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House Price Risk and Sub-District House Price Dynamics: The Case of
Amsterdam

Alfred L. Teyea,∗, Jan de Haanb, Marja G. Elsingaa

aDelft University of Technology, Research for the Built Environment (OTB), Delft, The Netherlands
bOTB, and Division of Corporate Services, IT and Methodology, Statistics Netherlands (CBS), The Hague

Abstract

The recent Global Financial Crisis has lent even greater urgency to the need for households
to understand the risks and dynamics of the residential property market better. This paper
uses a rich dataset on individual residential property transactions between 1995 and 2014 in
Amsterdam to study the risks and the inter-dependency of house prices in the sub-district
housing markets. The paper also examines the impact of house price growth in Amsterdam on
the wider national trend. Simple summary statistics are adopted to characterise the dynamics
and to compute the risks, while the inter-dependencies and the city-wide impact are analysed
using Granger causality and cointegration techniques. The analysis establishes that house
prices are generally higher, growing at faster and more volatile rates as we move from the
peripheral to the districts into the central area. Furthermore, the appreciation rate of property
prices in Amsterdam has a significant impact on the national trend, while there is limited
systematic inter-dependency among the sub-markets themselves.

Keywords: Cointegration, Financial crisis, Granger causality, Housing market, Risk, The
Netherlands

1. Introduction

The need for a better understanding of the dynamics and risks of the residential property

market for households, particularly following the 2007-08 financial crisis cannot be over-

emphasized. At the same time, however, a thorough empirical study of the market is either

carried out using complex theoretical models that are beyond the grasp of ordinary households

or impeded by a lack of data. For the data problem, it is common in the literature to resort

to country-wide or regional studies using aggregated data. This practice, however, reduces

the understanding of the market conditions at the smaller district and neighborhood levels.

∗Corresponding author at: Delft University of Technology, Research for the Built Environment (OTB),
Faculty of Architecture and the Built Environment, P. O. Box 5043, 2600 GA, Delft, South-Holland, The
Netherlands. E-mail: a.l.teye@tudelft.nl



In this paper, the aim is to study the housing market in the smaller sub-districts in order

to understand the dynamics and risks, as well as the inter-dependency of price developments

between these sub-markets. This information may also be of interest to other institutions

that invest in particular sub-districts and policy makers who wish to control the overall func-

tioning of the housing market. We obtained a rich dataset on individual house transactions

between 1995 and 2014, which enabled us to analyse the case of the City of Amsterdam in

the Netherlands. First of all, we created customised house price indexes for the city’s local

sub-districts using the time dummy hedonic method. Secondly, we used relatively simple

summary statistics to compare the characteristics and risks in the different districts. Specifi-

cally, the metrics used included: statistical deviation, semi-deviation, ‘decline severity’ and a

version of the semi-deviation, which we refer to as the ‘inter-district deviation’.

The standard deviation is the measure of the dispersion or variation in house prices from the

average, while the ‘decline severity’ is intended to capture the impact of the recent economic

crisis on property price developments in the individual sub-districts. This was defined here

simply as the percentage decrease from the peak to the trough in average prices between 2007

and 2013 - the period following the global economic crisis when Dutch house prices declined

sharply. The semi-deviation is a version of the standard deviation that considers the average

deviation of values below the mean only. This is one of the common downside risk measures

for investment analysis in the mainstream finance literature, but it is used surprisingly seldom

in the housing context (see Foo and Eng, 2000; Grootveld and Hallerbach, 1999; Wolski, 2013).

We defined the inter-district deviation as the variation of the annual average house price in

one local area from the averages across all the districts. During the course of their lives, it

is not unusual for Dutch households to purchase a property in a less desirable location with

the intention of moving to a more desirable location when their disposable income increases

(Banks et al., 2015; Droes et al., 2010; Englund et al., 2002; Sinai and Souleles, 2003; Van der

Heijden et al., 2011). This tendency, however, could be affected by the extent of variations
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in house prices in different locations. The inter-district deviation captures these locational

house price differences and may indicate the largest amount of money needed to augment the

value of the owned property to enable a move within the municipality. All things being equal,

the areas with larger inter-district deviations will have lower outflow mobility opportunities

because the current dwelling in those locations provides a limited hedge for another property

elsewhere in the municipality for those households that decide to move.1

The rest of this paper is structured as follows. The mathematical construction of the metrics is

specified in Section 4, following a brief review of the literature in Section 2 and a description of

the data in Section 3. Section 5 discusses the empirical estimates of the metrics while Section

6 analyses the inter-dependencies between the sub-district housing markets. In Section 7, we

study the impact of changes in house prices in Amsterdam on the national trend. Section 8

summarises the results and concludes the entire paper

2. Overview of the Literature

This paper focuses mainly on the property price risks and the interaction between the house

price developments. Property price risk is referred to here as the potential loss on investment

in residential properties due to a fall in property prices. It is important to study this risk

because changes in house prices tend to affect other significant parts of the economy (Dolde

and Tirtiroglu, 2002; Duca et al., 2010; Miller and Peng, 2006a). The recent Global Financial

Crisis (GFC) has particularly lent some credence to the notion that stress in the Financial

Sector may ensue from a collapse in real estate prices (Aalbers, 2009a,b; Baker, 2008; Hilbers

et al., 2001; Rebelo et al., 2012).

Many authors use the volatility defined by the standard deviation to measure the property

price risk in the literature (e.g. Dolde and Tirtiroglu, 2002; Miller and Pandher, 2008; Miller

and Peng, 2006a; Ross and Zisler, 1991). However, it is well-known that the volatility accounts

1 A hedge may be considered as an asset or portfolio that is intended to cover for the risks or the price
variations of another asset or portfolio.
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only for the variations in the house price distribution from the average and does not necessarily

capture the downside risk, which would be preferable. Jin and Ziobrowski (2011) proposed

using the value-at-risk (VaR) instead of the standard deviation. This measure is a downside

risk metric that indicates the worst-case loss at a portfolio held over a short period of time

given a certain confidence level (Crouhy et al., 2006).

Although widely used in mainstream financial literature, many researchers criticise the VaR

for violating certain mathematical axioms, which, it is argued, disqualifies it from being a

coherent risk measure (see Acerbi and Tasche, 2002; Szegö, 2002; Yamai and Yoshiba, 2002).2

The metric is also known to be more sensitive to the underlying distribution of the price

return. Where the returns are not normally distributed, for instance, it is observed that the

VaR may inaccurately estimate losses, which may then tempt investors to choosing portfolios

with risky profiles (see Hull, 2006).

This article aims to compare house price risks in smaller sub-district markets using summary

statistics. Simple summary statistics are perhaps more important than complex theoretical

models for the individual households that need to make decisions on investing in the housing

market of a particular sub-district. Four metrics (standard deviation, semi-deviation, decline

severity and inter-district deviation) were used, which are based on localised price indexes

constructed for each of the sub-districts. We created the indexes using the time dummy

hedonic method (TDHM). The TDHM is a widely used approach that is based on the notion

that house prices can be described by their physical and locational attributes (de Haan, 2003;

de Haan and Diewert, 2013; Malpezzi et al., 2003; Rosen, 1974). Our dataset contains details

on these physical and locational features, in order to apply the TDHM in this paper.

The procedure for the TDHM mainly involves a regression of time dummy variables and the

2 By definition, the VaR is not sub-additive and thus not considered as a (coherent) risk measure. Heath
et al. (1999) enumerates 4 axioms for which a metric must satisfy in order to be a coherent risk measure.
Sub-additivity is one of these requirements, and means the measure of risk of a portfolio must be less or equal
to the sum of the risk measure of the individual assets that make up the portfolio.
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characteristics in question on the log of property prices observed. This regression equation can

easily be estimated by the method of ordinary least squares (OLS) and it was then possible

to convert the coefficients estimated into a constant quality price index (time dummy hedonic

price index). The background and introduction to these techniques is described extensively

in, for example de Haan and Diewert (2013) or Hill (2013) and we provide a summary of this

in Section 4.

3. Background, Description and Cleaning of Data

Within the Netherlands, the residential property market of the capital city Amsterdam is a

very interesting case to study. Average house prices in Amsterdam are usually higher than in

other cities in the country and the price development pattern there is also somewhat different

(see Figure 1). For example, following the recent Global Financial Crisis, house prices in

Amsterdam declined more sharply but also recovered more quickly than in other major Dutch

cities such as The Hague, Rotterdam and Utrecht. Moreover, whereas average property prices

in Amsterdam fell by almost 11% between 2003 and 2006, there was an upward trend in the

rest of the Netherlands during the same period. Recalling that this period coincided with

the aftermath of some notable global financial mishaps (the Turkey crisis, the Enron and

Worldcom accounting scandals, etc), it may also be argued that the Amsterdam property

market is more sensitive to prevailing international economic conditions than the other parts

of the country.

In terms of demography, Amsterdam has a large population by Dutch standards and a sig-

nificant proportion of international residents. The city’s total population3 in 2015 was about

850,000, with an estimated 431,370 households (average of 2 persons per household) in 2013.

There is also significant variation in the composition of households in terms of culture, religion

and ethnicity. The total housing stock in 2013 was about 400,000, and given its relatively large

population, Amsterdam generally has a significant housing supply shortage, which manifests

itself in very long waiting lists for social rental dwellings.

3 Amsterdam’s population growth rate between 1990 and 2013 was about 6.5% according to the CBS.
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Figure 1: Annual average house price developments in four major Dutch cities.
source: The Statistics Netherlands (CBS)

The analysis in the rest of paper uses data with records on individual sale transactions in

Amsterdam between 1983 and 2014. We obtained this dataset from the realtor organisation

NVM.4 In total, we received information on about 150,000 transactions. The NVM’s coverage

of sales information in the Netherlands has been improving over the years. The average

coverage per year is generally known to be about 75%. However, we discovered that prior to

1995, a large portion of the sales reported by the NVM did not include the characteristics of

the dwellings. Since these characteristics were needed to construct our time dummy hedonic

indexes, we discarded the observations before 1995.

For the rest of the dataset, we sought to construct house price indexes for existing dwellings

and we therefore removed new-build homes, which totalled 4,169. Observations with missing

transaction prices (set to -1 by the NVM) and those with unusual values (e.g., 0s, 9s) were

excluded. We also omitted observations with recorded transaction prices in excess of e4

4 NVM is the Dutch National Association of Property Brokers. The association makes data available
on request, following a number of strict procedures, and the sales data used in this paper were not directly
accessible by the authors.
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Figure 2: Local districts and neighborhoods in the city of Amsterdam. Average transaction prices are
based on NVM data from 1995 to 2014. source: CBS and NVM

million (74), and those below e10,000 (404). Records with extremely small house sizes5 (below

20m2) in addition to the observations with unavailable structure sizes (3642 in total) were also

excluded. Furthermore, we deleted 5 observations for which the property type was unavailable

or unknown. The rest of the data - a total sample size of 116,446 - was finally divided into

the fifteen smaller local districts of Amsterdam, which are shown in Figure 2. These sub-

districts are chosen for our study because they represent the official spatial segmentation of

Amsterdam according to by Statistics Netherlands (CBS) for statistical purposes. Moreover,

the NVM included a key variable that enables the separation of the dataset.

The Table 1 and Figure 2 and 3, present the summary statistics and distribution for the

remaining data. A brief look at the table and the figures shows that, during the study period,

properties in Amsterdam sold for an average of about e261,513. Average house prices in less

expensive areas like Zuid-Oost, Geuzenveld en Slotermeer, Bos en Lommer and Noord were

below e200,000. The more expensive districts include the central business district (Centrum)

and its immediate surroundings (Westpoort and Oud-Zuid), where average price were above

5 Properties with extremely small sizes (below 20m2) are almost not-existent in the Netherlands.
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Figure 3: Distribution of log transaction prices for the entire Amsterdam: 1995 to 2014.
source: NVM

e300,000. In addition to the locational attributes, there is significant disparity in the average

disposable income of local residents, which may contribute to house price variations between

the sub-districts (see Amsterdam, 2013; Karsten et al., 2006; Musterd and Deurloo, 1997).

4. The Time Dummy Hedonic Method and Definition of Price Risk Indicators

Rosen (1974) defines hedonic prices as the “implicit prices of attributes that are revealed to

economic agents from observed prices of differentiated products and the specific amounts of

characteristics associated with them”. The TDHM includes the period of transaction as one

of the characteristics, following the definition of Rosen (1974). In the notations of de Haan

and Diewert (2013), the estimating regression equation of the TDHM could be described by

the model:
ln pt

n = β0 +
T∑

τ=1
δτ Dτ

n +
K∑

k=1
βkzt

nk + εt
n (1)

where pt
n is the price of the n property in the period t from the sample of Nt properties

with K number of characteristics zK = (zt
nk)K

k=1. εt
n is the error term assumed to be white

noise process whereas Dτ
n is the time dummy that takes the value one if pt

n belongs to the

sample Nt and zero otherwise. By omitting one of the dummy variables (usually the base

period), equation (1) may be estimated on the pooled data by the method of OLS and the
8



District No. of Obs. Avg Price (e) Std. Dev. Avg Size (M2) Avg. BP

Centrum 16 805 344 293.0 238 061.9 97.0 3.1

Westpoort 0 041 392 098.4 174 284.3 87.8 8.5

Westerpark 5 958 228 231.9 126 395.0 69.9 3.2

Oud-West 7 633 275 323.4 184 124.0 80.4 2.2

Zeeburg 7 628 266 334.1 142 666.7 88.7 6.2

Bos en Lommer 5 009 171 289.3 81 045.08 69.0 3.1

De Baarsjes 6 547 202 730.7 102 998.6 71.8 2.5

Noord 8 521 193 182.5 111 130.2 89.9 5.1

Geuzenveld en Slotermeer 3 720 164 187.6 79 909.1 83.7 5.4

Osdorp 5 518 194 725.1 110 606.0 97.6 6.4

Slotervaart en Overtoomse Veld 4 565 225 467.8 123 070.2 101.0 6.8

Zuid-Oost 6 842 149 067.1 72 615.4 86.3 6.7

Watergraafsmeer 8 409 258 422.4 142 885.8 87.2 3.5

Oud-Zuid 18 830 348 942.8 278 432.5 96.8 2.3

Zuideramstel 10 420 272 807.0 185 531.9 93.8 3.9

Whole of Amsterdam 116 446 261 512.6 193 972.7 88.9 3.9

Table 1: Summary statistics for transactions from 1995 to 2014. The building period is indicated by BP and the original data is categorized for
properties built in the period: < 1500, 1500-1905, 1906-1930, 1931-1944, 1945-1959, 1960-1970, 1971-1980, 1981-1990, 1991-2000, ≥ 2001

respectively by 0, 1, 2, 3, 4, 5, 6, 7, 8 and 9. The higher the average BP, the more recent are the buildings in the district.
Source: Authors’ computations based on NVM data.



index tracking the growth rate from time 0 to τ is simply obtained with the exponentiation

πτ = exp(δ̂τ ). Here, δ̂τ is the estimated value of δτ .

For each of the sub-districts (x say), we followed the above procedure to estimate the house

price index from 1995:Q1 to 2014:Q4 using 1995:Q1, as the base year. After that, the variance

(σ2
x) and the inter-district variance (γ2

x) for the respective districts are then specified as in

the equation 2 below.6

σ2
x = (T − 1)−1

T∑
t=1

(dx
t − µx)2

γ2
x,t = L−1

L∑
y=1

(max(θy
t − Ax

t , 0))2 (2)

Here, µx = T −1 ∑T
t=1 dx

t is the mean house price return in the sub-district x and L is the total

number of designated sub-districts. The return is defined for a version of the original indexes

that was first smoothed using a simple fourth-order moving averages. In a slow (or thin)

market with few transactions (which was the case with some of the districts studied), the

hedonic house price index becomes very volatile, exhibiting extreme short-term fluctuations

that are mostly due to sampling errors (see Figure 4 and Schwann, 1998). By taking mov-

ing averages, these short-term sample variances are smoothed out from the indexes and the

resulting growth rate may then be considered as the long term quarterly house price return

(Diewert, 2010). This return is defined as the log differences of the smoothed indexes but it

is in the earlier notation mathematically equivalent to

dx
t = ln

[
(πt

x + πt−1
x + πt−2

x + πt−3
x )/(πt−1

x + πt−2
x + πt−3

x + πt−4
x )

]
The quantity γ2

x,t in equation (2) is the modified semi-variance statistically expressed as the

squared deviations of the average house prices θy
t in the sub-districts y that falls above the

average house price Ax
t in the district x from where an household intends to move at time

t. This inter-district variance γ2
x,t is viewed as a measure of the premium involved in moving

up to the higher-priced locations within the municipality. The original semi-variance is used,

6 The deviations can be calculated by taking the square roots of the variances.
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on the other hand, for the risk of the growth rate. Using the appropriate notations, the

definition of the semi-variance is similar to γ2
x,t with the function max(.) replaced by min(.).

The semi-variance is a downside risk metric that has a more appealing connotation for risk

than the variance because it considers only values below the mean or some other predefined

threshold.

5. Empirical Estimations of the House Price Index and Risk Indicators

5.1. Sub-district House Price Index

The localised house price indexes were constructed for fourteen of the Amsterdam sub-districts

using the TDHM. Westpoort was omitted because there were too few observations and these

did not cover the entire study period.7 The implementation of the TDHM first required a

choice to be made about which dwelling characteristics to include in the regression equation

(1). We began with several characteristics and then excluded those features that were statis-

tically insignificant across the fourteen districts using the p-values. The final regression used

the log transaction prices as dependent variable and only seven co-variates, most of which

were also categorised into several groups described in Table 2.

Including the time dummies (the base period 1995:Q1 omitted for identifiability), the adjusted

R-squared showing the proportion of variation in log transaction prices explained across the

14 districts ranged from 82.5% to about 92%. The same factors plus the location (district)

dummies indicating the districts of transaction explained nearly 88.72% of the variation in

sale prices across the whole Amsterdam. The regression result for the entire city is presented

in Table 3 (the time dummy variables are omitted however to preserve space).

It is noticeable that the estimated coefficients of most of the explanatory variables are statis-

tically significant (even at the 1% level) and that they also carry the expected signs. More

specifically, the coefficients of the log structure size, the number of rooms and the number of

7 The lower observations in Westpoort was because the district is relatively new and the majority of the
houses were recently built.
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Variable Description Unit

log(M2) logarithm of the structure size m2

NKAMERS number of rooms integer

NVERDIEP number of floors integer

VERW system of heating 0,· · · , 3

ONBI maintainance level inside the property 1,· · · , 9

BWPER Building period 0,· · · , 9

HOUSETYPE Type of house 2,· · · , 7

LOC The district in which property is located 0,· · · , 14

Table 2: Definition of Explanatory variables. The respective heating types are: no heating system,
gas/stove heating, central boiler heating and air condition/solar heating. The categories of the

building period is as described in Table 1. The maintenance level are rated as: bad, poor to
moderate, moderate, moderate to reasonable, reasonable, reasonable to good, good, good to excellent
and excellent. The properties were classified as: row house, town house, corner house, semi-detached

house, detached house and apartment, and the location of the properties was categorised into 15
using the codes specified in Table 1. Source: Extract from NVM data

floors are all positive and statistically significant. The location of the house and the property

type also play an important role in determining the property prices, as expected. Compared

to the central district (Centrum), the regression results show that prices are lower in all other

districts except in Westpoort. The maintenance level inside the property also has a positive

impact on the price of the property. We note, however, that the maintenance level compiled

by the NVM is rather more subjective to the property valuer during the transaction.

As expected, the coefficients of the construction periods are also correctly signed in general.

A careful look at Table 1 and Figure 2 reveals that the districts in and around the central area

of the city have comparatively older dwellings, except Westpoort. These areas, in spite of the

age of the buildings, also have expensive houses in accordance to the bid-rent geographical

economic theory (Alonso, 1960; Alonso et al., 1964). In fact, older dwellings tend to be more

expensive also because many Dutch people prefer them, especially when they are located

along monumental streets and close to museums or other public areas.

12



Variable estimate sd deviation p-value

Intercept 7.590672 0.022811 < p ∗ ∗∗

log(M2) 0.865394 0.002111 < p ∗ ∗∗

NKAMERS 0.011584 0.000582 < p ∗ ∗∗

NVERDIEP 0.003173 0.001032 0.002106 **

VERW1 -0.042580 0.003065 < p ∗ ∗∗

VERW2 0.048703 0.002333 < p ∗ ∗∗

VERW3 0.154269 0.041770 0.000221 ***

ONBI2 0.023265 0.026203 0.374599

ONBI3 0.035788 0.012390 0.003871 **

ONBI4 0.042677 0.014851 0.004058 **

ONBI5 0.075381 0.011789 1.62e-10 ***

ONBI6 0.099165 0.012134 3.05e-16 ***

ONBI7 0.165570 0.011661 < p ∗ ∗∗

ONBI8 0.234712 0.012091 < p ∗ ∗∗

ONBI9 0.257581 0.011714 < p ∗ ∗∗

LOC36301 0.049984 0.029251 0.087492 .

LOC36302 -0.183326 0.002901 < p ∗ ∗∗

LOC36303 -0.107175 0.002640 < p ∗ ∗∗

LOC36304 -0.269886 0.002762 < p ∗ ∗∗

LOC36305 -0.392107 0.003351 < p ∗ ∗∗

LOC36306 -0.275391 0.003003 < p ∗ ∗∗

LOC36307 -0.510009 0.002837 < p ∗ ∗∗

Variable estimate sd deviation p-value

LOC36308 -0.519670 0.003823 < p ∗ ∗∗

LOC36309 -0.515659 0.003299 < p ∗ ∗∗

LOC36310 -0.471955 0.003449 < p ∗ ∗∗

LOC36311 -0.646286 0.003235 < p ∗ ∗∗

LOC36312 -0.213398 0.002596 < p ∗ ∗∗

LOC36313 -0.045943 0.002153 < p ∗ ∗∗

LOC36314 -0.151450 0.002651 < p ∗ ∗∗

BWPER1 0.032283 0.016585 0.051593 .

BWPER2 0.002877 0.016569 0.862141

BWPER3 -0.006407 0.016659 0.700554

BWPER4 -0.076595 0.016768 4.93e-06 ***

BWPER5 -0.189582 0.016655 < p ∗ ∗∗

BWPER6 -0.118114 0.016822 2.21e-12 ***

BWPER7 -0.079620 0.016645 1.73e-06 ***

BWPER8 0.012892 0.016632 0.438239

BWPER9 -0.018505 0.016767 0.269724

HOUSETYPE3 0.118812 0.011428 < p ∗ ∗∗

HOUSETYPE4 0.038909 0.004004 < p ∗ ∗∗

HOUSETYPE5 0.231907 0.006615 < p ∗ ∗∗

HOUSETYPE6 0.327736 0.005939 < p ∗ ∗∗

HOUSETYPE7 -0.053797 0.002440 < p ∗ ∗∗

Table 3: Hedonic regression estimates for Amsterdam (time dummies omitted). p = 2e − 16. Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘
’ 1. Residual standard error: 0.1864 on 116324 degrees of freedom; Multiple R-squared: 0.8868, Adjusted R-squared: 0.8867; F-statistic: 7530 on

121 and 116324 DF, p-value: < 2.2e − 16. Source: Author’s computation
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Figure 4: The city-wide Amsterdam and the local residential property prices indexes
compared. Source: Author’s estimate from NVM data

Figure 4 compares the sale price indexes from the 14 districts with the city-wide Amsterdam

index. The plot reveals that a few of the sub-markets (Centrum, Oud-Zuid and Zuidamstel)

mimic the city-wide average price outlook over time, whereas the sub-districts that are more

peripheral have lower price levels as noted earlier (see Figure 2 & 4). Furthermore, we can

also see that over time, those sub-markets that are closer to city centre tend to have relatively

higher price levels. This may not be so surprising because gentrification in and around the

centre of Amsterdam is also a common phenomenon (see Gent, 2013; Hochstenbach et al.,

2015).

5.2. House Price Returns and Volatility (Risks)

This subsection reports the average house price returns and risks (volatility) in the sub-

markets. We should recall here that the average returns are obtained from the log differences

of the fourth-order moving average version of the original hedonic price indexes. The plots

of the moving average indexes are exhibited for selected sub-markets in Figure 5a. The basic
14



risk measures are the standard and semi-deviation of the returns series and are indicated in

Figure 5b.

The growth rate, according to Figure 5b is highest (more than 1.4% per quarter) in Wester-

park, Oud-West, Oud-Zuid, Centrum and areas closer to the central business district. These

locations also exhibit higher house price volatility (risk). On the other hand, we find that

the peripheral districts show relatively lower price growth rates and lower volatilities. For

instance, the Nieuw-West district (Osdorp, Noord, Slotervaart en O. Veld, Geuz. en Sloter-

meer) and Zuid-Oost which are further away from the city centre, tend to have smaller returns

(of about 1.1%) and are less volatile (see Figure 5b).

5.3. Impact of the Global Financial Crisis

After the World War II, house prices in Amsterdam began a persistent upward trend starting

in the early 1950s and lasting until the late 1990s, mainly as a result of the rising popula-

tion, growth in disposable income and government stimulation of the owner-occupied sector

(De Vries, 2010; Dröes and Van de Minne, 2015; Elsinga, 2003; Minne et al., 2015). Be-

tween 2001 and 2004, however, average property prices in Amsterdam decreased almost by

11%. This was a period of some global economic turbulence such as the 2000 oil crisis, the

Turkey crisis, Enron and the Worldcom accounting scandals, among others. Interestingly,

house prices in the rest of the Netherlands continued to increase during this period, although

prices in Amsterdam only started to recover from 2005. From 2005, average property prices

in Amsterdam grew at an even stronger annual rate of about 4.5% until 2008 (see Figure 1).

In the last quarter of 2008, the Dutch housing market was hit again by the Global Financial

Crisis (GFC). Following the crisis, between 2008 and 2013, average house prices in Amsterdam

fell by almost 16.3%. However, the effect of the GFC on house prices varied between the dif-

ferent sub-districts in terms of speed and severity. The impact was felt quicker in Westerpark,

Geuzenveld en Slotermeer, Zeeburg and Zuid-Oost, where house prices in 2010 had declined

by 8.5% to 14% from their levels in 2008 (Figure 6a). In the long term, the impact of the cri-

sis was more severe in Nieuw-West district (Geuzenveld/Slotermeer, Osdorp and Slotervaart
15
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(a) Exhibit of the moving average index for selected sub-markets
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Figure 5: Exhibition of the smooth version of the price index for selected sub-districts,
returns and indication of risk. Source: Author’s computations based on NVM data
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area), where a large proportion of residents (about 25%) had been unemployed over the past

2-3 years in 2010 (Figure 6b). The percentage house price decrease from the peak of 2007 to

the trough of 2013 in these districts was about 20% to 23.5%. Noord, Westerpark, Zeeburg

and De Baarsjes were also among the worst hit areas over the long term, while the impact

was minimal in Watergraafsmeer and Oud-West.

It is interesting to note that apart from Zeeburg, the central business districts (Centrum, Oud-

Zuid, Watergraafsmeer and Zuidamstel) were affected less by the GFC over the long term

(15% to 17% decrease), even though house prices are higher in these areas. This observation

departs from the earlier findings of Van der Heijden et al. (2011). These authors argue that

the Dutch housing market is generally dynamic - meaning that households are able to move

from cheaper segments of the market to the higher priced segments (and vice versa) during

the course of the life cycle. They concluded that the upper-priced sub-markets are affected

the most during an economic crisis because when disposable income decreases, the upward

movement is curtailed. This then leads to a reduction in the number of transactions and a

subsequent decline in house prices at the upper segment of the market.

In their analysis, however, Van der Heijden et al. (2011) do not consider the possibility that

the impact of the crisis on income may vary geographically. In general, decreases in disposable

incomes during any economic downturn are linked to unemployment, which will differ between

the districts (see Figure 6b). Spatially, therefore, it is reasonable to assume that house prices

will be more affected in those sub-markets where the labor force suffers the most during the

crisis. A closer look at the Figure 6 suggests that the impact of the crisis on house prices

does indeed correlate with the effect of the GFC on employment in the relevant districts. The

more expensive segments of the market are not necessarily more severely impacted since the

labor force in these areas may be affected less by the crisis (see Figure 6).

5.4. Inter-District House Price Deviation

As described by Van der Heijden et al. (2011), the Dutch housing market is dynamic. House-

holds often tend to move from the cheaper to the more expensive segment of the market
17
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Figure 6: House price and employment statistic following the crisis. Notice: Zeeburg and
Watergraafsmeer are currently classified as Oost; Geuzenveld/Slotermeer Osdorp and

Slotervaart area form Nieuw-West; Bos en Lommer, Westerpark, De Baarsjes, Oud-West
constitute West. Source: NVM, (Amsterdam, 2004, 2013, 2014)

as disposable income permits or if enough equity is built up in the current dwelling. The

inter-district deviation is a single statistic that tracks the maximum rise in value that house-

holds need in their current dwelling in order to move up to higher-priced market segment

in another location. As expected, the areas with cheaper houses have higher inter-district
18



deviations (Figure 7b). Moreover, the inter-district deviations increased over time during the

study period, particularly in the districts with the cheaper house prices (Figure 7a). This may

indicate the widening gap between house prices in the cheaper and more expensive districts

over the years.

In general, the inter-district deviation is highest in Zuid-Oost, Geuzenveld en Slotermeer,

Bos en Lommer and Noord (Figure 7b). More than e80,000 is needed to augment an aver-

age house price in these areas to facilitate a move to the other higher-priced locations. In

the Centrum and Oud-Zuid, where property prices are higher, the inter-district deviation is

negligible. A household may move from these higher-priced districts to other areas without

much financial rigidity. In the other areas however, the inter-district property price variations

are substantially high. In addition to the already large transaction costs involved in sales of

properties in the Netherlands8, this considerable inter-district variations may constitute part

of the reasons why Dutch homeowners in general tend to move less frequently than those

who rent, as has been confirmed in the literature (Chan, 2001; Droes et al., 2010; Helderman

et al., 2004; Hochstenbach et al., 2015).

6. Sub-markets Inter-dependencies

We have so far compared the basic house price dynamics (growth rate, risk and inter-district

deviation) for the sub-districts. This section continues with analysis of the inter-dependencies

between the sub-markets. Although the sub-markets may differ fundamentally in many ways,

house price trends in one geographical area may generally correlate with the growth in other

places. This correlation may be due to some common house price fundamentals (e.g. interest

rates, government regulations) or as a result of parallel economic and industrial expansion

(Vansteenkiste and Hiebert, 2011). On the other hand, through in-migration and speculative

activities, among other factors, it is likely that development of house prices in one area may

have a lag or spillover effect on the price growth in other locations (Meen, 1999). Holly et al.

8 Transaction cost for dwellings in the Netherlands is about 10% of the value of the home (including 6%
property transfer tax).
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(a) Overtime inter-district deviation for selected districts

0

20000

40000

60000

80000

100000

120000

140000

160000
1

9
9

5

1
9

9
6

1
9

9
7

1
9

9
8

1
9

9
9

2
0

0
0

2
0

0
1

2
0

0
2

2
0

0
3

2
0

0
4

2
0

0
5

2
0

0
6

2
0

0
7

2
0

0
8

2
0

0
9

2
0

1
0

2
0

1
1

2
0

1
2

2
0

1
3

2
0

1
4

d
ev

ia
ti

o
n

s 
/ 

eu
ro

s 

Westerpark Zeeburg Noord

Osdorp Zuid.Oost Watergraafsmeer

(b) Average inter-district deviation: 1995-2014

0

20000

40000

60000

80000

100000

120000

d
ev

ia
ti

o
n

 /
 e

u
ro

s 

Figure 7: Inter-district deviation indicating the variations of average house prices in one
district from the averages in the other districts. Source: Author’s computation from NVM

data

(2011), for instance, found that shocks to property prices in London spread to the other

regions in the UK and this impact may occur for more than two years.

Many other journal articles have reported on this issue of house price spillovers from one

statistical region to another, between cities and even across countries (Guozhi and Xun, 2011;

Holly et al., 2010, 2011; Vansteenkiste and Hiebert, 2011; ZHANG et al., 2015). However,
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there is little literature from the Netherlands on this subject. We can contribute to filling this

gap here by analyzing the across-district lagged house price effects for Amsterdam within the

Granger Causality framework. The concept of Granger Causality (GC), popularized in the

literature by Granger (1969), is one of the widely used empirical methods for testing the lag

dependency between two time series. More formally, the author referred to one time series

xt as a cause of another yt if the information about xt till now can improve the prediction of

future values of yt beyond the use of only the information already known about yt.

We use this idea to analyse the interaction of house price growth between pairs of all 14 sub-

markets and also investigate the inter-dependencies amongst property price developments

in the upper and lower-priced market segments. Investigating these inter-relationships is

important in understanding the mechanism by which shocks may possibly spread and hence

to monitor systemic risk within the city-wide housing market.

6.1. Pairwise Granger Causality

This sub-section uses the growth rates to investigate the lag-dependencies between pairs of the

sub-markets. However, because the operation of moving averages introduces auto-correlation

into the resulting time series, the smoothed version of the growth rates obtained earlier cannot

be used for the regressions on which the GC analysis thrives. Regression requires that the

data is independently generated. Therefore, we first obtained an adjusted version of the

house price growth rate that did not introduce this serial correlation. The adjusted rate was

defined for each sub-markets, following Andersen et al. (2000) by dividing the log growth rate

from the original hedonic index by the volatility (constructed as the square of the log-growth

rate). These standardised growth rates are generally more stable than the non-standardised

log growth rates from the original indexes (see an exhibit in Figure 8).9

For the adjusted growth rates xi
t and xj

t from the respective sub-markets i and j, the empirical

9 The Augmented Dickey-Fuller (ADF) test shows stationarity of the standardised growth rate for all
sub-districts at the 5% level.
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Figure 8: Exhibition of the standardised growth rates for selected districts

procedure for the pairwise GC test is to first estimate the simultaneous regression equations:

xi
t = α0 +

p∑
k=1

α1kxi
t−k +

p∑
k=1

β1kxj
t−k + ϵ1t

xj
t = β0 +

p∑
k=1

α2kxi
t−k +

p∑
k=1

β2kxj
t−k + ϵ2t (3)

where ϵ1t and ϵ2t are uncorrelated disturbance terms. The lag order p is usually determined

with an information criterion (AIC or BIC). We say formally that xj
t Granger cause xi

t if

the estimated parameters β11, · · · , β1p are statistically different from zero (i.e, the hypothesis

H0 : β11 = · · · = β1p = 0 is rejected at a reasonable statistical significant level). Similarly, xi
t

Granger cause xj
t if we can reject the hypothesis H1 : α21 = · · · = β2p = 0.

For our purposes, both BIC and AIC selected the value of p as 1 in all 182 sub-market pairs.

The pairwise GC test-statistics and the p-values are presented in the Table B.8. Figure 9

gives a pictorial view of the lag-dependencies between the sub-markets based on the result in
22



CT
WP

OWZB

BL

DB

NO

GS

OD

SO

ZO

WG

OZ

ZA

Figure 9: Lag dependency between sub-markets based on pairwise Granger Causality at the 5% level.
Note: The directed arrow is from the independent to the dependent sub-market. CT=Centrum,

WP=Westerpark, OW=Oud-West, ZB=Zeeburg, BL=Bos en Lommer, DB=De Baarsjes,
NO=Noord, GS=Geuzenveld en Slotermeer, OD=Osdorp, SO=Slotervaart en Overtoomse Veld,

ZO=Zuid-Oost, WG=Watergraafsmeer, OZ=Oud-Zuid and ZA=Zuideramstel.

the table. The figure shows that the sub-markets do not form a connected network.10 There

are particularly four districts (Noord, Zuideramstel in the south as well as Bos en Lommer

and Geuzenveld en Slotermeer in the western part of Amsterdam) that have no interaction

at all with any of the other districts. However, there is a subset of the districts that interact

systemically with Zuid-Oost, Osdorp and Slotervaart en Overtoomse Veld playing dominant

roles.

More specifically, there is a systematic house price lag effect from Zuid-Oost to both Osdorp

and Slotervaart en Overtoomse Veld. Osdorp also has a lag-dependency on two other districts,

10 A directed network is connected if there is a path between any two nodes in the network.
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whereas Slotervaart en Overtoomse Veld is Granger caused by two of the sub-markets. In

summary, the most central districts where systemic shocks could spread are Zuid-Oost and

Osdorp. Slotervaart en Overtoomse Veld, on the other hand, will probably be subject most

shocks, although the topology of the network (Figure 9) suggests that propagation of house

price shocks from one district is limited to, at most, three other sub-markets.

6.2. Lower and Upper Market Segment Interaction

In this sub-section, we test the lag dependency between the lower and upper-priced segments

of the market. This illuminates our understanding as to whether house prices in the different

market segments grow independently or there is systematic development from the upper to

the lower-priced segment (or vice versa). The sub-markets are first categorized into four

according to the average transaction prices as already shown in Figure 2. Denote these upper

to lower market segments by Q1, Q2, Q3, Q4, then the respective groups are:

Q1: {Oud-Zuid, Centrum}; Q2: {Oud-West, Zeeburg, Watergraafsmeer, Zuidamstel}

Q3: {Noord, Westerpark, De Baarsjes, Slotervaart en Overtoomse Veld, Osdorp}

Q4: {Zuid-Oost, Geuzenveld en Slotermeer, Bos en Lommer}

The lag dependency between these segments were analyzed with both pairwise multivariate

Granger causality (PMGC) scheme discussed in Lütkepohl (2005) and multivariate partial

Granger causality (MPGC) of Guo et al. (2008). The PMGC is a multivariate version of (3),

while the MPGC controls for confounding effects of the other segments when the Granger

causality between two pairs are considered. The estimates for the tests are presented in the

Table B.9.

The two methods (PMGC and MPGC) both yield the same conclusion from the empirical

results at the 5% significance level. In general, there is no lag effect from the upper to the

lower market segment (and vice versa) except from the fourth (Q4) to the third (Q3) segment

of the market. In other words, the only Granger causality is from the very lowest level (Q4)

to the next immediate upper segment of the market (Q3). This also implies that the growth
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of house prices at the level Q3 could be affected by shocks to house prices at the Q4 segment.

On the other hand, shocks are unlikely to be spread amongst the rest of the market segments.

7. Impact of Amsterdam House Price Appreciation on the General Dutch Trend

In a previous section, we discussed the unique development of Amsterdam house prices in

the Netherlands. Given the central role that the city plays in the economy, the question

arises of whether changes in house prices in Amsterdam have any impact on the nation-

wide price outlook. For example, Teye and Ahelegbey (2016) argue that in a network of the

twelve Dutch provincial housing markets, Noord-Holland significantly influences the growth

of property prices in the other Dutch provinces. The authors explained this might come about

because Noord-Holland is home to the national capital, which has a dynamic property market

and also serves as the economic hub for the whole country. Similarly, Guozhi and Xun (2011)

and ZHANG et al. (2015) find that house price movement in certain economically important

districts of China affect property prices in neighbouring cities.11

In this section, we examine the impact of the growth of house prices in Amsterdam on the price

developments in the Netherlands as a whole. We use a cointegration equation that specifies the

equilibrium relationship between the house price growth rates in Amsterdam and the whole

of the Netherlands. Cointegration models are perhaps the most widely used in the literature

for detecting long-run associations among time series variables. The cointegration equation

could be flexibly estimated using a wide range of methods and the framework also allows for

the analysis of the short-term equilibrium correction mechanism. Importantly, however, the

cointegration approach avoids the estimation of spurious regressions by providing a way to

model time series that are not stationary or which change in a non-constant manner over

time (Granger, 1983, 1981; Granger and Newbold, 1974). The Pesaran et al. (2001) ARDL

bounds approach to cointegration is applied here in our analysis.

11 Holly et al. (2011) discussed this issue of house price spillover and diffusion in the case of UK, while the
instance of the USA was analysed by for example Meng et al. (2014), Miller and Peng (2006b) and Holly et al.
(2010).
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7.1. Cointegration and Equilibrium Relationship

Before the year 2000, the methods for testing cointegration existed only for time series that

exhibited unit root or if they had the same order of integration. Pesaran et al. (2001),

however, later provided a straight forward way to test the cointegration and estimate the

equilibrium relationship between a mixture of stationary and non-stationary variables. This

is much appealing since in empirical work it is common to have different test procedures

giving contradictory results on the stationarity order of time series.

In application, one only needs to ensure that none of the data series is integrated beyond the

first order to use the ARDL bounds cointegration approach. Here, the procedure is applied

to the house price index for the whole of Amsterdam and the entire Netherlands, shown in

Figure 10. First of all, we employed the Zivot and Andrews (2002) unit root test and found

that the indexes in log-levels both for Amsterdam and the Netherlands are I(2) at the 5%

level (see Table 2). When cross-checked with the Becker et al. (2006) stationarity test, these

time series were detected as I(1).12 The cointegration test is therefore conducted for the log

growth rates (first-differences of the logged index) since then we have a mixture of I(1) and

I(0) series that makes the application of the ARDL approach viable.

Following the cointegration test procedure described in the Appendix A and B, the null

hypothesis that no cointegration exists is rejected at the 1% significance level. Hence, we

concluded that there exists an equilibrium relationship between the log growth rate of house

prices in Amsterdam (denoted by Arate) and the entire Netherlands (denoted by Nrate).

The long-run equilibrium equation is described by the ARDL(2, 1) model given by

Nratet = 0.275Nratet−1 + 0.492Nratet−2 + 0.136Aratet−1 + υ̂t (4)

12 Since the time we are dealing with covers period for the recent financial crisis where there are potential
breaks (see Figure 10), we based the decision of stationarity on tests that factor in possible structure breaks
although the conclusions are not different when the usual ADF and KPSS are adopted. The Zivot and Andrews
(2002) test considers one break point whereas the Becker et al. (2006) procedure controls for infinitely many
break points.
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Figure 10: SPAR House price indexes and the log growth rates for the whole of Amsterdam and the
entire Netherlands. source: Statistics Netherlands

where υ̂t is the equilibrium correction term. The regression coefficients are highly significant

statistically and the adjusted R-squared is about 83.8%. The diagnostic regression statistics

are presented in the Table B.6. From equation (4), we can discern that in equilibrium, the

growth rate in the Dutch house prices nation-wide for the current quarter is dependent on

the national growth rate in the previous two quarters and the Amsterdam’s growth rate in

the quarter immediately previous. The long-run impact of a change in the log growth rate

of property prices in Amsterdam on the national price growth rate is about 0.586. This

means if the log growth rate of house prices changes by 1 unit in Amsterdam, there will be a

corresponding change in the log growth rate in house prices nation-wide of about 0.586 unit

in the long-run. This impact is very significant and seems to suggest that the growth of house

prices in Amsterdam play a major role in the long term development of the national trend.
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7.2. Equilibrium Correction Mechanism

The fundamental socio-economic and political climates on which house prices thrive change

over time and from place to place. Consequently, it is quite possible that the national house

price growth rate may also deviate from its equilibrium relationship with the pattern in Am-

sterdam. Nevertheless, if the two are truly co-integrated, such deviation must be eventually

corrected for the equilibrium relationship to be sustained. This equilibrium correction mech-

anism could be analysed using the so-called equilibrium or error correction model (ECM)

described in the Appendix A. In our case, we estimated an ECM model of the form

∆Nratet = − 0.081 ∆Nratet−1 + 0.213 ∆Arate

+ 0.255 ∆Aratet−1 + 0.153 ∆Aratet−2 − 0.553 υ̂t−1 + et (5)

where the innovation ∆ yt = yt−yt−1, et is a random disturbance term, and the other variables

are as defined before. The equation is estimated with ordinary least square (OLS) method

and the summary statistics are presented in the Table B.7. We note that the coefficients on

the Amsterdam growth rate terms are all positive and statistically significant. These show

the positive impact of the growth of house prices in Amsterdam on the national trend in the

short term. Furthermore, the coefficient on the correction term υ̂t−1 has the expected minus

sign, which confirms the cointegration and equilibrium adjustment mechanisms. The speed of

equilibrium adjustment is very fast, estimated at 0.553, which also implies that the half-life

of the equilibrium deviation is about 1.25 quarters. In other words, 50% of the deviation of

the national house growth rate from the equilibrium level in any period is corrected before

the end of the next two quarters.

Finally, we display the in-sample fits from the long and short-run models (4) and (5) in

Figure 11. The figure confirms that these models capture the house price dynamics between

Amsterdam and entire Netherlands quite well. Equation (4) in particular reveals that the

national house price growth rate (and consequently the price levels) can easily be predicted

once we observed the trend in the past quarter and what is happening currently in Amsterdam.
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Figure 11: In-sample fit for log growth rate and log-level price index for the Netherlands. The
log-level fitted series are obtained as ˆNLIt = NLIt−1 + ˆNratet, where NLIt is the log-level price
index for the whole of the Netherlands and ˆNratet is the fitted log growth rate from the equation

(4). The fitted log growth rates are obtained similarly from the model (5).

Conclusion

Following the recent financial crisis, both institutional investors and households need to un-

derstand the dynamics and risks of the housing market better. Using a very rich and unique

dataset on individual house transactions in Amsterdam, with many characteristics and cov-

ering almost twenty years, this paper has compared the risks and dynamics of house prices

in the local sub-districts of the city. The inter-dependencies of property price development

between the sub-district as well as the impact of the Amsterdam city-wide price development

on the general national trend have also been analysed. The methodology of the paper adopted

simple summary statistics in order to compare the risks, while the inter-dependencies and the

city-wide impacts were studied within the Granger causality and cointegration frameworks.

These methods are more flexible for the purpose of obtaining indicators that easily explain
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the market dynamics and risks to individual households who decides to invest in the housing

market.

The key conclusions of the paper are the following: (1) house prices generally grow at a more

stronger rate and are also more volatile as we move from the peripheral to the city centre; (2)

the gap between house prices in the cheaper and more expensive districts widened over time

from 1995 to 2014; (3) the sub-districts display a dis-connected network topology, although a

subset exists where shocks could spread systematically; and (4) there is a long-run equilibrium

relationship between the growth of house prices in Amsterdam and the national trend, with

the growth rate in Amsterdam showing a significant impact on the growth of property prices

in the Netherlands as a whole.

These results provide useful information for regulatory purposes and also for individual house-

holds. Policy makers may particularly focus regulation on the inter-dependent subset of the

sub-markets to prevent systemic risk. Households, meanwhile, could take into account the

widening gap between house prices in the cheaper and expensive segments of the city-wide

housing market to plan their pathway in the owner-occupied sector. Moreover, the geography

of house price risk established in this paper should help households to choose a location that

matches their risk preferences.
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A. ARDL Bounds Cointegration Test

The Pesaran et al. (2001) ARDL bound cointegration test can be applied for the time series
yt and xt that are not integrated beyond the second order. There are three steps involved in
the procedure. In the first step, the conditional autoregressive distributed lag (ARDL) model
in the equation A.1 is formulated.

∆yt = α + βt +
p∑

k=1
βk∆yt−k +

q∑
k=0

αk∆xt−k + δ0yt−1 + δ1xt−1 + µt (A.1)

The constant and the trend term may be excluded in the equation A.1 depending on the
stationarity conditions. The lags p and q are usually chosen optimally using an information
criterion (e.g. AIC or BIC) to ensure the serial independence of the error sequence µt and
the dynamic stability of the model.

Next, the F-statistic is obtained for the null hypothesis that yt and xt are not cointegration
given by H0 : δ0 = δ1 = 0. The asymptotic distribution for this test-statistic, however, is non-
standard. According to Pesaran et al. (2001), this distribution depends on the statationarity
property of yt and xt. The authors considered the separate cases when these time series are
all stationary and when they all contain unit root. They compiled critical values for each of
the cases, which they called critical bounds. In general, these bounds will also differ according
to the number of time series involved in the cointegration test. If the F-statistic is greater
than the upper critical bound, we conclude that yt and xt are co-integrated. The null is not
rejected if the F-statistic is less than the lower bound and the test becomes inconclusive when
the figure falls between the critical bounds.

Once we conclude in favour of cointegration, the respective long-run and equilibrium correc-
tion equations A.2 and A.3 can then be formulated in the final stage to analyse the dynamic
associations between yt and xt.

yt = α + βt +
p∑

k=1
βkyt−k +

q∑
k=0

αkxt−k + ν̂t (A.2)

∆yt = α + βt +
p∑

k=1
βk∆yt−k +

q∑
k=0

αk∆xt−k + γν̂t−1 + et (A.3)

where et is a disturbance term and the lags p and q must be chosen optimally as before. ν̂t

is the error correction term and γ is the speed of equilibrium correction in the short term. A
cointegration relationship is confirmed for γ < 0 which also means that any deviation in the
short term will be eventually corrected.
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B. Stationarity, Granger Causality and Cointegration Test Results

To estimate the equation A.1, we first used BIC and AIC to first check the optimal values of
p for an underlying VAR(p) model involving the log house price growth rates for Amsterdam
(Aratet) and the Netherlands (Nratet). AIC suggested p = 3 while BIC chose p = 1. We
therefore varied p from 1 to 3, excluding the constant and trend terms. The statistically
insignificant lags are also neglected to ensure residual serial independence and the stability
of the autoregressive structure of the model. The version of A.1 used for the co-integration
test and its diagnostic statistics are shown in Table B.5. Table B.4 indicates the associated
Pesaran et al. (2001) critical bounds.

Test 10% 5% 1%

F-bounds (2.44,3.28) (3.15,4.11) (4.81,6.02)

t-bounds (-1.62,-2.28) (-1.95,-2.60) (-2.58,-3.22)

Computed F-statistic 13.749

Computed t-statistic -5.087

Table B.4: F and t-critical bounds taken from Pesaran et al. (2001) Tables CI(i) and CII(i) with
k = 1.

Dependent variable: ∆Nratet

∆Nratet-1 -0.2765∗∗ (0.0936)

∆Aratet 0.2176∗∗∗ (0.0427)

Nratet−1 -0.3862∗∗∗ (0.0759)

Aratet−1 0.2758∗∗∗ (0.0552)

Observations 81

R2 0.495

Adjusted R2 0.469

Residual Std. Error 0.0072 (df = 77)

F Statistic 18.85 ∗∗∗ (df = 4; 77)

Table B.5: The conditional autoregressive distributed lag for the co-integration test. Note:
Standard errors are in brackets, ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01. For serial correlation test, the

two-sided dwtest statistics is 2.0528 (p-value = 0.7777) and fourth-order LM statistics is 1.7262
(p-value = 0.1534). The model is dynamically stable with the absolute value of root of the

characteristics equation equal to 3.61677.
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Dependent variable: Nratet

Nratet−1 0.275∗∗ (0.123)

Nratet−2 0.492∗∗∗ (0.096)

Aratet−1 0.136∗∗ (0.055)

Observations 81

R2 0.844

Adjusted R2 0.838

Residual Std. Error 0.0082 (df = 78)

F Statistic 141∗∗∗ (df = 3; 78)

Table B.6: Estimated ARDL(2,1) long-run equilibrium model. Note: Standard errors are in
brackets, ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01.

Dependent variable: ∆Nratet

∆Nratet−1 -0.081 (0.153)

∆Arate 0.213∗∗∗ (0.045)

∆Aratet−1 0.255∗∗∗ (0.056)

∆Aratet−2 0.153∗∗∗ (0.044)

ν̂t−1 -0.553∗∗∗ (0.176)

Observations 80

R2 0.494

Adjusted R2 0.460

Residual Std. Error 0.007 (df = 75)

F Statistic 14.64∗∗∗ (df = 5; 75)

χ2
SC(4) 3.474 (p-value = 0.482)

X’tics Root (Abs. Value) 12.3671

Table B.7: The error-correction model (ECM) based on the ARDL(1,2) long-run equilibrium model.
Note: Standard errors are in brackets, ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01.

χ2
SC(4) is the 4th LM residual serial correlation test
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Dependent variable

Independent variable 2 3 4 6 9 10 11 12 13

1 Centrum 5.3389**

2 Westerpark 3.5898* 11.3944***

3 Oud-West

4 Zeeburg 9.0798***

5 Bos en Lommer

6 De Baarsjes 6.6566**

7 Noord

8 Geuzenveld

9 Osdorp 4.3929** 5.9153**

10 Slotervaart 6.4056**

11 Zuid-Oost 3.3769* 7.0261*** 52.5574***

12 Watergraafsmeer

13 Oud-Zuid

14 Zuideramstel

Table B.8: F-statistics from the pair-wise Granger Causality test. Note: The numbers at the top correspond to the districts on the LHS. Those
districts that have no Granger causative districts are eliminated from the list of dependent variables to preserve space. Moreover, only F-statistics

that are significant up to 10% level is reported here. ∗; ∗∗; and ∗∗∗ imply statistical significance at the 10%, 5% and 1% levels respectively.



Multivariate partial Granger Causality

Dependent Cause/Independent Control F-statistic Bias Standard Error 95% CI

Q2 Q1 Q3, Q4 1.4027 -0.6272 0.6128 (-0.084,2.601)

Q3 Q1 Q2, Q4 0.8350 0.1064 0.9921 (-1.379,1.448)

Q4 Q1 Q2, Q3 0.2898 0.3550 0.4312 (-1.109,0.393)

Q3 Q2 Q1, Q4 0.3858 0.5252 1.0576 (-2.452,0.556)

Q4 Q2 Q1, Q3 0.2530 0.3379 0.3735 (-1.087,0.374)

Q4 Q3 Q1, Q2 0.0993 0.4923 0.4340 (-1.649, 0.086)

Q3 Q4 Q1, Q2 2.1341 -1.4656 0.8721 (2.134,4.142)

Q2 Q4 Q1, Q3 1.4717 -0.6284 1.0263 (-0.504,2.777)

Q1 Q4 Q2, Q3 0.1436 0.2951 0.4330 (-1.468,0.206)

Q2 Q3 Q1, Q4 0.4330 0.1183 0.9137 (-1.814, 0.729)

Q1 Q3 Q2, Q4 0.3025 0.1234 0.4373 (-0.999,0.528)

Q1 Q2 Q3, Q4 0.1992 0.2644 0.4945 (-1.960, 0.321)

Pairwise Multivariate Granger causality

Q1 Q2 Q3 Q4

Q1 - NO 1,7084 (0.075) NO

Q2 NO - NO NO

Q3 1,6661 (0.0857) NO - 3.9497 (0.0000)

Q4 NO NO NO -

Table B.9: Lag effect analysis between market segments. Note: The confidence interval (CI) for the multivariate partial Granger causality was
boostrapped using 2000 replications. There is Granger causality according to the partial scheme only if the lower band of the CI is greater than

zero. Only the F-statistics for which the p-values (in bracket) are below 10% are reported for the pairwise multivariate Granger causality.



ZA-Test BEL-Test

Levels First-difference Levels First-difference

Growth rate series Model A Model C Model A Model C Intercept only Intercept only

Amsterdam -3.4214 -3.3034 -9.2917∗∗∗ -9.3143∗∗∗ 0.05494(1) 0.11870(2)

Netherlands -4.0285 -3.7164 -9.0731∗∗∗ -9.0329∗∗∗ 0.12356(1) 0.07725(1)

ZA Critical values 1% 5% 10%

Model A -5.34 -4.80 -4.58

Model C -5.57 -5.08 -4.82

BEL Critical Values k 1 2 3 4 5

1% 0.27366 0.65845 0.70496 0.72563 0.73219

5% 0.17241 0.39761 0.43237 0.44693 0.44932

10% 0.12889 0.30060 0.32415 0.33251 0.33562

Table 2: ZA-Zivot and Andrews (2002) and BEL-Becker et al. (2006) unit root and stationarity tests for the log house price indexes. The ZA
critical values are taken from Zivot and Andrews (2002) while the BEL critical values are obtained with T=120 and 50,000 Monte Carlo

simulations following (Becker et al., 2006, pg. 388). The k values in the BEL procedure are in the bracket and the truncation parameter is set
equal to 11 in all cases using the long option in Pfaff (2008). The lags in the ZA test regression is 1 in all cases according to the BIC. ∗∗∗ and ∗∗

indicate significance at the 1% and 5% levels.
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