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Abstract
In this paper a video-based method to automatically track instantaneous velocities of a swimmer is presented. Single cameras 
were used to follow a marker (LED) attached to the body. The method is inspired by particle tracking techniques, tradition-
ally used in the field of fluid dynamics, to measure local velocities of a fluid flow. During the validation experiment, a white 
LED was attached to the hip of a swimmer together with a speedometer. A swimmer performed four different stroke types. 
The velocity profiles using LED tracking were captured and showed less noise than the speedometer measurements. Only 
at times when the marker disappeared above the water surface due to body role in front crawl and backstroke swimming did 
the LED tracking fail to capture the athlete’s motion. The algorithm was tested in a 2D case with a single LED to illustrate 
the proof of principle, but should be suitable for implementation in a 3D analysis or multiple LED analysis.

Keywords LED tracking · Instantaneous velocity · Swimming · Automated

1 Introduction

The need for measuring the intra-cyclic velocity variations 
(IVVs) and velocity profiles in an experiment including 
many swimming trials [1] forms the framework of this study.

The most widely used method to access the instantane-
ous velocity of a swimmer is a speedometer, also known as 
a tachometer [2–7]. A thin, non-stretching cable is attached 
to the waist of a swimmer. The rotation speed within the 
instrument is measured when pulling the cable while swim-
ming. Although the use of a speedometer is straightforward, 
the method just offers 1D information and limits the swim-
mer’s motion. Other techniques have been developed as well 

, for example, [8] measured the instantaneous velocity by 
a three-dimensional reconstruction of the location of the 
centre of mass of the swimmer using multiple cameras and 
anthropometric data calculations, which is associated with a 
high computational effort. During the last decade, the use of 
inertial sensors (i.e., accelerometers) to measure kinematic 
variables in swimming has increased [9]. However, inertial 
sensors have noise complicating the calculation of velocity 
by integration. When applied in real time, the use of inertial 
sensors suffers from problems with data transfer through the 
water (surface) and integration to obtain velocity.

The use of video recordings is a common method in sport 
practice to provide analyses of the performance in both train-
ing and competition. The use of video recordings is attrac-
tive, since it is a versatile tool that serves as input for post-
processing for a variety of analyses. Since a visual record 
is obtained, validation and troubleshooting of methods are 
simplified. With increasing digital capacities and knowledge 
of image processing, it is possible to improve the video-
based data collection. In swimming practice, video record-
ings are used in a variety of ways. They are used for race 
analysis (software: SwimWatch, SwimOptimum), qualitative 
technique analysis and quantitative 2D or 3D analysis of 
kinematic parameters (software: Qualisis, Simi [10–18]) of 
strokes, starts and turns [19]. The use of markers (on body 
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landmarks) is a useful addition to video analysis to obtain 
quantitative information. However, detecting the marker 
is often performed manually or only partially automated, 
making the analysis costly and time consuming and less 
feasible for practical usage [20]. Some automated tracking 
approaches exist (also markerless) ([20–23] and software for 
this purpose: Simi, Qualisis), but they are either time con-
suming or not easily applicable in an aquatic environment. 
Other areas in which (3D) motion analysis is frequently used 
and developed are the gaming and film industry. Demands 
for such an application intiated the development of a real-
time 3D motion analysis system (PRIMAS) by Furne et al. 
[24]. Fast and accurate marker tracking algorithms are essen-
tial for the real-time application of this system.

The aim of this study was to determine the instantaneous 
position and velocity of the swimmer. A tracking algorithm 
is presented, and the application for tracking a single LED in 
a two-dimensional space is shown to illustrate the potential 
of the method. The velocity time series for the four competi-
tive stroke types (butterfly, backstroke, breaststroke and front 
crawl) were compared with the results of velocity measure-
ments with a speedometer.

2  Methods

2.1  Setup and participant

The experiment was conducted in the 50 m indoor training 
pool of the Pieter van den Hoogenband Swimming Stadium 
at Innosportlab in Eindhoven, the Netherlands, which has a 
camera system along the length of the pool. One swimmer, 
competent in all four competitive strokes, participated volun-
tarily and gave written informed consent. The ethical officer 
of the University of Technology Eindhoven has approved the 
design of this study. The swimmer wore a swimming trunk, 
with a small socket on the hip containing a waterproof white 
LED. It was assumed that the hip velocity provides a good 
representation of the forward velocity profile (measured at 
the center of gravity), although small differences between 
the two have been reported [28, 29]. The motion of the 
swimmer (including the LED) in the sagittal plane was cap-
tured by four cameras (Basler, sc1400gc, 50 fps, resolution: 
788 × 524 pixels), located in the side wall of the pool at a 
depth of 0.55 m below the water surface, on positions 2.5, 5, 
10 and 15 m from the beginning of the lane (see Fig. 1). The 
swimmer was instructed to follow the line on the bottom of 
the pool at 3.75 m from the side wall. At that level, the total 
recording range was approximately 17 m and the images 
of the different cameras partly overlap. Two-dimensional 
tracking was used, since lateral motion was assumed to be 
negligible. The calibration for translating pixels to meters, 
coupling and post-processing the recordings of the different 

cameras was provided by Innosportlab de Tongelreep (Ein-
dhoven, the Netherlands). The selection of a sagittal plane 
of interest was required to apply the calibration, here cho-
sen at 3.55 m, approximately coinciding with the distance 
to the LED. The raw video recordings were collected in a 
binary sequence (.seq) file. This bulk file was read in Matlab 
and single frames were extracted during the tracking proce-
dure. No preprocessing of the single frames was required 
for the analysis. Positions of the LED and the instantaneous 
horizontal (forward) and vertical velocity of the LED were 
obtained using an automated LED-tracking algorithm, which 
was programmed in Matlab (R2015b). The algorithm is pre-
sented in Sect. 2.2.

The swimmer was instructed to swim 25 m for each 
stroke type twice (butterfly, backstroke, breaststroke, and 
front crawl) during which the motion was captured with 
the cameras. To enable comparison of the velocity profile 
obtained by the LED tracking, the velocity of the swimmer 
was also measured by a speedometer (Swimsportec, length: 
25 m, velocity range: 0–3 m/s captured linearly on a 5 V 
range) attached to the waist of the swimmer with a cord. 
The speedometer data was captured with a sample rate of 
32.5 Hz using the Swim Analysis Software 3.0.4. developed 
by Swimsportec.

2.2  LED tracking algorithm

To track the LED throughout the video recordings, an algo-
rithm consisting of different cases was used. In advance of 
the tracking, a template of the typical light spot emitted by 
the white LED was created by selecting a small area in a 
typical image including the LED. A single standard template 
T ( 13 × 17 pixels) was used to perform the tracking on all 
recordings.

The tracking was started by manually selecting the posi-
tion of the LED in the first frame that captured the LED 
(case 1 in Fig. 2).

s

2.5 m5 m10 m15 m

v

3.
75

m

~3. 55 m

Fig. 1  Experimental setup to measure the instantaneous velocity of 
the swimmer by means of LED tracking. Four cameras in the wall of 
the pool record the swimmer. The velocity (V) of the swimmer is also 
measured by a speedometer (S) mounted on the starting block
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In the second frame an area of 100 × 100 pixels around 
the position of the first point was used to search for the 
new position of the LED (case 2 in Fig. 2). The area was 
restricted, because too many pixels is computationally 
expensive. For too small a window the LED might move 
out of the search area. Three normalized cross-correlations 
between the area of interest and the template of the LED 
were performed on the separate RGB (red–green–blue) 
colour components denoted by i = R,G,B . The normalized 
cross-correlation was defined as [26] :

with T the template of the LED with size (K × L) , 
T̄  the mean of the template, I the area of interest on 
the image, Īx,y the mean of Ii in the region under T, 
i n  w h i c h  k = x −

1

2
K, x −

1

2
K + 1, ..., x +

1

2
K  a n d 

l = y −
1

2
L, y −

1

2
L + 1, ..., y +

1

2
L , and ci(x, y) the correla-

tion coefficient on the position (x, y) relative to the pre-
dicted position [30]. The three resulting cross-correlation 

(1)

ci(x, y) =

∑
k,l

�
Ii(k, l) − Īx,y

��
T(k − x, l − y) − T̄

�

�∑
k,l

�
Im(k, l) − Īx,y

�2 ∑
k,l

�
T(k − x, l − y) − T̄

�2� 1

2

,

coefficients were multiplied, giving c(x, y) = cR × cG × cB . 
The peak in the correlation corresponds to the displacement 
of the LED. To further increase accuracy, a Gaussian peak 
detection was applied to find the peak in the correlation. To 
this end, a Gaussian curve,

with a the height of the peak, (x0, y0) the position of the 
maximum and �x,y the characteristic width of the Gauss-
ian curve, was fitted through the results using a non-linear 
least-square algorithm available in Matlab (lsqcurvefit). This 
improved the algorithm to find the maximum with sub-pixel 
accuracy [26]. The peak corresponds to the displacement of 
the LED and thus to the new position.

When two previous positions are known, a prediction of 
the next position of the LED can be made, �n+1 = 2�n − �n−1 
(case 3 in Fig.  2), with �n+1 the predicted position and �n and 
�n−1 the two previous positions. The same cross-correlation 
technique and peak detection was applied, but now an area 
of interest around �n+1 with the size of the template image 
was used for the calculation.

The main part of the tracking relies on the following 
procedure (case 4 in Fig. 2). The last part of the track was 
smoothed up to nine positions using a moving average filter. 
Then, an approximate location of the LED in the next frame 
was estimated based on this smoothed track. The prediction 
was made with:

with �n the coordinates of the last point in the track, 
� = �n−1 − �n−2 and � = �n − �n−1 the vectors between the 
last three data points in the track and � a directional vec-
tor which contains information about the curvature of the 
track. A more regular approach of a prediction based on 
acceleration directly gave errors due to the large fluctuations 
in swimming. A weighted average of � and � gave better 
results. Similar to case 3 an area of interest with the size of 
the template image was selected around the predicted posi-
tion in the new frame. The new position was found again 
by applying the cross-correlation, the peak detection fit and 
subsequent detection.

Finally, the noise in the track was corrected by smooth-
ing the velocities (in pixels/s) using a moving average filter 
(standard Matlab function nanfastsmooth) on three subse-
quent velocity data points:

(2)f (x, y) = a exp

(
−
(x − x0)

2

2�2
x

−
(y − y0)

2

2�2
y

)
,

(3)
�n+1 = �n +

1

3
(|�| + 2|�|) �

|�|
,

� = 2�
� ⋅ �

|�|2
− �,

(4)�smooth(n) =
1

3
(�n+1 + �n + �n−1).

case 1
find first point

selected by user
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find next point in subsequent

frame in area around
previous point

case 3
find next point in subsequent

frame in area around
prediction based on two

previous points
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find next point in subsequent
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previous points
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Fig. 2  Schematic of the algorithm used for tracking the LED. The 
tracking is started by following case 1–4 consecutively. When the 
LED remains visible qualitatively good, the code continues in case 4. 
Otherwise, it returns back to case 2 and searches the LED from there 
again
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The new positions were calculated by integrating the 
velocity.

2.2.1  Constraints

As long as three previous positions are known, the next posi-
tion was determined using case 4. However, in reality this 
procedure was not straightforward. Additional difficulties 
might arise such as the LED disappearing due to body roll, 
the view being blocked by passing body parts, or reflec-
tions of the LED appearing in the water surface compromis-
ing identification of the correct LED position in the image. 
Therefore, some constraints must be added to overcome 
these difficulties in automated tracking adding to the robust-
ness of the algorithm.

In this 2D experiment, with an LED on the hip, no dif-
ficulties were expected with breaststroke swimming. In all 
other strokes, the hand could block the LED, which could 
lead to an incomplete velocity profile. In general, this was 
of such a short duration ( ∼ 1 frame) that no hindrance was 
observed due to the speed of the hand. In backstroke and 
front crawl swimming, the LED disappeared for a longer 
period of time ( ∼ 15 frames) when the LED reached the 
water surface during the body roll, which caused some inter-
ruption in the acquired velocity signal.

To quantify these mishaps in detecting, the LED location 
the peak to correlation energy (PCE) of the cross-correlation 
was used:

with c(x, y) the result of the normalized cross-correlation, 
cmax the peak value and the denominator the correlation 
energy [31]. When the PCE was below a threshold (set to 
0.08), cmax was low compared to the noise, it was assumed 
that the LED was not properly detected and the code 
returned to case 2. As a new starting point (prediction), the 
last predicted position summed with the average horizon-
tal displacement until that point was used. In the vertical, 
a fixed minor displacement in the negative vertical direc-
tion was added, to favour the tracking of the LED instead of 
its reflection in the water surface. As long as the PCE was 
below the threshold value, the tracking was continued with 
case 2. Note that the threshold in case 2 (0.025) must be 
chosen differently from case 3 and 4, since the window size 
was larger and the characteristics of the enlarged image, and 
thus c(x, y), were completely different.

Another issue arose when multiple peaks appeared 
in c(x, y), and the maximum of c(x, y) satisfied the PCE 
threshold, but did not necessarily correspond to the peak of 
interest. The presence of a second peak was captured when 
Rmax∕cmax > 0.8 , with R the residual of the Gaussian peak 

(5)PCE =
�cmax�2∑

x,y �c(x, y)�2
,

detection. The location of this second peak was determined 
with a Gaussian peak fit. When the location of the second 
peak was closer to the predicted position, this location was 
set to the new position in the track.

2.2.2  Data analysis

The output of the tracking algorithm was a ( 3 × n ) array 
containing the frame numbers and horizontal and vertical 
positions in pixel coordinates (sub-pixel accurate) for a sin-
gle camera. These arrays were converted to positions in real-
world coordinates (m) using the calibration. The velocities 
were calculated using a first-order backward finite difference 
method:

with f the frame rate (50 fps).
To obtain a single data array for each trial, the individual 

arrays of each of the four cameras were coupled. The cam-
eras are synchronized and had an overlapping view at the 
level of the swimmer, which was useful for coupling. The 
cut-off (and coupling) of the arrays was chosen at the frame 
number halfway in the overlap region. A possibly missing 
data point in this part of the signal was replaced by the data 
point of the other camera.

The velocity data of the speedometer contained a sig-
nificant amount of noise as could be observed in Fig. 3 and 
was therefore filtered before further analysis. A traditional 
fourth-order Butterworth filter (cut-off frequency 5 Hz) 
was applied for filtering [32]. The measurements with the 
speedometer and cameras were synchronized, by shifting 
the signals such that the characteristic peaks for each of the 
four strokes coincided.

For comparison of the data, an averaged velocity profile 
of a stroke was created by manually selecting the area around 
characteristic peaks within the velocity profile to distinguish 
single stroke cycles. The location of the local minimum was 
then automatically obtained by fitting a second-order poly-
nomial through the selected areas and determining the mini-
mum by differentiating; then the stroke cycles’ duration was 
resampled on 100 sample points and averaged.

3  Results

The settings (template image LED, thresholds, window size) 
of the LED tracking algorithm were kept constant through-
out the analysis of different recordings. During the analysis, 
the LED was tracked automatically, only the starting posi-
tion was selected manually. Note that this can be automated, 
but this was not implemented in this study. After periods 
in which the LED was lost, the LED was captured again 
automatically. In Table 1 the typical computation times are 

(6)�n = (�n − �n−1)f ,
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shown. The calculations were performed within the Matlab 
interface (tic toc function) on a single processor. The dura-
tion of analysing the swimmer’s passage through all frames 
of a single camera was on the order of 30 s.

In Fig. 3 a typical velocity profile of a breaststroke trial 
(a) and front crawl trial (b) is shown for both the LED track-
ing and the speedometer data. For the tracking results of 
the breaststroke the acceleration profile in the x direction 
is shown (derivative of the velocity profile). Looking at the 
peaks of maximum velocity and maximum acceleration, 

there is a time shift of ∼ 0.15 s. When the LED is lost from 
the camera view the algorithm turns back to case 2 and the 
computational time is slightly increased. In these trials the 
push-off start, the underwater phase and ∼ 7 stroke cycles 
for the breaststroke and front crawl were included. During 
the LED tracking a horizontal ( vx ) and vertical ( vy ) veloc-
ity component were obtained, whereas the speedometer 
measures one component, which was approximately in the 
forward direction ( ∼ vx ). As can be observed, the raw speed-
ometer signal contains more noise. Although some minor 
parts of the velocity profile are missing in the LED tracking 
of the front crawl due to body roll, a clear stroke cycle pat-
tern is visible, partly due to the availability of the additional 
vy component, where the stroke pattern is very distinguish-
able. Difficulties were experienced with the analysis of the 
velocity profile obtained with the speedometer: the signal 
degrades, i.e., becomes more noisy, when the distance to the 
speedometer increases. It is of added value to have the cor-
responding LED tracking data, which could be incorporated 
in the analysis of the speedometer data.

In Fig. 4 the averaged time-normalized velocity profiles 
for each stroke obtained with the LED tracking are pre-
sented. For the averaging procedure a number of complete 

Table 1  Typical computation time per frame of operations in the 
algorithm retrieved from the computer for the analysis. The total time 
varied by about 50%

Execution Time s/frame

Select frame 0.014
Detect target 0.023
Predict next position 0.001
Apply calibration 0.001
Visualize results 0.130
Total 0.17

Fig. 3  Typical velocity profiles 
obtained with the LED track-
ing and speedometer data, 
measured from start up to the 
last stroke captured within 
the video recording. The LED 
tracking captures a horizontal 
( v

x
 ) and vertical ( v

y
 ) velocity 

component. In addition to the 
velocity profiles obtained with 
tracking, the acceleration profile 
in the x direction is also shown. 
For the front crawl trial the 
filtered speedometer result is 
also shown in red. Stroke cycles 
are indicated with the vertical 
dashed lines
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stroke cycles were used to gain the averaged velocity pro-
files and their standard deviations. The results are shown 
for the butterfly (Fig. 4a), backstroke (Fig. 4b), breast-
stroke (Fig. 4c), and front crawl (Fig. 4d), respectively.

In the velocity profiles of the backstroke and the front 
crawl, a gap in the velocity data can be observed due to 
the body roll whereby the LED disappears above the water 
surface. This results in larger inaccuracies around that gap. 
In butterfly and breaststroke swimming the single stroke 
cycles are selected from vx . Typically, during front crawl 
and backstroke swimming, the forward velocity varia-
tions are considerably reduced, and render the selection 
of stroke cycles based on the horizontal velocity vx alone 
more difficult. Moreover, fluctuations like noise might 
appear more pronounced in vx . Therefore, characteristic 
points in the vertical velocity vy are used for the identifica-
tion of single strokes.

Looking at the velocity profiles given in Fig. 4 and 
the video recordings attached as supplementary mate-
rial, some actions of the swimmer are identified, which 
are indicated by the numbered, dashed vertical lines. 
However, the actual onset of an action is first reflected in 
the peaks of the acceleration profile, which have a time 
shift with the peaks in the velocity profile. The observed 
effects in the velocity profile might be misplaced over time 
( ∼ 0.15 s based on comparison with the acceleration profile 
(Fig. 3a)). The vx profile of the butterfly stroke (Fig. 4a) 
shows three characteristic peaks, which correspond to the 
first kick, sweeping in of the hands, and the second kick 
in combination with the sweeping up of the arms, respec-
tively [33]. The action of legs and arms in breaststroke 
swimming is represented by the first and second peak in 
vx (Fig. 4c), respectively. The steap deceleration after the 
second peak corresponds to the high drag experienced in 
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Fig. 4  Averaged time-normalized velocity profiles for each stroke 
obtained with the LED tracking. The blue lines correspond with 
the v

x
 profile and red lines with the v

y
 profile. The coloured dashed 

lines indicate the standard deviation. The fine black lines in the back 
show the single stroke cycles used in the averaging. The vertical 
black dashed lines with numbers indicate stroke phases, which were 
recognizable in the video recordings. Butterfly: 1 1st kick, 2 arms 
stretched, 3, 4 insweep, 4, 5 upsweep + 2nd kick, 5 release. Back-

stroke: 6 release right arm, 6, 7 1st downsweep left arm + release 
right arm, 7 catch, 7, 8 upsweep left arm, 8, 9 2nd downsweep left 
arm, 9 start 1st downsweep right arm + release left arm, 10 start 2nd 
downsweep right arm. Breaststroke: 11, 12 leg propulsion, 12 legs 
extended, 13 catch, 14 release, 14–11 recovery legs (and arms). Front 
crawl: 15–16 downsweep right arm, 16 catch + start insweep left 
arm, 17, 18 upsweep right arm, 18, 19 downsweep left arm, 19 catch 
+ start insweep left arm



425Automated LED tracking to measure instantaneous velocities in swimming  

the arm and leg recovery phase [6, 33]. With some effort 
and considering that we are looking at cyclic motion, two 
broad peaks corresponding to the asymmetric action of the 
arms can be distinguished in the velocity profiles vx of the 
backstroke and front crawl (Fig. 4b, d) [33]. However, the 
size of these intra-cyclic velocity variations in vx is almost 
similar to the variations related to inter-cyclic veloc-
ity fluctuations. In vy the variations are larger and stroke 
actions are more distinguishable. The minima before the 
acceleration around 0–0.2 (normalized times) in vy for both 
backstroke and front crawl, coincides with the start of the 
left arm stroke and right arm stroke, respectively.

In Fig. 5 the average velocity profiles of the speedometer 
measurements are shown. In the back, the average veloc-
ity profile of the LED tracking measurements is added in 
grey. The averaging is performed on the same strokes as in 
Fig. 4. In Table 2, an overview of means and standard devia-
tions of the two different measurements methods is given. 
In general, the averaged velocity of the LED tracking was 

slightly higher and the maximum and averaged deviations 
were smaller.

Two striking differences between the results of the LED 
tracking and speedometer are the missing second peak in the 
velocity profile of the butterfly and the lower second peak 
within the breaststroke signal of the speedometer. The ratio 
between the intra-cyclic velocity variations and the inter-
cyclic fluctuations (captured in the standard deviation) in vx 
of the backstroke and front crawl is too low to identify clear 
differences. Meanwhile, vy contains large variations during 
the stroke cycle, which, fortunately, are captured with the 
LED tracking.

4  Discussion

The advantages of LED tracking over a speedometer 
include a visual record that is inherently obtained, the 
distinction between different velocity components vx and 

Fig. 5  Averaged time-nor-
malized velocity profiles for 
each stroke obtained with the 
speedometer. The blue line 
correspond with ∼ v

x
 profile. 

The blue dashed lines indicate 
the standard deviation. The grey 
lines in the back show the mean 
v
x
 profile measured with the 
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Table 2  Overview of the mean 
and standard deviations of the 
velocity profiles obtained with 
the LED tracking/speedometer

Stroke type Cycles # �̄
�
 (m/s) �̄

�
 (m/s) �

�,���
 (m/s) ���(|�

�
− �̄

�
|) (m/s)

Butterfly 7 1.27/1.16 0.06/0.10 0.15/0.17 0.21/0.34
Backstroke 8 1.11/1.06 0.07/0.10 0.18/0.20 0.27/0.30
Breaststroke 14 0.94/0.85 0.07/0.09 0.13/0.18 0.22/0.41
Front crawl 9 1.25/1.17 0.06/0.13 0.19/0.23 0.19/0.52
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vy , the collection of position and acceleration data, and 
that swimmers are not disrupted by the measurement 
device itself. The only requirement is that the pool must 
be accommodated with a (calibrated) camera system, a 
fast computer and suitable LEDs. The approach in this 
study was inspired by particle tracking techniques (PTV) 
used in the field of experimental fluid dynamics, which 
is a Lagrangian method to measure the displacement of 
submerged small particles through subsequent frames to 
determine the particle velocities ( �(�, t) = ��∕�t , with � 
the velocity vector at position � , �� = �n+1 − �n the dis-
placement and �t the time between frames n and n + 1 ). 
PTV methods can yield results at a sub-pixel level ( ∼ 0.3 
pixel for PTV). This gives a high potential for making 
measurements of around �(1) accuracy [26, 27]. Keeping 
in mind the successes of the PTV technique in the field of 
experimental fluid dynamics, the application of these ideas 
to (LED) marker tracking of human motion is interesting. 
It is possible to expand this technique towards multiple 
LED tracking for a full 3D analysis. This would simplify 
video-based 3D motion and coordination analysis [34] 
to understand the relationship between body actions and 
acceleration. In combination with augmented reality tools 
automatic LED tracking may become a powerful interac-
tive method to optimize interventions in stroke training.

The LED tracking shows similarities with the results 
(especially for the butterfly and breaststroke profiles) found 
in theliterature [5, 6, 29, 33]. However, compared to the 
literature and the speedometer data in this experiment, it is 
striking that the second peak in breaststroke is larger than the 
first peak. Analysis of the video footage shows that the LED 
analysis is correct, and the observed differences with the 
speedometer are due to inaccuracy of the speedometer. Also, 
the second peak in butterfly swimming is more pronounced 
than described in the literature and is completely missing 
from the speedometer data in this experiment. Presumably, 
the speedometer system is not sensitive to sudden accel-
erations when the cord has slack, causing not all variations 
in horizontal speed to be observed, or even the appearance 
of additional fluctuations due to unwanted extra degrees of 
freedom of the cord.

In previous studies that investigate the velocity profile 
of backstroke and front crawl, two broad peaks are indenti-
fied that correspond to the actions of the arms, with several 
smaller peaks on top, probably due to the action of the legs 
[29, 33]. These peaks were not clearly identifiable in this 
study, but the recordings (see Online Resource 1–4) dem-
onstrate that the LED tracking was not compromised. Of 
course, the technique of the swimmer might give a distorted 
view of the capabilities of selecting individual strokes in 
the backstroke and front crawl. For example, it is assumed 
that an experienced swimmer, is swimming more efficiently 
with less velocity variations [1, 33, 35]. Therefore, it would 

be useful to perform similar measurements for different 
swimmers.

It was observed that the mean velocity obtained with the 
LED tracking is slightly higher (up to ∼ 0.1 s) for all strokes 
compared to the speedometer. A minor deviation might be 
explained by the assumptions that (i) the participant is swim-
ming at the center of the lane (3.75 m), and (ii) the LED is 
just moving in the sagittal plane.

From the butterfly and breaststroke results, it can be 
concluded that the standard deviation in LED tracking was 
mainly determined by the inter-cyclic differences of the ath-
lete. The additional inaccuracies due to noise were larger for 
the speedometer. Especially in the speedometer measure-
ment of the backstroke and front crawl trials there were dif-
ficulties in selecting proper periods. In all likelihood, small 
errors arise when choosing the start of a single stroke, which 
could result in a small shift of the time-normalized velocity 
profile.

In this LED tracking approach, the only signal loss 
occurred with the body roll. Therefore, this technique seems 
useful for the analysis of breaststroke and butterfly swim-
ming. Perhaps such a loss of signal can be avoided by per-
forming a 3D analysis with multiple cameras.

Concerning the computational times of the LED tracking 
(Table 1) at this stage, the algorithm is suitable for analysing 
velocity profiles in experiments quickly. To perform real-
time analysis at the pool side for application in day-to-day 
training or in competition, the algorithm must be further 
optimized and a suitable interface containing the video cap-
ture, tracking computations and visualization is advisable 
for user-friendliness. Much time can be saved by converting 
the Matlab language to an imperative programming language 
(such as C/C++) and parallelizing the computation on mul-
tiple processors. A fast laptop PC must then be sufficient to 
perform the analysis. In fact, it has been successfully used in 
an experiment about breaststroke, in which the intra-cyclic 
velocity variations and velocity profiles were the focus of 
investigation [1].

5  Conclusion

In this study the potential of a technique for measuring the 
instantaneous velocity of a swimmer by automatically track-
ing a LED marker was described and compared with speed-
ometer measurements. Although some velocity profiles were 
incomplete due to the body role within the backstroke and 
front crawl stroke cycles, the LED tracking technique seems 
to be much more convenient given that a visual record is 
obtained, which can be used to check the accuracy. In general 
the LED tracking shows little noise and individual strokes 
can be better distinguished, also by the additional informa-
tion of the vertical velocity component. Since the settings 
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were kept constant throughout the analysis of all recordings, 
it is shown that this technique is robust. Moreover, without 
much optimization this technique is close to real time, which 
makes the technique attractive for practical usage. Extension 
towards 3D LED tracking is straightforward.
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