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ARTICLE OPEN

Inverse-designed spinodoid metamaterials
Siddhant Kumar 1, Stephanie Tan2, Li Zheng 1 and Dennis M. Kochmann 1,3✉

After a decade of periodic truss-, plate-, and shell-based architectures having dominated the design of metamaterials, we introduce
the non-periodic class of spinodoid topologies. Inspired by natural self-assembly processes, spinodoid metamaterials are a close
approximation of microstructures observed during spinodal phase separation. Their theoretical parametrization is so intriguingly
simple that one can bypass costly phase-field simulations and obtain a rich and seamlessly tunable property space. Counter-
intuitively, breaking with the periodicity of classical metamaterials is the enabling factor to the large property space and the ability
to introduce seamless functional grading. We introduce an efficient and robust machine learning technique for the inverse design
of (meta-)materials which, when applied to spinodoid topologies, enables us to generate uniform and functionally graded cellular
mechanical metamaterials with tailored direction-dependent (anisotropic) stiffness and density. We specifically present biomimetic
artificial bone architectures that not only reproduce the properties of trabecular bone accurately but also even geometrically
resemble natural bone.

npj Computational Materials            (2020) 6:73 ; https://doi.org/10.1038/s41524-020-0341-6

INTRODUCTION
Tailoring the architecture of cellular materials— including random
foams as well as deterministic truss-, plate-, and shell-based
lattices — has produced a wide variety of metamaterials (also
referred to as architected materials) whose macroscale physical
and mechanical properties can be controlled by a careful design at
the microstructural level. Supported by optimization techniques1–7

and advances in additive manufacturing8, truss- and plate-based
mechanical metamaterials9–15 have gained prominence as, e.g.,
lightweight cellular solids with engineered stiffness, strength, or
energy absorption. Unfortunately, they also suffer from detri-
mental stress concentrations found at all intersections of structural
members, which generally leads to low strength and poor
recoverability16–18. Metamaterials based on smooth topologies
— such as triply periodic minimal surfaces (TPMS) — address this
shortcoming19 by avoiding points of stress concentration while
also showing excellent scaling of stiffness and strength with
respect to density20–22 (leveraging the benefits of doubly curved
surfaces23 that engage slender structures primarily in stretching
rather than bending24,25). Most recently, spinodal topologies —
extensively studied in the 1960s–1990s — have found a revival in
metamaterials26–29. They are naturally created by self-assembly
processes such as spinodal decomposition during phase separa-
tion30,31 in, e.g., nanoporous metal foams32–34, microemul-
sions35,36, and polymer blends37,38. Similar to TPMS, spinodal
topologies consist of smooth, non-intersecting surfaces having
nearly zero mean curvature29,39 with unique topological proper-
ties26,28,29,39–42. Spinodal topologies can be realized as solid
networks (obtained from removing one of the two phases after
phase separation, such as in nanoporous foams26,29) and as shell
networks (retaining only the interfaces between the two
phases27,28). Overall, spinodal topologies cover an extreme and
seamless range of anisotropic (direction-dependent) mechanical
properties, as verified, e.g., by their tailorable anisotropic elastic
moduli26 — creating materials that are stiff in some directions and
soft in others. By contrast to unit-cell-based truss-, plate-, or TPMS-

type architectures, spinodal designs are non-periodic, which
greatly enhances the design space and achievable directionality.
Moreover, non-periodic architectures do not suffer from the
fabrication-based introduction of symmetry-breaking defects —
by contrast to periodic metamaterials whose sensitivity to defects
deteriorates their mechanical properties22,27,28,43,44. As we further
demonstrate here, the non-periodicity of spinodal networks
(without geometric unit cell limitations or tessellation require-
ments) — counter-intuitively — enables the effortless creation of
functionally graded materials with spatially varying properties.
Finally, the emergence of spinodal topologies during self-
assembly (such as by arresting spinodal decomposition in
polymeric emulsions27) promises scalable manufacturing of
centimeter-scale samples with nanoscale features, in contrast to
conventional additive manufacturing-based designs.
While spinodal topologies hence promise an intriguingly large

design space as well as advantages over most competing
architectures, key challenges persist. It is practically impossible
to theoretically explore the full anisotropic design space, since
topologies are obtained by simulating the time-dependent
Cahn–Hilliard phase separation process26,28 (see Fig. 1a), which
can take hours per simulation on a modern computer. The only
reported alternative29 is limited to isotropy, which strongly limits
the achievable property space. To overcome this limitation, we
here deploy a cellular design strategy that bypasses expensive
simulations and leverages the statistics of spinodal topologies,
resulting in a class of metamaterial architectures, which we term
spinodoid (spinodal-like) topologies, with enormous anisotropic
design and property spaces. Exploring those, however, requires
another approach for the inverse design to be reported here.
Structure–property relations of all existing metamaterials have

primarily been explored in a forward fashion: given a micro-
structure, one extracts the effective properties by methods of
homogenization. The inverse challenge — identifying a micro-
structural topology that meets the mechanical property require-
ments — has often been addressed by inefficient trial and error,
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requiring a designer’s intuitive understanding of the
structure–property relations. Systematic approaches such as
topology optimization and genetic algorithms2,45,46 are not only
beneficial but also computationally expensive (relying on repeated
sampling and/or computation of the effective properties) and
highly dependent on initial guesses. In addition, while the forward
problem, i.e., mapping from topological parameters to property
space, is well defined, the inverse problem is ill-posed (multiple
topologies can have the exact same or similar effective proper-
ties). Recent advances in machine learning and deep learning
have shown success in overcoming this challenge. Machine
learning-based surrogate models — trained in a data-driven47,48

(supervised) or physics-driven49–52 (unsupervised) setting, which
can bypass expensive simulations and/or experiments — have
been developed for applications, including metamaterials3,53,
composites54,55, two-dimensional materials, and nanotubes56,57.
More recently, surrogate models based on autoencoders and
variational autoencoders58,59 have attracted interest due to their
ability to obtain a low-dimensional latent space parametrization of

the design space. Once trained, surrogate models accelerate the
search for possible candidates that fit the design requirements
from a large design space. However, such approaches require
solving an optimization problem based on the (forward-only)
surrogate model, which prevents an on-demand inverse design
framework.
We here deploy a machine learning strategy for the inverse

design of the newly introduced spinodoid topologies, which
efficiently predicts an optimal topology for a given set of sought
properties. Our approach, in contrast to surrogate optimization
methods, provides a computationally inexpensive two-way
relationship between topological parameters and mechanical
properties. Although we focus on the anisotropic elasticity of
spinodoid architectures (and demonstrate their potential for, e.g.,
spatially varying patient-specific bone replacements), our inverse
design approach — inspired by similar problems in the
nanophotonic and plasmonic community60–65 — is sufficiently
general to apply, in principle, to any physical material properties
and to any finite set of design parameters.

Fig. 1 Design of spinodoid metamaterials. a Conventional methodology of generating spinodal topologies by computationally expensive
phase field simulations in combination with a level set. The anisotropic lamellar topology shown here was obtained by such simulations with
anisotropic surface energies (see ref. 26 for details). b Schematic view of the design parameters (cone angles) θ1, θ2, and θ3 in our anisotropic
GRF approach. Black dots indicate the N wave vectors ni sampled from within the cones. c Spinodoid topology generation strategy using the
GRF approach, followed by computational homogenization for effective property extraction. Here the example of an isotropic GRF (θ1= θ2=
0°, θ3= 90°) and its corresponding topology (for ρ= 0.5) and elastic surface (obtained by finite element simulations) are shown. The elastic
surface illustrates the effective (normalized) directional Young’s modulus E(d) for all directions d∈ S2 in the Cartesian basis fê1; ê2; ê3g.
Indicated in light and dark gray are the elastic Voigt bound (ρEs) and the Hashin–Shtrikman upper bound, respectively, for comparison.
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In the following, we first introduce the class of spinodoid
topologies, followed by a discussion of the tunable anisotropic
material behavior with opportunities for functionally graded
spinodoid metamaterials. Next, we present the data-driven inverse
design framework, whose application to spinodoid metamaterials
results in topologies with as-designed anisotropic stiffness. We
close by demonstrating the (inverse) design of synthetic bones
based on spinodoids.

RESULTS
From spinodal to spinodoid topologies with tunable anisotropy
Spinodal topologies form naturally when a homogeneous solution
decomposes into two spatially separated uniform phases in a
diffusion-driven fashion. During the early stages of phase
separation, small fluctuations in the phase distribution are
described accurately by the linear Cahn–Hilliard model66 for an
isotropic evolution of the underlying phase field φ(x) representing
the concentration fluctuation of one phase at position x∈Ω in a
domain Ω � R3 (Fig. 1a). Cahn30 showed that the phase field may
be described by a superposition of a large number N≫ 1 of
standing waves of constant wavenumber β > 0, mathematically
known as a Gaussian random field (GRF)67:

φðxÞ ¼
ffiffiffiffi
2
N

r XN
i¼1

cosðβni � x þ γiÞ; with ni � UðS2Þ; γi � Uð½0; 2πÞÞ;

(1)

where S2 ¼ fk 2 R3 : k k k¼ 1g denotes the unit sphere in three-
dimensional (3D). ni and γi denote, respectively, the directions and
phase angles of the ith wave vector, which are random variables
independently sampled from uniform probability distributions.
While the original Cahn–Hilliard equation applies only to isotropic
systems, it has been exploited for simulating anisotropic phase
separation68–75 by introducing directional-dependent interface
energy or phase mobility/diffusivity, both of which result in
cellular architectures with anisotropic properties. Toward the same
objective but without the need to simulate the phase separation
process, we here propose an anisotropic extension of Cahn’s GRF-
based solution (1) as a means to efficiently generate smooth
spinodal-like topologies.
Our point of departure is the observation that the wave vectors

in (1) are isotropically sampled from the unit sphere. To introduce
anisotropy, we restrict those ni directions by biasing their
statistical sampling with a non-uniform orientation distribution
function (ODF), favoring some directions and neglecting others.
Since the resulting topologies approximate the products of
spinodal decomposition, we speak of spinodoid topologies. As a
particular example, inspired by crystallographic texture poles, we
introduce the distribution

ni � U k 2 S2 : jk � ê1j> cos θ1ð Þ � jk � ê2j> cos θ2ð Þ � jk � ê3j> cos θ3ð Þ� �� �
;

(2)

where fê1; ê2; ê3g denotes the Cartesian basis and angles
θ1; θ2; θ3 2 f0g∪ ½θmin; π=2� represent the allowed spread of wave
vectors about each of the three orthogonal base directions (Fig.
1b). Choosing, e.g., θ1= θ2= 0 restricts wave vectors to the cone,
which forms an angle less than θ3 > 0 with the x3-axis (and the
interfaces of the topologies align preferentially perpendicular to
those ni vectors). Controlling the value of θ3 allows a seamless
transition from a phase field with an isotropic structure (θ3= π/2,
reducing to the unit sphere) to that with a lamellar structure (θ3 <
π/2). As representative examples, Figs 1c and 2 show specific
choices of θ1; θ2; θ3ð Þ and the resulting isotropic, lamellar,
columnar, and cubic symmetries.
From the above phase field, a bicontinuous topology is

constructed by computing level sets or isosurfaces of the phase
field29,30,40,41. To this end, we define a binary indicator function

χ(x) that denotes the presence of material vs. void at x. This
applies equally to the generation of solid- and shell-type
architectures27,28:

solid network : χðxÞ ¼ 1 if φðxÞ � φ0

0 if φðxÞ>φ0

�

shell network : χðxÞ ¼ 1 if φðxÞ ¼ φ0

0 if φðxÞ≠φ0

�
:

(3)

For solid networks, threshold φ0 is computed as the quantile (of
normally distributed random variable φ) evaluated at the average
relative density ρ ¼ E½χ� of the solid phase:
φ0 ¼

ffiffiffi
2
p

erf�1ð2ρ� 1Þ. The relative density ρ provides a measure
of the porosity of a given topology. Since small relative densities
ρ≪ 1 may contain disjoint solid domains, we restrict the design
space to ρ∈ [0.3, 1] in the following (for the same reason, we
choose the minimum cone angle as θmin ¼ 15	); for isotropic
topologies, ρ > 0.159 was recently shown to ensure bi-continuity29.
For shell topologies, the zero isosurface (φ0= 0) is chosen. We
note that the area per unit volume of the isosurface of stochastic
fields of type (1) is constant regardless of the anisotropy76, and the
area per unit volume of the zero isosurface of an isotropic GRF
bounded by a unit cell is40,41

s ¼ 2ffiffiffi
3
p

π
e�φ

2
0=2β ¼ 2ffiffiffi

3
p

π
β; (4)

so that the relative density of all slender shell topologies is
obtained as ρ= sh with shell thickness h (note that the relative
density of shell architectures can be orders of magnitude below
that of their solid counterparts). The complete set of design
parameters to characterize our anisotropic spinodoid topologies is
hence Θ= (ρ, θ1, θ2, θ3).
We stress that the thus generated topologies are not mere

mathematical constructs but have physical relevance: they may be
interpreted as an approximate solution to the modified
Cahn–Hilliard equation modeling spinodal decomposition in case
of an anisotropic diffusive mobility (see Supplementary Informa-
tion, Section 1). It is for this reason that the spinodoid
architectures presented here may indeed be expected from phase
separation with direction-dependent interface mobility. While the
self-assembly based fabrication has been demonstrated only for
isotropic structures27, phase separation in block copolymers and
polymeric micro-emulsions is a promising avenue for the self-
assembly of anisotropic spinodal topologies36–38,77,78.
The above architectures are generally non-periodic, which is

expected from foams but is a departure from conventional
metamaterial designs and comes with advantages. First, non-
periodic topologies are more resilient to fabrication-related,
symmetry-breaking imperfections27,28. The lack of symmetry also
affects the buckling behavior and suppresses bifurcation modes of
intermediate wavelengths (spanning single to multiple unit cells)
often exploited in periodic metamaterials79–83. Second, despite
the complex architecture (applying to an, in principle, infinite
design space without periodicity or symmetries), the mathema-
tical description is simple and can be encoded in an ODF and
parametrized by a finite set of design parameters (e.g., Θ). Third,
the topology can be varied smoothly and seamlessly across a
given body for the purpose of functional grading without issues
arising from unit cell tessellation and discontinuous topologies
(which, in contrast, is an active challenge for periodic topologies,
including trusses, plates, and shells). Although functional grading
with smooth transitions was demonstrated for TPMS topologies84–86,
the triple-periodicity constraint results in a limited and discrete
design space (including the well-known Schwarz Primitive87 and
Schoen Gyroid88) and included limited examples of anisotropy in
TPMS topologies89–91. A unified continuous design space,
particularly in terms of a tunable anisotropy of the resultant
metamaterial, has remained a challenge. Here a spatially variant
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spinodoid topology can be generated by the spatial superposition
of two or more random fields (Fig. 3 and Supplementary
Information, Section 4), which offers unprecedented opportunities
for spatially variant architectures. In addition to locally varying the
topology, this approach can also create architectures with spatially
variant microstructural length scales (e.g., to vary locally the
characteristic pore size); an example is shown in Supplementary
Information, Section 4. Finally, the non-periodic field-based
formulation (1) is space-filling and can be leveraged to create
spinodoid solids of arbitrary macroscopic shapes (without the
need for adaptive tessellation and conforming algorithms near the
body’s boundary, as is the case for most periodic unit cell-based
designs).

Tunable anisotropic material behavior
As a representative example of effective properties, we character-
ize the 3D elastic stiffness of solid topologies (shell topologies can

be treated analogously, which have great potential due to their
optimal scaling of stiffness and strength with density28 and their
extreme resilience verified experimentally in ceramic thin-shell
architectures27). We apply computational homogenization by the
finite element method (FEM), using a representative volume
element (RVE) for each chosen topology made of a homogeneous,
isotropic, linear elastic base material (Young’s modulus Es,
Poisson’s ratio νs= 0.3). The resulting effective (homogenized)
constitutive behavior of the metamaterial is linear elastic with an
effective fourth-order elastic modulus tensorC extracted from the
RVE via applying average strains 〈ϵ〉, computing volume-averaged
stresses 〈σ〉, and solving hσiji ¼ Cijklhϵkli. Since the topologies lack
periodicity, we apply affine displacement boundary conditions to
the RVE, so that the homogenized stiffness is generally an
overestimate of the true stiffness (for sufficiently large RVEs
relative to microstructural features, assuring statistical homoge-
neity and a separation of scales, this estimate presents a good

Fig. 2 Anisotropic spinodoid topologies and their properties. a–f Example solid topologies and their corresponding elastic surfaces,
demonstrating the wide range of anisotropy controlled by the design parameters (θ1, θ2, θ3) for ρ= 0.5. Elastic surfaces illustrate the effective
(normalized) directional Young’s modulus E(d) for all directions d ∈ S2 in the Cartesian basis fê1; ê2; ê3g. Indicated in gray is the elastic Voigt
bound (ρEs) as an upper bound.
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measure of the effective stiffness of the metamaterial). Numerical
details are contained in Supplementary Information, Section 2. The
microstructural length scale is inversely proportional to the
wavenumber β in (1). For a cubic RVE of size l × l × l, we found
β= 10π/l to be sufficient for an effective separation of scales;
similar observations were reported previously for spinodal
topologies28,29.
To visualize the elastic anisotropy, the elastic surface is

computed, showing the effective Young’s modulus along a
direction d∈ S2 as

EðdÞ ¼
X3

i;j;k;l¼1
C�1ijkl didjdkdl

 !�1
: (5)

Figure 2 illustrates how design parameters (θ1, θ2, θ3) control the
elastic surface. In addition, the relative density ρ controls the
absolute stiffness scaling (see Supplementary Fig. 2). Note that
the principal stiffness directions here are by choice always aligned
with coordinates fê1; ê2; ê3g. However, a coordinate rotation (i.e.,
Ĉpqrs ¼

P
i;j;k;lRpiRqjRrkRslCijkl for a rotation tensor R∈ SO(3)) can

further expand the design space to obtain stiffness tensors with
arbitrary principal directions.
All information related to the structure of the elastic surface of a

metamaterial is now encoded in the effective stiffness matrix C,
whose components — by exploiting symmetries and the
orthotropic nature of all architectures defined by Eq. (2) —
reduces to the following vector of independent elastic moduli:
S ¼ ðC1111;C1122;C1133;C2222;C2233;C3333;C2323;C3131;C1212Þ.

Data-driven inverse design
Toward the creation of cellular solids with as-designed properties,
we need to address the inverse design question: how can we
systematically and efficiently find a topology from within the
design space that has the target anisotropic elastic moduli? In
contrast to existing methods, we use offline training of a machine
learning model that provides a computationally inexpensive two-
way relationship between topological parameters and mechanical
properties. We propose a machine learning technique based on

deep neural networks (NNs)92, which require the a-priori creation
of a sufficiently large and representative training dataset D ¼
fΘi ; Sig; i ¼ 1; ¼ ; nf g consisting of n pairs of design parameters
Θ and corresponding stiffness S, which are computed by FEM
homogenization. Note that a large dataset is made possible only
because of the computationally inexpensive GRF-based formula-
tion of the spinodoid topology. Creating a dataset by simulating
the time-dependent Cahn–Hilliard phase separation process is
impractical as each simulation can take several hours on a modern
computer (in contrast to few seconds for the GRF-based
formulation; see Supplementary Information, Section 5).
Let Fω be a NN that maps design parameters Θ onto stiffness S

in a forward fashion and is hence referred to as f-NN. We choose a
multi-layer perceptron (MLP) architecture (Fig. 4a) whose para-
meter set ω contains the weights and biases of all hidden layers
(see Supplementary Information, Section 5). Training the f-NN
requires minimizing the (mean squared error) loss between true
values and predictions with respect to the f-NN-parameters ω, i.e.,

Fω  min
ω

1
n

Xn
i¼1
k Fω½Θi� � Sik2: (6)

This problem is well posed, and we use a back-propagation
algorithm93 to perform the optimization in Eq. (6). We leverage
automatic differentiation94 (which is also the implementation
basis of back-propagation in most modern machine learning
packages) to compute the gradients F0½Θi � ¼ ∂Fω½Θi �=∂Θi (the
latter will be important for the inverse problem).
To address the inverse problem, we introduce another MLP NN
Gτ (the i-NN), which maps stiffness S onto design parameters Θ.
Here the challenge lies in defining a measure (a loss function) that
identifies the correctness of an answer while ignoring the
multiplicity of correct answers (since various design parameters
may yield the same or similar effective stiffness). As a trivial
example, the spinodoid topologies corresponding to Θ= (ρ, 90°,
0, 0), (ρ, 90°, 90°, 0), and (ρ, 90°, 90°, 90°) all have the same
(isotropic) stiffness. This prevents the straightforward application
of machine learning tools, which rely on direct computation
of errors. For example, the naive approach to minimize

Fig. 3 Functional grading. A spatially variant architecture interpolating between columnar (θ1= 0°, θ2= θ3= 30°) and lamellar (θ1= 30°, θ2=
θ3= 0°) topologies (indicated by orange and blue colors, respectively). The cellular solid is generated by the superposition of the
corresponding anisotropic GRFs φ1 and φ2 in a linearly graded fashion: φðxÞ ¼ 1� λðx1Þð Þφ1ðxÞ þ λðx1Þφ2ðxÞ with λ(x1)∈ [0, 1] (see
Supplementary Fig. 4); the elastic surfaces corresponding to the two GRFs are shown with their design parameters. The level set φ0 is set to
zero for a homogeneous relative density of ρ= 0.5. As a consequence of the heterogeneous stiffness distribution, loads are carried and
deformation is observed inhomogeneously across the sample (as demonstrated in Supplementary Information, Section 4 for axial
compression).
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Pn
i¼1 k Gτ ½Si� � Θik2 is ill-posed and may not converge to a

correct solution (see Supplementary Information, Section 7). To
overcome this challenge, we leverage the f-NN and propose to
train the i-NN using the loss function

Gτ  min
τ

1
n

Xn
i¼1

Fω Gτ Si½ �½ � � Sik k2|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
reconstruction loss

þ λ Gτ ½Si � � Θik k2|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
prediction loss

0
B@

1
CAwith λ 
 0:

(7)

The reconstruction loss computes the error between the stiffness
of a predicted topology and the true stiffness that has been
queried, the rationale being that the predicted topology must
have the correct stiffness irrespective of the design parameters
used to create that topology. Ideally, the reconstruction should be
computed using FEM. For efficiency, we instead leverage
the above f-NN as a computationally inexpensive approximator
of the FEM homogenization scheme. The advantage is two-fold.
First, the numerous evaluations of the reconstruction loss via the
pre-trained f-NN are several orders of magnitude less expensive
than if FEM was used for reconstruction (see Supplementary
Information, Section 5) during the i-NN training. Second, the back-
propagation algorithm93 requires computing the derivatives of the
loss function with respect to the NN parameters (so-called
sensitivities). Numerical differentiation by FEM (perturbing the
design parameters and re-calculating the effective stiffness for

each perturbation) would incur prohibitive expenses — the f-NN
as an approximator instead provides analytical gradients via
automatic differentiation94 (see Supplementary Information, Sec-
tion 5). Note that during the i-NN training, the pre-trained f-NN
remains unchanged; i.e., no further do we train the parameters ω
of the f-NN. The prediction loss in Eq. (7) acts as a soft
regularization by measuring the error in the predicted design
parameters. Although this regularization is not necessary (equiva-
lent to choosing λ= 0), we observe that it accelerates the training
of i-NN and the convergence of the reconstruction loss as long as λ
is sufficiently small (e.g., λ ~ 0.01–1.0). For example, in the initial
epochs of training when the parameters of the i-NN are untrained,
the prediction loss ensures that the design parameter predictions
from the i-NN are not nonsensical. For this reason, we activate the
prediction loss only during the first few epochs of the training
stage before deactivating it again (details in Supplementary
Information, Section 5).
For a quantitative assessment of our machine learning

technique, we generated a set of training and test data containing,
respectively, 19,170 and 2130 pairs of topologies and their
corresponding effective elastic stiffnesses (details about datasets
and training protocols are in Supplementary Information, Section
5). For each queried stiffness Si from the test dataset, the i-NN
predicts a set of design parameters Θ�i expected to yield the
sought effective stiffness Si. For verification, we reconstruct the
stiffness S�i of the identified design Θ�i (i) exactly via FEM

Fig. 4 Data-driven inverse design. a Schematic of the inverse design process. The inverse model (i-NN) takes a queried stiffness S as input
and outputs design parameters Θ defining a topology according to Eq. (1). The predicted design parameters are fed to the forward model (f-
NN) to reconstruct the stiffness and verify the predictions from the i-NN. Both NN models consist of six hidden layers with the indicated
numbers of nodes. b, c Reconstructed vs. true stiffness component C1111 in the test dataset. The reconstructed stiffness (i.e., stiffness of the
topologies predicted by the i-NN) is computed using f-NN and FEM. d, e Predicted vs. true design parameters ρ and θ1 in the test dataset. All
dashed lines represent the ideal line with zero intercept and unit slope; the corresponding R2 deviations are indicated. Further details are
provided in Supplementary Information, Section 5.
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simulations and (ii) approximately using the f-NN (recall that we
cannot compare Θ�i to Θi from the test data, since the mapping
between design parameters and stiffnesses is non-unique). Ideally,
in both cases the reconstructed stiffness of the identified topology
should agree with the target stiffness, i.e., S�i � Si . In a plot of
predicted (or reconstructed) vs. queried stiffness components, we
hence expect each data point to ideally lie on a line with zero
intercept and unit slope, and we may use the coefficient of
determination (R2) with respect to the aforementioned line as a
measure of accuracy.
Representative example results of reconstruction vs. true

(queried) stiffness component C1111 are shown in Fig. 4b, c. Since
the i-NN has been trained against the f-NN (which only serves as
an approximation of FEM-based homogenization), the FEM
reconstruction of stiffness shows a lower accuracy (R2= 0.997)
than when using f-NN (R2= 0.999), as expected. Nevertheless, we
generally observed excellent agreement of queried (true) vs.
achieved (reconstructed) stiffness values across all stiffness
components tested (we verified R2 ≥ 0.995 and 0.998, respectively,
across all FEM- and f-NN-based reconstructions).
As expected, the predicted topological parameters Θ* for a

queried stiffness S may vary significantly from those in the dataset
due to non-uniqueness (Fig. 4e). When queried, e.g., with a
stiffness S originally obtained from a sample with Θ= (0.35, 70°,
70°, 0°), the i-NN predicted an architecture with Θ*= (0.34, 47.99°,
55.88°, 31.79°) with only negligible differences in stiffness. In
addition, for close-to-isotropic stiffness queries (obtained from a
sample with e.g., at least one of θ1, θ2, or θ3 >80°), the i-NN
predicts all three θ1, θ2, and θ3 in the range of 45°–65°
(contributing to the decrease in prediction accuracy for high
values of θ1 in Fig. 4e). This highlights the advantages of our
approach in overcoming the ill-posedness of the inverse problem.
Note that the stiffness dependence on relative density ρ is so
dominant that the i-NN generally recovers the relative density of
architectures from the training set for a given stiffness (Fig. 4d).
While the inverse model is successful on test queries similar to

the training dataset, a natural question arises: is the model
applicable to arbitrary stiffness queries? There are two require-
ments: (i) a queried stiffness must be thermodynamically
admissible, i.e., it must satisfy major and minor symmetries
(Cijkl ¼ Cklij ¼ Cijlk ; i; j; k; l ¼ 1; 2; 3) and strong ellipticity for
reasons of stability (using Einstein’s summation convention:
Cijkluivjukvl > 0 for all non-zero u; v 2 R3). Furthermore, it must
not violate the Voigt upper bound that limits the maximally
achievable stiffness for a given relative density (e.g., one cannot
ask for an architecture that is stiffer than the base material). (ii) The
query S must lie within the design space (i.e., there must be at
least one Θ* within the bounds of the design parameters whose
stiffness matches the query S). If these requirements are not
satisfied, the i-NN will likely predict a Θ*, which does not lie within
the design space (an indication that the S does not satisfy the
aforementioned conditions). In the unlikely event Θ* does lie
within the design space, a quick reconstruction of S* via f-NN (and
comparison with the query S) will invalidate the i-NN prediction.
Once trained, the f-NN and i-NN together provide a computa-

tionally inexpensive two-way structure–property map as a design
tool for spinodoid metamaterials (Supplementary Information,
Section 5 estimates computational costs). Moreover, the machine
learning framework presented here can be readily integrated into
the functional grading approach of Fig. 3 to inverse-design
spatially variant solids. The i-NN can be used to generate multiple
independent GRFs that locally satisfy the anisotropic stiffness
requirements (queries to the i-NN), followed by the straightfor-
ward GRF interpolation approach outlined in Supplementary
Information, Section 4.

Inverse design of artificial bone
Synthetic bones or bone-mimetic scaffolds and implants are prime
examples that have benefited from advances in additive
manufacturing95–97. Matching the topological and mechanical
properties of bones in 3D-printed architectures (important for
successful long-term compatibility98) has remained a challenge
though. Although bone properties have been mimicked by truss
and TPMS architectures95,98,99, the thus available design space is
highly limited. For example, those designs did not cover the
required high level of elastic anisotropy and heterogeneity as well
as porosity found100 across different patients or even across bones
within the same patient. Leveraging the approach introduced here
can overcome those challenges and create bone-mimetic
structures with properties closer to those of natural bone than
any of the aforementioned designs.
As an example, we consider trabecular bone from bovine femur

samples, whose relative density and anisotropic stiffness compo-
nents were measured experimentally101 (see Supplementary
Information, Section 5). Using the measured directional modulus
variations as a query (and assuming the base material of bone
tissue is isotropic), the i-NN predicts the spinodoid architectures
and their stiffnesses and relative densities summarized in Fig. 5.
Remarkably, the inverse model accurately predicts the target
relative density and matches the anisotropic elastic stiffness of the
bone specimens despite no prior information about trabecular
bone during the learning stage. The small differences between the
reconstructed and experimentally measured stiffnesses are
attributed to small but non-zero normal–shear coupling terms in
the measured stiffness tensor (deviations diminish when the
corresponding stiffness components are set to zero). Moreover,
unlike previous approaches95,101, the resulting columnar spino-
doid architectures bear topological resemblance to natural bone
specimens (micro-computed tomographic images of the original
bones are included in Fig. 5). The columnar topology makes
structural features align with the load-bearing directions, akin to
the trabecular alignment in natural femoral bones.

DISCUSSION
Bone datasets are scarce, particularly from a data-driven inverse-
design perspective. Our approach bypasses this challenge and
applies an inverse model trained on spinodoid metamaterials to
the in silico generation of artificial bone, preserving the
anisotropic stiffness and level of porosity (while the characteristic
length scale is controlled by the wavelength). If a small but
representative dataset for trabecular bones becomes available, the
accuracy of the inverse model may be improved even further by
first training on the spinodoid design space followed by fine-
tuning on bone data. Finally, spatially varying architectures
matching patient-specific mechanical properties across an indivi-
dual bone (if known) can be realized readily by the GRF
interpolation approach of Fig. 3. This capability of creating cellular
solids with as-designed spatially varying stiffness and density is
key to, e.g., acoustic cloaking102 or tissue engineering103. We close
by noting that, with possible integration into multiscale topology
optimization or as a standalone framework to explore the design
space (e.g., via genetic algorithms), our combination of forward
and inverse maps of the structure–property relation accelerates
the design process of metamaterials with a wide range of tunable
mechanical response (anisotropic stiffness only being the tip of
the iceberg).

METHODS
Details of the anisotropic spinodal decomposition theory (Section 1), the
simulation procedures and post-processing of data (Sections 2 and 3), the
spatially variant architecture simulations (Section 4), the machine learning
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protocols (Section 5), and the bone data (Section 6) are summarized in the
Supplementary Information.
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