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Classification of Dynamic Vulnerable Road Users
Using a Polarimetric mm-Wave MIMO Radar
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, Senior Member, IEEE,

and Alexander G. Yarovoy, Fellow, IEEE

Abstract—1In this article, the classification of dynamic vulner-
able road users (VRUs) using polarimetric automotive radar
is considered. To this end, a signal processing pipeline for
polarimetric automotive MIMO radar is proposed, including a
method to enhance angular resolution by combining data from all
polarimetric channels. The proposed signal processing pipeline
is applied to measurement data of three different types of VRUs
and a car, collected with a custom automotive polarimetric radar,
developed in collaboration with Huber+Suhner AG. Several
polarimetric features are estimated from the range—velocity sig-
natures of the measured targets and are subsequently analyzed.
A Bayesian classifier and a convolutional neural network (CNN)
using these estimated polarimetric features are proposed and
their performance is compared against their single-polarized
counterparts. It is found that for the Bayesian classifier, a signifi-
cant increase in classification performance is achieved, compared
to the same classifier using single polarized information. For the
CNN-based classifier, utilizing the distribution of polarimetric
features of the target’s range—velocity signatures also increases
classification performance, compared to its single-polarized ver-
sion. This shows that polarimetric information is valuable for
classification of VRUs and objects of interest in automotive radar.

Index Terms— Automotive radar, classification, polarimetry,
vulnerable road users (VRUs).

I. INTRODUCTION

N RECENT years, increasingly more vehicles are equipped

with 77 GHz automotive radar to enable advanced driving
assistance systems such as adaptive cruise control, but also
to enhance road safety. The increased integration of these
radar systems in vehicles has the potential to also benefit
other road users besides the driver of the vehicle itself.
Specifically, this is true for vulnerable road users (VRUs),
which typically include pedestrians and cyclists. They are
particularly vulnerable when involved in accidents as they
do not have any protective structures or devices that help
dissipating the force of impact, which cars, in contrast, are
equipped with. Because of their vulnerability in combination
with, among others, the ever-increasing safety requirements on
cars, in the Netherlands most fatal traffic victims are currently
cyclists, having overtaken car occupants in recent years [1].
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Because of this vulnerability of cyclists, pedestrians, and
other VRUs, many research efforts concerned with using
automotive radar to detect and classify VRUs have been under-
taken in recent years. For example, in [2], [3], and Pérez et al.
[4], deep learning methods are employed. In [2] and [3],
time—frequency, i.e., micro-Doppler signatures, are used for
this, while [4] uses a single range-Doppler frame. Using
a convolutional network, a classification accuracy of 84.2%
was achieved on unseen data in [4], while the convolutional
neural network (CNN) presented in [3] achieved classification
accuracy values greater than 92.4%. In [5], classification
of VRUs is performed using autocorrelation features in the
time—frequency domain. It is found that the features of corre-
lation length and time show high potential for classification
of pedestrians and cyclists. In [6], pedestrian classification
is performed using image features which are extracted from
range-Doppler maps. Combining this with tracking algorithms
resulted in a success rate of 88%, using a sensing signal
bandwidth of 1.6 GHz.

Similar to the automotive radar systems that are currently
available, the radar used in the aforementioned research
employed single-polarized sensing waves. These systems are
unable to measure the polarization state of the waves backscat-
tered from the environment and targets, which may contain
useful information for classification purposes. For example,
the spokes of a bicycle wheel could be sensitive to one type of
polarization, while relatively insensitive to another due to their
inherent vertical structure. Thus, to exploit the information
available in the polarization state, polarimetric radar systems
are required. However, currently, there are no commercially
available automotive radar systems on the market, and only
recently fully polarimetric automotive radar prototypes and
proof-of-concepts have been developed for research pur-
poses [71, [8], [9], [10], [11], [12]. In [7] and [8], two antenna
concepts for polarimetric automotive radar are presented,
while Trummer et al. [9], Zang et al. [10], and Tinti et al. [11]
propose three fully integrated radar systems. In [12], an instru-
mentation radar is presented to study scattering behavior from
VRUs at frequencies within the automotive radar band.

Even though the use of polarimetry in automotive radar is
quite novel and literature on the topic is relatively limited,
a few studies have already been undertaken to study the polari-
metric response of VRUs at 77 GHz. In [13] and [14], several
polarimetric representations of targets have been investigated
for the purpose of VRU classification using a modified version
of the approach presented in [15]. Using different polarimetric
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features in point cloud format, it is found that a significant
improvement in VRU classification can be achieved over
exclusively using nonpolarimetric features. This is extended
further in [16], where detection of road users is performed on
predetector data, showing further improvements in classifica-
tion performance. In both works, classification is performed
predominantly in the angular domain and only the strongest
Doppler measurements corresponding to targets are kept. The
radar system used in these works was also employed to inves-
tigate the benefits of polarimetric information for localization
purposes [17]. In [18], static polarimetric measurements of
four different types of bicycles were carried out at various
azimuth angles. Here, it is also concluded from the results
that polarimetric information could potentially help improve
vehicle classification. In [19], static measurements of a number
of vehicles as well as a motorcycle, bicycle, and pedestrian
were performed and it is found that significant differences in
polarimetric returns can occur depending on target orientation.
In [20], a classifier based on a CNN is used to classify static
canonical targets (dihedrals and boxes) in various orientations,
and classification accuracy over 90% is obtained. In [12],
partially polarimetric measurements of moving VRUs such
as pedestrians, a bicycle, and a dog are presented. It was
found that the range-Doppler signatures presented a number
of unique velocity-dependent features that potentially could be
used for classification.

However, to the best of the authors’ knowledge, in none of
the aforementioned research the impact of the dynamic behav-
ior of VRUs (e.g., moving arms/legs with related Doppler
signature) on their polarimetric response and its use for
classification purposes is extensively considered. In this article,
this gap is addressed by further studying the polarization of
the returns from cyclists, pedestrians, motorcyclists, and a
vehicle while they are moving. To achieve this, a custom-
designed novel polarimetric MIMO automotive radar system
was developed in collaboration with Huber+Suhner AG
(H4S) to collect measurement data from these classes of tar-
gets while they were moving in various direction with respect
to the radar. The collected measurement data is subsequently
processed and analyzed using a new polarimetric automo-
tive radar signal processing pipeline. From these data, it is
found that polarimetric signatures of VRUs differ significantly
from each other and that the polarimetric composition of
their returns changes over time. Moreover, the polarimetric
ratios of the considered classes of targets form -clusters,
indicating that the polarization state of their returns may
contain useful information for classification. It is also shown
that the range—velocity signatures of pedestrians and cyclists
contain some polarimetric structure, which could potentially
be exploited by machine learning algorithms to improve
classification.

The rest of this article is organized as follows. Section II
introduces the signal processing required for time divi-
sion multiplexing (TDM) MIMO polarimetric radar systems.
Section III introduces the polarimetric radar system including
a new calibration method based on a radar target simu-
lator, as well as the data collection. Section IV describes
the postprocessing procedures applied to the experimental
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measurement data, with results in Section V. Conclusions are
drawn in Section VI.

II. POLARIMETRIC MIMO RADAR SIGNAL PROCESSING

In this section, the processing of the received waveforms
of a polarimetric MIMO frequency modulated continuous
wave (FMCW) radar with TDM is considered. First, the
processing of the individual polarimetric channels is discussed,
and subsequently coherent processing of all virtual channels
is considered to enhance the angular resolution.

A. Single Polarimetric Channel Processing

In contrast to single-polarized radar, polarimetric radar
systems also aim to estimate the scattering parameters of a
target. The scattering matrix describes the relation between the
polarization and amplitude of the electric fields, indicated by
E, of an incident sensing wave impinging on a target and the
wave scattered back by that target, as shown in the following

equation:
|:Ex:| _ [SM Sxy:l [E;nc] 0
Ej Sy Sy JLEY]

Here, the superscript s indicates the scattered components
of the wave while the superscript inc indicates the incident
wave. The subscripts x and y indicate the polarization basis,
for example, a horizontal/vertical or left/right-hand circular
basis. In the case of a horizontal/vertical basis, x could be for
instance substituted by H, representing the horizontal com-
ponent, while y is substituted by V, representing the vertical
component, whereas for a left/right-hand circular basis x and
y could be substituted by L and R representing the left-hand
and right-hand circularly polarized components, respectively.

Subsequently, the relationship between the incident sensing
wave and the scattered wave can be used to formulate the
signal model of the data collected by a polarimetric FMCW
radar system. The waveform transmitted corresponding to the
ith virtual channel as a function of time ¢ by an FMCW radar
is shown in the following equation:

s () = 2320 | (fuant fuopet) dt

— o2 (fuar+ fuopet )1 (2)

where fare 1S the frequency at which the chirp signal starts
and fgope the frequency slope of the chirp ramp.

This transmitted waveform reaches the target after some
propagation delay and incurring free space losses, and is
then scattered back toward the radar, eventually reaching the
receiving antennas with an additional propagation delay and
more free space losses. Thus the received waveform s at the
ith virtual xy-polarized channel, i.e., a virtual channel with an
x-polarized receiving channel and a y-polarized transmitting
antenna, can be modeled as shown in the following equation:

STt At) = LS,y 277 (Fuan+ 3 fotope (1= A1) ) (1= AL;) 3)

Here, L denotes the total propagation losses and A¢; indicates
the total propagation delay to and back from a target. Note
that in order to find the received waveform for other polari-
metric channels, the x and y subscripts can be replaced by
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Fig. 1. Schematic of the problem geometry. Note that the virtual array has

been translated so_that it is centered on the x-axis after the summation of the
sets of p'* and p™* for each virtual element. Also, as this schematic shows
the top view of the problem, the elevation angle 6, is not visible.

subscripts of the corresponding polarimetric channels, e.g., Sy
for the xx-polarized channel. In order to keep the equations as
tractable as possible, only the equations for the xy-polarized
channel are shown within this article.

To compute the total propagation delay for a measured
channel, the problem geometry shown in Fig. 1 is considered.
Note that in this schematic drawing, the virtual array resulting
from the summation of the sets of p7x and p7x corresponding
to each virtual element is translated, so that it is centered
on the x-axis. As long as far-field conditions are satisfied,
this does not impact the resulting total propagation delay,
since the target angles as seen from each virtual element are
approximately equal to each other. Also, since the target’s
velocity should be within the maximum unambiguous velocity
range and since the target should be located in the far-field
region, the target angles of the target at 1 = 0 and t = At are
approximately equal too. It can be seen from Fig. 1 that the
total propagation delay is a function of the start range r( of a
target from the origin of the virtual array formed by the radar
system, its radial velocity with respect to the radar v,, elevation
6;, and azimuth ¢,, as shown in the following equation:

ro + v, T; (n) + PO, &) - [;i
c c ’

Al‘i(}"(), Vr, 9t7¢l) =2

“4)

As can be seen in (4), A¢; is also dependent on the location
of the ith virtual channel p; in the virtual array which is
the sum of p™* and p™*, which respectively are the positions
of the transmitting antenna p’* and the receiving antenna
p?x corresponding to that virtual channel. Furthermore, ¢
indicates the propagation velocity of electromagnetic waves
and T;(n) represents the time elapsed since the first chirp of
the sequence, in order to account for the range migration of a
target due to its radial velocity with respect to the radar. Note
that 7; itself depends on the chirp number n, the interchirp
duration Tepip as well as a time offset AT; as shown in the
following equation:

Ti(n) = nTchirp + AT;. &)

This time offset results from the TDM operation of the
radar. Namely, when the transmitters of the radar operate
in an interleaved fashion, the chirps corresponding to the
virtual channels using the second transmitter lag behind one
interchirp duration. This results in turn the virtual channels
corresponding to the third transmitter to have an offset of two
interchirp durations, and so forth for all the other available
transmitters.

Furthermore, 7 is the unit vector that indicates the angle
of arrival of the wave and is dependent on the elevation and
azimuth of a target as shown in the following equation:

cos 0; sin ¢,
cos b, cos ¢, |. (6)
sin 6,

F6r, ¢) =

In an FMCW radar system, the received signal is subse-
quently de-chirped by means of complex mixing it with the
transmitted signal. This results in the final signal model of the
ith virtual channel s; as sampled by the ADCs corresponding
to that channel. This can be mathematically written as shown
in the following equation:

si(t, At) = 57" (t, At)"s;* (1)
— LsxyeZT[j (fslanATi 7%fslopeAti2) eznjf.slopefAti . (7)

In (7), superscript * indicates the complex conjugate operator.

Using this signal model, the signal processing pipeline to
estimate the range, radial velocity, elevation, azimuth, and
scattering parameters of a target for a single polarimetric chan-
nel can be developed. First, the signal model can be simplified
by using the assumption that fi. A, > (1/2) fslopeAtiz.
This assumption is typically valid for mm-wave automotive
radar, as the sampled bandwidth of the chirp is much smaller
than the start frequency; for example, the maximum available
bandwidth in this band is 4 GHz, while the minimum start
frequency is 76 GHz. Furthermore, the full 4 GHz band-
width is not usually sampled in its entirety, as this would
require high-performance ADCs, whereas lower performing
but cheaper ADCs can generally provide the required sample
rates necessary to achieve, among others, adequate unambigu-
ous range. Applying the aforementioned assumption results in
the following equation:

si(t, Af) = LsxyeznjfsmnAlieznjfslope[At," )

Combining (4) and (8) and performing a Fourier transform
over t, ro of the target can be recovered given that 2(ry/c) >
2(v;T;j/c) + (Fp;i/c), which is valid as ry is the dominant
term of the propagation delay. This results in the following
equation:

rotu T
"

s' =LS eznjfm"(z )+jkﬁ[5(r —r9). )]

i xy
Here, k represents the wave vector and is defined as (27 /\)7,
where )\ is the wavelength at the start frequency of the chirp.

Subsequently, the target’s radial velocity can be determined
by performing a Fourier transform over n, which corresponds
to a transform over the sequence of chirps belonging to
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the considered virtual channel. This results in the following
equation:

27 (2 ro+u AT;
s = Lsxye J fstart P

V4IPS st — ). (10)

Note that the channel time offset term in (10) introduces
an additional velocity-dependent phase shift between chan-
nels. This phase shift appears due to range migration of a
moving target in between the starts of multiple different chirp
sequences belonging to virtual channels because of the TDM
used by the radar system to preserve waveform orthogonality.
If left uncompensated, this additional phase shift leads to an
additional error in the estimation of the phase of the scattering
parameter measured by the corresponding virtual channel.

As the aforementioned phase shift is solely dependent on
the target’s radial velocity and the channel time offset, which
are known quantities after the estimation step in (10), it can
be compensated by multiplying each range/velocity bin by a
factor of e #Wfun@/OAT: " gimilar to the approach presented
in [21]. This leads to the following equation:

5i = LS el ETIkD 5 () — 1,)8(r — ro).

(11)

Subsequently, the azimuth and elevation of the target can be
estimated. This can be done by means of Fourier transforma-
tion over virtual channels belonging to the same polarimetric
channel when they are uniformly spaced, so that the backscat-
tered wavefront of a target is uniformly sampled in space.
This is similar to estimation of target range and velocity
where the aforementioned wavefront is sampled uniformly
in time rather than in space. When the virtual channels are
not spaced uniformly, the target azimuth and elevation can be
estimated using digital beam forming instead. This procedure
is mathematically shown in the following equation:

LS,,6(v —v)8(r — rp)
s = :

N
N Z 47 foart 0y jkp; ejﬁi ] (12)

i=1
In this equation, N is the total number of virtual channels
belonging to a specific polarimetric channel and Ei represents
the steering vector which is defined as shown in the following
equation:

cos 0 sin ¢

ﬂ(@,d)):——n cosfcos ¢ | p;.
sin 6

13)

When the steering vector aligns with the wave vector, the
magnitude of the summation in (12) will be maximum, and
thus the azimuth and elevation of a target are found.

Now that the target’s range, velocity, elevation, and azimuth
have been estimated, the amplitude and phase of s are the
product of the propagation losses L, the scattering parameters
Syy, and a residual phase term ¢*"/fun(0/¢) " Ag for determining
the scattering matrix, only the relative phase of the scattering
parameters is of importance, the residual phase term can be
eliminated by subtracting the phase of the first scattering
parameter from all four elements of the scattering matrix, since
ro is independent of the polarimetric channel. Furthermore,
the propagation losses are dominated by 7y and thus are
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also independent of polarization. Therefore, this term can be
compensated for by using the radar equation [22].

Thus, after the compensation of the residual phase term
and the propagation losses, the amplitude and phase values
for each range—angle—velocity bin remain, and they represent
the scattering parameter corresponding to the polarimetric
channel. The final scattering matrix for each range—angle—
velocity bin is then subsequently found by combining the
scattering parameters of all polarimetric channels.

Using the processing procedure presented in this section, the
range, velocity, and angular resolutions for each polarimetric
channel are equal to those found for a single-polarized radar
system with the same array topology as the corresponding
polarimetric subarray. Therefore, the angular resolution that
can be achieved by a single polarimetric subarray within a
polarimetric radar system with a certain amount of total virtual
channels is generally lower compared to a single-polarized
radar system with the same amount of total virtual channels.
This is because in order to implement polarimetric diversity,
some of these virtual channels need to be dedicated to the
orthogonal polarization.

B. Combined Polarimetric Channel Processing

As the total aperture of a polarimetric MIMO radar system
is subdivided into multiple polarimetric channels, the angular
resolution of each polarimetric channel is limited by the
aperture corresponding to that specific polarimetric channel.
The coupling between the scattering parameters and angle
that is present when processing all channels together, as if
it were a single polarimetric radar system, leads to errors in
the estimation of target azimuth and elevation. This usually
results in coarser angular resolution for a polarimetric radar
when compared to a single-polarized radar system with the
same amount of total virtual channels.

However, the signals received by the individual polarimetric
channels can be combined to increase the resulting angular
resolution compared to the resolution in a single polarimetric
channel. A method to accomplish this, based on the assump-
tion that only one dominant target is present per range—velocity
bin, is shown schematically in Fig. 2.

As shown in Fig. 2, first the single polarimetric channel
processing described in Section II-A is performed to find the
scattering parameters corresponding to the four polarimetric
channels. Subsequently, a new maximum radar cube Scombined
is constructed from the maximum of the amplitudes of the
radar cubes corresponding to all four polarimetric channels,
denoted from sy, to s,y, as shown in the following equation:

Scombined = Max(|syy|, |Sxy|’ |Syx|s |syy|)- (14)

This combined radar cube is then subsequently used to find
the azimuth and elevation at which the return with the highest
intensity is obtained for each range—velocity bin by taking
the maximum over the elevation and azimuth. By combining
all polarimetric channels, the correct angles corresponding
to a target can still be found if no return is present in one
of the channels. Subsequently, for each polarimetric channel,
the phase of the scattering parameters is found for each
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Virtual Channels
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Fig. 2. Block diagram of the proposed combined polarimetric channel
processing method to achieve comparable resolution as a single-polarized
radar with the same array configuration.

range—velocity bin using the azimuth and elevation of the
target found in the last step. The range—velocity spectra of each
virtual channel are then corrected for polarimetric effects on
the measured phase by subtracting the previously found phase
from each corresponding range—velocity bin as shown in the
following equation:

Si,corrected — Si e’ ZSX)I'mM .

15)

Here, s; comrectea indicates the corrected virtual channel radar
cube and S,y max represents the scattering parameter corre-
sponding to the ith virtual channel, found in the range—velocity
bin at the azimuth/elevation angle at which maximum return
was found In Scombined-

Thereafter, digital beam forming can be applied using all
corrected virtual channels to obtain a combined channel radar
cube without polarimetric information, but with higher angular
resolution compared to single polarimetric channel processing.

The limitation of the proposed combined channel processing
method lies in the assumption that only one dominant target
is present per range—velocity bin. When this is not satisfied,
only the polarimetric phase shift of the strongest target within
the range—velocity bin is compensated properly, introducing
errors in the estimation of the other targets that are present in
that same bin, but at different azimuth and elevation angles.
Furthermore, when an observed target does not provide a
significant return in all four polarimetric channels and no
leakage between the polarimetric channels of the radar system
is present, only the channels that show a significant return can
be processed together, thus limiting the achievable resolution
for this type of targets.

Fig. 3 shows the azimuth cut of a simulated scene with
two targets at a range of 15 m. The first and second targets
are located at —10° and +410° azimuth, respectively, with
velocities of —3 and +3 m/s. For simulation purposes, the
scattering parameters used for the first and second target were
a value of 1 and +/10e//9 for S,,, respectively, 4 and
10e//3 for S, +/10e/@/3 and 4¢/ 7/ for S, and 10/ ™/

0 -
“10+
g 20f
Q
<
2
=
&30
=
-40r ———— Combined
— Single Channel
Single-Polarised
50 . . - )
-100 -50 0 50 100
Azimuth [deg]
Fig. 3. Simulated azimuth cut of two targets located at —10° and +10°,

as measured by a single polarimetric channel (red), all polarimetric channels
combined using the proposed method (blue), and a single-polarized array of
the same dimensions (yellow).

and e//? for S,,. The antenna array used in this simulation
is a uniform linear array with 12 virtual channels with half-
A spacing, subdivided equally between the four polarimetric
channels. The return as function of azimuth obtained with this
array is compared in Fig. 3 with the same array but with all
virtual channels belonging to the same polarimetric channel in
order to simulate a conventional single-polarized MIMO radar
system. This figure also shows the estimated azimuth using a
single polarimetric channel. It can be seen that the proposed
combined channel processing method provides a similar level
of azimuthal resolution compared to single-polarized radar,
while also being able to provide coarser-resolution polarimet-
ric information that can be used for classification purposes as
demonstrated in Section V. Furthermore, the received power in
all polarimetric channels is summed coherently, thus providing
better signal-to-noise ratios with respect to a comparable
single-polarized antenna measuring a polarimetric channel that
only provides weak returns.

III. EXPERIMENTAL MEASUREMENTS

This section describes the experimental measurements.
In Section III-A, the polarimetric radar system is introduced
while Section III-B describes the calibration procedure. The
data collection procedure is detailed in Section III-C.

A. Polarimetric MIMO Radar System

To perform polarimetric automotive radar measurements,
a novel polarimetric MIMO radar system was developed in
collaboration with Huber+Suhner (H+S). This radar system is
based on Texas Instruments’ AWR2243BOOST radar evalua-
tion module, which is equipped with an AWR2243 automotive
FMCW radar chip. To enable MIMO radar functionality,
the AWR?2243 has three transmit channels and four receive
channels. Furthermore, the AWR2243BOOST evaluation mod-
ule is stacked on a Texas Instruments DCA1000 processing
board to efficiently transfer the raw data gathered by the
AWR2243’s ADCs to a computer for further processing. The
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TABLE I

WAVEFORM SETTINGS FOR THE RADAR MODULE
USED IN THIS WORK

Start Frequency 77 GHz
Frequency Slope 101.388 MHz/us
ADC Sample Start Time 5.12 ps
ADC Idle Time 7 ps

ADC Sample Rate 22000 ksps
ADC Samples 750
Chirps per Frame 64
Frame Repetition Time 10 ms

radar assembly is subsequently mounted on a tripod, resulting
in it being placed at a height of about 65 cm above ground
level.

The radar system was programmed to use a high-resolution
short-range waveform so that the polarimetric structure of
the target-under-test could be investigated. To this end, the
AWR?2243 chip was set to use a bandwidth of 3.58 GHz,
resulting in a range resolution of 4.2 cm. To achieve a
maximum unambiguous velocity of 7 m/s in combination with
a maximum unambiguous range of 31 m, the AWR2243’s
maximum sample rate of 22 Ms/s, collecting 750 samples per
chirp, in combination with a frequency slope of 101 MHz/us
was utilized. Furthermore, each transmitter was set to transmit
64 chirps in an interleaved fashion to obtain a velocity reso-
lution of 0.22 m/s while keeping the phase change between
channels for moving targets caused by TDM (as mentioned in
Section II) and target geometry changes as small as possible.
A full list of waveform parameters can be found in Table I.

Unlike the regular AWR2243BOOST evaluation module,
the polarimetric MIMO radar used for this work features
a custom antenna array manufactured using 3-D printing
technology by Hubert+Suhner AG [23], [24], [25] instead
of series-fed patch arrays with which the standard evaluation
module is equipped. The custom antenna array designed
by H+S comprises of seven subarrays consisting of eight
open-ended waveguide radiators positioned vertically with
respect to each other to achieve a narrow beam in the elevation
direction. Three of the subarrays function as transmitters,
while the other four function as receivers.

To implement polarimetric capabilities, instead of using
horizontally oriented open-ended waveguide radiators within a
subarray, the radiators are either rotated 45° counterclockwise
with respect to the vertical plane of the transmitters, indicated
as positive diagonal (PD), or 45° in the opposite direction,
indicated as negative diagonal (ND). In this way, an orthogonal
polarization basis is created. An advantage provided by this
diagonal polarization basis is that the radiation patterns of
the ND and PD polarized subarrays are theoretically equal to
each other, which can be exploited for calibration purposes.
Also, as the ND- and PD-polarized subarrays are mirrored
versions of each other, the implementation of both subarrays
is simplified. In this article, the measured return obtained by
transmitting with a YD-polarized subarray and receiving with
an XD-polarized subarray is indicated as an XY-polarized
channel. Here, X and Y can be either N for ND or P for
PD.

A picture of the fully assembled radar system including the
custom-designed 3-D printed antenna can be found in Fig. 4.
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Fig. 4. Picture of the custom polarimetric antenna mounted on a modified
AWR?2243BOOST evaluation module.
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Fig. 5. Virtual array formed by the custom polarimetric antenna as seen in

the direction of transmission. The numbers indicate the corresponding virtual
channel numbers.

The three subarrays in the lower left corner of the antenna are
connected to the transmitting channels of the AWR?2243 chip,
while the four in the upper right corner correspond to the
receiving channels. It can be seen that two of the transmitting
channels are PD-polarized, while the remaining one is ND-
polarized, and that the four receiving channels are equally
split between PD- and ND-polarization. All four differently
polarized channels are offset slightly in height to enable
estimation of elevation when all polarimetric channels are
processed together.

The virtual array formed by the antenna is shown in
Fig. 5. It can be seen that the number of virtual channels
dedicated to each of the four polarimetric channels is unbal-
anced due to the uneven number of transmitting channels
on the AWR2243 chip. Furthermore, all virtual channels
corresponding to a polarimetric channel form dense linear
arrays, thus ensuring that each polarimetric channel can be
processed individually without creating grating lobes in the
visible region. The array achieves a cross-polar isolation in
excess of 20 dB at broadside, which decreases when scanning
at off-broadside angles [26]. Therefore, the data collection
procedures utilized in this work, as presented in Section III-C,
are designed to keep the targets as close as practically possible
to the radar’s broadside direction. Moreover, as the number of
virtual channels per polarimetric channel is relatively limited
due to the limitations of the AWR2243 chip, the angular
resolution of the polarimetric radar is relatively low. Thus,
the polarimetric feature analysis and classification study pre-
sented in Section V is mainly performed in the range-Doppler
domain, as the information in this domain is richer than in the
angular domain.
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B. Calibration

To eliminate the effects on phase and amplitude variations
due to the different feed-line lengths in the antenna subarrays,
the radar system must be calibrated. Unfortunately, simple
measurements of a corner reflector do not suffice for this
purpose, as this target does not change the polarization of the
backscattered sensing wave, thus allowing only for calibration
of the two co-polarized channels. To solve this issue, multiple
different calibration targets with different polarimetric proper-
ties need to be used [26], [27].

Alternatively, instead of using passive calibration targets,
the radar system can be calibrated with a radar target simu-
lator equipped with a vertically polarized horn antenna. This
approach has a few advantages, the first of which is that for
a diagonal polarization basis, all polarimetric channels should
measure the same scattering parameters, thus removing the
need for using multiple different calibration targets. In this
way, the potential errors introduced by misalignments between
calibration targets are avoided. Furthermore, the definition of
an arbitrary phase relation between co- and cross-polarized
channels is no longer required. Second, the radar target simu-
lator allows for simulating a target with a given velocity, which
increases the measured signal-to-noise ratio of the simulated
target, as this is better separated from the static clutter present
in the scene.

Because of these advantages, calibration of the radar system
was performed in this work using an AREGS800A radar
target simulator equipped with an AREGS8-81S horn antenna
front-end manufactured by Rohde&Schwarz. The radar target
simulator was configured to simulate two targets at a distance
of 24 and 28 m, with velocities of 3 and —3 m/s, respectively.
The first target serves as a calibration target, while the latter
target could be used as a verification target. Subsequently,
1000 frames of the simulated targets were captured using
the polarimetric radar system described in Section III-A and
processed. For each of the 12 virtual channels, the mean mea-
sured phase and amplitude over the 1000 captured frames were
computed. The reciprocal of the mean phase and amplitude
could subsequently be used as calibration coefficients for the
virtual channels. Afterward, the found calibration coefficients
were applied to each of the virtual channels and another
set of 1000 calibration frames was processed. It was found
that for the calibration target, the standard deviation for the
worst performing channel was 0.78 dB in amplitude while the
standard deviation of the phase was 5.5°. The mean values for
the amplitude and phase were found to be below 0.03 dB and
0.38°, respectively. For the verification target, the worst case
standard deviations of the amplitude and phase were 0.79 dB
and 5.3°, respectively, while the mean values were below
1.26 dB in amplitude and 1.9° in phase. From these results it
can be concluded that the calibration procedure was successful,
and that systematic errors introduced by differences between
channels such as differing feed-line lengths were appropriately
compensated.

C. Data Collection

To evaluate the effectiveness of polarimetry for classification
of VRUs, multiple classes of VRUs and a car were measured.

Fig. 6. Motorcyclist riding along the measurement area away from the radar.

The measurements were performed in two different campaigns.
The first was focused on pedestrians and bicyclists, while the
second measurement campaign also included measurements
of another class of VRU (motorcyclist) as well as a non-VRU
(car). Furthermore, the first measurement campaign took place
on a grass field in winter time, while the second measurement
campaign took place on an asphalt parking lot during spring
time.

In the first measurement campaign, five different bicyclists
and pedestrians were measured. In the second measurement
campaign, three different bicyclists and pedestrians were
measured, where 2 of the 3 pedestrians and bicyclists also
took part in the first data collection in order to compare
measurement results between both campaigns. Besides this,
during the second measurement campaign, also a motorcyclist
was measured as an additional class of VRU (see Fig. 6),
as well as a car representing an example of a non-VRU target.

In both measurement campaigns, each target was measured
while moving along four different directions with respect to
the radar, namely: toward the radar, away from the radar,
diagonally toward the radar, and diagonally away from the
radar. The diagonal directions are also denoted by the addition
of 45° in the naming convention of the directions. A schematic
drawing of the measurement geometry is shown in Fig. 7. All
measurements were performed with a single object of interest
present within the radar’s field of view as this eliminates
the need for clustering of detections and tracking, which
could potentially form an extra source of error in the final
results. Furthermore, each test object was measured three times
moving along each direction to obtain statistical information.
The measurement procedure can be summarized as follows.

1) Connect the radar system to a power supply and laptop,
configure the radar system with the correct waveform
parameters mentioned in Table I, and mark the mea-
surement course.

2) Let the test object approach the start marker for one of
the four measurement directions, so that the target is at
constant speed during the radar measurements.

3) Start the radar measurements when the test object
reaches the start marker.

4) Stop the radar measurements when the test object
reaches the end marker.

5) Repeat measurements for the measured target moving
along the same direction, for three times from step 3.
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Fig. 7. Schematic representation of the geometry used for polarimetric radar
measurements of moving VRUs. The direction identifiers are indicated in red.
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Fig. 8. Block diagram of the postprocessing steps to estimate polarimetric

features from the radar measurement data.

6) Repeat measurements for the measured target moving
along the remaining three directions from step 3.

7) Repeat measurements for different targets from step 3.

All measurement data were stored locally on a laptop,
which could later be transferred to a workstation computer for
further processing after the measurements had been completed.
Furthermore, the data collected for this work have been made
publicly available and can be found in [28].

IV. MEASUREMENT DATA POSTPROCESSING

To use the data collected during the measurement campaigns
for classification purposes, postprocessing must be applied
first. A block diagram of this procedure is shown in Fig. 8.

The measurement data is processed similar to the single
polarimetric channel processing procedure in Section II-A.
The first step in this procedure is to apply range—velocity
processing to the raw ADC data. As shown in Section II-A,
this can be done by means of FFT over fast time and slow
time dimensions for each virtual channel; for both FFTs,
here a Kaiser window with a beta value of 6 is used. After
transforming the ADC data to the range—velocity domain,
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a velocity-dependent phase correction is applied to compensate
for the phase shift that occurs for moving targets due to TDM,
as mentioned in Section II-A.

Unlike for the single channel polarimetric radar data pro-
cessing procedure in Section II-A, a detector is applied here
to the data before performing elevation—azimuth processing.
By performing detection on the range—velocity spectra of the
individual virtual channels before elevation—azimuth process-
ing, this step needs to be applied only to the range—velocity
bins that contain a detection. This greatly reduces requirements
on memory and computational resources. The detector used
for this purpose first estimates the noise probability density
function using samples from an area in the range—velocity
plane in which no targets were present during the measure-
ments. The bins in the range—velocity spectrum used for this
are those corresponding to velocities in the —7 to —1 m/s and
1 to 7 m/s intervals, and have a range between 15 and 20 m.
Subsequently, from this estimate, the detection threshold is
determined such that the probability of false alarm is 107!,
resulting in a detector with the constant false alarm rate
property. This probability of false alarm was empirically found
to provide a good balance between missed detections and
false alarms. Furthermore, the bins with velocities between
—0.3 and 0.3 m/s are not considered to prevent detections
of static clutter. Also, it should be noted that a detection is
declared when a value above the aforementioned threshold is
found in at least one of the 12 virtual channels, as due to
the polarimetric properties of a target, a target may provide
a stronger return in some virtual channels, while a weaker
return is measured by the virtual channels that correspond to
a different polarimetric channel.

After the detection procedure, elevation—azimuth processing
is applied on the bins at which a detection was declared. As the
apertures of each subarray corresponding to the polarimetric
channels are uniform linear arrays, no elevation information
can be obtained from single polarimetric channel processing.
Therefore, the angular processing is done using steering vec-
tors generated with azimuth values ranging from —90° to 90°
in 1° increments, in combination with an elevation angle of
0°. This angular processing method also allows to combine
the measurement results of all polarimetric channels since they
share an equal angular grid, in contrast to performing angular
processing using FFTs as the subarrays of the polarimetric
channels have different topologies. After angular processing,
the angle for which the sum of the squared absolute values of
the scattering matrix is maximum is computed. The scattering
matrix corresponding to this range—velocity—azimuth bin is
then subsequently stored. This procedure effectively selects the
dominant target within a range-Doppler cell, thus removing the
angular dimension from the processed measurement data. This
also mostly compensates for the different angular resolutions
of the polarimetric channels as additional targets that may
only be visible in polarimetric channels with a high angu-
lar resolution are ignored. Dropping the angular dimension
also provides lower computational and memory requirements
for further processing as an added benefit. The computed
dominant scattering matrices of each range-Doppler bin in
which a detection took place are subsequently used to compute
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several polarimetric features, namely the polarimetric power
distribution and corresponding polarimetric power ratios. Fur-
thermore, also the a, b, ¢, and d values resulting from the
Pauli decomposition and the H, «, and A features from the
Ha A-decomposition are considered [29].

The target polarimetric power distribution Py, for the xy-
polarized channel is defined as the total backscattered power
measured by each polarimetric channel, computed over all N
range-Doppler bins with detections corresponding to a target
within a single frame. This can be mathematically formulated
as follows:

v
Poy =2 IS4l

i=1

(16)

where N represents the total number of detections correspond-
ing to the observed target within a frame, while S)’;y indicates
the scattering parameter corresponding to the ith detection.

From the target polarimetric power distribution, the target
polarimetric power ratio for the xy-polarized channel Q,,
can be found. This is defined as the target polarimetric power
distribution normalized by the total power scattered back by
the target over the N detections. This can be mathematically
expressed as shown in the following equation:

Py .an

S (ISl 185+ I3+ [2]7)
In this equation, the subscripts # and v are also indicators
of the polarization basis, where u corresponds to x and v to
y to indicate the sum of the squared magnitudes of all four
elements of the scattering matrix. The polarimetric power ratio
is independent of the total amount of returned power and thus
represents the polarimetric composition of a target. This allows
to compare the polarimetric composition of weak targets such
as pedestrians, with those of stronger targets like vehicles.
Furthermore, the scattering matrices belonging to the indi-
vidual detections within a frame can be decomposed to
analyze the underlying scattering mechanisms corresponding
to a detected target. One of these decompositions is the Pauli
decomposition, which decomposes the scattering matrix in
four individual scattering mechanisms [29]. As the polarimet-
ric radar system used in this work measures the scattering
parameters in a diagonal polarization basis, the first of the
Pauli features, a, represents the contribution of odd-bounce
scattering such as that occurring with scattering from a sphere
or plane. The second feature, b, represents scattering from
a dihedral with an orientation of 45° with respect to the
horizon, while ¢ represents scattering from a dihedral with
an orientation of 0° or 90°. Finally, d corresponds to the
asymmetric components of the scattering matrix. The a, b,
¢, and d features can be computed as shown in the following
equation:

Qxy =

_ Spp+ Snw
V2

b— Spp — Snn
V2

. Spn + Snp

/2

.Spn — Snp

Another polarimetric decomposition that can be applied
to data from the measurements is the so-called HoA-
decomposition. This decomposition operates on the coherency
matrix found from a set of scattering matrices and computes
the scattering entropy H, scattering angle «, and scattering
anisotropy A. These features are found by performing an
eigenvalue decomposition on the coherency matrix from which
three eigenvalues A, A;, and A3 and their corresponding
eigenvectors are obtained. Here, subscript 1 corresponds to
the largest eigenvalue, while 3 corresponds to the small-
est eigenvalue. These eigenvalues are then used to compute
three pseudo-probabilities, which are defined as the eigen-
value divided by the sum of the three eigenvalues. More
information on the computation of the coherency matrix and
pseudo-probabilities can be found in [22] and [29]. The
entropy can then subsequently be found as shown in the
following equation:

(18)

3
H=-"" Plog;(P).
k=1

19)

The entropy represents the randomness of the polarimetric
response from a target. If all scatterers corresponding to a
target are equal, then the coherency matrix will have only
one strong eigenvalue leading to an entropy of 0. Conversely,
a target comprising of many different polarimetric scatterers
will have a high polarimetric entropy.

To compute «, first for each eigenvector a scattering angle
oy is found. This is done by taking the arccosine of the
modulus of the first value of the eigenvector. Using the
pseudo-probabilities in combination with these three scattering
angles, « can be found using the following equation:

3
o = Z PkOlk.
k=1

When considering a coherency matrix obtained from scatterers
corresponding to the same statistically underlying scattering
mechanism, the angle o can be used to identify the nature
of this scattering mechanism. In the case of performing the
Hoa A-decomposition on all detections within a frame, this is
no longer necessarily true, as some parts of the measured target
may act like a dipole while others act as a flat plate. However,
in this scenario o may still contain useful information on the
average scattering mechanism of the observed target.

Finally, the polarimetric anisotropy indicates the relative
importance of the second and third largest eigenvalue and can
be computed via the following equation:

(20)

A_)\z—/\a

= . 21
A+ A3 1)

The polarimetric anisotropy can help to distinguish targets
when for example the first eigenvalue is relatively large, thus
leading to low entropy, while the second and third eigenvalues
are the same or differ significantly from each other.
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TABLE I

PERCENTAGE OF TOTAL DETECTIONS BY COMBINING DETECTION
RESULTS OF THE POLARIMETRIC CHANNELS INDICATED BY THE
Rows AND COLUMNS

PP PN NP NN
PP | 99.8430 | 99.8517 | 99.8641 | 99.9889
NN | 99.9889 | 99.8961 | 99.9160 | 99.8894
V. RESULTS

In this section, the measurement results are analyzed.
First, an analysis of the polarimetric data is presented in
Section V-A. Subsequently, two classification methods are
applied to the measurement data to quantify the information
content provided by the polarimetric channels in Sections V-B
and V-C. Specifically, in Section V-B, classification is per-
formed on the polarimetric power features, while Section V-C
considers classification based on the range—velocity signature
using a CNN.

A. Polarimetric Analysis

As described in Section IV, a detection is declared if a
detection takes place in any of the virtual channels. However,
it is also of interest to consider to what extent including addi-
tional polarimetric channels with respect to the co-polarized
channels of the radar increases the amount of total detections,
in order to investigate the benefits in this regard compared
to single-polarized radar systems. Table II shows the amount
of detections obtained by combining a co-polar channel and
another of the remaining three polarimetric channels as a
percentage of total detections obtained by using all four polari-
metric channels during the second measurement campaign.
It can be seen that including extra polarimetric channels with
respect to only the NN- or PP-polarized channels increases
the amount of detections slightly. It can be also seen that
including the orthogonal co-polarized channel increases the
amount of detections the most. This can likely be explained
by the observed targets presenting a predominantly strong
co-polarized radar cross section.

The first polarimetric feature that is considered is the
evolution of the target polarimetric ratios, as defined in (17),
as a function of time, as this is an indicator of the stability of
the measurement results and the influence of noise. Namely,
the target pose/shape with respect to the radar is assumed to
remain relatively similar from frame to frame, as the frame
repetition time used in these measurements is 10 ms as shown
in Table I. Fig. 9 shows the change of the target polarimetric
ratios of a bicyclist cycling toward the radar during the last
50 frames measured by the radar. From this figure, it can be
seen that the target polarimetric ratios in most cases remain
relatively stable from frame to frame, whereas over a longer
time span more significant differences are observed. The latter
is likely the result of changes in the target pose as the
movement progresses during the data recording.

Subsequently, the distribution of the polarimetric ratios in
the range—velocity spectrum can also be considered. This can
be done by analyzing the polarimetric ratios of the individual
detections. They are computed as the ratio of the squared
magnitude of the considered scattering parameter divided by
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Fig. 9. Target polarimetric ratios as a function of time for a bicyclist cycling
toward the radar; the recorded time corresponds to 50 frames.

the squared magnitude of all four scattering parameters for
just a single detection, in contrast to the target polarimetric
ratio which is computed using all detections corresponding
to a target within a frame. Fig. 10 shows the distribution of
the polarimetric ratios of each detection in the range—velocity
plane. Specifically, in this red, green, and blue (RGB) image,
the red channel corresponds to the PP-polarized ratio, the
green channel corresponds to the sum of the polarized ratios of
the cross-polarized channels, and the blue channel represents
the NN-polarized ratio. Thus, the color of each pixel in
this figure results from the combination of these three color
channels depending on the values of the three polarimetric
ratios; for example, a pixel with equal PP- and NN-polarized
ratios and negligible cross-polar ratios would map to the
color purple as a summation of red and blue colors. The
picture on the left-hand side represents a cyclist cycling on
a regular bicycle, while the picture on the right-hand side
shows a person cycling on a folding bicycle. Even though the
bicycles differ from each other, it can be seen that they share
a similar polarimetric structure. It can be seen for instance
that the rear part of the front wheel of the bicycle provides
relatively strong cross-polarized backscattering, while the front
part tends to provide a stronger return in the co-polarized
channels. Furthermore, it can also be observed that the frame
of the bicycle and the cyclist itself also lean toward higher
co-polarized backscattering.

A similar comparison between two pedestrians is shown
in Fig. 11, adopting the same color mapping of different
polarimetric ratios to RGB colors as in Fig. 10. Here it can be
seen that the forward swinging limbs exhibit relatively high
co-polarized ratios as well as the body itself. The detections
corresponding to the backward swinging limbs (i.e., the area
with low velocity as well as furthest range) exhibit slightly
increased cross-polarized polarimetric ratios with respect to
the main body.

Another way of analyzing the involved scattering mecha-
nisms is by considering the Pauli features. The normalized
Pauli features for a cyclist riding toward the radar are shown
in Fig. 12. From this figure, it can be seen that the a and
b features are strongest for the cyclist and bicycle frame,
while c¢ is highest for the rear part of the bicycle front wheel.
This indicates that the bicycle frame and the cyclist mostly
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Fig. 10. Distribution of polarimetric ratios of individual detections in the
range—velocity plane for cyclists cycling toward the radar on a regular bicycle
(left) and a folding bicycle (right). The value of each pixel is given by the
combination of the RGB channels representing respectively the PP-polarized
ratio, the sum of PN- and NP-polarized ratios, and the NN-polarized ratio.
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Fig. 11.  Distribution of polarimetric ratios of individual detections in
the range—velocity plane for two different pedestrians walking toward the
radar. The value of each pixel is given by the combination of the RGB
channels representing, respectively, the PP-polarized ratio, the sum of PN-
and NP-polarized ratios, and the NN-polarized ratio.

provide odd-bounce scattering in combination with scattering
mechanisms corresponding to 45°-oriented dihedrals. For the
bicycle wheel and spokes, the main scattering mechanism
corresponds with scattering from 0°/90°-oriented dihedrals.
Furthermore, it should be noted that the Pauli features are
relatively sensitive to noise in the phase measurements of the
scattering parameters. The Pauli feature d shows specifically
the impact of this characteristic, as for monostatic radar this
feature should show no returns. Due to the phase sensitivity
of this feature, a phase error of 30° between the measured
cross-polar scattering parameters, corresponding to a distance
of about 0.3 mm in free space at 77 GHz, already limits the
lower bound of the d-feature at about 11 dB below the c-
feature. At mm-wave frequencies, this type of measurement
error could for example be caused even by thermal expansion
effects of the radar board, or small changes between the
tightness of the mechanical fasteners after adjustments to

account for vibrations when transporting the radar to the
measurement campaign location.

Subsequently, the clusters formed by the target polarimeric
ratios, computed using all detections within a frame as defined
in (17), are considered. Figs. 13 and 14 show the clusters
formed by the polarimetric ratios of cyclists and pedestrians
as obtained during the first measurement campaign. From these
two figures, it can be seen that a cyclist results generally in
more cross-polarized backscattering compared to the pedes-
trian. This can be potentially explained by the vertical and
horizontal metal structures of the bicycle frame and wheels,
which convert part of the diagonal polarized waves of the
radar used in this work to horizontally and vertically polarized
waves.

As different classes of targets, besides having different
polarimetric ratios, can also return different amounts of power,
it is useful to consider this aspect in deriving polarimetric
features and then cluster the results. This can be done by
looking at clusters formed by the total backscattered power
of each channel as defined in (16). Figs. 15 and 16 show
this for all target classes moving toward and away from the
radar as measured during the second measurement campaign.
It can be seen that when also considering the magnitude of the
backscattered power, the cluster formed by the car is relatively
well separated from the VRU classes. These figures also show
that the measured backscattering from the motorcycle behaves
similar to that of bicycles, but usually with a stronger return
and less variation in cross-polarized scattering.

Comparing Figs. 15 and 16, it can be observed that when
also considering the cross-polarized component of the scat-
tering matrix, the separation of the clusters increases and thus
that the cross-polarized channels are potentially able to provide
useful information for classification purposes. For example,
when considering Fig. 15, it is difficult to distinguish the
motorcycle and bicycle from each other, but when taking the
cross-polarized channel also into consideration it can be seen
that the motorcycle becomes more easily separable.

This observation is further reinforced by ranking the polari-
metric power features in decibel scale using the Minimum
Redundancy Maximum Relevance algorithm [30]. Applying
this algorithm to the four polarimetric power features, it is
found that the polarimetric power in the PN-polarized channel
is the most important, with an importance score of 0.5817,
followed by that of the PP-, NP-, and NN-polarized chan-
nels, with importance scores of 0.4045, 0.3806, and 0.2434,
respectively.

To evaluate the usefulness of measuring both cross-polarized
channels, as for an ideal monostatic radar system these features
should be equal to each other, the correlation matrices of the
polarimetric power are also computed for each class. It is
found that for the cyclist, car, and motorcyclist classes, the
correlation coefficients of the cross-polarized channels are
larger than those of the co-polarized channels, namely 0.9735,
0.9402, and 0.9620 for the cross-polarized channels compared
to 0.9731, 0.8858, and 0.9220 for the co-polarized channels,
respectively. In contrast, for the pedestrian class, the correla-
tion coefficients of the co-polarized channels are higher than
those of the cross-polar channels with values of 0.9432 and
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Fig. 13.  Clusters formed by the polarimetric ratios for the PP- and

NN-polarized channels of cyclists and pedestrians moving toward and away
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Fig. 14. Clusters formed by the polarimetric ratios for the PP- and
PN-polarized channels of cyclists and pedestrians moving toward and away
from the radar during the first measurement campaign.

0.8832, respectively. This could be explained by the gener-
ally weak cross-polarized and strong co-polarized radar cross
sections of pedestrians, resulting in the cross-polarized polari-
metric power measurements being affected by noise more
significantly.

When comparing the clusters formed by the H, «, and A
features, shown in Figs. 17 and 18, to the clusters formed
by polarimetric power, less separation between clusters is
observed. Although each cluster class occupies a specific
section in the feature space formed by H, «, and A features,
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Normalized Pauli features for a cyclist riding toward the radar in dB scale, normalized with respect to the largest value of the four Pauli features.

Or

o
=20t
Z.
Z
Cyclist
230 . Pedestrian
Motoreycele
- . Car
40—
40

-20 -10 0
PP [dB]

Fig. 15. Clusters formed by the polarimetric power received by the PP and
NN channels of a car, a motorcycle, cyclists, and pedestrians moving toward
and away from the radar during the second measurement campaign.
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Fig. 16. Clusters formed by the polarimetric power received by the PP and
PN channels of a car, a motorcycle, cyclists, and pedestrians moving toward
and away from the radar during the second measurement campaign.
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classification based exclusively on these features may be
difficult due to the significant overlap between clusters. It can
be seen that pedestrians generally have lower entropy than
the other classes, as well as a high anisotropy. This indicates
that the detections corresponding to the pedestrian within a
frame generally have the same polarimetric properties. In con-
trast, the motorcyclist and cyclist classes have the highest
entropy values, indicating that these classes comprise mixtures
of different scattering mechanisms. When considering the
anisotropy of the bicycle and motorcycle class, it can be
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Fig. 17. Clusters formed by the H and « features of a car, a motorcycle,
cyclists, and pedestrians moving toward and away from the radar during the
second measurement campaign.
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Fig. 18. Clusters formed by the H and A features of a car, a motorcycle,

cyclists, and pedestrians moving toward and away from the radar during the
second measurement campaign.

seen that the anisotropy values generally range from 0.1 to
0.8, which indicates that scattering matrices corresponding
to detections within a frame of these classes show relatively
random scattering characteristics.

B. Classification Using Polarimetric Power

To investigate the effectiveness of polarimetry for clas-
sification purposes, first a Bayesian classifier based on the
polarimetric power feature in dB as shown in Figs. 15 and 16
is employed. This classifier uses Bayes’ theorem to compute
the probability an observation belongs to a certain class as
shown in the following equation:

p(cus) = PEPEIC)

P(¥)

In this equation, X represents the observed data while Cj
indicates the kth class. Furthermore, P(Cy) is the prior belief
of the probability to which class the observed data belong
to, P(x|Cy) the likelihood of the observed data belonging to
class Cy, and P(X) the probability of observing the observed
data. This is then used to compute the posterior belief of the
probability to which class the observed data belongs, indicated
by P(Ci|X). The posteriors for each class are calculated
and the predicted class is then chosen to be the class for
which the posterior is the highest. This classifier can be
used iteratively over multiple frames, by updating the priors

(22)
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Fig. 19. Confusion matrix for the proposed Bayesian classifier based on the
normalized polarimetric power in dB using all polarimetric channels.

with the posteriors found for the previous frame. To compute
the likelihood P (x|Cy), first the mean vector and covariance
values for each cluster formed by the polarimetric power
feature in dB are computed. These are then used to assign a
multivariate normal distribution to each class. The likelihood
can then be determined by evaluating the pdf for the observed
data. The probability of observing X can then subsequently be
determined by multiplying the likelihoods for all classes with
their respective priors and summing over them.

In this instance, the priors were selected to be equal for
each class. Furthermore, a single frame was used to deter-
mine single-frame classification performance. Fig. 19 shows
the confusion matrix for this classification approach. As the
single-frame classification performance is considered in this
confusion matrix, the total number of data points in this matrix
is equal to the total amount of frames collected during the
second measurement campaign. From this figure, it can be seen
that 1264 frames corresponding to cars out of the 1345 total
frames containing a car are correctly identified as such, with
a corresponding F1-score of 94.7%. Similarly, for pedestrians,
the Fl-score is 87.3%. For cyclists and motorcyclists, this
percentage is significantly lower at 64.2% and 63.2%, respec-
tively. This is likely due to the fact that the cluster formed by
the data points corresponding to the cyclists class is spread
over a wider area, leading to lower values for the probability
density function, which then results in lower probability of
classification compared to the motorcyclist class.

To compare classification performance of a polarimetric
radar system to a single-polarized counterpart, the same clas-
sification procedure was applied to the polarimetric power
feature using only the PP-polarized channel. The resulting
confusion matrix is shown in Fig. 20. It can be seen that a
similar Fl-score of 92.6% for cars is achieved compared to
the fully polarimetric case, but that Fl-scores of the VRU
classes have dropped significantly. These values are 73.0%,
34.2%, and 6.7% for the pedestrian, motorcyclist, and cyclist
respectively, resulting in a decrease of respectively 14.3, 29.0,
and 57.5 percentage points. Thus, especially the cyclist class
suffers significantly from not considering the polarimetric
features.

From these results, it can be concluded that polarimet-
ric features are able to aid in the classification process of
VRUs. It should be noted that the classification performed in
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Fig. 20.  Confusion matrix for the proposed Bayesian classifier based on

the normalized polarimetric power in dB using only the PP-polarized channel
(i.e., single polarized approach).

this section is based solely on polarimetric features. Using
these features in combination with other (non)polarimetric
features and more sophisticated classification procedures could
increase classification performance even further.

C. Classification Using Range—Velocity Signatures

Instead of computing a single feature from all detections
within a frame as done in Section V-B, classification can
also be performed directly on the range—velocity signatures
within a frame itself. This approach allows to exploit the
(polarimetric) structure of the range—velocity signature, which
also can contain useful information for classification.

To investigate the information content provided by the
polarimetric structure/patterns formed by the range—velocity
signatures, a classifier based on a simple CNN architecture is
used. The architecture of the proposed CNN can be modeled
by five layers, namely in order: an input layer, a convolu-
tional layer with 32 3 x 3 filters, a fully connected layer
with four outputs, a softmax layer to act as a nonlinear
activation layer, and a final classification output layer. The
input to the network is a 3-D tensor, where the first and
second dimensions correspond to range and velocity, while the
third represents each polarimetric channel. Also, an equivalent
CNN for single-polarized radar data was setup with the same
architecture, which uses only one of the four polarimetric
channel.

The input data to the networks was normalized in two
ways, in decibel scale and polarimetric ratios. For the decibel
normalization, the frames are first transformed to decibel,
and subsequently scaled so that the strongest detection in the
strongest polarimetric channel within the frame corresponds
to a value of 1, while the weakest return in the weakest
polarimetric channel of that same frame corresponds to 0. For
the single-polarimetric reference, the PP-polarized layer of the
normalized data was used.

The second normalization method uses the polarimetric
ratios of each detection. As the polarimetric ratios for each
detection sum to 1, no further normalization is required. For
the single-polarized variant of the network, all detections
were given a value of 1. This means that in this case both
single-polarized and fully polarized classification networks
have the same shape information, obtained using all polari-
metric channels, whereas the fully polarized network also has
access to the polarimetric ratios of the detections.

IEEE TRANSACTIONS ON RADAR SYSTEMS, VOL. 3, 2025

095+
(o}
5 091
Q
%
I
S085¢
— Fulll — — — Single 1
— Full2 — — — Single 2
0.8+ Full 3 Single 3
— Full4 — — — Single 4
——Full5 — — — Single 5
0.75 1 1 1 1 1
0 500 1000 1500 2000 2500
Iterations
Fig. 21. Fl-score of the test set for decibel-scale input normalization after

the indicated number of completed training iterations for both fully and
single-polarized classifiers.

For both normalization methods, the data was split into
five different test and training sets on which both the fully
and single-polarized classifiers were trained, resulting in ten
trained networks. Each of the splits was chosen such that for
each class, 90% of the frames corresponding to that class
were used for training, while the remaining 10% was used for
testing, resulting in each test set containing 135, 296, 103, and
600 frames corresponding to the car, cyclist, motorcyclist, and
pedestrian class, respectively. This allows for evaluating the
spread in classification performance due to the difference in
training and test datasets, where one training dataset may result
in a slightly better test accuracy than another. Furthermore,
training was performed with the stochastic gradient descent
optimizer, a learning rate of 0.001, and a mini-batch size of
128. Each network was trained for 30 epochs at which no
large improvements in test accuracy were observed anymore,
and hence the training process was stopped.

Fig. 21 shows the Fl-scores for the test sets as a function
of the number of training iterations performed for decibel-
scale normalization. It can be seen that both single- and
fully polarized classifiers achieve a similar mean Fl-score,
of respectively 97.2% and 98.2%. Thus, the fully polarized
classifier achieves a slightly better result. It can also be noticed
that the fully polarized network is able to achieve higher F1-
score earlier than the single-polarized one, thus indicating that
useful information is present in the polarimetric channels for
classification purposes.

Fig. 22 shows that for the polarimetric ratios, similar
performance between the fully and single-polarized classifiers
is achieved of respectively 98.6% and 99.7%. In contrast
to decibel-normalized data, the single-polarized network per-
forms better for the ratio-normalized data compared to the
fully polarimetric network. Also, the single-polarized network
achieves higher test set F1-score with fewer iterations than the
fully polarimetric classifier.

From this, it can be concluded that the shape of the
range—velocity signature is most likely the most signifi-
cant factor in achieving good classification performance, and
that in this case the ratio information “distracted” the fully
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Fig. 22. Fl-score of the test set for polarimetric ratio input normalization

after the indicated number of completed training iterations for both fully and
single-polarized classifiers.

polarimetric network. This is further supported by the results
obtained from the decibel-scaled data, since other polarimetric
channels may contain strong returns that are weak in the
channel used by the single-polarized classifier, thus enhancing
the contrast of the range—velocity signature. Thus, this shows
that polarimetric radar does result in better classification per-
formance using a simple CNN-based classifier as the diversity
in polarimetric channels results in more detections, and there-
fore a higher contrast range—velocity signature, which may be
missed when using only a single-polarized radar system. The
lagging classification performance of the fully polarimetric
network for the ratio-normalized data shows that in order to
properly exploit the polarimetric information, more complex
polarimetric features and/or networks are likely needed.

Figs. 23 and 24 show the confusion matrices for the
decibel-normalized input networks generated by summing the
classification results of all five classifiers of their correspond-
ing test sets, thus resulting in a total amount of 675, 1480,
515, and 3000 data points for the car, cyclist, motorcyclist,
and pedestrian class, respectively. Fig. 23 shows the results
for the fully polarized classifier, while Fig. 24 shows the
results for the single-polarized classifier. It can be seen that
for both classifiers most misclassifications occur between
cyclists and motorcyclists. This is expected as the shapes
of the range—velocity signatures of cyclists and motorcyclists
are similar to each other. Similar behavior is observed for
the ratio-based fully and single-polarized classifiers shown in
Figs. 25 and 26, respectively.

To summarize, Table III shows the Fl-scores achieved by
the networks. It can be seen that the Fl-scores of all classes
are relatively similar, with the Fl-scores for the motorcyclist
being the lowest. This can be explained by this class having
the least available frames for training and testing out of
all classes, while having a similar signature as the cyclist.
Furthermore, it can be seen that the Fl-scores are highest
for the single-polarized ratio-normalized input classifier, thus
further reaffirming the explanation provided in the previous
paragraphs.
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Fig. 23.  Confusion matrix for the proposed CNN-based classifier using the
fully polarimetric decibel-normalized input data format.
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Fig. 24. Confusion matrix for the proposed CNN-based classifier using the
decibel-normalized input data format with only a single polarimetric channel.
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Fig. 25. Confusion matrix for the proposed CNN-based classifier using the
fully polarimetric ratio-normalized input data format.
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Fig. 26. Confusion matrix for the proposed CNN-based classifier using the
ratio-normalized input data format with only a single polarimetric channel.

Finally, the importance of the cross-polar polarimetric chan-
nels for classification is considered. To this end, instead of
training the single-polarized decibel-normalized network with
only the PP-polarized polarimetric channel, this network was
modified by adding an extra input layer for the NN-polarized
channel. This resulted in F1-scores of 99.9%, 97.7%, 93.7%,
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TABLE III

F1-SCORES ACHIEVED BY FULLY AND SINGLE-POLARIZED CLASSIFIERS
USING DECIBEL- AND RATIO-NORMALIZED INPUT DATA

dB Scaled Ratio Scaled

Full Single | Full Single
Car 0.999 | 0.999 0.999 | 0.999
Cyclist 0.982 | 0.971 0.986 | 0.997
Motorcyclist | 0.949 | 0.917 0.960 | 0.990
Pedestrian 1.000 | 1.000 1.000 | 1.000

and 100% for the car, cyclist, motorcyclist, and pedestrian
class, respectively. From this, it can be concluded that there is
indeed to a certain extent information present in the depolar-
ization caused by a target, as the Fl-scores are slightly lower
than those obtained with its fully polarized counterpart and
slightly higher than its single-polarized version.

VI. CONCLUSION

In this article, a novel method for classifying VRUs
using polarimetric MIMO radar is proposed. To this end,
a signal processing pipeline was proposed using virtual chan-
nels that correspond to the same polarimetric channel. The
method comprises of range—velocity processing using FFTs
and angular processing using digital beam forming, including
a velocity-dependent phase correction to account for phase
changes of moving targets that occur due to TDM used in
automotive radar. To reduce loss of angular resolution that
occurs when using a polarimetric radar, a combined polari-
metric channel processing method is also introduced. This
method allows to successfully enhance the angular resolution
compared to single-polarimetric channel processing. It is also
shown that when a radar system provides good polarimetric
diversity, it is possible to outperform single-polarized radar
systems for targets that have low returns in the polarimetric
channel of the single-polarized system while providing a
strong return in others.

This processing pipeline has been applied to the data coming
from a polarimetric MIMO automotive radar, which was devel-
oped in collaboration with Huber+Suhner AG based on the
AWR2243BOOST module by Texas Instruments. The devel-
oped radar uses a diagonal polarization basis and is calibrated
using a new active calibration method, allowing to calibrate
all virtual channels at once, independent of polarization. Using
this radar system, multiple different moving target classes
were measured, namely, pedestrian, cyclist, motorcyclist, and
car. From their measurements, multiple different polarimetric
features were extracted and analyzed. It is found that the polar-
ization ratios of pedestrians are relatively high, while other
classes comparatively provide more cross-polar backscattering.

Using exclusively the proposed feature of target polarimetric
power, it is shown that a Bayesian classifier was able to
achieve an F1-score of 94.7%, 87.3%, 63.2%, and 64.2% for
cars, pedestrians, motorcyclists, and cyclists, respectively. It is
found that by not including the polarimetric properties, the F1-
scores of the VRU classes dropped significantly, especially in
the case of cyclists, which decreased from 64.2% to 6.7%.
The F1-scores for pedestrians and motorcyclists dropped from
87.3% to 73.0% and from 63.2% to 34.2%, respectively.
From this, it can be concluded that polarimetric information
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provides beneficial information for VRU classification and that
it can be used to boost classification performance compared
to single-polarized radar systems. Additionally, a CNN-based
classifier was also used to classify the measured targets,
exploiting the “spatial” distribution of polarimetric features in
their range—velocity spectra. Here, it was found that polari-
metric radar is beneficial as it is able to provide clearer
range—velocity signatures due to polarization diversity. To fully
exploit polarimetric information available in range—velocity
signatures, more complex polarimetric features and/or a more
complex network architecture are likely required.

Even though the classifiers have been applied to mea-
surement data with one object per frame, the proposed
classification procedures can be extended to scenarios with
multiple targets by implementing a clustering step after detec-
tion to separate multiple targets. The proposed classifiers
can then subsequently be applied to the individual clusters.
This could in turn be used to enhance subsequent tracking
steps, as polarimetric features provide an extra source of
distinguishing information which could for example help with
assigning the correct tracks to two clusters that merge and then
separate again, or help with assigning a suitable target motion
model to a selected cluster.

Furthermore, to fully extract maximum performance from
polarimetric MIMO radar systems, although negligible in the
measurement results presented in this work, compensating
the impact of nonlinear effects that can occur in FMCW
waveforms due to practical limitations of chirp generation
circuitry may also be considered in future research.
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