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Abstract. Temporal bipartite networks that describe how users interact with tasks
or items over time have recently become available. Such temporal information al-
lows us to explore user behavior in-depth. We propose two metrics, the relative
switch frequency and distraction in time to measure a user’s sequential-tasking
level, i.e. to what extent a user interacts with a task consecutively without inter-
acting with other tasks in between. We analyze the sequential-tasking level of
users in two real-world networks, an user-project and an user-artist network that
record users’ contribution to software projects and users’ playing of musics from
diverse artists respectively. We find that users in the user-project network tend
to be more sequential-tasking than those in the user-artist network, suggesting a
major difference in user behavior when subject to work related and hobby-related
tasks. Moreover, we investigate the relation (rank correlation) between the two
sequential-tasking measures and another 10 nodal features. Users that interact
less frequently or more regularly in time (low deviation in the time interval be-
tween two interactions) or with fewer items tend to be more sequential-tasking in
the user-project network. No strong correlation has been found in the user-artist
network, which limits our ability to identify sequential-tasking users from other
user features.

1 Introduction

Bipartite networks [2] are networks whose nodes can be divided into two disjoint
sets U and I such that every link connects a node in U and a node in I. Bipartite
networks have been widely used to represent, for example, which author has con-
tributed to which paper, which user has listened to which music and the ownership
between banks and assets. Using the information that is nowadays continuously
created, shared and recorded in the social networks, we could obtain the temporal
features of the interactions between the two disjoint sets of a bipartite network.
Temporal bipartite networks record not only e.g. which user listened to which
music but also at which time stamp(s). A link in a static bipartite network is en-
riched in a temporal bipartite network as a set of contacts/interactions (temporal
links) over time between two nodes from the two sets (user set and item set) re-
spectively. Such temporal information is essential to explore user behavior. The
items in the item set, for example projects and artists, can be regarded as tasks, in
this case work or hobby related. In this paper, we exploit the temporal information
to distinguish a user’s behavior between sequential-tasking and cross-tasking. A
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cross-tasking user tends to interact with other tasks/items in between interactions
with a given task while a sequential-tasking user contributes consecutively to a
task without the interruption of any other task.
With the temporal information of each interaction, also called contact, we aim
to address: How to quantify a user’s sequential or cross-tasking level? Which
kind of users are more sequential-tasking? To this end, we propose two met-
rics to characterize the sequential-tasking level of a user and explore how the
sequential-tasking level is related to other temporal features of a user. We illus-
trate our methods in two real-world temporal bipartite networks: an user-artist
network that records the timestamps when a user plays a song of an artist and
an user-project network that describes the moments when a software developer
contributes to a software project. We choose these two networks, also motivated
by the question: Do human behave differently in listening to music for pleasure
and in contributing to working tasks like software development?
Methods to characterize features of a temporal network have been recently stud-
ied. [3, 4, 8] How temporal network features affect a diffusion process has also
been explored. It has been shown that such effect can not be captured by the
static network, which integrates a temporal network over time[5–7]. In view of
the existing literature, we highlight that the contribution of this paper is three-
fold. First, we contribute new methodologies to characterize nodal level temporal
features with respect to how a node switch tasks or interactions with items over
time, beyond the classic centrality metrics that describes static node features [9].
Second, we unravel as well the relationships among diverse temporal centrality
metrics. Third, bipartite networks are a special type of multi-layer network [10–
13]. Our work may inspire the characterization of multi-layer temporal networks
in general. The paper is organized as follows. In Section 2, we introduce the
two real-world datasets, their bipartite temporal network representation and basic
statistical properties. We propose two measures to quantify a user’s sequential-
tasking level and compare the two features in the two networks in Section 3.
The relation between the proposed nodal features are compared with another ten
nodal properties in Section 4 to explore which kind of nodes tend to be sequential-
tasking. Conclusions and future challenges are addressed in Section 5.

2 Real-world Temporal Bipartite Networks

In this section, we introduce the construction of the two real-world temporal bi-
partite networks that will be studied as examples throughout this work and their
basic statistical features.

2.1 Dataset description

The user-artist dataset records the music playing activities of 1000 random users
in last.fm [1]. A temporal contact (u, i, t) between a user u and an artist i at time
t represents that user u plays a song of artist i at time t. The user-project dataset
contains the timestamps when an user contributes to a project (resolves a thread
in the Linux kernel)[15]. Since we aim to explore the sequential-tasking level
of a user, i.e. the extent to which a user interacts consecutively with an item
without interacting with other items, we consider only the users that interact two
or more times with at least one item. In other words, we remove users that interact



Characterizing Temporal Bipartite Networks 3

maximally once with any item, for whom it is impossible to distinguish between
sequential- and cross-tasking. The resultant number of users, the number of items
and the observation time window for each dataset are given in Table 1.

2.2 Network representation

A temporal bipartite network measured within time window [1,2, ...,T ] and com-
posed of a set U of U users and a set I of I items can be represented by a U× I×T
temporal adjacency matrix A . An element A (u, i, t) = 1 or A (u, i, t) = 0 indi-
cates, respectively, that there is a contact or no contact between the user u and
item i at time step t, where u = 1, . . . ,U , i = 1, . . . , I and t = 1, . . . ,T . Two aggre-
gated networks can be derived from a temporal network: The weighted aggregate
network can be represented by a weighted adjacency matrix W where the element
Wui equals the number of interactions between user u ∈U and item i ∈ I; The un-
weighted aggregated network can be represented by the unweighted adjacency
matrix A, where Aui = 1 if user u and item i interact at least once and Aui = 0 if
u and i do not interact. Both matrix W and A are of size U× I.
The total number of interactions of a user u is denoted by su and su = ∑

I
i=1 Wui is

actually the node strength in the weighted network W [14]. The number of distinct
items a user u interacts with is denoted by du and du = ∑

I
i=1 Aui is the nodal

degree in the unweighted network A. Likewise, the total number of interactions
of an item i is given by si = ∑

U
u=1 Wui and the the number of distinct users that

are linked to an item i is di = ∑
U
u=1 Aui.

2.3 Basic network characteristics

user-project network user-artist network
#users U 13,990 986
#items I 330,051 83,982
#temporal links/contacts 979,846 16,964,897
observation time window Mar. 1993 - May 2014 Feb. 2005 - Sep. 2013
avg #interactions/user 70 17,206
avg #items/user 41 748

Table 1: Basic properties of the user-project and user-artist networks.

We aim to design metrics to measure the sequential- or cross-tasking level of a
user, which allow us to compare users. We explore first how much users differ
from each other in e.g. the number of interactions, the number of distinct items a
user interacts with. Such difference or similarity among users are crucial for the
metric design with respect to which kind of normalizations should be taken into
account such that users can be well compared. As shown in Figure 1 and 2, the
distributions of the number of interactions su of a user and the distinct items du
that a user interacts with are highly heterogeneous in both networks. Such high
heterogeneity can be also observed among the items in the number of interactions
si per item and the number of distinct users di an item interacts with and among
the user item pair in the number of interactions wui per user and item pair. These
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(a) (b) (c)

(d) (e)
Fig. 1: The distributions of (a) the number of interactions su per user, (b) the number of
distinct items du that a user interacts with, (c) the number of interactions si per item, (d)
the number of distinct users di an item interacts with and (e) the number of interactions
wui per user and item pair when wui > 0 in the user-project network.

observations imply that normalizations are essential in the design of the metrics
to compare users.

3 Quantifying the sequential/cross-tasking level

For an arbitrary user, his interactions or contacts with items can be represented
by a vector C of length n where element C( j) is the index of the j-th contacted
item in time and n is the total number of contacts of the user. Examples of the
contact vectors are given in Figure 3. We measure the sequential-tasking level of
a user based on the sequence C. The real time delay between any two consecutive
contacts e.g. the j-th and the ( j + 1)-th contacts is ignored (or regarded as 1
time step) because during the period between two consecutive contacts, a user is
expected to participate in other activities that are not covered in our datasets.
We propose two metrics to measure the sequential-tasking level from two per-
spectives: I. the relative switch frequency, i.e. the scaled number of times that a
user switches from a task/item to another over time and II. the relative distraction
i.e. the fraction of time stamps that is used to contact/contribute to other tasks
between the first and the last time stamp of contact with a given task.
From the given contact sequence C we could deduce the number m of distinct
items the user interacts with and the number ni of times the user interact with
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(a) (b) (c)

(d) (e)
Fig. 2: The distributions of (a) the number of interactions su per user, (b) the number of
distinct items du that a user interacts with, (c) the number of interactions si per item, (d)
the number of distinct users di an item interacts with and (e) the number of interactions
wui per user and item pair when wui > 0 in the user-artist network.

each item i, 1≤ i≤ m. In this case, the user has in total n = ∑
m
i=1 ni interactions.

The item contact frequency vector {n1,n2, , , ,nm} tells the number of contacts
that each of the m items receives.

3.1 Relative switch frequency θ

We first quantify the sequential-tasking level from the perspective of the relative
switch frequency, i.e. the scaled number of times that a user switches from a
task/item to another over time.
Given a contact sequence C, the total number of switches Θ = ∑

n−1
i=1 1C(i)6=C(i+1)

can be computed by examining every two consecutive contacts C(i) and C(i+
1) and counting how many times C(i) and C(i+ 1) are different i.e. when the
indicator function 1C(i)6=C(i+1) is 1. Examples are given in Figure 3.
Users differ evidently in the number of distinct items they contact and the number
of total interactions thus differ also in the interacting frequency vector {n1,n2, , , ,nm}.
Trivially, the interacting frequency vector influences the possible range and distri-
bution of the number of switches when considering all possible contact sequences
that follow the same interacting frequency vector. Given the number m of distinct
items a user contacts, the minimal number of switches is Θ = m−1, which corre-
sponds to the highest possible sequential-tasking level. The sequence C1 in Figure
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Fig. 3: Four interaction/contact sequence examples of a user that interacts with m = 3
items {1,2,3}, n1 = 3, n2 = 2 and n3 = 1 times respectively. The number of switches
Θ and the distraction level ρ are given for each example.

3 is one such example. Given the number of items m a user contacts, more interac-
tions tends to lead to more switches. Hence, we propose to consider the following
normalized number of switches

θ =
Θ −Θmin

Θran−Θmin
(1)

where Θmin = m−1 is the minimal possible number of switches and Θran is the
average number of switches when the contact sequence (the time order of the
contacts) is randomly shuffled. The normalized number of switches of a contact
sequence counts the number of switches that exceeds the minimal possible num-
ber of switches, relative to the case when the contacts are randomly ordered in
time but following the same item contact frequency vector. A smaller normalized
number θ of switches suggests a more sequential interaction with the items/tasks.
Given the item contact frequency vector {n1,n2, , , ,nm}, the average number Θran
of switches when the time order of the contact sequence is randomly shuffled can
be approximated by

Θran ∼ (n−1)
m

∑
i=1

ni

n
(1− ni−1

n
) (2)

Next we give the reasoning for this approximation. Let B1 = 1[there is a switch after the 1st contact ].
Clearly, B1 is a Bernoulli random variable with success probability p given by:

p =Pr[B1 = 1] =
m

∑
i=1

Pr[C(2) 6= i|C(1) = i]Pr[C(1) = i] =
m

∑
i=1

ni

n
(1− ni−1

n
)

Similarly, we define B j, j = 2, . . . ,n− 1 indicating the switches at all possi-
ble contacts. Assuming that B2, . . . ,Bn−1 are independently and identically dis-
tributed as B1, that is from Bern(p), we obtain the expected number of total
switch: ∑

n−1
i=1 E(B j) = (n−1)p, which is exactly the right hand side of (2). This

quantity is an approximation of Θran because the assumption that B j’s being inde-
pendently and identically distributed is generally not satisfied. The approximation
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is precise if every element ni in the item contact frequency vector is infinite, so is
the total number of contacts.
Further, we evaluate the precision of this approximation by comparing it with the
Θ∗ran obtained from our simulations. We choose from each dataset a set of users
with diverse activities profiles (in the number of interactions n and number of dis-
tinct items m it interacts with) and consider the item contact frequency vectors of
these users to verify our approximation. We consider users that interact to at least
two items. We first classify the numbers of interactions of users as low, medium
or high such that equal amount of users can be classified to each of the three cat-
egories. Independently and similarly, we classify the the number of distinct items
a user interacts with as low, medium or high. We obtain 9 categories when com-
bining these two classifications. In the user-project dataset, we randomly choose
one user per category. In the user-artist dataset one category has no users and we
randomly choose two users from each of the 8 non-empty categories. For each se-
lected user, we derive the item contact frequency vector and compute the average
number of switches Θ∗ran of the h realizations of the randomly shuffled contact
sequences. The average ratio of Θran obtained by (2) over Θ∗ran is obtained for
each dataset. As shown in Table 2, the precision Θ ∗ran

Θran
is relatively high in both

networks and stable as the number of realizations h increases (quadruples). The
precision is higher in user-artist network. As explained earlier, our approxima-
tion tends to be more precise if the number of interactions per user-item pair is
larger. The significantly larger number of interactions per user in the user-artist
network than that in the user-project network as shown in Table 1 supports why
our approximation in user-artist network is more precise.

h=125 h=500
user-project network 0.8996 0.9040
user-artist network 0.99985 0.99991

Table 2: The average ratio of the Θran obtained by Eq. (2) to that Θ ∗ran obtained by
simulations over all the selected users in each dataset. Per user, Θ ∗ran is the average over
h realizations of the randomized contact sequences.

3.2 Relative distraction ρ in time
To what extent a user sequentially interacts with items or processes tasks can also
be measured according to the fraction of time stamps that a user is distracted by
other tasks in finishing a task, between the first and the last interaction with that
given task. We use p f (i) = mint,1≤t≤n{C(t) = i} to denote the time stamp when
the user under consideration interacts with item i for the first time. Similarly,
pl(i) = maxt,1≤t≤n{C(t) = i} denotes the time index when the user interacts with
item i for the last time. We measure the relative distraction as

ρ =
1
m

m

∑
i=1

∑
k=pl(i)
k=p f (i)

1{C(k)!=i}

ni +∑
k=pl(i)
k=p f (i)

1{C(k)!=i}
(3)

where ∑
k=pl(i)
k=p f (i)

1{C(k)!=i} counts the number of other items occur in between the
first and last interaction with item i and the ratio implies the fraction of time
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disrupted by other items in completing item i. The total time to complete item i
is ni +∑

k=pl(i)
k=pl(i)

1{C(k)!=i}, which equals pl(i)− p f (i)+1.
The relative distraction level ranges within 0≤ ρ < 1 and a smaller ρ suggests a
high sequential-tasking level, i.e. consecutively interacting with one task without
the interactions with any other task in between (see e.g. Figure 3)

3.3 Comparison of two real-world networks

(a) (b)
Fig. 4: Probability distribution of the relative switch frequency θ and relative distraction
in time ρ in the (a) user-project and (b) user-artist network

We compute the relative switch frequency θ and the relative distraction in time ρ

for each user in these two networks. The probability distribution for each measure
is plotted for each network in Figure 4. Both measures follow a similar distribu-
tion in the user-project network, where many users are sequential-tasking and
few are cross-tasking. In the user-artist network, the relative switch frequency
tends to be homogeneously distributed whereas many users are highly distracted
in time. According to the definition of the distraction ρ level, a user that interacts
many times with many items may tend to be more distracted. The distributions
of the number of interactions and items per user are heterogeneous in the user-
artist network, as shown in Figure 2: many (few) users have a small (large) num-
ber of interactions/items. Hence, the large number of users with a high distrac-
tion level reveals intrinsic feature of the user-artist network, beyond the relative
switch frequency and the number of interactions/items can describe. Users tend
to be sequential-tasking for tasks like software programming but cross-tasking in
hobby type tasks like listening to musics.

4 Correlation between sequential/cross-tasking level
and other centrality metrics

We address further the question which kind of users in a network tend to be
sequential- or cross-tasking. We investigate thus the correlations between the
measures we proposed and a large set of basic centrality metrics that describe
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various temporal nodal features. We propose to consider the following centrality
metrics for a user u in a generic temporal bipartite network:

– the number of interactions su
– the number of distinct items du a user interacts with
– the average weight (number of interactions) with an item that the user u

interacts with E[Wu] =
∑i WuiAui

du
– the normalized standard deviation of the weight (number of interactions)

with an item the user u interacts with σ [Wu]
E[Wu]

=

√
∑i (Wui−E[Wu ])2Aui

du
E[Wu]

– the average inter-arrival time E[τ] of a user, where the inter-arrival time is
the time delay between two consecutive interactions of a user

– the normalized standard deviation σ [τ]/E[τ]of the inter-arrival time of a user
– the average number of users of the items that a user u interacts with ∑i diAui

du
:

compute for each item that the user u interacts with, the number of users this
item interacts with and compute the average number of users over all the
items that u interacts with

– the average number of interactions of the items that a user interacts with
∑i siAui

du
– the normalized standard deviation of the number of users of the items that

user u interacts with

√
∑i (di− ∑i diAui

du
)2Aui

du
/∑i diAui

du

– the normalized standard deviation of the number of interactions of the items

that user u interacts with

√
∑i (si− ∑i siAui

du
)2Aui

du
/∑i siAui

du

The last four centrality metrics explore the neighbors that are two hops away from
the user u. The average and normalized standard deviation of the inter-arrival time
explore new temporal features of a user beyond the two proposed metrics.
We compute the above ten centrality metrics as well as the two measures we pro-
posed earlier for each node in each real-world network. Within each network, we
rank the nodes according to each of the 12 metrics and compute the rank corre-
lation between any two metrics, which are given in Table 3. The relative switch
frequency θ and distraction ρ are strongly and positively correlated in the user-
project network whereas the correction is less strong in the user-artist network,
qualitatively explaining part of the behavior in Figure 4. In the user-project net-
work, less active users with respect to the number of interactions or items and
users that interact more regularly (low standard deviation in inter-arrival time)
tend to be more sequential-tasking. However, the sequential-tasking level θ and ρ

are not strongly correlated with the other user features in the user-artist network.
Interestingly, the last four metrics in the list and Table 3, i.e. the average and nor-
malized standard deviation of the number of users/interactions of the items a user
interacts with are strongly correlated in the user-artist network. If a user interacts
with items that are popular regarding to the number of users/interactions they at-
tract on average, these items tend to be similar in the number of users/interactions
they attracted. However, the contrary has been observed in the user-project net-
work: if a user interact with popular items on average, these items are heteroge-
neous in their popularity.
In the user-project network, users are on average more sequential-tasking and
sequential-tasking users tend to be those less active and regular in time in inter-
actions. For hobby type tasks, users tend to be cross-tasking and the sequential-
tasking level of a users cannot be distinguished from the 10 user features.
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5 Conclusion

The two metrics that we proposed, the relative switch frequency and distraction
in time, quantify the sequential-tasking level of a user from two perspectives.
Using the user-project and user-artist networks as examples, we illustrate the ev-
idently different sequential-tasking levels when users are subject to work-related
and hobby-related tasks. Users tend to be more sequential-tasking in user-project
network. Our correlation study between the two sequential-tasking level mea-
sures and another 10 nodal centrality metrics unravel the possibility to identify
sequential- or cross-tasking users from other features in the user-project network
but not the user-artist network. Our work is deemed as the starting point to inves-
tigate the new type of centrality metrics that exploit a user’s temporal activities or
time series. It is interesting to explore the relation between such centrality metrics
as well as those information-theoretic measures proposed in the study of human
behavior patterns [16, 17].
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