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Abstract

It is well known that most of the natural or man-made metal surfaces have self-affine roughness
[1, 2]. Green’s function molecular dynamics (GFMD) is a simulation technique to study the contact
response of elastic bodies by modeling explicitly only the surface [3], and making use of damped
dynamic energy minimization to solve the boundary-value problem. However, GFMD was limited
to problems where a rough rigid substrate is pressed against a flat incompressible elastic solid
assuming frictionless contact and only considering normal displacement to study continuum bodies
[4, 5, 6]. Recently, the formulation was extended by Venugopalan et al. [3] to account for shear
and compressible finite bodies.
The GFMD method is used to determine the real contact area fraction ar of linear-elastic bodies in
contact as a function of the nominal contact pressure p̄. It is well known from experiments [7] and
simulations [8, 9, 4, 5] that for a small nominal pressures p̄, a linear dependence of the real contact
area fraction ar on the nominal contact pressure p̄ is observed. Currently, no consensus is reached
about the value of the proportionality coefficient κ between ar and p̄. Here, we perform GFMD
simulations for the indentation of bodies with a rough rigid indenter with self-affine roughness, and
make use of an extrapolation method to determine the value of the proportionality coefficient κ.
Moreover, we comment on the earlier predicted values of κ by statistical models [10, 11, 12, 13, 14]
and numerical simulations [9, 4, 5]. It is found that GFMD reproduces the value of κ in good
agreement with Persson’s theory [12].
We extend GFMD to study the contact mechanics of deformable self-affine metal bodies. To date,
only mapping [15] is used, limiting the choice of material properties and contact conditions. In
the extended GFMD method, we impose displacement to an initially flat surface to form simple
surface topographies. The strain required for the deformation corresponding to the simple surface
topography is numerically calculated. When the desired topography is reached, a GFMD simulation
is performed whereby the calculated strain inside the deformable body, due to the imposed loading,
is corrected with the strain calculated in the previous step. The two-step GFMD approach is
validated by comparing its results to calculations based on the finite-element method (FEM).
However, one of the limitations of the new method is the restriction in maximum allowable root
mean square gradient ḡ (RMSG), of the type observed in classical GFMD simulations. Therefore,
the range of different self-affine surface topographies that can be studied is limited.
In order to capture the correct linear-elastic response of a solid with rough surface the surface
discretization is several decades smaller than the smallest roughness [4, 5]. This is computationally
very costly [3]. To limit the computational time, the critical damping coefficient is calculated prior
to the simulation. To this end, for the first time, the critical damping coefficient is here derived
analytically for the numerical integration scheme used by GFMD, the position (Störmer-)Verlet
algorithm [16]. The critical damping coefficient depends on the material properties, substrate
geometry and discrete time-step. It is found, that the displacement coming to equilibrium slowest
is the center-of-mass displacement in tangential direction, therefore this displacement determines
the critical damping coefficient.
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According to Gillingham et al. [17] the total world consumption of marketed energy is expected
to expand from 549 quadrillion British thermal units (Btu) in 2012 to 629 quadrillion Btu in 2020
and to 815 quadrillion Btu in 2040 - a 48% increase from 2012 to 2040. 1 Btu is equivalent to
1060 joules. With increasing global energy consumption, sustainability becomes more and more
important. One of the main reasons for energy dissipation is friction. Friction is a phenomenon
that consists of various physical mechanisms that act on different length scales [18, 19]. Tribology
is the study of friction, wear and lubrication. An important quantity to study in tribology is the
real contact area fraction ar. It is well known that experiments [7] and theory show that this real
area of contact A is much smaller than the projected area A0 of the contacting surfaces. It is also
well know that for a small nominal pressures p̄, a linear dependence of ar on the nominal contact
pressure p̄ is observed. However, so far, the value of the proportionality coefficient κ between ar

and p̄ is disputed.
When two macroscopic bodies with microscopic roughness come in contact, the contact occurs at
multiple asperities of arbitrary shape. To study the effect of elastic deformation on contact behavior,
models using continuum mechanics theories have been developed. According to Hertz [20] ar ∝ p̄2/3

for elastic contact where friction and adhesion are ignored. The pioneering model introduced by
Greenwood and Williamson (GW) [10] represented rough surface contact, at low nominal pressure p̄,
as non-interacting uniform Hertzian spherical asperities with their maximum heights exponentially
distributed over the contact area. GW reported ar ∝ p̄ for a large number of asperities of different
heights [21]. This formed the start for a body of literature studying contact response of elastic
bodies with deterministic surfaces, also known as bearing area models. Bush et al. [11] included
both distribution of radii and a-spherical asperities in the GW theory. Figure 1.1 shows three
models of the rough surface by Hertz, GW and Bush et al. [11].

Figure 1.1: Three different models of a rough surface by Hertz [20], Greenwood and Williamson
(GW) [10], and Bush et al. [11].

These theories consider explicit probability distributions for asperity peaks and sum the Hertzian
contact areas calculated for each peak without including correlations between peaks. Also, the
original theories by GW and Bush et al. ignore the interaction between asperities. Nevertheless,
both theories reproduce the expected linear dependence of ar on p̄.
Following Bush et al. [11], the linear scaling of ar with p̄ for an elastic semi-infinite body and
non-adhesive contacts is:

ar =
κp̄

ḡE∗
, (1.1)

where ḡ is the root mean square gradient (RMSG) and E∗ is the effective modulus:

E∗ =
E

1− ν2
, (1.2)
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where E is the elastic modulus and ν is the Poisson’s ratio. According to Bush et al. [11] the value
of
√
π/8 ≤ κ ≤

√
2π. GW theory has been extended over recent years. Ciaverella [22] used GW

theory and applied it to real fractured surfaces of elastic solids, for which he found that ar ∝ p̄.
This model, like GW, still lacked interaction between adjacent asperities and uniform compression
of the elastic solid. Subsequently, Ciavarella [13] formulated an extended version of the GW the-
ory with the inclusion of interaction between Hertzian asperities, obtaining results comparable to
those reported in [22]. Carbone [14] extended GW to allow for varying curvature of the spheres
depending on the asperity height and reported the same value of κ for small nominal loads as
Bush et al. [11]. Another load bearing area model uses Archard’s theory [23]. Archard [23] models
surface roughness as a set of stacked hemispheres whose radii reduced as the height of the stack
increased. This model considered multiple scales of roughness, therefore it was new, but scarcely
used until fractal characterization of surface roughness became popular.
The pioneering work by Mandelbrot et al. [1] used fractal scaling to characterize fractured steel
surfaces and reported that the microscopic roughness of metal surfaces displays self-affine char-
acteristics. Subsequent research showed that metal surfaces are self-affine at small length scales
[1, 24, 2, 25]. The independent variable for self-affinity is the Hurst’s exponent H, this exponent
determines the auto-correlation function (ACF) of the rough surface topography. Figure 1.2 is a
numerically generated rough surface topography with Hurst’s exponent H = 0.9.

Figure 1.2: Numerically generated surface topography height h(x, y) for H = 0.9.

The assumptions of smooth Hertzian asperities and no uniform compression made by GW and
Bush et al. break down for self-affine surfaces and for moderate and high nominal pressure p̄ [13].
Jackson et al. [26] described a non-statistical multi-scale model of the normal contact between rough
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surfaces. In this method, the theory proposed by Archard [23] is used. The net load carried by the
asperities at each length scale does not change with magnification. According to Jackson et al. [26]
ar ∝ p̄ for small nominal loads. This model approximated the self-affine roughness characteristics
by a multi-scale deterministic surface. Therefore, the model still has the approximation of stacked
Hertzian asperities at different length scales to model the self-affine surface roughness. Persson [12]
developed a renormalization-group approach to contact mechanics for frictionless contact, where
a diffusion-like equation is solved using the boundary conditions for full contact and detachment.
Persson’s theory models a contact problem as indicated in Fig. 1.3.

Figure 1.3: A rubber block pressed against a rigid substrate with roughness on two length scales.

Persson’s theory predicts a value of κ =
√

8/π independent of the Hurst’s exponent H, it includes
the effect of the asperity height correlation and is exact in the limit ar → 1. Therefore, the theory
works well for incompressible materials like rubber. When detachment occurs, local effects are
treated in an average way. Two important assumptions in Persson’s theory are: (1) Non-contact
regions are prohibited from diffusing back into contact; (2) The diffusion of pressure is independent
of the magnitude of the local pressure. However, by treating local effects in an average way, quite
a few interfacial properties are predicted very accurately by Persson’s theory [6]. Contrary to
rubber-like materials, full contact is almost never reached for metallic bodies. All of the above
mentioned theories neglect one or multiple important phenomena in contact mechanics of metal
surfaces. According to Müser [27] the comparisons between the aforementioned statistical asperity
models [23, 10, 11, 12] and simulations are weak tests, since theories merely need to reproduce a
single proportionality coefficient while they usually depend on more than one adjustable parameter,
which may not even be well defined from experiment or the model definition. Therefore, the
adjustable parameter becomes effectively a fitting parameter. This reasoning leads to the conclusion
that adjusting continuum asperity theories to model predictions is not a suitable representation of
contact mechanics problem. We agree with this notion, because using a fitting parameter based
upon empirical results is nothing more than a phenomenological description of a subset of contact
mechanical properties, and we can not rigorously apply it to a generic contact problem without
the risk of large over- and/or under prediction of any contact mechanical property. Therefore, we
do not pursue such a heuristic approach, but in this work we use a numerical model to determine
contact mechanical properties.
With the advent of computer technology, numerical contact models of 3-D rough surfaces have been
developed. These models can simulate digitized rough surfaces with no assumptions concerning the
roughness distribution [28]. At the end of the twenty-first century, Williamson [29], Gupta and
Cook [30] and Bhushan and Cook [31] digitized topographies of contacting surfaces and studied
elastic deformation at individual contacts for which the contact pressure and contact area were
approximated as Hertzian contacts. Among the first brute-force methods was Hyun et al. [9],
they used FEM to study non-adhesive, frictionless contact between elastic solids with a periodic
self-affine surfaces and an aspect ratio a = 1. The aspect ratio a is defined as the periodic cell height
zm over the periodic cell width Lx, and represents the periodic cells slab geometry. According to
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Hyun et al. [9] the value of κ is close to Persson’s theory for surfaces with a Gaussian ACF (H = 1),
while κ for surfaces with an exponential ACF (H = 0.5) κ ≈

√
2π. According to Hyun et al. [9]

the value of κ rises nearly linearly with the Poisson’s ratio ν and saturates as ν approaches the
limiting value of 0.5. The increase in κ with ν is attributed to the increased interactions between
nearby asperities. Figure 1.4 displays the ratio of κ(ν)/κ(0) as a function of the Poisson’s ratio ν
for different Hurst’s exponents H by Hyun et al. [9], where κ(0) is the value for κ with Poisson’s
ratio ν = 0.

ν

κ
(ν
)
/

κ
(0
)

0 0.1 0.2 0.3 0.4 0.5
1

1.05

1.1

1.15

H=0.3

H=0.5

H=0.7

Figure 1.4: Plot of the ratio κ(ν)/κ(0) as a function of the Poisson’s ratio ν for different Hurst’s
exponents H = 0.3, H = 0.5 and H = 0.7 by Hyun et al. [9]. Lines are linear fits to the data
respectively.

The linear fits in Fig. 1.4 represent a linear dependency of κ(ν) on the Poisson’s ratio ν. According
to Eq. (1.1), the value of κ is inversely quadratically depended on the Poisson’s ratio ν. This
can be interpreted as a higher order dependency of κ on ν that is not correctly captured by the
effective modulus E∗. The numerical model of Hyun et al. includes only one node per asperity,
and according to Yestrabov et al. [32] the contact area was overestimated.
Komvopoulos et al. [33] developed a comprehensive analysis of layered elastic solids in contact
with a rough surface with self-affine topography. They obtained by means of linear fitting the
relationships for the contact pressure and the half-contact width in terms of the asperity radius,
layer thickness and elastic properties for a single asperity contact by means of plane-strain FEM
calculations, and these relationships were used in the contact stress analysis. In this analysis the
local slope of the asperity within the interference is approximated by a smooth Hertzian contact,
therefore neglecting features at smaller wavelengths than the interference width. Also, the stress
fields inside the substrate are approximated by superposition of triangular stress distributions for
individual Hertzian contacts. According to Komvopoulos et al. [33], ar ∝ p̄ and the value of κ is
highly dependent on the fractal characteristic and elastic modulus and less on the layer thickness.
The effect of layer thickness is reported to be negligible for a small nominal pressure p̄. This model
gives a good macroscopic representation of the stresses inside the body, but it can not correctly
represent the local deformation of the surface of the substrate.
Other brute force methods have been developed over the years, namely: The fast-Fourier-transform
boundary-element method (FFT-BEM) [34, 35], the biconjugate-gradient stabilized method (BICG–
STAB) [36], Boundary-element and the B-spline algorithm (BEM+B) [37], Fast-Fourier-transform
integrated adhesion (FFT-IA) [38] and Green’s function molecular dynamics (GFMD) [4, 6, 5, 3].
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According to Müser et al. [27] FFT-BVM and GFMD are fastest and comparable in computational
time for a given discretization nx. Both methods can capture contact down to the scale of the
inter-atomic spacing a, and both are FFT based methods. However, so far, only GFMD is incorpo-
rated in multi-scale models with Molecular Dynamics (MD) [39] and discrete dislocation dynamics
(DDD), and GFMD has the proven potential to do so with other methods in the future. Therefore,
we consider only GFMD methods in this work.
GFMD is a boundary-value method allowing one to simulate the linear-elastic response of a solid
to an external load by modeling explicitly only the surface, making use of damped dynamic energy
minimization to solve the boundary-value problem. GFMD was first implemented to study open
questions evolving around the contact mechanics of elastic solids with self-affine surface roughness
under the action of external loads by Campañá et al. [4]. The model assumed near full-contact of
infinite solids with both Lamé constants set to unity and non-adhesive interfacial interaction, and
it only considered normal displacement of the surface. However, the Poisson’s ratio ν = 0.25 acts as
a scaling factor for the effective modulus used in the elastic energy formulation of the semi-infinite
solid and the displacement of the surface is equivalent to that of an incompressible solid with a
reduced effective strength. According to Campañá et al. [4] there is no difference in the value of κ
for real or virtual surface topographies with the same roughness characteristics. The value of κ lays
between the predictions by Bush et al. [11] and Persson’s theory and κ is only weakly dependent
on H. Figure 1.5 shows the value of κ as a function of the Hurst’s exponent H.

H

κ
(H

)

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

Hyun et al.

Bush et al.

Persson

Campañá et al.

Figure 1.5: Plot of κ as a function of the Hurst’s exponent H for Bush et al. [11], Persson [12],
Hyun et al. [9] and Campañá et al. [4]

A more recent numerical study by Prodanov et al. [5] utilized the model by Campañá et al. [4] and
presented an in-depth study of the value of κ and extrapolated results to the thermal, fractal and
continuum (TFC) limit. The proportionality coefficient κ in the TFC-limit can be thought of as
the continuum mechanical value of κ obtained through extrapolation of its numerically calculated
values. According to Prodanov et al. [5] and Dapp et al. [6] the value of κ in the TFC limit differs
no more than 10% for H close to 0 and to 1 and ar scales linearly with p̄ for low nominal pressure
p̄. Table 1.1 summarizes the values of κ obtained by different authors.
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Year Authors κ [−]

1976 Bush et al. [11]
√

2π ≈ 2.5...
√
π/8 ≈ 1.6

2001 Persson [12]
√

8/π ≈ 1.6
2004 Hyun et al. [40] 1.8...2.2
2007 Campañá et al. [4] 1.98...2.09
2014 Prodanov et al. [5] 1.93...2.16

Table 1.1: The values of κ at low nominal pressure p̄ obtained by different authors.

So far, GFMD was limited to problems where a rough rigid substrate is pressed against a flat in-
compressible elastic solid assuming frictionless contact and only considering normal displacement.
These contact problems would give the same response if the roughness is on the rigid or deformable
body, i.e., the principle of mapping [15]. If the contact conditions are frictional, and the deformable
body is compressible this is no longer the case. Venugopalan et al. [3] extended GFMD method for
the simulation of incompressible solids under normal loading in several ways: shear is added; And,
Poisson ratio ν as well as the heights of the deformed body zm can now be chosen at will. This
recent development by Venugopalan et al. [3] allows us to relax some of the assumptions made in
prior GFMD studies of continuum models [4, 6, 5].
In this work, for the first time, the proportionality coefficient κ is rigorously determined for the
elastic solid over a range of aspect ratios a and Poisson’s ratios ν with a single method. Here, we
perform GFMD simulations for the indentation of bodies with a rough rigid indenter with self-affine
roughness, and make use of an extrapolation method to determine the value of the proportionality
coefficient κ in the TFC limit. Moreover, we comment on the earlier predicted values of κ by
statistical models [10, 11, 12, 13, 14] and numerical simulations [9, 4, 5]. It is found that GFMD
reproduces the value of κ in good agreement with Persson’s theory [12].
The aforementioned GFMD simulations are all under the assumption that the nominally flat sur-
face of an elastic body is indented with a rough rigid punch. The traction in tangential direction is
implicitly taken to be zero, i.e., frictionless contact. In this work, the GFMD method is extended to
study the contact mechanics of deformable bodies with simple surface topographies. This extended
method is called ‘two-step GFMD’. This work is done by us, in order to simulate metal contacts
where commonly only small relative contact fractions ar are observed, the Poisson’s ratio ranges
for common engineering metals between ν ≈ 0.2 for cast iron and ν ≈ 0.44 for gold [41], frictionless
contact is a poor assumption and the effect of local slope is expected to be of major influence on
the contact behavior.
First, common rough surface characteristics are summarized and methods to numerically generate
rough surface topographies are presented. There are several real and reciprocal space methods to
numerically generate self-affine surface topographies [42]. The most suitable method is selected
and its pseudo-code is given. The reciprocal space method called power spectral density method
(PSDM) [42, 43] is selected for all GFMD simulations in this work.
Then, the value of the proportionality coefficient κ is determined for an arbitrary body geometry
and Poisson’s ratio ν. The TFC-limit is numerically calculated by independently varying the ratio
between the characteristic wavelengths of the self-affine roughness, and extrapolating the value of
κ towards its limit respectively. The values of the proportionality coefficient κ are numerically
determined for both a finite slab approaching an infinite solid and aspect ratios a = 1, 0.5, and
for compressible and incompressible solids. In order to numerically calculate the TFC-limit for the
value of κ, thousands of numerical simulations are run. Individual simulations can take between
an one and twenty four hours. Note that an over-damped dynamic energy minimization will result
in an asymptotic approach of the equilibrium position. To this end, we ensure that the energy
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minimum is reached and the computational time is minimized by critically damping the damped
dynamic energy minimization in GFMD simulations.
Subsequently, we extend the GFMD method by Venugopalan et al. [3] to simulate deformable com-
pressible substrates with simple surface topographies. In two-step GFMD, we impose displacement
to an initially flat surface to form the desired surface topography. We perform a GFMD simula-
tion whereby the calculated strain inside the body due to the imposed loading is corrected with
the strain calculated in the previous step. The formulation by Venugopalan et al. [3] for the full
stress tensor inside the deformed body is corrected for the finite surface topography. This two-step
GFMD approach is validated by comparing its body fields to calculations based on FEM, and a
maximum allowable RMSG ḡ = 0.030 is observed.
Finally, an analytical expression for the critical damping coefficient and the equilibrium time are de-
rived to minimize the computational time of GFMD simulations. To determine the critical damping
coefficient in GFMD simulations the following steps are taken. The critical damping coefficient is
derived for the numerical integration scheme used by GFMD to describe the motion of an harmonic
oscillator. This critical damping coefficient is linked to the analytical critical damping coefficient
in the limit of an infinitesimally small discrete time-step dt. A scalar damping coefficient is as-
sumed and the critical damping coefficient in GFMD simulations is derived in the same manner.
The equilibrium time is approximated, we adapt the method as presented by Ogata [44] for this
approximation. The critical damping coefficient and equilibrium time are numerically determined
without prior knowledge of the analytical expression of the critical damping coefficient. As to
be expected, there is good agreement between the numerical and the analytical expression of the
critical damping coefficient. The critical damping coefficient depends on the material properties,
substrate geometry, interfacial properties and the discrete time-step dt. The equilibrium time is
independent of the discrete time-step dt.
The remainder of this work is organized as follows: In Chapter 2, an in depth introduction to the
GFMD method is given. Common rough surface characteristics of metals are summarized and a
method to numerically generate rough surface topographies is selected in Chapter 3. Subsequently,
in Chapter 4, we determine the proportionality between area and load. Then, we present the
two-step GFMD approach in Chapter 5. The critical damping coefficient and equilibrium time
in GFMD dynamics are derived in Chapter 6. Finally, we give a conclusion of this work and an
outlook in Chapter 7.
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Chapter 2

Green’s function molecular dynamics

“The name of a man is a numbing blow form which he never recovers.”

Marshall McLuhan
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2.1 Introduction

Green’s function molecular dynamics (GFMD) is a boundary-value method allowing one to sim-
ulate the linear-elastic response of a solid to an external load by modeling only the surface. The
surface is discretized using nx equi-spaced grid-points. These grid-points interact with each other
through an effective stiffness. Recently, GFMD was extended to include the shear component of
the displacement in a slab of finite height zm and generic Poisson’s ratio ν [3]. Figure 2.1 is the
schematic representation of a mixed boundary-value problem (BVP) in GFMD simulations, for the
case of an array of flat rigid punches indenting an elastic layer.

x
Lx

Fext

z

zm

π π

FextL
p
x

u

Figure 2.1: Schematic representation of a mixed boundary-value problem in GFMD simulations:
A flat rigid punch indentation.

A rigid punch, with width Lp
x, indents an elastic substrate with aspect ratio a = zm/Lx, where zm

is the height of the substrate and Lx the width of the substrate. The rigid motion of the punch
causes an increase in elastic energy density vel, which causes the grid-points that represent the
surface of the substrate to move to their new equilibrium position. This is because we can treat all
modes corresponding to a single wave vector q independent of all modes corresponding to higher
and/or lower wavevectors. The displacement of the surface with periodicity Lx is calculated in
Fourier space. The surface displacement ũ(q) = (ũ1(q), ũ2(q), ũ3(q)) for each mode with wave
vector q is obtained numerically. In this work, we only consider plane strain cases. Therefore, for
the (1+1)-dimensional substrate, the in-plane wave vectors become scalars and can be written as:

q =
2π

Lx
k, (2.1)

where k is the wave number index. In order to derive the areal elastic energy vel, we first determine
the displacement field u(x, z) by solving the differential equation of the equilibrium condition of
a linear-elastic slab with finite-height zm and generic Poisson’s ratio ν for a fully displacement
prescribed BVP, namely, a fixed bottom u(x, 0) = 0 and a generic displacement at the surface
u(x, zm). We make use of the fact the solutions of the in-plane cosine transform of the lateral u1

displacement couples to the in-plane sine transform of the normal u3 displacement, and vice versa
[3]. Once the displacement fields u(x, z) inside the body is known, we analytically calculate the
Cauchy’s strain tensors εαβ(x, z). Hence, with the well-known stress-strain relation, the stress field
σ(x, z) and the tractions τ (x) can be analytically calculated. When the strain and stress fields
are known, we can calculate the areal elastic energy vel(q) for a given sinusoidal displacement u(q)
assuming a small-slope at the surface. Note that by taking advantage of the independence of modes
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in Fourier space and the superposition principle of linear-elastic materials, we can also decompose an
arbitrary surface displacement u(x, zm) into its Fourier coefficients ũ(q), and subsequently sum over
each individual wave number q to determine the total areal elastic energy vel. With these analytical
expressions for the displacement, strain and stress fields, we can determine the displacement at the
surface u(q) for generic tractions τ (q), and vice versa.
In this work, however, we are interested in mixed BVP, allowing us to determine contact between
rough bodies for which the contact area is not known a priori. In order to solve the mixed BVP,
we make use of dynamic energy minimization. A finite displacement at the surface causes an
increase in the areal elastic energy vel. The surface is allowed to oscillate, and to come to its new
equilibrium position through Newton’s equation of motion. This work only treats static loading,
therefore the exact trajectory of the surface nodes is not a sought after result, and hence we
can use damped dynamics to obtain the static solution [5]. Note that the surface displacement
is numerically calculated in Fourier space for each set of modes corresponding to a single wave
number q, i.e., mode in normal direction and mode in tangential direction, using the equation of
motion of a harmonic oscillator with two degrees of freedom (DOF) in Fourier space. Moreover, we
can derive an analytical expression for the critical damping, i.e., critical damping coefficient ccr,
ensuring correct and fast convergence of the surface displacement to its new equilibrium position.
The remainder of this work is organized as follows: First, we give the derivation of the displacement
fields u (x, z) inside and on the linear-elastic, finite-height slab in Sec. 2.2. Then, we present the
derivation by Venugopalan et al. [3] of the total areal elastic energy vel for the aforementioned
displacement field in Sec. 2.3. Next, we discuss the damped dynamic energy minimization in
GFMD method in Sec. 2.4. Finally, we discuss the advantages and limitations of the GFMD
method in Sec. 2.5. In the appendix, we give the pseudo-code of the GFMD method.
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2.2 Displacement field of finite-height slab with generic Poisson’s
ratio

Following Venugopalan et al. [3], we consider the linearly elastic body of cubic symmetry in the
slab geometry with the fixed bottom, i.e., the displacement is u(x, z = 0) = 0. The equilibrium
condition is ∂ασαβ(r) = 0, where σαβ(r) is the stress at the point r inside the body and ∂α ≡ ∂/∂rα.
We write the equilibrium condition as:

[C11∂
2
1 + C44∂

2
3 ]u1 + (C44 + C12)∂1∂3u3 = 0;

[C11∂
2
3 + C44∂

2
1 ]u3 + (C44 + C12)∂3∂1u1 = 0,

(2.2)

where Cij denotes coefficient of the elastic tensor in Voigt notation. The solutions of the in-plane
cosine transform of the lateral u1 displacement couples to the in-plane sine transform of the normal
u3 displacement, and vice versa [3]. The displacement inside the body is:

uc
1(x, z) = cos(qx)ũc

1(q, z);

us
3(x, z) = sin(qx)ũs

3(q, z).
(2.3)

Solution satisfying the boundary condition u(x, 0) = 0 and the equilibrium condition then reduces
to: [

ũc
1(q, z)
ũs

3(q, z)

]
=

[
f1(qz) −f2(qz)
f2(qz) f3(qz)

] [
A1

A2

]
, (2.4)

with

f1(qz) = sinh(qz) +
1− s
1 + s

qzcosh(qz);

f2(qz) =
1− s
1 + s

qzsinh(qz);

f3(qz) = sinh(qz)− 1− s
1 + s

qzcosh(qz),

(2.5)

where s ≡ C44/C11, and s ranges from 0 to 1 [45]. The pertinent coefficients A1,2 are evaluated at
z = zm. The pertinent coefficients B1,2 for the in-plane sine transform of u1 and the cosine transform
of u3 are determined similarly to Eqs. (2.3), (2.4) and (2.5). Moreover, the pertinent coefficients
A1,2, B1,2 allow us to evaluate the displacement inside the linear-elastic body for a generic normal
and tangential displacement at the surface u(x, zm). In Fig. 2.2, we show the displacement fields
inside a body with aspect ratio a = 1/4 using the analytical expression in [3] for u1(x, zm) = 0 and

u3(x, zm) = u0
3 sin

(
2π

Lx
x

)
at the surface with u0

3/Lx = 5× 10−5.

(a) (b)

Figure 2.2: Displacement fields of (a) the normalized displacement u1/Lx in x-direction and (b)
the normalized displacement u3/Lx in z-direction.
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2.3 Areal elastic energy of finite-height slab

Following [3], we write of the infinitesimal Cauchy’s strain field ε(x, z) as:

ε1(x, z) ≡ ∂1u
c
1(x, z);

= −qsin(qx)ũc
1(q, z);

ε3(x, z) ≡ ∂3u
s
3(x, z);

= sin(qx∂3ũ
s
3(q, z);

ε5(x, z) ≡ (∂3u
c
1(x, z) + ∂1u

s
3(x, z));

= cos(qx)(qus
3(q, z) + ∂3u

c
1(q, z)).

(2.6)

This allows us also to determine the stress field σ(x, z) in the linear-elastic body using the well-known
stress-strain relation, i.e., σαβ = Cαβγδεγδ. Following Venugopalan et al. [3], we can determine the
work per unit area to deform the body with slab height zm– assuming small-slope approximation,
i.e., τα = σαβnβ, with the tangential component of the surface normal nα = 0 – as:

vel =
1

w

∫ w

0
dx

[∫ u1(x,zm)

0
σ13(x, zm)dw1(x, zm) +

∫ u3(x,zm)

0
σ33(x, zm)dw3(x, zm)

]
. (2.7)

For a given wavenumber q, the areal elastic energy vel(q) is:

vel(q) =
C44

2
ε̃c5(q, zm)ũc

1(q, zm) +

{
C11

2
ε̃s3(q, zm) +

C12

2
ε̃s1(q, zm)

}
ũs

3(q, zm), (2.8)

with

ε̃s1(q, zm) = −qũc
1(q, zm);

ε̃s3(q, zm) = ∂3ũ
s
3(q, zm);

= r
cosh2(qzm)− r(qzm)2 − 1

‖ f(zm) ‖
qũc

1(q, zm)

+ (1− r)cosh(qzm)sinh(qzm) + r(qzm)

‖ f(zm) ‖
qũs

3(q, zm);

ε̃c5(q, zm) = qus
3(q, zm) + ∂3u

c
1(q, zm);

= (1 + r)
cosh(qzm)sinh(qzm)− r(qzm)

‖ f(zm) ‖
qũc

1(q, zm)

+
(1− r)sinh2(qzm)− 2r2(qzm)2

‖ f(zm) ‖
qũs

3(q, zm),

(2.9)

where

r =
1− s
1 + s

, (2.10)

and

‖ f(zm) ‖ = f1(zm)f3(zm) + f2(zm)2;

= cosh2(qzm)− (rqzm)2 − 1.
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Following Venugopalan et al. [3], we rewrite the total areal elastic energy vel as the sum over all
wave numbers q:

vel =
∑
q

C11q

2

[
ũ∗1(q), ũ∗3(q)

] [M11(q) −iM13(q)
iM13(q) M33(q)

] [
ũ1(q)
ũ3(q)

]
, (2.11)

with

M11(q) = (1− r)cosh(qzm)sinh(qzm)− r(qzm)C11

‖ f(zm) ‖
;

M13(q) =

(
1− r
1 + r

)
(1− r)sinh2(qzm) + 2r2(qzm)2C11

‖ f(zm) ‖
;

M33(q) = (1− r)cosh(qzm)sinh(qzm) + r(qzm)C11

‖ f(zm) ‖
.

(2.12)

Note that from the total elastic energy density vel, we can determine the Fourier transform of the
elastic restoring force F el (q) at the surface as a function of the Fourier transform of a generic
displacement at the surface ũ(q), and vice versa. The elastic restoring force F̃ el (q) is determined
as:

F̃ el (q)

A0
= G̃

−1
(q) ũ (q) = ∇ũvel, (2.13)

where A0 is the total surface area, G̃
−1

(q) the inverse Green’s function, determined by the evalu-
ation of the areal elastic energy density vel in Eq. (2.11). Moreover, the inverse Green’s function
is the linear spring constant in Fourier space in the damped dynamic energy minimization that is
explained in the following section.
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2.4 Damped dynamic energy minimization

In static equilibrium, the equilibrium condition can be written as:

F̃ el (q) + F̃ ext (q) + F̃ if (q) = 0, (2.14)

where F̃ ext (q) the external force and F̃ if (q) the interfacial force. When tractions are prescribed
on a section of the surface, equilibrium is reached when the elastic restoring force F̃ el (q) and the
external force F̃ ext (q) are balanced with F̃ if (q) = 0. If displacement is prescribed on a section of
the surface, equilibrium is reached when the elastic restoring force F̃ el (q) and the interfacial force
F̃ if (q) are balanced F̃ ext (q) = 0. At a given dimensionless time t, before equilibrium is attained,
the equation of motion at the interface can be written as:

F̃ el (q, t) + F̃ ext (q, t) + F̃ if (q, t) + c
dũ (q, t)

dt
= m

d2ũ (q, t)

dt2
, (2.15)

where c = (c1, c3) is the positive real valued directionally dependent linear damping coefficient and
m is the real valued mass. The mass m is taken to be unity. The equation of motion of a damped
mode in Fourier space is solved numerically by the position (Störmer-)Verlet (pSV) method [16]
over dimensionless time-step ∆t. Note that in this work, the force at the interface F̃ if (q) is not
explicitly known, but only implicitly through the interfacial boundary condition (b.c.). A hard-wall
interaction b.c. is employed at the end of each iteration to ensure there is no inter penetration at
the surface, i.e.,

zpunch(x) ≥ zgrid-point(x), (2.16)

where zpunch and zgrid-point are the z-coordinates of the punch surface and substrate respectively.
Figure 2.3 is the schematic representation of the hard-wall interaction b.c. for an indentation with
a flat rigid punch.

(b)
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Fif

Fel

punch
δzzpunch

(a)

zgrid-point
z

x

z

x

Figure 2.3: Schematic representation of a mixed boundary-value problem in GFMD simulations: A
flat rigid punch indentation. Step (a) is the initial configuration, and step (b) shows the constant
displacement δz of the rigid punch at time t > 0.

At the end of the each iteration, the grid-points that violate the hard-wall interaction b.c. are
displaced back to the z-location of the surface of the rigid punch, i.e. zpunch(x). Note that the
GFMD method is not limited to hard-wall interaction, but we use the hard-wall b.c. for its con-
venience and its possibility to non-arbitrarily determine the contact area fraction ar. In this work,
the contact area fraction ar is determined as the number of grid-points violating the hard-wall b.c.
over the final dimensionless time-step ∆t as a fraction of the total number of grid-points nx.
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2.5 Advantages and limitations

With the GFMD approach, we are able to numerically calculate the linear-elastic response of a
solid to an external load by modeling only the surface. This allows us to study more complicated
surface geometries by adding more degrees of freedom at the surface. For example, if one wants
to study self-affine rough surfaces that has roughness spanning length scales 100 µm to 50 nm,
the number of grid-points nx ≥ 214. The computational gain offered by GFMD is appreciable in
such cases. Although, in this work, we only consider plane strain cases, the GFMD method can be
extended to plane stress cases [46] and also a (2+1)-dimensional substrate.
According to Venugopalan et al. [3], the GFMD method provides the relevant information to
determine the relative contact area ar, but with a signification gain in simulation time. Moreover,
GFMD method employs an interfacial potential between contacting bodies that the user can chose
at will. GFMD is also suitable for mixed BVP, therefore applicable to contact mechanical problems
where the contact area is not known a priori. It is known that FEM typically needs several iterations
and updating of the b.c. in order to converge to a final contact area [47]. Moreover, according to
Venugopalan et al. [47], GFMD is very suitable to be built as a multi-scale model following the
work of Pastewka et al. [48]. In such a multi-scale model [48], we give the surface an atomistic
description, and the linear-elastic substrate we treat with the GFMD approach.
In GFMD simulations, we consider linear-elastic material and loading conditions satisfying the
infinitesimal strain theory. Therefore, for large nominal pressure p̄ between contacting metallic
bodies, both these assumptions break down. However Venugopalan et al. [47] has made a first step
relaxed this assumption by including plasticity.
Note that the areal elastic energy vel is calculated assuming a small surface slope g(x). In the
regions of contact between nominally flat surfaces at low nominal pressure p̄, we have observed that
the local gradient g(x) is of such magnitude that it already violates the small-slop approximation.
Therefore, future work should focus on relaxing the small-slope assumption.
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Appendix 2.A Pseudo-code

a. Setup rigid punch with surface topography h(x);

b. Determine damping factor vector ηcr such that all modes are critically and/or under-damped,
and calculate the dimensionless equilibrium time tequil;

c. Give the rigid punch initial displacement in normal direction, i.e., zpunch = h(x)− δz, where
δz is the finite indentation depth;

d. Loop over dimensionless time-step ∆t till the equilibrium time tequil is reached.

– Discrete fast Fourier transform (DFFT) surface displacement u(x) using the FFTW3
library [49].

– Calculate elastic restoring force, F̃ el (q) = G̃
−1

(q) ũ (q);

– Add external force, F̃ (q)← F̃ (q) + F̃ ext(q)

– Add damping forces, F̃ d(q)← F̃ (q) + η{ũold(q)− ũnew(q)}
– Use pSV to solve equation of motion, ũnew(q) = 2ũnow(q)− ũold(q) + F̃ d(q)∆t2

– Reverse DFFT displacement ũnew(x) into real space;

– Implement the hard-wall b.c., ũnew(x)← min{ũnew(x), h(x)− δz};
– Assign ũold(x)← ũnow(x) & ũnow(x)← ũnew(x).
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Chapter 3

Rough surfaces: Numerical methods
to generate fractal roughness

“These must be splendid clothes indeed!” thought the Emperor.”

Hans Christian Andersen, The Emperor’s new clothes
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3.1 Introduction

Surface roughness is the local deviation of a surface from a perfectly flat plane, and is also known
as surface texture or surface finish. To obtain properties of rough surfaces, different experimental
techniques are used [50]. These techniques yield surface statistics, which are instrumental to classi-
fying real rough surfaces and modeling artificial surface topographies. A wide variety of surfaces are
experimentally found to have fractal roughness [1, 2, 24], either mounded or self-affine roughness
depending on surface processing [51]. The surface roughness is self-affine if it looks statistically
the same under dilatation with different factors in different directions. This dilatation factor is
called the Hurst’s exponent H. The mounded surface has a dominant wavelength λ, larger than
the scale where it is self-affine. To date, most in-depth brute-force simulations [40, 33, 4, 5] and
statistical theories [12, 25, 22, 13] have focused on self-affine surface roughness. Brute-force simu-
lations approximate mounded surfaces as nominally flat at length scales larger than the correlation
length ξ, regardless of the characteristic wavelength λ. This approximation reduces the size of the
computational repetitive cell by decades, but is correct only for certain mounded surfaces. Here,
we define for which parameters λ, ξ the assumed size of repetitive cell for any mounded surface
breaks down. In this way we are now also capable of correctly determining the minimum surface
discretization prior to the simulation.
Statistical models of surface roughness are widely used in tribology [10, 11, 12]. Most models are
based upon the assumption that a Gaussian surface height distributions best mimics experimentally
measured surface roughness as a random process [52, 53, 25, 54]. Despite, Borodich et al. [54] dis-
puted the assumption of a Gaussian height distribution for nano-scale surfaces, Yastrebov et al. [32]
showed that the averaged mechanical response of non-Gaussian surfaces is not equivalent to the
mechanical response of the averaged surface, whose distribution is Gaussian. In this work, we
adhere to the common Gaussian assumption.
At present, the four most commonly used methods for numerically generating self-affine surface to-
pographies for brute-force methods are: The random midpoint displacement method (RMD) [42];
The successive random addition method (SRA) [42]; The Fourier filtering method (FFM); And the
power spectral density method (PSDM) [43]. RMD and SRA originally generated topographies
with a non-Gaussian height distribution, and show spectral remnants for H 6= 0.5. However, it
is well known that RMD and SRA are the most suitable methods to produce a topography with
specific statistics at a given position on the surface, and both easily incorporate, alter or remove
small wavelengths for a given topography. These two methods are very suitable for slid island
analysis [43]. It is known that PSDM and FFM lack the spectral remnants shown by RMD and
SRA, and PSDM even allows for the scaling of individual Fourier coefficients of the power spectral
density function (PDSF) of the surface.
In this chapter, we select out of these four the method most suitable to numerically generate sur-
face topographies for Green’s function molecular dynamics (GFMD) simulations [5, 3]. To this end,
RMD and SRA are extended to generate periodic surfaces with Gaussian height distribution. It
is necessary to extend RMD and SRA to generate periodic surfaces, because the surface statistics
must be stationary over the periodic boundary of the GFMD method. The extended RMD and
SRA can then be compared with PSDM and FFM. In this work we determine the proportion-
ality coefficient κ. Therefore, the numerical method that generates the surface topography with
statistics as close as possible to the required surface statistics is selected. PSDM is selected as the
most suitable method for future research. Finally, a real rough surface topography and the surface
topography numerically generated by PSDM are compared.
The remainder of this chapter is organized as follows: We summarize relevant statistical surface
properties used throughout this work in Sec. 3.2. Then, in Sec. 3.3, we summarize four rough-
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ness measurement techniques and put forth the current and past discussions on rough surface
topographies of metals. Subsequently, we give the analytical models of fractals as basis for numer-
ical methods, and we define the parameters λ, ξ for which the assumed size of repetitive cell for
mounded surfaces breaks down in Sec. 3.4. RMD and SRA are extended to numerically generate
Gaussian height distributions, all four aforementioned method are discussed and the most suitable
numerical method for this work is chosen in Sec. 3.5. Then, we compare a surface topography
generated by PSDM to experimental results in Sec. 3.6. This work ends with the conclusion and
the discussion in Sec. 3.7. In the appendix, we give the derivation of the discrete Fourier transform
of a purely real Gaussian signal. Then, we give the pseudo-code of PSDM. Subsequently, we derive
the analytical expression of the height distribution for discrete convolution of a Gaussian with the
self-affine auto-correlation function. Finally, we attempt to give a ratio between repetitive cell size
Lx and correlation length ξ as a function of the Hurst’s exponent H for which the numerically
generated surface topography has the Gaussian height distribution.

3.2 Mathematical description of surface roughness

Roughness can be described by a single-valued function h(r), where h(r) is the height of the surface
above position vector r on the d-dimensional reference plane. Dong et al. [55] give a comprehensive
overview of choice of reference plane for surface roughness measurements. Figure 3.1 is a schematic
representation of an height profile h(r), with its height distribution function p(h). The height
distribution function p(h) is the probability of a surface height to fall between h and h+ dh. The
distribution p(h) is a real, positive and normalized function of h. The height distribution function
provides a complete specification of the random variable h(r) at position r.

r

h

p
(h
) hmax

hmin

w

-w
⟨h⟩

Figure 3.1: Schematic representation of the height profile h(r), with the associated height distri-
bution function p(h), maximum height, hmax, minimum height, hmin and root mean square height
w.

Rough surfaces can be classified in three ways, according to their statistical properties, their con-
tinuity properties and rational symmetries. The associated parameters can be divided in three
categories, namely amplitude, spacing and hybrid parameters.
Amplitude parameters quantify the vertical characteristics of a surface, like the average height
〈h(r)〉 and root mean square height (RMSH) w =

√
〈h(r)2〉. Spacing parameters quantify the

distribution of horizontal or lateral features of a surface, like the smallest wavelength λs and the
largest wavelength λl. Hybrid parameters are a combination of amplitude and spacing features of

a surface, as the root mean square gradient (RMSG) ḡ =
√
〈(∇h(r))2〉, and Hurst’s exponent H.

When we consider statistical properties, surface roughness is divided into two categories: Determin-
istic rough surfaces and random rough surfaces. A deterministic surface is defined by a deterministic
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function of the surface height profile. The form of this function defines all properties of the surface
roughness. From a statistical point of view, surface heights between two points on a deterministic
surface are fully correlated.
The surface height of a random surface profile cannot be expressed as a deterministic function
of the position on the surface, but through a random field (random process for d = 1) [50]. In
this work, we focuses on random rough surfaces, because random surfaces give the most realistic
representation of experimentally measured rough surfaces without any prior assumptions on the
individual asperity shape.
For the complete description of a random field one needs to know the n-dimensional joint distri-
bution function pn(h1, h2, ..., hn; r1, r1, ..., rn), where r1, r2, ..., rn are a set of different positions on
the surface and h1, h2, ..., hn are the corresponding random variables.
A random field is called homogeneous (i.e., stationary in an one-dimensional random process) if
all the probability distribution functions are defined by the relative location and not the absolute
location in parameter space. A random field is ergodic if all of the information about its joint
distribution is derivable from a single realization of the random field.
This work is on random surfaces described by homogeneous, isotropic and ergodic fields. In many
brute-force methods [33, 40, 4, 5], higher-order correlation functions are omitted because statistical
continuum models omit higher-order correlation [10, 11, 12] correctly predict experimental observa-
tions. Therefore, the surface roughness is determined by the first-order and second-order statistics
of a random field, because higher-order correlation functions are commonly not considered relevant
for contact mechanics [4]. We agree with this notion, and we also limit the description of surface
roughness to the first- and second-order statistics of the random field.
The first-order statistics described in this section are the surface height distribution function,
RMSH and the characteristic function. The most used height distribution is the Gaussian height
distribution:

pG(h) =
1√
2πw

e

− h2

2w2


. (3.1)

The nth moment of a variable h is defined as mn = 〈hn〉. The second moment of h, describes
the surface roughness, represented by w2. The skewness of the surface m3/w

3 is a measure of
the symmetry of a distribution about the means surface level. Kurtosis of the surface m4/w

4 is
a measure of the sharpness of the height distribution function. A Gaussian height distribution
has the kurtosis γ4 = 3. The characteristic function φ(q) is the Fourier transform of the height
distribution function. Here q is the wave number.
First-order statistics only describe the statistical properties of random variables of the random field
at individual positions. In order to differentiate the spatial difference of the surface topography,
one needs to know the correlation of a random field h(r) at two different positions r1 and r2. The
three second-order statistical properties discussed and used in this section are:

a. The auto-correlation function (ACF) R(ρ), with the correlation length ξ and the translation
vector ρ, see Fig. 3.2a;

b. The height-height correlation function (HHCF) H(ρ) = 〈(h(r)−h(r+ρ))2〉, as shown in Fig.
3.2b;

c. The power spectral height function (PSHF), Ch(q) = 〈|h̃(q)|2〉, where h̃(q) is the Fourier
transform of h(r) and q is the wave vector. The PSHF is the expectancy of the power
spectral density function (PSDF) C(q) = |h̃(q)|2, see Fig. 3.2c.
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Figure 3.2: Three second-order statistics of a self-affine surface topography, on a d-dimensional
reference plane: (a) Plot of the exponential and Gaussian auto-correlation functions R(ρ/ξ) as a
function of the absolute normalized translation scalar |ρ/ξ|; (b) Log-log plot of the height-height
correlation function H(ρ) of a self-affine surface as a function of the translation scalar ρ, with
correlation length ξ and RMSH w; (c) Log-log plot of the power spectra height function Ch(q) as a
function of the wave number q, largest wavelength λl, cut-off wavelength λr and smallest wavelength
λs.

The two parameters w and ξ are not enough to give a full description of the ACF. An additional
parameter is needed, the Hurst exponent H. A surface with exponential ACF corresponds to
H = 1

2 , with Gaussian ACF to H = 1 and white noise to H = 0.

27



Rough surfaces are classified by their continuity properties depending on the resolution (i.e., small-
est wavelength λs). If the smallest wavelength is much larger than the atomic distance a, the
surface is described as continuous. If this condition is not met, the surface is described as a discrete
surface. In this work we consider only continuum descriptions of the surface roughness.
A rough surface is classified by its rational symmetry: if the surface fluctuation is independent of
direction on the reference plane, the surface is isotropic; otherwise, anisotropic. Thus, a rough sur-
face classified as anisotropic has second-order statistics depending both on relative location on and
their direction in the d-dimensional reference plane [50]. In this work, we report on both rational
symmetries.
With this knowledge of the mathematical descriptions of surface roughness, we discuss here the
experimental roughness measuring methods and experimentally observed surface roughness.

3.3 Characterization of rough surface topographies

The smallest observable wavelengths of the fractal roughness are dominant in determining the
measured root mean square gradient (RMSG) ḡ [5]. The RMSG has a major effect on contact
mechanics (see chapter 1). The commonly reported cut-on wavelength λs,H ≈ 50 nm, because this
value corresponds to the minimum lateral resolution of AFM [50]. Lower cut-on lengths have been
reported for scanning tunneling microscopy (STM) measurements [50], but in smaller number of
publications than AFM experiments. STM has a large error for metallic surfaces due to their large
root mean square height w (RMSH) [50]. The effect of processing techniques on small length scales
is disputed [2, 24]. This value of λs,H ≈ 50 is often reported as the smallest wavelength of the fractal
region regardless of material and/or processing technique [24, 2, 50]. The measurement range of
AFM makes it attractive to measure surface statistics, while other experimental techniques have a
lower resolution. The prevalent use of AFM, with its relative larger resolution, to measure surface
statistics is one of the reasons no consensus has been reached on the value of cut-on wavelength
λs,H.
Two experimental techniques are used to measure real surface topographies: Real-space scanning
techniques; And, scattering techniques (ST). Real-space techniques are used in static experiments
and are capable of direct real space imaging. Scattering techniques, which measure statistical
surface properties in reciprocal space, are most suitable for dynamic experiments, but their results
need interpretation in real-space.
Stylus profilometry (SP), scanning tunneling microscopy (STM) and AFM are real-space scanning
techniques. SP scans the surface topography by measuring the vertical movement of a stylus
laterally moving, in contact, across the surface of a sample. STM scans the surface topography
by measuring the tunneling current between probe and surface and is suitable only for metals and
semi-conductors. AFM scans the surface topology by measuring different kinds of intermolecular
forces. Table 3.1 gives an overview of the measurement range and resolution of the afore-mentioned
real-space scanning techniques.

Measurement range Resolution
Technique Lateral Vertical Lateral Vertical

SP 300 mm 6 mm 0.05 - 0.15 µm >0.05 nm
STM 500 µm 2 µm 0.1 nm 0.2 nm
AFM 500 µm 2 µm 5 nm ≤ 0.1 nm

Table 3.1: Maximum lateral and vertical measurement range and lateral and vertical resolution
[50].
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Scattering techniques, X-ray diffraction and white light interferometry, show lateral resolutions of
40 nm [56], but have a measurement range decades smaller than AFM and STM. Also spectral
artifact at discontinuities are more severe in scattering techniques than in real-space techniques.
Figure 3.3 depicts the measurement ranges of SP, STM, AFM and ST on the schematic represen-
tation of the PSHF of a self-affine random rough surface.

Figure 3.3: Comparison of the lateral measurement ranges of SP, AFM, STM and ST through
the schematic representation of the PSHF of a self-affine random rough surface with H = 1

2 and
λr = 100 µm [50, 56].

STM seems to be the most suitable method to measure surface topographies up to the nm scale.
Although its resolution goes up to the atomic scale and its vertical measurement range is equal to
AFM, the error for large RMSH makes it unsuitable for most real rough surfaces [50]. AFM is the
most suitable and versatile method at present and limits the lateral resolution to between 5 and 50
nm.
According to Plouraboué et al. [2] also the processing technique influences the small scale roughness,
and the measured surface slopes remain small in all directions, but increase with a decrease in
lateral and vertical measurement resolution. This trend suggests a continuation of self-affine region
below the minimum measurement resolution. For cold rolled aluminum the typical slope was
0.03 ≤ σ(θ) ≤ 0.28 in longitudinal direction and 0.09 ≤ σ(θ) ≤ 0.64 in transverse direction. Self-
affinity ranges from O0 nm to O1 µm for highly polished surface and even further for regular
surfaces, as stated by Persson et al. [25] and B. Bhushan [28]. The cut-on wavelength for self-
affinity, suggested by Pelliccione [51], is the wavelength corresponding to the inter-atomic distance
a. This is disputed though, because measurement with AFM and STM have only displayed self-
affinity up to the order of O1 nanometer [50]. In this work, we chose the cut-on wavelengths λs,H

to be between 5 and 50 nm corresponding to AFM measurements.
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3.3.1 Rough surface topographies of metals

FCC metals have Hurst’s exponents ranging between 0.3 and 1, which depends on the processing
technique and material’s properties [1, 24, 2]. At small length scales, metals exhibit self-affine
isotropic roughness, which is associated to the material property independent of the processing
technique. At large length scale, self-affinity breaks down and/or has an anisotropic rational sym-
metry. Whether a surface topography has a characteristic length scale depends on the processing
technique and changes over processing time [51]. Further more, experimental surface topographies
of FCC metal show a cut-off wavelength of the self-affine region, which depends on the surface
processing technique. We agree with the notion that the cut-off wavelength solely depends on the
processing conditions. According to Plouraboué et al. [2], roughness transfer takes place over all
length scales, i.e., micro to nano scale, for cold-rolling of aluminum.
However, note that fractal surfaces are extensively studied, dating back to a pioneering work by
Mandelbrot et al. [1]. According to Mandelbrot et al. [1] the value of Hurst’s exponents H of
metallic surfaces ranged form 0.7 to 0.85. Moreover, an extensive body of experimental work, that
followed Mandelbrot et al. [1], showed Hurst’s exponents H ≈ 0.8 for fractured metals. From
these observations one could conclude that there is one universal Hurst’s exponent H ≈ 0.8 for any
given metallic rough surface. However, recently, small scale analysis using STM and AFM showed
departure from H ≈ 0.8 [51, 57, 58]. At small scale, an exponent of H ≈ 0.5 with correlating
lengths up to 1 µm for TiAl alloys [50] were measured. Therefore, in this work, we chose to vary
the value of the Hurst’s exponent H.
Note that it was commonly assumed that the PSHF of machined metals follow a typical pattern.
For example, at small wavelengths stainless steel surface processing does not affect the surface
structure. At such scales the PSHF of all surfaces coincide, determining a unique fractal dimension
of Df = 1.5, as shown by Majumdar et al. [24]. The influence of surface processing is felt only
for roughness features of wavelength larger than a certain cut-off wavelength λr [24]. In this large
wavelength region, each processing technique produces a different type of spectral profile. The
common self-affine roughness at small scales is a material property [24]. However, more recent,
Plouraboué et al. [2] showed with AFM that cold rolled aluminum alloy (Al 5182) has self-affinity
up to the order of 50 nm. The cold rolled specimens have high anisotropy of scaling with H ≈ 0.9
in transverse direction and 0.3 ≤ H ≤ 0.7 in longitudinal direction. The cut-off wavelength can
be of the order of 100 µm. The RMSH ranged from 0.3 µm to 2.5 µm. Roughness transfer, due
to rolling, can take place from the macroscopic to the nano scale. Nonetheless, all experimentally
studied surfaces display, at a small scale, a common self-affine isotropic roughness. Fig. 3.4 is an
AFM image of cold rolled aluminum, by Plouraboué et al. [2].
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Figure 3.4: A 512 × 512 points AFM image of cold-rolled aluminum alloy sheet, showing non-
isotropic self-affine scaling over three orders of magnitude from 50 nm to 50 µm [2].

Note that the surface roughness depends on the processing conditions, although to what small
length scales the influence of the processing conditions extends is still controversial. We conclude
that, in this work, we need to numerically generate fractal surfaces with generic Hurst’s exponents
H, roll-off λr and roll-on wavelengths λs,H . We chose the Hurst’s exponent 0.3 ≤ H ≤ 0.8.
Moreover, we chose the higher limit H = 0.8, because for larger values of H the ratio Lx/ξ ≈ 400,
i.e. nx ≥ 218, where nx is the number of grid-points in GFMD. In order to numerically generate
these surface topographies, we here present mathematical description of fractal surfaces.
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3.4 Mathematical description of fractal surface roughness

In this work, we present the mathematical descriptions of fractal surfaces for two reasons. First, in
this section, we use them to determine the maximum ratio ξ/λ for which the mounded structure
can be modeled as self-affine. Secondly, the HHCF and the PSHF are the inputs to the reciprocal
space methods presented in Sec. 3.5.

3.4.1 Self-affine surfaces

Self-affine surfaces can be described by the function:

h(r1, r2) = ε−H1
1 ε−H2

2 h(ε1r1, ε2r2), (3.2)

where h is the single-valued height, ε is the dilatation factor and r1 and r2 are the positions on the
reference plane. Real rough surfaces only exhibit self-affine behavior over a certain range of length
scales. They display a cut-off wavelength λr (also called roll-off wavelength), corresponding to the
correlation length ξ, above which length scale the surface topography is no longer self-affine, i.e.,
commonly referred to as the asymptotic behavior of fractal roughness. In this work we consider
the continuous description of surface roughness. To this end, the smallest length scale ls is much
smaller than the correlation length ξ and the surface is treated as if ls → 0. Then the HHCF for
an isotropic self-affine surface is:

H(ρ) = 2w2f (ρξ ), (3.3)

where f
(
ρ
ξ

)
is a scaling function [50] (see Fig. 3.2b), with the following properties:

f

(
ρ

ξ

)
=


(
ρ

ξ

)2H

, for

(
ρ

ξ

)
<< 1;

1, for

(
ρ

ξ

)
>> 1.

(3.4)

The asymptotic behavior of the HHCF can be expressed as:

H(ρ) =

{
(mρ)2H , for ρ << ξ;

2w2, for ρ >> ξ,
(3.5)

with,

m =
w1/H

ξ
, (3.6)

where m is the local slope. The Hurst’s exponent is directly related to the local surface fractal
dimension Df by H = d + 1 −Df. The fractal dimension Df is an index for characterizing fractal
patterns or sets by quantifying their complexity as a ratio of the change in detail to the change in
scale [1]. Within the lateral correlation length ξ the surface heights of any two points are correlated.
Following [51], the asymptotic behavior of the PSHF can be expressed as :

Ch(q) = w2ξdg (qξ) , (3.7)

where g(qξ) is a scaling function, with the following properties:

g (qξ) ∝

{
1, for qξ << 1;

(qξ)−2H−d , for qξ >> 1.
(3.8)
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Eqs. (3.5) and (3.8) only give the asymptotic behavior of the characteristic functions, the exact
forms of these characteristic functions may vary.
Functional forms of the HHCF try to capture the stochastic process associated with isotropic self-
affine surface topographies and its asymptotic form (i.e., Eq. (3.5)). Any model that satisfies the
asymptotic form of the HHCF may be considered a model of self-affine surface topography [59, 60].
The rough surface topographies measured in experiments are also fitted with these models to
determine the fractal properties of the surface roughness [50]. Two models, discussed in this work,
are called the exponential correlation model (ECM) [61] and the K-correlation model (KCM) [62],
also known as fractal characterization models. Fractal characterization models are models that
provide the capability to model surface that are not purely self-affine – they do not continue at the
same log-log slope across all wavelengths (see Fig. 3.2c). Following [61], the HHCF according to
the ECM for an isotropic self-affine surface is:

H(ρ) = 2w2

1− e
−
(ρ
ξ

)(2H) . (3.9)

Note that HHCF according to the ECM cannot represent H = 0. Following [61], the ACF according
to the ECM for an isotropic self-affine surface reads:

R(ρ) = exp

− |ρ|
ξ

2H
. (3.10)

Following [51], we can write the PSHF:

C(q) =


w2ξ

2πH

∑∞
j=0

Γ

j +
1

2
H


2j!

(
−q2ξ2

)j
, for d = 1;

w2ξ2

4πH

∑∞
j=0

Γ

(
j + 1

H

)
(j!)2

(
−q

2ξ2

4

)j
, for d = 2,

(3.11)

where Γ(x) is the Gamma function. The HHCF according to the KCM reads:

H(ρ) = 2w2

(
1− H

2H−1Γ (H + 1)

(
ρ

ξ

√
2H

)H
KH

(
ρ

ξ

√
2H

))
, (3.12)

where KH(x) is the Hth-order modified Bessel function. Then, for the ACF we can write:

R(ρ) =
H

2H−1Γ (H + 1)

(
ρ

ξ

√
2H

)H
KH

(
ρ

ξ

√
2H

)
. (3.13)

The PSHF according to the KCM reads:

Ch(q) =



w2ξ√
2π

√
HΓ

(
H +

1

2

)
Γ (H + 1)

(
1 +

q2ξ2

2H

)−H−1

2
, for d = 1;

w2ξ2

2π

(
1 +

q2ξ2

2H

)H+1
, for d = 2.

(3.14)
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The ACF according to both ECM and KCM are compared in Fig. 3.5.
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Figure 3.5: Log-linear plots of the auto-correlation function R(ρ/ξ) as a function of the ratio ρ/ξ
for the ECM and the KCM, for a given Hurst exponent: (a) H = 1.0; (b) H = 0.50; (c) H = 0.1.

For H > 1
2 , the KCM approaches zero more gradually than the ECM. For H < 1

2 , the KCM
approaches zero more rapidly than the ECM. For H = 1

2 the KCM and ECM coincide. A major
advantage of the KCM over the ECM is that the PSHF (Eq. 3.14) can be expressed in closed form.
In this work, we limit the study into rational symmetry to anisotropy of correlation length and
anisotropy of scaling for (2 + 1)-dimensional self-affine surfaces. These two rational symmetries are
most frequently experimentally observed [50]. Moreover, these anisotropic models for the PSHF
of random rough surfaces are presented, because of their use measuring surface topographies and
future work on (2 + 1)-dimensional deformable substrates. Following [63], the PSHF of the KCM
for a topology with correlation-length anisotropy reads:

Ch(q) =
2Hξ1ξ2w

2

(1 + q2
1ξ

2
1 + q2

2ξ
2
2)(1+H)

. (3.15)
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Following [50], the PSHF of the KCM for a topography with anisotropy of scaling we can write:

Ch(q) =

2ξ1ξ2w
2Γ

(
1

2
+H1

)
Γ

(
1

2
+H2

)

Γ (H1) Γ (H2)
(
1 + q2

1ξ
2
1

)(1

2
+H1

) (
1 + q2

2ξ
2
2

)(1

2
+H2

) . (3.16)

Note that the aforementioned description was for a rough surface that was nominally flat for length
scales larger than the cut-off wavelength λr. However, it is known that many rough surfaces have a
characteristic wavelength λ larger than the auto-correlation length ξ. Therefore, here, we present
the ECM and KCM of mounded surfaces.

3.4.2 Mounded surfaces

Up to date, not known is for what lengths of λ and ξ the mounded structures influence the self-
affine part of the PSHF. It is expected that for λ >> ξ the mounded structure does not influence
the self-affine PSHF. Neglecting the mounded structure corresponds to the practice of removing
waviness from a topography measurement before studying its properties. This characteristic length
scale for mounded surfaces, is also called the average mound separation λ. Figure 3.6 is a schematic
representation a mounded surface profile h(r) and the PSHF Ch(q) of a mounded surface.
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Figure 3.6: Schematic representation of a mounded surface topography: (a) Height profile h(r) as
a function of scalar r, with correlation length ξ and average mound separation λ; (b) Log-log plot
of the PSHF Ch(q) as a function of the wave number q, with a peak at wave number qm = 2π/λ.

The correlation length is still well defined, and is a measure of the size of the mounds, as depicted
in Fig. 3.6a. Average mound separation and correlation length always satisfies λ ≥ ξ. Following
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[51], the HHCF according to the ECM of mounded surfaces reads:

H(ρ) =



2w2

1− e

(
ρ

ξ

)2a

cos

(
2πρ

λ

) , for d = 1;

2w2

1− e

(
ρ

ξ

)2a

J0

(
2πρ

λ

) , for d = 2,

(3.17)

where J0 (x) is the 0th-order Bessel function. The PSHF according to ECM of mounded surfaces
is:

Ch(q) =



w2ξ

4πH
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)j [(
q − 2π
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(
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2π

λ

)2j
]
, for d = 1;

w2ξ2

8π2H

∑∞
j=0

Γ

(
j + 1

H

)
(j!)2

[
−πqξ

2

bλ

]j ∫ 2π
0 [1− b cos θ]j dθ, for d = 2,

(3.18)
where

b =
4πλq

q2λ2 + 4π2
. (3.19)

We can write the PSHF according to KCM as:

Ch(q) =


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√

2π

√
HΓ

(
H +

1

2

)
Γ (H + 1)


1 +

(
q − 2π

λ

)2

ξ2

2H


−H−

1

2

+

1 +

(
q +

2π

λ

)
ξ2

2H


−H−

1

2

 , for d = 1;

w2ξ2

2πΓ (H + 1)
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(
b2

4

)j
, for d = 2,

(3.20)
where

b =
4πξ2λq

2Hλ2 + q2ξ2λ2 + 4π2ξ2
. (3.21)

For a mounded surface it is known that the local surface is quite smooth and H ≈ 1 [50]. Following
[61], the PSHF according to ECM for mounded surfaces with H = 1 is:

Ch(q) =


w2ξ

2
√
π

exp

[
−
(
4π2 + q2λ2

)
ξ2

4λ2

]
cosh

(
πqξ2

λ

)
, for d = 1;

w2ξ2

4π
exp

[
−
(
4π2 + q2λ2

)
ξ2

4λ2

]
K0

(
πqξ2

λ

)
, for d = 2.

(3.22)
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A comparison of the ECM given in Eqs. (3.14) and (3.22) and the KCM in Eqs. (3.11) and (3.20),
for the Hurst exponent H = 1 and correlation length ξ = 1 µm is presented in Fig. 3.7. This is done
to determine the range of values of ξ and λ for which the effect of mounds has to be incorporated
in numerically generating a surface topography.
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Figure 3.7: Log-linear plots of the power spectral height function Ch(q) as a function of the wave
number q for the ECM and the KCM of mounded and self-affine random rough surfaces, with
correlation length ξ = 1 µm and Hurst exponent H = 1 and characteristic length: (a) λ = 2 µm;
(b) λ = 8 µm; (c) λ = 10 µm; (d) λ = 12 µm.

Measuring and numerically generating random rough mounded surfaces by a self-affine correlation
model only approximates the surface roughness when the correlation length ξ

λ ≤ 0.1 and wave
vectors q << ξ−1 are omitted. This corresponds to subtracting waviness from the measured
height profile before analysis of the surface roughness (Sec. 3.2) and is as expected. When the
ratio ξ/λ > 0.1 the characteristic wavelength λ severely influences the self-affine region of the
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PSHF. Numerical generation of surface topographies with ξ/λ > 0.1 will need scaling of the PSHF
Ch (q < qr). For the remainder of this work, we assume the surface topography to be self-affine,
but the periodic reciprocal space methods in Sec. 3.5 can be easily modified to generate mounded
surfaces.

3.5 Generating virtual surface roughness

In this section, a method is selected to numerically generate virtual surface topographies. We will
consider four commonly used methods in tribological research. Two methods are recursive real
space methods: The random midpoint displacement (RMD) method, used by Ramisetti et al. [43];
And, the successive random addition (SRA) method, used by Hyun et al. [40], Campagñá et al.
[39], Yastrebov et al. [32] and Dapp et al. [6]. The other two methods are periodic reciprocal
space methods: The Fourier filtering method (FFM); And, the power spectral density method
(PSDM), used by Campañá et al. [64] and Prodanov et al. [5]. The applicability of a certain
method depends on the numerical simulation method one uses and the quantity that one wishes
to determine. However, often the limitations and drawbacks of various methods are not taken
into consideration. Well known is that current recursive real space methods can not generate
a stationary process [42], to what extent the ACF generated with RMD or SRA varies from the
required ACF is currently unknown. Moreover, according to Voss [42], recursive real space methods
do not generate a topography with the Gaussian height distribution p(h). Note that, up to date,
these methods were only discussed in the context of personal computer texture visualization [42].
Due to the differences in methods and their specific advantages and drawbacks, we can not select
the most suitable method a priori. Therefore, we give here a rigorous analysis, in the light of
tribological research, of all four methods. In this work, we also extend all four methods so they are
capable of numerically generating, (1) a periodic surface Lx with (2) its height distribution p(h)
approaching a Gaussian. We also want to be able to (3) vary the value of each coefficient of the
PSDF corresponding to a single wave number Ch (q) independently scalable. The RMD method
forms the basis for the SRA method. Therefore, we extend the RMD method here first.

3.5.1 Recursive real space methods

Two algorithms for generating statistical self-affine surfaces are formulated by Voss [42], the random
midpoint displacement and the successive random addition method. In RMD, an isotropic self-affine
rough surface is generated by a recursive technique which adds roughness in incremental steps n.
Figure 3.8 is a schematic representation of the evolution of the point grid in real space, using a
recursive method.
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Figure 3.8: Schematic representations of 2-dimensional point grid of the nth step. The midpoints
of the nth step are determined from the grid points present in the (n− 1)th step.

Initially (i.e., at n = 0), the equally spaced d-dimensional point grid has a height equal to the
required average height 〈h(r)〉 with the addition of a Gaussian variable with µ = 0 and variance
w2

4 . Each following step, the midpoints of the points present in the previous step are determined as
the average height of the first neighboring points with the addition of a Gaussian random variable.
The first step (n = 1) for a self-affine rough surface, with d = 1, is:

h (φnn · Lx) = 0.5
(
h (0) + h

(
Lx · φn−1

n

))
+ ∆n, (3.23)

where φn = 1
2 is the constant scaling ratio and ∆n is a Gaussian variable of the nth-step with zero

mean and variance ∆2
n. Derived from the ACF of an isotropic self-affine rough surface (Eq. 3.10),

the variance of the Gaussian random variable of the nth-step ∆n in RMD is:

∆2
n =

w2

(2n)2H

(
1− 22H−2

)
. (3.24)

The height h(r) at point r is determined only once. Although RMD generates a fractal, the points
generated across successive steps lack the correlation needed to become a stationary process. All
additional stages change h(r < ri) independent from h(r > ri). For a stationary process, the
HHCF should be constant for all translations ρ. The absence of correlation across an earlier stage
requires that R(ρ) = 2R(ρ/2), this is true when H = 1/2. Hence, RMD generated isotropic self-
affine surface topography, with H 6= 1

2 , has spectral artifacts (i.e., lack of correlation) and its
characteristic function is not Gaussian.
We modify the original RMD method so that the isotropic surface topography at large length
scales, wavelengths larger than the cut-off wavelength of the self-affine region, are generated with
a constant variance (∆2

n). We observe that the height distribution p(h) becomes Gaussian for a
constant cut-off wavelength λr and an increase in periodic width Lx. Moreover, we modified the
original method so that the isotropic surface topography at small length scales, wavelengths smaller
than the cut-on wavelength of the self affine region, are generated by taking the Fourier transform
of h(r) and adding scaled Fourier coefficients up to the smallest virtual wavelength λs or by using
a standard spline interpolation algorithm [9].
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3.5.1.1 Successive random addition

SRA uses the RMD-algorithm and a Gaussian random variable is added to all points at each
step of the recursive subdivision process. This allows for a varying scaling ratio at each step
(i.e., 0 < φn < 1). According to the Nyquist sampling theorem, nx grid points need nx/2 sinusoidal
components, to capture all the information from a continuous-time process of finite bandwidth.
When the topography is magnified to 2nx grid points, the additional nx/2 sinusoidal components
alter the height at all the current 2nx grid-points. SRA adds sinusoidal components to nx points
at every nth step instead of only adding the additional sinusoidal components to nx

2 points per
nth-step as RMD does. This reduces the spectral artifacts in SRA, compared to RMD.
Hence, SRA can be viewed as magnifying a real isotropic self-affine rough Gaussian surface, where
the spatial resolution increases over all present points during magnification. The variance of the
Gaussian added to all nx grid points of the nth-step in SRA is:

∆2
n ∝ ((φn)n)2H . (3.25)

We make the same modifications to the SRM method as we mention in Sec. 3.5.1. The isotropic
Gaussian surface topography at large length scales (λ > λr) are generated with a constant variance
(∆2

n). The isotropic Gaussian surface topography at small length scales (λ < λs) are generated
by taking the Fourier transform of h(r) and adding scaled Fourier coefficients up to the small-
est virtual wavelength or by a standard spline interpolation algorithm. We also ensure that the
second-order statistics are independent of location r on the d-dimensional reference plane for the
periodic surface. The original SRM method fails to comply with this requirement, and that failure
results in edge-effects, i.e., a non-homogeneous random field. The midpoint determined at grid
points (r1, 0), (r1, Lx), (0, r2) and (Lx, r2) are constrained every nth-step by:

a. h(r1, 0) = h(r1, Lx) and h(0, r2) = h(Lx, r2);

b. 〈
(
h

(
(Lx, Lx)− 1

2
ρ

)
− h

(
1

2
ρ

))2

〉 = H(ρ).
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Figure 3.9 displays the contour plot of the heights h(r) and surface profiles of the two modified
recursive real space methods for a given set of roughness parameters.
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Figure 3.9: (a) Countour plot of the height h(r) as a function of r numerically generated by RMD
and SRA, with Lx=10 µm, nx = 220, RMSH= 0.15 µm and H = 0.9. (b) Surface profiles h(6, r2)
as a function of r2 by both RMD and SRA, and the solid square indicates the area in Fig. 3.9c.
(c) Local surface profiles h(6, r2) as a function of r2 by both RMD and SRA.

RMD and SRA numerically generate macroscopically the same surface as is displayed in Fig. 3.9a.
Both the modified RMD and SRA are now capable of generating periodic rough surface topogra-
phies. Their second-order statistics are independent of r. Although the contour plots of SRA
and RMD appear similar, the surface profile generated by RMD in Fig. 3.9c shows higher local
gradients.
Both RMD and SRA are most commonly used in brute-force models when there is the need
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to change local properties on a small length scale, while one preserves the overall topography.
Ramisetti et al. [43] use RMD for the slid-island method to determine the effect of smaller length
scales on the auto-correlation between islands. Moreover, According to Dapp et al. [6], SRA is
highly applicable when studying re-entry of local asperity tops into the contact area when studying
contact mechanics over smaller and smaller length scales. It is common to test the second-order
statistical properties post numerical-generation of an individual surface realization by calculating
the PSHF [9]. However, in this work, we argue that this trail-and-error method is not suitable
for studying contact mechanical properties of thousandths of individual surface realizations with
different periodicities Lx, cut-off wavelengths λr and smallest wavelengths λs.

3.5.2 Periodic reciprocal space methods

The Fourier filtering method (FFM) generates a self-affine periodic surface topography by the
convolution of a Gaussian profile G(r) with the ACF of the desired self-affine surface topography.
The resulting surface has again a Gaussian height distribution. This is reported by Maystrenko
[65] only for the convolution of a discrete periodic random surface with a height distribution with
finite variance w and a generic ACF R[n]. The Fourier transform of the surface G̃p(q) and the
ACF R̃(q) are generated with a fast Fourier transform (FFT) algorithm and multiplied in Fourier
space:

h̃p(q) = G̃p(q)R̃(q). (3.26)

The Fourier transform h̃(q) is transformed with an inverse FFT back to real space, resulting in the
self-affine periodic surface topography hp(r).
The periodic surface at large and small length scales can be generated by scaling the corresponding
Fourier coefficients. The PSHF of wave numbers smaller than the region of self-affine length scales
have to be modeled with care, because a discontinuity of the PSHF leads to spectral artifacts in real-
space due to the discrete FFT. A major drawback, in comparison with recursive real space methods
(i.e., RMD and SRA), is the need to do multiple FFTs for studying the effect of incorporating
smaller and smaller wavelengths for given roughness parameters w, ξ and H.

3.5.2.1 The power spectral density method

The power spectral density method generates periodic self-affine surface topographies. Initially the
Fourier transform of the height profile is constructed as:

h̃p(q) = h0∆̃G(q)
√
Ch(q), (3.27)

where h0 is a real valued constant and ∆̃G(q) a Gaussian with random phase and 〈∆̃G(q)〉 = 0.
In Appx. 3.A, a well known method is given to numerically generate the Gaussian in Fourier
space. The constant h0 is chosen to adjust the RMSH of the self-affine periodic Gaussian surface
topography. The Fourier transform h̃p(q) is then transformed back into real space, resulting in
the periodic self-affine rough surface hp(r). The Fourier transforms of an isotropic fully self-affine
surface profile can be determined as:

h̃p(q) = h0
∆̃G(q)

q

(
d

2
+H

) . (3.28)

The periodic surface topography at large and small length scales is simply determined by its PSHF.
In Figure 3.10, we show the ACF R(ρ) as a function of the translation scalar ρ plotted for RMD,
SRA, FFM, PSDM and its analytical expressions.
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Figure 3.10: Plots of (a) the auto-correlation R(ρ) as a function of translation scalar ρ by both
RMD, SRA and PSDM for the height profile in fig. 3.9c and (b) the ACF R(ρ/ξ) as a function
of the absolute normalized translation scalar |ρ/ξ| is plotted for PSDM, FFM and its analytical
expression, with nx = 219 and H = 0.5 (i.e., exponential) or H = 1 (i.e., Gaussian).

In Fig. 3.10a, we observe between RMD and SRA a shift in correlation length of ∆ξ ≈ 1 µm.
RMD and PSDM display the biggest difference in ACF. SRA approximates the ACF of PSDM
up till ρ ≈ 2.5 µm. This spectral artifacts for SRA are suppressed compared with RMD. The
spectral artifacts result in a shift of the correlation length ξ, which corresponds to a lack of long
range correlation. This is as expected for a Hurst exponent H 6= 0.5 (Sec. 3.5.1). Note that
a disadvantage of SRA is that there are still spectral artifacts in the surface topography, and
these are not easily defined in a visual inspection. Moreover, note that only checking the scaling
post numerical generation, i.e., the Hurst’s exponent H, is a non-rigorous way of verifying the
second-order statistics of the surface. As we show in Fig. 3.10a, for example the gradients on the
log-linear scale for SRA and PSDM for 0.9 < ρ < 0.5 are comparable, but there is a significant
shift in correlation length ξ between both methods.
In Fig. 3.10b, we observe that the ACF for both PSDM and FFM are in good correspondence
with their analytical expression for ρ/ξ ≤ 2. This is comparable to the correspondence between
analytical ACF and experimental results [50, 51]. Both display similar oscillations at translation
lengths that are several times the auto-correlation length.
Note that the extended SRA shows considerably more spectral artifacts than PSDM at length
scales larger than 10−1 µm. As to be expected, this non-stationarity is more pronounced over larger
lengths scales, because the non-stationarity is more sever over the first few n steps. We conclude
that this is due to the still non-stationary process of SRA. Moreover, we conclude that PSDM
numerically generates topographies with comparable ACF as experimentally observed. Finally,
we conclude that PSDM is the most suitable method to numerically generate rough surfaces in
this work. However, in this work, we observe that for a large Hurst’s exponent 0.7 < H the height
distribution p(h) of the numerically generated topography was not strictly Gaussian. This observed
difference between generated and required height distribution p(h) violates the prior assumption of
a Gaussian height distribution p(h). Therefore, we discuss this observation here.
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3.5.3 Numerically generated height distribution

All extended methods are capable of generating the surface topography with a Gaussian height
distribution. It is observed that for an increase in Hurst’s exponent H the ratio Lx/ξ has to
increase to generate the Gaussian height distribution. However, the ensemble averaged height
distribution will be Gaussian. This is shown in Fig. 3.11 for a given Hurst’s exponent H the height
distribution becomes Gaussian for an increase in ratio Lx/ξ.
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Figure 3.11: Line representation of the histogram of the height distribution function p(h) as a
function of the normalized height of the surface h/Lx for (a) H=0.4 and (b) H = 0.8 with Lx/ξ = 10,
Lx/ξ = 20, Lx/ξ = 100, Lx/ξ = 400 and qs,H/Lx = 5× 10−5.

For a given ratio Lx/ξ the height distribution function deviates less from the Gaussian distribution
for a lower Hurst’s exponent H. The increase of ratio Lx/ξ corresponds to multiple realizations
over length scale ξ converge in the mean square to the Gaussian height distribution. This is also
observed by Persson [25] for fracture-produced surfaces, whose behavior appears fractal like up to
the longest length scale studied. The RMSH of fracture-produced surfaces is determined mainly
by the large lengths scales. If the surface studied over a range with the substrate width Lx >> ξ,
ensemble averaging and averaging over the surface will give identical results for p(h). This ratio for
the periodic reciprocal space method for 0 ≤ H ≤ 0.8 we observe to be Lx/ξ ≥ 400 for d = 1. A
possible reason for the increase in minimal ratio Lx/ξ for an increase in Hurst’s exponent H is the
increase in magnitude of the PSHF for large wavelengths. This increase results in an increase of
difference in variance w2 over successive wavelengths and a slower convergence in the mean square
to the Gaussian height distribution. No proportionality between the Hurst’s exponent H, substrate
with Lx and correlation length ξ is reported to date. In Appx. 3.C and 3.D, we elaborate further
on this expected proportionality.
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3.6 Comparison between numerically generated and a real surface
topography

The experimental surface profiles in longitudinal direction of cold rolled aluminum by Plouraboué [2]
are compared to the numerically generated height profiles using PSDM. We only consider PSDM
as the numerical method to generate surface topographies, because we only use PSDM in the
remainder of this work. Moreover, the surface roughness properties of a random rough surface
are taken to be fully defined by the ACF R(ρ) and the height distribution function p(h). The
parameters determining both properties are the Hurst’s exponent H, correlation length ξ and
RMSH w. According to the Nyquist criterion [67], the substrate width Lx and smallest wavelength
λs are related by the number of grid-points nx:

nx ≥ 2

(
Lx
λs

)
. (3.29)

Following [68], the maximum number of grid-points depends on the dimensionless FFT error ε:

Max(nx) = ε−1. (3.30)

The measured parameters by Plouraboué are: H = 0.65, λr = 50 µm, w = 0.3 µm and the height
distribution assumed to be Gaussian. The PSDF as depicted in Fig. 3.2c is assumed, to satisfy
the asymptotic behavior of the self-affine surface topography. Figure 3.12 shows the numerically
generated surface profile h(r) in the longitudinal direction r, generated with the known parameters
of the 512× 512 point AFM measurement of cold-rolled aluminum alloy sheet by Plouraboué [2].
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Figure 3.12: Plots of numerically generated surface profiles h(r) in longitudinal direction r of cold
rolled aluminum, interpolated with 512 points and λs = λs,H = 50 nm: (a) Lx = 100 µm and
nx = 4096; (b) Lx = 10 µm and nx = 8192.

The numerically generated height profile in longitudinal direction with a given set of parameters is
comparable to those of the aluminum surface profile in Fig. 3.4. Table 3.2 displays the measured
and numerically generated Hurst’s exponents, RMSH and typical slope σ(θ), by Plouraboué [2]
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and calculated values from the height profiles as shown in Fig. 3.12. The typical slope σ(θ) is the
square root of the slope variance, where θ is the slope.

Measured Calculated
Lx = 100 µm Lx = 10 µm

H 0.700 0.699 - 0.701 0.689 - 0.712
w 0.300 0.300 0.300
σ(θ) 0.300− 0.5000 0.497 0.877

Table 3.2: Measured an numerically generated Hurst’s exponents H, RMSHs and typical slopes
σ(θ), by Plouraboué [2] and calculated from the height profiles as shown Fig. 3.12.

The measured and calculated values of the Hurst’s exponent H and RMSG w are in good agreement.
Note that unlike RMD and SRA, we do not need to check the scaling after each numerical generation
of a new topography. The average slope for Lx = 10 µm is higher than the measured values, because
the numerically generated surfaces have a smallest wavelength of λs ≈ 10 nm in comparison to
λs ≈ 50 nm measured using the AFM imaging. This difference in typical slope, between the
two simulations, is in agreement with the observation by Plouraboué et al. (Sec. 3.2) that the
typical slope increases with the decreasing observation length scale. We conclude that PSDM
is capable of numerically generating surface topographies highly comparable to experimentally
measured topographies for a given Hurst’s exponent H, roll-off wavelength λr and RMSG ḡ.

3.7 Conclusions and discussion

We find PSDM to be the most suitable method to numerically generate surface topographies for fu-
ture GFMD simulations in this work. The value of the Hurst’s exponent is chosen as 0.3 ≤ H ≤ 0.8
for FCC metals, and the cut-on wavelength is chosen as 50 ≥ λs,H ≥ 5 nm. The roll-off wavelength
λr depends on the surface processing technique. We make use of the analytical descriptions of
self-affine and mounded surfaces to define the maximum ratio ξ/λ ≤ 0.1 for which the mounded
structure can be modeled as self-affine.
We present for the first time the extended RMD and SRA to generate periodic rough surfaces. We
observe that the differences in periodic ACF between both real space methods and their required
ACF is too large to be used in this work. We are of the opinion that verifying only the Hurst’s ex-
ponent H of a topography generated with one of the recursive real-space method is a non-rigorous
way of verifying the surfaces second-order statistics. Moreover, we observe that for a given ra-
tio Lx/ξ the height distribution function p(h) deviates less from the Gaussian distribution for a
lower Hurst’s exponent H. The minimum ratio Lx/ξ of a numerically generated topography with a
Gaussian height distribution p(h) increases for an increase in Hurst’s exponent. We conclude that
the rate of convergence in the mean-square to the Gaussian distribution depends on the Hurst’s
exponent H. An attempt is made in Appxs. 3.C and 3.D to give an analytical expression for the
minimum ratio Lx/ξ as a function of the Hurst’s exponent H. This analytical expression would
allow us to determine the characteristic wavelengths and the minimum discretization of the surface
prior to numerically generating the surface topography. Future work should focus on determining
this expression, to ensure a Gaussian height distribution for all numerically generated topographies
for a generic Hurst’s exponent H.
Finally, we conclude that PSDM is capable of numerically generating surface topographies highly
comparable to experimentally measured topographies for a given Hurst’s exponent H, roll-off wave-
length λr and RMSG w.
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Appendix 3.A Gaussian random variable in Fourier space

The method to directly numerically generate the Fourier transform of the Gaussian variable ∆G is
given in this appendix. The Gaussian ∆̃G(q) in Fourier space is written as:

∆̃G(q) = R{∆̃G}(q) + iI{∆̃G}(q), (3.31)

where R and I stand for the real an the imaginary part of a complex number. The real and
imaginary part of a real-valued Gaussian sequence G[n] of finite length nx are:

R{∆̃G}(q) =
1

nx

nx−1∑
n=0

G[n] cos qn, I{∆̃G}(q) =
1

nx

nx−1∑
n=0

G[n] sin qn. (3.32)

The variance w2 of the Gaussian G[n] is determined as:

w2 =
1

nx

nx−1∑
n=0

G2[n]. (3.33)

Using the formulas
∑nx−1

n=0 sin2 qn = (1 − δq,0)
nx

2
and

∑nx−1
n=0 cos2 qn = (1 + δq,0)

nx

2
, where δq,0 is

the Kronecker delta symbol, it is derived that R{∆̃G} and I{∆̃G} are Gaussian distributed with
variances:

w2
R{∆̃G}

=
(1 + δq,0)

2nx
, w2
I{∆̃G}

=
(1− δq,0)

2nx
. (3.34)

Using the Box-Muller transform [69], R{∆̃G} and I{∆̃G} are numerically generated by the Box-
Muller transform:

R{∆̃G}(q) = wR{∆̃G}
√
−2 ln (U1) cos(2πU2);

I{∆̃G}(q) = wI{∆̃G}
√
−2 ln (U1) sin(2πU2),

(3.35)

where U1 and U2 are independent random variables uniformly distributed on the interval [0, 1].

Appendix 3.B Pseudo-code for the power spectral density method

The pseudocode for numerically generating a surface topography using PSDM, is as follows:

– Determine the minimal and maximum number of grid points, using nx ≥ 2

(
Lx
λs

)
(Eq.

(3.29));

– Calculate smallest integer i to satisfy: 2i ≥ nx and set nx = 2i;

– Calculate the minimum wave number ql = 2π
Lx

and maximum wave number qs = ql
nx
2 ;

– Seed the random Gaussian generator, generate Gaussian field ∆̃G(ql ≤ q ≤ qs) with random
phase and 〈∆̃G〉 = 0;

– Calculate
√
Ch(ql ≤ q ≤ qs,H) from a suitable PSHF from Sec. 3.4, with w, ξ, H and λ.

Determine the roll-off, for Ch(q > qs,H);

– Calculate Fourier transform h̃p(q) = h0∆̃G

√
Ch(q) (Eq. 3.27). Verify the Hurst exponent by

a linear fit on the log-log plot of C(ql,H ≤ q ≤ qs,H) = |h̃(q)|2;
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– Calculate the reverse Fourier transform by FFT of h̃(q). Add aspired average height to all
grid points to generate the surface topography h(r);

– Calculate the height distribution p(h). Compare the distribution to the expected Gaussian

height distribution pG(h) =
1√
2πw

e

(
− h2

2w2

)
(Eq. (3.1)). If p(h) ≈ pG(h), the height dis-

tribution is correct, else, increase the substrate length Lx and recalculate h(r) as presented
above.

Appendix 3.C Height distribution function for discrete convolu-
tion

The height distribution function p(h) of the convolution of a Gaussian variable with the self-affine
auto-correlation function (ACF) is expected to be Gaussian, with a different root mean square
height (RMSH). The dependency of the RMSH w on the correlation length ξ and substrate width
Lx for ξ ≤ Lx and whether the p(h) remains Gaussian is derived in this appendix. The periodic
discrete surface height h[n] (n = 0, ..., nx−1) is the convolution of a discrete and periodic Gaussian
G[n] (n = 0, ..., nx− 1) with the periodic discrete self-affine ACF R[n] and is written as:

h[n] = G[n] ∗R[n] =
nx−1∑
n′=0

G[n′]R[n− n′] =
nx−1∑
n′=0

G[n− n′]R[n′] (3.36)

where,

R[ρ] = e
−

 |ρ|
ξ

2H

, 0 ≤ H ≤ 1, (3.37)

and
ρ = n− n′. (3.38)

The characteristic function φ(q) is the Fourier transform of the height distribution function p(h):

φ̃(q) = 〈eiqh[n]〉 =

∫ ∞
−∞

dhp(h)eiqh, (3.39)

with,

q =
2π

nx
k, (3.40)

where q is the wave number and k is the wave index. Substituting the explicit expression for h[n]
(Eq. (3.36)) into Eq. (3.39), the characteristic function φ(q) is written as:

φ̃(q) = 〈eiq
∑nx−1
n′=0

G[n′]R[n−n′]〉. (3.41)

Following [65], c|
∑t
n′=s f [n′]| =

∏t
n′=s c

f [n′], the statistical independence of G[n] and Eq. (3.39),
equation (3.41) is written as:

φ̃(q) =

nx−1∏
n′=0

〈eiqR[n′]G[n−n′]〉;

=
nx−1∏
n′=0

∫ ∞
−∞

dGpG(G)eiqR[n′]G.

(3.42)
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The Gaussian height distribution with zero mean µ and variance w2 is written as:

pG(h) =
1√
2πw

e

− h2

2w2


. (3.43)

The characteristic function of the Gaussian height distribution is written as:

φ̃G(q) = p̃G(q) = e
−
w2q2

2 . (3.44)

Using Eqs. (3.43), (3.44) and c|
∑t
n′=s f [n′]| =

∏t
n′=s c

f [n′], equation (3.42) is written as:

φ̃h(q) =
nx−1∏
n′=0

e
−
R[n′]2w2q2

2 ;

= e

− |
∑nx−1

n′=0 q
2w2R2[n′]|
2


.

(3.45)

The sum in Eq. (3.45) is evaluated over two limits: H = 0 (white noise), H = 1 (Gaussian ACF)
and the exponential ACF H = 0.5. In the first limit, i.e., H = 0:

nx−1∑
n′=0

q2w2R2[n′] =
q2w2nx

e2
. (3.46)

In the second limit, i.e., H = 1:

nx−1∑
n′=0

q2w2R2[n′] =

nx−1∑
n′=0

e
−2

 |n′|
ξ

2

;
(3.47)

For an exponential ACF, i.e., H =
1

2
:

nx−1∑
n′=0

q2w2R2[n′] = q2w2e
1−nx
ξ csch

(
1

ξ

)
sinh

(
nx

ξ

)
. (3.48)

The second limit, i.e., H = 1 (Eq. (3.47)), is evaluated in two limits: nx → ∞ and Lx = ξ. The
Jacobi theta function ϑα is written as:

θ3(c1, c2) = 2

∞∑
n′=1

cn
2

2 cos(2nc1) + 1, (3.49)

Where c1 and c2 are constants. In the first limit, i.e., nx → ∞. When ξ << Lx, Eq. (3.47) is
written as:

∞∑
n′=0

q2w2R2[n′] =
1

2
q2w2

1 +
∞∑
n′=1

e
−2

 |n′|
ξ

2 ;

=
1

2
q2w2

(
1 + θ3(0, e

− 2
ξ2 )
)
.

(3.50)
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Figure 3.13 is a plot of the Jacobi theta function θ3(0, e
− 2
ξ2 ) as a function of the correlation length

ξ.
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Figure 3.13: Plot of the Jacobi theta function θ3(0, e
− 2
ξ2 ) as a function of the correlation length ξ.

In the second limit i.e., ξ = Lx. The sum in Eq. (3.45) is written as:

nx−1∑
n′=0

q2w2R2[n′] =
nx−1∑
n′=0

q2w2e
−2

 |n′|
nx

2H

; (3.51)

For nx = 1, Equation (3.51) is q2w2. For nx >> 1, Equation (3.51) is approximated by an integral
written as:

nx−1∑
n′=0

q2w2R2[n′] ≈
∫ nx−1

0
q2w2 exp

(
−2
( n
nx

)2
)

dn =
1

4

√
π

2
nxq2w2erf

(√
2(nx− 1)

nx

)
≈ 2

3
q2w2nx,

(3.52)
where erf() is the error function.
Hence, for Lx ≥ ξ and 0 ≤ H ≤ 1, the inverse Fourier transform of Eq. (3.45) is the height
distribution function ph(h) and is Gaussian, with the variance (w′)2 written as:

(w′)2 = w2
nx−1∑
n′=0

R2[n′], (3.53)

It is concluded that the height distribution function of the convolution of a Gaussian surface with
the self-affine auto-correlation function (ACF) is Gaussian, with a different RMSH depending on the
correlation length ξ and number of grid points nx, for ξ ≤ Lx. This corresponds to the conclusion
by A. Maystrenko [65].

Appendix 3.D Height distribution function for the power spectral
density method

It is observed that the height distribution function p(h) of a periodic surface profile h[n] (n =
0, ..., nx−1) numerically generated by the PSDM for a self-affine surface is Gaussian for a sufficiently
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large ratio Lx/ξ. In this appendix the height distribution function p(h) is referred to as probability
density function (PDF). PDF is the term used in literature on random fields [70, 71]. An attempt
is made to derive the analytical expression for the proportionality between the substrate width Lx,
correlation length ξ and the Hurst’s exponent H when the PDF p(h) is Gaussian. The PSHF of a
self-affine Gaussian surface topography with a given cut-off wave number qr = 2π

nxkr, cut-on wave
number qs = 2π

nxks and d = 1 is written as:

h̃p(q) = Θ(qs − q)Θ(q − qr)h0
∆̃G(q)

q

(
d

2
+H

) , (3.54)

where Θ(q) is the Heaviside step function and ∆̃G(q) is a Gaussian with zero mean and random
phase. PSDM uses the superposition of scaled sinusoids with different wave numbers q. The discrete
periodic height profile h[n] is written as:

h[n] =

ks∑
k=kr

2R{h̃p(k)} cos(
2π

nx
kn) + 2I{h̃p(k)} sin(

2π

nx
kn) (3.55)

This is a cosine random process. Following [72], the cosine random process in real space is defined
as:

f(t)
∆
= ζ cosλt+ ζ ′ sinλt, (3.56)

where ζ and ζ ′ are uncorrelated, distributed, random variables and λ is a positive constant. The
cosine process can also be written as:

f(t) = R cos (λt−Θ) , (3.57)

where R2 = ζ2 + (ζ ′)2 and Θ = arctan( ζ
′

ζ ) ∈ [−π, π]. The discrete periodic height profile h[n] can
be rewritten as:

h[n] =

ks∑
k=kr

R(k) cos

(
2π

nx
kn−Θ(k)

)
, (3.58)

where,

R(k) = |2R{h0
∆̃G(

2π

nx
k

)(1

2
+H

) }|+ |2I{h0
∆̃G(

2π

nx
k

)(1

2
+H

) }|

=
2h0(

2π

nx
k

)(1

2
+H

) (|R{∆̃G}|+ |I{∆̃G}|
) (3.59)

Following [70], the PDF of the absolute value of the Gaussian distribution |∆G| is equal to the half
normal distribution written as:

p(x) =

√
2

w
√
π
e−

x2

2w2 , for x ≥ 0. (3.60)

µf = w
√

2
π is the mean of the half normal Gaussian distribution and w2

f = µ2 + w2 − µ2
f is the

variance of the half normal Gaussian distribution. The PDF of the addition of two independent
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variables is the convolution of their PDFs. The PDF of
(
||R{∆̃G}||+ ||I{∆̃G}||

)
is:

p(x) =
1√
2πw

e
−
x2

8w2 , for x ≥ 0. (3.61)

Now the PDF of the sinusoidal term in Eq. (3.58) is derived. The sinusoidal height profile hs[n] is
written as:

hs[n] = Ah cos(qn), (3.62)

Following [71], in the limit: nx → ∞ the continuous PDF of the sinusoidal height profile p(h) is
written as:

ps(h) =
1

πAh

√
1−

(
hs
Ah

)2
. (3.63)

This is called the ArcSin-distribution A. Figure (3.14) is the plot of the PDF ps(hs) (Eq. (3.63))
of the sinusoid hs[n] as a function of the normalize amplitude hs

Ah
.

Figure 3.14: Plot of the PDF ps(hs) of the sinusoidal height profile hs[n] in the limit: nx →∞ as
a function of the normalize amplitude hs/Ah.

In the limit nx→∞, the continuous PDF of the mode corresponding to k is written as:

p(hk(n)) =
1

πR(k)

√
1−

(
hk(n)

R(k)

)2
. (3.64)

Its characteristic function is written as:

φ̃hk(q′) = 〈eiqhk[n]〉 = J0(q′R(k)), (3.65)

J0() is the Bessel function of the first kind. Then the characteristic function of the height profile
is written as:

φh(q′) =

ks∏
kr

φhk(q′). (3.66)
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This approach results in the undefined product in Eq. 3.66, except for H = −1
2 . Assuming H = −1

2 ,
The discrete periodic height profile h[n] is written as:

h[n] =

ks∑
k=kr

AR. (3.67)

The continuous characteristic function is written as:

φh(q′) =
(
e−4h20w

2q′2J0

(
4h2

0w
2q′2
))ks−kr

≈ e
−
w2q′2

2 , for ks >> kr. (3.68)

The inverse Fourier Transform of this function is a bounded PDF approximating the Gaussian
distribution. It can be concluded that the PSDM for H = −1/2 numerically generates the periodic
surface with the bounded height distribution which approximates the Gaussian distribution with
the µ = 0 and variance w2. It is concluded that by this approach there is no analytical expression
found for the proportionality between the substrate width Lx, correlation length ξ and the Hurst’s
exponent H when the PDF p(h) is Gaussian.
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Chapter 4

Proportionality between area and
load: Thermodynamic, fractal and
continuum corrections to the
proportionality coefficient

“This is a game of misses. The guy who misses the best is going to win.”

Ben Hogan
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4.1 Introduction

An important quantity to study in tribology is the real contact area fraction ar. It is well known
that experiments [7] and theory show that this real area of contact A is much smaller than the
projected area A0 of the contacting nominally flat surfaces. It is also well known that for a small
nominal pressure p̄, a linear dependence of ar on the nominal pressure p̄ is observed. However, to
this date, no consensus has been reached to the precise value of the proportionality coefficient κ
between ar and p̄ for the small nominal pressures p̄.
Statistical asperity models predict κ ranging from 1.6 to 2.51, and dependent on the Hurst’s expo-
nent H [10, 11]. According to Persson [12], the value of κ is independent of the Hurst’s exponent
H. Also, brute-force contact mechanic models predict κ independent of the Hurst’s exponent H
and ranging from 1.9 to 2.2. Moverover, according to Hyun et al. [9], the proportionality coefficient
κ has a higher order-dependency on the Poisson’s ratio ν. However, up to date, the aforementioned
brute-force methods were only applied to incompressible semi-infinite solids [4, 5], or the value of
κ was reported for a single aspect ratio a = 1 [9], where the aspect ratio a is the substrate height
zm over the periodic cell width Lx.
In this chapter, we determine κ for an elastic slab with various values of the Poisson’s ratio ν,
the aspect ratios a and the Hurst’s exponent H, in the thermodynamic, fractal and continuum
(TFC) limit. The proportionality coefficient κ in the TFC-limit can be thought of as the contin-
uum mechanical value of κ obtained through extrapolation of its numerically calculated values. We
numerically calculate the real contact area of a nominally flat rough rigid punch with self-affine
roughness indenting the elastic slab with a flat surface. We assume hard-wall interactions between
the bodies. We determine the relative contact area as the fraction of the surface where z-position
of the rigid punch and the surface of the elastic solid coincide at the static equilibrium.
First, the value of κ is determined for the incompressible semi-infinite elastic solid. Unexpectedly,
we observe a difference of a factor 0.5 between the value of κ reported by Prodanov et al. [5] and
this work. Note that the work by by Prodanov et al. [5] also uses the GFMD approach. We find
that the difference is the result of omitting the scaling of the energy in the discrete fast Fourier
transform (DFFT) library [49]. Therefore, the value of κ is redetermined for the incompressible
semi-infinite solid with the GFMD method described by Prodanov et al. [5] with correct scaling
in DFFT. Subsequently, we study the effect of the Poisson’s ratio ν and the aspect ratio a on the
value of κ. No consensus has up to date been reached on the effect of the aspect ratio a and the
higher-order dependency of the value of κ on the Poisson’s ratio ν. We expect the value of κ to
decrease when the effective strength of the elastic slab increases [41]. Therefore, the value of κ
is expected to decrease with a decrease in aspect ratio a. Moreover, in this work, we observe no
higher-order dependency on the Poisson’s ratio ν.
The remainder of this chapter is organized as follows: In Sec. 4.2, we present the definition of
proportionality coefficient κ in the TFC-limit. Then, we give the method used in this work. The
proportionality coefficient κ is determined for the semi-infinite solid in Sec. 4.3. Subsequently, we
determine the proportionality coefficient κ for the elastic slab in Sec. 4.4. This work ends with
the conclusion and the discussion in Sec. 4.5. In the appendix, we briefly revisit Persson’s [12]
derivation of the value of the proportionality coefficient κ.
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4.2 Thermodynamic, fractal and continuum limit

Following Bush et al. [11], the linear scaling of ar with p̄ for an elastic semi-infinite body and
non-adhesive contacts is:

ar =
κp̄

ḡE∗
, (4.1)

where E∗ is the effective modulus and ḡ the root mean square gradient (RMSG). In Fig. 4.1, we
show the normalized power spectral height function Ch(q)/Ch(0) as a function of the wave number
q used in PSDM.
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Figure 4.1: Log-log plot of the power spectral height function Ch(q) as a function of the wave number
q with the Hurst’s exponent H, dimension of the surface d, the largest wavelength λ0 = Lx, the
cut-off wavelength λr = λl, the cut-on wavelength λs,H and smallest wave length λs.

The RMSG ḡ numerically calculated for discrete systems in Fourier space is:

ḡ =
∑
q

= q2|h̃ (q) |. (4.2)

In this work, we use the GFMD method, where the finite sized system is discretized and periodic
over finite width Lx. When a boundary-value problem is discretized by introducing a grid with
nx grid-points, the boundary-value problem transforms from a singular to a regular perturbation
problem. The singular nature of the problem resurfaces when we study the continuum mechanical
proportionality coefficient κ. We can not numerically calculate a proportionality coefficient κ with
nx→∞. Therefore, we use the following mathematical approach.
In order to calculate the continuum mechanical proportionality coefficient κ, we replace the dis-
crete periodic Fourier transforms with Fourier integrals. These Fourier integral represent an infinite
continuous system, i.e. continuum mechanical description. Therefore, we change from a periodic
to an infinite representation of the surface in Fourier space, and satisfy the thermodynamic limit
Lx → ∞. An infinite representation excludes finite-size repetitive cell effects, and is thus called
in this work the thermodynamic limit. In this work, following [5], we chose to define the ther-
modynamic discretization εt = λl/λ0. We argue that the thermodynamic discretization presents
the convergence to the required stochastic properties of the roughness. A large thermodynamic
discretization results in a strictly non-Gaussian height distribution p(h), and the rough surface has
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only a few large ”macro asperities”, that cluster the contact zone. This clustering coupled with the
periodicity Lx changes the elastic response of the surface, and consequently the topography and
the value of the real contact area fraction ar [32]. It is important to note that no consensus has yet
been reached on the effect of the strictly non-Gaussian height distribution on the proportionality
coefficient κ.
The continuum representation of the surface is only reached when the discrete Fourier transform
becomes a continuous integral in Fourier space, and this continuous integral is reached in the frac-
tal limit λs,H/λl → 0+. Note that this decrease in magnitude of λs,H/λl → 0+ can be thought
as incorporating smaller and smaller roughness in to the description of the self-affine rough sur-
face. In this work, following [5], we chose to define the fractal discretization εf = λs,H/λl. The
fractal discretization represents the resolution of individual asperities [5, 32], not to be confused
with the highest resolution of the smallest roughness. According to Prodanov et al. [5], the fractal
discretization has to be small for large values of the Hurst’s exponent H, where roughness lives
more strong on large length scales. Moreover, the self-affine scaling over successive wave numbers
increases with increasing Hurst’s exponent H, and the scaling results in the need for a small fractal
discretization to correctly represent the local topography of the individual asperity. No consensus
is up to date reached on the effect of large fractal discretization. We expect that for a large fractal
discretization the roughness represents a set of uncorrelated uncoupled spherical asperities, because
the roughness is presented by the summation of a set of sinusoids over a small number of successive
wave numbers q.
According to Prodanov et al. [5], the nx-grid points introduce discretization effects. These dis-
cretization effects are the result of a finite number of wave numbers describing the smallest asperities
corresponding to the length scale λs,H . Therefore, the surface has a finite minimum deformation
length scale λs. That is why we also study the continuum limit nx → ∞. In this work, following
[5], we chose to define the continuum discretization εc = λs/λs,H . The smallest length scales of
self-affine roughness determine the root mean square gradient (RMSG) ḡ [5], and for a self-affine
roughness, with a low Hurst’s exponent H, the roughness is most prevalent at the smallest length
scales. For a smaller continuum discretization, we expect that the resolution increases of the small-
est roughness, and thus the discretization effects decrease.
It is well known that, when we assume that the value of the proportionality coefficient κTFC in
the TFC-limit is unique, i.e., a unique value of κ in the TFC-limit is independent of the order in
which we extrapolate the three individual limits, we can, following to Prodanov et al. [5], write the
proportionality coefficient in the TFC-limit κTFC as:

κTFC (p̄/E∗ḡ, H) = κsim (p̄/E∗ḡ, H, εt, εf, εc)− Ctε
αt
t − Cfε

αf
f − Ccε

αc
c , (4.3)

where,

εt =
q0

ql
;

εf =
ql

qs,H
;

εc =
qs,H

qs
.

(4.4)

According to Prodanov, αc = αf = 0.67, αt = 1 for 0.3 ≤ H ≤ 0.8. We extrapolate the pro-
portionality constant κsim to the TFC-limit κTFC by computing the coefficients and exponents to
the independent continuum, fractal and thermodynamic discretization. We then can determine the
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individual corrections ei to the value of κsim:

et = Ctε
αt
t , for the thermondynamic correction;

ef = Cfε
αf
f , for the fractal correction;

ec = Ccε
αc
c , for the continuum correction.

(4.5)

Moreover, we are then able to determine the ensemble error e = et + ef + ec for a given thermody-
namic, fractal and continuum discretization. Note that a proportionality coefficient κ might have
an error up to 20%, if it is not extrapolated to the TFC-limit [27]. This error makes it necessary
to extrapolate an observable to the TFC-limit or make a choice of continuum, fractal and thermo-
dynamic discretization depending on the error one choses to tolerate.
The values of κ at p̄/E∗ ≈ 0.1 obtained by different authors are given in Tab. 4.1. This is an
extension to the concise summary reported by Prodanov et al. [5].

Authors H κ ε−1
c ε−1

f ε−1
t a κ = f(x)

Bush et al. [11] 0...1
√

8/π...
√

2π 0 ≈ 1 0 ∞ H

Persson [12] 0...1
√

8/π 0 0 0 ∞ -
Hyun et al. [40] 0.3...0.9 2.2...1.8 2 ≈ 1000 1 1 ν,H

Campañá et al. [4] 0.2...0.8 2.09...1.98 ext. ≈ 1000 1 ∞ H
Prodanov et al. [5] 0...0.8 2.16...1.93 ext. ext. ext. ∞ -

Table 4.1: The values of κ at p̄/E∗ ≈ 0.1 obtained by different authors. The term “κ = f(x)” indi-
cates the observed dependency of the value of κ, “ext.” means extrapolation to the corresponding
limit, i.e., εi → 0+.

Bush et al. [11] use, in their work, as statistical asperity model. Therefore, his value of κ is re-
ported in the continuum- and thermodynamic limit. However, they choose to describe the individual
asperities as uncorrelated uncoupled non-spherical asperities, and have but several wavelength cor-
responding to the radii of the spherical asperities tips, i.e., ε−1

f ≈ 1 (see Fig. 1.1).
Persson [12] formulated a renormalization-group theory without any assumptions on the individual
asperity shapes. Via the Fourier integral of the assumed self-affine surface topography, he satisfies
all three limits. In Appx. 4.A, we give the derivation of the value of the proportionality coefficient
κ for the statistical model by Persson [12], and we comment on the effect of slab height zm.
Hyun et al. [9] use an FEM model in plane strain, and report 1.8 ≤ κ ≤ 2.2 for the finite-height
slab with a = 1 and Poisson’s ratios 0 ≤ ν ≤ 0.5. They observe that the proportionality coeffi-
cient κ is dependent on the Hurst’s exponent H. Moreover, they report that the proportionality
coefficient has a higher-order dependency on the Poisson’s ratio ν (see Fig. 1.4). Hyun et al. [40]
choose ε−1

c = 2, and vary ε−1
f ≤ 1000. Note that for a real system, it is known that there is a finite

length scale for which the continuum description of the surface no longer holds true (see Chapter
3). Therefore, they gave a description of the value of the proportionality coefficient κ for a real
system.
The previously mentioned method all assume a 1-dimensional surfaces. Campañá et al. [4] and to
Prodanov et al. [5] both use the GFMD approach to model the contact for an (2+1)-dimensional in-
compressible semi-infinite linear elastic solid squeezed against a rough rigid substrate with self-affine
roughness. For the 2-dimensional surface the value of the proportionality constant κ is expected
to be lower [73] than for a 1-dimensional surface. The difference in method between both works
is the choice of range of Hurst’s exponents H and the performed extrapolations. Note that the
reason for the range of values of κ according to Campañá et al. [4] is a dependency of κ on the
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Hurst’s exponent H, and according Prodanov et al. [5] the 10% difference between minimum and
maximum value of κ is due to the choice of the TFC-discretization in his numerical calculations.

4.2.1 Methodology

4.2.1.1 Choice of parameters

In this work, we determine the individual corrections ei to the numerically calculated proportion-
ality coefficient κsim for the contact between a (1 + 1)-dimensional compressible linear-elastic solid
and a rough rigid punch with a 1-dimensional self-affine surface topography. In order to do so,
we extrapolate the numerically calculated proportionality coefficient κsim to the TFC-limit value
κTFC using Eq. (4.3). The dimensionless nominal pressure p̄∗ = p̄/E∗ḡ = 0.007 is chosen such that
it is comparable to the nominal pressure used in the brute-force methods in Tab. 4.1 [9, 64, 5].
Moreover, the value of the nominal pressure p̄ is kept below the yield strength of aluminum, the
elastic modulus is taken as E = 70 GPa. Note that by keeping the dimensionless nominal pressure
constant p̄∗ = p̄/E∗ḡ = 0.007, the expected contact area fraction ar ≈ 0.014. The method we use
in this work is comparable to the method by Prodanov et al. [5], and we present the method in
the following.
First, we chose a reference system with constant discretizations εi. These constant discretizations
of the reference system are ε−1

c = 2, ε−1
f = 1024 and ε−1

t = 2. We chose these values in accordance
with Prodanov et al. [5], and the continuum and fractal discretization are comparable to those
used by Hyun et al. [9] (see Tab. 4.1). Note that ε−1

f = 1024 with ε−1
f =∞ and ε−1

t =∞, gives a
maximum 4% error [5].
Then, we vary the continuum discretization over the values ε−1

c = 1, 2, 4, 8 and numerically cal-
culate κsim, all the while keeping the fractal and thermodynamic discretization constant, i.e.,
ε−1
f = 1024 and ε−1

t = 2. Subsequently, we vary the thermodynamic discretization over the values
ε−1
t = 1, 2, 4, 8, all the while keeping the other two discretizations at the values of the reference

system. Finally, we vary the fractal discretization over the values ε−1
f = 512, 1024, 2048, 4096, again

keeping the other two discretizations constant and numerically calculate κsim. For each individual
discretization εi, we perform N numerical calculations with different surface topographies with
constant second-order statistics, i.e., Hurst’s exponent H and auto-correlation length ξ = λr, using
the power spectral density method (PSDM) (see Chapter 3). The average and the variance of
the proportionality coefficient κsim are calculated over the N roughness realizations. Note that we
chose N > 10 for all performed simulations.
With the average values of κsim(εi) as a function of the discretization εi, we perform a power-law
fit using Eq. (4.3) to determine the coefficient Ci and the exponent αi for each individual limit.
We do this over various values of the Hurst’s exponent H, Poisson’s ratio ν and aspect ratio a, and
discuss these various values in the following.
The proportionality coefficient κ is κ = f(p̄∗, H, ar). Following the GFMD approach presented by
Venugopalan et al. [3], we are now able to study, contrary to Prodanov et al. [5], the influence
of the tangential displacement of the substrate on the value of κ. In this work, we can rewrite
the proportionality coefficient κ as κ = f(p̄∗, ν, zm, Lx, H, ar). We decide to reduce the number of
simulations one needs to perform by studying only the influence of the aspect ratio a = zm/Lx. We
do this because the fundamental linear-elastic solution of a sinusoidal displacement at the surface is
a function of the aspect ratio a, not the individual values of Lx and zm (see Chapter 2). Therefore,
in this work, we express the proportionality coefficient:

κTFC (p̄/E∗ḡ, ν, a,H) = κsim (p̄/E∗ḡ, ν, a,H, εt, εf, εc)− Ctε
αt
t − Cfε

αf
f − Ccε

αc
c . (4.6)
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We chose the Hurst’s exponents H = 0.3, 0.5, 0.8. These values of the Hurst’s exponent H are
chosen as such, because both statistical asperity models [11, 22] and brute-force methods [9, 64, 5]
report the proportionality coefficient κ for these particular values. Moreover, it is commonly known
that metallic surfaces display roughness with Hurst’s exponents H in this range (see Chapter 3).
We perform the numerical calculations in this work with Poisson’s ratio ν approaching the incom-
pressible solid ν = 0.49, the Poisson’s ratio of aluminum ν = 0.33 and the minimum Poisson’s ratio
ν = 0.20 found in engineering metals, i.e., cast iron [41].
Moreover, the value of κ is determined for the semi-infinite slab, aspect ratio a = 4 approaching
the semi-infinite solid, the aspect ratio a = 1, and the aspect ratio a = 0.5. We observe that the
results for the compressible semi-infinite solid and the substrate approaching a semi-infinite solid
are comparable. This is as to be expected, and we do this in order to verify our values of κ over
successive sections. Moreover, we chose the aspect ratio a = 1 to compare the numerical results in
this work with the results from the FEM calculations by Hyun et al. [40] (see Tab. 4.1).

4.2.1.2 Numerical method

We use two methods to reach the desired dimensionless nominal pressure p̄∗. The choice of method
depends on the aspect ratio a. For the semi-infinite solid, we prescribe the nominal pressure p̄ on
the surface. For the finite-height slab, the desired dimensionless nominal pressure p̄∗ is obtained by
an iterative method. In this method, we start with giving the rough rigid punch an initial average
displacement, and numerically calculate displacement at the surface. Then, the nominal pressure
p̄ is calculated as the uniform traction in the normal direction τ̃3(q = 0). Depending on the sign of
the difference between the required and the numerically calculated dimensionless nominal pressure
p̄∗, we scale the average displacement of the punch by a factor 2 or 0.5. The equilibrium position
is numerically calculated again, and we do this until the dimensionless nominal pressure p̄∗ has
converged within an 0.1% error.
In this work, for a constant aspect ratio a, we vary the Hurst’s exponent H and the Poisson’s ratio
ν. Following the method by Prodanov et al. [5], we assume the exponents αi in Eq. (4.6) to be
independent of the Hurst’s exponent H and Poisson’s ratio ν. The assumption of independence from
the Poisson’s ratio ν is confirmed in Sec. 4.3. In this work, we use the following method to determine
the correction ei = Ciε

αi
i : First, we determine the power-law fit for a given Hurst’s exponent H and

Poisson’s ratio ν, i.e. αi and Ci. Then, we calculate the average exponent ᾱi over all exponents αi
with H = 0.3, 0.5, 0.8 and ν = 0.2, 0.33, 0.5 over each individual limit. Subsequently, we perform
a linear-fit with the scaled discretization εᾱii to determine the corresponding coefficient Ci. The
numerical results we present in tables with the values of Ci and αi of the power-law fit and values
of Ci and ᾱi of the linear-fit. Finally, we plot the linear-fit of the numerically calculated average
values of κ as a function of the scaled discretization εāii for each individual limit.
Note that, a priori, it is not known whether the exponents αi have a dependency on the aspect
ratio a. Therefore, we repeat the aforementioned power-law and linear-fits for each aspect ratio a.
We start in the next section with the analysis of the semi-infinite incompressible solid, because of
the large difference between the value of κ we observe in this work and the value of κ observed by
Prodanov et al. [5].
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4.3 Semi-infinite solid

We determine the TFC corrections for the rough rigid punch indenting the incompressible elastic
semi-infinite solid. Note that the effective strength of the incompressible semi-infinite solid is given
by the effective modulus, so there is no higher-order dependency on ν. We perform N = 30 different
rough surface realizations for each mean and variance value of κ for a given limit εi and Hurst’s
exponent H. In this section, we use the GFMD method described by Prodanov et al. [5] with
correct scaling in DFFT. Note that we use G++ to compile the FFTW3. In Fig. 4.2, we show how
the proportionality coefficient κ depends on the discretization εi for the reference values of εi .
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Figure 4.2: Plot of the proportionality coefficient κ as a function of (a) the continuum discretiza-
tion εc (b) the fractal discretization εf and (c) the thermodynamic discretization εt with Hurst’s
exponents H = 0.3, 0.5, 0.8.

The values of the proportionality coefficient κ that we numerically calculate are between 0.75
to 0.5 times the previously reported values of the proportionality coefficient κ [10, 11, 40, 4, 5].
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The smaller value of the proportionality coefficient κ is due to the result of the higher effective
strength [41] of the semi-infinite solid. Especially striking is the difference between the value of the
proportionality coefficient κ in this work and previous GFMD simulations by Campañá et al. [64]
and Prodanov et al. [5]. Note that we only present the linear fit on the numerically calculated
values of κ for H = 0.0 with different continuum discretizations. This is done in order to show
results for a self-affine surface with a strictly Gaussian height distribution p(h) (see Chapter 3).
We found that the difference in previously reported values of the proportionality coefficient κ
for numerical calculations by GFMD simulations were the result of omitting the scaling of the
displacement ũ(q) and elastic energy density vel while using the DFFT. According to Prodanov
et al. [5], they use the FFTW library [49]. For a purely real input to the DFFT, the output
satisfies the Hermitian redundancy, i.e. ũ(q) = ũ(−q). The output is scaled by a factor 0.5, and
the output is zero-padded to prevent possible aliasing [49]. Therefore, omitting this scaling will
half the areal elastic energy, and in turn the effective strength of the semi-infinite solid. This
scaling holds also true for a purely real 2−dimensional array input to the DFFT. Moreover, we
conducted several numerical calculations for a 2-dimensional surface with and without the scaling
of the Fourier transform of the displacement ũ(q), following the method as reported by Prodanov
et al. [5]. We find that the values of the proportionality coefficient κ, without scaling, are equal to
that reported by Prodanov et al. [5]. For the correct scaling, we find values of the proportionality
constant κ between 1.4 and 1.8 for the discretizations ε−1

c = 4, ε−1
f = 512 and ε−1

f = 2. We used
these discretizations only for determining the κ for a 2-dimensional surface in order to limit the
computational time.
In Tab. 4.5, we summarize the coefficients Ci and αi of the power-law fit, and the coefficients Ci
of the linear-fit with the average exponent ᾱi for the incompressible semi-infinite solid.

H fit Cc Cf Ct αc αf αt

0.0 pow. 0.685 - - 0.902 - -
lin. 2.063 - - 0.73 - -

0.3 pow. 0.685 - - 0.961 - -
lin. 0.765 48.002 -0.002 0.73 1 1

0.5 pow. 0.843 276.527 - 0.145 18.402 -
lin. 0.273 133.402 0.0393 0.73 1

0.8 pow. 0.249879 2.183 - 0.339 0.106 -
lin. 0.158 122.47 0.062 0.73 1 1

Table 4.2: Coefficients Ci and exponents αi for κ required to determined κTFC using Eq. (4.6).
“pow.” means power-law, “lin.” means linear and “-” indicates that no suitable fit is found.

We observe that the continuum coefficient Cc of the linear fit decreases monotonically with a
decrease in Hurst’s exponent. This is as expected, because for a lower Hurst’s exponent H roughness
is more pronounced on shorter length scales than for H = 0.8. Moreover, we observe that the fractal
coefficient Cf of the linear-fit increases non-monotonically with an increase in Hurst’s exponent H.
According to Prodanov et al. [5] and Yastrebov et al. [32], the resolution of the interacting
macroscopic asperities is expected to have a major influence on the contact mechanical behavior
for Hurst’s exponent H = 0.8. Moreover, it is expected that the continuum mechanical behavior
of interacting asperities is better approximated for a small fractal discretization εf. Therefore, it is
as expected that the coefficient Cf increases for the increase in the Hurst’s exponent. A possible
explanation for the non-monotonic increase is the deviation of the height distribution p(h) from
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the required Gaussian distribution for high Hurst’s exponent H = 0.8 and high thermodynamic
limit ε−1

t = 2. We find this aforementioned deviation from the expected monotonic increase in all
but one numerical calculations in this work. Note that the maximum 8% error we observe is twice
the 4% error reported by Prodanov et al. [5]. We find that the thermodynamic coefficient Ct is
small in magnitude and scattered due to the poor linear-fit. This is as excepted and comparable
to previous TFC-analysis [5].
Note that we neglected the poor fit of exponent αc = 0.145 for the Hurst’s exponent H = 0.5
in determining the average exponent ᾱc. Moreover, exponent αf is very different for the Hurst’s
exponent H = 0.5 and H = 0.8, therefore we chose ᾱf ≈ 1. In Fig. 4.3, we depict how the
proportionality coefficient κ depends on scaled discretization εc for the reference values of εi.
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Figure 4.3: Plot of the proportionality coefficient κ as a function of the scaled continuum discretiza-
tion ε0.73

c with H = 0.3, 0.5, 0.8 for the incompressible semi-infinite solid.

The value of κ decreases for all limits as the Hurst’s exponent H increases. We observe that the
value of the numerically calculated proportionality coefficient κsim converges to κc ≈ 1.45 in the
continuum limit for Hurst’s exponents H = 0.0, 0.3, 0.5. Note that, throughout this report, we find
that κsim converges to κc ≈ 1.45 in the continuum limit with Hurst’s exponents H = 0.0, 0.3, 0.5
for different aspect ratio’s. This as to be expected from Persson’s theory [12]. Persson’s theory
predicts that the value of κ ≈ 1.6 and independent of the Hurst’s exponent H. This is unexpected,
because the predictions of Persson’s theory commonly assumed to be more precise for high nominal
pressures p̄ than low nominal pressures p̄. In Appx. 4.A, we give the derivation of the value of κ by
Persson’s theory [12]. Note that the height distribution p(h) for H = 0 is Gaussian, independent
of the ratio between the periodicity and the correlation length Lx/ξ, but for H = 0.8 the ratio
Lx/ξ ≈ 200 to become Gaussian (see Chapter 3).
We observe that the value of κ in the continuum limit for H = 0.8 is approximately 1.19. For the
Hurst’s exponent H = 0.8, we show in Chapter 3 that the height distribution p(h) only approaches
a Gaussian for Lx/ξ >> 1, i.e., small thermodynamic discretization. Therefore, the reason for
the difference between the value of κc ≈ 1.45 and κ = 1.19 for H = 0.8 is given by the deviation
of the height distribution p(h) from the Gaussian distribution for the thermodynamic discretiza-
tion ε−1

t = 2. Therefore, we conclude that the proportionality constant for the incompressible
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semi-infinite solid is independent of the Hurst’s exponent H and the Poisson’s ratio ν, and between
0.5 and 0.75 times previously reported values of proportionality coefficient κ numerically calculated
with GFMD approach [74, 5]. Note that quantifying the deviation of the numerically generated
height distribution p(h) from the Gaussian distribution is attempted by the author in Appx. 3.D.
However, there is up to date no analytical expression for this deviation.

4.3.1 Semi-infinite compressible solid

Here, we consider various values of the Poisson’s ratios ν = 0.20, 0.33, 0.49. The effect of the
Poisson’s ratio ν was so far considered to be correctly captured by Eq. (4.1). We perform N = 30
different rough surface realizations, and we use the GFMD method as described by Venugopalan
et al. [3] with his asymptotic elastic energy vel for the elastic compressible semi-infinite solid. For
the remainder of this work, we use Ifort to compile the F77 code and the FFTW3.
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In Fig. 4.4, we show how the proportionality coefficient κ depends on the discretization εi for the
reference values of εi.
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Figure 4.4: Plot of the proportionality coefficient κ as a function of (a) the continuum discretization
εc with H = 0.0, (b) the fractal discretization εf and (c) the thermodynamic discretization εt with
Hurst’s exponents H = 0.3, 0.5, 0.8 and Poisson’s ratios ν = 0.20, 0.33, 0.49.

The value of proportionality coefficient κ in the continuum limit is between 1.20 and 1.75. The value
of proportionality coefficient κ in the fractal limit is between 1.2 and 1.9. The value of proportion-
ality coefficient κ in the thermodynamic limit is between 1.30 and 1.95. Moreover, we observe that
the value of κsim tends to converge in the continuum limit. These numerically calculated values of
the proportionality coefficients κ are comparable to those for the incompressible semi-infinite solid.
In Fig. 4.4, we observe that the variance increases for the smallest continuum and fractal discretiza-
tion with increasing Hurst’s exponents H. This increase in variance is because of a numerical error.
This error results in rather large error in the equilibrium displacement u(x) at the surface. More-
over, note that for the FFTW3 is compiled with G++ i.e., error up to O−16, we do not observe
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this increase in variance (see Fig. 4.2). After obtaining the numerical results in this work, we find
that the precision could become comparable to G++ compiled code, when the array precision was
increased from single to double precision in Fortran77. For the remainder of this section, we ignore
the data-points with a variance much larger than observed for the incompressible semi-infinite solid.
We observe no higher-order dependency of the proportionality coefficient κ on the Poisson’s ratio
ν in all three limits. We conclude that there is no higher-order dependence of the value of κ on
the Poisson’s ratio ν for a semi-infinite compressible solid. Therefore, we conclude that Eq. (4.1)
is also applicable for the contact of compressible semi-infinite solids. Note that this confirms the
assumption that the average exponent ᾱi is independent of the Poisson’s ratio ν.
The value of ᾱc ≈ 1.00 gives the best average fit for all Hurst’s exponents H and Poisson’s ratio’s
ν. According to Prodanov et al. [5], the continuum and the fractal limit scale sub-linearly, i.e.,
ᾱc = ᾱf = 0.67. αf is very scattered, hence we chose ᾱf ≈ 1 for a good comparison with the CT
limits. We observe that the dependence of the value of κ on εt is weak in Fig. 4.4c, therefore
chose ᾱt = 1. In Tab. 4.3, we summarize the coefficients Ci and αi of the power-law fit, and the
coefficients Ci of the linear-fit with the average exponent ᾱi for the incompressible semi-infinite
solid.

H fit Cc Cf Ct αc αf αt

0.3 pow. 1.066 - - 0.562 - -
lin. 0.819 4.534 0.017 1 1 1

0.5 pow. 0.277 4.939 - 1.630 0.722 -
lin. 0.312 240.481 0.140 1 1 1

0.8 pow. 0.358 1465.990 - 0.249 236.361 -
lin. 0.156 78.592 -0.018 1 1 1

(a)

H fit Cc Cf Ct αc αf αt

0.3 pow. 0.813 - - 1.232 - -
lin. 0.866 32.630 0.051 1 1 1

0.5 pow. 0.263 4.810 - 2.423 0.311 -
lin. 0.299 182.981 0.134 1 1 1

0.8 pow. - 442.545 - - 62.129 -
lin. 0.025 65.104 0.152 1 1 1

(b)

H fit Cc Cf Ct αc αf αt

0.3 pow. 1.233 - 0.128 0.420 - 1
lin. 0.792 69.508 0.129 1 1 1

0.5 pow. 0.323 3.971 5 0.939 0.308 1
lin. 0.316 154.237 0.116 1 1 1

0.8 pow. - 1140.93 0.099 - 174.874 1
lin. 0.168 115.985 0.0982 1 1 1

(c)

Table 4.3: Coefficients Ci and exponents αi for κ required to determined κTFC using Eq. (4.6) with
the Poisson’s ratio (a) ν = 0.20, (b) ν = 0.33 and (c) ν = 0.49.
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We observe an increase in the error ei for an increase in Poisson’s ratio ν. This is as expected,
when the Poisson’s ratio ν increases the interaction between asperities increases. Therefore, the
fractal corrections is expected to increase, which can be thought of as the importance of the exact
representation of the asperity shapes. However, note that this does not effect the dependency of
the value of κ on the Poisson’s ratio ν in the TFC-limit.
For the given continuum limit ε−1

c = 10 and fractal discretization ε−1
f = 0 and thermodynamic

discretization ε−1
t = 2, the error in the value of κsim is only 5% error of the the value of κTFC. A

5% error corresponds to the continuum limit ε−1
c → 0+ and fractal discretization ε−1

f = 512 and
thermodynamic limit ε−1

t → 0+. Brute-force methods that employ larger fractal discretization,
i.e., ε−1

f = 32, are prone to overestimate the value of κTFC by a factor two. As expected, for
fractal discretization ε−1

f = 32, Yastrebov et al. [32] predicted the value of κ close to the value
reported by Bush et al. [11]. They argue that this is due to the fact that for small values of fractal
discretization ε−1

f , the contact mechanical response of a semi-infinite solid is comparable to a set
of non-interacting asperities [5]. We agree with this argument.
In Fig. 4.5, we depict how the proportionality coefficient κ depends on a scaled discretization εc
for the reference values of εi with the exponent ᾱc = 0.73 out of Sec. 4.3.
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Figure 4.5: Plot of the proportionality coefficient κ as a function of the scaled continuum discretiza-
tion ε0.73

c with H = 0.0, 0.3, 0.5, 0.8 for the compressible semi-infinite solid with (a) the Poisson’s
ratios ν = 0.2, 0.33, 0.49 and (b) the Poisson’s ratio ν = 0.49.

In Fig. 4.5a, we observe that the value of the proportionality constant κ in the continuum limit is
between 1.15 and 1.50 for the incompressible semi-infinite solid. The value of the proportionality
constant κ for Hurst’s exponents H = 0, 0.3, 0.5 converges to κc ≈ 1.40 in the continuum limit.
We observe a large variance for ε−1

c = 8, and chose to not consider its value here. Moreover, we
observe again the behavior discussed in Sec. 4.3 for a strictly non-Gaussian height distribution
p(h). Therefore, we conclude that the proportionality constant κ for the compressible semi-infinite
solid is independent of the Hurst’s exponent H.
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4.4 Finite slab

We repeat our analysis with the simulations in Sec. 4.3 considering various aspect ratios a = 0.5, 1, 4.
Up to date, the aspect ratio a was considered of little effect on the contact area between nominally
flat surfaces. We perform N = 10 different rough surface realizations. We want to make the link
between semi-infinite solids and a finite slab. Therefore, we chose to present the aspect ratio a ≈ 4
first. For aspect ratio a = 10, the contact mechanical response approaches that of the semi-infinite
solid [27]. However, in order to limit the computational time, we choose a ≈ 4. In Fig. 4.6, we
depict how the proportionality coefficient κ depends on the discretizations εi for the reference values
of εi with aspect ratio a = 4 and a =∞ (Sec. 4.3).
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Figure 4.6: Plot of the proportionality coefficient κ as a function of (a) the continuum discretization
εc, (b) the fractal discretization εf and (c) the thermodynamic discretization εt for aspect ratio a = 4
and a =∞ with Hurst’s exponent H = 0.3, 0.5, 0.8, and Poisson’s ratio ν = 0.49.
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For a finite-height slab, we observe a larger variance for each data point than we calculated for
a semi-infinite solid. In Tab. 4.4, we compare the coefficients Ci for a = 4, a = ∞ and Hurst’s
exponents H = 0.3, 0.5, 0.8 with the Poisson’s ratio ν = 0.49 and average exponent ᾱi = 1.

H a Cc Cf Ct

0.3 4 1.048 52.648 0.055
∞ 0.792 69.508 0.128

0.5 4 0.449 55.923 0.449
∞ 0.316 154.237 0.134

0.8 4 0.179 125.210 0.136
∞ 0.168 115.985 0.227

Table 4.4: Coefficients Ci for the proportionality constant κ and the average exponent ᾱi = 1 with
aspect ratios a = 4,∞, the Hurst’s exponents H = 0.3, 0.5, 0.8 and Poisson’s ratio ν = 0.49.

As to be expected, we observe a good agreement between the error in the value of κsim for the
finite solid in the limit of the semi-infinite solid and the semi-infinite solid in the CF-limit. How-
ever, the coefficients of the thermodynamic limit are not in agreement, and we observe again the
non-monotonic increase in Cf. This difference in Ct because of the large scatter and weak depen-
dence of the value of κ on the thermodynamic discretization εt in Fig. 4.6c. In Tab. 4.5, we
summarize the coefficients Ci and αi of the power-law fit, and the coefficients Ci of the linear-fit
with the average exponent ᾱi for the aspect ratio a = 4 and the Poisson’s ratio ν = 0.49.

H fit Cc Cf Ct αc αf αt

0.3 pow. 0.995 - - 1.181 - -
lin. 0.879 7.591 0.055 2 0.66 1

0.5 pow. 0.401 4.503 - 1.524 0.552 -
lin. 0.381 8.038 0.010 2 0.66 1

0.8 pow. 0.163 31.128 - 3.346 0.759 -
lin. 0.169 17.883 0.136 2 0.66 1

Table 4.5: Coefficients Ci and exponents αi for κ required to determined κTFC using Eq. (4.6) for
aspect ratio a = 4 and Poisson’s ratio ν = 0.49.

Regarding the TFC-limit, we observe again that the fractal correction is substantially larger than
the continuum correction and the thermodynamic correction. The average exponent αc = 2 indi-
cates that the error due to the continuum correction scales with the square of the continuum dis-
cretization εc. Hence, for moderate continuum discretization ε−1

c ≈ 4, in the fractal limit ε−1
f → 0+

and ε−1
t → 0+, the error is already below 5% of the value of the proportionality coefficient κTFC

in the TFC-limit. We again observe that the fractal error ef is doubled what was observations by
Prodanov et al. [5]. This difference is expected to be due to the omission of the correct scaling of
the DFFT by Prodanov et al. [5].
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In Fig. 4.7, we depict how the proportionality coefficient κ depends on the scaled discretizations εi
for the reference values of discretizations εi, aspect ratio a = 4 and Poisson’s ratio ν = 0.49.
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Figure 4.7: Plot of the proportionality coefficient κ as a function of (a) the scaled continuum dis-
cretization ε2c and (b) the scaled fractal discretization ε0.66

f with Hurst’s exponent H = 0.3, 0.5, 0.8,
aspect ratio a = 4 and Poisson’s ratio ν = 0.49.

In Fig. 4.7a, we observe that the value of the proportionality coefficient κ in the continuum limit
lays between 1.25 and 1.65. Considering the Hurst’s exponent’s H = 0.3, 0.5, we observe that the
average expected value of the proportionality coefficient κc ≈ 1.5. In Fig. 4.7a, we observe that
the value of the proportionality coefficient κ in the fractal limit lays between 1.1 and 1.9, and are
comparable to the values of κf for a semi-infinite solid.
The difference in κc for different Hurst’s exponents is between 5% and 10% of the average value of
κc. The value of the proportionality coefficient κ decreases for all limits as the Hurst’s exponent
H increases. We find the results non-conclusive on the dependency of the value of κTFC on the
Hurst’s exponent H. However, we observe that the trend between contact area and pressure is still
closely approximated. Therefore, we conclude that Eq. (4.19) is applicable to an elastic finite slab
with aspect ratio a ≥ 4, and that the proportionality constant κ for a ≥ 4 is comparable to that of
the semi-infinite solid.
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In Fig. 4.8, we depict how the proportionality coefficient κ depends on the scaled continuum
discretizations ε0.73

c for the reference values of discretizations εi, aspect ratio a = 4 and Poisson’s
ratio ν = 0.49.
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Figure 4.8: Plot of the proportionality coefficient κ as a function of the scaled continuum dis-
cretization ε0.73

c with Hurst’s exponent H = 0.3, 0.5, 0.8, aspect ratio a = 4 and Poisson’s ratio
ν = 0.49.

Note that the exponent ᾱc = 0.73 (Sec. 4.3) does not result in the best power-law fit. However,
with this power-law fit, we clearly observe the expected trend that the proportionality coefficient
decreases for a decrease in aspect ratio a. We find this result non-conclusive, because of the arbitrary
choice of fitting exponent ac = 0.73. Moreover, this illustrates that thermodynamic, fractal and
continuum corrections are case specific, i.e., depending on the nominal pressure and aspect ratio,
and sensitive to the choice of average exponent ᾱi. Therefore, we conclude here that the average
exponent is expected to have the functional form written as ᾱi = f(p̄∗, a).
The analysis of the aspect ratio a approaching the limit of the semi-infinite body is also conducted
for the Poisson’s ratio ν = 0.22, 0.30. We find a variance up to 40% of the numerically calculated
proportionality coefficient κ, and we choose not to present these results in this work. There are two
reasons why we numerically calculate such a large variance: First, for a grid with nx ≥ 16384, we
find that the highest principal modes can become unstable, this is because of violating the formal
Störmer-Verlet stability limit, i.e., κ(q)∆t2 ≤ 4., where κ(q) is the linear force constant and ∆t
the discrete time-step; And, secondly, the numerical error due to precision allocation discussed in
Sec. 4.3.
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4.4.1 Compressible finite slab

We perform the same numerical calculations as in the previous section (Sec. 4.4) with aspect ratio
a = 1. In Fig. 4.9, we depict how the proportionality coefficient κ depends on the limits εi for the
reference values of εi with aspect ratio a = 1 and Poisson’s ratios ν = 0.2, 0.33, 0.49.
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Figure 4.9: Plot of the proportionality coefficient κ as a function of (a) the continuum discretiza-
tion εc, (b) the fractal discretization εf and (c) the thermodynamic discretization εt with Hurst’s
exponents H = 0.3, 0.5, 0.8, aspect ratio a = 1 and Poisson’s ratios ν = 0.2, 0.3, 0.49.

We observe a larger variance for each data point than we calculated for the compressible finite
slab with aspect ratio a = 4 and Poisson’s ratio ν = 0.49. Moreover, we observe a large scatter in
average value, differing for different discretizations and with no clear dependency on the Poisson’s
ratio ν nor the Hurst’s exponent H. Due to this large variance and scatter, we omit the fits for the
Poisson’s ratios ν = 0.20, 0.33 and the calculation of the coefficients Ci and exponents ai.

73



In Tab. 4.6, we summarize the coefficients Ci and αi of the power-law fit, and the coefficients Ci
of the linear-fit with the average exponent ᾱi for aspect ratio a = 1 and Poisson’s ratio ν = 0.49.

H fit Cc Cf Ct αc αf αt

0.3 pow. 1.047 - - 0.506 - -
lin. 0.695 83.809 -0.0163 1.27 1 1

0.5 pow. 0.484 - - 1.261 - -
lin. 0.483 3.487 0.105 1.27 1 1

0.8 pow. 0.067 - 0.377 2.043 - 0.199
lin. 0.071 18.977 0.139 1.27 1 1

Table 4.6: Coefficients Ci and exponents αi for κ required to determined κTFC using Eq. (4.6) for
the aspect ratio a = 1 and Poisson’s ratio ν = 0.49.

Note that the linear-fit for εf is performed over three data-points. We consider these results
non-conclusive. In Fig. 4.10, we depict how proportionality coefficient κ depends on scaled contin-
uum discretization εc for the reference values of εi, aspect ratio a = 1 and Poisson’s ratio ν = 0.49.
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Figure 4.11: Plot of the proportionality coefficient κ as a function of the scaled continuum dis-
cretization ε1.27

c with Hurst’s exponents H = 0.3, 0.5, 0.8, aspect ratio a = 1 and Poisson’s ratio
ν = 0.49.

In Fig. 4.10, we observe that the values of the proportionality coefficient κ in the continuum limit
lay between 1.25 and 1.6. Considering the Hurst’s exponent’s H = 0.3, 0.5, we observe that the
average expected value of the proportionality coefficient κc ≈ 1.4. For the Poisson’s ratio ν = 0.49,
we observe values of the proportionality coefficient κ in good agreement with those in Sec. 4.3. The
extrapolated values of the proportionality coefficient κ with the Poisson’s ratio ν = 0.49 for the
three corrections εi are slightly smaller than for the aspect ratio a = 4. This is as to be expected,
because of the decrease in aspect ratio a. However, we argue that this decrease in κ is marginal,
and find this observations non-conclusive.
From the calculated values of the proportionality coefficient κ with the aspect ratio a = 1, we
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cannot determine whether there is a higher-order dependency of the proportionality constant κ
on the Poisson’s ratio ν. Hyun et al. [40] reports a higher-order dependence of κTFC on the
Poisson’s ratio ν for a constant continuum discretization ε−1

c = 2, fractal discretization ε−1
f ≈ 1000

and thermodynamic discretization ε−1
t = 1. We do not reproduce this result. The reason this

difference appears can be due to the fact that, with the continuum discretization ε−1
c = 2 and

fractal discretization ε−1
f ≈ 1000, the value of κobs may not have yet converged to the continuum

and fractal limit. Moreover, the small difference in the value of κsim for ε−1
f = 2048 and ε−1

f = 4
between different Poisson’s ratios ν does not suggest so. With the current numerical calculations
we find the observations non-conclusive, but they do make us expect there is no higher-order
dependency of the proportionality coefficient κ on the Poisson’s ratio of the magnitude reported by
Hyun et al. [9].
We conclude that the difference between a = 4 and a = 1 is negligibly small, and Eq. (4.19)
forms a good approximation for the finite slab with the aspect ratio a ≥ 1, regardless of the chosen
Poisson’s ratio ν.
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4.4.2 Thin periodic cell

The effective strength of the thin repetitive cell is higher than the finite slab with aspect ratio
a = 1 [41]. Therefore, it is expected that the real contact area for the small nominal pressure
p̄ will be smaller. We chose a = 0.5, and determine the value of the proportionality coefficient
in the TFC limit κTFC. In Fig. 4.12, we show how the proportionality coefficient κ depends on
the discretizations εi for the reference values of εi with aspect ratio a = 0.5 and Poisson’s ratios
ν = 0.2, 0.33, 0.49.
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Figure 4.12: Plot of the proportionality coefficient κ as a function of (a) the continuum discretiza-
tion εc, (b) the fractal discretization εf and (c) the thermodynamic discretization εt with Hurst’s
exponents H = 0.3, 0.5, 0.8, aspect ratio a = 0.5 and Poisson’s ratios ν = 0.2, 0.3, 0.49.

We observe a smaller variance for each data point than we calculated for the finite slab with the
aspect ratio a = 1 and the Poisson’s ratio ν = 0.20, 0.33, 0.49. The proportionality coefficient κ has
the dependencies on the three limits εi comparable to the semi-infinite solid (Sec. 4.3).
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In the linear fit in Fig. 4.12b, we omit the proportionality constant κ for ε−1
f = 512, because of the

large variance. We observe that in the fractal limit the higher-order dependence on the Poisson’s
ratio ν vanishes for H = 0.3 and H = 0.5. Due to the high scatter, variance and non-Gaussian
height distribution p(h) for H = 0.8, we can not find a converging fit. We can conclude that the
fractal discretization is of major importance when one wants to study the effect of the Poisson’s ratio
ν on the proportionality coefficient. However, we find this result non-conclusive on the expected
higher-order dependency of the proportionality coefficient κ on the Poisson’s ratio ν, because we
omit the numerically calculated value of κ for the fractal discretization ε−1

f = 512.
The value of ᾱc = 1.01 gives the best average fit for all Hurst’s exponents H and Poisson’s ratio’s
ν. We chose ᾱc = ᾱf = ᾱt = 1 comparable to the previous sections. In Tab. 4.7, we summarize the
coefficients Ci and αi of the power-law fit, and the coefficient Ci of the linear-fit with the average
exponent ᾱi for aspect ratio a = 0.5 and Poisson’s ratios ν = 0.20, 0.33, 0.49.

H fit Cc Cf Ct αc αf αt

0.3 pow. 0.900 - - 1.208 - -
lin. 0.953 59.219 -0.055 1 1 1

0.5 pow. - - - - - -
lin. - - 0.128 1 1 1

0.8 pow. - - - - - -
lin. 0.199 224.765 0.098 1 1 1

(a)

H fit Cc Cf Ct αc αf αt

0.3 pow. 1.328 - - 0.701 - -
lin. 1.145 46.411 0.054 1 1 1

0.5 pow. 0.388 - - 0.882 - -
lin. 0.370 113.945 -0.118 1 1 1

0.8 pow. - - - - - -
lin. - 81.042 0.0346 1 1 1

(b)

H fit Cc Cf Ct αc αf αt

0.3 pow. 0.816 - - 1.584 - -
lin. 0.916 57.095 0.109 1 1 1

0.5 pow. 6.21026 - - 0.030 - -
lin. 0.407 188.750 0.156 1 1 1

0.8 pow. 0.143 - - 2.174 - -
lin. 0.166 104.770 0.042 1 1 1

(c)

Table 4.7: Coefficients Ci and exponents αi for κ required to determined κTFC using Eq. (4.6) for
aspect ratio a = 0.5 with Poisson’s ratio (a) ν = 0.20, (b) ν = 0.33 and (c) ν = 0.49.
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In Fig. 4.13, we depict how proportionality coefficient κ depends on scaled continuum discretization
εc for the reference values of εi, aspect ratio a = 1 and Poisson’s ratio ν = 0.49.
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Figure 4.14: Plot of the proportionality coefficient κ as a function of the scaled continuum dis-
cretization ε1.01

c with Hurst’s exponents H = 0.3, 0.5, 0.8, aspect ratio a = 0.5 and Poisson’s ratio
ν = 0.2, 0.33, 0.49.

In Fig. 4.13, we observe that the value of the proportionality constant κ in the continuum limit
is between 1.125 and 1.51. The value of the proportionality constant κ for Hurst’s exponents
H = 0.3, 0.5 converges to κc ≈ 1.45 in the continuum limit. We disregard the value of κc for
H = 0.8 (see Sec. 4.3).
We observe that only a small number of continuum and fractal limits give the power-law fit with the
error below 10 %. From here on, we consider only the trends and not the exact values of the linear
fits. We observe that the trends indicate also the proportionality constant κ ≈ 1.45 is independent
of the Hurst’s exponent H. The trends we observe for a given Poisson’s ratio ν corresponds to
those described in Sec. 4.3. Regarding the TFC-limit, we find no monotonic dependency of the
coefficients Ci on the Poisson’s ratio ν. However, we conclude that Eq. (4.19) forms a good
approximation for the thin film with the aspect ratio a ≥ 0.5 regardless of the chosen Poisson’s
ratio ν. Due the numerical error in the value of the proportionality coefficient κ in the TFC-limit
(see Sec. 4.4), we find the results on the dependency of the proportionality coefficient κ on the
aspect ratio a non-conclusive.
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4.5 Conclusions and discussion

For the first time the proportionality coefficient κ is rigorously determined for the elastic solid
over a range of aspect ratios a and Poisson’s ratios ν with a single method. We conclude that
the proportionality coefficient κ is independent of the Hurst’s exponent H for a semi-infinite solid.
This is in agreement with Persson [12] and Prodanov et al. [5]. This disagrees with the statistical
asperity by Greenwood et al. [21], Bush et al. [11], Ciavarella et al. [22, 13], and the brute-force
methods by Hyun et al. [9] and Campañá et al. [4]. The reason for this difference is the small
fractal discretization used in this work.
In this work, we find that the values of the proportionality coefficient κ for the semi-infinite solid are
0.5 to 0.75 times previously reported values of κ [10, 11, 4, 5]. For statistical methods, this difference
is due to the uncontrolled assumptions in the incorporation of uniform deformation and/or asperity
interactions, which leads to over prediction of the relative contact area fraction ar. For previous
GFMD simulations by Campañá et al. [4] and Prodanov et al. [5], the difference is caused by the
omission of the scaling of the displacement ũ(q) and elastic energy density vel by a the factor 0.5
in DFFT [49]. Moreover, we observe that the fractal correction in this work is twice the fractal
correction that was previously reported in GFMD approaches [4, 5]. We contribute this also to the
incorrect scaling of the displacement in the DFFT. Therefore, future work should select a smaller
fractal discretization than in this work, i.e., an reference thermodynamic discretization ε−1

f ≈ 4096
for future work.
We observe that the proportionality coefficient κ converges in the continuum limit εc → 0+ for
Hurst’s exponent H = 0.0, 0.3, 0.5 to a value of κC ≈ 1.45, and note the value of κ ≈ 1.59 predicted
by Persson’s theory [12]. We conclude that because the height distribution function p(h) for low
values of the Hurst’s exponent in the limit ε−1

t = 2 best approximates the Gaussian distribution, the
numerically calculated value of the proportionality coefficient κTFC is so close to the analytically
derived value of κ by Persson’s theory [12]. We suggest that future work should have a smaller
thermodynamic discretization εt for the reference system. This smaller εt will lead to convergence
in the mean-square of the height distribution p(h) to the Gaussian for higher values of the Hurst’s
exponent. This reduction of the thermodynamic discretization εt of the reference system was also
suggested by Yastrebov et al. [32]. This will give a definitive answer on the applicability of
Persson’s theory for small nominal pressure p̄, and the influence of the height distribution p(h) on
the proportionality coefficient κ.
We numerically calculate a difference in the value of the proportionality coefficient κ for the elastic
slab with aspect ratio a = 0.5, 1, 4. We observe that the value of the proportionality coefficient κ
decreases with a decrease of the aspect ratio a, although less pronounced than expected. However,
this corresponds to the observation by Komvopoulos et al. [33], they observed a negligible small
effect of aspect ratio a on the value of κ for low nominal pressures p̄. Note that, in this work, we show
that the average exponent ᾱi = f(a) for the linear-fit, omitting this dependency of the exponent on
the aspect ratio a can result in under-prediction of the value of κ. We find this non-conclusive, and
to give a quantitative analysis of the effect of the aspect ratio a on the proportionality coefficient
κ, we will have to put forward a more rigorous analysis in the future. The discretization has to be
decreased in order to correctly predict the proportionality coefficient in the TFC-limit κTFC and a
larger range of discretizations has to be used for a better power-law fit.
We also observe that, as is commonly presumed, the expression for the relation between the contact
area fraction ar and low nominal pressure p̄: ar = κp̄/ḡE∗ with κ ≈ 1.5, can be used as a good
approximation for a generic Poisson’s ratio 0.2 < ν ≤ 0.5 and aspect ratio 0.5 ≤ a ≤ ∞. Note that
this value of κ is within a 10% error range.
We find no uniform higher-order dependency of the proportionality coefficient κ on the Poisson’s
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ratio ν. This lack of higher-order dependence makes us conclude that the established dependence of
the proportionality coefficient κ on the material properties and surface topography, i.e., E, ν, ḡ, is a
very good representation of the real contact area for the small nominal pressure p̄ and the nominally
flat surface. The absence of a the higher-order dependency on ν is unexpected. According to Hyun
et al. [9], there is a higher-order dependency on the Poisson’s ratio ν for the aspect ratio a = 1. We
argue that this higher-order dependency is reported because the minimum continuum discretization
and fractal discretization used by Hyun et al. [9] are too large, i.e., ε−1

c = 2 and ε−1
f ≈ 1000. We

observe that for fractal discretization ε−1
f ≈ 2048 the higher-order dependence on the Poisson’s

ratio ν disappears. Future work should focus on a more rigorous analysis of the effect of Poisson’s
ratio ν on the value of the proportionality coefficient κ for aspect ratio a = 1.
The aforementioned results and conclusion are all under the assumption of a nominally flat elastic
slab indented with a rough rigid punch. Also, we make use of the small-slope approximation, small-
strain assumption and hard-wall repulsion at the interface. The traction in tangential direction is
implicitly taken to be zero, i.e., frictionless contact. This work allows for the relaxation of the
assumption of the flat incompressible solid of infinite height and no tangential displacement at the
surface. The effect of local slope is expected to be of major influence on the contact behavior
for metal surfaces (see Chapter 1 and Sec. 4.4). The small-slope approximation is up to date
one of the reasons why we can not yet study realistic metallic contacts (see Chapters 1 and 2).
Therefore, we recommend to relax the small-slope assumption. Moreover, we make use of mapping
[15] of the roughness of the contacting surfaces on to the rigid indenter. This is only valid under
the assumption of frictionless contact. When the assumption of frictionless contact is relaxed, the
interaction between metallic asperities can be effectively studied using an exponential potential
like Xu-Needleman [75] or the cohesive zone model according to McGarry et al. [76], also allowing
the study of interplay between adhesion and friction at the interface. To relax the assumption of
frictionless contact, we have to extend the current GFMD method to allow for the elastic slab to
have a rough surface topography.

80



Appendix 4.A Persson’s theory

Persson theory in its original formulation is a renormalization-group approach to contact mechanics
of self-affine surfaces for frictionless contact. It allows us to derive the analytical expression for
the normal traction probability distribution Pr(τ3, q) in the contact area at the length scale 2π/q.
Persson’s theory assumes the normal traction probability distribution Pr(τ3, q) to obey a diffusion-
like equation where time is replaced by the wave number q and the spatial coordinate by the
normal traction τ3. It first assumes complete contact between the rigid punch and the substrate
on all length scales with pressure distribution:

Pr(τ3, q0) = δ(τ − p̄), (4.7)

where
q0 = 2π/Lx, (4.8)

δ() is the Delta-Dirac function and p̄ is the nominal pressure. When q increases to shorter length
scales the normal traction distribution function broadens due to the additional undulations within
the contact zone. A point on the substrate is no longer in contact with the rigid punch when the
normal traction τ3 = 0. The normal traction probability distribution Pr(τ3, q) is written as:

Pr(τ3, q) =
1

2
√
πG

e−(τ3 − p̄)2

4G − e
−

(τ3 + p̄)2

4G

 , (4.9)

where G, the standard deviation of the normal traction, is:

G =

∫ q

q0

τ3(q)2. (4.10)

We can express τ3(q) as:

τ3(q) =
qE∗f(qzm)

2
|h̃(q)|, (4.11)

where f(qzm) is the correction factor for an incompressible finite slab with u3(0, x) = 0 and zero
tangential traction:

f(qzm) =
cosh (2zmq) + 2 (qzm)2 + 1

sinh (2qzm)− 2qzm
. (4.12)

The standard deviation of the normal traction is a constant and independent of the wave number
q. The broadening of the pressure distribution is written as:

Pr(τ3, q
+) =

∫ ∞
0

dp̄K(τ, p̄,∆τ)Pr(p̄, q
−), (4.13)

where K(τ, p̄,∆τ) is the kernel function:

K(τ, p̄, G) =

e−(τ3 − p̄)2

4G − e
−

(τ3 + p̄)2

4G


4
√
πG

. (4.14)

Here, Pr(τ3, q
−) is the normal traction distribution function for all spatial features with wave

number q′ < q and Pr(τ3, q
+) is the normal traction distribution function for all spatial features
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with wave number q+ > q′. The scale-dependent relative contact area ar(q
′) for all spatial features

with wavenumber q ≤ q′ is written as:

ar(q
′) =

∫ ∞
0

dτ ′Pr(τ
′
3, q
′). (4.15)

Note that the integral over τ3 of P (τ3, q) has to be unity. To ensure this, there is a Delta-Dirac
function contributing to P (τ3, q) of the form (1− ar(q

′)) δ(τ3). Substituting Eq. (4.9) into Eq.
(4.15), we give after some simplification:

ar = erf

(
p̄

2
√
G

)
. (4.16)

For p̄ << G, Eq. (4.16) is:

ar ≈
p̄

π
√
G
. (4.17)

We assume a self-affine topography from here on. The standard deviation of the normal traction
G for an elastic semi-infinite body f(qzm) = 1 and non-adhesive contacts is:

G =

∫ q

q0

(
qE∗f(qzm)

2
|h̃(q)|

)2

=

(
ḡE∗

2

)2

, (4.18)

where ḡ is the root mean square gradient (RMSG). The linear scaling of ar with p̄ is established
for an elastic semi-infinite body f(qzm) = 1 and non-adhesive contacts as:

ar =
κp̄

ḡE∗
, (4.19)

where κ is the proportionality coefficient. Eq. (4.19) holds for
2π

zm
≥ 10q0. According to

Persson et al. [12, 77, 25] κ =
√

8/π ≈ 1.59.
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Chapter 5

Elastic deformation of rough surfaces
in contact with flat rigid body: A
two-step Green’s function molecular
dynamics approach

“Boys we were - friendly boys although. If you don’t mind me saying so.”

Nescio, Titaantjes
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5.1 Introduction

So far, Green’s function molecular dynamics (GFMD) has been used to simulate the contact me-
chanics of solids with rough surfaces by mapping the roughness onto a rigid indenter and the
substrate is modeled as an infinitesimally-flat surface, assuming frictionless contact [4, 5, 6]. Map-
ping is no longer valid when the surface has a large local slope g(x), and frictionless contact is a
poor assumption. In this work, we extend GFMD to study the contact mechanics of deformable
bodies with self-affine surfaces.
In the work by Venugopalan et al. [3], the elastic Green’s functions are derived for a finite-height
slab that has an infinitesimally flat surface. In order to study slabs with a generic surface topogra-
phy as a function of the x-position at the surface zm(x), the displacement at the surface u(x) has
to become a function of both the wave number q, corresponding to the displacement, and the wave
number qsurf corresponding to the surface topography. Moreover, the solution of the displacement
field u(x, z) at a generic x-coordinate on the surface becomes a function of the single wavenum-
ber q, but also of the sum of all sinusoidal components with wave number qsurf, corresponding to
the surface height z(x). Therefore, we can not solve the ordinary differential equation in Fourier
space (see Chapter 2, Eq. (2.4)). An alternative is solving the boundary value problem though a
differential equation in real space. This would, however, drastically increases the complexity of the
areal elastic energy definition compared to the formulation by Venugopalan et al. [3]. We want to
prevent this increase in complexity, and computational time. To this end, we analytically derive an
approximation of the areal elastic energy by making use of the principal of superposition of strains.
The solution is therefore bound to work only within assumption of small strain and small slope.
The first step, in this method, involves imposing displacement u

′′
(x) to an initially flat surface to

form the desired rough surface topography h(x). In the second step, the strain required for the de-
formation is calculated. A GFMD simulation is performed in the third and final step. In this GFMD
simulation, the calculated strain inside the body, due to the imposed loading, is corrected with the
strain calculated in the previous step. We chose to name this extended method ‘two-step GFMD’.
Figure 5.1 is the schematic representation of a boundary-value problem approached by the two-step
GFMD method.

Lx

(1)

Lx
x

z

zm

(2)

Lx
x

z

zm
u''u''

u''

Figure 5.1: Schematic representation of the boundary-value problem approached by the two-step
GFMD: (1) The initially flat surface is displaced with displacement u

′′
leading to a sinusoidal

surface topography h(x). (2) The sinusoidal asperity is flattened with a rigid punch, correcting the
strain inside the body with the strain calculated in step (1).
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We validate the model by comparing the body fields for the flattening of a sinusoidal surface
numerically calculated with two-steps GFMD and with the finite element method (FEM), using
the commercial program ABAQUS. When comparing two-step GFMD to FEM, note that, FEM
starts from the traction free sinusoidal surface and does not need strain corrections. Moreover,
FEM has no small-slope approximation, unlike GFMD. Here, we want to remind the reader that
applying a sinusoidal loading to a flat substrate can be done in GFMD. However, the notable thing
we do in this work, is using that deformed body as the starting point of a subsequent loading step,
i.e., step (2).
When equilibrium is reached in step (2), we observe that the surface displacement u(x) and normal
traction τ3(x) is correctly approximated over a range of aspect ratios a and rough surface topography
h(x). As to be expected, the maximum allowable aspect ratio a depends on the surface displacement
u(x) in normal direction, root mean square height w (RMSH). Note that at the end of step (2), part
of the error in the numerically calculated displacement is due to the small-slope, and an additional
error due to the superposition of the strains during step (2).
After step (2), we numerically calculate the strain and stress field inside the body following [3].
A priori, with a simple analogy with the uniform extension of a bar, we present the analytical
expression for the error in the strain ∆ε due to the uniform surface displacement u3(q = 0) in
normal direction, the slab height zm and the RMSH w. With the analytical expression for the error
∆ε, we correct the analytical calculation of the strain field inside the body in [3].
We observe that the root mean square gradient ḡ (RMSG) of the surface topography h(x) that
we can reach in step (1) has a maximum allowable value because of the small-slope approximation
in GFMD [3]. For the limiting case g(x) → ∞, on the vertical sides of a rectangular asperity,
we find that the numerically calculated displacement of the surface in tangential direction u1(x)
shows a large difference between two-step GFMD and FEM calculations. This difference is because
the two-step GFMD does not correctly capture the vertical traction normal to the free sides of
the rectangular asperity. The maximum value of the RMSG ḡ is not known a priori. Therefore,
we determine the maximum allowable RMSG ḡ by comparing the numerically calculated surface
displacement u(x) for the flattening of a flat-top triangular asperity with the two-step GFMD
method and FEM.
The remainder of this work is organized as follows: In Sec. 5.2, we explain the two-step GFMD
method. Subsequently, we give the analytical expression for the elastic energy density in two-step
GFMD in Sec. 5.2.2. Further more, we derive the analytical expression for the error in the
numerically calculated strain in Sec. 5.2.3. We divide the numerical results in Sec. 5.3 in four parts:
In Sec. 5.3.1, we determine a tolerable error in displacements u(x) for the two-step GFMD method;
In Sec. 5.3.2, we give the body fields for the flattening of the sinusoidal surface; In Sec. 5.3.3,
we study the limiting case of flattening an array of rectangular asperities; And in Sec. 5.3.4, we
determine the maximum allowable RMSG ḡ from the flattening of the flat-top triangular asperity.
This work ends with the conclusion and the discussion in Sec. 5.4.
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5.2 Finite-height-slab with sinusoidal surface topography strain,
stress and areal elastic energy

5.2.1 Methodology

In static equilibrium, the equilibrium condition is:

F̃ r (q) + F̃ ext (q) + F̃ if (q) = 0. (5.1)

where the restoring force at the surface is F̃ r(q) = ∇ũvel. For the restoring force F̃ r(q), we rewrite:

F̃ r(q) = F̃ el(q) + F̃ surf(q), (5.2)

where F̃ el(q) is the elastic restoring force of an initially flat surface and F̃ surf(q) the elastic force
required to create the surface topography from the initially flat surface. The calculation of the
force in Fourier space for the surface topography F̃ surf (q) corresponding to u′′(q) is step (1) of the
two-step GFMD. We rewrite Eq. (5.1) as:

F̃ el (q) + F̃ ext (q) + F̃ if (q) + F̃ surf (q) = 0, (5.3)

where F̃ ext (q) is the external force and F̃ if (q) is the interfacial force.
In step (2) of the two-step GFMD, the force at the interface is not explicitly known, but only
implicitly through the interfacial boundary condition. The static displacement is numerically cal-
culated for the substrate flattened with a flat rigid punch. A hard-wall potential is employed to
ensure there is no inter penetration at the surface, i.e.,

zpunch(x) ≥ zgrid-point(x), (5.4)

where zpunch and zgrid-point are the z-coordinates of the punch surface and substrate respectively.
Figure 5.2 is the schematic representation of the second step of the two-step GFMD for the substrate
with the sinusoidal surface topography h(x) flattened by the rigid punch.

x

z
zpunch

x Fel+Fsurf
Lx

Fif

Fel+Fsurf

δzpunch

(1) (2)

Figure 5.2: Step two: Schematic of substrate with the sinusoidal surface topography h(x) flattened
by the load in two-step GFMD. (1) Initial contact is in a single or multiple points of equal height.
(2) The rigid punch displaced by δzpunch.

The initial contact is made at the surface nodes of maximum height. Subsequently, the punch is
displaced with the finite displacement δzpunch. The contact remains a traction prescribed, because
the hard-wall condition equals a virtual impulse J over a dimensionless discrete time-step ∆t,
causing an interfacial force Fif(x) [78]. After equilibrium is reached, we analytically calculate the
displacement field u(x, z), strain field ε(x, z) and stress field σ(x, z) inside the substrate following
[3].
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5.2.2 Superposition of strains

Following [3], we write the infinitesimal Cauchy’s strain tensor (in Voigt notation) as:

ε1(x, z) ≡ ∂1u
c
1(x, z)

= −qsin(qx)ũc
1(q, z);

ε3(x, z) ≡ ∂3u
s
3(x, z)

= sin(qx∂3ũ
s
3(q, z);

ε5(x, z) ≡ (∂3u
c
1(x, z) + ∂1u

s
3(x, z))

= cos(qx)(qus
3(q, z) + ∂3u

c
1(q, z)).

(5.5)

The strain tensor ε′(x, z) is determined by subtracting the strain tensor necessary to deform to the
required surface topography ε′′(x, z) from the strain tensor of the substrate. This is written as:

ε′1(x, z) ≡ ε1(x, z)− ε′′1(x, z);

ε′3(x, z) ≡ ε3(x, z)− ε′′3(x, z);

ε′5(x, z) ≡ ε5(x, z)− ε′′5(x, z).

(5.6)

Following [3], we can determine the work per unit area to deform the body – assuming small surface
slopes– via:

vel =
1

w

∫ w

0
dx

[∫ u1(x,zm)

0
σ′13(x, zm)dw1(x, zm) +

∫ u3(x,zm)

0
σ′33(x, zm)dw3(x, zm)

]
. (5.7)

With the sinusoidal normal and cosine lateral displacement at the surface (ũc
1, ũ

s
3) corresponding

to the wave number q, the elastic energy is:

vel =
C44

2
ε̃c
′

5 (q, zm)ũc
1(q, zm) +

{
C11

2
ε̃s
′

3 (q, zm) +
C12

2
ε̃s
′

1 (q, zm)

}
ũs

3(q, zm), (5.8)

with

ε̃s
′

1 (q, z) ≡ −q(ũc
1(q, z) + ũc

′′

1 (q, z));

ε̃s
′

3 (q, z) ≡ ∂3ũ
s
3(q, z)− ∂3ũ

s
′′

3 (q, z);

ε̃c
′

5 (q, z) ≡ ∂3ũ
c
1(q, z)− ∂3ũ

c
′′

1 (q, z) + qũs
3(q, z)− qũs

′′

3 (q, z),

(5.9)

where ũ′′(q, z) is the displacement corresponding to the sinusoidal surface topography h(x) (see
Fig. 5.1).
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We rewrite the areal elastic energy as:

vel =
q

2

([
ũc

1(q, zm), ũs
3(q, zm)

] [M11(qzm) M13(qzm)
M13(qzm) M33(qzm)

] [
ũc

1(q, zm)
ũs

3(q, zm)

]
− 2

[
ũc

1(q, zm), ũs
3(q, zm)

] [N1(qzm)
N3(qzm)

])
,

(5.10)
with

M11(qzm) = (1− r)cosh(qzm)sinh(qzm)− r(qzm)C11

‖ f(qzm) ‖
;

M13(qzm) =

(
1− r
1 + r

)
(1− r)sinh2(qzm) + 2r2(qzm)2C11

‖ f(qzm) ‖
;

M33(qzm) = (1− r)cosh(qzm)sinh(qzm) + r(qzm)C11

‖ f(qzm) ‖
;[

N1(qzm)
N3(qzm)

]
≡
[
M11(qzm) −iM13(qzm)
iM13(qzm) M33(qzm)

][
ũc
′′

1 (q, zm)

ũs
′′

3 (q, zm)

]
,

(5.11)

where

r =
1− s
1 + s

, (5.12)

and

‖ f(qz) ‖ ≡ f1(qz)f3(qz) + f2(qz)2

= cosh2(qz)− (rqz)2 − 1.

The elastic energy density for the general case is:

vel =
∑
q

q

2

([
ũ∗1(q), ũ∗3(q)

] [M11(qzm) −iM13(qzm)
iM13(qzm) M33(qzm)

] [
ũ1(q)
ũ3(q)

]
− 2

[
ũ∗1(q), ũ∗3(q)

] [N1(qzm)
N3(qzm)

])
,

(5.13)
where [

N1(qzm)
N2(qzm)

]
=

[
M11(qzm) −iM13(qzm)
iM13(qzm) M33(qzm)

] [
ũ′′1(q)
ũ′′3(q)

]
, (5.14)

and ũ(q) is now the Fourier transform of the displacement of the surface u(x) corresponding to
wave vector q. Following Eqs. (5.2) and (5.13), we rewrite the elastic force required to create the
surface topography from the initially flat surface F̃ surf(q) as:[

F̃1,surf(q)

F̃3,surf(q)

]
= −q

[
ũ′′1(q), ũ′′3(q)

] [M11(qzm) −iM13(qzm)
iM13(qzm) M33(qzm)

]
. (5.15)

We use this analytical expression in the subsequent sections to determine the elastic force required
to create the surface topography in step one of two-step GFMD.

5.2.3 Error in superposition of strains

The error introduced by the superposition of strains ∆ε in step (3) is expected to increase with an
increase in the w/zm ratio (small-strain assumption), in ḡ (small-slope assumption), or in u3/zm

(small-strain). We make an analogy with a bar element in Fig. 5.3.
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Figure 5.3: Schematic representation of the superposition of strain for a one dimensional bar. Case
(a) is the elongation of a bar with length zm to zm + dx. Case (b) is elongation of a bar with length
zm to zm + φdx. Case (c) is the compression of a bar with length zm + dx to zm + φdx.

Considering the one dimensional case is represented by a bar with initial length zm + dx. The bar
is compressed to zm + φdx, i.e, case (c). The strain calculated in two-step GFMD is analogous to
the superposition of case (b) and (a). The error in the strain ∆ε for superposition is:

∆ε = (εa − εb)− εc;

= − dx2(φ− 1)

zm(dx+ zm)
.

(5.16)

The uniform extension dx in this case is equivalent to the RMSH w imposed in step (1) and the
term (1 − φ)dx is equivalent to the uniform surface displacement u3(q = 0) imposed in step (2).
After step (2) is finished, we want to numerically calculate the strain fields inside the body. We
find that this error scales with the slab height zm, the RMSH w and the displacement of the surface
in normal direction u3(x). The displacement in tangential direction is assumed to be small, and
therefore, we assume it to be of minor influence on the error in the strain fields. In order to correct
for this error, we use Eq. (5.16) for the uniform extension and subtract the error in the strain
∆ε from the analytically calculated strain ε̃3(q = 0). This correction to the strain field improves
the solution by reducing the error from ∆σ ≈ 15.0E × 10−3 to within ∆σ ≈ 0.5E × 10−3 between
two-step GFMD and FEM.

5.3 Numerical results

5.3.1 Sinusoidal surface topography

As a benchmark problem to determine the tolerable error ∆ui/Lx in the surface displacement of a
substrate with the sinusoidal surface topography, we impose no loading. This is implemented by

taking ũs
′′

1 (k = 1, zm) = 0 and ũc
′′

3 (k = 1, zm) = −0.01zm. The corresponding surface force F surf(x)
is calculated in step one. We perform step two with the following parameters: E = 70 GPa, ν =
0.33, a = 1, Lx = 20 µm, zpunch(x) = ∞, ∆t = 0.01 and nx = 2048, where E is the elastic
modulus, ν the Poisson’s ratio and nx the discretization.
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The normalized displacements at the surface ūi/Lx is shown in Fig. 5.5. The over bar indicates
the value of the variable at the surface.

Figure 5.4

Figure 5.5: Plot of the normalized normal and tangential displacement ui/Lx as a function of the
normalized x-coordinate x/Lx.

We set the tolerable error ∆ui/Lx to the order O−6. This corresponds to a thousandth of the
typical GFMD simulation indentation depth known to satisfy the small-slope approximation. We
observe that the error in surface displacement ū(x) is below the tolerable error set by us.

5.3.2 Flattening sinusoidal asperity

We flatten the substrate with sinusoidal surface in Sec. 5.3.1 with the flat rigid body and the finite
displacement δzpunch = 3.3× 10−3zm. For the FEM calculations we use a uniform mesh of square
elements, and we assume small-strain. The number of elements in x-direction nnx and the number
of elements in y-direction nny are equal to nx. The normalized displacements at the surface ūi/Lx
and the normalized traction in normal direction τ3/E for two-step GFMD and FEM are shown in
Fig. 5.6. The maximum difference in normalized displacement at the surface is ū1/Lx = 9× 10−6.
The difference is at the maximum that we will tolerate and gives a good indication of the maximum
indentation depth in two-step GFMD, i.e., δzpunch = 3.3 × 10−3zm. The difference in normalized
maximum traction between two-step GFMD and FEM is ∆τ3/E = 0.2945 × 10−3. We conclude
that the results are in good agreement. We numerically calculate the displacement and stress fields
inside the body for the two-step GFMD. The body fields are depicted in Figs. 5.7 and 5.8.
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(a) (b)

Figure 5.6: (a) Plot of the normalized normal and tangential displacement ui/Lx as a function
of the normalized x-coordinate for two-step GFMD and FEM. (b) Plot of the normalized normal
traction τ3/E as a function of the normalized x-coordinate x/Lx for two-step GFMD and FEM.
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Figure 5.7: Displacement fields obtained using: (a), (c) two-step GFMD; (b), (d) FEM.
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Figure 5.8: Stress fields obtained using: (a), (c), (e) two-step GFMD; (b), (d), (f) FEM.

We observe a small difference in contour plot for the normalized stress in normalized direction
between the iso-lines of the zone −2 < σ33/E × 10−3 < −4 between GFMD and FEM. This
difference is due to the superposition of strains in step (3) (see Sec. 5.2.3). In Fig. 5.9a, the
normalized normal stress σ33/E is plotted as the function of the normalized z-coordinate z/Lx.
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Figure 5.9: Plot of the normalized stress σ33(x/Lx = 1/2)/E × 103 as a function of the normalized
position z/Lx for (a) the sinusoidal asperity in Fig. 5.6a and (b) normalized indentation depths
δzpunch/zm = 0.01, δzpunch/zm = 0.001 and the flattened sinusoidal asperity in Fig. 5.6a

We compare this result to indenting of a flat substrate with a flat rigid punch with width Lp
x = 0.1Lx

and normalized indentation depths δzpunch/zm = 0.01 and δzpunch/zm = 0.001. Figure 5.9b displays
the absolute normalized stress |σ33(x/Lx = 1/2)/E| as a function of the normalized z-coordinate
z/Lx. In Tab. 5.1, we summarize the minimum, the maximum and the average difference in the
normalized stress σ33(x/Lx = 1/2)/E between GFMD and FEM.

δzpunch/zm = 0.001 flattened δzpunch/zm = 0.01
sinusoidal asperity

Mean(|∆σ33(x/Lx = 1/2)/E|)× 103 0.127 0.534 1.101
Min(|∆σ33(x/Lx = 1/2)/E|)× 103 0.065 0.146 0.663
Max(|∆σ33(x/Lx = 1/2)/E|)× 103 0.365 1.696 3.149

Table 5.1: Summary of the differences in normalized stress σ33(x/Lx = 1/2)/E between GFMD
and FEM for the different loading types displayed in Fig. 5.9b.

We decide to set the tolerance for maximum allowable average difference in normalized stress
∆σ/E equal to the mean difference in stress for the indentation of a flat substrate with a flat rigid
punch, i.e., Mean(|∆σ33(x/Lx = 1/2)/E|) for δzpunch/zm = 0.01 in Tab. 5.1. Moreover, we set
the maximum finite displacement in two-step GFMD to δzpunch/zm = 3.3× 10−3, in order to keep
the error well below the aforementioned tolerance. However, the rough surface topography h(x) is
also expected to influence the numerically calculated surface displacement with two-step GFMD.
We also want to study the effect of local slope on the numerically calculated surface displacement,
therefore we give the limiting case of g(x)→∞ in the subsequent section.
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5.3.3 Flattening rectangular asperity

Apart from the small strain, there is another assumption in GFMD: the slopes are taken to be
small (see Chapter 2). Therefore, we check what is the error in the most severe limiting case of the
local gradient g(x)→∞. As the second benchmark problem to compare two-step GFMD to FEM,
a substrate with the surface topography h(x) written as:

h(x) = 0.01zm(Θ(x+ 9Lx
20 )−Θ(x− 11Lx

20 )), (5.17)

is flattened with the rigid flat body with the finite displacement δzpunch = 3.0 × 10−3zm. Here
Θ(x) is the Heaviside step-function. In Fig. 5.10, we show the normalized normal and lateral
displacement ui/Lx as a function of the normalized x-coordinate x/Lx with zpunch(x) =∞.

Figure 5.10: (a) Plot of the normalized normal and lateral displacement ui/Lx as a function of the
normalized x-coordinate x/Lx with zpunch(x) =∞.

The normalized displacements at the surface ūi/Lx and the normalized traction τ3/E for two-step
GFMD and FEM are shown in Fig. 5.11. The maximum absolute error in normalized displacement
at the surface is ∆ū1/Lx = 1.5 × 10−8 with no flattening. The maximum difference in abso-
lute normalized displacement at the surface is ū1/Lx = 1 × 10−4 between two-step GFMD and
FEM. The difference in normalized traction at x = Lx/2 between two-step GFMD and FEM is
∆τ3/E = 5× 10−4. The normal displacement at the surface and the normal traction are in very
good agreement. The tangential displacement is not in agreement. Note, the observed difference in
tangential displacement has an appreciable effect on the contact mechanical behavior. Even more
appreciable if one intends to study frictional problems. Here, we show that two-step GFMD does
not capture the effect of the free surfaces of the rectangular asperity. The body fields are compared
in Figs. 5.12 and 5.13.
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(a) (b)

Figure 5.11: (a) Plot of the normalized normal and lateral displacement ui/Lx as a function of the
normalized x-coordinate for two-step GFMD and FEM. (b) Plot of the normalized normal traction
τ3/E as a function of the normalized x-coordinate x/Lx for two-step GFMD and FEM.
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Figure 5.12: Displacement fields obtained using: (a), (c) two-step GFMD; (b), (d) FEM.
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Figure 5.13: Stress fields obtained using: (a), (c), (e) two-step GFMD; (b), (d), (f) FEM.

We observe that the displacement fields inside the substrate look similar, as is observed for the
stress fields. The maximum difference in stress ∆σ/E between two-step GFMD and FEM is smaller
than the tolerable, when we disregard the regions just below the surface. As to be expected, due to
the the small-slope approximation the displacement in the region around a high local slope on or
just under the surface are not correctly captured by two-step GFMD. We conclude that a maximum
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allowable RMSG ḡ has to be determined for two-step GFMD. To this end, we study the flattening
of flat-top triangular asperities with varying gradients in the next section.

5.3.4 Flattening flat-top triangular asperities

In order to find the maximum allowable surface gradient in two-step GFMD, we flatten a substrate
with the surface topography h(x) written as:

h(x) = 0.01zm (1− |gx|)
(

Θ(gx+
9Lx
20

)−Θ(gx− 11Lx
20

)

)
, (5.18)

with a rigid flat body. Here g is the slope of the triangular asperity. The triangular asperity is
broadened to have the flat top. In Fig. 5.14, we depict the normalized surface profile h(x)/Lx as a
function of the normalized x-coordinate x/Lx with g = 0.025, g = 0.028, g = 0.03 and g = 0.032.
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Figure 5.14: Plot of the normalized surface profile h(x)/Lx as a function of the normalized x-
coordinate x/Lx with g = 0.025, g = 0.028, g = 0.03 and g = 0.032.
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The normalized displacements at the surface of the asperity ūi/Lx for two-step GFMD and FEM
with g = 0.025, g = 0.028, g = 0.03 and g = 0.032 are shown in Fig. 5.15.
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Figure 5.15: Plot of the normalized displacement ui/Lx as a function of the normalized x-coordinate
x/Lx for two-step GFMD and FEM with (a) g = 0.025, (b) g = 0.028, (c) g = 0.030 and (d)
g = 0.032.

We observe that macroscopically two-step GFMD and FEM are in good agreement.
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In Tab. 5.2, we give the average absolute difference in normalized tangential displacement |∆ū1/Lx|
between two-step GFMD and FEM with gradient g.

g |∆ū1/Lx| × 10−6

0.025 0.82
0.028 1.47
0.030 2.32
0.032 3.00

Table 5.2: The average absolute difference in normalized tangential displacement |∆ū1/Lx| for the
flattening of a flat-top triangular asperity with gradient g.

The difference in the tangential displacement at the surface increases for an increase in gradient
g. For ḡ ≥ 0.030, the difference in displacement is coming in to the range of maximum tolerable
error of O−6Lx. However, the zone of interest to us is the region in the immediate vicinity of the
contact. These regions are where we expect the largest differences between two-step GFMD and
FEM. In Fig. 5.16. the normalized tangential displacement ū1/Lx at the surface of the asperity is
shown as a function of the normalized x-coordinates x/Lx for two-step GFMD and FEM.
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Figure 5.16: Plot of the normalized tangential displacement in the contact area ū1/Lx as a function
of the normalized x-coordinate x/Lx.

Note the difference in location of the maximum displacement between two-step GFMD and FEM.
For ḡ = 0.032, we observe an appreciable difference in the location of the maximum tangential
displacement. This difference is expected to produce an error in the numerically calculated real
contact area fraction ar. We conclude that the tolerable RMSG of the rough surface topography
h(x) for two-step GFMD is ḡ ≤ 0.030. Such a low RMSG does not allow us to simulate realistic
metallic rough surfaces, where the RMSH w and RMSG ḡ are several orders of magnitude larger
than we use in this work. We conclude that the small-slope approximation can not capture the
realistic finite slope of metallic asperities. Future work should focus on relieving the small-slope
approximation.
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5.4 Conclusions and discussion

For the first time GFMD is extended to apply to finite deformable solids with surface topography
h(x). We call this extended method two-step GFMD. In this work, the analytically calculated
strain fields ε(x, z) are adjusted to account for finite surface topography h(x). This correction
results in 95% error reduction in the calculated strain fields ε(x, z) between two-step GFMD and
FEM. Note this can be further reduced when correct the strain tensor over all wave numbers q
(see Eqs. (5.5) and (5.6)) in future work.
In this work, we only consider the slab geometry with the aspect ratio a = 1. It is also important
in the contact of metallic bodies to study of thin films, i.e., aspect ratio a ≤ 0.5. Therefore, we
recommend to investigate two-step GFMD for thin films in future work.
We define the maximum allowable error in displacement and stresses. As to be expected, we observe
that for the limiting case of flattening an array of rectangular asperities, two-step GFMD is not
capable of correctly representing the local slope. We observe that the tolerable RMSG of the rough
surface topography h(x) for two-step GFMD is ḡ ≤ 0.030. Important to note is that both GFMD
and two-step GFMD have the assumption of the small-slope approximation. When this assump-
tion is relaxed, the two-step GFMD method would be able to more correctly numerically calculate
contact behavior for large RMSH w and larger local gradients g(x) than currently is possible with
two-steps GFMD.
Two-steps GFMD is capable of numerically calculating contact mechanical properties for a generic
interaction potential at the surface, i.e., finite range adhesive/repulsive potential [74]. Also,
two-step GFMD can be used to numerically calculate the displacement of the surface of two de-
formable elastic slabs with aspect ratios a1 and a2, generic Poisson’s ratios ν1 and ν2 and surface
topographies h1(x) and h2(x), respectively.
Finally, we like to comment on the numerical calculations performed in this work. After gathering
the presented numerical results, we found that the numerical calculations in this work have an error
up to O−6, due to the allocated array precision. After increasing the precision, we are able to reach
a maximum error ∆ui/Lx in the order of O−16.
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Chapter 6

Damped dynamic energy
minimization: Analytical derivation of
the critical damping coefficient in
Green’s function molecular dynamics

“We don’t really have departments of Electrical Engineering, Mechanical Engineering, Chemical
Engineering, and so on, we had departments of large systems, small systems, mechanical systems,
chemical systems, and so on.”

Former dean Stanford’s School of Engineering, The Fourier transform and its Applications
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6.1 Introduction

Green’s function molecular dynamics (GFMD) is a boundary-value method allowing one to simulate
the linear-elastic response of a solid to an external load by modeling only the surface. The surface is
discretized using nx equi-spaced grid-points. These grid-points interact with each other through an
effective stiffness. Earlier works neglected the sideways motion of grid-points in GFMD simulations
[5], only studying the normal component of the displacement on a semi-infinite solid (i.e., one degree
of freedom (DOF)). This did not greatly affect the solution, as long as the applied external load was
normal and the substrate was incompressible. More Recently, GFMD was extended to include the
shear component of the displacement in a slab of finite height zm and generic Poisson’s ratio ν [3].
The displacement of the surface with periodicity Lx is calculated in Fourier space. The surface
displacement ũ(q) = (ũ1(q), ũ2(q), ũ3(q)) for each mode with wave vector q is obtained numerically.
This work only treats static loading, therefore the exact trajectory of the surface nodes is not a
sought after result, and damped dynamics can be used [5]. For the (1+1)-dimensional substrate,
the in-plane wave vectors become scalars and can be written as:

q =
2π

Lx
k, (6.1)

where k is the wave number index. The displacement ũ(q) in Fourier space corresponding to the
single wave number q is called a displacement mode. The elastic force F̃ el (q) is determined as:
When tractions are prescribed on the surface, equilibrium is reached when the elastic restoring
force F̃ el (q) and the external force F̃ ext (q) are balanced. At a given dimensionless instant t, before
equilibrium is attained, the equation of motion at the interface can be written as:

F̃ el (q, t) + F̃ ext (q, t) + F̃ if (q, t) + c
dũ (q, t)

dt
= m

d2ũ (q, t)

dt2
, (6.2)

where c = (c1, c3) is the positive real valued directionally dependent linear damping coefficient and
m is the real valued mass. The mass m is taken to be unity. The force at the interface F̃ if (q)
is not explicitly known, but only implicitly through the interfacial b.c.. The equation of motion
of a damped mode in Fourier space is solved numerically by the position (Störmer-)Verlet (pSV)
method [16]. The interfacial force is damped in the following manner:

F̃ d[n] = F̃ el[n] + F̃ ext + η (ũ[n− 1]− ũ[n]) , (6.3)

where F̃ d[n] is the damped force at t = n(∆t) with the discrete time-step ∆t and η = (η1, η3) is
the real valued damping factor. This damping factor η is a numerical simulation parameter, and
η is proportional to the real valued linear damping coefficient c of the solid. However, because
the damping factor η is a simulation parameter, it has a higher-order dependency on the discrete
time-step ∆t, unlike the linear damping coefficient c. The displacement of a single mode is:

ũ[n+ 1] = 2ũ[n]− ũ[n− 1] + F̃ d[n] (∆t)2 . (6.4)

A hard-wall potential is employed at the end of each iteration to ensure there is no inter penetration
at the surface, i.e.,

zpunch(x) ≥ zgrid-point(x), (6.5)

where zpunch and zgrid-point are the z-coordinates of the punch surface and substrate respectively.
The interfacial b.c. influences the characteristic dynamic regimes of the GFMD simulation, be-
cause the conversion of kinetic into potential energy by the interfacial b.c. influences the damped
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dynamics [79].
The goal of this work is to minimize the computational time when computing the displacement
of the surface. For studying random rough surfaces the discretization is decades smaller than the
smallest wavelength [4] (see Chapters 3 and 4) and computationally cost heavy. The minimum
time to equilibrium teq is attained for a critically damped dynamic energy minimization. When
the damped dynamic energy minimization is over-damped, the surface displacement never reaches
equilibrium and is incorrect. To this end, the expression for the critical damping factor ηcr and its
associated equilibrium time teq are derived.
According to Prodanov et al. [5] the critical damping factor ηcr for a semi-infinite incompressible
solid considering only normal displacement can be written as:

ηcr ∝

(
F̃ext(0)

E∗ḡ

)α√
β

Lx
, (6.6)

where E∗ is the effective elastic modulus, ν the Poisson’s ratio, ḡ is the root mean square gradient
(RMSG) of the random rough surface profile h(x), α and β are positive real valued parameters
which depend on Lx and typically are found empirically. The expression in Eq. (6.6) is an em-
pirically determined proportionality, and this expression is only suitable for the incompressible
semi-infinite solid. The uniform strain in normal direction is zero for the semi-infinite solid, hence
the damping factor according to Prodanov et al. [5] dampens the dynamics of hard-wall interaction.
In this work, we consider elastic slabs with finite slab height zm, therefore the damping factor of the
dynamics of the hard-wall interaction in Eq. (6.6) does not necessarily critically damp the GFMD
dynamics.
In GFMD simulations with 2 DOF the normal and tangential displacement of the surface are cou-
pled via the inverse Green’s function. This work shows that the coupling depends on the Poisson’s
ratio ν, the aspect ratio a and loading direction. The aspect ratio a is the slab height zm over the
periodic width Lx. Due to the coupling it is not possible to superpose the critical damping factors
for the normal and tangential mode. Therefore, we can not apply the simpler solutions for the
damping factor ηcr of damped harmonic oscillator with 1 DOF.
In this chapter, the analytical expression for the critical damping factor ηcr is derived by treating
the equation of motion corresponding to each wave number q in GFMD simulations as an individual
forced linear damped harmonic oscillator. This is possible because the modes corresponding to a
single wave number q are independent of all other modes. Also, the equation of motion for the
modes corresponding to a single wave number q is the equation of motion of a damped harmonic
oscillator with 2 DOF. In GFMD simulations, the computational time for the pSV is the smallest of
all Verlet-type methods [80, 81, 82]. According to E. Hairer [81] the accumulated error in position
r and velocity v of the pSV method over a finite integration time both scale as O(dt2), where dt is
the discrete time-step. Other Verlet-type method scale as O(dt3) [82, 80]. The large accumulated
error compared to other Verlet-type methods is the reason the analytical expression for the critical
damping coefficient of the pSV applied to a damped harmonic oscillator has not received attention
so far.
The analytical expression of the critical damping factor and equilibrium time can be input in future
GFMD simulations. This would remove the need to check the trajectories of the first few modes
post simulation, which is now common practice. The analytical expression for the critical damping
factor and equilibrium time are compared to numerical results to this end.
In spite of the error from the pSV method and the coupling in displacements, the possible depen-
dencies of the critical damping factor on the material properties and aspect ratio a can be predicted
using an analogy with the damped harmonic oscillator with 1 DOF. It is well known that the effec-
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tive strength of the substrate increases with increasing elastic modulus E, increasing Poisson’s ratio
ν and decreasing aspect ratio a [41]. An increase in effective strength corresponds to an increase
of the linear constant κ of the spring of the harmonic oscillator. This results in an increase of
the critical damping coefficient ccr [79]. Finally, a finite-range interaction potential [83] between
the surface of the punch and the surface of the substrate is comparable with a non-linear position
dependent external force fext(x). The repulsive potential is expected to decrease the critical damp-
ing coefficient and the adhesive potential is expected to increase the critical damping coefficient.
These dependencies are not known a priori, and they will be used to give the applicability of the
analytically derived damping factor for various interaction potentials.
The remainder of this chapter is organized as follows: In Sec. 6.2, properties of the damped har-
monic oscillator are revisited and the same properties are derived for the trajectory of the damped
harmonic oscillator numerically solved by the pSV method. An analytical expression for the critical
damping factor ηcr in GFMD simulations is derived in Sec. 6.3. The analytical expression for the
equilibrium time teq in GFMD simulations is derived in Sec. 6.4. The analytical expressions are
compared with the numerical results from GFMD simulations in Sec. 6.5. Then, a qualitative
analysis of the influence of the interfacial b.c. on the critical damping factor is given in Sec. 6.6.
This chapter ends with the conclusion and discussion in Sec. 6.7.

6.2 Harmonic oscillator

The equation of motion of a linear harmonic oscillator can be written as:

f (t) = fext (t)− κ (x (t))− cdx(t)

dt
= m

d2x(t)

dt2
, (6.7)

where fext is the external force and m the mass. In Fig. 6.1 a schematic representation of a forced
damped harmonic oscillator is given.

�
fext(t)m

c

Figure 6.1: Schematic representation of a forced damped harmonic oscillator by a wagon with
mass m, frictionlessly moving in the x-direction, attached to a spring with linear constant κ and a
damper with linear damping coefficient c, excited by an external force fext(t).

The solution of this differential equation has the form x(t) = xh(t) + xp(t), where xh is the ho-
mogeneous solution and xp the particular solution. The homogeneous solution corresponds to the
impulse response and the particular solution corresponds to the steady-state response of a forced
damped harmonic oscillator [79]. The linear second-order homogeneous differential equation (6.7)
without the driving term fext(t) has the homogeneous solution xh (t) =

∑2d
i Aie

λit, where Ai and
λi are constants and d is the number of DOF. There are four forms of homogeneous solution for a
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damped harmonic oscillator:

xh(t) =


(A1 +A2t)e

−
( c

2m

)
t
, where − c

2m
= λi, i.e., critically damped;

A1e
λ1t +A2e

λ2t, where λi are complex, i.e., under-damped;

A1e
λ1t +A2e

λ2t, where λ1 6= λ2 and λi are real, i.e., over-damped;

A1e
λ1t +A2e

λ2t, where λi are real and positive, i.e., unstable.

(6.8)

The linear damping constant ccr that critically damps the harmonic oscillator (i.e., critical linear
damping constant) can be determined by the damping ratio ζ:

ζ =
c

2
√
κm

. (6.9)

The damped harmonic oscillator is under-damped when the damping ratio is ζ < 1, over-damped
when ζ > 1 and critically damped when ζ = 1 [79]. The critical damping factor is written as:

ccr = 2
√
κm. (6.10)

The particular solution xp(t) is always harmonic, and has the same frequency as the external force.
Only the amplitude and phase lag of the particular solution depend on the damping constant. The
characteristic dynamic regime is thus determined by the homogeneous solution of the equation of
motion [79]. Figure 6.2 is a sketch of the solutions of the characteristic dynamic regimes of the
forced damped harmonic oscillator by a step-function with amplitude Ah.

t / t
eq
(ζ=1)

x
(t
)/
A
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ζ=1
ζ>1

Figure 6.2: Sketch of the normalized displacement x(t)/Ah as a function of the normalized time
t/teq(ζ = 1) of the characteristic dynamic regimes of the damped harmonic oscillator forced by the
step-function with x(0) = Ah and ẋ(0) = 0.

The critically damped harmonic oscillator returns to its equilibrium position in the shortest possible
time [79]. When the system is under-damped ζ < 1, the center of mass will overshoot its equilibrium
position and oscillate around it. This causes an increase in equilibrium time. Equilibrium time
teq is defined as the time necessary for the difference in the position of the center-of-mass between
two subsequent time increments to fall below a certain value δ that we decide to tolerate. When
the system is over-damped ζ > 1, the center of mass will come to rest later and away from the
equilibrium position of the critically damped oscillator. In this work we are interested in finding
the correct equilibrium position.
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6.2.1 Equilibrium time

The amplitude of the damped harmonic oscillator decays exponentially in time as [79]:

ah (t) =
2d∑
i=1

Aie
−(
t

τ
)
, (6.11)

where a(t) is the amplitude at time t of the homogeneous solution of the damped harmonic oscillator.
The exponential time constant τ of the damped harmonic oscillator is defined as the inverse of the
real part of the exponents of its homogeneous solution:

1

τ
= −Re{λ±}. (6.12)

According to Ogata [44] the equilibrium time of an under-damped harmonic oscillator can be
approximated as:

teq (c < ccr) ≈ Cτ, (6.13)

with

C = − ln
δ

|ah(0)|
, (6.14)

where C is a constant. According to Ramos [84] the equilibrium time estimated by Ogata [44]
has an error up to 25% in the equilibrium time for the critically damped harmonic oscillator. The
maximum error is observed for the critically damped harmonic oscillator [84]. The approximation
by Ogata [44] for critically damped harmonic oscillator assumes that the initial conditions (i.e.,
x(0) and ẋ(0)) have no effect on the trajectory in the long time limit. This work shows in Sec. 6.5
that the approximation by Ogata [44] predicts the correct dependencies of the equilibrium time teq

in GFMD simulations. This is could be explained by the large accumulated error in position and
velocity for pSV. So, in this work, the equilibrium time of the critically damped harmonic oscillator
becomes:

teq(c = ccr) ∝
√
m

κ
. (6.15)

6.2.2 Position (Störmer-)Verlet method

The pSV method [16] is a numerical method used to integrate the equation of motion. The pSV
method uses the first three terms of the Taylor expansion for the evaluation of the position of a
particle with mass m at time t and coordinate r (t) with velocity v (t) and experiencing a force
f (r, t). The method introduces the discrete-time variables r[n] = r(t[n]), v[n] = v(t[n]) and
f [n] = f (r[n], t[n]) and discrete time-step dt. [80]. The original form of the pSV method is:

r[n+ 1] = 2r[n]− r[n− 1] +
dt2

m
f [n], (6.16)

with the associated velocity calculated by the central difference:

v[n] =
r[n+ 1]− r[n− 1]

2dt
. (6.17)

This is also known as the implicit velocity. To determine the characteristic dynamic regimes and
critical damping of the pSV method, a velocity explicit scheme is needed [80]. Following [81], the
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velocity explicit scheme by Störmer is written as:

r̈[n] =
v[n+ 1]− v[n]

dt
=

r[n+ 1]− r[n]

dt
− r[n]− r[n− 1]

dt
dt

=
r[n+ 1]− 2r[n] + r[n− 1]

(dt)2 = f [n].

(6.18)
Equation (6.16) thus becomes:

r[n+ 1] = r[n] + v[n]dt+
dt2

m
f [n], (6.19)

where

v[n] =
r[n]− r[n− 1]

dt
. (6.20)

Figure 6.3 is a schematic representation of pSV, as derived by Störmer [81]. According to Hairer
et al. [81], this geometrically amounts to determining an interpolating parabola which, in the
mid-point, assumes the second derivative prescribed by mr̈ = f(r).

Figure 6.3: Schematic representation of the pSV method for the nth iteration.

6.2.2.1 Characteristic dynamic regimes

Here, we determine the relationship between the linear damping coefficient c and the damping
factor η for the damped harmonic oscillator. Moreover, we derive and study the characteristic
dynamic regimes and critical damping coefficient in the limit dt→ 0+. In this limit, the analytical
expression for pSV should be equal to the homogeneous solution of the differential equation of the
damped harmonic oscillator Eq. (6.8). Following Eq. (6.2), the equation of motion is written as:

mr̈ = f (r, t)− cv. (6.21)

The mass m is unity. Eq. (6.21) is integrated over a time increment dt between two times t[n] and
t[n+ 1] = t[n] + dt: ∫ t[n+1]

t[n]
r̈dt′ =

∫ t[n+1]

t[n]
f (r, t) dt′ − c

∫ t[n+1]

t[n]
vdt′. (6.22)

The integral of the force f is approximated as:

v[n+ 1]− v[n] = dtf [n]− c
∫ t[n+1]

t[n]
vdt′. (6.23)
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Equation (6.23) is rewritten in terms of r as:

r[n+ 1] = 2r[n]− r[n− 1] + dt2f [n]− cdt
∫ t[n+1]

t[n]
vdt′. (6.24)

The integral of the velocity v is approximated as (dt)v[n], because the velocity over r(t[n+1])−r([n])
is determined by v[n]dt for f(t[n]]) = 0 in Eq. (6.19). Following Eqs. (6.3), (6.19) and (6.19), we
rewrite Eq. (6.23) in the velocity explicit form as:

v[n+ 1] = dtf [n] + (1− cdt) v[n], (6.25)

and we determine η as:

η ≡ c

dt
. (6.26)

In the limit dt → 0+, the damping factor becomes infinity large. Note that this can be perceived
as counterintuitive. However, substituting Eq. (6.26) in Eq. (6.3), we can rewrite F̃ d[n] as:

F̃ d[n] = F̃ el[n] + F̃ ext + c (v[n]) . (6.27)

This is the velocity explicit pSV scheme of the damping force F̃ d[n]. Moreover, note that the
critical damping coefficient ccr for the pSV has a higher-order dt dependency that can not be
correctly represented by writing (6.26) in terms of Eqs. (6.10) for a finite discrete time-step dt. In
this work, we derive this higher-order dt dependency, and to this end we write the velocity explicit
pSV method (i.e., Eqs. (6.24) and (6.25)) as a matrix difference equation:[

r[n+ 1]
v[n+ 1]

]
= V

[
r[n]
v[n]

]
, (6.28)

where V is the difference matrix. Following [81] and [80], the characteristic dynamic regimes of
the velocity Verlet methods applied to the damped harmonic oscillator are determined by the
eigenvalues Λ± of the matrix V:

Λ+ = Λ− if critically damped;

Λ± is complex if under damped;

Λ± is real and Λ± < 1 if over-damped;

||Λ±|| ≥ 1 if unstable.

(6.29)

If the modulus of the eigenvalues is greater than one, repeated application of the linear transforma-
tion of the recursive scheme of a Verlet method will lead to exponential growth of the variations and
the periodic solution is unstable [85]. Here, variations indicate the error in the linear approximation
of the interpolation parabola and the original parabola (See Fig. 6.3). The corresponding formal
Verlet stability limit determines the maximum discrete time-step dt for a given spring constant κ.
The following derivation (Eqs. (6.30) to (6.33)) show how the characteristic regimes are derived.
In Sec. 6.4 this derivation is used to approximate the equilibrium time teq. The characteristic
dynamic regimes are determined by deriving the closed continuous expression r(t).
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The position r[n] is written as:

r[n] =

2d∑
i=1

AiΛ
n
i , (6.30)

where Ai are real valued constants and Λi = 1 +
ξi
2d

are the eigenvalues of V. Equation (6.30) is

written in a series expression with binomial coefficients:

r[n] =

2d∑
i=1

Ai

∞∑
k=0

(
n

k

)(
ξi
2d

)k
, | ξi

2d
| < 1. (6.31)

The binomial
(
n
k

)
is equal to the fraction

nk

k!
and the binomial series is evaluated as:

∞∑
k=0

(
ξi
2d

)k
nk

k!
= e

(
n
ξi
2d

)
. (6.32)

By inserting
t

dt
= n, the closed continuous expression in the limit dt→ 0+ of the trajectory r(t) is

written as:

r (t) = lim
dt→0+

2d∑
i=1

Aie

(
ξi
2d

t

dt

)
=

2d∑
i=1

Aie
λit. (6.33)

To determine the characteristic dynamic regimes and the critical linear damping coefficient of a
damped harmonic oscillator solved by the pSV method, its geometric integration scheme is applied
to the damped harmonic oscillator with mass m and spring constant κ. Here, Fel[n] (u[n]) = −κu[n]
represents a linear Hooke’s spring with linear spring constant κ > 0. By inserting Eq. (6.19) in
Eq. (6.28) matrix V becomes:

V =

[
1− κ (dt)2 dt− η (dt)3

−κ (dt) 1− η (dt)2

]
. (6.34)

The matrix V has the eigenvalues Λ±:

Λ± =
2− dt2 (η + κ)±

√
dt4 (η + κ)2 − 4κ (dt)2

2
. (6.35)

The eigenvalues Λ± of the matrix V written in terms of κ and c thus become:

Λ± =
2− dt (c+ κdt)±

√
dt2 (c+ κdt)2 − 4κ (dt)2

2
. (6.36)

As expected, in the limit dt → 0+ the eigenvalues λi (Eq. (6.33)) are equal to the eigenvalues of
the homogeneous solution of a damped harmonic oscillator (Eq. (6.8)). The characteristic dynamic
regimes of the pSV method are:

ξ− = ξ+ if critically damped;

ξ± is complex if under-damped;

ξ± is real and ξ± < 0 if over-damped;

ξ± < −2 or ξ± ≥ 0 if unstable.

(6.37)
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The dynamic regimes in Eq. (6.29) are equal to the dynamic regimes in Eq. (6.37). The formal
stability limit can be rewritten as κdt2 ≤ 4 for the harmonic oscillator. This is done similarly in this
work, because the stability of a geometric numerical integration method is traditionally evaluated
with c = 0. The characteristic dynamic regime in this work are determined by the dependencies in
Eq. (6.29).
The numerical critical damping factor ηcr is expected to deviate from the analytical expression ζ = 1
for larger values of the discrete time-steps dt. The calculated relationship between damping factor
η and damping coefficient c (Eq. (6.26)) scales linearly with the discrete time-step dt. Following
[80], we write the Verlet-type method by Grønbech-Jensen as:

r[n+ 1] = r[n] + bdtv[n] +
bdt2

2m
f [n];

v[n+ 1] = av[n] +
dt

2m
(af [n] + f [n+ 1]) ,

(6.38)

where,

a ≡
1− cdt

2m

1 +
cdt

2m

, b ≡ 1

1 +
cdt

2m

. (6.39)

The characteristic dynamic regime of the Verlet-type method by Grønbech-Jensen should be better
predicted by ζ = 1 for large discrete time-steps dt then by pSV. The comparison with the Verlet-type
method by Grønbech-Jensen [80] is made because of their derivation of the characteristic dynamic
regimes of a damped harmonic oscillator with a Verlet-method comparable to the pSV method.
To evaluate the characteristic dynamic regimes of a damped harmonic oscillator solved by a Verlet-
type method, the damping ratio ζ is written in terms of the two characteristic parameters, κdt2 and
cdt. By multiplying the numerator and denominator of the damping ratio ζ with the dimensionless
discretization time dt, the damping ratio between the characteristic parameters can be determined
as:

ζV =
cdt

2
√
κdt2

(6.40)

When the ratio ζV is unity, it represents the ratio between the characteristic parameters κdt2 and
ccrdt. The ratio ζV defines the characteristic dynamic regimes of a harmonic oscillator, which are
independent of the dimensionless discretization time dt, but this form allows for the comparison
with the characteristic dynamic regimes of a damped harmonic oscillator solved by the Verlet-type
methods.
Figure 6.4 displays the characteristic dynamic regimes, as a function of the two characteristic
parameters κdt2 and cdt for the pSV method and the Verlet-type method by Grønbech-Jensen [80].
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Figure 6.4: Sketch of the characteristic parameter cdt as a function of the characteristic param-
eter κdt2 corresponding to the homogeneous solution of the differential equation of a damped
harmonic oscillator (red line), the pSV method (black lines) and the Verlet-type method by
Grønbech-Jensen [80] (blue lines). Solid line displays the boundary between characteristic dynamic
regimes under-damped and over-damped regime represented by A and B, dashed lines display the
boundaries between the characteristic dynamic over-damped and unstable regime represented by
B and C. The vertical dashed black line and vertical dashed blue line represent the formal Verlet
stability limit κdt2 = 4.

The characteristic dynamic regimes obtained for κdt2 << 1 are the same for all methods. The
difference in accumulated error is the reason for the differences in characteristic dynamic regimes
between the two Verlet-type methods (Fig. 6.4). The critical damping factor and the characteristic
dynamic regimes of a harmonic oscillator solved by the pSV method is only approximated by the
damping ratio ζ = 1, for κdt2 << 1. This is expected because of the scaling of the finite time
error by (dt2). Hence, the damped harmonic oscillator calculated with the pSV method is critically
damped when the eigenvalues of the matrix V are real and equal (i.e., Λ− = Λ+). The critical
damping factor ηcr is determined by setting the part below the square root of the eigenvalues Λ±
of the matrix V equal to zero. The critical damping factor of the pSV method:

ηcr = 2
√
κ

1

dt
− κ. (6.41)

Using Eq. (6.26), equation (6.41) is rewritten in terms of the critical damping coefficient:

ccr = 2
√
κ− κdt. (6.42)

As to be expected, in the limit ∆t→ 0+ Eq. (6.42) is equal to Eq. (6.10).
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The critical damping coefficient ccr and critical damping factor ηcr as a function of the discrete
time-step dt and the linear constant κ are shown in Fig. 6.5.

dt
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Figure 6.5: Contour plots of the critical damping (a) coefficient ccr and (b) factor ηcr as a function
of the discrete time-step dt and the linear constant κ for pSV with zones (1), (2) and (3).

In Fig. 6.5a, we observe three zones: (1) The critical damping coefficient ccr increases with in-
creasing linear constant κ for a given discrete time-step; (2) The critical damping coefficient ccr

in decreases with increasing linear constant κ for a given discrete time-step; And, (3) unstable
solution. Therefore, we conclude that for a given discrete time-step dt damped harmonic oscillators
with different linear constants κ have the same critical damping coefficient ccr for pSV. Moreover,
this again confirms that due to the dependency of the critical damping factor on dt in Eq. (6.41),
the critical damping factor ηcr could not be known a priori from Eqs. (6.10) and (6.26), except for
κdt2 << 1. Considering Fig. 6.5b, we observe the same behavior. The ratio φ between the two
linear force constants κa and κb for a constant critical damping factor ηcr is:

φ =
κa

κb
=

dt2κa − 4dt
√
κa + 4

dt2κa
. (6.43)

We observe in Fig. 6.5b also the three aforementioned zones. The border between zone (1) and
zone (2) is determined by setting the ratio φ = 1, i.e. κ ≤ dt−2. The border between zone (2)
and zone (3) is indicated by the formal Verlet stability limit, i.e. κ ≤ 4dt−2. Note that for the
remainder of this work, we assume that the discrete time-step is chosen such that dt ≤ 1/

√
κ.
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6.2.2.2 Equilibrium time

The analytical expression to approximate the equilibrium time of the pSV method has not been
derived or reported up till now. To determine the analytical expression of the equilibrium time
dependency of the harmonic oscillator solved by the pSV-type method, the closed expression of the
amplitude of the trajectory of the center-of-mass of the solved harmonic oscillator is used. Equation
(6.30) is written as:

ah[t[n]] =

2d∑
i=1

Aie

−Re{ξi}
2d

t[n]

dt


, (6.44)

where ah[t] is the amplitude at time t[n]. The inverse of the real part of the closed expression of the
eigenvalues of the damped harmonic oscillator with mass m = 1 is the exponential time constant:

τ =
1

−Re{ ξ

2dt
}

=
2

dt (η + κ)
=

2

c+ (dt)κ
. (6.45)

Asymptotic analysis shows that the exponential time constant becomes proportional to the in-
verse of the linear damping constant, in the small discretization time limit (dt → 0+). This
proportionality is in correspondence with the results of the homogeneous solution of the dif-
ferential equation of an under-damped harmonic oscillator (Sec. 6.2.1 and Eq. (6.15)). This
is as expected and corresponds to the results for the characteristic dynamic regime studied in
the limit (dt→ 0+) (Eq. (6.29)).
Similar to Sec. 6.2.1, the equilibrium time of the critically damped harmonic oscillator solved by
the pSV method is written as:

teq(c = ccr) ∝
1√
κ
. (6.46)

The equilibrium time is independent of the discretization time dt. This independence of the equi-
librium time on the discretization time dt has not been reported before. The independence of the
equilibrium time to the discrete time-step dt could be explained by the good conservation of oscil-
latory energy for a harmonic oscillator over long times even when κdt2 >> 0 [81], but within the
formal Verlet stability limit. The magnitude of the amplitude will be independent of the discrete
time-step dt. Hence, the equilibrium time will be independent of the discrete time-step dt.
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6.2.3 Coupling between multiple degrees of freedom

The number of DOF d of a system is the product of the number of masses in the system and
the number of possible directions of motion of each mass [79]. The homogeneous solution can be
extended to multi-DOF systems. The solution of the equation of motion of a d DOF system has d
eigenvalue pairs, corresponding to d natural frequencies. Only during free vibration at one of these
d natural frequencies, all centers of mass move sinusoidally with the same natural frequency. This
sinusoidal motion is called a principal mode (i.e., also known as normal mode, vibrational mode
and natural mode) [79]. A mode is the standing wave state of excitation, where all centers-of-mass
move sinusoidally with a fixed frequency.
The normal and tangential displacement of the surface in GFMD dynamics are coupled via the in-
verse Green’s function. We treat the dynamics of the GFMD simulation as a system of independent
damped harmonic oscillators with coupling of the normal and tangential displacement depending
on the material’s properties and geometry of the elastic body. The material’s properties and elastic
body geometry for which there is no dynamic coupling, are obtained by deriving the equation of
motion of the elastic body. We assume that no body forces are exerted. The equilibrium condition
∂ασαβ(r) = 0, where σαβ(r) is the stress at the point r inside the body and ∂α ≡ ∂/∂rα. The
equilibrium condition in Voigt notation is written as:

[C11∂
2
1 + C44∂

2
3 ]u1 + (C44 + C12)∂1∂3u3 = 0;

[C11∂
2
3 + C44∂

2
1 ]u3 + (C44 + C12)∂3∂1u1 = 0,

(6.47)

where Cij denote the coefficients of the elastic tensor:

C11 =
E (1− ν)

(1 + ν) (1− 2ν)
;

C12 =
Eν

(1 + ν) (1− 2ν)
;

C44 =
C11 − C12

2
=

E

2 (1 + ν)
.

(6.48)

The equation of motion is written as:

∂ασαβ + F = ρü, (6.49)

where ü = (∂ttu1, ∂ttu3) is the acceleration, with time t and ρ is the material mass density. Using
s = C44/C11, Eq. (6.49) is written in matrix notation as:[

ü1

ü3

]
=
C11

ρ

[
∂2

1 + s∂2
3 (1− s)∂3∂1

(1− s)∂1∂3 ∂2
3 + s∂2

1

] [
u1

u3

]
. (6.50)

Using s = C44/C11, the relationship between the Poisson’s ratio ν and s is written as:

s =
1

2(ν − 1)
+ 1, (6.51)

The Born criterion [45] gives 0 ≤ s ≤ 1 for plane strain conditions. In Fig. 6.6 s is plotted as a
function of the Poisson’s ratio ν.
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Figure 6.6: Plot of s as a function of the Poisson’s ratio ν.

The Poisson’s ratio ranges from −1 to 0.5 for engineering materials [41], and s approaches unity
asymptotically as ν goes to −∞. Meta-materials have a negative Poisson’s ratio ν. In this work
we are interested in metals. Metals have a Poisson’s ratio 0.2 ≤ ν ≤ 0.45 [41]. However, for com-
pleteness, we show the dependency of ηcr on s > 0.5 to.
The mass matrix of a static coupled system is non-diagonal and the damping coefficient ma-
trix and/or the spring coefficient matrix of a dynamically coupled system are non-diagonal. A
multi-DOF system is weakly coupled when the off-diagonal elements of the afore-mentioned matrix
are small compared with its diagonal elements. Equation (6.50) is dynamically uncoupled for two
cases:

• s = 1;

• ∂3∂1u3 = ∂1∂3u1 = 0.

For s = 0 (i.e., v = 0.5) the off-diagonal elements of the matrix in Eq. (6.50) are non-zero. Hence,
the equation of motion is dynamically coupled. When s increases the magnitude of the diagonal
elements of the matrix in Eq. (6.50) increase while the magnitude of the off-diagonal elements
decrease. Hence, for an increasing s the dynamic coupling becomes weaker.
Superposition of the homogeneous solutions of principal modes of the two directions is only valid if
there is no static and dynamic coupling. However, the homogeneous solution of a weakly coupled
multi-DOF system can be approximated by the superposition of the homogeneous solutions of the
principal modes [86]. Moreover, since the high frequency modes die out faster than low frequency
modes for an impulse response, the large time scale solution of a multi-DOF system can be approx-
imated by its lowest frequency mode. The mode with the lowest natural frequency is mostly, but
not necessarily, the center-of-mass mode. The error in the approximation increases as s decreases.
Hence, the homogeneous solution of the surface displacements in GMFD-simulations cannot be
known a-priori.
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6.3 Damped dynamics in Green’s function molecular dynamics

Derivation of the analytical expression for the critical damping factor ηcr in GFMD simulations is
based on the following concepts:
The equation of motion in real space can be solved by superposition of the independent solutions
of the equation of motion in Fourier space corresponding to a wave number q. Every displacement
mode ũ(q) of a system in Fourier space corresponds to a principal dynamic mode in real space [87].
Therefore, also in Fourier space coupling between the normal and tangential modes depends on
the elastic properties of the substrate. In the following, modes in real-space will be referred to
as dynamic modes. Modes in Fourier space will be called principal modes and the first principal
mode is called the center-of-mass mode. The displacement of the center-of-mass modes correspond
to the uniform displacement of the surface. The change in volume of the substrate is determined
by the displacement of the center-of-mass mode in normal direction. A local displacement of the
surface with zero volume change of the substrate can be viewed as a combination of the motion of
the center-of-mass mode in tangential direction and all principal modes.
The Newton equation in GFMD dynamics is written as:

m
d2ũ (q, t)

dt2
+ c

dũ (q, t)

dt
+ G̃ (q)−1 ũ (q, t) = −F̃ ext (q, t)− F̃ if (q, t) , (6.52)

with homogeneous equation:

m
d2ũ (q, t)

dt2
+ c

dũ (q, t)

dt
+ G̃ (q)−1 ũ (q, t) = 0. (6.53)

The critical damping factor ηcr is chosen equal for all wave numbers q, such that for that particular
damping factor all modes are critically damped and/or under-damped. we will see that the slowest
mode is either the center-of-mass mode or the first principal mode.
The velocity explicit scheme of the damped pSV method for a traction prescribed GFMD simulation
is now derived. The damped force of a single principal mode corresponding to a wave number q is:

F̃ d[n] = F̃ el[n] + η (ũ[n− 1]− ũ[n]) . (6.54)

Using Eq. (6.19), we give the explicit velocity scheme of a single principal mode corresponding to
a wave number q as:

ũ[n+ 1] = 2ũ[n]− ũ[n− 1] + F̃ el[n] (∆t)2 + η (∆t)2 (ũ[n− 1]− ũ[n]) ; (6.55a)

ũ[n+ 1]− ũ[n] = ũ[n]− ũ[n− 1] + F̃ el[n] (∆t)2 + η (∆t)2 (ũ[n− 1]− ũ[n]) ; (6.55b)

(∆t) ṽ[n+ 1] = ṽ[n] (∆t) + F̃ el[n] (∆t)2 − η (∆t)3 ṽ[n]; (6.55c)

ṽ[n+ 1] = F̃ el[n] (∆t) + ṽ[n]
(

1− η (∆t)2
)
, (6.55d)

where ṽ = (ṽ1, ṽ3) is the velocity of the surface displacement of a mode corresponding to wave
number q. The explicit position scheme of a single principal mode corresponding to a wave number
q is:

ũ[n+ 1] = ũ[n] + F̃ el[n] (∆t)2 + ṽ[n]
(

(∆t)− η (∆t)3
)
. (6.56)

Following Venugopalan et al. [3], we write the areal elastic energy vel as:

vel =
∑
q

q

2

[
ũ∗1(q), ũ∗3(q)

] [M11(qzm) −iM13(qzm)
iM13(qzm) M33(qzm)

] [
ũ1(q)
ũ3(q)

]
, (6.57)
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with

M11(q) = (1− r)cosh(qzm)sinh(qzm)− r(qzm)

‖ f(zm) ‖
C11;

M13(q) =

(
1− r
1 + r

)
(1− r)sinh2(qzm)− 2r2(qzm)2

‖ f(zm) ‖
C11;

M33(q) = (1− r)cosh(qzm)sinh(qzm) + r(qzm)

‖ f(zm) ‖
C11,

(6.58)

where

r =
1− s
1 + s

, (6.59)

and

‖ f(qzm) ‖= cosh2(qzm)− (rqzm)2 − 1. (6.60)

The stiffness matrix is not diagonal (Eq. (6.57)), so there is coupling. Similar to Eq. (6.35), the
matrix notation of the velocity explicit scheme for a single mode corresponding to wave number q
is:

ũ[n+ 1] = Vũ[n] (6.61)

where

V =



1− 2πkM11

Lx
∆t2 −−i2πkM13

Lx
∆t2 ∆t− η1 (∆t)3 0

− i2πkM13

Lx
∆t2 1− 2πkM33

Lx
∆t2 0 ∆t− η3 (∆t)3

−2πkM11

Lx
∆t −−i2πkM13

Lx
∆t 1− η1 (∆t)2 0

− i2πkM13

Lx
∆t −2πkM33

Lx
∆t 0 1− η3 (∆t)2


. (6.62)

Due to coupling the normal component and the tangential component of the displacement can no
longer be independently determined, except for uniform displacement of a finite slab, a semi-infinite
solid with the Poisson’s ratio ν = 0.5 and zero normal traction or frictionless contact. We present
these limiting cases first.

6.3.1 Uniform displacement of a finite slab

The result of the asymptotic analysis of the Mij(qzm) in the short wave vectors limit is:

qM11 (zm << 1) =
C44

zm
; (6.63a)

qM13 (zm << 1) = 0; (6.63b)

qM33 (zm << 1) =
C11

zm
, (6.63c)

so the areal elastic energy related to the center-of-mass displacements is:

vel (q = 0) =
C44

2zm
ũ2

1 (0) +
C11

2zm
ũ2

3 (0) . (6.64)
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The matrix notation for the equation of motion for the center-of-mass modes are equal to the
solution for the damped harmonic oscillator, i.e., Eqs. (6.35) and (6.36). The critical damping
factor for the center-of-mass displacement thus becomes:

η1,cr = 2
√
κ1

1

∆t
− κ1;

η3,cr = 2
√
κ3

1

∆t
− κ3,

(6.65)

where

κ1 (q = 0, zm) =
C44

zm
=

E

2aLx (1 + ν)
;

κ3 (q = 0, zm) =
C11

zm
=

E(ν − 1)

aLx (2ν2 + ν − 1)
.

(6.66)

The linear force constant κ3(q = 0, zm) is always larger than or equal to κ1(q = 0, zm), because s
ranges from 0 to 1. In the limit where s approaches zero, the linear force constant κ3 goes to infinity
which results in undamped oscillation of the corresponding center-of-mass mode in normal direction.
The normalized linear force constants κ(q = 0, zm)Lx/C44 as a function of s and the aspect ratio a
is presented in Fig. 6.7. As reference the normalized linear force constants κ(q = 0, zm)Lx/E as a
function of the Poisson’s ratio ν and the aspect ratio a is also plotted
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Figure 6.7: Contour plots of the normalized linear force constants (a) κ1Lx/C44 and (b) κ3Lx/C44

as a function of s and the aspect ratio a, and (c) κ1Lx/E and (d) κ3Lx/E as a function of the
Poisson’s ratio ν and the aspect ratio a for the center-of-mass mode, for uniform displacement in
normal and tangential direction.

As to be expected, for all linear force constants we observe a dependency on the aspect ratio a. Note
that only the linear force constant of the center-of-mass mode in tangential direction is independent
of s, and the linear force constant κ in one of the two directions can be the smallest force constant
depending only on s and the aspect ratio a. A change of the elastic modulus E and the periodicity
Lx or the Voigt constant C44 and the periodicity Lx result in an out of plane shift of the linear
force constant κ as depicted in Fig. 6.7. Therefore, the critical damping factor increases when
the coefficient of the elastic modulus E increases, the width Lx decreases and the aspect ratio a
decreases. In the limit s → 1 the linear force constants are equal. In Fig. 6.7 it is seen that the
linear force constant of the normal center-of-mass mode κ3(q = 0, zm) increases for an increase
in Poisson’s ratio ν. It is well known that the only mode necessary to change the volume is the
normal center-of-mass mode, i.e. ũ3(k = 0) and the change in volume decreases as the Poisson’s
ratio increases. Hence, for an increasing Poisson’s ratio ν the elastic restoring force for a finite
displacement of normal center-of-mass mode increases. The linear force constant is proportional to
the elastic restoring force. It is also well known that for a decreasing Poisson’s ratio ν the stress
increases for a given elastic modulus and strain. Hence, both linear force constants increase for a
decreasing Poisson’s ratio ν. It is observed that κ1(0, zm, Lx, E, ν) ≤ κ2(0, zm, Lx, E, ν). Therefore,
it can be concluded that the center-of-mass mode in tangential direction is the lowest frequency
mode of both center-of-mass modes.
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6.3.2 Normal displacement of an incompressible semi-infinite solid

Considering only the normal component of the displacement [5], the areal elastic energy is:

vel =
E∗

4

∑
q

q|ũ(q)|2, (6.67)

and the elastic force corresponding to the wave number q is:

F̃ [n] = ∇u[n]vel = −qE
∗

2
ũ(n). (6.68)

Following Eqs. (6.35) and (6.36), we give the critical damping factor as:

ηcr = 2
√
κ

1

∆t
− κ, (6.69)

with

κ (k, Lx, E
∗) =

πkE∗

Lx
, (6.70)

where κ is the linear force constant similar to the linear spring constant for the harmonic oscillator.
The first principal mode (i.e. k = 1) has the smallest linear force constant compared to higher
modes. Therefore, the critical damping factor for one DOF corresponds to the critical damping
factor of the first principal mode. Figure 6.8 depicts the critical damping factor ηcr as a function
of the effective modulus E∗, the width Lx and the discrete time-step ∆t with ∆t = 1/4 for (a) and
(b) , Lx = 10 µm for (a) and (c), and E∗ = 70 GPa for (b) and (c).
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Figure 6.8: (a) Plot of the critical damping factor ηcr as a function of the effective modulus E∗. (b)
Plot of the critical damping factor ηcr as a function of the width Lx. (c) Plot of the logarithm of
the critical damping factor ηcr as a function of the discrete time-step ∆t for normal displacement
of incompressible semi-infinite solid.

As to be expected, the critical damping factor increases when the effective modulus E∗ increases,
and decreases with increasing width Lx. Note, that for the remainder of this section, we do not show
plots of the dependency of the critical damping factor ηcr on the discrete time-step ∆t. Instead, we
show only the linear force constant κ, and with the aid of Fig. 6.5 and Eq. (6.41) the corresponding
critical damping factor ηcr can be determined.

6.3.3 Normal displacement of an incompressible finite slab

Following [88], the elastic force for an incompressible slab of height zm corresponding to the wave
number q is:

F̃ [n] = −qE
∗f(qzm)

2
ũ(n), (6.71)

with

f(qzm) =
cosh (2qzm) + 2 (qzm)2 + 1

sinh (2qzm)− 2qzm
, (6.72)

where f(qzm) is the correction factor for an incompressible finite slab with u3(0, x) = 0 and zero
tangential traction. Contrary to the previously discussed case of the semi-infinite solid, the critical
damping factor ηcr is expected to depend on the aspect ratio a. In the limit q → 0, i.e., short wave
vectors, f(q) approaches infinity. The limit q → 0 corresponds to a uniform compression in normal
direction of an incompressible solid. In the limit q → ∞, i.e., large wave vectors, the elastic force
corresponding to wave number q is equal to that acting on the semi-infinite solid (Eq. (6.68)).
Following Eqs. (6.35) and (6.36), we give the critical damping factor as:

ηcr = 2
√
κ

1

∆t
− κ, (6.73)

where

κ (k, a, Lx, E
∗) =

πkE∗
(
8π2a2k2 + cosh(4πak) + 1

)
Lx(−4πak + sinh(4πak))

. (6.74)

121



For a given aspect ratio a, periodicity Lx and effective modulus E∗ the first principal mode has the
smallest linear force constant. The normalized linear force constants κ(k = 1)Lx/E

∗ as a function
the aspect ratio a is plotted in Fig. 6.9.
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Figure 6.9: Plot of the normalized linear force constant κ(1)Lx/E
∗ as a function of the aspect ratio

a for normal displacement of an incompressible finite slab.

As to be expected, the linear force constant increases for a decrease in aspect ratio a. Therefore the
critical damping factor ηcr increases. When a >> 2 the linear force constant becomes independent
of the aspect ratio a. This is in agreement with the work by Carbone et al. [88] in which the effect
of the thickness of the slab for zm >> 2π/q becomes negligible.

6.3.4 A finite slab with generic Poisson’s ratio loaded in one direction

Following [3] for zero tangential (or normal) stress, the elastic energy (Eq. (6.57)) is minimized
with respect to the lateral (or normal) displacement and is:

vel =
q

2

{
M11 (qzm)− M2

13 (qzm)

M33 (qzm)

}
|ũ1(q)|2 (zero normal traction);

vel =
q

2

{
M33 (qzm)− M2

13 (qzm)

M11 (qzm)

}
|ũ3(q)|2 (frictionless contact).

(6.75)

The matrix notation of the velocity explicit scheme for a single principal mode with loading in
normal or tangential direction collapses to the solution for one the damped harmonic oscillator i.e.,
Eqs. (6.35) and (6.36). The critical damping factor is:

η1,cr =2
√
κ1 (qzm)

1

∆t
− κ1 (qzm) (zero normal traction);

η3,cr =2
√
κ3 (qzm)

1

∆t
− κ3 (qzm) (frictionless contact),

(6.76)

where

κ1 (qzm) =

{
M11 (qzm)− M2

13 (qzm)

M33 (qzm)

}
q;

κ3 (qzm) =

{
M33 (qzm)− M2

13 (qzm)

M11 (qzm)

}
q.

(6.77)
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To evaluate the critical damping factor the linear force constants κ1(qzm) and κ3(qzm) in Eq. (6.77),
we rewrite them as:

κ1 (k, a, Lx, C44, s) =
4πC44k

(
8π2a2k2(s− 1)2 −

(
s2 − 1

)
cosh(4πak) + s2 + 1

)
Lx (−4πak(s− 1) + (s+ 1) sinh(4πak))

;

κ3 (k, a, Lx, C44, s) =
4πC44k

(
8π2a2k2(s− 1)2 −

(
s2 − 1

)
cosh(4πak) + s2 + 1

)
Lx (4πak(s− 1) + (s+ 1) sinh(4πak))

.

(6.78)

For a given aspect ratio a, periodic substrate Lx, s and elastic modulus C44 the first princi-
pal mode has the smallest linear force constant compared to higher modes. As to be expected
κ3 (k, a, Lx, C44, s) is equal to the linear force constant for an incompressible normal displacement
finite slab, in the limit s→ 0 (see Eq. (6.74)). The contour plots of the normalized κ1Lx/C44 and
κ3Lx/C44 as a function of s and the aspect ratio a for wave index k = 1 are shown in Fig. 6.10.
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Figure 6.10: Contour plots of the normalized linear force constant (a) κ1Lx/C44 and (b) κ3Lx/C44

as a function of s and the aspect ratio a with wave index k = 1 for (a) zero normal traction and
(b) frictionless contact.

The critical damping factor increases when the elastic modulus C44 increases, the Poisson’s ra-
tio ν increases and the aspect ratio a decreases. The ratio of the linear force constants of the
center-of-mass mode and higher principal modes (i.e., κ(k)/κ(k = 0)) is evaluated over three lim-
its: s = 1

2 (i.e., ν = 0), s = 0 (i.e., ν = 1
2) and k = 1 (i.e., first principal mode).

In the first limit, s = 1
2 :

κ1 (k, a)

κ1 (k = 0, a)
=

2πka
(
5 + 8ka2π2 + 3 cosh (4πka)

)
4πka+ 3 sinh (4πka)

; (zero normal traction)

κ3 (k, a)

κ3 (k = 0, a)
=
πka

(
5 + 8ka2π2 + 3 cosh (4πka)

)
−4πka+ 3 sinh (4πka)

. (frictionless contact)

(6.79)

In the second limit, s = 0:

κ1 (k, a)

κ1 (k = 0, a)
=

4πka
(
1 + 8ka2π2 + cosh (4πka)

)
(4πka+ sinh (4πka))

; (zero normal traction)

κ3 (k, a)

κ3 (k = 0, a)
→ 0. (frictionless contact)

(6.80)
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The results for all three limits combined (i.e., third limit, k = 1) are plotted in Fig. 6.11.
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Figure 6.11: Plot of the ratio between the linear force constant of the first principal mode κ (k = 1, a)
and the linear force constant of the center-of-mass mode κ (k = 0, a) as a function of the aspect
ratio a, for the case of zero normal traction (frictionless contact) in two limits: s = 1

2 (i.e., ν = 0),
s = 0 (i.e., ν = 1

2).

Asymptotic analysis, for the single loading direction, shows that the ratio of linear force constants
of the center-of-mass mode and higher principal modes, in the first limit (i.e., s = 1

2) and the small
aspect ratio limit (i.e. a << 0.1) becomes one. This corresponds to the short wave vector limit
Eq. (6.63). In the second limit (i.e., s = 0) this is only true for zero normal traction. Considering
frictionless contact, the smallest linear force constant depends on both the aspect ratio a and s.
The linear force constant for frictionless contact and s = 0 is:

κ3 (k, a, Lx, C44) =
4πC44ka

(
1 + 8ka2π2 + 4 cosh (4πka)

)
Lx (−4πka+ 3 sinh (4πka))

. (6.81)

The critical damping factor in GFMD simulations is the critical damping factor of the center-of-mass
if the ratio of linear force constants is larger than one. If the ratio of linear force constants is smaller
than one, the critical damping factor in GFMD simulations is the critical damping factor of the
first principal mode.
To determine the aspect ratio a and s for which the ratio of linear force constants is one, the
expression of the linear force constants of the center-of-mass mode and first principal mode are set
equal to each other and a function f(a, s) is derived. This function f(a, s) is:

f1(a, s) =
4π
(
8π2a2(s− 1)2 −

(
s2 − 1

)
cosh(4πa) + s2 + 1

)
(s+ 1) sinh(4πa)− 4πa(s− 1)

− 1

a
;

f3(a, s) =
4π
(
8π2a2(s− 1)2 −

(
s2 − 1

)
cosh(4πa) + s2 + 1

)
4πa(s− 1) + (s+ 1) sinh(4πa)

− 1

as
.

(6.82)

The values of aspect ratio a and s for which the ratio of linear force constants is one are obtained
by setting f(a, s) equal to zero.
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The solid curve in Fig. 6.12 indicates the values of the aspect ratio a and s for which the critical
damping factor of the GFMD simulation changes from the critical damping factor of the first
principal mode to the critical damping factor of the center-of-mass mode, for an increase in s.
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Figure 6.12: Regimes of smallest linear force constant as function of the aspect ratio a and s for a
single loading direction for zero normal traction f1(s, a) and frictionless contact f3(s, a). Regime
κi(k=1,a,s)
κi(k=0,a,s) < 1 (A). Regime κi(k=1,a,s)

κi(k=0,a,s) > 1 (B).

For an increasing s from s = 0 to s = 0.5 the smallest linear force constant for frictionless contact
switches from the first principal mode to the center-of-mass mode, and it switches back to the first
principal mode for s ≥ 0.5. It is well known that when s decreases from 0.5 to 0 (i.e., ν increases
from 0 to 0.5) the substrate becomes incompressible. Therefore, the linear force constant of the
center-of-mass mode in normal direction increases. In the limit a → 0+ for the Poisson’s ratio
ν = 0.25 we find f3(s, a) = 0. In this case, the resistance to compression equals the resistance
to transverse contraction [41]. As the aspect ratio a increases and for the Poisson’s ratio remains
ν = 0.25, the effective stiffness of the finite slab decreases, hence the center-of-mass mode becomes
the lowest frequency mode. For the uniform displacement of the surface in normal direction when
s > 0.5 the linear force constant of the center-of-mass mode becomes larger than the linear force
constant of the first principal mode because of the constraint in x-direction. The smallest linear
force constant for zero normal traction switches from the center-of-mass mode to the first principal
mode, because of the decrease in Poisson’s ratio (see Fig. 6.7c).
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Figure 6.13 displays the contour plots of the smallest linear force constant κcr as a function of s
and the aspect ratio a. Notice that which mode has the smallest linear force constant does not
dependent on the periodicity Lx and C44.
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Figure 6.13: Contour plot of the smallest normalized linear constant κcrLx/C44 as a function of s
and aspect ratio a for (a) zero normal traction and (b) frictionless contact.

The critical damping factor increases when the elastic modulus C44 increases, the width Lx, s and
the aspect ratio a decreases. It is observed that the critical damping factor for a single loading
direction in GFMD simulations is the critical damping factor of the center-of-mass mode or the
first principal mode for a given s and aspect ratio a. Therefore, it can be concluded that the lowest
frequency mode depends on the Poisson’s ratio ν and the aspect ratio a, but is independent of the
elastic modulus E and periodicity Lx. We end the analyses of the limiting cases without dynamic
coupling here, and the remainder of this section is dedicated to cases involving both normal and
tangential displacement.

6.3.5 Normal and tangential displacement of a semi-infinite solid

Following [3], equation (6.58) for the semi-infinite solid is:

M11 =
2

1 + s
C44;

M13 =
2s

1 + s
C44;

M33 =
2

1 + s
C44.

(6.83)

The critical damping factor is independent of the aspect ratio a. Contrary to the previously
discussed cases, the eigenvalues Λi of V are two sets of complex conjugates (i.e., Λ±,1 and Λ±,3).
The critical damping factor, which in previous sections was a scalar ηcr, now becomes a vector ηcr

for the remainder of this section. The critical damping factor ηcr is determined by setting the roots
of both sets of eigenvalues Λ±,i equal to zero. The resulting set of equations proved not to be readily
simplified without prior assumptions. It is assumed that η1 = η3, i.e., a directionally independent
damping factor. For two sets of complex conjugates, this results in two possible critical damping
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factors η1’,cr and η3’,cr. The critical damping factor ηi′,cr for which the root of one set of eigenvalues
is zero and for the other set part below the root is negative. The critical damping factor is given
by Eq. (6.69) with linear force constants κ1′ (k, Lx, C44, s) and κ3′ (k, Lx, C44, s). The linear force
constants are written as:

κ1′ (k, s, C44) =
4πkC44

Lx
=

2πkE

Lx(1 + ν)
;

κ3′ (k, s, C44) =
4πkC44(1− s)
Lx(s+ 1)

=
2πkE

Lx (−4ν2 − ν + 3)
.

(6.84)

For both linear force constants, the first principal mode has the smallest linear force constant
compared to higher modes for a given s. The ratio between linear force constant κ3′ and κ1′ is
written as:

κ1′

κ3′
=

1 + s

1− s
. (6.85)

The ratio is larger or equal to one for 0 ≤ s ≤ 1 and the logarithm of the ratio as a function of s is
shown in Fig. 6.14.
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Figure 6.14: Plot of the logarithm of the ratio between linear force constants κ3′/κ1′ as a function
of s for normal and tangential displacement of a semi-infinite solid.
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Figure 6.15 displays the plot of the normalized linear constant κi′(1)Lx/E as a function of the
Poisson’s ratio ν.
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Figure 6.15: Plot of the normalized linear constant κi′(1)Lx/E as a function of the Poisson’s ratio
ν for normal and tangential displacement of a semi-infinite solid.

The linear force constant κi′(k) approaches infinity asymptotically as the Poisson’s ratio ν goes
to -1. The critical damping factor increases when the elastic modulus C44 increases, the width
Lx decreases and the Poisson’s ratio ν increases. It can be concluded that in GFMD simulations,
considering both normal and tangential displacement for a semi-infinite solid, the critical damping
factor scalar is η3′ with κ3′ .
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This section is concluded by making the link of the results in the previous paragraph to the effective
modulus E∗ introduced in Eq. (6.70). κ1 (k, Lx, s, C44) and κ3 (k, Lx, s, C44) for a single loading
direction and semi-infinite solid (Eq. (6.78)) are written as:

κ1 (k, Lx, s, C44) =
4πkC44(1− s)

Lx
;

κ3 (k, Lx, s, C44) =
4πkC44(1− s)

Lx
.

(6.86)

For s = 0 (i.e., ν = 0.5), equation (6.84) is consistent with Eq. (6.86). The equation of motion in
the limit of a semi-infinite solid with Poisson’s ratio ν = 0.5 (i.e., rubber like material) is uncoupled.
This as expected because M13 = 0 for s = 0 (Eq. (6.83)) and corresponds to ∂3∂1u3 = ∂1∂3u1 = 0 in
Eq. (6.50). Following [3], equation (6.75) is consistent with Eq. (6.67) in the limit of a semi-infinite
solid and frictionless contact. This corresponds to Eq. (6.70) being consistent with Eqs. (6.86)
and (6.84) in the limit of a semi-infinite and Poisson’s ratio ν = 0.5. This is in agreement with the
GFMD approach by C. Campáña [4] in which the normal and tangential displacement are treated
independently for a semi-infinite solid with Poisson’s ratio ν ≈ 0.5.

6.3.6 Normal and tangential displacement of a finite slab

The critical damping factor for a finite height solid depends on the aspect ratio a (see Eq. 2.12). The
critical damping factor is determined similar to Sec. 6.3.5. The critical damping factor is given by
Eq. (6.69) with linear force constants κ1′ (k, Lx, a, C44, s) and κ3′ (k, Lx, a, C44, s). For both linear
force constants: The first principal mode has the smallest linear force constant compared to higher
modes for a given periodic substrate Lx, aspect ratio a, s and elastic modulus C44. The contour
plots of the normalized linear force constants κ1′Lx/C44 and κ3′Lx/C44 as a function of s and the
aspect ratio a for wave index k = 1 are shown in Fig. 6.16.
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Figure 6.16: Contour plots of the normalized (a) κ1′Lx/C44 and (b) κ3′Lx/C44 as a function of s
and the aspect ratio a for wave index k = 1 for normal and tangential displacement of a finite slab.
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The ratio of the linear force constants of the center-of-mass mode and higher principal modes is eval-
uated over three limits: s = 1

2 (i.e., ν = 0), s = 0 (i.e., ν = 1
2) and k = 1 (i.e., first principal mode).

In the first limit, s = 1
2 :

κ1′ (k, a)

κ1 (k = 0, a)
=8πak

(
b1(a, k)−

√
b2(a, k)

)
;

κ1′ (k, a)

κ3 (k = 0, a)
=4πak

(
b1(a, k −

√
b2(a, k)

)
;

κ3′ (k, a)

κ1 (k = 0, a)
=8πak

(
b1(a, k) +

√
b2(a, k)

)
;

κ3′ (k, a)

κ3 (k = 0, a)
=4πak

(
b1(a, k) +

√
b2(a, k)

)
,

(6.87)

where

b1(a, k) =
3 sinh(4πak)

−8π2a2k2 + 9 cosh(4πak)− 9
;

b2(a, k) =
−24π2a2k2 sinh2(2πak) + 16

(
π4a4k4 + π2a2k2

)
+ 9 sinh4(2πak)

(8π2a2k2 − 9 cosh(4πak) + 9)2 .

(6.88)

In the second limit, s = 0:

κ1′ (k, a)

κ1 (k = 0, a)
=4πak

(
sinh(4πak)

−8π2a2k2 + cosh(4πak)− 1
− 4πk

√
4π2a4k2 + a2

(−8π2a2k2 + cosh(4πak)− 1)2

)
;

κ1′ (k, a)

κ3 (k = 0, a)
→ 0;

κ3′ (k, a)

κ1 (k = 0, a)
=4πak

(
sinh(4πak)

−8π2a2k2 + cosh(4πak)− 1
+ 4πk

√
4π2a4k2 + a2

(−8π2a2k2 + cosh(4πak)− 1)2

)
;

κ3′ (k, a)

κ3 (k = 0, a)
→ 0.

(6.89)
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The results for all three limits combined (i.e., third limit, k = 1) are plotted in Fig. 6.17.
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Figure 6.17: Plot of the ratio between the linear force constant of the first principal mode κ (k = 1, a)
and the linear force constant of the center-of-mass mode κ (k = 0, a) as a function of the aspect
ratio a, for both sets of conjugate eigenvalues Λi in two limits: s = 1

2 (i.e., ν = 0), s = 0 (i.e.,
ν = 1

2).

Because the linear force constant κ3 (k = 0, a, s) is larger than or equal to κ1 (k = 0, a, s), the critical
damping factor in GFMD simulations with the single damping factor is determined by the ratio
between the linear force constant of the principal mode κ1 (k = 0, a, s) and the two linear force
constants of the first principal mode (i.e., κ1′ (k = 1, a, s) and κ3′ (k = 1, a, s)). Analysis of the
limits by Fig. 6.18, for a given aspect ratio a and 0 ≤ s ≤ 0.5, yields:

a.
κ3′ (k = 1, a, s)

κ1 (k = 0, a, s)
≤ κ1′ (k = 1, a, s)

κ1 (k = 0, a, s)
;

b.
κ3′ (k = 1, a, s)

κ1 (k = 0, a, s)
≥ 1.

So, the smallest critical damping factor for all modes is the critical damping factor of the center-of-mass
mode η1,cr (Eq. (6.65)).
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To clarify the characteristic damping regimes of other principal modes: The curves in Fig. 6.18
indicate the values of the aspect ratio a and s for which the critical damping factor of the GFMD
simulation changes from the critical damping factor of the first principal mode to the critical damp-
ing factor of the center-of-mass mode, for an increase in s.
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Figure 6.18: Regimes of smallest linear force constant for normal and tangential displacement

of a finite slab as of function of the aspect ratio a and s. Regime
κ(k = 1, a, s)

κ3(k = 0, a, s)
< 1 (A).

Regime
κ(k = 1, a, s)

κ3(k = 0, a, s)
> 1 (B). f1′(s, a) is for the ratio

κ1′ (k = 1, a, s)

κ3 (k = 0, a, s)
, f3′(s, a) for the ratio

κ3′ (k = 1, a, s)

κ3 (k = 0, a, s)
and f3′′(s, a) for the ratio

κ3′ (k = 1, a, s)

κ1 (k = 0, a, s)
.

As expected, the f3’(s, a) corresponds to the f3(s, a) in Fig. 6.12. As a result of coupling f3(s, a) is
shifted upwards. This shift confirms that coupling has to be taken into account in determining the
scalar critical damping factor ηcr. Figure 6.13 displays the contour plot of the normalized smallest
linear force constant κcrLx/C44 as a function of s and the aspect ratio a.
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Figure 6.19: Contour plot of the smallest normalized linear constant κcrLx/C44 as a function of s
and aspect ratio a for normal and tangential displacement of a finite slab.

The smallest linear force constant is independent of s for s ≤ 0.5. When s > 0.5 the smallest linear
force constant depends on s. The smallest linear force constant decreases for an increasing s and
a given width Lx, aspect ratio a and C44. It is concluded that in GFMD simulations with both
normal and tangential displacement (i.e., two DOF) and a finite-height slab the critical damping
factor is:

ηcr = (η1(k = 0, zm), η1(k = 0, zm)) , if 0 ≤ ν ≤ 0.5. (6.90)

As to be expected, the lowest frequency mode is one of the center-of-mass modes.
Note, that we assumed that the discrete time-step is chosen such that dt ≤ 1/

√
κ. This is done to

simplify the presentation of the results in this work. Using Eq. (6.41) and the suitable expression
of the linear force constant κ depending on the loading conditions and substrate geometry. It is,
up to date, also possible to use a scalar critical damping factor ηcr so that each mode is critically
damped. However, in this work, we do not use this mode dependent critical damping factor ηcr(q).
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6.4 Equilibrium Time

6.4.1 Normal displacement of an incompressible semi-infinite solid

Similar to Sec. 6.2.2.2, the exponential time constant of a principal mode in a GFMD simulation,
considering only the normal component of the displacement [64] is:

τ =
2Lx

∆t (ηLx + E∗πk)
. (6.91)

The exponential time constant τ is inversely proportional to the wave number index k for a constant
damping factor η. The equilibrium time teq of successive principal modes is shorter for a constant
damping factor η and a constant and/or diminishing C over successive modes. By inserting the
proportionality of the critical damping factor into Eq. (6.91), the equilibrium time of a critically
damped principal mode thus becomes:

teq(η = ηcr) ∝
1√
κ
, (6.92)

with
1√
κ

=

√
Lx√

2πE∗k
. (6.93)

6.4.2 Normal and tangential displacement of a finite slab

The proportionality of the equilibrium time in GFMD simulations, considering both the normal
and shear component of displacement [3] (i.e., two DOF), is derived. The closed expression of the
amplitude of the trajectory of a principal mode for two DOF thus becomes:

ah[t[n]] =

2d∑
i=1

Aie

−Re{ξi}
2d

t[n]

∆t


. (6.94)

Similar to Sec. 6.2.2.2, the exponential time constants of the center-of-mass modes for two DOF
are:

τ1(q = 0) =
2

∆t (η + κ1(q = 0))
;

τ3(q = 0) =
2

∆t (η + κ3(q = 0))
.

(6.95)

The equilibrium time of critically damped center of mass modes thus becomes:

t1,eq(q = 0, η = ηcr) ∝
1√

κ1(q = 0, zm)
;

t3,eq(q = 0, η = ηcr) ∝
1√

κ3(q = 0, zm)
.

(6.96)

Because the linear force constant κ3 (q = 0, zm) is larger than or equal to κ1 (k = 0, zm), the equi-
librium time in GFMD simulations, considering only the center-of-mass modes and C1 = C3, is the
equilibrium time t1,eq(q = 0, η = ηcr).
Similar to Sec. 6.2.2.2, the exponential time constants of a principal mode for two DOF are:

τ1′ =
2

∆t (η + κ1′)
;

τ2′ =
2

∆t (η + κ2′)
.

(6.97)
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By comparing, Eqs. (6.95) and (6.97), the equilibrium time is determined by the center-of-mass
mode or higher principal mode with the smallest linear force constant κ. The analysis in Sec. 6.3.6
shows: The linear force constant of the principal mode κ1(q = 0, zm) is the smallest linear force
constant. Therefore, the proportionality of the equilibrium time, for a constant and/or diminishing
Ci(q) over successive modes, is determined by t1,eq(q = 0, η = ηcr).

6.5 Numerical results

6.5.1 Methodology

The analytical expression for the critical damping factor and equilibrium time are compared to
numerical results in this section. This is done to determine whether the characteristic dynamic
regimes and equilibrium time obtained by numerical calculations correspond to the derived analyt-
ical expressions. The numerical results are obtained without any prior knowledge or use of their
respective analytical expressions. A small difference in results is expected because of the machine
precision and the way equilibrium time is numerically calculated.
The variables of the GFMD simulation are normalized with respect to Lx. The width will be pre-
sented by the discretization nx for the remainder of this section. This is done in order to present
values for the critical damping factor ηcr in the order of magnitude of those used in GFMD simu-
lations.
The characteristic dynamic regimes and critical damping of a system are determined for no external
force F̃ ext (q) = 0 and no interfacial force F̃ if (q) = 0 at simulation time t ≥ 0 in GFMD simula-
tions. The principal mode that comes to equilibrium the slowest depends on the initial conditions
and dynamic (or static) coupling of the system. To determine the critical damping coefficients, a
step function is imposed on all modes (i.e., equivalent to Fig. 6.2). The step function is:

ũ1 (k) =
Ah

1 + k
for t ≤ 0;

ũ3 (k) =
Ah

1 + k
for t ≤ 0.

(6.98)

The center-of-mass, the first principal mode or even higher principal mode that comes slowest to
equilibrium depends on the initial condition. We choose this particular step function to minimize
the computational time, because we predict the center-of-mass mode or first principal mode to be
the lowest frequency mode, but we want be save and sample all modes. The equilibrium position
is known, therefore we can reject the damping factors that result in over-damped dynamics. The
numerical GFMD simulations are performed without the assumption η1 = η3, i.e., a damping factor
vector. This method is chosen to show the drawbacks of assuming a damping factor scalar.
The equilibrium position of all principal modes is known beforehand as ũ (q) = 0. The fast Fourier
transform library (FFTW3) used in the GFMD simulation has machine precision error O−16 in the
transformations from real to Fourier space values and vice versa [68], i.e. δ = 10−16. Therefore,
the equilibrium condition is written as:

|ũ (q) |2 ≤ |δ|2 for t ≥ teq. (6.99)
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Figure 6.20 shows the equilibrium times as a function of the critical damping factor for two Poisson’s
ratios ν = 0.3 and ν = 0.49, with nx = 2048, E = 70 GPa and a = 1.
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Figure 6.20: Equilibrium time teq as a function of the damping factors η for an elastic substrate with
Poisson’s ratio (a) ν = 0.3 and (b) ν = 0.49. The region enclosed by the solid black line represents
the under-damped characteristic dynamic regime. The position of the shortest equilibrium time is
indicated with the black circle.

Figure 6.20 is a graphic representation of the method to determine the vector critical damping factor
ηcr. The equilibrium time for the critically damped GFMD simulation is the shortest equilibrium
time measured, 3650 in Fig. 6.20a and 3002 in Fig. 6.20b respectively. The corresponding critical
damping factors are the values on the two axis, i.e., η1 and η3.
Assuming:

ηcr = f (nx,E,∆t, ν, a) , (6.100)

the critical damping factors can be expressed in terms of other independent parameters as:

log ηcr = α log nx+ β logE + γ log ∆t+ ξ log ν + χ log a+K, (6.101)

where α, β, γ, ξ, and χ are the exponents to the independent variables and K is an independent
constant. To determine the exponents, the critical damping factor is determined as a function
of a single independent variable, while the remaining independent variables are kept constant.
Assuming:

teq ∝ f (nx,E, ν, a) , (6.102)

the equilibrium time can be expressed in terms of the other independent parameters as:

log teq ∝ αt log nx+ βt logE + ξt log ν + χt log a+K, (6.103)

where αt, βt, ξt, and χt are the exponents to the independent variables and K is an independent
constant.
The expression for the number of iterations to equilibrium neq is written as:

neq =
teq

∆t
. (6.104)
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6.5.2 Normal displacement of an incompressible semi-infinite solid

In this section, the critical damping factor obtained using GFMD simulations studying only the
normal component of the displacement [64] are compared to the analytical expression for the critical
damping factor ηcr in Eq. (6.69) (see Fig. 6.21). The following parameters are chosen for the
simulations: nx = 2048, E∗ = 70 GPa, ∆t = 0.25, and A = 0.01Lx.
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Figure 6.21: Log-log plots of critical damping factor η as a function of (a) the discretization nx,
(b) the effective modulus E∗, (c) the dimensionless discretization time ∆t.

The numerical critical damping factor is in good accordance with the analytical critical damping
factors. It is found that the critical damping factor is:

ηcr ∝ (nx)−0.50(E∗)0.50(∆t)−1.0. (6.105)

As to be expected, this result corresponds to the analytical expression for the critical damping
factor ηcr in Eq. (6.69).
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In Tab. 6.1, the numerical exponents obtained using GFMD simulations are compared with those
obtained from the analytical expression.

numerical analytical

αt 0.501 0.500
βt -0.513 -0.500

Table 6.1: The numerical exponents αt and βt to the independent variables of the equilibrium time
compared to the analytically derived exponents of the equilibrium time.

The numerical exponents to the independent variables of the equilibrium time differ slightly from
the analytical exponents. A possible explanation is the assumption of no effect of initial conditions
on the equilibrium time made in Sec. 6.4. It is found that the equilibrium time is:

teq ∝ (nx)0.50(E∗)−0.51. (6.106)

As expected, this result is comparable to the analytical expression for the equilibrium time teq in
Eq. (6.92).
In Fig. 6.22, the numerical number of iterations to equilibrium neq is plotted as a function of the
dimensionless discretization time ∆t.
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Figure 6.22: Log-log plot of the number of iterations to equilibrium neq as a function of the
dimensionless discretization time ∆t. The gradient of the linear fit line is −1.049.

It is found that the equilibrium time teq of a GFMD simulation is independent of the discretiza-
tion time ∆t. As to be expected, this result is in accordance with the analytical expression for
approximating the equilibrium time teq in Eq. (6.46).

6.5.3 Normal and tangential displacement of a finite slab

In this section, the vector damping factor in GFMD simulations studying both normal and tangen-
tial displacement and a finite-height slab are compared to the analytical expression for the scalar
critical damping factor ηcr in Eq. (6.65) (see Fig. 6.23). The following parameters are chosen for the
simulations: dt = 0.25, ν = 0.20, a = 1, Lx = 20 µm, nx = 2048, A = 0.01Lx and E = 70 GPa.
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Figure 6.23: Log-log plots of the critical damping factor η a function of (a) discretization nx, (b)
elastic modulus E, (c) discretization time dt, (d) Poisson’s ratio ν and (e) aspect ratio a.
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The numerical vector critical damping factor is in good accordance with the analytical scalar critical
damping factors, except its dependency on the Poisson’s ratio ν (i.e., see Fig. 6.23d). The difference
in critical damping factors for ν > 0.35 are due to the difference between the numerical result for
the vector damping factor and analytical results for the scalar damping factor. However, the change
in magnitude of the critical damping factor is only minor compared to the results for the remaining
four independent parameters. It is found that the vector critical damping factor is:

η1 ∝ (nx)−0.47(E)0.53(ν)0.07(a)−0.50(∆t)−1.0;

η3 ∝ (nx)−0.56(E)0.54(ν)0.1(a)−0.50(∆t)−0.97.
(6.107)

As expected, this result is comparable to the analytical expression for the scalar critical damping
factor ηcr in Eq. (6.65).
In Tab. 6.2, the numerical exponents obtained using GFMD simulations are compared with those
obtained from the analytical expression.

numerical analytical

αt 0.556 0.500
βt -0.526 -0.500
ξt -0.012 0.081
χt 0.501 0.500

Table 6.2: The numerical exponents αt, βt, ξt and χt to the independent variables of the equi-
librium time (Eq. (6.92)), compared to the analytically derived exponents of the equilibrium time
(Eq. (6.96)).

The numerical exponents to the independent variables of the equilibrium time differ from the
analytical exponents. A possible explanation is the assumption of no effect of initial conditions on
the equilibrium time made in Sec. 6.4. The calculated and analytical exponent ξt differ in sign
due to the afore-mentioned reasons for a difference in dependency of the damping factor on the
Poisson’s ratio ν (see Fig. 6.23d). It is found that the equilibrium time is:

teq ∝ (nx)0.56(E)−0.53(ν)−0.01(a)0.50. (6.108)

As to be expected, this result is comparable to the analytical expression for the equilibrium time
teq in Eq. (6.97).

6.6 Effect of interfacial interactions on the critical damping coef-
ficient

The conversion of kinetic energy to potential energy at the interface influences the damped dynamics
[79]. The adhesive or repulsive character of the interfacial interactions influences the characteristic
dynamic regimes of the GFMD damped dynamic energy minimization. The interface can also be
modeled by means of a hard-disk interaction [78] with a coefficient of restitution e which specifies
the amount of kinetic energy conserved during the collision.
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6.6.1 Finite-Range interaction

A finite-range interactions V fr [83], which only depend on the local gap, can be written as:

V fr(t) = −∆γ

∫
dx2e

− (upunch(x)− u(x, t))

zr


, (6.109)

where ∆γ is the work of adhesion and zr is the interaction length. The force in normal direction
on the surface as a function of the gap g(x, t) = zpunch(x, t)− u3(x, t) is:

f3(r) = −∆γ

zr
γe

− (g(x, t))

zr


. (6.110)

In this section, Equation (6.110) is used to study the influence of finite-range interaction on the
damping factor. Following [89], the equation of motion without the driving terms in Eq. (6.53) can
be written in real-space as a general wave equation:

d2r

dt2
+ c

dr

dt
+ κr = a0 + a1

dr

dx
+ a2

d2r

dx2
, (6.111)

where ai are constants with units N/m. The force F (r) acts on a line segment r ± δr. The force
f(r) at the point r on the surface is derived as:

lim
δr→0

f(r − δr) + f(r + δr) = F (r)2δr = 2f(r). (6.112)

The Fourier transform of Eq. (6.112) is:

f̃ (q) =
F̃ (q)

q
. (6.113)

Equation (6.2) is rewritten as:

d2u(x, t)

dt2
+ c

du(x, t)

dt
+ F−1{G

−1(q)

q
}u(x, t) = f ext(x, t), (6.114)

where F−1{x̃} is the inverse Fourier transform. Equations (6.110) and (6.114) are combined. The
equation of motion in GFMD damped dynamic energy minimization, with the external force on a
grid-point described by a finite-range exponential interaction, can be written as:

d2u(x, t)

dt2
+ c

du(x, t)

dt
+ F−1{G

−1(q)

q
}u(x, t) = −∆γ

zr
γe

− (g(x, t))

zr


. (6.115)

For frictionless contact, |u| << zr and zpunch(x, t) = 0, the first and second term of the series
expansion of Eq. (6.110) form the driving terms. The equation of motion of the normal displacement
is written as:

d2u3(x, t)

dt2
+ c

du3(x, t)

dt
+

(
F−1{G

−1(q)

q
}+

∆γ

z2
r

)
u3(x, t) +

∆γ

zr
= 0. (6.116)
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In Fourier space the homogeneous equation of motion for q ≥ 1 is:

d2ũ3 (q, t)

dt2
+ c3

dũ3 (q, t)

dt
+

(
G̃ (q)−1 + q

∆γ

z2
r

)
ũ3 (q, t) = 0. (6.117)

Two regimes can be identified depending on the sign of the work of adhesion: Squeeze-out for
finite-range repulsion where ∆γ < 0 and pull-off for finite-range attraction where ∆γ > 0. As to be
expected, interfacial b.c. do influence the characteristic dynamic regimes of the GFMD-simulations.
Note that the coefficient of the third term in Eq. (6.117) is the linear force constant κ3(q) for the
principal mode with wavenumber q in the normal direction. The influence of the work of adhesion
in the case of frictionless contact for a sufficiently large interaction length zr is:

• When the work of adhesion is ∆γ < 0, the critical damping factor ηcr decreases;

• When the work of adhesion is ∆γ > 0, the critical damping factor ηcr increases.

We observe that for the finite-range adhesive potential the critical damping factor ηcr increases for a
generic punch shape. Therefore, we conclude that the analytical expression of the critical damping
factor, as derived in Sec. 6.3, is also applicable with the finite-range adhesive interfacial interactions
at the surface. However, the energy minimization dynamics for the finite-range adhesive interfacial
interactions will be under-damped. Vice versa, the finite-range repulsive potential decreases the
critical damping factor ηcr. Which mode is the slowest frequency mode depends on the punch
shape, therefore the center-of-mass or the first principal mode is not per definition the lowest
frequency mode anymore. For a cohesive zone model [76], we can not draw any conclusion as it
has both an adhesive and a repulsive zone. Note that for a constant traction prescribed τ (x) at
the surface, the analytical expression for the critical damping factor derived in this work still holds
true (see Sec. 6.2). Alternatively, one can formally introduce a short-range interaction, hard-wall
repulsion [83]:

V sr(t) = lim
zr→0

∫
dx2 (Frzr) e

− (upunch(x)− u(x, t))

zr


, (6.118)

where Fr is an arbitrary positive constant of unit force per area. The series expansion of Eq. (6.110)
is not valid for hard-wall interaction, in the limit zr → 0. Therefore, the influence of hard-wall
interaction on the GFMD damped dynamic energy minimization can not be derived in a similar
fashion as for finite-range interaction.

6.6.2 Hard-wall interaction

We observe from the simulations performed in Chapter 4 with hard-wall interaction, that the
critical damping factor ηcr derived in this work ensures the energy minimization is under-damped.
Moreover, we use ‘safety coefficient’ was used to ensure under-damped dynamic. We found no
analytical expression for the critical damping factor ηcr which included the hard-wall interaction,
because the hard-wall interaction is a non-linear velocity boundary condition on a non-integrable
boundary, i.e., a non-holonomic boundary condition according to Prodanov et al. [5]. However, we
want to present the considerations we made to come to this conclusion in this section.
For an impulse based contact model in real space, a reaction force fr(t) acting on a body with a
constant mass m for a time interval t to t+ dt generates a change in the body’s momentum. The
effect of the reaction force over the interval of collision is represented by a collision impulse Jr.
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The equations of motion for a two-body collision yields the relation between pre- and post-collision
velocities:

ṙ′1 =ṙ1 −
Jr
m1
n̂;

ṙ′2 =ṙ2 +
Jr
m2
n̂,

(6.119)

where ṙ1 and ṙ2 are the pre-collision velocities, ṙ′1 and ṙ′2 are the post-collision velocities of bodies
with mass m1 and m2 and n̂ is the contact normal. When both bodies have no angular momen-
tum the coefficient of restitution e relates the pre-collision relative velocity ṙr = ṙ1 − ṙ2 to the
post-collision relative velocity ṙ′r = ṙ′1 − ṙ′2. This is written as:

ṙ′rn = −eṙrn̂. (6.120)

Substituting Eq. (6.119) into Eq. (6.120), we give the reaction impulse:

Jr =
− (1 + e) ṙrn̂

m−1
1 +m−1

2

. (6.121)

The coefficient of restitution for hard-wall interaction is e = 0. In GFMD, body one can be
represented by the substrate modeled with nx grid-points and body two is represented by the rigid
punch. The punch is modeled as a body with an infinite mass m2 and zero velocity ṙ2 = 0. Hence,
the velocity of the grid-points post-collision is ṙ′1 = 0.
The non-holonomic b.c. at the interface described by Eq. (6.5) can be written as:

u̇(x, t) = 0, for u(x, t) = zpunch(x). (6.122)

The velocity of the surface displacement at the location of the punch upunch(x) will be non-linear.
The pSV method models the non-linearity in velocity by a virtual impulse Jv. This virtual impulse
depends on the velocity ṙ1 and the discrete time-step ∆t. For this specific case there is no analytical
expression for the critical damping factor currently known by the author.
An other approach is to model the GFMD simulations with one DOF and the hard-wall b.c. as
follows. A grid-point hitting the punch can be represented by the mass of the damped harmonic
oscillator elastically colliding with a wall with a coefficient of restitution e = 0 at t = tcl, where
tcl is the time at collision. The velocity and position after collision are then the initial conditions
for its equation of motion for t > tcl. As long as the wall is placed at position xw > xeq, where
xeq is the position at equilibrium of the mass of the damped harmonic oscillator, the characteristic
dynamic regime depends on the damping coefficient. When the wall position is xw ≤ xeq, the
damped harmonic oscillator is infinitely over-damped. The analogy with a 1 DOF damped harmonic
oscillator elastically colliding with a wall is not further pursued, because the equilibrium position of
a single grid-point depends on the position of the punch (i.e., position of the elastic wall) and the
position of all other nx− 1 grid-points. No qualitative nor quantitative expression for the critical
damping factor in GFMD simulations with hard-wall interaction is available at the moment.
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6.7 Conclusions and discussion

For the first time the pSV method used in the GFMD simulations is rewritten in its velocity explicit
scheme to analytically derive the characteristic dynamic regimes of the damped harmonic oscillator.
The newly presented analytical expression for the critical damping coefficient and characteristic dy-
namic regimes are valid for an arbitrary finite discrete time-step dt. The analytical expression for
the critical damping coefficient of the damped harmonic oscillator and the numerical critical damp-
ing coefficient of the damped harmonic oscillator for pSV differ significantly for a finite discrete
time-step dt. For the first time, it is shown that the equilibrium time of the damped harmonic
oscillator for pSV is independent of the discrete time-step dt. For a given equilibrium time teq, the
number of iterations till equilibrium neq depends only on the discrete time-step ∆t. The maximum
value of the discrete time-step is determined by the relation κ∆t2 ≤ 4. The equilibrium time teq

can be correctly approximated prior to the simulation. Note that for this work we assume dt ≤
√
κ,

in order to ensure the magnitude of the critical damping factor ηcr increases for a generic increase
of the magnitude of the linear force constant κ. However, when the discrete time-step is increased
from dt ≤

√
κ up to dt ≤ 2/

√
κ, we can further reduce the computational time. Note also, that it

is now possible to use a scalar critical damping factor ηcr so that each mode is critically damped.
As predicted, the critical damping factor ηcr depends on the aspect ratio a, the material properties,
the loading directions, the interfacial conditions and the dimensionless discrete time-step ∆t. The
presence of coupling of the normal and tangential displacement depends solely on the Poisson’s
ratio ν, the aspect ratio a and the loading conditions. The normal and tangential displacement are
decoupled for a semi-infinite body with Poisson’s ratio ν = 0.5, zero normal traction, frictionless
contact and in the limit ν → −∞. Except for these special cases, it is shown that coupling can not
be neglected. The equilibrium time teq depends on the lowest frequency mode, which is the mode
of the scalar critical damping factor ηcr.
From the numerical calculations in Sec. 6.5, we conclude that the critical damping factor ηcr is
proportional to the elastic modulus E and inversely proportional to the width Lx, aspect ratio
a and discrete time-step ∆t. Moreover, we find a weak dependency of the value of the critical
damping factor on the Poisson’s ratio for ν > 0.35. We conclude that for the value of the critical
damping factor ηcr with ν ≈ 0.5 for a given elastic modulus E, width Lx, aspect ratio a and discrete
time-step ∆t, the dynamics are always under damped. We conclude that the equilibrium time teq

for GFMD simulations is also independent of the discrete time-step ∆t.
For the first time the effect of the interfacial conditions on the critical damping factor ηcr is de-
termined by taking the Fourier transform of the first two terms of the series expansion of the
exponential interaction potential. When the work of adhesion is negative, the critical damping
factor ηcr decreases. When the work of adhesion is positive, the critical damping factor ηcr in-
creases. For hard-wall interaction we find no analytical expression for the critical damping factor
ηcr. However, we conclude that with a carefully chosen scaling of the critical damping factor ηcr

the dynamic energy minimization is assured to be under-damped. To perform the simulations with
a hard-wall potential a ‘safety coefficient’ was used;
The computational time in GFMD simulations is minimized by using the analytical expression for
the scalar critical damping factor ηcr. This scalar critical damping factor ηcr can be determined
prior to the simulation. However, the analytical expression for the vector critical damping factor
ηcr will further reduce the computational time for the Poisson’s ratio ν > 0.35.
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Chapter 7

Concluding remarks
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7.1 Conclusions

The ultimate objective of this work is to obtain a better understanding of the contact mechanics
of deformable bodies with self-affine roughness. To this end, we take three steps: First, a com-
putational study is performed, focusing on proportionality between load and contact area for low
nominal pressures; Second, we present an extended GFMD approach for deformable bodies with
a simple surface topography; And, third, we derive here the analytical expression for the critical
damping coefficient in the damped dynamic energy minimization used in GFMD. In the following,
the main conclusion of each chapter is presented.
Chapter 3, is devoted to finding an appropriate numerical description for rough fractal surfaces.
This study leads to the following conclusions:

– Power spectral density method (PSDM) is capable of numerically generating surface topogra-
phies highly comparable to experimentally measured topographies for a given Hurst’s expo-
nent H, roll-off wavelength λr and root mean square height w (RMSH). Moreover, in this
work, PSDM is the most suitable method to generate surface topographies to be used in
GFMD simulations to determine the proportionality between load and contact area;

– The minimum ratio Lx/ξ of a numerically generated topography with a Gaussian height
distribution p(h) increases for an increase in Hurst’s exponent H. The rate of convergence in
the mean-square to the Gaussian distribution depends on the Hurst’s exponent H. Moreover,
there is a minimum ratio, 1 ≤ Lx/ξ < 400, depending on the Hurst’s exponent H < 0.8 for
which the height distribution p(h) resembles a Gaussian distribution;

– ζ/λ ≤ 0.1 is the maximum ratio for which a mounded structure can be modeled as self-affine
roughness.

In Chapter 4, the determination of the proportionality constant κ for an elastic slab with the
Poisson’s ratio ν and aspect ratio a that can be arbitrarily chosen is presented. We assume a
small nominal pressure p̄ and a nominally flat surface topography, and use the commonly pre-
sumed expression for the relation between the contact area fraction ar and low nominal pressure
p̄: ar = κp̄/ḡE∗, where ḡ is the root mean square gradient (RMSG) and E∗ the effective modulus.
This leads to the following conclusions:

For the semi-infinite solid;

– The proportionality coefficient κ is independent of the Hurst’s exponent H. There is no
higher-order dependency of the value of the proportionality coefficient on the Poisson’s
ratio in the range studied 0.2 ≤ ν ≤ 0.5;

– The proportionality coefficient has the value κ ≈ 1.45. This value of κ is closer to the
prediction of Persson’s theory [12], i.e., κ =

√
8/π ≈ 1.59, than previously reported

values of κ;

– Previously reported values of the proportionality coefficient κ studied using GFMD [4, 5]
are between 1.5 and 2 times larger than our prediction. The reason for this difference is
using twice the areal elastic energy in the previous studies due to omission of the scaling
of displacements in the FFTW3 library [49].
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For the finite-height slab;

– The proportionality coefficient with the value κ ≈ 1.5, can be used as a good approxi-
mation for a generic Poisson’s ratio 0.2 < ν ≤ 0.5 and aspect ratio 0.5 ≤ a ≤ ∞;

– We do not observe the higher-order dependency of the proportionality coefficient κ on
the Poisson’s ratio ν for linear-elastic slabs as observed in the previous study [40]. We
conclude that the most likely reason this higher-order dependency is observed, because
of the choice of insufficiently small fractal- and continuum discretizations.

– The predicted continuum mechanical value of κ suffers a large error for a large Hurst’s ex-
ponent, i.e., H > 0.5, when one choses the ratio Lx/ξ too small, i.e., large thermodynamic
discretization. This is the result of the strictly non-Gaussian height distribution p(h) of the
numerically generated surface topography by PSDM.

In Chapter 5, we extend GFMD to study the contact mechanics of deformable bodies with a simple
surface topography. This extended GFMD method is called two-step GFMD. This GFMD approach
allows one to study frictional interfaces. We study the limiting case of an array of rectangular
asperities flattened by a rigid body, and determine the maximum allowable RMSG ḡ. Moreover,
we make the following observations:

– Two-step GFMD is capable of approximating the displacement of the surface to O−6Lx
precision, and the traction to within O−4E precision;

– The analytical expression in [3] corrected with the expected error in uniform strain leads to
a precision O−3E in the stress fields;

– The maximum allowable RMSG for performing two-step GFMD is found to be ḡ ≤ 0.030,
tolerating the aforementioned precisions.

Chapter 6, the focus is on finding a priori the critical damping coefficient for fast convergence of
the simulations. To this end, the position (Störmer-)Verlet (pSV) method used in the GFMD sim-
ulations is rewritten in its velocity explicit scheme to analytically derive the characteristic dynamic
regimes of the damped dynamic energy minimization. This leads to the following conclusions:

– The critical damping factor ηcr is proportional to the elastic modulus E and inversely propor-
tional to the width Lx, aspect ratio a and discrete time-step ∆t. Moreover, we find a weak
dependency of the value of the critical damping factor ηcr on the Poisson’s ratio for ν > 0.35;

– We use a scalar damping factor ηcr corresponding to critical damping factor of the slowest
mode (i.e., center-of mass mode in tangential direction) to damp all other modes. This choice
is purely for simplicity, and results in the center-of-mass mode in tangential direction being
critically damped, while all other modes are under-damped. It is now possible to use a scalar
critical damping factor ηcr so that each mode is critically damped.

– The principal mode that is the lowest frequency mode depends on the aspect ratio a, the
material properties, the loading directions, the interfacial conditions and the dimensionless
discrete time-step ∆t. When we ensure κ∆t2 ≤ 1 for all modes, the slowest frequency mode
is always the center-of-mass mode or the first principal mode;

– When the work of adhesion is negative, the critical damping factor ηcr decreases. When
the work of adhesion is positive, the critical damping factor ηcr increases. To perform the
simulations with a hard-wall potential a ‘safety coefficient’ was used;
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– The equilibrium time of the damped harmonic oscillator for pSV is independent of the discrete
time-step dt. The equilibrium time teq depends on the lowest frequency mode, which is the
mode of the critical damping factor ηcr.

7.2 Outlook

The motivation to this work is to get a better understanding of rough metallic surfaces in contact.
Recent work by Venugopalan et al. [47] is already as step in the right direction to study plasticity
through discrete dislocation dynamics in combination with the GFMD approach. However, the
small-slope assumption limits the gradients g(x) and root mean square heights w (RMSH) one can
study. The gradients and RMSH experimentally observed can be orders of magnitude bigger than
we can accurately numerically calculate up to date [24, 2]. Therefore, one of the recommendations
is to relax the small-slope assumption in GFMD.
While the contact area fraction ar can only be rigorously and non-arbitrarily determined in con-
tinuum mechanics, an in depth analysis of the proportionality between the contact area and the
pressure might help discern the validity and applicability of various statistical models. Due to the
scatter in experimental results and the difficulty in reproducibility [27], brute-force methods are
expected to be one of the ways to validate statistical models. Therefore, a recommendation is to
extend the thermodynamic, fractal and continuum corrections presented in this work to a larger
range of discretization values, 2-dimensional surfaces with different RMSH w and vary the Hurst’s
exponent H, Poisson’s ratio ν in their limiting values of H = [0, 1] and ν = [0, 0.5] for various
aspect ratio’s, while ensuring the ratio Lx/ξ is large enough to numerically generate a topography
with the Gaussian height distribution p(h). Note that, up to date, the classical GFMD method by
Venugopalan et al. [3] is extended to (2 + 1)−dimensional compressible bodies. Therefore, another
one of the recommendations is to research possible (empirical) relationships between contact me-
chanical properties of (1 + 1)- and (2 + 1)-dimensional bodies with (an)isotropic fractal roughness,
as introduced by Scaraggi et al. [73].
Two-step GFMD is capable of numerically calculating contact mechanical properties of a deformable
elastic layer with self-affine surface roughness. It is straightforward to extend this method for a
generic interaction potential at the surface, i.e., finite range adhesive/repulsive potential [74]. Also,
two-step GFMD can be used to numerically calculate the displacement of the surfaces for two
deformable elastic slabs contact with generic aspect ratios, Poisson’s ratios and surface topogra-
phies. Two-step GFMD allows a non-deterministic description of the surface topography otherwise
commonly found in models including adhesion and friction. For example, simulate multi-body
contacts, where the more realistic interaction between metallic asperities can be effectively stud-
ied using an exponential potential like Xu-Needleman [75] or the cohesive zone model according
to McGarry et al. [76], also allowing the study of interplay between adhesion and friction at the
interface.
In this work, we numerically calculate contact mechanical properties independent of length scale,
and do not give an answer to the interplay of different mechanisms over different length scales.
Two-step GFMD is also a suitable candidate to build a multi-scale model as introduced by
Pastewka et al. [48] in which the surface had an atomistic description and the flat linear-elastic
substrate was treated with harmonic approximations [47]. Two-step GFMD can be used to give
large length scale roughness on the surface of the substrate, while an atomistic description could
be used for smaller length scale roughness. Note that this would reduce the areas needing an atom-
istic description compared to a flat linear-elastic substrate, and in turn reduce the computational
complexity.
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