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ABSTRACT: 
 
Room segmentation is a matter of ongoing interesting for indoor navigation and reconstruction in robotics and AEC. While in 
robotics field, the problem room segmentation has been typically addressed on 2D floorplan, interest in enrichment 3D models 
providing more detailed representation of indoors has been growing in the AEC. Point clouds make available more realistic and 
update but room segmentation from point clouds is still a challenging topic. This work presents a method to carried out point cloud 
segmentation into rooms based on 3D mathematical morphological operations. First, the input point cloud is voxelized and indoor 
empty voxels are extracted by CropHull algorithm. Then, a morphological erosion is performed on the 3D image of indoor empty 
voxels in order to break connectivity between voxels belonging to adjacent rooms. Remaining voxels after erosion are clustered by a 
3D connected components algorithm so that each room is individualized. Room morphology is retrieved by individual 3D 
morphological dilation on clustered voxels. Finally, unlabelled occupied voxels are classified according proximity to labelled empty 
voxels after dilation operation. The method was tested in two real cases and segmentation performance was evaluated with 
encouraging results.    
 

1. INTRODUCTION 

Space is a term wider referred in many research areas. It 
acquires different conceptualization on the discipline in which it 
is applied and on the target application. In the 3D modelling and 
reconstruction domain, the representation of spaces has been 
defined and interpreted in very different ways. However, while 
a formal definition of the space is not provided in the literature 
for outdoors, the indoor spaces have been more strictly defined. 
(Zlatanova et al., 2020). 
 
Commonly, indoor space is defined as the space enclosed by 
permanent structural elements such as floors, ceilings, and 
walls. The subdivision of indoor space into meaningful 
subspaces have been addressed in many works applying 
multiple approaches and with different goals.  Since space 
subdivision provides spatial relations between simpler 
subspaces, topological representations can be generated from 
these relations for navigation applications. Also, the space 
subdivision has been used for facilitating building 
reconstruction (Nikoohemat et al., 2020). 
 
Beyond the classical indoor space interpretation based on the 
presence of physical elements (Li, 2008; Yang et al., 2019) new 
space subdivision approaches have proposed in recent years. 
Divisions according to space functionality or by human 
perception of it have entailed a new conceptualization of the 
space (Zlatanova et al., 2013). A newer space interpretation is 
proposed in (Diakité and Zlatanova, 2018) based on subdividing 
the space on the basis of the objects present on the scene and 
their functionality.  
 
The modelling of complex spaces requires not only geometric 
models but also a detailed semantic and topological information 
may be necessary. Generally, these well-defined models do not 
provide other crucial information for indoor navigation such the  
distribution of temporary or movable elements in a specific 
time. While point clouds provide a more realistic and updated 

representation of environment its processing and analysis 
involve a greater effort than well-defined models (Zlatanova et 
al., 2014).      
 
This method proposes the use of 3D mathematical morphology 
for segmenting indoor point clouds into rooms. Different to 
previous approaches, this new conceptualization does not 
require the use of the trajectory followed by the laser scanning 
system during acquisition, and also it does not need from the 
extraction and modelling of building structural elements by 
point cloud processing. Consequently, the method is purely 
relying on the empty space for room segmentation. For the 
proposed method, the space division is addressed from indoor 
empty space perspective. This refers to all space inside building 
without physical objects. Furthermore, in advance space 
division will be reference as room segmentation because the 
resulting divisions of space correspond to the rooms. 
 

2.  RELATED WORK 

Most of room segmentation methods are based on previous 
structural element detection such as walls, ceilings, and floors. 
Doors also play a key role in many strategies of room 
segmentation because they act as the connecting element 
between adjacent rooms. This section reviews previous methods 
addressing room segmentation from point clouds. In literature, 
there are several interesting strategies based on floorplans. They 
are important in the indoor modelling field, but they will not be 
included in this review. 
 
Line-fitting methods consist in representing walls as lines and 
then determinate lines delimiting each room. This technique, 
often used in the reconstruction field, starts with a plane 
detection in the point cloud. RANSAC and Hough Transform 
(HT) are the most popular algorithm for that purpose (Grilli et 
al., 2017). Vertical planes are considered candidate walls and 
they are often project to XY-plane in order to minimize 
complexity of 3D processing. This way, walls are represented 
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by lines. (Ochmann et al., 2016) generate a planar graph from 
candidate lines. Then surfaces classification is formalized as a 
labelled problem solved by an energy minimization approach. 
This method requires prior knowledge of the scan positions. 
 
A void-based approach for semantic enrichment of indoor point 
clouds is proposed in (Armeni et al., 2016). Rooms are 
separated by identify the hollows between the walls since laser 
scanner acquire object surfaces. To find these gaps, a set of 
filters are applied on density histograms on each axis assuming 
that walls generate peaks on the histogram. The method is 
strongly limited to Manhattan world and axis-aligned walls. 
 
In recent years, trajectory data provided by Mobile Laser 
Scanners (MLS) was exploited to carry out point cloud 
segmentation. (Díaz-Vilariño et al., 2017) analyse height 
variations of upper points above trajectory positions to detect 
door candidates. Then labelled problem is addressed as a 
minimum energy approach.  MLS trajectory is also used by 
(Nikoohemat et al., 2018, 2017) to detect doors from which 
room segmentation is carried out. Both methods identify 
structural elements previously by means of plane detection and 
construct an adjacency graph linking patches that represent 
different elements. From this classification, openings are 
searched on detected walls.  
Morphological segmentation is a well-known approach in the 
robotic field to divide floorplan into meaningful rooms 

(Bormann et al., 2016). Some authors (Jung et al., 2017; Li et 
al., 2018) have addressed point cloud segmentation by 
morphological operations. However, the operation is performed 
in 2D space projecting point cloud to XY-plane.  
 
Our method is based on applying morphological operations 
directly in the 3D voxel-space. Different to other works 
operating into the pixels representing building elements, in this 
work morphological operations are applied to the voxels 
representing the indoor empty space with the aim of breaking 
indoor space continuity. Besides, the proposed method can 
overcome the limitations generated by occlusions present in 
previous 2D methods. 
 

3. METHOD 

This section describes the method used to performed room 
segmentation based on 3D mathematical morphology. The 
general workflow is depicted in Figure 1. The input point cloud 
is transformed to voxels from which the building contour is 
obtained for extract indoor empty voxels. Then a 3D 
morphological erosion is applied to indoor voxels allowing 
spaces identification according room semantic. Finally, 
identified spaces are morphologically dilated to perform point 
cloud segmentation.  
 

 

 
Figure 1. General workflow of proposed approach. 

 
3.1. Voxelization and initial classification 

The input data of the method consist in a point cloud composed 
of a set of coordinates XYZ. In order to reduce the volume and 
provide a structured representation of the data, the point cloud is 
voxelized (Figure 1.b). This operation structures the space into 
voxels which are labelled as ‘occupied’ if any point is contained 
in the voxel and as ‘empty’ voxel if it is not. Voxels are located 
by the grid coordinates i, j, k related with x, y, z axis, 
respectively. 
 
Resolution is a critical parameter in the voxelization process. 
Commonly, the resolution value is determined for trade-off 
computational costs and accuracy. In our method, voxel 
resolution is selected in order to ensure that space between walls 
is not represented by ‘empty’ voxels. 
 

3.2. Contour extraction  

Because the voxelization is performed for the extension of the 
point cloud, the results will include ‘occupied’ voxels, ‘empty’ 
voxels from inside rooms and ‘empty’ voxels from the outside 
of the building if the building shape is not a rectangle. With the 
aim of select the ‘empty’ voxels belonging to the interior of the 
building, the building contour is extracted by applying a 
concave hull operation to ‘occupied’ voxels (Figure 1.c). As this 
operation is based on an alpha-shape method, the accuracy of 
the extracted contour depends on the alpha parameter.  
 
The contour extraction process is computed in 2D and 
consequently, the point cloud should be orientated. In addition, 
a z-histogram of ‘occupied’ voxels is computed to detect the 
floor and the ceiling of the building in a way that outdoor empty 
voxels placed above the ceiling and below the floor are 
discarded.  
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The result of this step consists on the ‘empty’ voxels belonging 
to the building indoor (Figure 1.d, Figure 2). 
 

 
 

Figure 2. a) Building contour (purple) is computed from 
occupied voxels (red) to discard outside voxels (grey). b) Indoor 

empty voxels (green) are those inside building contour. 
 

3.3. 3D erosion of the empty space 

Morphological erosion is applied to empty voxels to break the 
space continuity between rooms given by doors (Figure 1.e). To 
apply morphological operations, voxels are binarized to 
generate a 3D binary image that is divided into indoor empty 
voxels and non-indoor empty voxels (occupied and outside 
voxels). By eliminating occupied and outside voxels, indoor 
empty voxels maintain continuity between rooms through 
doors. A 3D morphological erosion is applied to break the 
continuity. Morphological erosion is based on the removal of 
voxels whose neighbourhood does not match the size and shape 
of the structuring element. The structuring element used to 
erode the indoor spaces is a cube whose side l is equal to the 
door width, which is the typical element that maintains 
continuity between rooms. After applying morphological 
erosion, all voxels within 1/2 of an occupied or outside voxel 
are removed and the continuity between voxels belonging to 
different rooms is broken. In addition, the existing empty voxels 
between rooms are eliminated if the space inside walls is wider 
than l. 
 
3.4. Room individualization 

Remaining voxels after erosion operation are clustered on basis 
connectivity between voxels (Figure 1.f). A 3D connected 
components algorithm is used to perform the clustering. Unlike 
the popular clustering methods such as K-means, the 3D 
connected components does not require foreknowledge the 
number of rooms. 
 
3.5. Point cloud classification 

The classification of the point cloud is based on a proximity 
assignment between the voxels belonging to each room and the 
nearby points. To restore the complete empty space 
corresponding to each room, a morphological dilation is applied 
(Figure 1.g). Morphological dilation adds voxels according to 
the shape and size of the structuring element. Restored dilated 
voxels have the same room label as voxels from growth. The 
exact number of empty voxels with respect to the input voxels is 
not recovered. The combination of erosion and dilation with the 
same structural element (SE) is a morphological opening and 

produces the elimination of isolated voxels or narrow shapes. 
Therefore, empty pixels inside walls are not restored. 
  
Occupied voxels are labelled regarding proximity of labelled 
empty voxel. For each occupied voxel, a set of neighboring 
voxels are evaluated. If any of them was labelled in the previous 
steps, occupied voxel is classified in the same way. In case there 
are not a unique label, the most frequent one is selected to 
classify occupied voxel.  
 

4. RESULTS AND DISCUSSION 

4.1. Case studies 

Two real case studies were selected to evaluate the proposed 
method. The first case study (Figure 3.a.) corresponds to a 
laboratory at the University of Vigo composed of three rooms 
and connected with a corridor partially acquired. The rooms are 
occupied with office objects such as tables, chairs, computers. 
The second case study (Figure 3.b.) is provide by the ISPRS 
Benchmark on Indoor Modelling (Khoshelham et al., 2017). 
Noise caused by the presence of people in the corridors has 
been removed.  
 

 

Figure 3. Visualization of the raw input point clouds in 
CloudCompare corresponding to a) laboratory at the Vigo 
University and b) the case study of ISPRS Benchmark on 

Indoor Modelling. 
 
The data of the first study case was collected with ZEB-REVO 
laser scanner. The raw point cloud containing over 6 million 
points is shown in Figure 3.a. Otherwise, the second point cloud 
consist of over 31 million points after cleaning pre-process 
(Figure 3.b).  
 
4.2. Results and discussion 

The input parameters used to voxelize the raw points clouds are 
collected in Table 1.  
 

 Grid resolution Alpha value 
Laboratory  0.1 m 0.15 
ISPRS 0.5 m 0.45 

 
Table 1. Input parameters. 
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The grid resolution was selected in accordance with the width of 
the empty space between walls. For the first case, the voxel 
resolution used was 0.1 m and the minimum number of points 
inside a voxel to consider the voxel an occupied voxel is the one 
point. In this step, remaining voxels are labelled as empty 

voxels (Figure 4.a). The selection of the resolution value for the 
second case study is more compromised due to the different 
width of the space between walls. This separation becomes 
more than 1m in some areas. Moreover, a low resolution can 
lead to an inaccurate space representation. Thus, a value of 0.5 
m balances both factors.  

 

 

Figure 4. a) Visualization of the voxelized point cloud in CloudCompare. Upper empty voxels were hidden to better visualization. b) 
Voxelized point cloud into occupied (grey) and empty voxels (blue) inside of extracted building contour (red). c) ‘inside’ empty 

voxels and the building contour. 
 

 

Figure 5. a) Visualization of the voxelized point cloud in CloudCompare. Upper empty voxels were hidden to better visualization. b) 
Voxelized point cloud into occupied (grey) and empty voxels (blue) inside of extracted building contour (red). c) ‘inside’ empty 

voxels and the building contour. 
 
Alpha value is used by ConcaveHull algorithm of the Point 
Cloud Library (PCL) to extract building contour from voxelized 
point cloud (Figure 4.b and 5.b). Values are selected according 
to voxel resolution, therefore the value for the second case is 
greater. Then, computer contour is extracted by CropHull 
algorithm (PCL) to retrieve only inside empty voxels (Figure 
4.c and 5.c).  
 
In the next step, the side of the cube used as structuring element 
by 3D morphological operation is defined. The length selected 

was 7 and 2 voxels in the laboratory and ISPRS case studies, 
respectively. Results of 3D erosion are depicted in the Figure 
6.b and 7d. After, remaining inside voxels (Figure 6.b and 7.b) 
are clustered by 3D connected components algorithm on basis 
26-connectivity (Figure 6.c and 7.c). Subsequently, a 3D 
morphology dilation is applied to labelled clusters to retrieve 
the room form (Figure 6.d and 7.d). Finally, miss-classified 
voxels are classified by proximity and the point cloud on basis 
voxel correspondence. Results of point cloud classification are 
shown in the Figure 6.e and 7.e. 

 

 

Figure 6. Steps of the room segmentation in the laboratory case: Steps of the room segmentation in the laboratory case: a) inside 
‘empty’ voxels, b) result of 3D erosion, c) eroded voxels clusterized, d) result of 3D dilation, e) point cloud after classification. 
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Figure 7. Steps of the room segmentation in the ISPRS case: a) inside ‘empty’ voxels, b) result of 3D erosion, c) eroded voxels 

clusterized, d) result of 3D dilation, e) point cloud after classification. 
 
Table 2 represents confusion matrix describing the performance 
of the laboratory point cloud classification. Results show a 
success rate of over 90% in three of the rooms. However, the 
Room 3 presents a high level of miss-classification, this is 
probably because the large number of objects that break 
connectivity of empty space inside a small room.   
 

  Classification 
Id Room 0 Room 1 Room 2 Room 3 

G
ro

un
d 

Tr
ut

h 

Room 0 0.99 0.01 0.0 0.0 
Room 1 0.01 0.98 <0.01 < 0.01 
Room 2 0.01 0.05 0.93 <0.01 
Room 3 0.0 0.21 0.06 0.73 

Table 2. Confusion matrix of the classification in the laboratory 
case study. 

Confusion matrix of the ISPRS point cloud classification is 
collected in the Table 3. The performance is over 95% in five of 
the rooms and only under 85% in two of them. The worst 
classification occurs with the room1 which corresponds to the 
two rightmost segments composing the corridor (Figure 8.a). 
Next, we will analyse why the corridor is divided into three 
segments. A plant-view of the corridor with removed ceiling is 
visualized in the Figure 8.b.  
 
The Figure 8.c depicts the connection area between two 
segments belonging to corridor. Since there is a door in the area, 
the segmentation at this point is carried out correctly. 
Conversely, the segmentation at the point visualized in the  
 

Table 3. Confusion matrix of the classification in the ISPR case study. 
 
Figure 8.d is caused by the presence of an object resulting in a 
narrow in the empty space of the corridor. As this narrowing 
effect is similar to that caused by door presence in the navigable 
space, the method segments point cloud at this point. This leads 
to high level of over-segmentation in Room1. 
   
Figure 9.a shows over-segmentation in Room6 (framed in black 
rectangle), however this miss-classification only represents a 
2% of points corresponding to the room.  Figures 9.b and 9.c 
visualise a plant-view and a profile view of the Room6 
respectively. Pictures shows the presence of a tripod between 

classified segments. Since this element do not generate a high 
level of occlusion the over-segmentation is related with low 
resolution in the voxelization. 
  
On overall, the method presented performs an accuracy 
segmentation of most tested rooms. Although people had to be 
removed manually from the ISPRS point cloud, this limitation 
is already addressed in the literature. Classification over-
segmentation caused by low resolution can be overcome by 
applying adaptive resolutions or implementing a function to 
remove inside voxels located between walls. So, it would not be 

 Classification 
 Id Room0 Room1 Room2 Room3 Room4 Room5 Room6 Room7 Room8 Room9 Over-

segmentation 

G
ro

un
d 

Tr
ut

h 

Room0 0.96 0.02 0.00 0.00 0.00 <0.01 <0.01 0.01 <0.01 <0.01 <0.01 
Room1 0.01 0.69 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.30 
Room2 0.08 0.00 0.73 0.00 0.19 0.00 0.00 0.00 0.00 0.00 0.00 
Room3 0.00 0.00 <0.01 0.86 0.14 0.00 0.00 0.00 0.00 0.00 0.00 
Room4 <0.01 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 
Room5 0.00 0.00 0.00 0.00 0.02 0.97 0.01 0.00 0.00 0.00 <0.01 
Room6 0.00 0.00 0.00 0.00 0.00 0.1 0.88 0.00 0.00 0.00 0.02 
Room7 0.06 0.00 0.00 0.00 0.00 0.00 0.00 0.88 0 0.07 <0.01 
Room8 0.04 0.00 0.00 0.00 0.00 0.00 0.00 <0.01 0.96 0.00 <0.01 
Room9 <0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.05 0 0.95 0.00 
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necessary to set a resolution value depending on the thickness of 
the walls. 
 

 
 

Figure 8. a) Classified point cloud with corridor splits into three 
segments. b) Visualization of the inner side of the corridor. c) d) 

Zoom view of connection areas between corridor segments. 

 

 

Figure 9. a) Classified point cloud with highly over-segmented 
room (framed in a black rectangle). b) Plant-view of the over-
segmented room. c) Profile view of the over-segmented room. 

 
5. CONCLUSIONS 

This work presents a room segmentation method for point 
clouds based on 3D morphological operations. The space is 
represented with a voxel-grid structure and indoor space is 
modelled from empty space. Unlike previous methods perform 
room segmentation exploiting trajectory data, this is not 
required for the proposed method. Also, rooms are 
individualized independently the modelling of structural 
elements such as doors and walls.  
 
The method was tested in a couple of real case studies showing 
promising results. However, some limitations associated with 
resolution restrictions lead to improve the method in future 

work. Vertical walls and invariant height of floor and ceil are 
assumed. Also, the way to perform morphological operations 
without the prior knowledge of the width door would be 
addressed.  
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