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Weather information latency during flight in general aviation (GA) has resulted in 
numerous incidents. Hands-free automated speech recognition (ASR) systems 
have the potential to help overcome this challenge and facilitate rapid weather-
related information exchange. However, it is unclear to what extent ASR systems 
can support pilot communication in such noisy environments. The goals of this 
study were to (1) evaluate the performance of 7 commercially-available ASR 
systems to recognize weather phrases during GA operations and (2) determine 
whether speech-to-noise (S/N) ratio, flight phase, and accent type modulate 
system performance. Overall, the highest accuracy percentage achieved by any 
system was 72%, when the S/N ratio was at least 3/2. This research can help to 
inform the selection and development of next-generation technologies to be used 
in safety-critical, information-rich domains. 
 
For more than two decades, adverse weather conditions has been cited as one of the most 

frequent causes of fatal accidents among general aviation (GA) pilots (e.g., Duke & George, 
2016; Federal Aviation Administration, 2010) To help improve safety, GA pilots need to be 
aware of the weather conditions along their flight path. Traditionally, pilots are provided with 
weather briefings prior to flight and may receive updated weather information from Flight 
Service while flying (Ahlstrom, Ohneiser, & Caddigan, 2016). However, to date, weather 
information latency during flight, i.e., the time delay between flight environment weather 
conditions and the presentation of this information on cockpit displays, still represents a major 
problem in GA and limits the decision making abilities of pilots.  

 
The emergence of NextGen technologies may offer pilots tools to improve their 

situational awareness and result in better real-time strategizing. For example, mobile devices and 
tablets are increasingly able to support aviation software that can inform pilots as new weather 
information becomes available. In addition, not all NextGen advancements require manual 
interactions. Automated speech recognition (ASR) technology is one particular development that 
can assist with activating commands and quickly obtaining critical information. These systems 
translate natural spoken language/words into text (Këpuska, 2017), which can then be used to 
execute specified functions. The benefit of hands-free interactions is especially important in the 
context of extreme weather conditions during flight, when pilots’ cognitive and manual workload 
are already high. Recently, commercial ASR systems, such as Google Cloud Speech API and 
Microsoft Bing Speech API, have been developed and used in applications, such as portable 
devices, smart homes, and autonomous vehicles (Këpuska, 2017; Kimura, Nose, Hirooka, Chiba, 
& Ito, 2019). Significant progress in the development of artificial intelligence and machine and 
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deep learning technologies has resulted in these systems achieving detection rates as high as 90% 
(Yu & Deng, 2016). 

 
 In aviation, previous work has investigated the use of speech recognition systems in flight 
(e.g., Arthur III, Shelton, Prinzel III, & Bailey, 2016) in both real-world and laboratory 
environments, but not with respect to specific weather-related communication. One other open 
question regarding ASR systems in flight is the extent to which they can perform in noisy 
environments (Hansen, 1996). The goal of this study was, therefore, to determine the 
effectiveness of commercially-available speech recognition systems to support weather-related 
communication in GA.  
 

Method 
 
Participants 
 

Thirty participants from Purdue University and a multidisciplinary research project team 
volunteered to take part in this study. All participants were required to be fluent in English. The 
30 participants were divided into 6 accent/dialect groups based on their geographical origins 
(East Asia, India, Latin America, Northern and Southern U.S, and UK/Australia/South Africa). 
This study was approved by the Purdue University Institutional Review Board (IRB Protocol ID: 
1804020515). 
 
Apparatus and Test Stimuli 
 

Speech recognition system selection. During an initial market analysis phase, 50 
potential commercially-available systems were identified based on accessibility (e.g., 
downloadable), capability (e.g., performance/accuracy), interface design, and cost. The final 
selection of systems was focused on: speaker-independent, customizable vocabulary database, 
platform type, and performance in noisy environments. In total, the following 7 systems were 
chosen for evaluation: Braina Pro; Dragon NaturallySpeaking (with and without speech training 
component); Google Cloud Speech API; Microsoft Bing Speech API; Houndify; Lily Speech.  

 
Speech & Aircraft nose file generation. A human-subject experiment was conducted to 

create samples of spoken weather-related phrases. In particular, the 30 participants were recorded 
reciting 35 separate weather-related phrases commonly used by GA pilots (e.g., ‘show PIREPs’, 
‘show convective SIGMET’, etc.). An aviation quality headset (i.e., ASA AirClassics HS-1A) 
was used to make these recordings in a quiet laboratory environment. At a different time, 
background aircraft cockpit noise samples were also recorded during the taxi, cruise, and takeoff 
flight phases of a test flight carried out at The Ohio State University airport (Don Scott Field). 
The intensity range of these samples was 95-124 dB. The device used to create these recordings 
was a Sony ICD-PX333 Digital Voice Recorder.  
 

Test stimuli. The recorded speech files and aircraft cockpit noise samples were digitally 
combined using, Audacity 2.2.2, to create the “test stimuli.” The goal was to evaluate conditions 
in which: a) the background noise was louder than the speech (S < N), b) the noise and speech 
volumes were the same (S = N), and c) the speech was louder than the noise (S > N). To this end, 
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the combined speech and noise file was adjusted to different speech-to-noise (S/N) ratios in each 
of the three categories. Specifically, 9 S/N intensity ratios (1/2, 5/8, 3/4, 7/8, 1/1, 5/4, 3/2, 7/4, 
2/1) were initially selected based on psychophysical research involving the differentiation 
between two concurrent stimuli (Biberger & Ewert, 2015; Bradley, Reich, & Norcross, 1999). 
Also, a baseline condition with only speech (no background noise) was generated. 

 
Factors selection. All files were processed internally within the 7 speech recognition 

software packages and recognition accuracy rate was calculated. After preliminary investigation, 
8 S/N ratios (1/2, 5/8, 3/4, 1/1, 5/4, 3/2, 2/1, and the baseline condition) and 2 types of flight 
phases (taxi and cruise) were selected, because no statistically significant differences were found 
between adjacent S/N ratio and flight phases and those that were excluded. 
 
Experimental Design 
 

Overall, the experiment employed a 2 (flight phase) × 8 (S/N ratio) × 7 (system) × 6 
(accent) full factorial design. Flight phases, S/N ratios, and systems were within-subject 
variables, and accent was a between-subject variable. The 6 accent/dialect groups were 
determined based on self-reported information provided by participants prior to the experiment. 
Sixteen auditory files were created for each participant (2 flight phases and 8 S/N ratios). This 
resulted in a total of 480 files and 3,360 total runs. 
 
Procedures 
 

Each participant first signed a consent form. Next, they familiarized themselves with the 
35 phrases (i.e., pronunciation and sequence). Once participants indicated that they were ready to 
record, the experimenter left the room and the participant started and stopped the recordings as 
instructed. All phrases were read using participants’ normal speaking volume (~60 dB). 

 
Data Analysis 
 

The dependent variable was phrase accuracy rate (PAR), i.e., the percentage of phrases 
correctly recognized by the software out of the total number of phrases. This measurement was 
inspired by previous work which used Word Error Rate (WER) as the ASR performance measure 
(e.g., Vipperla, 2011). A 4-way analysis of variance (ANOVA) was used to identify main and 
interaction effects. Results were considered significant at α = 0.05. Since none of the 7 systems 
recognized speech when the S/N ratio was less than 1 (i.e., PAR = 0%), a perfect separation 
assumption was used and only data in cases where S/N ratio ≥ 1 were included in analysis. 

 
Results 

 
There was a significant main effect of system on PAR, 𝐹𝐹 (6, 1994) = 796.067, 𝑝𝑝 <

 .001,  𝜂𝜂𝑝𝑝2 =  .705. In particular, post-hoc analysis revealed that the Dragon NaturallySpeaking 
(with speech training component) (mean PAR = 72.3%, standard error of mean (SEM) = .018) 
has a significantly higher PAR compared to all other systems, see Figure 1. 
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Figure 1. Phrase accuracy rate (PAR) as a function of speech/noise ratio for 7 speech recognition 
systems during cruise flight phase (error bars represent standard error of mean) 
 

There was also a significant main effect of Speech/Noise (S/N) ratio on PAR, 
𝐹𝐹 (4, 1994) = 1392.741, 𝑝𝑝 <  .001,  𝜂𝜂𝑝𝑝2 =  .736. In particular, all systems performed better 
when the S/N ratio was at least 3/2 (mean PAR = 51.2%, SEM = 0.010) compared to when the 
S/N was 5/4 (mean PAR = 47.6%, SEM = 0.010) or 1/1 (mean PAR = 11.0 %, SEM = 0.008). 
The baseline condition (mean PAR = 52.3%, SEM = 0.010) and an S/N ratio of 2/1 (mean PAR 
= 51.8%, SEM = 0.010) did not differ from an S/N of 3/2.  
 

PAR was affected by accent type, 𝐹𝐹 (5, 1994) = 111.568, 𝑝𝑝 <  .001,  𝜂𝜂𝑝𝑝2 =  .219, (note 
here the relatively small effect; Watson, Lenz, Schmit, & Schmit, 2016). Specifically, the 
Northern American (mean = 49.8%, SEM = 0.014) and Southern American (mean = 49.6%, 
SEM = 0.013) accents were slightly more recognizable than those from any other region (East 
Asia mean = 37.6%, SEM = 0.012; Latin America mean = 41.1%, SEM = 0.014; India mean = 
38.3%, SEM = 0.013; and UK/Australia/South Africa mean = 41.2%; SEM = 0.014).   
 

Discussion 
 

This study evaluated the extent to which commercially-available speech recognition 
systems could recognize weather-related terminology in a GA environment. The highest phrase 
accuracy rate (PAR) achieved by any system was 72% (which included a training component). 
Also, all systems performed best when the speech-to-noise (S/N) ratio was at least 3/2. Finally, 
U.S. accents were slightly more recognizable than those from any other world regions.  

 
None of the ASR systems used in this study achieved a PAR of 100%. Typically, default 

speech recognition vocabulary databases do not include aviation-related phraseology. Dragon 
NaturallySpeaking (with speech training component), however, achieved the highest accuracy 
rate. This result is consistent with previous work which found that Dragon NaturallySpeaking 
was significantly more accurate compared to other common speech systems (Rami, Svitlana, 
Lyashenko, & Belova, 2017). Specifically, in this study, the performance of Dragon 
NaturallySpeaking increased from 54% to 72%, without and with training, respectively. This 
suggests that training systems how to pronounce particular words can significantly increase 
detection accuracy. It is critical that training be conducted using a well-crafted aviation-specific 
vocabulary training set and default references for terms likely to be confused. For example, if the 
system perceives “Sig Mat,” it should default to SIGMET. Relatedly, in this study, we focused 
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on the accuracy of complete phrases (as opposed to words) as an implication for the execution of 
weather-related commands. However, accuracy rates would have been much greater if 
calculations were done based on words (as used in Këpuska, 2017).    

 
In terms of S/N ratio, even though many ASR systems are marketed to perform in noisy 

environments, the best detection rates recorded for all systems evaluated in this study was when 
the S/N ratio was 3/2 or greater. This indicates that minimal background noise may not interfere 
with pilot communication to speech systems. However, if an environment produces a 
considerable amount of noise, then a high S/N ratio may be achieved through the selection of the 
proper headset equipment (e.g., those with microphones close to the speaker’s mouth) or the use 
of a microphone that recognizes speech using throat vibration signals. Also, noise absorption 
material may be installed in the cockpit to reduce ambient noise sources.  

 
 Accent type was found to have an effect on PAR. Native Northern and Southern U.S. 
participants’ speech was more detectable (i.e., detection accuracy ~ 50%) than participants from 
East Asia, Latin America, India, or UK/Australia/South Africa. One possible explanation for this 
finding is that the systems evaluated in this experiment were developed using (American) 
English speakers. This interpretation infers that in order to increase recognition accuracy, 
corpuses used to create and train ASR systems should include a wide range of demographic 
factors, such as accents/dialects, speech rates, and age groups. Finally, it is no surprise that PAR 
was not affected by flight phase. Although the background noise frequencies between the two 
conditions may have slightly differed, their overall loudness and rhythm were perceived 
comparably by the ASR system, especially given that the sounds did not resemble human speech.  
 
 In summary, while the outcome of this work will be useful in field research and to the 
GA community, more research is needed to determine, for example, minimum requirements 
prior to adoption into practice. Still, this research may help to guide decisions regarding the 
selection and use of smart devices and applications in complex domains. 
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