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Spatial Analytics for the Identification of Salient 
Urban Areas 

Lara-Britt Zomer, Dorine Duives, Oded Cats and Serge Hoogendoorn 

 

Abstract 

Spatial urban route knowledge consists of the internalized representation 
of a sequence of actions to be performed at certain locations, cued by way-
finding landmarks. Determining the location of distinctive landmarks is 
thus important in research on route choice, urban cognition, and travel in-
formation. Currently, most approaches to identify landmarks require vast 
data collection efforts. To overcome these demands, this study proposes a 
spatial analytic method able to handle open-source datasets to identify ur-
ban wayfinding landmarks as salient urban areas. 

The method consists of five steps based on data management, grouping 
analysis, and cluster and outlier analysis. Determinants to identify salient 
urban areas are building volume, surface, height, building year, and the 
number of buildings in a 100 square meters grid-cell. 

Findings have been applied to identify differences in distribution of 
clustering and dispersion between local and global salient urban areas us-
ing the Gini coefficient, based on an open-source GIS dataset on the built 
environment of Amsterdam. 
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1. Introduction 

City users, to some extent, rely on memorized urban route knowledge to 
decide how to move from one place to the next. To this end, spatial urban 
route knowledge can be viewed as remembered sequences of landmarks, 
that, combined with directional actions support users to navigate across 
town. Following Lynch (1960) and Appleyard (1970), landmarks are de-
fined as salient geographic objects, points, or polygons of buildings that 
structure the internal representation of a city (Richter and Winter 2014). 

Over the last two decades, different approaches to identify and integrate 
landmarks have been developed, as can be noticed, e.g. in route descrip-
tions. As such approaches require large-scale, detailed, diverse datasets, 
and correspondingly demanding data collection methods (Richter and 
Winter 2014), today, knowledge on the effects of urban landmark distribu-
tion on wayfinding behavior remains limited.  

This study aims to contribute to methodology with an approach to han-
dle open-source data. To do so, the concept of aggregate urban landmarks, 
coined as salient urban areas, is introduced. Salient urban areas possess no-
ticeable characteristics that make them distinct from their surroundings. 
From a theoretical perspective, a landmark is salient (distinct) in relation to 
its immediate surrounding or context at large. Salient urban areas are con-
sidered unique, either because of dissimilarities to their (local) area, and/or 
else, because of characteristics considered similar in comparison to other 
(global) areas. Presumably, the more distinctive a landmark or area, the 
easier it will be to memorize and incorporate this saliency into the spatial 
route knowledge to be drawn upon in future. Therefore, salient urban areas 
are hypothesized to be important to structure spatial knowledge in long-
term memory (Couclelis et al. 1987; Sadalla et al. 1980; Montello 1997).  

Any method to identify salient landmarks has to be applicable in large-
scale environments presenting unequal distributed data. Using open-source 
data on Amsterdam’s urban structure, this study examines whether a spa-
tial analysis approach is useful to identify salient urban areas. First, deter-
minants in urban environments will be defined. As previous studies fo-
cused on identifying and integrating landmarks as salient buildings, 
metrics for salient urban areas can be inferred. Next, to allow for a system-
atic analysis, a cellular grid (100 square meters per grid-cell) is projected 
covering the case study area in Amsterdam. Last, grid-cells’ determinants 
are spatially analyzed to identify the characteristics of local hotspots and 
global clusters of salient urban areas.  



Section 2, synthesizing prior studies, offers insights into the identifica-
tion of urban landmarks and methods to conduct research on landmark 
identification in relation to wayfinding behavior. Section 3 elaborates on 
the research approach and methodology. Results, presented in section 4, 
are categorized into three subsections, starting with a descriptive analysis 
of the determinants used for the Amsterdam case study. Next, both the 
findings on the identification of salient urban areas and analyses on the 
(spatial) distribution of identified landmarks will be put forward. Section 5 
summarizes the conclusions and provides recommendations for further re-
search.  

2. Defining Urban Landmarks 

In this paper, the literature review on the influence of urban structures on 
city users’ wayfinding behavior focuses on landmark identification and ur-
ban typologies.  To this end, section 2.1 presents first insights derived from 
cognitive sciences regarding landmark identification, and, next, in section 
2.2 urban morphology techniques to distinguish urban typologies are put 
forward.  

2.1 Identifying landmarks  

The concept of landmarks originates from Lynch’s research (1960) in 
which five elements according to which cities are perceived, comprise 
paths, nodes, landmarks, edges, and areas. Appleyard (1970) combines 
landmarks, being both objects in space and internal representations, with 
the notion of salience and hypothesizes the more unique a building is, the 
more likely it will be incorporated into survey knowledge.  

Based on memorized buildings in one’s “home town”, Appleyard identi-
fies significant determinants, both for local (neighborhood) and global 
comparison (across city areas) based on memorized buildings in a “home 
town”. Using the correlation between property and frequency of recall, the 
author distinguishes three properties: form (contour, building volume, vis-
ual attributes of the façade), semantics (intensity and uniqueness of use), 
and structural (location and structure of environment). Resulting from Hill-
ier’s and Hanson’s space syntax theory (1984), a fourth property, visibility 
(frequency of being in-sight and proximity to a vantage point), has been 
added (Morello and Ratti 2009). Working on the isovists idea regarding 
visible sights, Morello and Ratti argue urban environments will be legible 
due to their location-based visibility. Richter and Winter (2014) hold a 



building’s total salience to become stronger as its distinctiveness on more 
categories increases. 

It appears, whereas in urban planning, landmarks appear firmly ground-
ed concepts, their appliance to large-scale environments is cumbersome, 
particularly, when buildings are unequally distributed. Based on Lynch, 
regarding their identification, generally, landmarks are analyzed as geo-
referenced points or buildings. Although, resulting from social data, using 
pictures, new approaches to identify landmarks from (geo-referenced) us-
er-generated data are being developed (Duckam et al 2010; Richter 2007), 
an aggregated, cellular approach is still lacking. 

2.2 Landmarks determinants based on Urban Morphologies 

Landmark identification frameworks appear intricate to apply to spatial 
experiences (Stevens 2004). This may be one reason why systematic re-
search on how people learn and comprehend novel urban environments –
i.e., how people organize, group, differentiate and catalogue their percep-
tions while moving across town- remains limited. Urban morphology aims 
to understand spatial structures and patterns, e.g., physical layouts of urban 
environments, but its underpinning methods have not been applied to iden-
tify salient landmarks in urban environments.  

Levels of analysis in urban morphology range from regional to continu-
ous points. Main objects of interest are building blocks, followed by 
neighborhoods. As can be noted in Table 1, in urban morphology, deter-
minants may be quantified along different scales, and, moreover, depend-
ing on particular research goals, decisions as to what determinants to in-
clude, may vary. The earliest methods distinguish typologies (urban 
atmospheres) based on conceptual differences (Lynch 1960; Conzen 1960; 
Duany 2002; ABF Research 2003). From 2000, different methods have 
been used, such as plotting against two axes (Marshall 2005; Berghauser-
Pont and Haupt 2010), or by applying a characteristic, to some extent (Mo-
rello and Ratti 2009; van Nes et al 2012; Oliveira and Medeiros 2016). 

We conclude that although various methods and techniques have been 
developed to identify landmarks in relation to wayfinding behavior, little is 
known on how the distribution of landmarks in large-scale urban environ-
ments actually effect wayfinding behavior. From literature, shape turns out 
to be a consistent indicator in both landmarks and urban morphology, and, 
therefore, urban grid-cell landmarks will be identified using aspects of 
shape. 
 
 
 



Scale Determinants 
Regional City size 

Density (FSI, GSI) 
Proximity of services 
Land use mixture  
Building period 

Plot or       
neighborhood 

Town plan 
Land use pattern  
Composition of network hierarchy and directionality 
Configuration of intersection and connectivity of network  
Betweenness centrality 
Building density (FSI, GSI) 

Street Average (pedestrian) flow 
Building block Density and volume of the built environment (spacematrix) 

Land use mixture 
Building form pattern  

Grid Spatial integration of axial lines 
Building densities (FSI, GSI) 
Land use mixture 

Continuous Accessibility of network 
Ground Space Index (GSI)  
Building year 
Mixed building usage 

Table 1. Landmark determinants in urban morphology 

3. Research Approach and Methodology 

This section, first, introduces the research approach, followed by an expla-
nation of data processing procedures and spatial analyses using ArcGIS to 
analyze salient urban areas. Last, the case study area and cleaning process-
es on open-source data will be discussed. 

3.1 Research approach 

Spatial route knowledge on a city can be conceived of as the cognitive lev-
el of route choices, consisting of memorized (orders of) landmarks. It is 
hypothesized for landmarks characterized by more noticeable local or 
global (dis)similarities to be easier to memorize, and, thus, to be more 
probable to become part of the cognitive level of route choices. Following 
Lynch, in order to be distinct from its nearby surroundings, a landmark is 



to be strongly dissimilar from local buildings. Likewise, clusters (neigh-
borhoods) can be considered distinct when there is a strong global similari-
ty in terms of continuity and delineation of space. As form turns out a con-
sistent characteristic, both regarding landmarks and urban morphology, 
urban grid-cells are identified by contour (Ground Space Index – GSI), 
volume (Floor Space Index – FSI and number of floors – L), and visual at-
tributes of the façade (building year). 

3.2 Data processing procedure and analysis 

As concluded in section 2, due to approaches requiring vast data collection 
efforts, knowledge on the effects of the distribution of landmarks in large-
scale urban environments on wayfinding behavior remains limited. To try 
and fill this gap to some extent, we propose a spatial analysis method to 
translate detailed disaggregate data of large-scale urban environments into 
meaningful and computationally efficient aggregate data. Below, five steps 
comprising the spatial analysis method are introduced. In 3.3.1, these me-
thodical steps will be applied to the case study. 

Step 1. Create map layers from data. 
1.1 Create grid-cells using a fishnet that superimposes the area 

of interest.  
1.2 Assign available data to grid-cells.  

Step 2. Iterative grouping analysis to identify how the determinants re-
late to different urban morphologies. 

Step 3. Cluster and outlier analysis based on Anselin Local Moran’s I 
using the determinants of interest as input fields (Anselin 1995). 

3.1 An inverse distance squared is used because nearby neigh-
boring grid-cells have a much larger influence than grid-
cells further away. 

Step 4. Unite map layers of cluster and outlier results of relevant deter-
minants. 

Step 5. Create maps of urban salient areas. 
5.1 Local urban salient areas: Cumulative summation of all low 

negative z-scores indicate statistically significant spatial out-
liers of a high value surrounded by low values (HL) and a 
low value surrounded by high values (LH). 

5.2 Global urban salient areas: Cumulative summation of all 
high positive z-scores that indicate statistically significant 
clusters of high values (HH) and low values (LL). 



3.2.1 Discussion of the elements of the spatial analytic method 

Upon the creation of grid-cells, it has to be ensured such cells are of large 
enough size to contain at least one feature, and small enough to allow for 
variety within urban plots. Also, the size of grid-cells should be suitable 
for further analysis. Furthermore, dependent on available data, the specific 
combination of spatial joints, intersections, dissolves and unions to be used 
to transform the data to grid-cells will have to be decided. 

Grouping analysis is used as an exploratory analysis to reveal underly-
ing structures of the determinants of interest to be used to identify clusters 
of distinct urban areas with similar physical characteristics (Jain 2009). 

Cluster and outlier analysis is applied in many domains, such as eco-
nomics and geography to identify concentrations of values and outliers that 
explain (behavioral) patterns (Anselin 1995). This analysis is often pre-
ferred over hotspot analysis based on the Getis-Ord Gi*, as it also identi-
fies statistically significant spatial outliers, which are expected to be the 
most important aggregate urban landmarks. 

3.3 Amsterdam as a Case Study 

Next, the case study area is presented as well as the operational choices 
needed to apply the spatial analytic method to the case study. 

Founded in the 13th century, Amsterdam is situated along the river “het 
IJ” and the Amstel delta. Following several expansion periods, Amster-
dam’s residential area covers over 165 km2. The open-source GIS data 
provided by the City of Amsterdam to analyze the urban structure of Am-
sterdam can be downloaded at http://maps.amsterdam.nl/open_geodata. 
This dataset consists of 471.580 BAG (key registers of addresses and 
buildings) address points that include attributes concerning building year 
and usage surface, and 17.791 polygon shapes of GBKA building typology 
(large scale topography), by which the surface area can be calculated to 
represent the Ground Space Index (GSI). Due to missing and incorrect 
geo-coded data, 23.532 (5%) points of the BAG addresses have been ex-
cluded because they did not include a building year, and 17.021 (4%) have 
been excluded because they did not include a usage surface. Regarding the 
polygons of buildings from GBKA, 13.437 (75%) polygons containing a 
BAG address point together with a building year and/or usage surface have 
been included. 
 



 
Fig 1. Case study Amsterdam, and the main road network. In red: 100 square 
meters grid-cells with one or more built environment features. 
 

3.3.1 Applying five steps of the spatial analytic method to Amsterdam 

Step 1. To ensure that most cells are large enough to contain at least one 
feature, and, simultaneously, small enough to allow for diversity within 
urban plots, the area of the grid-cells is set at 100 square meters. After data 
cleaning and overlaying open-source point data on BAG addresses with 
the polygon shapes of corresponding buildings, Floor Space Index (FSI), 
Ground Space Index (GSI), and number of floors (L) are calculated. As a 
direct spatial joint of many-to-one does not exist in ArcGIS, several steps 
(intersections, spatial joints and dissolves) are necessary to link the pro-
cessed open-source data sets to the grid-cells. The final step in data pro-
cessing combines all processed layers to one, which can be used for spatial 
analyses. This resulted in “aggregated” data for 4449 grid-cells, each con-
taining at least one building, and a maximum of 73 buildings, see Figure 1. 

Step 2. In deciding which determinant to include, a first selection is 
made based on the semantic meaning in relation to the concept of aggre-
gate urban landmarks. Secondly, meaningful determinants should have at 
least one determinant where similar values are dispersed, and one determi-
nant where similar values are clustered (referring to local and global sali-
ent urban areas). Table 2 gives an overview of these intermediate steps as 
well as 12 determinants that are hypothesized to describe the spatial pat-



tern of salient urban areas. N/A indicates the determinant is either not ap-
plicable or there is no assignment; Low or High indicate whether low or 
high values are spatially dispersed (local) or clustered (global). The blank 
fields indicate a random distribution of the values of meaningful determi-
nants.  
 
  Count Sum Min Max Range Std 

Lo
ca

l 

Building Year N/A N/A  N/A High High 
Building Volume (FSI) N/A  High    
Contour Surface (GSI) N/A  High   High 
Levels N/A N/A N/A High   
Number of buildings per grid-cell  N/A N/A N/A N/A N/A 

G
lo

ba
l 

Building Year N/A N/A Low N/A  Low 
Building Volume (FSI) N/A Both    Low 
Contour Surface (GSI) N/A Both    Low 
Levels N/A N/A    Low 
Number of buildings per grid-cell Both N/A N/A N/A N/A N/A 

Table 2. Urban landmark grid-cells identification metrics. 

Grouping analysis aims to explore spatial patterns and identify the relia-
bility of the 12 determinants hypothesized to describe these patterns. When 
performing this grouping analysis, each determinant has a Rho2, describing 
the extent of discrimination amongst determinants. Because there is no 
ground truth about either the determinants or the identification of groups, a 
suitable determinant is defined as a determinant with a low range of Rho2 
for different number of groups. Furthermore, in grouping analyses no spa-
tial constraint is used; features are partitioned using a k-means algorithm to 
minimize differences amongst features in a group, over all groups. Multi-
ple iterations have been performed to identify suitable combinations of de-
terminants to overcome the limitations of the greedy heuristic. 

Step 3. Based on Anselin Local Moran’s I statistic (Anselin 1995), clus-
ter and outlier analysis identify statistically significant hot and cold spots 
and spatial outliers. Incremental spatial autocorrelation analyses provide 
insight into the maximum spatial autocorrelation. However, for many de-
terminants the distance band turned out too high to ensure that no feature 
exceeds 1000 neighbors, which results with memory errors. Therefore, the 
fixed distance band was set at 700 meters. All grid-cells within the dis-
tance band are weighted equally.  

Step 4-5. Final maps of urban salient areas can be created when the re-
sults of the cluster and outlier analysis are combined with “union”. The to-
tal level of salience of a grid-cell is the cumulative score of significant val-
ues. Significant values of low negative z-scores of suitable determinants 



are summed to represent local salient urban areas. Significant values of 
high positive z-scores of suitable determinants are summed to represent 
global salient urban areas.  

4. Results 

Section 4, first, discusses descriptive statistics, followed by the identifica-
tion of local and global salient urban areas. Finally, in the last part, a pos-
sible application of the spatial analysis approach is discussed, aiming to 
investigate the spatial distribution of salient urban areas with the Gini coef-
ficient. 

4.1 Descriptive statistics on the case study Amsterdam 

Descriptive statistics regarding the case study Amsterdam are shown in 
table 3. The oldest buildings in the dataset date stem from 1300, and the 
average age of buildings within a grid-cell is 35, with a maximum of 709 
years. On average the built volume of a grid-cell is 5145m3, with a maxi-
mum of 110,288 m3. If the surface of the buildings would be 10,000 this 
would correspond to 10 floors. On average the surface of buildings cover 
almost 20% of grid-cells. Within a grid-cell, the average smallest surface 
equals 343m2, whereas the maximum equals 10,000m2. The highest build-
ing level within a grid-cell reaches almost 23 floors, while the average 
building level is below 3 floors. The average value is lower than expected 
for an urban area like Amsterdam, and probably, results from an incom-
plete dataset. The average number of buildings within a grid-cell is just 
over 6, with a maximum of 73. 
Figure 2 shows the values for rho2 found for different grouping analyses. 
The figure indicates that regardless of the number of groups, building year 
determinants are most consistent, and the age of buildings within a grid-
cell always scores the highest rho2. The remaining four characteristics 
(FSI, GSI, number of floors and number of buildings) gain more con-
sistency when 7 to 14 groups are created.  

 
 
 
 
 
 
 
 



 
 Determinant Mean Std. Dev. Min Max 
Building year Oldest (min) 1912 78.91 1300 2016 

Newest (max)  1947 33.50 1600 2016 
Range  35.86 81.56 0 709.00 
Std. Dev.  13.61 29.03 0 251.25 

FSI Average 5145.64 4,523.64 0 110,288 
Smallest (min) 879.27 2,675.77 0 110,288 
Largest (max) 2521.82 3,120.71 0 110,288 
Std. Dev.  737.02 1,229.74 0 51,736.39 

GSI Average  1830.73 1,242.90 0 10,000 
Smallest (min) 343.73 722.34 0 10,000 
Largest (max) 911.78 769.25 0 10,000 
Std. Dev.  256.48 311.93 0 3,971.81 

Building level Average  2.76 1.38 0 22.86 
Lowest (min) 2.04 1.45 0 22.86 
Highest (max)  3.60 2.04 0 22.86 
Std. Dev. 0.58 0.74 0 16.16 

Number of 
buildings 

Count 
 

6.28 7.97 1 73 

Table 3. Descriptive statistics on determinants for case study Amsterdam. 
Bold: determinants of interest 

  
Fig 2. Reliability of determinants: grouping analysis.  

4.2 Identification of Local and Global Salient Urban Areas 

This section presents the results of step 5 on the identification of local and 
global salient urban areas. 



Regarding case study Amsterdam and parameter settings, as visualized 
in figure 3A, 494 local salient urban areas are distinguished, covering 11% 
of the built environment. Highest level local salient urban areas arerepre-
sented by pink grid-cells and comprise, amongst others, Amsterdam Cen-
tral Station and the Rijksmuseum. From the distribution within figure 3A, 
it may be expected local salient urban areas cluster more within the histor-
ical city center and many local salient urban areas are located near (inter-
sections of) the bicycle street network. Subsequent analysis shows that 
neighborhood percentages indeed deviate from the city average, e.g., the 
historical city center has a coverage percentage of 16%, while prewar ex-
tension plans like Plan Zuid yield coverage percentages of 10%, whereas 
percentages for urban extensions during the 1960’s, such as Westelijke 
Tuinsteden, are just above coverage 9%. The Gini coefficient is used to de-
termine how local salient urban areas cluster near (intersections of) the bi-
cycle network as will be elaborated on in 4.3. 

Regarding case study Amsterdam and parameter settings, as visualized in 
Figure 3B, there are 3284 global salient urban areas covering 74% of the 
built environment. Highest level global salient urban areas are represented 
by bright pink grid-cells and are central locations, such as Dam Square, 
Damrak, and the Nieuwmarkt. The images A to C in figure 4 indicate the 
historical city center, as a neighborhood, contains highest global salience 
(95% of the grid-cells have salience levels of 1 or higher). Just like the 
case regarding local salient urban areas, there seems to be a variation 
amongst urban expansion plans. For example, 70% of Westelijke Tuin-
steden have statistically significant clusters of similar urban characteristics, 
while Plan Zuid reaches a coverage percentage of 58%. Furthermore, from 
the detailed figure 4B of Plan Zuid it can be seen that global salient urban 
areas follow the major axial streets. 

 



 
Fig 3A-B. Identification of Salient Urban Areas in Amsterdam.  
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Fig 4A-C. Detail images of neighborhoods and global salient urban areas  



4.3 Spatial Distribution of Salient Urban Areas  

The last part of this section uses the Gini coefficient as a comparative 
measure of dispersion relative to salient urban areas within Amsterdam. 
This analysis is preferred over the multi-distance spatial cluster analysis 
because it is scale dependent (Tsai 2005). The ratio analyses are used to 
measure the inequality of the distribution of salient urban landmarks in 
Amsterdam, based on 1.) the extent to which an urban area is salient, and 
2.) the number of salient urban areas within a certain distance field of a sa-
lient urban area. For example, a distance field of 300 meters represents 8 
grid-cells surrounding a salient urban area. The Gini coefficient can range 
between 0 and 1, with 0 representing perfect equality, and 1 representing 
perfect inequality of the distribution of salient urban area in Amsterdam. 
Brown’s formula has been used to calculate the Gini coefficients shown in 
figures 5A and B. 

Fig 5A-B. Gini coefficients of local and global salient urban areas 
 
The Gini-coefficient of saliency of local (and global) salient urban areas 

is 0.30 (0.35), meaning that saliency is distributed rather equally over all 
salient urban areas.  Figures 5A-B show that 58% of the local salient urban 
areas (28% of global salient urban areas) have only one salient determi-
nant. These percentages correspond to 34% (local), and 10% (global) of 
the cumulative salience. Both figures 5A-B also indicate the 10% highest 
levels of salient urban areas correspond to 25% (local), and 29% (global), 
of the cumulative salience. The Gini coefficient representing the number of 
salient urban areas within a certain distance range fluctuates between 0.25 
and 0.35 (local), and 0.19 to 0.23 (global), depending on the distance field.  
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In line with previous statements (4.2), this means saliency of local sali-
ent urban areas to be slightly more equally distributed compared to global 
salient urban areas. As to distance fields, more variation is found. The 
number of local salient urban areas within a distance field, is least equal at 
500 square meters, and most equal at 1700 square meters. On the other 
hand, the number of global salient urban areas, within a distance field, is 
most equal at 500 square meters, and least equal at 300 square meters.  

 
Fig 6A-F. Spatial distribution of Gini coefficients for different distance fields.   

 
In ArcGIS the number of local salient urban areas surrounding one local 

salient urban area can be visualized for different distance fields used to 
compute the Gini coefficient. Insights from these maps are complementary 
to the Gini coefficient, as the latter does not explain how salience is spa-
tially distributed. Figure 6A, for example, shows high values are concen-
trated around Vrije Universiteit van Amsterdam in the South, containing 



the smallest distance field of 300 square meters. Medium to high values 
are concentrated around larger public squares, such as, Central Station and 
Museumplein. Also, local salient urban areas with lower levels of salience 
appear to be located along major axial streets. 

Figure 6B shows spatial distribution changes according to different dis-
tance fields. E.g. a distance field of 500 square meters shows a concentra-
tion near Mr. Visserplein. Moreover, it becomes clear, more local salient 
urban landmarks with relative more local salient urban landmarks are dis-
tinguished within the proximity of 250 meters, such as around Vondelpark. 
By increasing distance fields, local salient urban areas within and border-
ing the historical city center gain higher percentages, meaning, it is more 
likely to encounter more local salient urban area when moving across the 
historical city center. Hence, routes across the historical city center are ex-
pected to be easier to memorize and structure in long-term memory. 

5. Conclusion and Recommendations 

Landmarks are assumed to support wayfinding behavior in urban environ-
ments. Determining the location of distinctive landmarks is thus important 
for investigating route choice processes, structures of urban cognition, and 
travel information. However, currently most research approaches in this 
field require highly demanding data collection efforts. To overcome these 
demands, this study proposes an approach to handle open-source data. 

The proposed method combines insights from cognitive sciences and 
spatial analytics from urban morphologies to identify aggregated local and 
global urban landmarks based on salient characteristics. The method con-
sists of five steps based on data management, grouping analysis, and clus-
ter and outlier analysis. Results have been applied to identify the differ-
ences in distribution of cluster and dispersion between local and global 
salient urban areas using the Gini coefficient, based on an open-source GIS 
dataset on the built environment of Amsterdam. 

Implications of identifying salient urban areas can provide new insights 
to analyze how wayfinding landmarks structure environmental knowledge 
and investigate influences on wayfinding strategies. This environmental 
knowledge (configuration of landmarks) is assumed to become available 
when also knowledge has been memorized about the general interrelation-
ships between landmarks (Hirtle and Hudson 1991). If people use these 
wayfinding landmarks as part of the wayfinding strategy, this is expected 
to be observable in their route choice behavior. For example it could be 
more likely to take a detour if more wayfinding landmarks will be passed. 



Improved insights can potentially complement navigation apps, physical 
route signage, and urban planning 

More research is needed to verify the parameter settings of this case 
study, and investigate other determinants. It is expected that digital eleva-
tion maps (AHN) or Lidar data will be a better indicator for building level. 
Further expansion of the determinants can also include traffic intensities, 
network characteristics, individual movement patterns using GPS and visi-
bility using isovists, and functionalities. To improve validity it would be of 
interest to investigate to what extent the grouping analyses mimics the way 
people classify urban typologies through stated preference studies. 
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