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A Non-Collocated Method to Quantify Plastic
Deformation Caused by Impact Pile Driving

P.C. Meijersa,∗, A. Tsouvalasa, A.V. Metrikinea

aDelft University of Technology, Faculty of Civil Engineering, Stevinweg 1, 2628CN Delft,
The Netherlands

Abstract

The use of bolted connections between the tower and a support structure of

an offshore wind turbine has created the need for a method to detect whether

a monopile foundation plastically deforms during the installation procedure.

Small permanent deformations are undesirable, not only because they can ac-

celerate fatigue of the structure; but also because they can lead to misalignment

between the tower and the foundation. Since direct measurements at the pile

head are difficult to perform, a method based on non-collocated strain mea-

surements is highly desirable. This paper proposes such a method. First, a

physically non-linear one-dimensional model is proposed, which accounts for

wave dispersion, effects that are relevant for large-diameter piles currently used

by the industry. The proposed model, combined with an energy balance prin-

ciple, gives an upper bound for the amount of plastic deformation caused by

an impact load based on simple strain measurements. This is verified by a

lab-scale experiment with a uni-axial stress state. Second, measurement data

collected during pile driving of a large-diameter pile show that the proposed

one-dimensional model, while able to predict the peak stresses, fails to accu-

rately predict the full time history of the measured stress state. In contrast,

an advanced model based on shell membrane theory is able to do that, showing

that a bi-axial stress state is needed for these type of structures. This requires

an extension of the theory for plasticity quantification presented in this paper.
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1. Introduction

Steel monopiles are widely used in the offshore industry as a foundation

structure for wind turbines. As a result of the rapid growth of the offshore wind

market over the past decades, monopiles now range up to eight meters in diam-

eter in order to support the latest generation of wind turbines [1]. Currently,5

hydraulic impact hammers are the preferred choice to drive these thin-walled

cylindrical structures into the seabed. Each hammer blow generates a compres-

sive stress wave, which propagates down the pile; the latter helps the pile to

progress into the seabed. To overcome the increasing soil resistance at greater

penetration depths, the input energy of the hammer is increased accordingly.10

For high energy impacts, the amplitude of the induced stress waves can cause

stresses close to the yield limit of the material, increasing the risk of plastic

deformations at the pile head.

Until recently, these permanent deformations were of little concern, since the

pile head did not contribute to the bearing capacity of the pile due to the use of15

a grouted connection between the monopile and the superstructure. However,

to reduce the cost of offshore wind energy, bolted connections have become more

popular in recent years, since they require less steel [1]. This type of connection

asks for a perfect alignment between the pile head and the superstructure; and

any plastic deformation of the pile head can potentially disturb this delicate20

alignment. Furthermore, plastic deformation is unfavourable for the remaining

service life of the whole structure, since it fatigues the material. A method to

infer whether plastic deformation has occurred is therefore needed.

The high stresses generated by a hammer blow can cause damage not only

to the pile itself, but also to the sensors, making strain or acceleration measure-25

ments directly at the pile head unfeasible during the pile process. A workable

method should thus rely on non-collocated measurements, i.e. measurements

at another location than where the plastic deformation occurs. Fortunately, it
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is current practice to monitor the stress levels in the pile during installation.

From these measurements, which are taken a few meters below the pile head,30

and with a wave propagation model similar to the one proposed by Smith [2],

the pile driving process is monitored [3]. Smith’s model is based on the classical

one-dimensional wave equation, which is non-dispersive. Due to its low compu-

tational cost, it is widely used in industry, even though more advanced models

have been developed over the years; each model addresses different aspects of35

pile driving, e.g. sound radiation [4, 5], and soil modelling [6].

To quantify plastic deformation at the pile head from non-collocated mea-

surements, this paper augments the one-dimensional model of the pile installa-

tion process with two features: wave dispersion caused by the geometry of the

structure and non-linear material behaviour. The former is needed to correctly40

model the stress wave propagation in the pile, since dispersion cannot be ne-

glected for large-diameter monopiles [7]. The latter is included to account for

the physical non-linearity that is necessary to quantify plasticity.

The propagation of elasto-plastic stress waves in solid metal cylinders has

been studied already from the 1940s onwards; validated against high velocity45

impact experiments, rate-independent theories based on the classical wave equa-

tion were developed [8, 9]. More advanced models included lateral inertia of the

cross-section [10] and rate-dependency of the material [11]. Using these models,

the dynamic properties of metals can be determined from experimental data

[12]. More recently, an energy-based approach to study these impact tests was50

reported [13].

Similar axial impact tests have been performed on hollow cylindrical shells

[14, 15]. These thin-walled structures are used in the automotive industry as

energy absorption devices, since the dynamic buckling of the cylinders remove

energy from the system. Lepik [16] and Karagiozova et al. [17, 18] showed that55

the type of dynamic buckling and thus the deformed state of the cylinder after

impact depends on the axial stress wave propagation. Moreover, Karagiozova et

al. [19] reported that for low-velocity (drop hammer) impacts, which resemble

impact pile driving, most of the permanent deformation is concentrated in a
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small region at the impacted end of the cylinder. However, the use of non-60

collocated strain sensors mounted on the structure itself to quantify the amount

of plastic deformation during the pile driving process, as proposed in this paper,

has not been found in literature so far.

By eliminating terms from a shell theory based on justified assumptions,

Section 2 derives the governing equations for elasto-plastic waves propagating65

in a monopile, resulting in a more accurate description of the behaviour of these

waves, which is also valid for the large-diameter monopiles currently used by the

offshore wind industry. Subsequently, Section 3 proposes a method to quantify

plastic deformation based on non-collocated strain measurements and an energy

balance. The proposed method is then validated against two experiments: Sec-70

tion 4 presents a lab-scale experiment of a copper bullet hitting a solid rod [12],

and Section 5 discusses a full-scale experiment of a foundation pile installed for

offshore wind. The former experiment allows one to validate the concept of the

energy balance in a well controlled environment. The latter experiment allows

one to validate the wave propagation model including wave dispersion effects in75

a more realistic setting. Finally, conclusions are drawn in Section 6. The authors

believe that these two amendments to the classical model of Smith [2] set the

basis for the next generation models to be included in studies of the drivability

of piles and detection of plastic deformation for offshore wind applications.

2. Governing equations80

A schematic representation of the pile-hammer-soil system is shown in Fig-

ure 1, together with the chosen cylindrical coordinate system that is used

throughout this paper; the axial, tangential, and radial direction are denoted

by x, θ and r, respectively. The monopile has outer radius R, wall thickness

h, and length L. In the next section, strain levels for the detection method85

will be considered at the cross-section located at x = a. First, different models

describing the propagation of elastic waves are compared to correctly capture

the effect of wave dispersion. Second, material non-linearity is included in order
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to quantify plasticity.

2.1. Governing equations for axially symmetric deformations of a cylindrically90

symmetric shell

The natural starting point for deriving the governing equations is a thin

cylindrical shell theory, which is justified by the assumption that the pile’s

radius and length, and the exited wavelengths in the structure due to impact

piling are large compared to the wall thickness.95

By comparing exact theory and approximate thin shell theory, Greenspon

showed that the latter is adequate for predicting the dynamical characteristics of

a cylindrical shell structure with a diameter to wall thickness ratio comparable

to that of a monopile [20]. Although there are many thin shell theories—each

with their own complexity and range of applicability—they can be written in100

the operator form presented by Leissa [21]:

(LD−M + βLmod) ū = 0. (1)

In this expression, ū is a vector containing the three displacement components

ū, v̄, w̄: the axial, tangential, and radial displacements, respectively, which are

all functions of x, θ, and t. To make them dimensionless, each component is

divided by the radius, e.g. ū = u/R; bars indicate a non-dimensional quantity.105

The Donnell-Mushtari operator, LD-M, is the basis for all theories; other theories

emerge by adding the modification operator Lmod. The thickness over radius

ratio β ≡ h2/12R2 determines the influence of this additional operator on the

resulting theory. For a monopile, this ratio is much smaller than one, and the

frequencies of interest are relatively low. Thus, the modification term can be110

discarded at this point.

The nine components of the Donnel-Mushtari operator can be found in [21].

Since the wave propagation caused by the hammer forcing is assumed to be

purely symmetric, the operator can be further simplified. By setting all tan-

gential derivatives to zero, i.e. ∂(·)
∂θ = 0, the components of the axi-symmetric
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Figure 1: Left, schematic of the pile-hammer-soil system; right, overview of the thin-walled

cylindrical shell structure used to derive the governing equations.
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operator Laxi yield

L11
axi =

∂2

∂s2
− ∂2

∂τ2
, (2a)

L12
axi = L21

axi = 0, (2b)

L13
axi = L31

axi = ν
∂

∂s
, (2c)

L22
axi =

1− ν
2

∂2

∂s2
− ∂2

∂τ2
, (2d)

L23
axi = L32

axi = 0, (2e)

L33
axi = 1 + β

∂4

∂s4
+

∂2

∂τ2
. (2f)

The off-diagonal zeros in this operator, e.g. L12
axi = 0, indicate that the torsional

motions are now uncoupled from the radial and axial motions. Since the axial

motions are of the major importance for pile driving, the two coupled equations

are combined by eliminating the radial displacement, resulting in

∂4ū

∂τ4
+
∂2ū

∂τ2
− ∂4ū

∂s2∂τ2
−
(
1− ν2

) ∂2ū
∂s2

+ β

(
∂4ū

∂s4
+

∂6ū

∂s4∂τ2

)
= 0. (3)

In the above expressions, the non-dimensional axial coordinate is defined as

s = x/R, and the dimensionless time is τ = ωrt, with

ωr = cp/R

the ring frequency. At this frequency, the breathing resonance of a ring with

that radius occurs [22]. The plate velocity is

cp =

√
E

ρ (1− ν2)
,

and it contains the linear elastic material properties: Young’s modulus E, Pois-

son’s ratio ν, and density ρ. Eq. (3) can be further simplified by analysing

the effect of the higher-order derivatives on the dispersion characteristics as

discussed below.115

2.2. Dispersion characteristics of cylindrical shells

The dispersion characteristics of the governing equation are expressed in

terms of the dimensionless frequency Ω = ω/ωr and the dimensionless wavenum-
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Figure 2: Dispersion curves for the considered theories computed with ν = 0.3 and β =

4.80 · 10−5.

ber ξ = kR. In these expressions, ω and k designate the frequency and wavenum-

ber, respectively. Each further simplification of the equation of motion restricts120

the range of applicability in terms of these dimensionless quantities. Figure 2

shows the dispersion curves, which are computed with common values for steel

monopiles: ν = 0.3 and β = 4.80 · 10−5.

As a result of the fourth-order time derivative, the dispersion curve of the axi-

symmetric shell, Eq. (3), has two branches. For ξ close to zero, i.e. large wave-125

lengths, structural motions are mainly axial, since tangential motions counteract

any radial motion. However, when the ring frequency (Ω = 1) is approached,

the tangential component disappears, since the energy needed for in-surface

shearing decreases. As a result, radial motions start to dominate [23]. When

the wavenumber increases even further, axial bending energy eventually domi-130

nates the dispersion characteristics, causing the curve to bend back towards the

infinite flat plate curve [22].
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Given that the lower branch only bends slightly upward in the frequency

range of interest, the first simplification is to neglect the bending behaviour

in the shell theory. By discarding the β-terms in the shell equations, an axi-135

symmetric membrane theory emerges:

∂4ū

∂τ4
+
∂2ū

∂τ2
− ∂4ū

∂s2∂τ2
−
(
1− ν2

) ∂2ū
∂s2

= 0. (4)

As a result of this simplification, the motions in the structure are assumed to

be inextensional. The two branches of the dispersion relation of the membrane

theory are indistinguishable from the shell theory for 0 ≤ ξ ≤ 6. The axi-

symmetric membrane theory is thus a good approximation of the shell theory140

for small wavenumbers. This observation holds for a wider selection of properties

than the ones considered in this paper.

Since the second branch only appears at frequencies above the ring frequency,

an approximation of the lower branch would suffice to describe wave propagation

in a monopile for waves that contain frequencies below this critical value, i.e.145

Ω = 1. One obtains this approximation by omitting the fourth-order time

derivate in the shell membrane equations, Eq. (4), resulting in

∂2ū

∂τ2
− ∂4ū

∂s2∂τ2
−
(
1− ν2

) ∂2ū
∂s2

= 0. (5)

Since higher frequencies cannot propagate in this approximate theory, its range

of applicability is limited to 0 ≤ ξ ≤ 6 and 0 ≤ Ω < 1− ν2. This expression for

the approximate lower branch resembles the Rayleigh-Love rod theory, see [24],150

although the coefficient of the mixed time-space derivative is adjusted here to

approach the exact dispersion curves obtained with the shell theory. Therefore,

this approximate theory is referred to as the corrected rod theory from here on.

As a reference, Figure 2 also shows the dispersion curve for the classic non-

dispersive rod theory, which is the basis for Smith’s pile driving model [2] com-155

monly used in practice. The equation of motion in this case simplifies further

to
∂2ū

∂τ2
−
(
1− ν2

) ∂2ū
∂s2

= 0. (6)
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For low frequencies and wavenumbers (0 ≤ ξ . 0.5 and 0 ≤ Ω . 0.5), the

lower branch of the axi-symmetric shell theories coincides with the one obtained

from the non-dispersive theory, showing the validity of Smith’s pile driving160

model when the frequency content of the hammer forcing is well below the

ring frequency. However, when the forcing contains frequencies around the ring

frequency, the effect of stress wave dispersion can no longer be neglected. This

simple fact is very often overlooked in practice.

2.3. Inclusion of physical non-linearity165

So far, all presented expressions are derived on the basis of a linear elastic

constitutive law. To incorporate plastic deformations, the stress components of

the plane stress state of the axi-symmetric membrane theory, Eq. (4), are consid-

ered. By dividing each component by the Young’s modulus E, the dimensionless

version of the stress tensor is obtained, i.e.

(
1− ν2

)
σ̄s =

∂ū

∂s
+ νw̄, (7a)(

1− ν2
)
σ̄θ = w̄ + ν

∂ū

∂s
, (7b)(

1− ν2
)
σ̄sθ =

1

2

∂v̄

∂s
= 0, (7c)

in which σ̄s, σ̄θ and σ̄sθ are the axial, hoop and membrane shear stress, respec-

tively. The shear stress vanishes due to the assumption that the pile driving

process causes no torsional motions in the structure, leaving only two non-zero

stress components.

The relative importance of these components is frequency dependent. By170

expressing the displacements in Eq. (7) in terms of the dimensionless frequency

and wavenumber, the ratio between the axial and the hoop stress is

σ̄s
σ̄θ

=
Ω2 −

(
1− ν2

)
νΩ2

. (8)

Figure 3 shows a graph of this ratio for ν = 0.3 as a function of the dimensionless

frequency. Since σ̄s/σ̄θ tends to minus infinity when Ω approaches zero, the axial

stress dominates the hoop stress for low frequencies (Ω < 0.5). Therefore, it175
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Figure 3: Ratio between the axial and the hoop stress per frequency for ν = 0.3. The ratio

approaches −∞ as Ω approaches zero. The dashed lines indicate when σ̄s/σ̄θ = ±1.

is reasonable to assume a uni-axial stress state at this low frequency range.

However, when the ring frequency is approached, the hoop stress is no longer

negligible compared to the axial component, and a bi-axial state needs to be

considered. For simplicity, a uni-axial stress state will be used in the following,

therefore restricting the applicability of the model to Ω < 0.5.180

The membrane equations (4) are split into three expressions relating the

axial displacement, ū, the total axial strain, ε, and the axial stress σ̄s, yielding:

∂2ū

∂τ2
=
(
1− ν2

) ∂σ̄s
∂s

, (9a)

ε =
∂ū

∂s
, (9b)

σ̄s = ε+
∂2σ̄s
∂s2

− ∂2σ̄s
∂τ2

. (9c)

These three relations are the equilibrium, kinematic and constitutive equations

for a linear elastic axi-symmetric membrane, respectively. By discarding the

time derivative in the latter expression, the corrected rod theory, i.e. Eq. (5), is

retrieved. Moreover, the total axial strain is split into an elastic and a plastic

part: ε = εe + εp. After inserting this expression and transforming back to
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dimensional quantities, the equations for the corrected rod, including physically

non-linear behaviour, read

ρ
∂2u

∂t2
=
∂σ

∂x
, (10a)

ε =
∂u

∂x
, (10b)

σ = E (ε− εp) + R2 ∂
2σ

∂x2︸ ︷︷ ︸
Correction

, (10c)

in which σ denotes the axial stress. This set of equations closely resembles the

model equations presented in the paper by DeVault [10] based on the Rayleigh-

Love rod theory. For a solid cylindrical rod with radius R, the expression for

the axial stress becomes:

σ = E (ε− εp) +
1

2
ν2R2 ∂

2σ

∂x2︸ ︷︷ ︸
RL correction

. (11)

It is important to note that the stress state in the Rayleigh-Love rod theory is185

always uni-axial, i.e. independent of frequency, whereas the stress state for the

corrected rod is essentially bi-axial for Ω > 0.5.

Since the system of equations (10) is not yet complete, auxiliary relations

for the plastic axial strain, εp(x, t), are needed. Assuming uni-axial plasticity

with linear isotropic hardening, one obtains [25]:

∂εp
∂t

= γ sign (σ) , (12a)

∂α

∂t
= γ, (12b)

f(σ, α) = |σ| − (σy +Kα) , (12c)

γ ≥ 0, f(σ, α) ≤ 0, γf(σ, α) = 0, (12d)

γ
∂f(σ, α)

∂t
= 0 if f(σ, α) = 0, (12e)

where γ is the magnitude of the plastic flow rate, α the hardening parameter,

K the plastic modulus, f(σ, α) the yield function, and σy the yield stress of the

material. This set of equations forms the basis for the discussion in Section 3.190
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2.4. Hammer force

To represent the hammer impact, an axial force F (t) is introduced at the

pile head positioned at x = 0. This force can be measured during an exper-

iment or modelled using a hammer-pile model, e.g. the model of Deeks and

Randolph [26]. At x = L, the boundary condition is dependent on the soil195

characteristics. In this paper, however, the main interest lies in the shape of the

stress wave as it first passes the measurement location, since this information

is sufficient to conclude whether plastic deformation occurred at the pile head.

Thus, a simulation stops before the stress wave reflected by the soil reaches the

sensor. Therefore, the boundary condition at x = L is of no importance for the200

discussion hereafter, and zero displacement, i.e. u = 0, is prescribed.

3. Method to quantify plastic deformation

When plastic deformations are considered, stress above the local yield limit

can no longer propagate, affecting the shape of the original stress pulse. Due

to this limit, a plateau in the stress signal appears. Furthermore, a part of the205

energy contained in the stress wave is used to permanently deform the structure.

These two aspects are the basis for the method to detect and quantify plastic

deformation in this paper.

The effect of the non-linear material behaviour on the shape of the stress

wave is elaborated by considering simulated time signals of the axial strain in a210

small-diameter pile. Table 1 presents the considered parameters; and a sketch of

the pile is shown in Figure 1. An elastic and an elasto-plastic simulation of the

wave propagation in the pile are performed with the same force signal applied

at x = 0, which is presented in the inset graph in Figure 4.

Figure 4 shows the strain signals at x = 3.0 m resulting from the two simula-215

tions. In the elastic case, the shape of the signal is identical to that of the force

signal. However, in the elasto-plastic case, a plateau in the strain is visible,

indicating that plastic deformation has occurred. Thus, by comparing the mea-

sured strain signal with the expected strain computed on the basis of the elastic

13



Table 1: Parameters for the simulations of a small-diameter steel monopile.

Parameter Value

R 0.25 m

h 0.010 m

L 50 m

a 3.0 m

E 210 GPa

K 4.2 GPa

ν 0.3

ρ 7750 kg/m3

σy 235 MPa

Figure 4: Strain signals at x = 3.0 m for an elastic and an elasto-plastic simulation of a

small-diameter pile; the inset graph shows the force signal used in both cases.
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model of the structure, one can reach some preliminary conclusions regarding220

the possible development of plastic deformation at the pile head caused by the

hammer impact.

To quantify this deformation, the following elementary energy balance is

considered:

E0 = Ew + Ep + Eloss, (13)

in which E0 denotes the input energy of the hammer, Ew the energy associated225

with the wave energy flux through the considered cross-section, Ep the energy

lost in work to plastically deform the material, and Eloss the remaining losses,

e.g. losses in sound radiation and attenuation. Each contribution to the energy

balance is elaborated below.

The input energy E0 is determined by a hammer model or by scaling the230

linear response of a low energy impact. The energy Ew that passed through

a cross-section is defined as the integral of the energy flux over a given time

interval from t = t0 to t = t1:

Ew =

∫ t=t1

t=t0

Fv dt. (14)

Using the relations F = Aσ, σ = Eε and v = σ/
√
Eρ, this integral can be

rewritten in terms of the axial strain ε, as follows:235

Ew =
AE2

√
Eρ

∫ t=t1

t=t0

ε2 dt, (15)

in which A is the area of the cross-section.

The plastic work Ep is equal to the integral over time of the mechanical

dissipation as defined in [25]:

Ep =

∫
Dmech dt = A

∫ t=t1

t=t0

∫ x=a

x=0

(
σ
∂εp
∂t
−Kα∂α

∂t

)
dxdt. (16)

Using the auxiliary equations (12) and the fact that σ sign (σ) = |σ|, the plastic

work is rewritten as240

Ep = A

∫ t=t1

t=t0

∫ x=a

x=0

(γ [|σ| − σy −Kα] + γσy) dxdt. (17)

15



Since the term between square brackets is the yield function f(σ, α) and the

auxiliary relations require that γf(σ, α) = 0, the expression reduces to

Ep = Aσy

∫ t=t1

t=t0

∫ x=a

x=0

γ dxdt. (18)

The double integral of the plastic flow rate is an indicator of the amount of

plastic deformation between the impact and sensor location; and it is henceforth

referred to as a single quantity up: the permanent axial displacement. With this245

new quantity defined, the expression for the plastic work reduces to

Ep = Aσyup. (19)

Of the remaining losses in the pile, Eloss, the discussion in [27] showed that

the energy in the acoustic radiation is negligibly for sensors positioned above

the seabed. Therefore, provided that the other loss mechanisms are also small,

Eloss can be altogether neglected for the first-order estimation of the amount of250

plasticity. By reordering the energy balance, up is expressed as

up =
E0 − Ew
Aσy

. (20)

Eq. (20) gives a simple relation to quantify the plastic deformation caused by an

impact load based on a single strain measurement at a certain distance from the

impact point. Naturally, this expression will give an upper bound estimation of

the expected plastic strain as Eloss is assumed equal to zero.255

4. Lab-scale experiment

As an example, the proposed method is applied to the lab experiments of

Kolsky and Douch [12]. In their paper, a solid cylindrical copper specimen of

length L0 with initial velocity v0 impacts a stationary solid cylindrical copper

rod with length L1. The experiment was repeated with increasing initial ve-260

locities to show the effect of the yield limit on the shape of the induced stress

pulse in the rod. Figure 5 shows a schematic of the experimental set-up. Both

the specimen and the rod have the same radius R; it is listed in Table 2, to-

gether with the other dimensions and material properties. In this specific set-up,
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Figure 5: The modelled set-up of the lab-scale experiment of Kolsky and Douch [12].

the initial energy E0 follows directly from the initial velocity v0 = 14.02 m/s265

(= 46 ft/s). It reads E0 = 1/2mv20 = 36.8 J, in which m is the specimen’s mass

computed with the density and its volume.

In the original paper, only the oscillograph traces of the stress pulses were

reported (see Figure 6). Since these traces lack a scale to quantify the actual

stress levels, the measured wave energy Ew is computed by comparing the signals270

for two different impact velocities. Using the response of the low velocity impact,

v0 = 8.53 m/s (= 28 ft/s), which causes no plastic deformation in the rod,

the wave energy for the impact of interest (v0 = 46 ft/s) is equal to Ew =

24.6± 3.8 J. The uncertainty in the value results from the digitalisation of the

oscillograph traces. By combining these two energies in Eq. (20), the permanent275

axial deformation is estimated at up = 0.20 ± 0.06 mm. Note that the entire

difference between the input energy and the measured wave energy is contributed

to plastic deformation, as all other losses are assumed to be negligible.

To check whether this estimate is accurate, the high speed impact is also

simulated using the stress wave propagation model introduced in Section 2.3.280

However, because these experiments concern a solid cylinder rather than a thin-

walled cylindrical shell, the Rayleigh-Love correction term in the stress definition
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Table 2: Parameters of the experiment of Kolsky and Douch [12] on copper specimens.

Parameter Value

L0 0.1524 m

L1 1.2192 m

R 9.525 mm

a 0.548 m

E 129.8 GPa

K 1.298 GPa

ν 0.34

ρ 8960 kg/m3

σy 210 MPa

Figure 6: Oscillograph traces of copper on copper impacts—reprint of Fig. 19 from [12], with

permission from Elsevier.
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Figure 7: Simulated total strain signals at x = 0.548 m for the elastic and the elasto-plastic

rod after impact with v0 = 14.02 m/s (= 46 ft/s).

is used, i.e. Eq. (11). Two simulations will be compared: a linear elastic sim-

ulation, which ignores the yield limit, and a elastic-plastic deformation, which

enforces the yield limit. Only the latter simulation includes a loss mechanism,285

i.e. the plastic deformation; other loss mechanisms are not considered. From

the elasto-plastic simulation, it is possible to determine the amount of plastic

deformation in the rod, which is then compared to the estimate obtained from

the measurements.

For the simulations, the model equations (10) are spatially discretised with290

the Finite Element Method in FEniCS [28], and an explicit Newmark scheme [29]

is used for the time integration. The spatial resolution and time step are ∆x =

2.74·10−3 m and ∆t = 1.0·10−7 s, respectively. A return mapping algorithm [25]

ensures that the auxiliary constitutive equations (12) are all satisfied.

Figure 7 shows the time traces of the total axial strain at the sensor location295

(x = 0.548 m) for the two simulations, while the axial plastic strain along the

rod axis of the rod for the elasto-plastic simulation is presented in Figure 8. The

latter figure shows that the plastic strain is zero at the sensor location, which
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actually means that the total strain in Figure 7 is equal to the elastic strain.

In line with the observations by Kolsky and Douch[12], the stress wave at the300

sensor displays a plateau and a tail for the elasto-plastic case as result of the

yield limit. The shape of the tail, however, differs from the experimental one.

This difference can attributed to the simple hardening law used in the presented

model; in reality, the material response is more complex.

The observed changes in the stress wave’s shape indicate that plastic de-305

formation occurred, which is also clear from the plastic strain profile presented

in Figure 8. With the simulated data, the permanent deformation can be com-

puted in two different ways; either by applying Eq. (20) to the strain signal read

from Figure 7, or by integrating the plastic strain along the length of the rod

up to the location of the sensor. The latter approach yields:310

up =

∫
εp dx = 0.131 mm. (21)

Since no other loss mechanisms are considered in the simulations, the former

approach is equivalent to the latter and results in the same value of up. How-

ever, if one would consider these extra loss mechanisms in the simulations, the

predicted strains at the location of the sensor for the elasto-plastic case would

have been lower, resulting in a higher value for up when Eq. (20) is applied.315

The plastic strain profile, however, would remain unaffected by these additional

loss mechanisms. Given this reasoning and the fact that the predicted plastic

deformation up is lower than the measured one, it can be concluded that the

other loss mechanisms in the experiment are non-negligible. The permanent

deformation predicted by the model, however, does confirm that the estimate320

by the experimental data is an accurate upper bound for the amount of plastic

deformation in the rod.

5. Measurements during impact pile driving

Before the same principles can be applied to a large-diameter monopile, the

propagation of linear elastic waves in these type of structures is considered more325
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Figure 8: Plastic axial strain from the elasto-plastic simulation along the length of the rod.

The shaded grey area is the length of the impacting bullet L0.

closely. To this end, data recorded during the installation process of a monopile

is analysed. The investigated pile has a radius R of 2.5 m; however, piles with

even larger diameters are currently commissioned [1]. Figure 1 shows a sketch

of the situation. The pile’s dimensions and material properties are listed in

Table 3; with these quantities, the ring frequency is computed as: fr = 347330

Hz. During the driving of the pile, strain levels have been monitored with four

sensors placed on a ring along the pile’s circumference located 9.0 m below the

pile head. The measured data will first be compared to the results of two linear

elastic simulations to determine which model is the most accurate for predicting

the stress levels at the sensor location.335

As an input for the simulations, the stress signal caused by a hammer impact

is used; it is shown in Figure 9 with its amplitude spectrum. The frequency

content reveals that the hammer signal contains some energy at frequencies

above the ring frequency of the shell. Therefore, it is expected that the corrected

rod theory, Eq. (5), will not accurately reproduce the measured signals. The340

simulations are performed with a finite element discretisation and an explicit

Newmark scheme; the spatial resolution and time step are ∆x = 67.8 · 10−3 m

and ∆t = 1.0 · 10−5 s, respectively.
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Table 3: Parameters for the installation process of a large-diameter steel monopile.

Parameter Value

R 2.5 m

h 0.050 m

L 33.9 m

a 9.0 m

E 210 GPa

ν 0.3

ρ 7750 kg/m3

Figure 9: Left, time signal of the stress level induced by the hammer force computed from

measurements on the hammer casing; right, amplitude spectrum of this stress signal.
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Figure 10 shows the measured stress levels, computed as an average of the

four measured strain signals, together with the results from a linear elastic345

simulation using the membrane theory, i.e. Eq. (4), and the corrected rod

theory, i.e. Eq.(5). The measured stress signal is relatively smooth for the first

5 ms, after which oscillations become more pronounced. This behaviour can be

attributed to a number of factors. First, the input force itself is non-smooth

due to the internal structure of the impact hammer. Stress pulses exerted by350

hammers are characterized by a relatively smooth ascending branch followed

by several high-frequency oscillations that are caused by the dropping of the

various smaller internal masses of the hammer on the top of the pile. Second,

the shell itself is dispersive and, therefore, the excited waves carrying energy at

different frequencies arrive at the location of the sensors at different moments in355

time. Thus, even in the ideal case in which the input force is smooth, dispersion

effects will tend to distort the original shape of the stress pulse. Third, the pile

is never positioned totally vertically during installation, and the hammer-pile

contact is, therefore, non-ideal, resulting in bending of the pile. Waves excited

due to bending of the pile arrive at the location of the sensor at later moments360

in time.

As expected from the frequency restriction of the corrected rod theory, 0 ≤

Ω < 1 − ν2, the high-frequent oscillations (higher than fmax =
(
1− ν2

)
· fr =

315 Hz) did not propagate, smoothing the signal considerably; nonetheless, the

model can predict the peak stress. The results obtained with the membrane365

theory, however, correctly capture the main features of the measured stress

pulse, showing the importance of the upper branch of the dispersion relation for

the stress wave propagation in large-diameter monopiles. For high frequencies

(Ω > 0.5), the stress ratio, Eq. (8), shows that the hoop stress level has the same

order of magnitude as the axial stress component. From this observation, one370

may safely conclude that a bi-axial stress state is present in a large-diameter

monopile during pile driving; therefore, the presented method to quantify the

plastic deformation cannot be applied in that case. An extension of the method

that includes the bi-axial stress state is needed.
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Figure 10: Stress levels at the sensor location (x = 9.0 m) for the large-diameter monopile.
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Although the pile analysed here can be categorised as large-diameter, cur-375

rently, piles with even larger diameters are being installed. As the ring frequency

decreases linearly with increasing radius, one can expect that the hammer im-

pact introduces more energy in the frequency range around the pile’s ring fre-

quency, demonstrating the importance of including the effect of wave dispersion

in impact driving models for large-diameter monopiles. For piles with small380

diameters (up to R = 0.25 m), however, the energy introduced in the structure

by an impact hammer is well below the ring frequency, generating a uni-axial

stress state; and the proposed method could readily be applied.

In this specific case, the sensors are positioned relatively far from the pile

head; therefore, reflections from the seabed and the pile toe, i.e. stress waves385

travelling back up the pile, can contaminate the measured strain signal, ob-

scuring the information about plastic deformation contained in the signal. This

problem could be resolved by installing the sensors closer to the impact loca-

tion; or by using strain gauges located at different cross-sections along the pile,

enabling one to deduce in which direction different wave components travel.390

Furthermore, measurements from sensors at multiple levels can be used to lo-

calise zones of plastic deformation based on the same principles as the proposed

method.

6. Conclusions

This study has shown that plastic deformations at the top of a foundation395

pile can be detected and quantified using non-collocated strain measurements.

With an elementary energy balance, an upper bound for the amount of plastic

deformation sustained between the impact and sensor location is found by com-

paring the energy contained in the measured strain pulse to the expected strain

signal, which is computed with a linear elastic model of the structure. This400

paper derives a one-dimensional wave propagation model from thin shell theory

to correctly account for stress wave dispersion, since this effect cannot be ne-

glected when the hammer impact introduces energy around the ring frequency
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of the shell.

The proposed method to quantify plastic deformation is based on a uni-axial405

stress state, and it gives an adequate estimation when it is applied to a lab-scale

experiment, where this stress state is valid. However, data of the installation

a large-diameter monopile clearly showed that only the full membrane theory

was able to reproduce the measurements, meaning that a bi-axial stress state is

developed in the shell. The proposed quantification method can therefore not410

be applied directly to this situation, although generalising it for a bi-axial stress

state is quite straightforward. In contrast, impact driving generates a uni-axial

stress state in small-diameter piles, allowing the use of the method during the

installation of these piles.

A potential problem for the method are the stress waves reflected from the415

seabed, since they contaminated the measured strain signal. This can be re-

solved either by using strain sensors at more locations further down the pile,

providing sufficient information to compensate for this effect, or by ensuring

that the sensor is as close as possible to the pile head. As the method is based

on routine strain measurements, applying it during the driving process of small-420

diameter monopiles is simple; and it can give a valuable insight into the state

of the support structure after installation.

Acknowledgements

This research is part of the EUROS programme, which is supported by

NWO domain Applied and Engineering Sciences and partly funded by the Dutch425

Ministry of Economic Affairs. The authors would like to thank IHC-IQIP for

providing the measurement data of the impact pile driving.

References

[1] WindEurope, The European offshore wind industry. Key trends and statis-

tics 2016, Tech. rep., WindEurope (2017).430

26



[2] E. A. L. Smith, Pile-driving analysis by the wave equation, American So-

ciety of Civil Engineers Transactions 127 (1962) 1145–1193.

[3] F. Rausche, M. Nagy, S. Webster, L. Liang, CAPWAP and Refined Wave

Equation Analyses for Driveability Predictions and Capacity Assessment of

Offshore Pile Installations, in: ASME 2009 28th International Conference435

on Ocean, Offshore and Arctic Engineering, American Society of Mechan-

ical Engineers, 2009, pp. 375–383.

[4] A. Tsouvalas, A. V. Metrikine, A semi-analytical model for the prediction of

underwater noise from offshore pile driving, Journal of Sound and Vibration

332 (13) (2013) 3232–3257. doi:10.1016/j.jsv.2013.01.026.440

[5] P. G. Reinhall, P. H. Dahl, Underwater Mach wave radiation from impact

pile driving: Theory and observation, The Journal of the Acoustical Society

of America 130 (3) (2011) 1209–1216. doi:10.1121/1.3614540.

[6] M. E. Mabsout, J. L. Tassoulas, A finite element model for the simulation

of pile driving, International Journal for Numerical Methods in Engineering445

37 (2) (1994) 257–278.

[7] P. C. Meijers, A. Tsouvalas, A. V. Metrikine, The Effect of Stress Wave Dis-

persion on the Drivability Analysis of Large-Diameter Monopiles, Procedia

Engineering 199 (2017) 2390–2395. doi:10.1016/j.proeng.2017.09.272.

[8] G. Taylor, The use of flat-ended projectiles for determining dynamic yield450

stress I. Theoretical considerations, Proc. R. Soc. Lond. A 194 (1038) (1948)

289–299. doi:10.1098/rspa.1948.0081.

[9] T. Von Karman, P. Duwez, The propagation of plastic deformation in solids,

Journal of Applied Physics 21 (10) (1950) 987–994.

[10] G. P. DeVault, The effect of lateral inertia on the propagation of plastic455

strain in a cylindrical rod, Journal of the Mechanics and Physics of Solids

13 (2) (1965) 55–68. doi:10.1016/0022-5096(65)90020-7.

27

http://dx.doi.org/10.1016/j.jsv.2013.01.026
http://dx.doi.org/10.1121/1.3614540
http://dx.doi.org/10.1016/j.proeng.2017.09.272
http://dx.doi.org/10.1098/rspa.1948.0081
http://dx.doi.org/10.1016/0022-5096(65)90020-7


[11] J. H. Shea, Propagation of Plastic Strain Pulses in Cylindrical Lead Bars,

Journal of Applied Physics 39 (8) (1968) 4004–4011. doi:10.1063/1.

1656889.460

[12] H. Kolsky, L. S. Douch, Experimental studies in plastic wave propagation,

Journal of the Mechanics and Physics of Solids 10 (3) (1962) 195–223.

doi:10.1016/0022-5096(62)90038-8.

[13] A. Khayer Dastjerdi, R. Naghdabadi, J. Arghavani, An energy-based ap-

proach for analysis of dynamic plastic deformation of metals, Interna-465

tional Journal of Mechanical Sciences 66 (2013) 94–100. doi:10.1016/

j.ijmecsci.2012.10.011.

[14] W. Ren, H. Mingbao, H. Zhuping, Y. Qingchun, An experimental study

on the dynamic axial plastic buckling of cylindrical shells, International

Journal of Impact Engineering 1 (3) (1983) 249–256. doi:10.1016/470

0734-743X(83)90021-0.

[15] K. Murase, N. Jones, The Variation of Modes in the Dynamic Axial Plastic

Buckling of Circular Tubes, in: N. Gupta (Ed.), Plasticity and Impact

Mechanics, Wiley Eastern Limited, New Delhi, 1993, pp. 222–237.
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