return(con)

Figure 4.4: Constraint Domination for DNEP

estimated as in [2, 21, 22]:

Eloss(t) = Ppeak loss(t)× Tloss(t) (4.6)

where Ppeak loss(t) is the peak loss which can be obtained from the PFC regarding
the peak loads in year t. Tloss(t) is the service time of peak loss for year t, defined
by the area of the yearly loss profile [2, 21]. We here assume that Tloss(t) = 2000
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hours, which is a typically reasonable value for MV distribution networks in the
Netherlands [22]. Given the forecast electricity price in year t, we can capitalize the
energy loss and regard it as the OPEX in year t.

OP EX(t) = Eloss(t) ∗ P riceelectricity(t) (4.7)

In this thesis, we take the price of electricity for energy loss capitalization as 0.068
EUR/kWh during the planning period. We want to minimize the net present value
(NPV) (i.e., at time t0) of the total cost of both investment cost CAPEX and
operation cost OPEX during [t0, thorizon] with a discount rate i.

COSTNP V =

thorizon
∑

t=t0

CAP EX(t) + OP EX(t)

(1 + i)t−t0
(4.8)

The goal in static DNEP is to find the most economical solution plan that satisfies
the peak load profile at the final year of the planning period. While omitting the
installation time, static DNEP can still give DNOs a general picture about what
kinds of network reinforcements can be expected. However, the asset installation
time is required to calculate the NPV of the investment cost (see Equation 4.3).
Also, the operation cost OPEX, which is the capitalized energy loss, depends on the
peak load and the specific network configuration in each year (see Equation 4.6).
We employ the following method, which has been proposed in [2], to determine the
earliest possible installation time. Based on the (predicted) annual peak load growth
rate R, we compute the peak load profile for each year from the beginning year t0

until the final year thorizon. We determine the year tX when the first bottleneck
happens in the network. We then assume that all expansion options in the solution
plan are installed at the same time in year tX , i.e., tinst = tX for all new assets.
Therefore, to evaluate the total cost, from t0 until tX , we use the current network
topology, and from tX until thorizon we use the new network topology.

Note that, due to the long economic lifetime of electrical assets (i.e., 30 years in
this work), annuity payments can exceed the planning horizon thorizon. However,
because we focus on the planning period, only the costs incurred during [t0, thorizon]
are taken into account (as in Equations 4.5 and 4.8). Figure 4.5 illustrates the
concept.
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Figure 4.5: Net Present Value (NPV) of the total cost.

4.3. Experiment setup
4.3.1. Benchmark problems
We perform experiments on three benchmark networks of different sizes that rep-
resent real distribution networks of DNO Enexis in The Netherlands. Figure 4.6
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shows the current topologies of the three networks. More details about current
power demands, potential locations for installing new cables, and characteristics of
different cables types can be found in the Appendix. The overall sizes of these three
benchmarks are summarized in Table 4.1. The planning period consists of 30 years.

ID # Branches # Nodes # HV/MV # Cable
(Variables) Substations types

1 17 10 1 3
2 59 31 1 3
3 190 51 4 12

Table 4.1: Benchmark Network Size
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Figure 4.6: Three benchmark MV distribution networks with existing assets. Potential cable
connections can be found in the Appendix. Legends are explained in Figure 4.1.
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4.3.2. Optimization algorithms
We use evolutionary algorithms (EAs) to search for optimal expansion plans for
the three benchmark networks presented above, i.e., by optimizing Equation 4.8 as
a function of the variables in Equation 4.1, subject to the constraints in Section
4.2.2. To study the impact of different types of EA and different linkage models,
we combine three linkage/probabilistic models (i.e., univariate factorization (UF),
marginal product (MP), and linkage tree (LT)) with three EAs (i.e., GA, EDA,
and GOMEA) as described in Chapter 2 to create seven EA solvers: GA-UF, GA-
MP, EDA-UF, EDA-MP, GOMEA-UF, GOMEA-MP, and GOMEA-LT. Since all
these seven EA solvers have been made parameter-less by employing the Harik-Lobo
population-sizing-free scheme (see Section 2.4), we don’t need to set the population
size parameter for any solvers. For every benchmark network, each solver is run 30
times independently. In each run, the computing budget is given as the maximum
number of evaluations, which is 50,000 for Network 1, 100,000 for Network 2, and
1,000,000 for Network 3. Better solutions might be found by spending more comput-
ing time, but regarding the purpose of demonstration, these computational budgets
are reasonably adequate. The average convergence graphs of the elitist solutions
obtained during the optimization process from the beginning until termination are
used as a basis for assessing the performance of each solver. To support our con-
clusions from the experimental results, we perform statistical hypothesis testing. In
particular, we perform the Mann-Whitney-Wilcoxon statistical hypothesis test for
equality of medians with p < 0.05 to see whether the final result obtained by one
EA is statistically different from that of another EA.

4.4. Problem-specific population initialization
Normally, EAs can start with randomly initialized populations. However, because
DNEP is a highly-constrained engineering problem, randomly generated solutions
are typically infeasible and violate many constraints. Therefore, we use a repair
procedure that partially repairs infeasible solutions by comparing them with the
current, i.e., starting, network situation. First, each decision variable xk (i.e., a
network branch) can only receive a random non-negative value (i.e., we do not place
any NOPs yet) as long as it does not downgrade the currently existing cable. This
also means that currently existing cables can only be left intact or be replaced with
cables of higher capacities. Existing connections are rarely removed because cable
connection removals decrease network capacity. Solutions that are generated in this
way satisfy the connectivity constraint because the current network is connected.
Second, we go through HV/MV substations and check the number of cables branch-
ing out from each HV/MV substation. If the number of outgoing cables is more
than the allowable capacity of the substation (i.e., violating constraint 5), we ran-
domly delete outgoing cables until constraint 5 is satisfied. Third, we go through all
variables that have positive values (i.e., active cables) in a random order. For each
positive-value decision variable, we try to place an NOP on that cable by negating
its value. If the network is still connected, then the NOP can be placed; otherwise,
we undo the operation. This procedure returns a network of radial topology with
random placements of NOPs (i.e., constraint 3 is satisfied). We do not repair the
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power flow and reconfigurability constraints (i.e., constraints 2 and 4) because they
involve PFCs, which are computationally expensive. Figure 4.7 shows pseudo-code
for randomly generating a network solution, which can be used in the population
initialization phase.

DNEP::CreateRandomSolution()
// T = set of all cable types (including 0).
// x = (x1, x2, . . . , xl), |xk| ∈ Ω(k), k ∈ {1, 2, . . . , l}
1 x0 ← GetCurrentNetworkConfiguration()
2 for k ∈ {1, 2, . . . , l} do
3 Ω(k)← {ID ∈ T | capacity[ID] ≥ capacity[|x0

k|]}
4 xk ← Random(Ω(k))
5 x← RemoveRedundantConnections(x, x0)
6 x← RadializeNetwork(x)
7 Return(x)

RemoveRedundantConnections(x, x0)
// H = set of all HV/MV substations.
1 o← x

2 for s ∈ H do
3 Cs = {}
4 for k ∈ {1, 2, . . . , l} do
5 if IsOutgoingCable(k) and xk 6= 0 and x0

k = 0 then
6 s← GetSubstationIndexOfCable(k)
7 Cs ← Cs ∪ {k}
8 for s ∈ H do
9 if |Cs| > maxs then

10 π ← RandomPermutation({1, 2, . . . , |Cs|})
11 for i ∈ {1, 2, . . . , |Cs| −maxs} do
12 oπi ← 0
13 Return(o)

RadializeNetwork(x)
1 o← x

2 π ← RandomPermutation({1, 2, . . . , l})
3 for i ∈ {1, 2, . . . , l} do
4 if oπi > 0 then
5 oπi ← −oπi

6 if ¬CheckConnectivity(o) then
7 oπi ← xπi

8 Return(o)

Figure 4.7: Generating a distribution network configuration.

Figure 4.8 shows the influence of the above-mentioned problem-specific initial-
ization on the performance of seven different EA variants when solving DNEP for
Network 1. Figure 4.8 shows that, regardless of the optimization algorithms or
the employed linkage (or probabilistic) models, the problem-specific initialization
always brings about better convergence performance compared to random initial-
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Figure 4.8: Benchmarking the performance of GA (top left), EDA (top right), and GOMEA
(bottom) solving DNEP for Network 1 when employing the random initialization or a problem-
specific initialization.

ization. Because it is difficult for a fully random initialization to generate connected
(and radial) network topologies, starting from randomly-initialized populations, EAs
need more exploration to construct feasible topologies before the total cost objec-
tive function can be minimized. This can be seen from Figure 4.8 because the
convergence graphs only show objective values for feasible solutions. For randomly-
initialized EAs these graphs start at a later time (i.e., in terms of the number of
evaluations) compared to EAs with problem-specific initialization. On the other
hand, when being given initial populations of good candidate networks, which are
connected, radial and within the substation capacity, it is easier for EAs to locate
feasible regions in the search space, and then, the optimal solutions can be found by
using fewer number of evaluations. Because the DNEP-specific initialization scheme
(as presented in Figure 4.7) is beneficial to the performance of all solvers, it is used
in all the following DNEP experiments in this thesis.

4.5. Adaptations of the Harik-Lobo scheme and link-
age model selection for EAs solving DNEP

4.5.1. Adaptations of the Harik-Lobo scheme
For reasons of efficiency, the Harik-Lobo scheme terminates old populations of
smaller sizes when they converge or when they are shown to be inefficient in solving
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the problem instance at hand. If mutation is not employed, a converged popula-
tion, in which all individuals become identical, should be terminated because new
offspring cannot be generated any more. A smaller population Pi always spends the
same number of fitness evaluations (in case b = 2) or more (in case b > 2) than a
larger population Pi+1. Therefore, a smaller population is regarded as inefficient if
its average fitness is worse than the average fitness values of any larger population.
Such smaller and inefficient populations should be terminated as well. However, the
Harik-Lobo scheme has only been tested on unconstrained problems previously. For
constrained optimization problems like DNEP, it is difficult to compute and com-
pare average fitness values of different populations, especially when a population has
a mixture of both feasible and infeasible solutions. Therefore, we will benchmark
two variants of the Harik-Lobo scheme: the original scheme with the termination
of converged or inefficient (smaller) populations and the adapted scheme with the
termination of only converged populations.

We employ Network 3 (see Section 4.3 and the Appendix for more details) as the
benchmark network. We combine different linkage/probabilistic models with differ-
ent EAs to create seven solvers: GA-UF, GA-MP, EDA-UF, EDA-MP, GOMEA-UF,
GOMEA-MP, and GOMEA-LT (see Chapter 2). Each EA variant is run 30 times
separately with a computing budget of 1,000,000 evaluations in each run. Each EA
variant is put into the two variants of the Harik-Lobo scheme (both use the gener-
ation base b = 4 as in the original implementation of the Harik-Lobo scheme [13])
so that setting the population size parameter is not required. The average results
of the elitist solutions over 30 runs are shown in Figure 4.9.

Figure 4.9 shows that, for all GOMEA variants, there is no statistically significant
difference in performance of the original Harik-Lobo scheme and the adapted scheme.
On the other hand, for GAs and EDAs, regardless of the employed FOS models,
the variants with the adapted scheme always obtain better solutions within the
same computing budget. These differences are found to be statistically significant.
Because DNEP is a constrained optimization problem, comparing average fitness
values of populations containing both feasible and infeasible solutions might not be
informative to determine whether a population is inefficient in solving the problem
instance at hand. Besides, Figure 4.9 also indicates that, compared to GA and EDA,
GOMEA is the most consistent algorithm, obtaining the same results, regardless of
which population-sizing-free scheme is chosen. The experiment suggests that the
adapted Harik-Lobo scheme is the better population-sizing-free framework for EAs
solving our DNEP formulation. We will use the adapted Harik-Lobo scheme in all
following experiments.

The generation bases b = 2 and b = 4 are the two most widely-used bases in
the literature of the Harik-Lobo population-sizing-free scheme [13–15]. Here, we
benchmark the adapted Harik-Lobo scheme with both generation bases 2 and 4 to
understand which is the better setting for DNEP. We also conduct experiments with
seven EA variants on Network 3 as outlined above. Figure 4.10 shows the results.
The difference between b = 2 and b = 4 is negligible when GOMEA is the employed
optimizer together with the UF model or the MP model. For GOMEA-LT, the result
obtained when b = 4 is a little better than the result obtained when b = 2, and this
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Figure 4.9: Benchmarking the original Harik-Lobo population-sizing-free scheme and the adapted
scheme on solving DNEP for Network 3 by GA (top left), EDA (top right), and GOMEA (bottom).

difference is found to be statistically significant. For GAs and EDAs, the Harik-Lobo
scheme always has better performance when b = 4 than when b = 2 regardless of
the employed FOS model, and the differences are statistically significant. Therefore,
for all following experiments, we employ the adapted Harik-Lobo scheme with the
generation base b = 4 as the population-sizing-free framework for EAs solving our
DNEP formulation.

4.5.2. Linkage model selection
Figure 4.11 shows that all GOMEA variants, regardless of the chosen linkage mod-
els, always obtain solutions of (statistically significantly) better quality than those
found by all GA and EDA variants within the allowed computing budget. This con-
firms that the laboratory-benchmarked superior performance of the Gene-pool Op-
timal Mixing operator is retained when solving the real-world optimization DNEP.
GOMEA-UF and GOMEA-MP show no difference in their convergence behavior.
The big cardinality of each variable (i.e., much more than 2) causes the complexity
term in Equation 10 to be large and thus prohibits the merging of small linkage sets,
especially when population sizes are small. The learned MP FOS therefore contains
mostly univariate linkage sets, which are similar to the UF model. Figure 4.11 shows
that GA-MP performs slightly better than GA-UF while EDA-UF performs slightly
better than EDA-MP, and these differences are found to be statistically significant.
The fact that EDA-UF outperforms EDA-MP, GA-UF, and GA-MP suggests that
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Figure 4.10: Benchmarking the adapted population-sizing-free scheme with two generation bases
b = 2 and 4 on solving DNEP for Network 3 by GA (top left), EDA (top right), and GOMEA
(bottom).
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Figure 4.11: Performance of GA, EDA, and GOMEA when combined with the UF, MP, and LT
models on solving DNEP for Network 3. Error bars show the maximum and minimum values
of the Net Present Value of total cost. The adapted Harik-Lobo population-sizing-free scheme is
employed with the generation base b = 4 for all EA variants.

the objective function of our DNEP formulation resembles the function OneMax to
some degree, i.e., CAPEX is calculated as the sum of the investment cost of each
new asset and OPEX is computed as the sum of the capitalized energy loss of every
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asset. However, the DNEP constraints certainly cause dependencies to exist among
problem variables, e.g., the network cables must form a connected graph such that
all demand nodes can be served (the connectivity constraint), or there must exist
enough redundancies in the network so that it can be reconfigured when some failure
occurs (the reconfigurability constraint). These constraints are difficult and numer-
ous. Thus, it stands to reason that their imposition on the dependency structures of
the feasible space is substantial. However, as said, the marginal product model can
only capture dependencies to a very limited degree, and therefore its added value,
if any, compared to the univariate model, is also limited. The interactions between
problem constraints, objective function values, and the model building procedure
are worth further research but are outside the scope of this study.

Figure 4.11 shows that GOMEA-LT outperforms all other EA variants, and the
results are found to be statistically significant. We argue that the capability of the
LT to model different dependency levels at once, makes the LT much better suited
for the DNEP structure. For example, upgrading a cable in one region does not
affect the power flows through other cables in a different section of the distribution
network (i.e., independence in terms of power flows in normal situation), but those
separate cables can be reconfigured to be connected when a network failure happens
(i.e., inter-dependence in terms of reconfigurability).

Selecting the best FOS structure for each EA, in all following experiments, we
employ the MP model for GA, the UF model for EDA, and the LT model for
GOMEA.

4.6. Adaptations of variation operators
Being popularly applied in black-box optimization, EAs require little problem-
specific knowledge (PSK) and their variation operators (VOs) (i.e., procedures to
generate new offspring solutions) can operate on a wide range of problems. However,
in real-world applications like DNEP, the problems are often highly constrained such
that it is difficult for general-purpose VOs to traverse the search space of feasible
solutions efficiently. Efficiently traversing the space of feasible solutions is of high
importance because the evaluations of candidate solutions are typically computa-
tionally expensive. Full constraint evaluations of solution plans for DNEP involve
solving PFCs [17], which dominates the computing time of the optimization process.
Thus, it is beneficial to incorporate PSK into VOs of EAs as efficiency enhancement
methods. Local search heuristics can normally be used for efficiency enhancement,
but a typical operator like hillclimbing with some small neighborhood (e.g., 1/2/3-
opt local search) was not found to be helpful in improving the efficiency of EAs
solving our DNEP model because such local search often fails to reach expansion
options that include inter-dependent activities (e.g., adding new cables and NOPs
and relocating existing NOPs).

Among the constraints of DNEP, the connectivity constraint needs to be handled
separately because PFCs cannot be performed on unconnected networks and the
power flow constraint and reconfigurability constraint cannot be checked without
PFCs. Thus, in order to compare solution plans (e.g., when performing tournament
selection), we need to quantify their disconnectivity and use that as the comparison
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criterion or we have to repair the connectivity so that other constraints can be
evaluated. Here, we introduce different VOs for GA, EDA, and GOMEA along with
their corresponding connectivity constraint-handling techniques.

4.6.1. Disconnectivity quantification
A simple VO for EAs when solving our DNEP problem is to directly employ the
disconnectivity quantification procedure (see Section 4.2.2 and pseudo-code in Fig-
ure 4.3). At every recombination, model sampling, or mixing event, a new offspring
solution (or partially-new solution in case of GOMEA) is created and is evaluated
for its fitness value. The connectivity constraint is checked first, and only a con-
nected network solution is then evaluated for other constraints and objective value.
Candidate solutions can be compared by the connectivity-constraint domination
mechanism as presented in Section 4.2.2. We name this VO DQ1 as the solution
variation is performed only one time (compared with the VO DQ100 in the follow-
ing paragraph). DQ1 can be considered as an out-of-the-box VO of EAs because
it simply employs the disconnectivity qualification procedure, which is part of the
constraint evaluation itself. Apart from that, no other connectivity knowledge is
assumed when generating offspring solutions.

However, even if we recombine two connected parent networks, it is still difficult
for the crossover operator of GA or the model sampling of EDA to generate con-
nected offspring networks, especially for big networks with many cable connections.
Thus, we also propose a different VO, in which we allow each recombination of
two parent networks to retry crossover maximum 100 times to generate connected
offspring networks. Similarly, for EDA, we allow maximum 100 times of model
sampling to generate a connected networks before performing disconnectivity quan-
tification. For GOMEA, during the process of constructing an offspring, for each
mixing event, if the partially-altered solution is an unconnected network, we allow
it to randomly select a different donor for a maximum of 100 times. After 100 times
of solution variation (i.e., crossover in GA, model sampling in EDA, and mixing in
GOMEA), if the offspring networks are still unconnected, they will be evaluated
for the disconnectivity value with the disconnectivity quantification procedure as in
DQ1. We call this VO DQ100 as the solution variation is allowed 100 trials each
time an offspring solution is created (or a partially-altered solution in the case of
GOMEA). Figure 4.12 shows the pseudo-code for DQ100 with its corresponding
realization in GA, EDA and GOMEA.

4.6.2. Connectivity repair
Inspired by the Forced Improvement (FI) operator of GOMEA, in which solutions
that cannot be altered by GOM will be mixed with the elitist solution xelitist, we
propose a repair procedure to fix any unconnected network x by matching it with
the (overall) best-found-so-far solution xbest = xelitist. For each decision variable
k, if xbest

k > 0 and xk < 0, then xk ← −xk; if xbest
k > 0 and xk = 0, then

xk ← xbest
k . On the other hand, if xbest

k < 0 and xk > 0, then xk ← −xk; if
xbest

k = 0 and xk > 0, then xk ← 0. In other words, we try to transform the
topology of the unconnected network to the best solution’s topology. We call the
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GA::Recombine::DQ100(p0, p1)
1 o← Recombine(p0, p1); count← 1
2 while ¬CheckConnectivity(o) and count < 100 do
3 o← Recombine(p0, p1)
4 count← count + 1
5 Return(o)

EDA::SampleDistribution::DQ100()
1 o← SampleDistribution(); count← 1
2 while ¬CheckConnectivity(o) and count < 100 do
3 o← SampleDistribution()
4 count← count + 1
5 Return(o)

GOMEA::CopyValues::DQ100(x, d, F i)
1 o← CopyValues(x, d, F i); count← 1
2 while ¬CheckConnectivity(o) and count < 100 do
3 d′ ← Random({P1, P2, . . . , Pn})
4 o← CopyValues(x, d′, F i)
5 count← count + 1
6 Return(o)

Figure 4.12: Disconnnectivity Quantification DQ100

VO that uses this connectivity repair procedure CRB (i.e., Connectivty Repair by
the Best solution). Figure 4.13 shows the pseudo-code for the CRB scheme. CRB
can be straightforwardly employed by any EA.

ConnectivityRepairByBestSolution(x)
1 xbest ← GetCurrentBestNetworkConfiguration()
2 o← x

3 for k ∈ {1, 2, . . . , l} do
4 if xbest

k > 0 and xk < 0 then
5 ok ← −xk

6 else if xbest
k > 0 and xk = 0 then

7 ok ← xbest
k

8 else if xbest
k < 0 and xk > 0 then

9 ok ← −xk

10 else if xbest
k = 0 and xk > 0 then

11 ok ← 0
12 Return(o)

Figure 4.13: Connectivity Repair by the Best Solution.

We propose a second connectivity repair mechanism for unconnected offspring
networks by using the parent solution network. For GA, this VO is much like DQ100,
but after 100 trials, if the networks are still unconnected they will be reverted back to
the parent solutions. Because all the candidate solutions in the initial population are
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connected networks (due to our solution network generator as presented in Section
4.4), the use of this VO implies that only connected offspring solutions are allowed to
be evaluated and enter tournament selection. For GOMEA, in each mixing event,
if the partially-altered solution becomes unconnected, this is because there exist
some variables whose positive values are replaced by some non-positive values from
the donor. We can simply revert these decision variables to their backup values.
We call the VO that uses this connectivity repair scheme CRP (i.e., Connectivity
Repair by Parent). Note that we do not combine EDA with CRP because offspring
solutions in EDA do not have direct parent solutions like GA or GOMEA, but are
generated by sampling the learned probability distribution. Figure 4.14 shows the
pseudo-code for the realization of the CRP scheme in GA and GOMEA.

GA::ConnectivityRepairByParent(p0, p1)
1 o← GA::Recombine:DQ100(p0, p1)
2 if ¬CheckConnectivity(o) then
3 o← p0

4 Return(o)

GOMEA::CopyValues::ConnectivityRepairByParent(x, d, F i)
1 o← GOMEA::CopyValues(x, d, F i)
2 if ¬CheckConnectivity(o) then
3 for k ∈ F i do
4 if xk > 0 and ok ≤ 0 then
5 ok ← xk

6 Return(o)

Figure 4.14: Connectivity Repair by the Best Solution.

4.6.3. Branch exchanging
This VO aims to directly generate connected offspring networks by following the
principle that during the recombination of two connected networks p0 and p1, if
we bring a cable connection from p1 to p0 (i.e., p0

k ← p1
k, p0

k ≤ 0, p1
k > 0), we need

to bring the corresponding NOP (or a no-connection branch) from p1 to p0 as well
(i.e., p0

j ← p1
j , p0

j > 0, p1
j ≤ 0) and vice versa.

For GA, during the recombination of two parents p0 and p1, when we copy values
from p1 according to a linkage set F i in the FOS F (see Figure 2.2), for variables
whose values are both positive (i.e., both are active cables) or both non-positive
(i.e., no-connection branches or NOPs), we can copy as normal since these positions
have the same structures in both networks. For each variable index k where p0

k ≤ 0
and p1

k > 0 (or p0
k > 0 and p1

k ≤ 0), we need to find a different variable j where
p0

j > 0 and p1
j ≤ 0 (or p0

j ≤ 0 and p1
j > 0) such that copying values at variables

k and j from the network p1 still maintains the connectivity of the network p0.
If we cannot find such a variable j then we do not perform crossover at variable
index k. Note that while variable k belongs to the current linkage set F i, variable
j is searched for over the whole solution. Because the complicated connectivity
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CopyValues::BranchExchange(x, d, F i)
1 X← {k ∈ {1, 2, . . . , l} | (xk > 0 and dk > 0) or (xk ≤ 0 and dk ≤ 0)}
2 X′ ← {1, 2, . . . , l} \ X
3 Y← {k ∈ F i | (xk > 0 and dk > 0) or (xk ≤ 0 and dk ≤ 0)}
4 Y′ ← F i \ Y
5 o← x

6 for k ∈ Y do
7 ok ← dk

8 for k ∈ Y′ do
9 for j ∈ X′ \ {k} in a random order do

10 if (ok ≤ 0 and dj ≤ 0) or (ok > 0 and dj > 0) then
11 ok ← dk; oj ← dj

12 if CheckConnectivity(o) then
13 X′ ← X′ \ {k, j};Y′ ← Y′ \ {k, j}
14 break for
15 else
16 ok ← xk; oj ← xj

17 Return(o)

Figure 4.15: Branch Exchange.

structure might not be entirely captured by linkage learning, an active cable and its
corresponding NOP might not always reside in the same linkage set F i.

For GOMEA, in each mixing event, this procedure works similarly for the current
solution o and a donor d and we need to search for the variable j when ok ≤ 0 and
dk > 0 (or ok > 0 and dk ≤ 0). Also, we only need to maintain the connectivity of the
current solution. Similar to the CRP procedure, we do not employ branch exchange
for EDA because EDA does not create offspring solutions by directly exchanging
values between parent solutions but by sampling the probability distribution instead.
This VO is problem-specific because it employs connectivity knowledge of DNEP
when generating new offspring. We call this VO BX (i.e., branch exchanging).
Figure 4.15 shows the pseudo-code for the realization of BX in GA and GOMEA.

Originally, GOMEAs do not have mutation operators by default. We here exper-
iment with a DNEP-specific mutation. After every mixing event with a linkage set,
but before the evaluation of the partially-altered solution, we go through every vari-
able in the linkage set and perform a mutation with probability 1/l (l is the length
of the solution). The mutated values must have the same sign as the original values
so that the connectivity and radiality of the network are still maintained. We call
the branch exchanging VO with this mutation operator BX-M. We will experiment
with the combination of GA and BX-M as well.

We note that in literature the branch exchange algorithm exists [23]. This algo-
rithm is similar to our BX operator in the idea of constructing connected and radial
networks but is different in the purpose of its usage. In [23], the branch exchange
algorithm is an optimization algorithm for DNEP to construct the expansion plan
that optimizes the concerned objective. In this thesis, BX is an adaptation for the
variation operators of GOMEA and GA to generate new connected and radial net-
works, while optimization itself is handled at a higher level, i.e., by GOMEA or
GA.
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4.6.4. Experimental results
Figure 4.16 shows the performance of GA, EDA and GOMEA integrated with dif-
ferent VOs solving the static DNEP. For Network 1 (see Figure 4.16a), almost all
EA variants (except EDA-CRB) exhibit the same effectiveness in obtaining (near-)
optimal solutions. After spending a certain number of evaluations, most solvers have
similar convergence until termination. For Network 2 (see Figure 4.16b), GOMEA-
BX(-M) performs slightly better than other EA variants, and the difference is found
to be statistically significant. EDA-CRB is the worst optimizer when solving Net-
works 1 and 2. However, on small networks, although these differences between EA
variants and between different VOs are statistically significant, they are practically
negligible (e.g., differences of about 1,000-3,000 EUR for a planning period of 30
years).

In contrast, Figure 4.16c shows that, when solving DNEP for a larger network,
the performance gaps between different EA variants are considerable. For Network
3, GA-DQ1 is outperformed by all other EA variants. Even though our EDA imple-
mentation here employs the UF model, EDA-DQ1 has a (statistically significantly)
better performance than GA-DQ1, which suggests that the UF model sampling
might be more effective than the MP model-based crossover operator (see Section
4.5.2). While also assuming no connectivity knowledge, within the same number of
evaluations, GOMEA-DQ1 outperforms both GA-DQ1 and EDA-DQ1, and obtains
solution plans of much better quality. On average, the expansion plans obtained
by GOMEA-DQ1 costs about 150,000-280,000 EUR less than those obtained by
GA-DQ1 and EDA-DQ1. These differences are found to be statistically significant.
DQ100 gives GA multiple trials of recombination to generate new connected net-
works, and that indeed helps GA improve its performance significantly (but still
worse than GOMEA-DQ1 in terms of the quality of obtained solutions at termina-
tion). DQ100 induces some small improvements for EDA-DQ1, but the differences
are not statistically significant.

While the connectivity repair VOs CRP and CRB significantly enhance the ef-
fectiveness and efficiency of GA, they do not show any improvement over GOMEA-
DQ1. For GOMEA, repairing by parent solutions (CRP) are (statistically signifi-
cantly) better than repairing by the best solutions (CRB). GOMEA-CRB actually
has the worst convergence behavior among all GOMEA variants, and even GOMEA-
DQ1 can significantly outperform GOMEA-CRB. This can be because it is difficult
for general-purpose VOs to generate connected networks and keeping matching un-
connected offspring networks with the slowly-changing best topology reduces the
beneficial diversity in the population, making the algorithm prone to premature
convergence.
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Figure 4.16: Results of computational experiments for static DNEP. Horizontal axis: number of evaluations. Vertical axis: Net Present Value (NPV)
of total cost (EUR). Error bars show the maximum and minimum values of the NPV of total cost CAPEX+OPEX.
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4.7. Conclusions

Solving the issue of maintaining connectivity and radiality, the VO BX brings
out significant improvements in efficiency for GA and GOMEA when solving DNEP.
GA-BX has excellent performance, obtaining significantly better solutions than GA-
DQ1. BX also has positive impacts on GOMEA but the size of the effect is much
less substantial than on GA. The results here suggest two conclusions. First, DNEP
problem-specific VOs are crucial for GAs, to efficiently solve (larger) real-world
networks. Second, GOMEA is the more robust solver, which can be used out-of-the-
box and still obtain solutions of good quality close to those found by EAs customized
with problem-dedicated VOs (i.e., comparing GOMEA-DQ1 in leftmost graphs with
GA-BX and GOMEA-BX in rightmost graphs in Figure 4.16c). GOMEA-DQ1 is
even found to obtain results that are statistically significantly better than those
found by GA-BX.

The DNEP mutation operator has no influence over GOMEA-BX, but results
in a statistically significant improvement for GA-BX. GA-BX-M, however, is still
outperformed by GOMEA-BX(-M). On average, the expansion plans obtained by
GOMEA-BX(-M) cost about 30,000 EUR less than the plans obtained by GA-BX-
M at termination. Statistical tests support that the quality of expansion plans for
Network 3 obtained by GOMEA-BX(-M) are significantly better than those obtained
by all other EA variants. Thus, GOMEA-BX(-M) is the best solver in this test case
(i.e., the fastest solver given the budget of evaluations used in our experiments).

4.7. Conclusions
This chapter contributes guidelines and methodologies for the application of EAs in
tackling the real-world optimization DNEP. First, we formulated the DNEP prob-
lem, its feasibility constraints, and the objective cost function in a way that the
obtained results would be practically relevant while the problem model is compu-
tationally feasible. Second, we suggested practitioners to employ population-sizing-
free schemes to get rid of the notoriously-difficult-to-set population size parameter
when using EAs. Third, we introduced multiple variation operators that can be em-
ployed by EAs solving DNEP and showed their impact on the performance of three
typical EAs: the classic GA, an EDA, and the GOMEA, which is capable of learning
and exploiting hierarchical linkage relations. Fourth, we compared the performance
of these EA solvers in tackling the DNEP problem by performing experiments with
real distribution network data. GOMEA is shown to be a far more robust solver
for solving DNEP on our benchmark networks. Using the same number of solution
evaluations as GA and EDA, GOMEA obtains better results, even when assuming
a minimal amount of problem-specific knowledge (PSK). Adding PSK to GOMEA
improves performance but the improvement gap, for a fixed budget of evaluations, is
much less substantial than that for classic GA, which again confirms the usefulness
of GOMEA and linkage learning (LL) to detect problem structure. As the problem
size increases, LL is of great importance to ascertain efficient scalability of EAs.
Lastly, based on our results, we suggest that LL EAs, like GOMEA, should be given
priority when selecting EAs for solving DNEP.
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5
Dynamic Distribution

Network Expansion Planning

Twee vliegen in één klap slaan.
Two flies in one hit.

Dutch proverb

This chapter addresses the dynamic distribution network expansion planning (DNEP)
problem, which involves the questions which, where, and when enhancements to elec-
tricity networks should be introduced to satisfy future power demands. Due to the
time-dependent decision making factors, the dynamic DNEP problem cannot read-
ily be tackled with available solvers that have been designed for the static planning
case. Here, we propose a decomposition heuristic that can determine asset installa-
tion schedules for static expansion plans so that available solvers can be employed
without deteriorating their performance. Besides electric cable reinforcements, in
this chapter, we also consider the scenario in which battery energy storage systems
(BESS) can be used by distribution network operators as an alternative to solve ca-
pacity bottlenecks. Experimental results demonstrate that mixtures of both traditional
cable reinforcements and BESS can be more cost-effective than installing solely new
cable connections.

Parts of this chapter have been presented at GECCO ’15 [1] and published in [2].
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5.1. Introduction
Static distribution network expansion planning (DNEP) provides distribution net-
work operators (DNOs) with the general picture of a network configuration that
satisfies the peak power demand at the planning horizon. In other words, the static
DNEP formulation addresses the questions where network enhancements should be
made and what kinds of components should be installed there so that the network
is still feasible in the final year of the planning period. However, to construct more
detailed expansion plans with asset installation schedules, the dynamic version of
the DNEP problem needs to be solved. The dynamic DNEP formulation involves
the question when each network reinforcement activity should be started while in
the static DNEP formulation this time-dependent decision making issue is omit-
ted. Solving the dynamic DNEP problem is more difficult than the static version
because of the presence of the time factor. It is not trivial to design an efficient
model that captures both physical assets and the investment time. It is also not
trivial to modify available solvers for static planning (e.g., those presented in Chap-
ter 4) to properly and efficiently handle the temporal dimension. A different, and
popular, alternative is to model the network configuration in every year during the
planning period. In other words, the status in each year of each network location,
where network reinforcements can take place, is a decision variable. With this en-
coding, available solvers in Chapter 4 can be employed without major modifications.
However, because the number of decision variables increases considerably (i.e., the
number of network components times the number of years in concern), a much larger
number of solution evaluations is required for convergence or, at least, before any
acceptable expansion plan is obtained. Furthermore, to check the feasibility of a
dynamic expansion plan, power flow calculations (PFCs) need to be performed for
the network configuration in every year during the planning period, instead of just
the final year as in static DNEP. Dynamic DNEP with such a model is, therefore,
inefficient and the required computing time might be prohibitively long. In this
chapter, we argue that such a model contains a lot of redundancies because the
capacity of a distribution network does not necessarily have to change every year.
Therefore, it would be beneficial to design a method that allows expansion plans
to be evaluated in a dynamic manner but allows the solution encoding to remain
similar to the static codification so that the number of decision variables remains
the same. We propose a heuristic that can be used during the optimization process
to decompose static expansion plans into dynamic ones. Consequently, available
solvers for static planning can be employed to solve the dynamic DNEP problem
without compromising on their efficiency.

Besides the normal load growth, DNOs need to take into account the ubiquitous
emergence of electric vehicles (EVs [3, 4]) and distributed generation (DG [5, 6])
technologies, which have big impacts on the sufficiency of the network capacity. For
example, uncontrolled EV charging or unexpected surplus of DG power injection can
considerably steepen the peak power consumption/production. The magnitudes
of peak loads are very high but their periods are much shorter compared to the
lower base loads. Therefore, instead of continuously installing/upgrading network
cables to catch up with developments in peak loads, it might be more beneficial if
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DNOs can employ smart grid alternatives to flatten the load profile. The option
of demand side management [7], which incentivizes consumers to shift their flexible
power consumption from peak hours to off-peak hours, is considered in Chapter 6.
In this chapter, we investigate the option of battery energy storage systems (BESS)
[8], which perform charging during off-peak hours or during times of surplus of DG
power injection and discharging during peak hours. Note that we do not optimize
the operation of storage systems in this thesis but we focus on their peak-shaving
effects as an expansion alternative for DNOs. To solve potential bottlenecks due to
peak load developments, DNOs can perform traditional cable enhancements as usual
to increase the network capacity. On the other hand, we assume that DNOs can
construct storage systems to bring peak loads within the current network capacity
and costly new cable installations can, therefore, be postponed. The result of solving
the dynamic DNEP problem with BESS is to find the optimal mixture of both cable
reinforcements and storage systems during the planning period.

The remainder of this chapter is organized as follows. Section 5.2 presents the
decomposition heuristic for the dynamic DNEP and its performance when combined
with different evolutionary algorithm variants. Section 5.3 shows how battery stor-
age systems can be modeled into the dynamic DNEP problem as expansion options
like traditional electric cables. Experimental results in Section 5.3 show mixtures of
cable reinforcements and storage installations that result from running our optimizer
on a benchmark network in different scenarios of storage system prices. Section 5.4
gives some further discussion. Finally, section 5.5 concludes the chapter.

5.2. Dynamic DNEP by decomposition heuristic
5.2.1. Network configuration representation
Similar to Chapter 4, let l denote the total number of branches (cable connections)
that can be considered in the optimization process (i.e., both existing cables and
potential cable connections). While an expansion plan in the static DNEP problem
can be represented by using only the network configuration in the horizon year (as
in Chapter 4), a dynamic expansion plan requires information about the network
configuration in every year during the planning period. Therefore, the network
configuration from the beginning year t0 until (and including) the final year thorizon

can be represented as an ny× l matrix X where ny = thorizon− t0 +1 is the number
of years. Let Ω(k) denote the set of cable types that can be installed at branch k.
Each entry xt

k of X, where t0 ≤ t ≤ thorizon and 1 ≤ k ≤ l, indicates the status of
branch k in year t as:

• xt
k = ID > 0: Active cable. A cable of type ID ∈ Ω(k) is installed at branch

k.

• xt
k = 0: No cable connection. There is no cable at branch k.

• xt
k = −ID < 0: A normally-open point (NOP). A cable of type ID ∈ Ω(k)

is installed at branch k but is out of normal operation.

The first row of X, x0 = (x0
1, x0

2, . . . , x0
l ), is the vector representing the currently

existing network. The last row of X, xhorizon = (xhorizon
1 , xhorizon

2 , . . . , xhorizon
nl

), is
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the vector indicating the network configuration at the final year thorizon. With this
matrix encoding or other codifications with similar complexity, which is a common
representation for dynamic planning in the literature [9–11], all the year-by-year
changes in the network can be represented. However, in real-world DNEP, a network
does not change frequently nor arbitrarily, given the current practice of DNOs,
which is as follows. First, DNOs may replace a legacy cable with a new cable of
higher capacity but DNOs do not completely remove an existing cable connection
because such removals will reduce network capacity. Second, network cables (as
our main asset category in this study) have very long lifetimes (about 30 years)
while planning horizons of a too distant future can be regarded as impractical due
to prohibitively high degrees of uncertainties in load growths and the emergence of
new technologies. These facts suggest that, during a practical planning period (in
this thesis, we assume a planning period ≤ 30 years), a network branch requires
reinforcement at most once. Expansion activities such as installing a thin cable
first and then replacing it with a higher-capacity cable are regarded as impractical
because construction costs are typically very high. Because each entry xt

k of X

corresponds with a decision variable in the optimization process, the matrix encoding
thus contains a lot of redundancy. Instead, we can compare xhorizon with x0 to
know what new asset installations are required (i.e., if xhorizon

k 6= x0
k). To find the

asset installation schedule (i.e., the installation time of each new asset), we use the
following decomposition heuristic.

5.2.2. Decomposition heuristic for dynamic DNEP
Given a forecast growth rate R of the peak power consumption, the current network
x0, and a feasible candidate static plan x (which is assumed to be a network con-
figuration in the horizon year x = xhorizon), we derive an installation schedule for
new assets in x in two phases.

In the first phase, based on R, we determine the first year tX when the cur-
rent network becomes infeasible (i.e., when any operation constraint is violated, see
Section 4.2.2). Then, we create the base installation schedule by assuming all new
assets are installed at the same time in the year tX . We evaluate the objective value
(e.g., the total cost) of this base schedule (see Section 4.2).

In the second phase, we loop repeatedly through the list of all new assets in a
random order. We create a new schedule by delaying the installation of an asset a by
one year. We evaluate the feasibility and the objective value of this new schedule.
If the new schedule is feasible and its corresponding objective value (e.g., total
cost) is better than the previous schedule, we then accept that postponement and
a can be considered for another postponement again in a next loop. Otherwise, the
installation of that asset a cannot be delayed any further. We continue this checking
for postponement until no asset can be postponed any more. Finally, we obtain a
detailed year-by-year installation schedule for all new assets in an expansion plan
and the concerned objective can be evaluated accordingly. We are argue that, based
on the real-world practice of distribution network reinforcement in which a network
branch generally requires enhancement at most once during a reasonable planning
period (i.e., ≤ 30 years), this decomposition mechanism is sufficient for solving
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dynamic planning. The codification and the solvers proposed for the static DNEP
problem in Chapter 4 can be employed here to model and to solve the dynamic
DNEP problem. The only modification is that the candidate solution evaluation in
Chapter 4 is replaced by the decomposition heuristic so that an installation schedule
of each feasible candidate solution is obtained and its corresponding costs can be
calculated accordingly.

We note that the decomposition heuristic that we use in this study is different
from the decomposition algorithm that was proposed in [12]. The decomposition
algorithm in [12] divides a multi-year DNEP into multiple one-year DNEPs, where
each one-year DNEP can be solved independently, and the asset installations of these
sub-problems are coordinated through so-called “forward/backward procedures” in
a recursive manner [12]. The decomposition algorithm in [12] can be seen as a
framework to perform multiple single-year DNEPs and to synthesize the obtained
results. Our decomposition heuristic is also different from the common 2-phase
approach in dynamic DNEP (e.g., as in [13]). The 2-phase approach divides the
optimization process into two separate phases: 1) solving the static DNEP to find the
optimal network configuration in the horizon year; 2) determining the installation
schedule for the new assets obtained in phase 1. In this thesis, the decomposition
heuristic is a procedure that is embedded into the multi-year optimization process.
During the optimization process, we evaluate different network configurations x’s,
and each one is assumed to be a candidate network configuration in the horizon year
x = xhorizon. For each x, the decomposition heuristic is used to derive an asset
installation schedule of that network configuration so that its investment cost or its
total cost (see Section 4.2.3) can be calculated accordingly. In other words, with
our approach, optimization considers installation schedules directly.

5.2.3. Experimental results
Experiment setup
We evaluate the effectiveness of the proposed decomposition heuristic in transform-
ing solvers for static planning into dynamic DNEP solvers via computational ex-
periments. In Chapter 4, we have proposed three solvers GA, EDA, and GOMEA
in combination with six variation operators (VOs) DQ1, DQ100, RB, RP, BX, and
BX-M for the static DNEP problem. In this chapter, we employ the same EA
variants and only modify their objective evaluation function such that the decom-
position heuristic is used to determine the installation schedule for each feasible
static plan, from which the dynamic total cost can be calculated accordingly. We
also employ the same three distribution networks as in Chapter 4 as our benchmark
networks here. The planning period for Networks 1 and 2 is still 30 years. Due
to long computation time when PFCs for large networks need to be computed, we
limit the planning period of Network 3 (i.e., the largest network in this study) to
10 years. For each benchmark network and variation operator, each EA is run 30
times independently. In each run, the maximum number of evaluations is 50,000
for Network 1, 100,000 for Network 2, and 1,000,000 for Network 3. Note that each
solution evaluation includes checking the feasibility of the network configurations of
that solution in every year during the planning period.
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Figure 5.1: Results of computational experiments for dynamic DNEP. Horizontal axis: number of evaluations. Vertical axis: Net Present Value
(NPV) of total cost (EUR). Error bars show the maximum and minimum values of the NPV of total cost CAPEX+OPEX.
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5.3. Dynamic DNEP with energy storage systems

Results
The average convergence graphs of the obtained elitist solutions during the opti-
mization process (from the beginning until termination) are used as the basis for
assessing the performance of the solvers. Figure 5.1 shows the convergence per-
formance of GAs, EDAs and GOMEAs solving dynamic DNEP. We perform the
Mann-Whitney-Wilcoxon statistical hypothesis test for equality of medians with
p < 0.05 to see whether the final result obtained by one EA is statistically different
from that of another EA. The general performances of all EA variants are simi-
lar to those observed in the case of static DNEP, suggesting that the use of the
decomposition heuristic does not introduce additional complexity to the problem.
For Networks 1 and 2 (see Figure 5.1a and 5.1b), the differences in the quality of
solutions obtained by different EA variants are either statistically insignificant or
practically negligible.

For Network 3, Figure 5.1c shows that GOMEA-DQ1 significantly outperforms
both EDA-DQ1 and GA-DQ1. Even when only the simplest VO DQ1 is used,
GOMEA can still obtain solutions of high quality, which are practically close to
the ones found by the DNEP problem-specific EAs, i.e., GA-BX(-M) and GOMEA-
BX(-M). The VO BX, which maintains the connectivity and radiality of offspring
networks during solution recombination, is again shown to be the best VO, resulting
in (statistically significantly) better performance when combined with both GA and
GOMEA. In general, the more domain knowledge is well incorporated into variation
operators, the better the performance of EAs. However, the improvement gaps that
this problem-specific VO brings about for GOMEA-DQ1 (on average about 7,000
EUR) are not as substantial as for GA-DQ1 (on average about 14,000 EUR). For
dynamic DNEP, BX-M (branch exchange with mutation) induces some small im-
provements for both GA-BX and GOMEA-BX, in which the differences are found
to be statistically significant. GOMEA-BX-M is the overall best solver in this ex-
periment, which (statistically significantly) outperforms other EA variants. While
it might not be necessary for GOMEA solving many laboratory benchmarks, mu-
tation can still be beneficial when tackling real-world problems because the linkage
structure is not always the only or the most important structure to be exploited.

5.3. Dynamic DNEP with energy storage systems
In transition toward the future horizon of sustainable energy with smart grid tech-
nologies, network capacity expansion should not be limited to traditional physical
asset reinforcements (e.g., electric cables, transformers). DNOs can make use of
smart grid technologies to (in)directly reduce the magnitude of peak loads on the
network so that the currently available network capacity would suffice for the cor-
responding power flow. Such peak shaving effects can be achieved, for instance, by
employing battery energy storage systems (BESS) to charge during off-peak hours
and then to discharge during peak hours. The operation of storage systems, how-
ever, is not the focus of this thesis and we thus abstract away from this. From the
expansion planning perspective, we pursue the questions: what is the optimal mix-
ture of electric cables and storage systems to solve capacity bottleneck problems,
and when, and where should each reinforcement activity be carried out.
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5.3.1. Storage system representation
In this thesis, we assume that battery storage systems can be installed at suit-
able substations in a distribution network, usually connected to the LV side of an
MV/LV transformer. Compared to the lifetime electric cables, a BESS normally has
a shorter lifetime. We also assume that battery storage systems are (re)movable,
i.e., a BESS can be relocated among substations or even to a different networks, and
its capacity can increase/decrease. Therefore, during the planning period, the status
of a BESS can change multiple times rather than at most once, like electric cables.
Instead of employing the static representation with the decomposition heuristic,
each substation in the network where storage systems can be installed therefore
requires a specific decision variable for each year during the planning period. How-
ever, similar to electric cables, we only consider storage system installations for the
period from the first infeasible year tX until (and including) thorizon, i.e., a total
of ny = thorizon − tX + 1 years. Let S be the set of substations that are suitable
for the installation of BESS, and ns = |S|. We can represent the status of storage
systems in a distribution network over ny years as a vector of ny × ns non-negative
integer elements.

y = (y1
s1

, y2
s1

, . . . , yny
s1

, y1
s2

, y2
s2

, . . . , yny
s2

, . . . , y1
s|S|

, y2
s|S|

, . . . , yny
s|S|

)

yt
s ∈ S ∪ {0}, s ∈ S, t = 1, 2, . . . , ny

(5.1)

where yt
s represents the storage type that is installed at the substation s ∈ S in year

t. S is the set of available storage types, and yt
s = 0 indicates that no storage is

installed at the substation s in the year t.
A solution s of the DNEP problem with BESS for a distribution network over a

planning period consists of the cable configuration xhorizon in the final year and the
storage configuration y. For the sake of convenience in representation, we shorten
xhorizon as x.

s = (x, y) = (x1, x2, . . . , xl, y1
s1

, . . . , yny
s1

, y1
s2

, . . . , yny
s2

, . . . , y1
s|S|

, . . . , yny
s|S|

) (5.2)

The total number of decision variables is then L = l + ny × ns. An installation
schedule of new electric cables in x is determined by the installation decomposition
approach. The storage configuration y indicates whether and what type of storage
is installed at each suitable substation in each year.

5.3.2. Solution evaluation
Constraint evaluation
For an MV-D network of n nodes (i.e., substations), the vector of peak active power
demand at each node in year t is:

P t = (P
t,st

i
1 , P

t,st
i

2 , . . . , P
t,st

i
n ) (5.3)

The accompanying vector of peak reactive power demand is:

Qt = (Q
t,st

i
1 , Q

t,st
i

2 , . . . , Q
t,st

i
n ) (5.4)
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Let P
t,st

i
i and Q

t,st
i

i be the peak active power demand and the peak reactive power
demand at node i in year t. If node i is not suitable for storage installation or

there is no storage installed at node i in year t, then st
i = 0; we have P

t,st
i

i = P t,0
i

and Q
t,st

i

i = Qt,0
i , which are the normal peak power demands when no peak-shaving

technology is employed. If a BESS is installed at node i in year t, i.e., st
i > 0,

we have P
t,st

i

i < P t,0
i and Q

t,st
i

i < Qt,0
i due to the peak-shaving effect. Because this

thesis focuses on optimization methodologies for DNEP, we treat P t and Qt as input
data. By employing scenario-based load modeling techniques, DNEP practitioners
can propose several plausible scenarios and estimate the corresponding load profile.
Interested readers can refer to the literature, e.g., network impacts under electric
vehicle charging [3, 14], residential demand response [15], or distributed generation
[6, 16].

To assess the feasibility of an expansion plan s = (x, y) for the dynamic DNEP
problem, we need to evaluate the cable configuration x against the peak power
demand P t, Qt in each year t during the planning period, taking into account the
peak-shaving effect of storage system y. Note that the cable configuration in each
year t is determined by the decomposition heuristic. The solution codification in
Equation 5.2 enables the capacity of each storage, in principle, to vary on an annual
basis (i.e., from year to year). It is also possible to extend t into a stage of multiple
years, where each stage covers a period of at most 5 years and at least 3 years.
The decomposition heuristic will then try to delay each cable installation by one
stage of multiple years at a time. New cables and storage systems of a stage are
assumed to be installed at the first year of that stage. Network feasibility in a stage,
however, is evaluated against the peak power demand of the final year in that stage.
Because peak loads normally increase monotonically and the network configuration
does not change during a stage, if the network capacity is sufficient at the final year
of that stage, feasibility should also hold for previous years of the stage. Such a
stage-by-stage planning approach is beneficial to the computing budget since the
computationally expensive PFCs are only required at the final years of each stage
rather than at every year. In this section, we employ the stage-by-stage planning
approach.

Objective evaluation
Although we perform stage-by-stage planning, the investment cost CAPEX can still
be calculated in a year-by-year formulation by the annuity payment scheme. The
annuity for a BESS of type b ∈ S with a discount rate i = 4.5% is:

Annuity(b) = P rice(b)×
i

1− (1 + i)−tb
life

(5.5)

where tb
life = 10 years is the economic lifetime of all storage systems in this study.

P rice(b) is the acquisition cost (including construction cost) of a BESS of type b,
which can be defined as:

P rice(b) = Capacity(b)× CkW h (5.6)
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Theoretically, a BESS can be constructed up to any desired capacity by assembling
multiple batteries. However, for the sake of simplicity, we constrain the capacity
of each BESS to three options: type 1 (500 kWh), type 2 (1000 kWh), and type 3
(1500 kWh). These capacities are also reasonable regarding the normal capacities
of MV/LV transformers. CkW h is similar to the marginal cost of increasing the
capacity of the battery storage by 1 kWh.

Because we assume that the battery storage systems are movable, it is possible
that a BESS is installed at a stage in the network, but it can be relocated to a
different network in the next stage. The CAPEX of that BESS accounts for only
the years in which the storage is present in the network. CAPEX for the BESS at
a substation s ∈ S in a year t can be calculated as:

CAP EXstorage(s, t) =

{

Annuity(yt
s) if yt

s > 0
0 if yt

s = 0
(5.7)

The CAPEX for new cable installations can be calculated as in Equation 4.3 of
Chapter 4. The total CAPEX in a year t over the whole network is defined as:

CAP EX(t) =
∑

new cable c in
[t0, thorizon]

CAP EXcable(c, t) +
∑

s∈S

CAP EXstorage(s, t) (5.8)

We minimize the net present value (NPV) of the total CAPEX over the planning
period with a discount rate i:

CAP EXNP V =

thorizon
∑

t=tX

CAP EX(t)

(1 + i)t−t0
(5.9)

Energy losses can be taken into account as operational expenditure OPEX, sim-
ilar to Equation 4.7 in Chapter 4. Energy losses in year t consist of energy loss on
electric cables and energy loss of storage systems.

Eloss(t) = Ecable loss(t) +
∑

s∈S

Estorage loss(s, t)

= Ppeak loss(t)× Tloss(t) +
∑

s∈S

Estorage loss(s, t)
(5.10)

where Ppeak loss(t) is the peak loss which can be obtained from the PFC regarding
the peak loads in year t. Note that the service time Tloss(t) here depends on the
shape of the yearly load profile under the peak-shaving effects of the battery storage
systems present in the network in year t. In this thesis, we also treat Tloss(t) and
the annual energy losses of storage systems Estorage loss(s, t) as input data, which
are device-specific and can be modeled by DNEP practitioners. As we conduct
the dynamic planning on a stage-by-stage basis, we only need to perform PFCs for
the final year of each stage and obtain the accurate value of peak loss on cables
Ppeak loss(t) in that year. For the remaining years in the same stage, cable peak
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losses can be estimated by taking the assumption that the peak loss has a growth
rate related to the load growth rate R as follows [17]:

Ppeak loss(t) = Ppeak loss(t− 1)× (1 + R)2 (5.11)

We would like to find the expansion plan that minimizes the net present value
(NPV) of the total cost CAPEX+OPEX over the planning period with a discount
rate i:

COSTNP V =

thorizon
∑

t=tX

CAP EX(t) + OP EX(t)

(1 + i)t−t0
(5.12)

5.3.3. Experiment setup
Benchmark network
We employ the MV-D Network 2 from Chapter 4 as the benchmark network. How-
ever, for the purpose of DNEP with battery storage systems, we have some adap-
tations as follows. All the cables in the current configuration are assumed to be a
type-2 cable (i.e., 150mm2 − 295A). Since the type-2 cable is relatively new, we
also assume that cable replacements are not necessary, and only new cable connec-
tion installations are allowed. The set of MV cable types from which new cable
installations can be chosen is {2, 3} = {150mm2, 240mm2}.

The peak load scenario is estimated for the planning period 2015-2040, taking
into account the increasing presence of electric vehicles, like in [3, 14]. The existing
peak power demand is assumed to have an annual growth rate of R = 1%. Each
year in the planning period is numbered from 0 (i.e., year 2015) to 25 (i.e., year
2040). Without any expansion activities, the current network capacity will become
infeasible in the 3rd year, i.e., tX = 3. The remaining period is divided into five
stages as: S1 = [3 − 5], S2 = [6 − 10], S3 = [11− 15], S4 = [16− 20], S5 = [21 − 25].
The set of BESS types from which new storage installations can be chosen is S =
{1, 2, 3} ≡ {500kWh, 1000kWh, 1500kWh}. Due to uncertainties about the actual
price of storage systems in the future, we propose four scenarios of the marginal
BESS cost CkW h = 1, 5, 10, and 20 EUR/kWh. Note that these (fictive) prices are
much lower than the current actual construction costs of BESS (e.g., see [18]) since
it is an on-going research technology. If we use the current BESS prices, which are
quite expensive, the most economical expansion plan will only consist of traditional
electric cable installations. Besides, our considered prices can be justified if subsidies
are taken into account. The peak-shaving effect of BESS is modeled by employing
a scenario-based peak load modeling technique [14, 16] while considering a BESS
pilot project of DNO Enexis [19].

Optimization algorithm
We employ GOMEA-BX-M to solve DNEP with BESS for the benchmark network
because GOMEA-BX-M has been shown to be the best solver in previous exper-
iments in this thesis. We consider two cases for optimization: 1) minimizing the
investment cost CAPEX (i.e., Equation 5.9), and 2) minimizing the total cost that
combines both the investment cost CAPEX and the capitalized energy losses OPEX

125



5. Dynamic Distribution Network Expansion Planning

(i.e., Equation 5.12). In each case, we set up one scenario where no BESS is used
(i.e., the traditional DNEP) and four scenarios with different BESS prices: 1, 5, 10,
and 20 EUR/kWh. For every scenario, we run GOMEA-BX-M 10 times indepen-
dently with the computing budget of 500000 solution evaluations in each run. The
adapted Harik-Lobo scheme (see Chapter 4) is employed so that we do not need to
set the population size for the solver. The best expansion plans obtained in each
scenario are presented in the following sections.

5.3.4. DNEP with only cable expansions

a) Excluding energy losses b) Including energy losses
NPV CAPEX: 74499.58 EUR NPV CAPEX+OPEX: 348001.17 EUR
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Figure 5.2: Best expansion plans found for the dynamic DNEP with only electric cable installations.
a) Minimizing NPV investment cost CAPEX; b) Minimizing NPV total cost CAPEX+OPEX.

Figure 5.2 shows the two best found expansion plans when using GOMEA-BX-M
to solve the dynamic DNEP problem for the benchmark network above in two cases:
a) minimizing CAPEX, and b) minimizing the total cost of CAPEX and OPEX.
In both cases, the effect of the decomposition heuristic can be seen: the required
cable installations are scheduled over the entire planning period. When optimizing
for only the investment cost CAPEX, the solution in Figure 5.2a indicates that we
can firstly install a new cable connection of type 2 in branch 1-26 to solve the first
bottleneck. This reinforcement provides the network with enough capacity until the
3rd stage (i.e., years 11-15), when another cable connection of type 3 needs to be
newly installed in branch 1-4. The new network capacity is sufficient until the 4th
stage (i.e., years 16-20), and we need to enhance the network capacity again with a
new cable connection of type 2 in branch 1-22. It can be seen that new cables are
installed to solve the capacity problem when bottlenecks happen on the network.

On the other hand, when we capitalize energy losses as the operational cost
OPEX and include that into the objective function, the best found expansion plan,
as in Figure 5.2b, indicates that two new cable connections in branches 1-7 and 1-25
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5.3. Dynamic DNEP with energy storage systems

should be added in the first stage. In the second stage, another cable connection
should be installed in the branch 1-20. All new cable installations are carried out
with cable type 3, which is the highest-quality cable type in this experiment. Net-
work reinforcements in this case are not only for solving capacity bottlenecks but
mainly for reduction of energy losses, since cable type 3 suffers less losses than cable
type 2. Comparing the two expansion plans in Figures 5.2 and their corresponding
costs shows that, within the planning period, the OPEX dominates the total cost
function. Thanks to the annuity scheme, the acquisition cost of each asset does not
need to be wholly paid at once but can be divided into equal payments during the
economic lifetime of that asset. Electric cables have long economic lifetimes which
can exceed most practical planning periods, which are usually not more than 30
years. Some asset payments, therefore, will be beyond the planning horizon while
the CAPEX is formulated to be computed up to the final year of the planning pe-
riod. This explains why the OPEX has a much bigger impact on the total cost
within a fixed planning period. Even though cable type 3 is more expensive than
cable type 2, the reduction in energy losses can offset the increase in CAPEX.

5.3.5. DNEP with storage systems
As smart grid alternatives, and energy storage systems in particular, are on-going
technologies, their implementations and prices can vary considerably, which makes
it difficult for a DNEP practitioner to design network enhancement strategies. The
methodology and optimization technique presented in this chapter can be used by
practitioners to investigate different scenarios. While the obtained expansion plans
might not be the concrete implementation, they can be used as a good basis for
reference and further developments.

Minimizing CAPEX

Figrue 5.3 shows the best found expansion plans for solving DNEP without energy
losses on the benchmark network in four scenarios with different BESS prices: 1,
5, 10, and 20 EUR/kWh. In all four scenarios, the obtained solutions are different
combinations of cable and storage system installations, where their associated total
investment costs are more economical than using only cable options. The com-
position of each expansion plan depends on the storage price in its corresponding
scenario. In general, when storage prices are favorable, it is more cost-effective to
employ BESS to reduce peak loads and the magnitudes of power flows will then be
brought back within the network’s asset capacities.

For the purpose of demonstration, we analyze the result obtained at the storage
price of 1 EUR/kWh. It can be seen in Figure 5.3a, that new cable installations are
not necessary at the first infeasible year as in the traditional case (see Figure 5.2a).
Instead, storage systems of type 1 (i.e., 500 kWh) are installed at four different sub-
stations in the network. The first cable expansion is then deferred until the second
stage. Due to such cable expansion, the network capacity increases considerably, and
as a result, no storage system is required at this stage. Because we employ BESS as
storage options and we assume that the batteries are movable, it can be understood
that the storage systems installed in the previous stage can be relocated to be used
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a) 1 EUR/kWh b) 5 EUR/kWh
NPV CAPEX: 54882.19 EUR NPV CAPEX: 64163.81 EUR

11

2

3

4

5

6

7

8 9 10

12

13

14

15

16

17

18 20 21 22

23

24

25

26

27

28

29

30

19

31

1

X X XX X X

S4

3

S2 S3 S4S1 S5

21

Storage

S2 S3 S4S1 S5

1 1 2

Storage

S2

3

S5

2

S2 S3 S4S1 S5

21

Storage

S2 S3 S4S1 S5

1 1

Storage

S2 S3 S4S1 S5

1 1 2

Storage

S2 S3 S4S1 S5

1

Storage
S2 S3 S4S1 S5

11 3

Storage

S2 S3 S4S1 S5

11 2

Storage

11

2

3

4

5

6

7

8 9 10

12

13

14

15

16

17

18 20 21 22

23

24

25

26

27

28

29

30

19

31

1

X X XX X X

S2

3

S2 S3 S4S1 S5

1

Storage

S2 S3 S4S1 S5

2 11 1

Storage

S5

2

S3

3

S2 S3 S4S1 S5

1

Storage

S2 S3 S4S1 S5

11

Storage

c) 10 EUR/kWh d) 20 EUR/kWh
NPV CAPEX: 70536.64 EUR NPV CAPEX: 74440.28 EUR
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Figure 5.3: Optimal expansion plans of minimized NPV CAPEX for the dynamic DNEP with
battery energy storage systems (BESS) in four scenarios of BESS prices: a) 1 EUR/kWh, b) 5
EUR/kWh, c) 10 EUR/kWh, and d) 20 EUR/kWh.

in other different distribution networks, and their associating annuity payments are
not included in the CAPEX of this network anymore. In the third stage, instead
of performing the second cable reinforcement as in Figure 5.2a, storage systems are
again preferable and widely employed while the new cable installation is postponed
until the 4th stage. In the 4th and 5th stages, we can observe the presence of both
cable expansions and storage systems. This is due to several factors: 1) annual
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peak loads of the last years of the planning period are usually higher than previous
years; 2) the cost of installing new cables in the branches of short distances (i.e.,
1-4 and 1-15) is quite low; 3) the annuity payment scheme excludes a large part of
the acquisition costs of the assets installed in the last stage from the CAPEX of our
concerned planning period. Figure 5.3 shows the trend that as the price of BESS
increases, its usage becomes less economically attractive while traditional cable ex-
pansions are then carried out sooner. For example, at the most expensive storage
price of 20 EUR/kWh in this study (see Figure 5.3d), the best found expansion
plan employs only a small-scaled BESS in the 4th stage, and overall, it does not
considerably differ from the scenario of using only cable expansions.

Minimizing CAPEX+OPEX
We perform similar experiments as in the above section again but with a new objec-
tive function that consists of capital expenditures (CAPEX) and monetized energy
losses (OPEX). Energy losses in this case are calculated from both losses over cables
and losses of storage systems. Interestingly, the best found solution in all scenarios
of storage prices is the same expansion plan that was obtained when we only con-
sidered traditional cable installations, i.e., no storage system is installed. Figure 5.2
and our analysis in Section 5.3.4 show that installing three new cable connections
with the higher-quality cable type (i.e., type 3) provides enough capacity during the
whole planning period and considerably reduces energy losses. Consequently, it is
not necessary to install any storage system since the capacity bottleneck has been
removed. Besides, due to the annuity payment scheme, the OPEX dominates the
total cost function of the planning period and it is thus cost-effective to invest in
cable capacity as early as possible to reduce energy losses. Note that the result here
pertains to this specific benchmark network and the formulated BESS types. Per-
forming optimization on different distribution networks with different inputs (e.g.,
peak-load profile, cable and storage types, asset prices) will yield different expansion
plans.

5.4. Further discussions
DNEP practitioners can design different possible optimization scenarios, e.g., which
cable types can be used, including/excluding energy losses, with/without smart grid
devices, or how much storage systems cost. For each scenario, GOMEA, and specif-
ically GOMEA-BX-M, can be used to find a high-quality solution corresponding to
the input parameters. However, our experimental results also indicate a limitation
of single-objective optimization when trying to find the optimal solution for two ob-
jectives at the same time that are very different in their nature (i.e., investment cost
and energy losses). Because single-objective optimization techniques optimize for a
single objective, the two objectives must be aggregated into a single cost function.
To do so, we need to capitalize the non-financial term energy losses as the opera-
tional cost (OPEX) before combining it with the investment cost (CAPEX). This
is based on assumptions about energy prices in the future, which might fluctuate
during the planning period. In this experiment, when the OPEX dominates the
cost function, the solver yields the solution that chooses to heavily invest in electric
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cables to minimize energy losses. Energy loss is an important issue that should not
be excluded when performing DNEP, but it might not be the deciding factor in
selecting a concrete expansion plan to be carried out. Single-objective optimization
techniques normally return a single solution with a minimized lump sum cost where
the contribution of each constituent is not explicit to DNEP practitioners. Instead,
practitioners might want to consider a number of different alternatives that explic-
itly show the trade-off between CAPEX and OPEX before finalizing any plan. To
this end, true multi-objective optimization methods are required that are scalable
and also customizable for the DNEP problem. In Chapters 3 and 6 we focus on
such methods.

5.5. Conclusions
This chapter contributed guidelines for modeling and tackling the dynamic dis-
tribution network expansion planning problem (DNEP). We observed that during
practical planning periods (i.e., normally not more than 30 years) each traditional as-
set, such as long-lifetime electric cables, requires reinforcement/installation at most
once. We then proposed a decomposition heuristic that enables available static plan-
ning solvers to tackle the dynamic DNEP without considerably increasing problem
complexity. Experimental results demonstrated that with the decomposition heuris-
tic, EA variants that we proposed previously (i.e., GA, EDA, and GOMEA with
different variation operators as in Chapter 4) can solve the dynamic DNEP problem
while still retaining their general performance as in the static planning case. The
linkage learning EA GOMEA with the problem-specific branch exchange operator
with mutation (i.e., GOMEA-BX-M) was again shown to be the best optimizer.

We also considered battery energy storage systems (BESS) as an expansion op-
tion for the dynamic DNEP problem. Different from electric cables, a BESS nor-
mally has a shorter lifetime and its configuration can change multiple times during
the planning period. Therefore, in DNEP, we used a dynamic formulation to in-
corporate BESS and the static formulation in combination with the decomposition
heuristic for cable installations. We then performed a demonstration of tackling
the dynamic DNEP with BESS on a selected benchmark network by employing
the solver GOMEA-BX-M (the best found EA solver in previous sections). Due to
uncertainty in BESS prices in the future, we proposed different scenarios of BESS
costs and performed experiments for each scenario. Results demonstrated that ex-
pansion plans with mixtures of both electric cables and BESS are more economical
than using exclusively cable options. BESS was shown to be a smart grid alterna-
tive that can be used by distribution network operators (DNOs) to defer expensive
electric cable installations. The methodology presented in this chapter is a highly
customizable expansion planning tool that can be used by DNOs to assist their
decision making process. Lastly, this chapter also pointed out intrinsic limitations
of single-objective optimization techniques when dealing with multiple conflicting
objectives at the same time. We indicated, therefore, the necessity for the design
and application of multi-objective optimization algorithms, which is the focus of
Chapters 3 and 6, respectively.
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6
Multi-Objective Dynamic

Distribution Network
Expansion Planning with

Demand Side Management

Wat de boer aan het koren verliest, zal hij aan het spek wel terugvinden.
When the corn decreases, the pig increases.

Dutch proverb

In distribution network expansion planning (DNEP) for future smart grids with
renewable energy sources, demand side management (DSM) plays a crucial role.
In this chapter, we incorporate the possibility for distribution network operators
(DNOs) to employ DSM possibilities besides traditional asset investments. We con-
sider a dynamic planning version of the DNEP problem as well as optimizing for
multiple conflicting real-world objectives simultaneously. To this end, we use and
extend the multi-objective Gene-pool Optimal Mixing Evolutionary Algorithm (MO-
GOMEA). The found results provide a wide range of alternative solutions that rep-
resent efficient trade-offs between multiple criteria. From these alternatives, DNOs
can obtain valuable insights and make well-informed decisions in the design and
expansion of their networks. For example, it can be observed how various DSM
options can defer costly new asset installations, how much network reliability must
be compromised if DNOs pursue economical expansion plans, or the size of required
asset investments to improve network energy efficiency.

Parts of this chapter have been presented at PES-GM ’15 [1] and submitted for a book chapter
contribution [2].
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6.1. Introduction

6.1.1. Asset investment & demand side management
In the transition toward smart grids and renewable energy integration, distribu-
tion network operators (DNOs) face many challenges when tackling the distribution
network expansion planning (DNEP) problem [3–6]). Traditionally, DNOs need to
ensure that their network assets (e.g., cables, transformers) have enough capacity to
support the required power flows that satisfy the power demands, especially in the
worst-case scenario of peak loads. Situations of insufficient capacity can lead to over-
loads on network assets, which are harmful to network safety (e.g., cable failures)
and the continuity of electricity supply (e.g., blackouts, or load shedding). However,
constructions of new facilities become increasingly expensive such that expansion
plans like installing new underground cables in highly-urbanized cities are often not
favorable. Moreover, peak loads can become high but last for short duration com-
pared to the lower base loads of much longer periods. This is even more the case
with the future increase of renewable energy sources. This fact means that if DNOs
invest in physical assets just to satisfy (higher) peak loads, their networks will be
severely underutilized for most of the time. Such overcapacity is uneconomic and
undesirable. In this chapter, we assume that, in future sustainable energy systems,
DNOs are allowed to directly be involved in demand side management (DSM [7–10])
activities so that consumers are incentivized to reduce their electricity consumption
during peak-demand hours. The overall peak loads on the distribution network can
then be brought toward or within the nominal capacities of network assets, aiming
at avoiding overloads of network assets. DNOs can thus reduce or postpone costly
physical investments in network capacity [9]. Therefore, in this scenario, DNOs
have two different options to deal with the increasing load growth: network rein-
forcements or DSM contribution options. DSM options can be considered as part of
operation cost of DNOs as we assume that consumers are financially compensated
for changing their behaviors to reduce peak loads.

6.1.2. Single-objective & multi-objective optimization
Beside investment costs, DNOs need to take into account other factors when solving
DNEP, e.g., energy losses and electricity supply interruptions. Traditionally, ex-
pansion plans of low investment costs are often favored but, in transition toward a
sustainable energy future, energy-efficient systems should be considered because of
the increasing importance of environmental issues. It is also reported that outages
due to faults on medium-voltage distribution networks have the largest contribution
to the total System Average Interruption Duration Index (SAIDI) [11]. Such in-
dex reflects the reliability of the networks and also customer satisfaction, which are
important for DNOs to pay attention to, especially in deregulated energy markets.

It can be seen that in order to draw out an appropriate solution plan for DNEP,
DNOs have to consider many criteria, such as asset investment cost, DSM contri-
bution cost, energy loss, and network reliability. One common approach to tackle
this multi-criteria problem is to capitalize and aggregate all criteria into a single
objective cost function [3]. Available single-objective (SO) optimization algorithms
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can then be employed to minimize this integral cost. With this approach, DNOs
are however limited to focus only on the financial perspective. Because SO opti-
mizations can only return solutions of minimum cost, they cannot consider other
alternatives if they would like to recognize what kinds of compromise on environ-
mental issues and network reliability would need to be made for carrying out the
cheapest expansion plan. Furthermore, it is not always possible to monetize non-
financial terms in a sensible way. For example, conversion of the energy losses of an
expansion plan into money requires assumptions about energy prices in the distant
future and, in addition, the importance of the environment is hard to monetize.
Similarly, capitalization of network reliability requires assumptions about penalty
amounts that DNOs pay to consumers when electricity supply interruptions hap-
pen due to network failures. These assumptions are very likely to fluctuate during
a long-term planning period and are difficult to be determined at the beginning.
Moreover, it can be argued that even if a monetary conversion is possible, the loss
of direct insights into the actual non-monetary objective values and the trade-offs
is undesirable. Instead of the aggregation approach by capitalization, we therefore
argue that it is more beneficial to keep these criteria separately and treat them as
different objectives when solving DNEP.

These objectives are often conflicting with each other. For example, focusing
on investment cost reductions often results in lossy and less reliable systems [3].
Another example is the choice of asset installations or DSM contributions or some
combinations of both of them to deal with peak load growth. Delaying assets in-
stallations (i.e., reducing investment costs) requires higher contributions of DNOs
to DSM options (i.e., increasing operation costs) to keep peak loads within assets’
nominal capacities. In financial terms, both are costs for DNOs, but in essence, they
are two conflicting directions: physical asset investments versus intangible invest-
ments (i.e., DSM policies). An ideal solution that optimizes all these objectives at
the same time does not exist. Instead, there exists a set of so-called Pareto-optimal
solutions [12] which are optimal in the sense that no solution can be improved on
some objective without diminishing other objectives. So, they can be seen as op-
timal trade-off alternatives. By inspecting and comparing these trade-offs, DNOs
can get insights in multiple aspects when making decisions and subsequently choose
the Pareto-optimal solution that they prefer. For example, DNOs can immediately
see how much energy will be lost during the planning period in case of the lowest-
cost solutions and what the trade-offs between losses and cost are. DNOs may also
recognize how many (extra) new assets must be installed to (further) improve the
network reliability. It is beneficial if DNOs are exposed to these alternatives before
choosing a concrete expansion plan.

6.1.3. Multi-objective optimization algorithms
Classical approaches

Earlier approaches to find multiple alternatives in MO optimization share the same
working mechanism: 1) using a conversion procedure to change the MO optimiza-
tion problem (MOOP) instance at hand to some SO optimization problem (SOOP)
instance, 2) employing an available SO algorithm to solve that SOOP instance to
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obtain one solution, 3) updating the conversion procedure with new conversion pa-
rameters, 4) going back to step 1 to begin a new optimization round with a new
SOOP instance, or stop if having obtained enough solutions [12]. Two popular
conversion procedures are: the weighted sum method and the ǫ-constraint method
[12, 13]. The weighted sum method scales each objective with a coefficient and then
adds all the scaled objectives into a composite objective function [12]. The con-
version parameters of the weighted sum method are the coefficients. The weighted
sum method cannot reach solutions on concave parts (if these exist) of the Pareto-
optimal front [12, 14]. The ǫ-constraint method keeps one objective as the master
objective and converts other objectives into problem constraints by employing an
ǫ vector as upper bounds for the other objective functions [12]. The conversion
parameters of ǫ-constraint method are the selection of master objective and and the
ǫ vector. These classical approaches are time-consuming and inconvenient because
multiple optimization processes must be executed [13]. It can be difficult for prac-
titioners to properly choose good conversion parameters in order to obtain a good
non-dominated front, which are problem-dependent and are often obtained from in-
depth analysis. In modern MO optimizations, it is preferred that algorithms require
parameter inputs from users as little as possible and are able to return a set of mul-
tiple non-dominated solutions in a single optimization run that well-approximates
the Pareto-optimal front [12]. Applications of MO optimization in power and en-
ergy literature are currently indeed gradually evolving from classical approaches
[15, 16] with single-objective reformulation to true multi-objective approaches [13],
especially multi-objective evolutionary algorithms.

Multi-objective evolutionary algorithms
Evolutionary algorithms (EAs) have been shown to be a favorable methodology for
industrial optimization due to their relative ease of implementation and excellent
results for many applications. Moreover, EAs are population-based algorithms, in
which a population of different candidate solutions are maintained and evolved. This
makes EAs well-suited to meet the requirement of obtaining a diverse set of trade-
off solutions in MO optimization [12]. Two exemplary multi-objective evolutionary
algorithms (MOEAs), Non-dominated Sorting Genetic Algorithm II (NSGA-II [17])
and Strength Pareto Evolutionary Algorithm 2 (SPEA2 [18]) have found their ap-
plications in numerous power system planning and operation problems [3, 19–22].
However, theoretical research in MO optimization [23] pointed out the main draw-
back of classical MOEAs (e.g., NSGA-II and SPEA2), namely scalability. An MOEA
is regarded to be scalable if it can maintain its effectiveness and efficiency when the
problem size increases, resulting in acceptable, i.e., low-order polynomial, increasing
runtimes. In the context of DNEP, scalability requires that a good set of trade-off
expansion plans for large networks can be obtained by MOEAs within a reasonable
amount of computing time. MOEA literature [23–26] pinpoints essential components
to construct such scalable MOEAs. Following these design guidelines, in Chapter
3, we developed the multi-objective Gene-pool Optimal Mixing Evolutionary Al-
gorithm (MO-GOMEA). MO-GOMEA was found to have superior performance in
solving laboratory benchmarks and to have very promising results when solving
the real-world static DNEP problem [1] compared to the classical MOEA NSGA-II.
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Therefore, we choose the MO-GOMEA to tackle the multi-objective dynamic DNEP
problem.

6.1.4. Our contributions
In this chapter, we consider the dynamic DNEP problem with multiple objectives
(MO-DNEP). We incorporate the future options for DSM as an additional invest-
ment action for DNOs. We present efficient trade-off solutions for this MO-DNEP
problem and discuss their implications on DNEP decision making. We will show
that MO-GOMEA can be employed to assist DNOs in designing effective expansion
plans regarding the upcoming introductions of smart grid technologies (e.g., DSM
or storage systems) into the existing traditional electricity networks.

The remainder of this chapter is organized as follows. Section 6.2 proposes how
the DSM can be modeled into the DNEP problem. Section 6.3 formulates the MO-
DNEP problem and introduces various objectives of interest. Section 6.4 presents the
benchmark networks and experiment setup for the solver MO-GOMEA. Section 6.5
shows and discusses the experimental results on the benchmark networks. Finally,
Section 6.6 concludes the chapter.

6.2. Expansion options
We assume that two categories of planning options are available to DNOs when
solving DNEP: physical asset investment and DSM options. Asset investments
(i.e., installing new facilities, upgrading existing equipment, or changing network
topology) can increase the physical capacity of the distribution network. On the
other hand, DSM policy contributions can be seen as improving the efficiency of
network usage. DSM helps decrease the peak loads so that the current network
capacity suffices to handle the corresponding power flow. In this section, we describe
how these two options can be modeled together into the DNEP problem.

6.2.1. Network facilities (assets)
To represent the network assets of a candidate expansion plan for the multi-objective
dynamic DNEP problem, we can employ the same encoding scheme that was pro-
posed in Chapter 5 for the single-objective case. Let l be the total number of
branches that can be considered for expansion planning, i.e., both existing cables
and potential cable connections. A network configuration in the horizon year thorizon

can be presented as a vector x of l integer elements:

x = (x1, x2, . . . , xl), |xk| ∈ Ω(k) ∪ {0}, k ∈ {1, 2, . . . , l} (6.1)

where Ω(k) is the set of cable types that can be installed at the k-th branch. The
value of xk indicates the status and the type of cable installed:

• xk = ID > 0: A cable of type ID ∈ Ω(k) is installed.

• xk = 0: No cable is installed at the kth branch.

• xk = −ID < 0: This is a normally-open point (NOP): a cable of type
ID ∈ Ω(k) is installed but is out of normal operation. NOPs can be used
to reconfigure the network during network failures.
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While electric cables have very long lifetimes of about 30 years, planning periods
longer than 30 years can be considered as impractical since there are many uncer-
tainties at such distant horizons. Therefore, during a practical planning period, a
network branch is normally reinforced at most once. A vector x of the network con-
figuration in the horizon year suffices to represent an expansion plan (of 30 years).
If x0 = (x0

1, x0
2, . . . , x0

l ) encodes the currently existing network, element-wise differ-
ences between x and x0 indicate which new assets should be installed to transform
x0 to x. To determine the installation year of each new asset for a feasible candi-
date solution, we employ the decomposition heuristic, that was proposed in Chapter
5), which can be summarized as follows. First, based on the forecast annual peak
load growth rate, we determine the year tX when the currently existing network
becomes infeasible. Second, we create a base schedule by assuming that all new
assets are installed in the same year tX and evaluate this base schedule. Next, we
loop through all these new assets in a random order and try to postpone each instal-
lation by one year if such delay yields a better expansion plan. This postponement
checking is continued until further other delay is possible. Note that, in Chapter
5 regarding single-objective DNEP problems, an expansion plan can be considered
as better than another plan in terms of a single objective (i.e., the investment cost
or the total cost). For MO-DNEP problems, where multiple conflicting objectives
are involved, the quality of expansion plans must be evaluated in terms of Pareto
domination (see Section 6.3).

6.2.2. Demand side management (policies)

Parts of the power consumption from the network are flexible loads, such as the
use of dishwashers, washing machines, tumble dryers, or charging electric vehicles.
DSM policies can motivate consumers to shift these flexible loads to different times
out of the daily peak power consumption hours by giving consumers, for example,
financial compensations [27]. We assume that DNOs, as a stakeholder in energy
markets, might be allowed (or required) to contribute parts of those compensations.

In this study, we assume that the flexible loads account for 10% of the peak loads
at the beginning of a planning period, and linearly grow to 30% of peak loads at the
end of the planning period. This assumption is based on the fact that the emergence
of smart household appliances gradually enlarges the magnitude of flexible loads.
We also assume that DNOs can contribute to DSM policies through a financial
means in EUR/year for each peak power consumption reduction of 1 kW on an MV
node in the whole year. Note that the numbers that we use here are simplified to set
up a demonstration case. Different and more fine-grained scenarios can be created
by customizing these assumptions as input data. In this study, we take into account
only the peak shaving effects of DSM because this is the most important aspect
to DNEP while other related details, such as the actual mechanism of DSM, who
administers DSM, and how consumers are incentivized to participate in DSM, are
abstracted away.
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Demand side management representation
Unlike (long lifetime) physical assets, DSM options can be seen as operational poli-
cies which can be changed from year to year during the planning period. In principle,
in order to represent a DSM policy for a planning period of multiple years, we need a
DSM decision variable for each year. However, in this study, we use a DSM strategy
which applies peak-shaving and only when it is necessary to prevent bottlenecks.
Therefore, we only need DSM decision variables for the years from the first infeasible
year tX until (and including) thorizon. We have nd = thorizon− tX +1 is the number
of years in a DSM policy. We represent a DSM policy over nd years as a vector of
nd non-negative integer elements.

y = (y1, y2, . . . , ynd), yt ∈ D, t = 1, 2, . . . , nd (6.2)

where D is the set of DSM option levels that are available to implement. The value
of yt indicates the chosen DSM level in year t. For the sake of simplicity in making
decisions, DNOs are assumed to decide the amount of DSM contribution (i.e., corre-
sponding with the desired amount of flexible load reduction) in discrete DSM levels,
namely 0 (no DSM is needed), 1 (25% flexible load reduction), 2 (50% flexible load
reduction), 3 (75% flexible load reduction) and 4 (100% flexible load reduction). We
then have D = {0, 1, 2, 3, 4}. Here, we take a holistic approach in which a single
DSM level yt is applied to all network nodes (i.e., MV/LV substations and MV cus-
tomer stations) in each year t of the planning period. Our formulation can be easily
extended to support a more fine-grained approach in which each suitable network
node i has its own DSM level per year yt

i as in the case of battery storage systems
considered in Chapter 5.

Effects of DSM on peak loads
Let f t denote the percentage of flexible loads in peak power consumption in a year
t. We assume that f0 = 10% in the beginning year and fhorizon = 30% in the end
year of the planning period. The values of f t’s, 0 < t < thorizon can be calculated
by linear interpolation.

For an MV-D network of n nodes, assuming that no DSM policy is used, the
vector of peak active power demand at each node in year t is:

P t,0 = (P t,0
1 , P t,0

2 , . . . , P t,0
n ) (6.3)

The accompanying vector of peak reactive power is:

Qt,0 = (Qt,0
1 , Qt,0

2 , . . . , Qt,0
n ) (6.4)

In that year t, if we use a DSM policy at a level yt > 0, yt = 1, 2, 3, 4, then the
vector of new peak active power demands will be

P t,yt

= (P t,yt

1 , P t,yt

2 , . . . , P t,yt

n ) (6.5)

where P t,yt

i = P t,0
i ∗ (1− (yt/4)∗f t), so that yt = 1, 2, 3, 4 corresponds to 25%, 50%,

75%, 100% flexible load reduction, respectively. And the corresponding vector of
peak reactive power will be:
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Qt,yt

= (Qt,yt

1 , Qt,yt

2 , . . . , Qt,yt

n ) (6.6)

where Qt,yt

i = Qt,0
i ∗ (1− (yt/4) ∗ f t). Then, P t,yt

and Qt,yt

form the new load due
to the peak shaving effect of the DSM level yt in the year t.

The total reduction in peak active power demands corresponds with employing
the DSM level y in year t is:

P t,yt

total =
n

∑

i=1

(P t,0
i − P t,yt

i ) (6.7)

6.2.3. Solution representation
A solution s of the DNEP problem for a network over a planning period consists of
the network configuration xhorizon at the end of the planning period and the DSM
policy y (i.e., the list of DSM levels that are applied on the network in each year).
For the sake of convenience in representation, we shorten xhorizon as x.

s = (x, y) = (x1, x2, . . . , xnl
, y1, y2, . . . , ynd) (6.8)

The total number of decision variables is then nl + nd. An installation schedule of
new physical assets in x is determined by our installation decomposition approach
(see Section 6.2.1). The DSM policy y indicates the DSM levels that affect the peak

load profile P t,yt

and Qt,yt

in each year t (see section 6.2.2), and will be used to
verify constraint violations of the corresponding network configuration in year t.

6.3. Problem formulation
6.3.1. Constraints
For a network s of n nodes and l total cable connections, in each year t during the
planning period, given the forecast peak consumption at every node and the peak
shaving effect of the chosen DSM policy yt in that year, we can determine the peak
load profile P t,yt

and Qt,yt

. The same constraints as in the case of single-objective
DNEP problems (see Section 4.2.2) must be satisfied regarding the peak loads in

each year P t,yt

and Qt,yt

(which take the DSM policy into account):

1. Connectivity: All nodes are connected to the network.

2. Normal operation constraints: The voltage at each node is within allowable
ranges (i.e., 0.9∗V nom

i ≤ Vi ≤ 1.1∗V nom
i , i ∈ {1, 2, . . . , n}) and the magnitude

of the power flow through each cable is within the nominal capacity of the that
cable (i.e., |Si| ≤ Snom

i , i ∈ {1, 2, . . . , l}).

3. Radiality constraint: The network operates radially due to the positions of
NOPs.

4. Reconfigurability constraint: When a cable fails, the DNO can isolate the
troubled cable and reconfigure the network by closing NOPs to bring back
operation. While maintenance activities take place, a mild overload of 130%
nominal capacity is allowed and the radiality constraint can be compromised.
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5. Substation capacity constraint: We assume at most three new outgoing cables
can be installed at each MV transmission substation (or HV/MV transformer
substation) due to limited physical space.

Evaluations of constraints 2 and 4 require computationally expensive alternat-
ing current power flow calculations (AC-PFCs [28]) for the peak load profile P t,yt

and Qt,yt

. As discussed in Section 4.2.2, instead of performing l AC-PFCs for a
complete verification of the reconfigurability constraint, for the sake of efficiency,
the Line Outage Distribution Factor (LODF [29]) can be employed, in which only
one (pre-contingency) AC-PFC is needed. Note that because PFCs can only be
performed for connected networks, the connectivity constraint needs to be satisfied
so that constraints 2 and 4 can be properly verified. If the network configuration
x of a candidate solution s is unconnected, constraints 2-5 will not be evaluated.
Instead, the disconnectivity quantification (DQ) procedure is invoked to measure
the difference in terms of network topology between x and the currently existing
network x0 (see Section 4.2.2 for more details and pseudo-code). The obtained
result is then used as the constraint violation value of that candidate solution s.

To compare different candidate solutions of a multi-objective DNEP problem, we
employ the constraint-domination principle [30] in combination with their discon-
nectivity values. For example, we compare two candidate solutions s = (x, y) and
s′ = (x′, y′). If x is connected and x′ is unconnected, then s is better than s′. If
both networks x and x′ are unconnected, then the one with a smaller disconnectiv-
ity is considered to be the better one. If both networks x and x′ are connected, we
then compare s and s′ by using their total violation values of other constraints (i.e.,
constraint 2-5). Feasible solutions have a total violation of value 0, and a feasible
solution is always better than an infeasible solution. If both solutions s and s′ are
infeasible, then the one that has greater total constraint violations is the worse one.
If both solutions s and s′ are feasible, we then evaluate their objective values and
use the Pareto domination principle to compare them.

6.3.2. Objectives
Pareto domination

A feasible solution s of a multi-objective optimization problem is said to Pareto
dominate (i.e., to be multi-objectively better than) another feasible solution s′ (de-
noted s ≻ s′) if s is strictly better than s′ in at least one objective and s is no worse
than s′ in all the other objectives. A non-dominated set P is a set of solutions in
which no solution dominates any other solutions that also exist in P . A solution
s is said to be Pareto optimal if and only if there exists no other solution s′ that
dominates s. The Pareto-optimal set PS is the set of all possible Pareto-optimal
solutions. The Pareto-optimal front PF is the image set of PS in the objective
space. Because the size of PS is usually very large or even infinite, it is very hard to
find all Pareto-optimal solutions. MO optimization normally aims to obtain a good
non-dominated set P whose front (i.e., the image set in the objective space) approx-
imates PF . The approximation quality is evaluated in the objective space because
we generally want a diverse set of good solutions with respect to all objectives.
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In the following section, we introduce the typical objectives that can be used for
MO-DNEP problems.

Physical asset installation cost CAPEX
Minimizing the asset investment cost CAPEX has been discussed in Chapters 4 and
5. The net present value (NPV) of the total CAPEX of an expansion plan over
a planning period is formulated by Equation 4.5 in Section 4.2.3. The installation
schedule of new assets in the expansion plan is determined by the decomposition
heuristic presented in Section 5.2.2 and Section 6.3.3.

Demand side management cost

From Equation 6.7, we can obtain P t,yt

total, i.e., the total reduction of peak active
power consumption due to the application of DSM level yt on the network in year
t. The cost that the DNO spends on DSM level y in year t is then computed based
on this reduction as:

DSM(t) = P riceDSM
unit ∗ P t,yt

total (6.9)

where P riceDSM
unit = 1e is the unit price for power consumption reduction per kW.

For the purpose of demonstration, we here choose only a single DSM price but this
price can be customized as input data to create different scenarios of DSM costs.

We minimize the NPV of the total DSM policy cost over the planning period
with a discount rate i.

DSMNP V =

thorizon
∑

t=tX

DSM(t)

(1 + i)t−t0
(6.10)

We here assume that the DNO would start to apply DSM options from the first year
tX that the current network would become infeasible. From t0 until tX , the current
network can still operate properly, and the DNO has little practical incentive to
employ DSM earlier than needed.

Energy loss
Since the network cable is our main asset category in this chapter, the energy loss
of the network in year t can be taken as:

Eloss(t) = Ppeak loss(t)× Tloss(t) (6.11)

where Ppeak loss(t) is the total network peak loss which can be obtained by perform-

ing PFC regarding peak demands P t,yt

and Qt,yt

, i.e., the peak load profile in year
t with respect to a chosen DSM level y. Tloss(t) is the service time of peak loss for
year t, defined as the ratio of the area under the normalized yearly loss profile shape
over the normalized peak loss value [31, 32]. The exact values of Tloss depend on
the nature of each specific network and its power demands. In this chapter, we take
Tloss(t) = 2000 hours for all t, which has been reported to be a realistic value for
real-world MV distribution cables [32]. Note that this value was calculated based on
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6.3. Problem formulation

traditional DNEP [32], but for the purpose of demonstration in this study, this value
is sufficient. More accurate and dedicate models to calculate Tloss in the presence of
smart grid technologies, when available, can be employed and be straightforwardly
considered as input data.

We minimize the total energy losses on the network during the planning period:

Eloss =

thorizon
∑

t=t0

Eloss(t) (6.12)

Customer minutes lost (CML) per year
We choose to evaluate the total number of customer minutes lost (CML) per year to
quantify the reliability of an MV-D network. Alternatively, we can also measure the
network reliability by employing the System Average Interruption Duration Index
(SAIDI), which can be easily obtained by dividing the total CML per year over
the number of customers in the network [11]. When a network cable fails, the
feeder containing that cable (i.e., from an MV transmission substation, or HV/MV
transformer substation, with circuit breakers to corresponding NOPs) is put out of
operation because the corresponding circuit breaker will be triggered. Customers
connected to all the nodes along this feeder suffer a temporary power outage. The
DNO needs to find out and isolate the failed cable along the feeder. After the failed
cable is isolated, the DNO can close the corresponding NOP and the circuit breaker
of the feeder so that the electricity supply is resumed. The number of failures NFk

over a cable k per year can be estimated as:

NFk = Fk · Lk (6.13)

where Fk is the annual failure rate of cable k per kilometer and Lk is the length of
cable k. The restoration time Tres can be defined as the duration between failure
occurrence and power supply restoration. This duration depends on the number of
nodes connected to the feeder. The average restoration time (in minutes) [33] when
a cable k fails can be taken as

Tres(k) = 75 +
NS(Feeder(k))

2
· 10 (6.14)

where Feeder(k) denotes the feeder containing the cable k and NS(Feeder(k))
is the number of MV/LV transformer substations and MV customer substations
connected to the feeder Feeder(k). The CML for a cable k per year can now be
defined as follows:

CMLk = NFk ·NC(Feeder(k)) · Tres(k) (6.15)

where NC(Feeder(k)) is the total number of customers connected along the feeder
Feeder(k). In this study, when conducting experiments, we assume that the number
of customers stays the same during the planning period. More accurate prediction
models about the number of customers, if available, can be straightforwardly em-
ployed to provide new input data.
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6. Multi-objective Dynamic DNEP with DSM

By the application of the asset installation decomposition procedure (see Sections
6.2.1 and 5.2) on the final network configuration xhorizon, we obtain an installation
schedule from which we can derive the network configuration xt in each year t. The
CML of a network xt in a year t can be computed as:

CML(xt) =

l
∑

k=0
xt

k>0

CMLk (6.16)

where l is the total number of cable connections, and we compute CMLs only for
active branches (xt

k > 0) as there is no power flow through a cable with an NOP
(xt

k < 0). The total CML during the planning period is:

CMLtotal =

thorizon
∑

t=t0

CML(xt) (6.17)

We minimize the averaged CML:

CMLaveraged =
CMLtotal

ny
(6.18)

where ny = thorizon − t0 + 1 is the number of years in the planning period.

6.3.3. Solution evaluation
The objectives CAPEX, DSM cost, and averaged CML per year for a feasible so-
lution can be efficiently evaluated by checking the network topology in each year
along the planning period. The total energy loss objective, the normal operation
constraint and the reconfigurability constraint, however require computationally-
intensive PFCs. Evaluating solutions for large networks in every year during a
planning period of 30 years could take a prohibitively long computing time. More-
over, in the current practice of real-world DNEP, DNOs hardly ever add a new cable
to a network every year. Adding a new cable can increase the network capacity by
a great amount and is normally very expensive. Therefore, instead of evaluating
solution constraints and performing the decomposition heuristic in a fine-grained
year-by-year manner as presented above, we run experiments with a stage-by-stage
approach as in Section 5.3.2, where each stage covers a period of at most 5 years
and at least 3 years. Thus, the decomposition heuristic will try to delay each asset
installation by one stage of multiple years. New assets in a stage are assumed to be
installed in the first year of that stage. For the sake of simplicity and computing
time reasons, we also assume that DNOs can make decisions about DSM options
per stage, instead of per year as in the formulation in Section 6.2.2. Therefore, the
number of DSM variables nd is equal to the number of stages. For every year in a
stage, the same DSM level is applied. The peak load of the final year in each stage
is considered to be the peak load of the stage (because peak loads normally increase
monotonically if network configuration and DSM policy remain the same during the
stage), which is used in constraint evaluations of the network configuration in that
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6.4. Experiment setup

stage. Note that the same DSM level can have different costs per year, depending
on the amount of peak load reduction in that year. Although we perform stage-by-
stage planning, the objective values of CAPEX, DSM cost, and CML can still be
evaluated in a year-by-year manner. As we perform PFCs only for the final year of
each stage, we can obtain the accurate value of peak loss only in that year. For the
remaining years in the stage, peak losses (to be used for computing energy losses as
in Equation 6.11) can be estimated by using the assumption that the peak loss also
has a growth rate related to the load growth R as follows [6]:

Ppeak loss(t) = Ppeak loss(t− 1) ∗ (1 + R)2 (6.19)

6.4. Experiment setup
6.4.1. Benchmark networks
We employ the same three distribution networks in Chapter 4 as our benchmark
networks here, but some network details are modified for the purpose of demonstra-
tion. Details about the current peak loads of the three networks are listed in the
Appendix. Details about the planning period year and annual peak load growth rate
for each network are shown in Table 6.1. Based on the forecast peak load growth
rate, we calculate the first year tX that each network becomes infeasible. The values
of tX are needed for the decomposition heuristic to determine when each new asset
should be installed along the planning period (i.e., from tX until thorizon). Note
that as mentioned in Section 6.3.3, due to computing time reasons, instead of the
more fine-grained year-by-year approach, we perform the expansion planning in a
stage-by-stage manner, where each stage covers a period of maximum 5 years and
minimum 3 years, which are reasonable stage lengths in DNEP practice. Details
about the number of stages and the beginning year and end year of each stage are
shown in Table 6.1.

Table 6.1: Planning periods of Network 1, 2, and 3. thorizon is the horizon year. R is the peak
load growth rate. tX is the first year in which the network becomes infeasible. Stage Si is the
duration of each planning stage during [tX − thorizon]. nd is the number of DSM variables.

IDthorizon R tX Stages Si = [tbegin − tend] nd

1 30 2% 8 S1=[8 - 10];S2=[11 - 15];S3=[16 - 20];S4=[21 - 25];S5=[26 - 30] 5
2 30 2%10S1=[10 - 12];S2=[13 - 15];S3=[16 - 20];S4=[21 - 25];S5=[26 - 30] 5
3 15 3% 3 S1=[3 - 5];S2=[6 - 10];S3=[11 - 15] 3

We use different combinations of four objectives presented in Section 6.3.2 to
create three MO-DNEP problems: CAPEX versus DSM, total cost (CAPEX+DSM)
versus total energy losses, and total cost (CAPEX+DSM) versus CML per year.
Note that multi-objective optimization with three or four objectives is also possible
but would not necessary yield more illustrative results.

6.4.2. Multi-objective GOMEA
We employ the parameter-less MO-GOMEA as the solver for tackling our multi-
objective DNEP problems. The details about MO-GOMEA are presented in Chap-
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ter 3. Here, we outline the operation of MO-GOMEA when employed to solve
MO-DNEP problems.

First, the distribution network generation procedure (see Section 4.4) is used
to initialize the populations of MO-GOMEA with candidate solutions having good
topologies. These initial networks are randomly constructed in such a way that
the connectivity, radiality, and substation capacity constraints are satisfied. Section
4.4 showed that initializing EA solvers’ populations with good initial solutions can
considerably enhance their performance. In every generation, MO-GOMEA parti-
tions its working population into a number of (overlapping) clusters by performing
the balanced k-leader-means clustering algorithm in the objective space. Candi-
date solutions in the same cluster can be considered as expansion plans that are
relatively similar to each other in terms of their objective value vectors. For each
cluster, a linkage model is learned to capture the specific dependency structures
among decision variables of the candidate solutions in that cluster. Next, the Gene-
pool Optimal Mixing (GOM) variation operator uses the learned linkage model to
transform each existing solution s into a new candidate solution s′ in a step-wise
manner. In each step, s is mixed with a donor solution d randomly selected from the
same cluster that s belongs to. The mixing event commits if the partially-altered
intermediate solution improves its previous state; otherwise, the mixing is reversed.
Note that the solution improvement is assessed based on the Pareto-domination
principle if s belongs to a middle-region cluster in which constituent solutions tries
to optimize all objectives at the same time. On the other hand, if s belongs to
an extreme-region cluster whose constituent solutions excel in a specific objective,
the solution improvement checking is in the single-objective manner. Figure 6.1
illustrates the operation of MO-GOMEA in solving the MO-DNEP problem that
involves two conflicting objectives: minimizing the investment cost and minimizing
energy losses. The middle-region clusters contain expansion plans that attempt to
exploit both objectives simultaneously. The two extreme-region clusters consist of
expansion plans that are skewed toward minimizing either investment cost or energy
loss, respectively. Note that, because we employ the parameter-less MO-GOMEA,
apart from assigning a computing time budget, we are exempt from all parameter
tuning and settings. The result obtained at the end of the optimization process
(when the computing budget is used up) is a diverse set of expansion plans that
exhibit possible trade-offs between the investment cost and the energy loss.

The variation operator (VO) of MO-GOMEA needs some adaptations to work
with DNEP problems. We consider two VOs that have been proposed in Chapter
4 and Chapter 5 for DNEP problems in the single-objective case: Disconnectivity
Quantification (DQ) and Branch Exchange with mutation (BX-M). MO-GOMEA
with DQ can be considered as an out-of-the-box variant since the disconnectivity
quantification is itself included in the constraint evaluation for candidate solutions
(see Section 4.2.2). BX-M is a VO that uses the DNEP problem-specific knowledge
of distribution networks to ensure that new candidate solutions are created with
connected and radial topologies. BX-M has been shown in Chapter 4 and Chapter
5 to be the best VO for single-objective DNEP problems. By experimenting and
comparing the problem-customized solver MO-GOMEA BX-M with an out-of-the-
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Figure 6.1: Different clusters in MO-GOMEA approach different parts of the Pareto-optimal front.
Two extreme-region clusters employ single-objective optimization (SO) while middle-region clusters
employ multi-objective optimization (MO).

box variant (i.e., MO-GOMEA DQ), we can separate the contribution of the domain
knowledge from the overall results and then precisely assess the true performance
of MO-GOMEA in solving MO-DNEP problems.

Each MO-GOMEA variant is run 10 times independently on each benchmark net-
work proposed in Section 6.4.1. For each problem instance, the final non-dominated
front is assembled by combining all results of 10 runs and is considered as the op-
timization result. Because the parameter-less MO-GOMEA is used, apart from as-
signing a computing budget, we are exempt from all parameter tuning and settings.
The maximum number of candidate expansion plan evaluations as the computing
budget in each run is 100,000 evaluations for Network 1, 200,000 for Network 2,
and 300,000 for Network 3. Note that each solution evaluation consists of per-
forming PFCs to verify the feasibility of the corresponding network configuration in
each stage during the planning period. The experimental results for each problem
instance are presented in the following section.

6.5. Experimental Results
6.5.1. CAPEX vs. DSM
To manage the MV-D networks to handle the peak load growth, DNOs have two
different strategies. DNOs can choose to deal with the situation by traditional
network reinforcement activities: installing new assets into the networks along the
planning period. The network capacity is then increased. On the other hand,
DNOs can actively promote DSM policies so that more and more flexible loads can
be shifted out of peak power consumption hours, and the peak load can then be
reduced to be kept within the current network capacity. The efficiency of using the
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6. Multi-objective Dynamic DNEP with DSM

current network capacity is thereby improved.

Table 6.2: Solutions of DNEP considering CAPEX vs. DSM

Extreme CAPEX DSM
Solution (EUR )e (EUR )e

NETWORK 1
Most Asset-pro 40177 0
Most DSM-pro 12437 5697

NETWORK 2
Most Asset-pro 23285 0
Most DSM-pro 533 19290

NETWORK 3
Most Asset-pro 35465 0
Most DSM-pro 0 25410

Table 6.2 shows the extreme solutions when solving DNEP to find appropriate
solution plans to deal with the forecast load growth with respect to two objectives:
minimizing cost of installing new assets and minimizing cost of DSM contributions.
It can be seen that for any network, DNOs can simply follow the traditional capacity
expansion and not participate in DSM activities at all. A lot of new assets must then
be installed to catch up with the surging peak load, especially with the imminent
popularity of electric vehicles. DNOs can alternatively choose a more smart-grid-
oriented solution: by participating in DSM activities to ensure that peak load would
be kept under control. Table 6.2 shows that if DNOs invest in DSM policies, a great
deal of new asset installation cost can be saved by being able to delay expensive
network reinforcements to many years later. The combined cost of CAPEX+DSM
of the most DSM-pro solutions are shown to be significantly less than the CAPEX of
the traditional physical asset investment alone. Note that the costs of DSM options
here are based on our assumption about the DSM price and different DSM price
levels can be used to create multiple scenarios. We here use a single DSM price
for the purpose of demonstration only. Interestingly, for Network 3 (i.e., the largest
network considered in this study), with a good DSM policy investment, the network
does not require any new asset installation during its planning period of 15 years.
Only the NOPs need to be relocated to reconfigure the power flow paths and the cost
of NOP relocations is generally negligible. Indeed, Figure 6.2 shows three example
solution plans for Network 3. First, the DNO can actively stimulate DSM policies
to shift all flexible loads and the network can be left intact for 15 years. Second,
the DNO can choose a combination of new asset installations and DSM options
but the asset installations are delayed until later years in the planning period. In
the obtained outcome data, we observed that in the first stage, the network can
be reconfigured by changing the locations of NOPs and new assets are only needed
to be added in the last stage. Third, the peak load growth is not controlled and
the DNO needs to install one new cable connection and replaces three other legacy
cables. Note that it is not necessary that a DSM-pro solution is better than an asset-
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pro solution. Which solution will be chosen to be carried out depends on specific
situations. For Networks 1 and 2, there is no 0-CAPEX solution like the case of the
most DSM-pro solution for Network 3. This is because we here perform experiments
with a planning period of 30 years for Networks 1 and 2 while the planning period
of Network 3 is 15 years. After 30 years, the peak power demands will be much
higher such that even if 100% flexible load were to be reduced, the remaining base
load would still exceed the currently available network capacity. Therefore, physical
asset investments are still required in the most DSM-pro solutions for Networks 1
and 2.

Solving DNEP while considering CAPEX versus DSM results in many interesting
alternatives (see Figure 6.3). Although both asset investments and DSM options can
be considered as costs for DNOs, they are in essence two different strategies: adding
more network capacity versus increasing efficiency in the usage of current network
capacity by decreasing peak power consumption. It is important that DNOs are
informed about all these alternatives before making a decision, and it is crucial that
these alternatives must be (approximately) optimal trade-off solutions so that the
best-informed decision can be made. Figure 6.3 shows the non-dominated fronts (i.e.,
the image set of the best found non-dominated solutions) found by two MO-GOMEA
variants DQ and BX-M. While BX-M is a problem-specific variation operator, the
non-dominated front found by MO-GOMEA BX-M is only slightly better than the
one obtained by MO-GOMEA DQ. Therefore, DNOs can easily use MO-GOMEA
out-of-the-box with some minor modifications (i.e., MO-GOMEA DQ) and still
obtain reasonably good results. If more problem-specific knowledge is available, a
DNEP-dedicate variation operator like BX-M can be constructed and incorporated
into MO-GOMEA to find better results within the same computational budget.

6.5.2. CAPEX & DSM vs. Energy loss
We can combine the CAPEX and DSM contributions together to form the total cost
of a DNEP solution plan. DNOs often need to know what is the most economical
expansion plan, regardless of whether they are asset investments or DSM options.
Minimizing the total cost alone (i.e., SO optimization) usually returns a network
that uses thin cables of small diameters, which have higher energy losses compared
to thicker cables. Energy loss is normally considered as a part of the operation
cost OPEX of DNOs, and is usually capitalized to be aggregated with CAPEX so
that SO optimization can be employed to find the solution that has the minimum
lump sump cost. Being informed about only one solution plan, DNOs will find it
difficult to reduce energy losses (in the most efficient way) if they would like to
do so. Moreover, in transition toward a greener and environment-friendlier energy
consumption future, DNOs will be motivated to consider energy-efficient networks.
Here, we retain energy losses out of the total cost and try to optimize it separately
by considering it as a separate objective. We have run MO-GOMEA DQ and MO-
GOMEA BX-M for the two objectives: total cost and total energy losses. The
results are as follows.

Table 6.3 shows the most economical and the most energy-efficient solution plans
for DNEP for the three benchmark networks. It can be observed that the most
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A solution combined of both asset installations and DSM options
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The most asset investment-pro solution
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Figure 6.2: Network 3: CAPEX vs. DSM. Red-colored cables indicate new asset installations. Red
flags are new positions of NOPs.
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Figure 6.3: Non-dominated fronts of MO optimizations for three networks. Horizontal axis: Net
Present Value of CAPEX (EUR). Vertical axis: Net Present Value of DSM (EUR). MO-GOMEA
DQ is shown as blue squares. MO-GOMEA BX-M is shown as red triangles.

Table 6.3: Solutions of DNEP considering Total Cost (CAPEX + DSM) vs. Energy Losses

Extreme Total Cost Energy Loss
Solution (EUR )e (MWh)

NETWORK 1
Most economical 18372 2333

Most energy-efficient 327383 804

NETWORK 2
Most economical 12451 4369

Most energy-efficient 279079 2105

NETWORK 3
Most economical 25410 2263

Most energy-efficient 1273310 663

economical DNEP solutions are also the least energy-efficient solutions. If we do
not take into account the specific locations of NOPs (because NOP relocations do
not have a cost in our model), then, for Network 3, the most economical solution is
the same as the most DSM-pro solution (compare Table 6.2 and Table 6.3). Because
Network 3 has many legacy cables (i.e., cables of very small diameters) and no cable
needs to be replaced in the most DSM-pro solution, its total energy loss is therefore
the highest. In order to reduce energy losses, many of these legacy cables must be
replaced with new cables of bigger sizes, bringing up the total investment cost. Table
6.3 also indicates that the cost of improving energy efficiency is very high. Therefore,
instead of choosing the most efficient solution, it might be more reasonable for DNOs
to look into solutions that balance cost and efficiency (i.e., the middle regions of the
fronts, see Figure 6.5). Figure 6.4 shows three example solutions for Network 2.
We can see that the most energy-efficient solution (i.e., the solution with the least
energy losses) requires a lot of new cable installations and replacements because new
cables of higher capacities generally have less branch resistance. This solution also
makes use of the highest level of DSM options during the planning period because
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Figure 6.4: Network 2: Total cost (CAPEX+DSM) vs. Energy Loss. Red-colored cables indicate
new asset installations. Red flags are new positions of NOPs.

reducing peak load can also reduce energy losses as well. The most economical
solution replaces only one cable and has little participation in DSM contributions;
this solutions suffers the highest total energy losses. A balanced solution might be
a favorable combination of installing new cables and actively contributing to DSM
options (with respect to our assumption about DSM price). All three solutions in
Figure 6.4 indicate that all new asset installations should be done in the first stage,
which is understandable as the sooner we replace legacy cables with new and more
efficient cables the less energy will be lost.
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Figure 6.5 shows the non-dominated fronts of MO-GOMEA DQ and MO-GOMEA
BX-M solving DNEP with respect to the total cost (CAPEX+DSM) and the to-
tal energy loss. For Network 1, the obtained results of the two variants are quite
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similar. For Network 2, MO-GOMEA BX-M found a slightly better front than MO-
GOMEA DQ. However, these differences are not critical, especially considering the
numerous amount of solutions on the non-dominated fronts (see Figure 6.5), which
is different from the much sparser fronts when considering CAPEX vs. DSM (see
Figure 6.3). For Network 3, it can be seen more clearly that the solutions found
by MO-GOMEA BX-M (Pareto) dominate those found by MO-GOMEA DQ. How-
ever, the gap between the DQ’s non-dominated front and BX-M’s non-dominated
front is not large. If we run MO-GOMEA DQ longer, we can obtain results that
are similar to MO-GOMEA BX-M’s results but within the same amount of com-
puting time, BX-M gives MO-GOMEA some slight advantages over DQ. Compared
to the more DNEP problem-dedicated MO-GOMEA BX-M, the performance of the
out-of-the-box MO-GOMEA DQ can be considered as quite robust. This suggests
again, like in the single-objective case, that the linkage learning capability of MO-
GOMEA is powerful enough to help the algorithm reach acceptably good solutions
even when problem-specific knowledge (e.g., the way the connectivity constraint
should be handled in BX-M) is not available.

6.5.3. CAPEX & DSM vs. CML
The averaged Customer Minutes Lost per year (CML) during the planning period
is regarded as the measure for network reliability in this study. CML in our model
depends on the distribution of customers along each feeder (i.e., the fewer customers
connect to a feeder, the fewer customers would be affected if an outage occurs), on
the number of MV nodes on that feeder (i.e., the fewer MV nodes, the less time is
required to localize and isolate the failed cable), and also on the total length of the
feeder (i.e., the shorter the feeder is, the smaller the failure rate is). Minimizing CML
can add more new cable connections to the network (i.e., creating new feeders) so
that each feeder connects fewer nodes and fewer customers, which increase the cost
of asset installations. On the other hand, to minimize CAPEX, it is more economical
to try to relocate existing NOPs first (rather than add new cables immediately) to
reconfigure the network so that parts of power flows are re-routed through different
paths, avoiding heavily-loaded cables. To this end, NOPs are usually located at
locations that make the power flow equally distributed for each feeder. However,
these positions might not be optimal locations to minimize CML. Minimizing CML
tends to relocate NOPs so that the number of customers are distributed equally per
feeder. An MV customer substation node and an MV/LV transformer substation
node might have the same power demand but a customer substation is counted as
one customer (i.e., one company) while a transformer substation can be counted
as many customers (i.e., many households). Therefore, minimizing CAPEX and
minimizing CML are two conflicting objectives.

Here, we also combine CAPEX and DSM together and regard that as the total
cost of a solution plan. We have run MO-GOMEA DQ and MO-GOMEA BX-M
for two objectives: total cost and CML per year. The results are as follows. Table
6.4 shows the extreme solutions for each benchmark network: the most economical
solution (i.e., the least total cost) and the most reliable solution (i.e., the least CML).
From Table 6.4 and Figure 6.7, it can be seen that the most economical solution is
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also the least reliable one and vice versa. For Network 3, we observed that we again
obtain the most economical solution that is similar to the most DSM-pro solution
as in Figure 6.3 (not taking into account the NOP locations in each case). It can be
inferred that due to the peak shaving effects of DSM options and the relocation of
NOPs, no new asset installation is required during the planning period. However,
those NOP locations are not the favorable positions to reduce CML. Figure 6.6 shows
three examples for Network 1. The most economical solution promotes DSM options
and replaces three overload cables at much later stages of the planning period. The
most reliable solution adds three new cable connections in the first infeasible year
tX to create three new feeders and to reduce the number of customers per feeder.
A balanced solution adds only one new cable connections in the year tX .

Table 6.4: Solutions of DNEP considering Total Cost (CAPEX + DSM) vs. CML per year

Extreme Total Cost CML per year
Solution (EUR )e (minutes)

NETWORK 1
Most economical 29670 5634

Most reliable 157581 4005

NETWORK 2
Most economical 12451 22178

Most reliable 95198 14221

NETWORK 3
Most economical 25410 22212

Most reliable 411415 12032

Figure 6.7 shows the non-dominated fronts of solving DNEP regarding the to-
tal cost (CAPEX+DSM) versus the averaged CML. For Networks 1 and 2, both
MO-GOMEA variants DQ and BX-M obtain similar results. For Network 3, MO-
GOMEA BX-M obtains a better non-dominated front than MO-GOMEA DQ. How-
ever, the performance of the (out-of-the-box) MO-GOMEA DQ is still reasonably
good. This confirms the reliability of the basic variant of MO-GOMEA. The effects
of DQ and BX-M here conform quite well with the results in Chapters 4 and 5 in
the case of solving the single-objective (SO) DNEP with SO GOMEA. Evolution-
ary optimization algorithms that make use of linkage learning (LLEAs) are usually
robust solvers, which can be used out-of-the-box or with minimum modifications
to solve complicated problems like MO-DNEP or SO-DNEP. Customizing LLEAs
with expert knowledge to make them problem-dedicated solvers can help to further
improve the obtained results.

6.6. Conclusions
In this chapter, we considered a multi-objective dynamic DNEP problem formula-
tion that includes both asset investments and DSM policies as expansion options.
To handle dynamic planning in an efficient manner, we employed a decomposition
heuristic that can convert static (single-stage) network configurations into feasible
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Figure 6.6: Network 1: Total cost (CAPEX+DSM) vs. CML. Red-colored cables indicate new
asset installations. Red flags are new positions of NOPs.
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dynamic (stage-by-stage) installation schedules while regarding practical problem
constraints. We argued that DNEP is a true MO optimization problem because
trade-offs between many conflicting criteria must be taken into account before de-
ciding to carry out a specific expansion plan. We considered the MO-DNEP problem
with various combinations of four different objectives: minimizing the physical asset
investment cost CAPEX, minimizing the cost of using DSM options, minimizing the
total energy loss, and minimizing the customer minutes lost per year. Note that
more than two objectives can be used in our framework, but for the purpose of
demonstration in this study, considering two objectives at a time is sufficient. We
employed the parameter-less MO-GOMEA together with some problem-dedicated
adaptations to solve the complicated MO-DNEP for several benchmark networks.
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Based on the experimental results, we conclude that solving DNEP in an MO
optimization manner returns a far richer set of valuable results and alternatives for
DNOs to consider than when solving the SO DNEP. Being exposed to different pos-
sible (optimal) trade-offs, DNOs can make well-informed decisions for each specific
situation. The non-dominated fronts found by MO optimization can be used as
a visualization tool to effectively exhibit how much energy efficiency and network
reliability are compromised as DNOs reduce investment costs and also by how much
investments must be increased to improve these two objectives. We also showed
that by using DSM options to deal with the peak load growth, DNOs can indeed
postpone costly asset installations. This can be an incentive for DNOs to actively
participate in DSM research, development, and deployment. Finally, MO-GOMEA
is shown to be a robust MO solver that can tackle a complicated problem like MO-
DNEP well, making it a promising framework to be considered for solving other
power and energy optimization problems in the future.
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7
Conclusion

Summa summarum.

Distribution network expansion planning (DNEP) has always been an impor-
tant task that distribution network operators (DNOs) conduct in order to draw
up strategic network reinforcement plans to handle the growth in power demands.
DNEP can be formulated in various ways as optimization problems, for which the
desired solutions satisfy a set of problem constraints (e.g., capacity constraints, re-
liability constraints) and also optimize some objective function (e.g., minimizing
investment cost and/or energy loss, maximizing network reliability) regarding the
forecast load growth during the planning period. Solving DNEP is non-trivial and
involves considerable challenges in terms of problem modeling and computation. In
this thesis, we pinpointed these challenges and how evolutionary algorithms (EAs)
could be employed to tackle our DNEP problems. Rather than using EAs in an ad
hoc manner, we proposed a systematic approach for designing robust EAs to apply
in real-world optimization tasks like DNEP problems.

7.1. Distribution network expansion planning
In Chapter 1, we gave an overview of DNEP and described the related problem
modeling and computational challenges. First, DNEP involves multiple complicated
operational and engineering constraints as well as time-related decision variables,
which are difficult to be modeled and to be efficiently handled. Second, transitions
toward future sustainable energy systems raise the questions about how smart grid
technologies (e.g., energy storage system, demand side management) can also be
considered as network reinforcement options together with traditional assets (e.g.,
electric cables, transformers). Third, DNEP often involves multiple planning objec-
tives which conflicts with each other such that a utopian solution optimizing all the
objectives at the same time does not exist. In Chapters 4, 5, and 6, we presented
how these issues could be properly addressed.
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7.1.1. DNEP with AC power flow model and dynamic planning

The so-called static DNEP addresses the questions where on the network under con-
cern reinforcement activities should be performed and what kinds of assets should be
installed there. Solving this basic form of DNEP is not trivial because the globally
optimal expansion plan has to be looked for in a vast combinatorial search space
with many local optima due to complicated, non-linear, constraints. First, in Chap-
ter 4, we showed how domain/expert knowledge can be used to narrow the search
space by disregarding impractical expansion options, such as the downgrading of
cable capacities or the connecting of distant substations. The DNEP problem has
often been simplified by linearizing the non-linear AC power flow model or by omit-
ting difficult constraints. We then argued that DNEP should be more accurately
modeled, employing the true non-linear AC power flow model and retaining realistic
constraints (e.g., radiality and reconfigurability). We described different evolution-
ary optimization algorithms and presented different ways of customizing them to
be dedicated DNEP solvers, offering high-quality solutions within reasonable com-
puting times. Our methodology offers the flexibility to be adopted by practitioners
to solve their DNEP problem instances and other power system expansion planning
problems as well.

The difficulty of DNEP increases if it involves the question when each rein-
forcement activity should be carried out during the planning period. Such so-called
dynamic DNEP is often the case in practice since DNOs would normally like to have
a detailed, for example, year-by-year asset installation schedule. The network con-
figuration in each year must then be modeled and evaluated against the load profile
in that year, substantially increasing the problem complexity and computing time.
If a planning period covers 30 years, then the number of decision variables would
be multiplied by 30. Even for medium-sized networks, such curse of dimensionality
can make dynamic planning intractable. Therefore, it would be more practical and
efficient if the problem models and the optimization algorithms that we have devel-
oped in Chapter 4 for static DNEP can also be employed to solve dynamic DNEP.
To this end, in Chapter 5, we proposed a decomposition heuristic that can derive an
acceptable cable installation schedule for each candidate network configuration, ef-
fectively transforming a static expansion plan into a dynamic expansion plan. With
the obtained schedule, the network configuration in each year of an expansion plan
can be easily determined and assessed against the peak load profile of that year.
This decomposition heuristic can be used by any static DNEP solvers (e.g., the
algorithms presented in Chapter 4) during the optimization process to obtain an
installation schedule for each candidate solution and evaluate its objective function
value and constraint violation accordingly, thereby solving dynamic planning in an
efficient manner. Furthermore, in Chapters 5 and 6, we also showed that the de-
composition heuristic can be customized to consider smart grid technologies (e.g.,
energy storage system, demand side management) in dynamic DNEP. The inclusion
of these emerging technologies in DNEP offers DNOs a wider set of alternatives for
network reinforcement but also poses additional challenges that need to be properly
addressed.
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7.1.2. DNEP with smart grid technologies
Apart from the annual growth in residential and industrial power demands, DNOs
are challenged by the recent and increasing presence of distributed generation (DG)
and electric vehicles (EVs). Without proper planning and management, unbalanced
power injection/demand and uncontrolled EV charging can drastically raise the
peak load on the network. We have assumed that it is possible for DNOs to achieve
peak shaving by making investments in smart grid technologies, such as demand
side management (DSM) and battery energy storage system (BESS). In Chapters
5 and 6, we modeled BESS and DSM as decision variables in DNEP problems,
along with the traditional electric cable reinforcement. To handle increasing peak
power demands, DNOs then have two strategies: 1) they can install new cables and
transformers and thereby enhance the network capacity; or 2) they can invest in
DSM and/or BESS to reduce the peak load on the network and thereby improve the
efficiency of the current network infrastructure usage. The desirable expansion plans
can be mixtures of both traditional asset installations and smart grid investments.

Because smart grid technologies is an on-going research domain, it is difficult to
properly estimate their future construction and operation costs, which are important
input data for solving DNEP as an optimization problem where the most economical
expansion plan needs to be found. To deal with such uncertainty, in Chapter 5, we
presented that the DNEP problem with BESS can be solved with the scenario-based
approach. We proposed different scenarios of BESS implementation costs, and for
each scenario, the DNEP problem is solved to obtain a high-quality expansion plan.
This methodology can be straightforwardly applied for solving the DNEP problem
with DSM as well as other smart grid technologies. DNOs can thereby investigate
possible solutions if they would like to consider smart grid alternatives for DNEP
in the presence of price uncertainty of these new technologies.

DNEP in general and the cases with smart grid technologies in particular involve
many aspects and decision factors (e.g., investment cost versus network reliability,
physical assets versus DSM) that exhibit some trade-off relationship which DNOs
would normally like to investigate in their decision making process. It is therefore
beneficial to be able to efficiently obtain such trade-off information in order to
provide DNOs with more insights into the DNEP problem instance at hand.

7.1.3. DNEP with multi-objective optimization
DNEP can involve multiple conflicting criteria, such as investment costs, energy
losses, or network reliability, and a utopian expansion plan optimizing all these
terms at the same time hardly ever exists. Traditionally, all non-monetary factors
of interest are monetized and then combined with the investment cost into a single
objective function, for which available (single-objective) optimization algorithms can
be used to find the solution with the least total cost. In Chapter 5, we demonstrated
the limitations of such an aggregation approach in a case study, where energy losses
were monetized as the operational cost. Experimental results showed that, within a
certain planning period, the energy losses might dominate the cost function, pushing
the optimization algorithm to opt for early installations of new cable connections
using the thickest available cable type. In current DNEP practice, however, too early
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capacity expansion is not a desirable solution because while energy loss is important,
it might not always be the deciding factor for DNOs to choose when and how network
enhancements should be carried out. The problem can be circumvented by weighting
down the cost of energy losses, but finding proper scaling coefficients to express the
relative importance between investment costs and energy losses is definitely not
a trivial task. Besides, in the transition toward sustainable energy systems, the
options of reducing energy losses should not be overlooked; that is, they should
be considered as alternatives alongside the expansion options that minimize the
investment cost. Therefore, instead of telling DNOs what is the optimal expansion
plan for the network under concern, we could present to them what are the best
available alternatives, reflecting the consequences for all objectives if one alternative
is chosen over the others. The DNOs will then choose which alternative to carry
out, regarding their own development/business strategies and specific situations.

In Chapter 6, we formulated the DNEP with DSM as a multi-objective optimiza-
tion problem, where the involved objectives were kept separate. Instead of a single
solution as in the case of single-objective optimization, the result of a multi-objective
DNEP problem is a set of trade-offs that inform DNOs about the compromises on
energy efficiency and network reliability if the investment cost is decreased, and
also, the cost-effective solutions to reduce energy losses and customer minutes lost
if DNOs would like to do so. This thesis therefore advocates the modeling of DNEP
as a true multi-objective optimization problem. The advantages of such approach
are manifold: 1) Non-financial criteria are not required to be capitalized; 2) DNOs
and DNEP practitioners do not need to specify a priori the weights (i.e., the rela-
tive importance) of the involved criteria; 3) the optimization result is a rich set of
trade-off solutions, offering valuable insights into different possibilities of network
expansion strategy.

7.2. Robust evolutionary algorithm design and ap-

plication
While solving DNEP with real-world constraints, especially its multi-objective for-
mulations, provides useful information for DNOs to consider during their network
expansion planning processes, the aforementioned computational challenges associ-
ated with DNEP must be properly addressed. In Chapter 1, we described the main
reasons that evolutionary algorithms (EAs) are the appropriate solvers to tackle
our DNEP problems. First, EAs evolve a population of candidate solutions, which
are naturally well-suited for multi-objective optimization in the sense that a set of
multiple solutions that approximate the trade-off relationship between the involved
objectives can be obtained in one optimization run. Second, EAs offer a great flex-
ibility in handling a wide range of optimization models, especially the ones with
problem constraints and objective functions that are too complicated to be directly
exploited in a white-box context like the AC power flow model-based operational
constraints in our DNEP problems. Furthermore, properly-designed EAs allows the
optimization model to be enlarged and extended (e.g., handling large distribution
networks, tackling dynamic planning, or including smart grid technologies) without

164



7.2. Robust evolutionary algorithm design and application

the need of major modifications in the optimization algorithms. In this thesis, we
proposed how EAs could be designed for successful applications in DNEP.

The performance results of ad hoc applications of EAs in DNEP are limited to
the problem instances at hand and are difficult to generalize to other cases, especially
when the problem sizes are enlarged or the problem models are extended. Therefore,
rather than employing the ad hoc approach, in this thesis, we have worked on the
fundamentals of designing robust EAs, in particular the following topics: eliminating
parameter settings of EAs in real-world applications, exploiting domain knowledge
and linkage information to enhance the efficiency of EAs, and scalability-oriented
design of (multi-objective) EAs.

7.2.1. Eliminating parameter settings of evolutionary algorithms
While evolutionary algorithms (EAs) enjoy their popularity as the solvers of choice
in a wide range of industrial optimization problems, they often receive the criti-
cism that their (many) control parameters need to be properly set to obtain good
performance. Finding the optimal combination of parameter settings itself is an op-
timization problem, and parameter tuning is also time-consuming. Indeed, DNEP
practitioners, typically non-EA experts, can be discouraged by having to define un-
familiar algorithm parameters, for which the corresponding suitable values depend
on each specific problem instance. We argue that parameter handling should be
the burden of algorithm designers, not of the users. To this end, in this thesis, we
presented EA solvers of different kinds and proposed how their parameter settings
can be eliminated. The elimination of EA parameter settings improves the usability
of the EA solvers such that DNEP practitioners can focus on problem modeling
rather than tuning the parameters of the solvers.

In Chapter 2, we described the three typical population-based EAs, namely Ge-
netic Algorithm (GA), Estimation-of-Distribution Algorithm (EDA), and Gene-pool
Optimal Mixing Evolutionary Algorithm (GOMEA). We chose to describe specific
implementations of these three EAs that only require users to define their popula-
tion size, which can be considered as one, if not the most, crucial parameter. To
eliminate the population size setting, we then employed the Harik-Lobo population-
sizing-free scheme. In essence, the Harik-Lobo scheme operates an EA with an un-
bounded number of populations of increasing sizes in an interleaved fashion, where
the smaller populations are always initialized before larger ones, and the larger pop-
ulations have slower generational cycles than smaller ones. The Harik-Lobo scheme
can be used as a framework for running any population-based EAs without the need
of modifications in the working mechanism of the EA solvers.

The straightforward implementation of the Harik-Lobo scheme makes it a can-
didate platform to compare the performance of different EAs. Performance bench-
marking and comparisons between population-based EAs are often conducted with
optimization problems whose optimal solutions are known so that the bisection
method can be used to find the minimally required population size and the corre-
sponding number of evaluations. However, there are many problems, especially in
real-world applications, where optimal solutions are unknown. The population size
of each competing EA is then set based on some general guidelines, which can be
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far from the optimal value depending on the particular problem instance at hand.
Consequently, it is difficult to assess the true performance of EA solvers with such
settings. Regarding the issue, we therefore emphasize two points in this thesis: 1)
future EA designs should free users from the burden of control parameter settings,
and 2) when benchmarking the performance of different EA solvers, all competing
EAs must be put on an equal footing to ensure a fair comparison.

We note that the use of the Harik-Lobo scheme might not offer the best per-
formance of EA solvers (i.e., when the optimal parameter settings for the problem
instance at hand are known). Nevertheless, the elimination of parameter settings
considerably improves the usability of EAs, and in practice, the goal is to solve the
problem instance at hand rather than determining the optimal parameter settings,
which is impossible without running the optimization with many different parameter
settings. Furthermore, the performance of EAs, in the context of DNEP, typically
depends on their capability in exploiting the DNEP problem-specific knowledge (e.g.,
the connectivity and radiality of the network topology) as well as the interactions
between problem variables during the optimization process.

7.2.2. Exploiting linkage information and problem-specific knowl-
edge

Because most EAs are general-purpose solvers, they contain little or no problem-
specific information when just taken out-of-the-box. Different EAs have different
capabilities to adapt themselves to the particular problem instance under concern.
It is important that building blocks (i.e., good partial solutions) in the population
are not frequently disrupted by EAs’ stochastic operators and that they can be
efficiently mixed to create better solutions. The classic variation operators of the
simple GA, i.e., uniform crossover and mutation, are often very disruptive since all
problem variables are (implicitly) assumed to be independent from each other. In
the context of DNEP, for networks of small sizes, the simple GA can still function
fairly well. However, for networks of large sizes, the probability that building blocks
are disrupted considerably increases, leading to unacceptably poor performance.

Problem-specific knowledge, if available, can be employed to inform the stochas-
tic operators of EA solvers to respect building blocks during the optimization pro-
cess. If such domain knowledge is not available, as in black-box optimization, or
cannot be straightforwardly exploited, building block information can be (partly)
deduced by detecting dependency structures among problem variables. Dependency
structures are often captured by learning linkage models from the working popula-
tion of EAs. The learned models are then used to inform the variation operators
which variables should be treated together during recombination. The complexity
of the linkage model defines what kind of dependency the model can capture. For
example, the marginal product model can match non-overlapping linkage-set struc-
tures and the linkage tree model can match hierarchical dependencies. Employing
the linkage tree model, in this thesis, GOMEA exhibited superior performance on
a wide ranges of problems. On small problem instances, GOMEA performs compa-
rably with, or better than, other EAs. As the problem sizes increase, the perfor-
mance gaps enlarge considerably: GOMEA obtains high-quality (or optimal) solu-
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tions within available (and reasonable) computing budgets while other EAs would
require much more computing time and resource to obtain solutions of the similar
quality. The performance of GOMEA can be explained by: 1) the capability of the
linkage tree model to match multi-level dependency structures, which is especially
suitable for the DNEP problem; and 2) the efficiency of the Gene-pool Optimal
Mixing (GOM) operator in exploiting the learned linkage models to construct new
candidate solutions. Linkage learning requires additional computations, but the
much better results obtained by GOMEA can easily offset its overhead, especially
in cases where the solution evaluation functions dominate the total computing time,
which are very typical in industrial optimization.

The dependency structure might however not be the only, or the most essen-
tial, type of structure in a problem. Successful applications of EAs in industrial
optimization often require some adaptations of the solver’s operators to the specific
properties of the problem under concern. In Chapter 3, we pointed out that the con-
nectivity structure is the most important property of DNEP solutions that should
be exploited by EA solvers. We then studied the network connectivity and radiality
knowledge to customize the operation of different optimization algorithms, creating
specialized solvers for DNEP. However, for the purpose of performance analysis, it
is useful to separate the contribution of domain knowledge from the uninformed
optimization results so that each solver can be more precisely assessed. Therefore,
in this thesis, we performed experiments for every EA in pairs of variants: the orig-
inal implementation versus a problem-specific adapted version. The experimental
results suggested that problem-specific knowledge is essential to the success of GA in
real-world applications. The out-of-the-box simple GA is very inefficient in recom-
bining and preserving feasible solutions, let alone finding the optimum. On the other
hand, GOMEA is a more robust EA in the sense that even without specialization,
GOMEA can perform linkage learning to capture the dependency structure and
exploit the learned linkages to more efficiently create offspring solutions of better
quality. Customization with domain knowledge (in this case, the network connectiv-
ity structure) does improve the performance of GOMEA, but the improvement gap
is not as substantial as that of simple GA. The best EA configurations, therefore,
are the ones that exploit both linkage information and problem-specific knowledge.

The capability to exploit linkage information and problem-specific knowledge is
a crucial factor that contributes to the scalability of EAs solving DNEP problems.
In this thesis, we pinpointed the key components for designing scalable EA solvers,
especially in the multi-objective DNEP case.

7.2.3. Scalability-oriented design of evolutionary algorithms
While in many real-world applications, EAs are designed and adapted to be effective
in solving the problem instances under concern, the scalability issue is often over-
looked. Scalability is important because scalable solvers are reusable software, which
can be straightforwardly employed to tackle different problem instances of bigger
sizes without the need of re-implementing to fit new problem instances. Therefore,
we recommend that the scalability-oriented perspective should be adopted in future
EA designs and applications.
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There are many factors that affect the scalability of an EA, including the adap-
tations of control parameters, or the exploitation of linkage information and domain
knowledge, which were discussed in the previous sections. In Chapter 3, we focused
on how to design scalable multi-objective evolutionary algorithms (MOEAs), but
some general ideas can be transferred to the single-objective case as well. Given
a computing budget, the goal of multi-objective optimization is to find a set of
non-dominated solutions that well approximates the true Pareto-optimal front. We
presented a diversity-based implementation of the elitist archive to keep track of the
non-dominated solutions obtained during the optimization process. Elitist archiv-
ing in multi-objective optimization is necessary to prevent non-dominated solutions
from being accidentally discarded as the size of the working population is normally
limited compared to the numerous (or even infinite) number of non-dominated so-
lutions. When the capacity of the elitist archive is exceeded, the archive will be
trimmed such that the remaining elitist solutions are as diverse as possible. It is
possible that solutions on different regions of the Pareto-optimal front have different
characteristics, and it would be difficult for a single population to maintain equal
search biases toward all those parts at the same time. Therefore, in each generation,
the working population is partitioned into a number of equal-sized clusters, ensuring
that all regions of the Pareto-optimal front are evenly approached. For every clus-
ter, a separate linkage tree model is learned to capture the dependency structures
among problem variables specific to candidate solutions in that cluster. Each ex-
isting (parent) solution is transformed into a new offspring by employing the Gene-
pool Optimal Mixing operator to iteratively recombine the parent solution with
other donor solutions in the same cluster that it belongs to, regarding the learned
linkage tree of that cluster. It can be seen that while the elitist archive functions
at the global level, keeping track of the overall status of the optimization process,
the linkage learning and solution recombination operates at local levels, ensuring
dedicated search bias is well-tuned toward each region. The resulting algorithm,
named MO-GOMEA, has shown superior scalability over other typical MOEAs in
a wide range of benchmarks (in Chapter 3) and also proved its applicability to the
industrial multi-objective DNEP problem (in Chapter 6). The methodology that
we developed here can be employed as a guideline to design scalable MOEAs for
tackling other real-world multi-objective optimization problems as well.

7.3. Future research
This thesis has described the modeling and computational challenges in solving
DNEP problems and presented how they can be systematically addressed by properly-
designed (multi-objective) EAs with the scalability mindset. Our proposed EA
methodology can serve as a DNEP framework and can be extended for future works
in several ways as follows.

First, this thesis considered a “conservative” approach, in which candidate net-
work configurations are evaluated against the peak power demand all over the net-
work, which can be considered as the worst-case scenario. However, regarding the
mobility of EVs and the volatility of DG, there might be multiple other worst-case
scenarios with different occurrence times and locations of peak loads. If the peak
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power demand and the power injection of EVs and DG can be properly modeled
by some probability distribution, then Monte Carlo methods can be used to evalu-
ate candidate expansion plans against the probable peak load profiles that can be
sampled from the distribution. Efficient computing methods must be developed to
perform such many solution evaluations within a reasonable amount of time.

Second, there are many perturbations in carrying out a multi-year distribution
network expansion plan in practice. For example, some planned equipment might
not be available in the future and would need to be changed to different devices,
the installation time might be delayed, or the construction time might need to be
extended. All these changes affect the actual objective values of the expansion plan
and even its feasibility in practice. For future works, our methodology here can be
enhanced by introducing the notion of robustness of candidate expansion plans in
the presence of variable perturbations during the DNEP process.

Last but not least, many-objective optimization problems, i.e., problems having
four or more objectives, are beyond the scope of this thesis. Multi-objective op-
timization tasks in current DNEP practice mostly involve two or three objectives,
and higher-dimensional objectives can be transformed and collapsed into lower-
dimensional representations. This approach is acceptable partly because DNOs are
the primary, if not sole, stakeholder in maintaining and operating distribution net-
works. However, it can be foreseen that future DNEP and power system expansion
planning in general would directly involve multiple stakeholders, e.g., network op-
erators, energy suppliers, regulators, industrial customers, residential consumers,
and electric vehicle owners, each with their own interest and different (conflicting)
objectives to optimize. Therefore, it can be argued that solving a many-objective
optimization problem in its true (non-collapsed) form would better provide all stake-
holders a general and unbiased picture of the problem at hand. Analyzing the
optimization results of such problems poses considerable challenges, e.g., how to
visualize and efficiently traverse high-dimensional Pareto fronts, or how to perform
decision makings when too many conflicting objectives must be taken into account.
Furthermore, in higher-dimensional objective spaces, almost all solutions in the pop-
ulation can become non-dominated. A Pareto domination-based MOEA will then
suffer from the loss of selection pressure, which deteriorates its convergence per-
formance toward the Pareto-optimal front. Many-objective optimization requires
novel techniques different from the multi-objective case to be developed. Building
a scalable EA for many-objective optimization, therefore, invites further research.
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Appendix

MV cable types. Type 12 is sub-transmission cable and is not considered in MV DNEP. Types
4-11 are currently existing cable types but are not used for new cable installations. (N/A: Not
Available)

ID Type Inom R X C Cost
(Ω/km) (Ω/km) (µF/km) (EUR/km)

1 120 mm2 215 A 0.257 0.085 0.38 50 000

2 150 mm2 295 A 0.20858 0.09592 0.3833 59 000

3 240 mm2 370 A 0.13517 0.10823 0.43553 62 000

4 400 mm2 475 A 0.08077 0.09972 0.5344 N/A

5 630 mm2 605 A 0.0511 0.09272 0.64103 N/A

6 N/A 135 A 0.53253 0.09777 0.27072 N/A

7 N/A 160 A 0.3737 0.09367 0.30671 N/A

8 N/A 195 A 0.26756 0.08995 0.34505 N/A

9 N/A 225 A 0.32829 0.10134 0.32667 N/A

10 N/A 320 A 0.13079 0.07757 0.53109 N/A

11 N/A 350 A 0.10193 0.08004 0.48485 N/A

12 N/A N/A N/A N/A N/A N/A

Network 1 Data
Node Information Cable Information

ID Load Customers Existing Potential

P Q Branch Length Type Branch Length
[kW ] [kV AR] [#] [m] [m]

1 0 0 0 1 - 2 654 1 1 - 3 1235

2 271 168 131 1 - 10 710 1 1 - 4 1259

3 924 573 1 2 - 3 610 1 1 - 5 1323

4 394 244 190 3 - 4 163 1 1 - 6 1711

5 409 253 197 4 - 5 511 1 1 - 7 1904

6 394 244 190 5 - 6 496 1 1 - 8 1976

7 370 229 179 6 - 7 420 1 1 - 9 1781

8 117 72 57 7 - 8 297 1

9 259 160 125 8 - 9 336 1

10 431 267 208 9 - 10 690 1
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Network 2 Data
Node Information Cable Information

ID Load Customers Existing Potential

P Q Branch Length Type Branch Length
[kW ] [kV AR] [#] [m] [m]

1 0 0 0 1 - 2 481 3 1 - 3 526

2 35 17 25 1 - 16 246 3 1 - 4 469

3 1113 539 1 1 - 31 761 3 1 - 5 989

4 348 216 1 2 - 3 96 2 1 - 6 2062

5 871 286 1 3 - 4 48 2 1 - 7 738

6 332 109 232 4 - 5 498 2 1 - 8 2227

7 132 82 92 5 - 6 86 2 1 - 9 2307

8 170 82 119 6 - 7 288 2 1 - 10 2633

9 22 14 15 7 - 8 935 2 1 - 11 3041

10 202 98 141 8 - 9 200 2 1 - 12 3041

11 120 0 84 9 - 10 470 2 1 - 13 1395

12 88 55 62 10 - 11 851 3 1 - 14 1194

13 284 137 199 10 - 17 736 2 1 - 15 923

14 219 136 153 11 - 12 220 3 1 - 17 2808

15 314 152 220 12 - 13 300 3 1 - 18 2760

16 185 90 130 13 - 14 284 3 1 - 19 2653

17 127 79 1 14 - 15 479 3 1 - 20 1275

18 17 8 12 15 - 16 846 3 1 - 21 1205

19 896 434 1 17 - 18 101 2 1 - 22 1136

20 314 152 220 18 - 19 154 2 1 - 23 1131

21 125 77 88 19 - 20 283 2 1 - 24 1041

22 248 120 174 20 - 21 308 2 1 - 25 950

23 85 41 60 21 - 22 133 2 1 - 26 966

24 123 76 86 22 - 23 132 2 1 - 27 900

25 209 130 146 23 - 24 138 2 1 - 28 804

26 566 274 1 24 - 25 140 2 1 - 29 677

27 266 129 186 25 - 26 103 2 1 - 30 801

28 126 61 88 26 - 27 215 2

29 360 174 1 27 - 28 139 2

30 273 169 191 28 - 29 218 2

31 263 163 1 29 - 30 136 2

30 - 31 160 3
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Network 3 Data
Node Information Cable Information

ID Load Customers Existing Potential

P Q Branch Length Type Branch Length Branch Length
[kW ] [kV AR] [#] [m] [m] [m]

1 0 0 0 1 - 2 1 12 2 - 5 1335 8 - 38 1900

2 67 32 22 1 - 36 1 12 2 - 6 1357 8 - 40 2754

3 185 90 108 2 - 3 670 6 2 - 9 1256 8 - 41 3542

4 112 54 1 2 - 4 280 7 2 - 10 1040 8 - 42 3252

5 194 94 92 2 - 8 1 12 2 - 13 1840 8 - 43 2847

6 61 30 14 2 - 12 1820 7 2 - 14 1987 8 - 44 2696

7 152 73 216 3 - 5 570 6 2 - 15 2123 8 - 45 2510

8 158 76 143 4 - 35 380 9 2 - 16 1948 8 - 46 2148

9 282 136 317 5 - 17 570 6 2 - 17 1541 8 - 47 1900

10 193 94 153 6 - 7 1300 6 2 - 18 2507 8 - 48 1781

11 165 54 39 6 - 38 759 9 2 - 19 2437 8 - 49 1725

12 148 72 1 7 - 8 1421 6 2 - 20 3102 8 - 51 3405

13 91 44 47 7 - 9 610 7 2 - 21 2885 9 - 23 1840

14 119 57 1 8 - 11 360 7 2 - 28 3605 9 - 36 1693

15 311 150 186 8 - 24 570 8 2 - 29 3160 10 - 23 1981

16 314 152 295 8 - 27 570 8 2 - 30 3950 10 - 36 1890

17 333 161 245 9 - 10 250 7 2 - 31 3560 13 - 23 1496

18 351 170 397 10 - 11 340 7 2 - 32 3855 13 - 36 1189

19 236 114 167 12 - 13 320 7 2 - 33 3769 14 - 23 1822

20 297 144 351 13 - 14 380 7 2 - 34 2437 14 - 36 1388

21 253 122 264 14 - 15 150 7 2 - 35 372 15 - 23 1978

22 355 172 9 15 - 16 800 7 2 - 38 372 15 - 36 1496

23 492 238 208 15 - 18 510 7 2 - 40 4483 16 - 23 2726

24 152 74 34 16 - 17 570 7 2 - 41 5283 16 - 36 2277

25 156 75 1 18 - 19 280 7 2 - 42 4969 17 - 23 3063

26 186 90 41 19 - 34 510 7 2 - 43 4632 17 - 36 2704

27 310 150 211 20 - 21 300 7 2 - 44 4487 18 - 23 1887

28 292 141 4 20 - 34 510 7 2 - 45 4291 18 - 36 1321

29 11 6 1 21 - 22 530 7 2 - 46 3972 19 - 23 1524

30 230 111 8 22 - 28 955 8 2 - 47 3726 19 - 36 983

31 136 66 1 22 - 36 313 9 2 - 48 3593 20 - 23 1563

32 287 139 232 23 - 25 400 7 2 - 49 3546 20 - 36 920

33 298 144 186 23 - 26 350 7 2 - 51 5159 21 - 23 1219

34 174 84 167 23 - 27 350 7 5 - 8 1919 21 - 36 583

35 180 87 1 23 - 36 1 12 5 - 23 3038 23 - 28 1951

36 0 0 0 23 - 39 590 5 5 - 36 2718 23 - 29 2217

37 806 500 1 24 - 25 365 7 6 - 8 3086 23 - 30 2029

38 156 75 1 26 - 31 785 7 6 - 23 4250 23 - 31 900

39 259 126 134 28 - 29 465 8 6 - 36 4112 23 - 32 1194

40 281 136 76 29 - 30 740 8 8 - 9 671 23 - 33 1515

41 310 150 69 30 - 33 685 8 8 - 10 819 23 - 34 1524

42 217 105 2 31 - 32 272 7 8 - 13 530 23 - 35 3061

43 153 74 34 32 - 33 671 7 8 - 14 974 23 - 38 3061

44 137 66 1 35 - 38 426 9 8 - 15 1190 23 - 40 1593

45 259 126 62 36 - 37 94 9 8 - 16 1772 23 - 41 2374

46 261 126 121 36 - 50 450 7 8 - 17 1977 23 - 42 2092

47 226 110 50 39 - 40 640 7 8 - 18 1342 23 - 43 1678

48 269 130 139 40 - 51 1251 7 8 - 19 1036 23 - 44 1528

49 218 106 1 41 - 42 430 7 8 - 20 1557 23 - 45 1340

50 136 66 5 41 - 51 229 9 8 - 21 1231 23 - 46 1017

51 240 116 53 42 - 43 387 7 8 - 28 2088 23 - 47 778

43 - 44 130 7 8 - 29 1947 23 - 48 629

44 - 45 520 6 8 - 30 2354 23 - 49 592

45 - 46 350 6 8 - 31 1731 23 - 51 2235

46 - 47 233 6 8 - 32 2033 28 - 36 1328

47 - 48 180 6 8 - 33 2039 29 - 36 1581

48 - 49 150 7 8 - 34 1036 30 - 36 1456

49 - 50 435 7 8 - 35 1900 31 - 36 632

32 - 36 928

33 - 36 1009

34 - 36 983

35 - 36 2945

36 - 38 2945

36 - 40 2006

36 - 41 2721

36 - 42 2489

36 - 43 1973

36 - 44 1818

36 - 45 1672

36 - 46 1204

36 - 47 971

36 - 48 936

36 - 49 850

36 - 51 2567
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Acronyms

AC Alternating Current
ACO Ant Colony Optimization
BESS Battery Energy Storage System
BX Branch Exchanging
BX-M Branch Exchanging with Mutation
CAPEX Capital Expenditure
CCC Combined Complexity Criterion
CML Customer Minutes Lost
CPC Compressed Population Complexity
CRB Connectivity Repair by the Best solution
CRP Connectivity Repair by Parent
DC Direct Current
DE Differential Evolution
DG Distributed Generation
DNEP Distribution Network Expansion Planning
DNO Distribution Network Operator
DQ Disconnectivity Quantification
DSM Demand Side Management
EA Evolutionary Algorithm
ECGA Extended Compact Genetic Algorithm
EDA Estimation-of-Distribution Algorithm
EV Electric Vehicle
FI Forced Improvement
FOS Family Of Subsets
GA Genetic Algorithm
GOM Gene-pool Optimal Mixing
GOMEA Gene-pool Optimal Mixing Evolutionary Algorithm
hBOA hierarchical Bayesian Optimization Algorithm
HL Harik-Lobo
HV High Voltage
LLEA Linkage Learning Evolutionary Algorithm
LODF Line Outage Distribution Factor
LOTZ Leading Ones Trailing Zeros
LT Linkage Tree
LV Low Voltage
MAMaLGaM Multi-objective Adapted Maximum-Likelihood Gaussian Model
MBEA Model-Based Evolutionary Algorithm
MC Model Complexity
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Acronyms

MI Mutual Information
MILP Mixed-Integer Linear Programming
MINLP Mixed-Integer Non-Linear Programming
MO Multi-Objective
MO-GOMEA Multi-Objective Gene-pool Optimal Mixing Evolutionary

Algorithm
MOEA Multi-Objective Evolutionary Algorithm
MOEA/D Multi-Objective Evolutionary Algorithm based on Decomposition
MOEDA Multi-Objective Estimation-of-Distribution Algorithm
mohBOA multi-objective hierarchical Bayesian Optimization Algorithm
MOOP Multi-Objective Optimization Problem
MP Marginal Product
MV Medium Voltage
MV-D Medium Voltage Distribution
NIS No Improvement Stretch
NOP Normally Open Point
NPV Net Present Value
NSGA Non-dominated Sorting Genetic Algorithm
OPEX Operational Expenditure
PFC Power Flow Calculation
PSK Problem-Specific Knowledge
PSO Particle Swarm Optimization
PV Photovoltaics
SAIDI System Average Interruption Duration Index
SO Single-Objective
SPEA Strength Pareto Evolutionary Algorithm
TNEP Transmission Network Expansion Planning
UF Univariate Factorization
UMDA Univariate Marginal Distribution Algorithm
VO Variation Operator
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