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Abstract 
 

The orthotropic steel deck (OSD) is nowadays commonly used due to its advantages, such as its lightweight, 

short construction time, and high capacity to bear the loads. However, fatigue cracks occur in different 

welded connections in the OSD. In this study, the rib to-deck-plate connection at the crossbeam conjunction 

has been analysed. This connection has been considered as a very critical connection due to the high-stress 

concentration under local wheel loading. In addition, the crack initiating at the weld root and propagating 

through the deck plate thickness cannot be visually inspected until surface cracks appear when the overlay 

is removed for the investigation.  In the Netherlands, deck plate cracks at rib-to-deck plate connections at 

the crossbeam constitute a significant proportion of investigated cracks. In this thesis, a numerical 

investigation of the aforementioned cracks is carried out. 

First, XFEM is applied to study fatigue crack propagation using compact tension (CT) specimens. 

Commercial FE software package Abaqus® is used to build 2D and 3D CT models. The corresponding 

fatigue crack propagation is calculated in the direct cyclic step with strain energy release rate calculated 

using the virtual crack closure technique (VCCT). A good match is found between analytical calculation 

and 2D XFEM modeling. For 3D fatigue crack propagation, the number of cycles calculated from the 

automated crack propagation approach, using the low cycle fatigue step provided by Abaqus®, shows high 

sensitivity to element sizes, specifically the used element sizes through the thickness of the CT.  

Second, 3D crack propagation is applied to OSD with a 20 mm deck plate. For this detail, the fatigue crack 

initiation under compressive stress states is caused by the local loading on the deck plate. A hypothesis of 

changing the loading sign from compression to tension to subject the initial crack zone to tension is 

proposed so that this type of crack can propagate using automated XFEM. This assumption is made because 

high residual stresses normally exist in the welded connections and fatigue crack can propagate even under 

compressive stresses induced by loading. Before carrying out crack propagation calculation using VCCT, 

the stationary crack states were analysed using FEM and XFEM for cracks inserted with different angles. 

The SIFs obtained from FEM and XFEM are the same; in addition, that the SIF obtained when the detail is 

loaded in tension or compression has the same absolute value. Subsequently, the propagating crack analysis 

is carried out as a small initial crack with a depth of 0.5 mm is inserted and Paris’ law parameters C and m 

of 1∙ 10-13 and 3.0 were selected respectively. The obtained results of strain evolution as a function of 

loading history came close to that from the experiment with a difference of 7.75% for the initial strain value 

and 10.95 % for the maximum one. Moreover, the predicted crack shape, angle, and rate were all validated 

with similar crack shapes obtained from experiments in various literature. As for the crack propagation 

behaviour in the thickness direction, the crack arresting took place at around 75% of the deck thickness and 

an angle with the vertical axis of around 30o. 

Finally, the deck thicknesses of 16 mm and 10 mm were considered. Their results converged in terms of the 

crack propagation behaviour with real test specimens from the literature. It is also found that the 16 mm and 

20 mm cases had a common crack propagation behaviour in the thickness direction as the crack arrest 

occurred at around 75% of the deck thicknesses, while for the 10 mm deck case the crack developed more 

dangerously by penetrating through the deck plate leading to a through-thickness crack. The approach 

proposed by this thesis proved to be valid for predicting the crack behaviour for the considered OSD deck 

plate thicknesses. Thus, the structural integrity of the detail can be assessed. This proved that for the 16 mm 

and 20 mm deck plates, the structural integrity is acceptable, while the 10 mm deck safety is not confirmed. 
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1  Introduction 
 

1.1 Background knowledge 
The orthotropic steel decks are commonly used nowadays due to their numerous advantages. These consist 

mainly of the system’s high strength, short installation time, slenderness in addition to its lightweight which 

makes it eligible to be used in fixed as well as movable bridges. The bridge deck consists of a deck plate 

that is supported by closed trapezoidal steel stiffeners supported at each specific distance by a transverse 

cross beam which transfers its load to the main girders which are constructed in the longitudinal direction 

of the OSD. Figure 1.1 shows two views of the OSD with its different components.  

 

Figure 1.1: Cross-section and 3D view of the OSD [1]. 

1.2 Research motivation 
Nowadays there is an increasing traffic intensity on both national and international levels. This leads to the 

increase of cyclic loads that the OSD is subjected to. Due to the latter, fatigue cracks in the OSD details are 

currently a very common problem. This problem occurs in the weakest parts of the bridge deck, which are 

the welded connections. Although there has been a lot of developments and improvements in design, 

manufacturing, inspections, and maintenance, fatigue remains the dominant problem in the OSD. The focus 

of this MSc thesis will be on one of the most critical welded details in the OSD. The stiffener to the deck 

plate at the connection with the cross beam is the detail that will be studied here. Within this detail, the deck 

plate weld root crack which cannot be visually inspected and noticed before propagating through the deck 

plate is the most critical. This is because this crack grows through the deck plate thickness to the road 

pavement. So, it can affect the traffic’s safety which causes a large hazard for people’s lives.  

Trapezoidal stiffener            

(Longituninal rib) 
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1.3 Problem definition 
Figure 1.2 shows the deformed shape of the OSD cross-section due to transverse wheel loading, in addition 

to the internal forces acting on the stiffener-deck-crossbeam detail shown in Figure 1.2b. It is known that 

this connection is critical and a crack may propagate through the deck for a certain deck thickness. From 

Figure 1.2 (b), one can see the crack that will be studied in this thesis. This crack grows further in the deck 

plate thickness and length direction and has a semi-elliptical shape. 

(a)  

 

(b) 

 

Figure 1.2: OSD deformation due to wheel load. (a) Transverse wheel load positions and OSD cross-section deformation shape. 

(b) Internal forces due to loading with the targeted crack. 

Normally fatigue cracks occur under cyclic loads and the crack tip opens due to tensile stress. However, 

here the crack initiation point is subjected to nominal compressive stresses as can be seen from Figure 1.2 

(b). Although a lot of studies and researchers have investigated this welded detail of the OSD by 

experimental work, there is still a gap in predicting the behavior of the fatigue crack initiating at this specific 

location under nominal compressive cyclic stresses. Moreover, experimental research only is not the 

optimal solution in terms of time and cost. Thus, predicting and accurately simulating this crack behavior 

using numerical methods such as FEM and XFEM is of big importance and is studied in this thesis carefully. 

 

1.4 Research question 
The research objective will mainly focus on the crack propagation behaviour using numerical methods to 

investigate this crack. Hence, the main research question will be: 

How is the structural integrity affected by the propagation of fatigue cracks at the rib-to-deck plate 

welded connection at the crossbeam junction? 

 

To answer this question, the following sub-questions should be answered first. 

• What approach using XFEM can be used to simulate crack propagation? Are there any limitations 

of such an approach? 

• How can the stationary crack be simulated with XFEM and conventional FEM support using this 

approach? 

• What is the crack propagation behaviour for the detail with different deck plate thicknesses? 
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1.5 Thesis Outline 
The thesis is divided into six chapters to keep the work done structured and the findings well ordered. The 

order of the chapters is based on the progressive significance, effect, and consequences of the points studied 

within these chapters.  

Chapter 2  reviews and explains the most relevant and important findings in the literature. First, general 

information is given about orthotropic steel decks, fatigue cracks, fatigue assessment approaches, and the 

fracture mechanics approach is introduced in detail. Hence, more illustration is given for the LEFM 

principles and XFEM based VCCT.  

Chapter 3  applies XFEM for the crack propagation study in Abaqus® for a compact tension specimen 

subjected to cyclic tensile load. The objective of the chapter is to simulate through-thickness crack 

propagation in both 2D and 3D XFE models for the CT. 

Chapter 4  presents the FE models of OSDs for a 20 mm thick deck plate. These models are validated for 

their initial stress state with the experimental measures. The XFEM and conventional FEM are used to 

simulate a stationary crack using the contour integral evaluation. Then XFEM is used to simulate a 

propagating crack due to cyclic loading. Finally, the obtained crack shape is studied and discussed as well 

as the strain evolution due to the crack growth.  

Chapter 5  considers a parametric analysis and how its variation affects the crack propagation shape and 

strain evolution. Two different deck plate thicknesses, 10 mm and 16 mm, are considered in the FE models 

by keeping the SHSS in the same with the OSD analysed in chapter 4.  

Chapter 6  gives the conclusions based on the findings of the aforementioned chapters and answers the 

research questions. In addition, recommendations for further studies are given. 
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2  Literature Review 
 

In this section the available literature concerning the research topic, targeted detail, targeted crack, and 

fatigue life prediction methods used have been reviewed hence, background knowledge and findings will 

be explained. The fatigue life assessment approaches will be shortly described in steps with an overview of 

the method history and its applicability. There will be made clear which method(s) will be used for this 

research and why it will be then highlighted and more elaboration on it will be provided. 

2.1 Orthotropic bridge deck 
Orthotropic bridge decks were firstly innovated in Germany after WWII. The new bridge system's main 

advantages were its lightweight, high strength short installation time, and little presence of joints in the 

bridge deck. The structural system of the OSD evolved over the years, as the supporting longitudinal 

stiffeners were previously open stiffeners as in Figure 2.1 (a). Since 1965 closed cold-formed trapezoidal 

stiffeners as shown in Figure 2.1(b) are used [2] because open stiffeners contribute to a heavier OSD and 

require more welding making the system more expensive. The crossbeam spacing now can be up to 4 m. 

However, fatigue problems are more frequent in OSD with closed stiffeners as they constrain the transverse 

deformation of the deck plate due to higher flexural stiffness [3,4] in addition to the presence of welded 

connection leading to stress concentration at it. Moreover, due to the increased traffic intensity on a national 

and international scale, fatigue problems occurred in OSD over the years in several welded details of the 

OSD. The most critical detail affected by fatigue in OSD which is also the detail of interest for this MSc 

thesis is the stiffener-to-deck plate welded connection.  

 

Figure 2.1: Orthotropic bridge deck with its components [5]. (a) Deck with open stiffeners (b) Deck with closed stiffene. 

  

2.2 Targeted detail 
The OSD local deformation shape and magnitude are significantly dependent on the transverse vehicle 

wheel location. As mentioned before in section 1, this leads to the internal forces shown in Figure 2.2. The 

rib to the deck-plate connection at the crossbeam junction is more susceptible to cracks than between the 

cross beams. This is because that the rib webs are welded to the deck plate and to the cross beam which 
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gives the connection a fixation property as the schematization in Figure 2.3. When heavy vehicle wheel 

loads are positioned above the stiffener centered between the rib webs, the clamping moment is high. This 

means that there are high-stress concentrations at that welded connection causing the strain to exceed the 

yield strain making it crack easily under heavy cyclic loads. Hence, the principal stress there is higher than 

that of the joint in between the cross beam. It has also been concluded by Wu et al [6] that the stress 

concentration near the weld root is higher at the connection with the cross beam leading to faster crack 

initiation than in the span between cross beams.  

 

Figure 2.2: OSD deformed shape and internal forces & wheel load transverse positions[5]. 

 

Figure 2.3: Vehicle wheel load on the rib-to-deck plate welded connection at crossbeam junction [2]. 

2.3  Fatigue cracks 
Fatigue is a progressive localized structural damage (crack) that is permanent and happens due to the 

material being subjected to cyclic loading. In the rib to deck plate detail, four types of cracks can be 

observed as shown in Figure 2.4. According to studies [6] cracks (a) and (c) will initiate at the weld toe 

when the wheel position is between the closed ribs. Furthermore, crack (b) and (d) will initiate both at the 

weld root and grow in the deck- plate and weld joint, respectively. The crack growing through the deck 

plate most likely occurs at the connection with the crossbeam while the crack growing through the weld 

bead occurs within the span between cross beams. The most critical crack and the one affecting the traffic’s 

safety is crack (b). Since this crack cannot be observed during visual inspections as it grows through the 

deck plate at the inner side of the trapezoidal rib, so it gets only visible after it has penetrated the deck plate 

and the asphalt or epoxy layer and grown to a certain length as shown in Figure 2.5. The crack grows further 

in the longitudinal direction and has a semi-elliptical shape as in Figure 2.6, where a, 2c, and 2d are the 

crack depth, crack top, and bottom length respectively. However, there are some methods to discover this 
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kind of crack and measure its length. One of these methods is time-of-flight diffraction (TOFD). It requires 

removal of the asphalt layer which makes it labor-intensive and quite expensive.  

 

Figure 2.4: Stiffener to deck plate welded connection with the crack types occurring in this connection [6]. 

 

Figure 2.5: Visual observation of deck plate root crack [7]. 

 

Figure 2.6: semi-elliptical crack shape [8]. 

Fatigue cracks introduced can be categorized according to the stress state in the detail to three fracture 

modes as indicated in the following figure. Opening fracture mode, sliding fracture mode and tearing 

fracture mode which is mode I, mode II and mode III as shown in Figure 2.7, respectively. Mode I is the 

most common crack mode occurring, but when dealing with OSD there will be a mixed fracture mode due 

to the complex stress situation in OSD welded details. 
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Figure 2.7: The three fracture modes that can characterize a crack [9] 

2.4 Fatigue life prediction approach 
The most common methods used for evaluating the fatigue life in guidelines and literature are (1) nominal 

stress approach, (2) hot spot stress approach, (3) effective notch stress approach, and (4) fracture mechanics’ 

approach. The fatigue life of structures consists of two stages as can be seen from Figure 2.8. The first three 

assessment approaches consider the initiation period which is the initial stage and directly links it to the end 

of fatigue life which is the final fracture. So, it does not investigate the propagation period of the fatigue 

crack. As for the fracture mechanics approach, it looks more carefully at when the crack is initiated and 

starts to propagate till the structure completely fails due to unstable crack propagation. 

 

Figure 2.8: Fatigue life phases of structures [10] 

2.4.1 Nominal stress approach 
The nominal stress approach is a global approach for evaluating the fatigue life of a detail. It does not 

consider any special effects so it takes only the macro geometric shape of the detail into account at the joint 

[11] In other words nominal stress disregards the local stress-raising effects of the welded joint [12]. 

Nominal stress is based on linear elastic material behavior and can be determined simply for regular 

geometries as the average stress at the weld throat or the weld toe in the plate. 

In NEN-EN-1993-1-9 the classified fatigue detail categories with its given S-N (Wohler) curves (based on 

linear damage calculation by the “Palmgren-Miner” rule) of OSD welded details are based on nominal 

stresses (see Figure 2.9). Note that the stress concentrations due to weld geometry presence and are weld 

notch effect dismissed here.  
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Figure 2.9: Fatigue detail class of OSD with closed stringer [13] 

2.4.2 Structural hot spot stress approach 
The structural hot spot stress (SHSS) approach goes one step further as it looks at the hot spots which are 

the locations in the structure with possible fatigue crack initiation as a result of a combination of structural 

stress (which is the sum of membrane stress σm and the bending stress σb as in Figure 2.10) and the weld 

geometry. It is a local approach that is more accurate than the nominal stress approach as the HSS includes 

the stress raising (concentrating) effects due to the weld but does not include the non-linear stress peak due 

to the effect of the presence of a notch at the weld toe which results in a non-linear stress peak so the 

discontinuity due to weld geometry is not considered in this method as the designer cannot know the actual 

local weld toe geometry beforehand [11]. Note that the notch effect is implicitly included in the 

experimentally determined S-N curves.  

 

Figure 2.10: The structural stress components [11] 

There are mainly two types of hot spots in plated structures: type (a) and (b) as seen in Figure 2.11. In type 

(a) the weld toe is located on the plate surface, while type (b) is when the weld toe is at the plate edge. In 

rib to deck plate connection, mostly type (a) is considered so the considered welded detail in this thesis will 

be of type (a) hot spot, while type (b) is mainly considered at the weld on the cross-beam edge connecting 

it to the longitudinal rib which is not the focus of this thesis. 
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Figure 2.11: Types of hot spots in a welded detail [11] 

One main problem of the hot spot stress is how to determine the stress amplitude at the crack locations 

accurately when evaluating the fatigue life. Another problem is that the SHSS approach is mainly applicable 

for fatigue strength evaluation of cracks initiating at the weld toe. However, some scholars managed to use 

it to evaluate the fatigue strength at the weld root [2,8]. Moreover, the SHSS approach is meshing sensitive 

in finite element analysis (FEA). To overcome these problems when using finite element analysis and make 

reliable FE-models in design practice, the international institute of welding (IIW) gives some 

recommendations which should be followed. 

The fatigue life can be predicted using modified nominal stress by multiplying a stress concentration factor 

(SCF) with the nominal stress according to the Dutch national annex [14] and making use of a 2D beam 

model as in figure 3 or by the given or 3D FEA data of the stress ranges at the weld root. Note that when 

using shell elements in the 3D FE model, it will be difficult to implement the weld geometry compared to 

3D solid elements. 

After following the IIW recommendations for the choice of the FE, the mesh size, meshing options, 

identifying and analyzing the hot-spots (see reference [11]), the stresses can be extrapolated using Table 

2.1 (where it is the deck plate thickness) to be used further to calculate the hot spot stress 𝜎𝐻𝑆𝑆 which will 

be compared to the detail category in the Dutch national annex [14] to calculate the remaining fatigue life. 

Table 2.1: IIW hot spot stress extrapolation guidelines 

 

2.4.3 Effective notch stress approach 
The effective notch stress is the total stress at the notch root. As can be seen from figure 11 the total notch 

stress consists of three stress components where the nonlinear stress peak is included. The notch stress is 

applicable at the weld root as well as the weld toe. If the material has linear-elastic behavior the stress peak 

because of the presence of a notch at the weld toe or root is included in the total stress.  
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Figure 11: non-linear notch stress distribution across plate thickness [11] 

The method simulates the actual notch at the weld root or toe which leads to non-linear peak stress by 

replacing the actual notch with an effective one. An effective notch with a 1 mm radius as indicated in 

Figure 2.12 is used for structural steels and aluminum alloys as it gives consistent results. An element size 

equal to 1/6 the radius of the effective notch is recommended by IIW when using linear finite elements. 

Unlike the nominal stress approach and SHSS approach, the effective notch stress has only one 

corresponding detail category according to the IIW.  The effective notch method consumes more time than 

the hot spot stress method as well as not considering crack initiation or propagation phases. Thus, the notch 

stress will not be considered in this study. 

 

Figure 2.12: Fictitious rounding’s of weld toe and roots 

2.4.4 Fracture mechanics approach 
The fracture mechanics (FM) approach is different from the previous approaches as previous ones use the 

linear cumulative damage criterion and neglect initial material defects. Here the crack propagation phase 

from the crack initiation till the final fracture is considered. The crack behavior is studied by fracture 

mechanics as the initial crack size 𝑎𝑖 to the final crack size (𝑎𝑓) can be calculated in addition to the crack 

propagation direction (𝜃𝑖). The number of cycles that accompany each crack increment in the crack 

propagation phase can also be calculated which will lead to the prediction of residual fatigue life for the 

structural detail.  

 

As has been mentioned before that the first three methods study the initial stage of fatigue crack and directly 

link it to the final stage which is the end of fatigue life. These methods are used for structural design and 

check purposes as they look directly to the end of fatigue life without investigating the current crack stage 

or parameters and how will it grow when loading increases or changes. Under high load levels, the initiation 

period is less dominant, and the propagation period is more dominating. The crack propagation period can 

only be simulated and studied using fracture mechanics principles.  
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2.5 Linear Elastic Fracture Mechanics (LEFM): 
One type of fracture mechanics is LEFM, which assumes that at the crack tip there is small deformation 

and minimally yielding. A brief overview will be mentioned about the history of the LEFM with its main 

theories in addition to the research theory basis. 

2.5.1 History of LEFM 
Inglis was one of the first to study LEFM. According to his findings, a structure containing a sharp crack 

should fail when an infinitesimal load is applied due to the stress concentration effect. This motivated 

Griffith to develop his theory of fracture based on energy instead of stress. He explained that at a crack the 

stress gradient is very high locally at the tip so the stress at the crack tip should not govern the overall 

behavior and result in fracture for the whole structure. Griffith based his theory on the first law of 

thermodynamics. A fracture happens when the energy stored in the structure is higher than the surface 

energy of the material, so the stress at the atomic level should exceed the cohesive strength of the material 

but this only does not cause fracture [9]. Thus, unstable crack growth (structural failure) is only possible 

when the applied force work is more than the sum of the difference in elastic energy of the material and the 

absorbed energy at the crack tip [15]. This can be expressed as shown in equation (2.1). 

 𝑑𝑊𝑒 ≥ 𝑑𝑈𝑒𝑙 + 𝒢𝑐𝑡Δ𝑎    (2.1) 

where (𝑑𝑊𝑒) is the work exerted for a crack increment, (𝑑𝑈𝑒𝑙) is the elastic strain energy change , (𝒢𝑐) is 

the critical energy release rate which measures the fracture toughness of the material, (t) is the plate 

thickness, and (Δ𝑎) is the crack increment. 

2.5.2 Fracture parameters and their relations 
Fracture mechanics is based on the concept of similitude. This entails that there is a single loading parameter 

characterizing the crack tip conditions, known as the stress intensity factor [9]. When studying crack 

behavior one should understand the parameters that characterize the crack and the relation between them. 

Such parameters are the stress intensity factor (SIF) and the fracture energy release rate (G). The former 

parameter describes the stresses, strains, and displacements in the vicinity of the crack tip; the latter 

quantifies the net change in potential energy that follows an increment of a propagating crack. Note that the 

stress intensity factor describes a local behavior, while the energy release rate is a global parameter. 

Anderson and Rice [9,16] introduced to use of a line integral around the crack tip, known as the J-integral. 

The quantity characterizes the strain energy release rate for elastic-plastic fracture mechanics (EPFM) 

considering the presence of large deformations. However, in linear elasticity theory, the J-integral was 

related to SIF for homogenous isotropic material by Shih and Asaro [17] as given in equation (2.2). Where 

𝐾𝐼 , 𝐾𝐼𝐼  and 𝐾𝐼𝐼𝐼 are the corresponding stress intensity factors for fracture modes I, II and III shown above 

in Figure 2.2.  

 
𝐽 = 𝒢 =  

𝐾𝐼
2

𝐸′
+

𝐾𝐼𝐼
2

𝐸′
+

𝐾𝐼𝐼𝐼
2

2𝐺
 

 

(2.2) 

The modulus of elasticity is then defined as in equation (2.3) for plane stress and plane strain conditions.  

 

 𝐸′ = {

𝐸     ,    𝑝𝑙𝑎𝑛𝑒 𝑠𝑡𝑟𝑒𝑠𝑠
𝐸

1 − 𝜈2
 ,   𝑃𝑙𝑎𝑛𝑒 𝑠𝑡𝑟𝑎𝑖𝑛

 

 

(2.3) 

In the out-of-plane shear mode the shear modulus 𝐺 is then considered, this leads to the following equation. 

 
𝐺 =

𝐸

 (1 + 𝜈)
 

(2.4) 
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Substituting equations (2.3) and (2.4) into equation (2.2) will yield the following relations in equations (2.5) 

and (2.6) for plane stress and plane strain respectively. 

 
𝒢 =

1

𝐸
(𝐾𝐼

2 + 𝐾𝐼𝐼
2) +

1 + 𝜈

𝐸
𝐾𝐼𝐼𝐼

2  
(2.5) 

 
𝒢 =

1 − 𝜈2

𝐸
(𝐾𝐼

2 + 𝐾𝐼𝐼
2) +

1 + 𝜈

𝐸
𝐾𝐼𝐼𝐼

2  
 

(2.6) 

One model for predicting the crack propagation direction was derived by Erdogan and Sih [18] based on 

the concept of maximum tangential stress (MTS). This means that the crack will extend in a radial direction 

from the crack tip and perpendicular to the maximum tensile load applied. This is valid when the tangential 

stress is maximum and the shear stress is zero. The crack extension angle is given in equation (2.7). 

 
𝜃 = cos−1 (

3𝐾𝐼𝐼
2 + √𝐾𝐼

4 + 8𝐾𝐼
2𝐾𝐼𝐼

2

𝐾𝐼
2 + 9𝐾𝐼𝐼

2 ) 
(2.7) 

2.5.3 Crack growth behaviour 
The crack initiation phase in welded connection is relatively short compared to the crack propagation phase. 

The crack growth behavior was studied by Paris and Erdogan in 1961 and a relation between the crack 

growth rate da/dN and the stress intensity factor range ∆K was established. This is known as “Paris’ law” 

[19]. The developing crack behaviour has been divided into three generalized regions as can be seen in 

Figure 2.13.  There are two asymptotes when the relation is plotted in the log-log scale. The first asymptote 

indicates the threshold value for the stress intensity factor Δ𝐾𝑡ℎ below which the fatigue crack will not 

grow. The crack growth rate increases as Kmax approaches Kc which is the fracture toughness. When the Kmax 

= Kc the crack length reaches the critical value, which will lead to accelerated unstable crack growth and 

complete failure of the structural detail. The figure is divided into three regions showing region I where the 

crack initiates and starts to propagate. Region II shows a linear crack growth which is called the Paris 

regime described by equation (2.8). 

 𝑑𝑎

𝑑𝑁
= 𝐶 Δ𝐾𝑚 

(2.8) 

where C and m are material-dependent parameters from experiments that have been determined by different 

scholars as shown in Table 2.2.  LEFM mainly studies the crack propagation in region II, considering there 

is an initial predefined crack that will then grow linearly. Furthermore, this research will mainly focus on 

the linear crack growth in region II. As for region III, it indicates the unstable crack growth when the stress 

intensity range approaches the fracture toughness which will then lead to failure of the structural detail [20]. 

 

Figure 2.13: Fatigue crack growth behavior in metals [10] 
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2.5.4 Crack closure effects 
There was a shortcoming in the Paris equation as it could not consider the mean stress effect, as the 

compliance of fatigue specimens did not agree with the formulae for low loads which compliance was close 

to an un-cracked specimen [21]. This was discovered by Elber in 1970 which led to research into a 

phenomenon called crack closure.  

Table 2.2: Paris constants for structural steel [22] 

 

Figure 2.14 shows the effect of crack closure effect on the displacement and the driving force for fatigue 

when a specimen is subjected to cyclic loading between 𝐾𝑚𝑎𝑥 and 𝐾𝑚𝑖𝑛. 𝐾𝑜𝑝 is the stress intensity factor 

at which the crack opens.  

 

Figure 2.14: Fatigue crack closure [9]. (a) Load-displacement behaviour for a positive load. (b) The reduced driving force for 

fatigue leading to the effective stress intensity range (𝛥𝐾𝑒𝑓𝑓) 

Due to the fact that during the cyclic loading the crack tip strain does not change for a closed crack, Elber 

assumed that there is no contribution to the fatigue crack growth from the portion of the cycle which is 

below 𝐾𝑜𝑝. This led to the following definition of the effective stress intensity range expressed by equation 

(2.9). Thus, a modified Paris equation has been proposed by Elber given in equation (2.10). 

 Δ𝐾𝑒𝑓𝑓 = 𝐾𝑚𝑎𝑥 − 𝐾𝑜𝑝 (2.9) 

   

 𝑑𝑎

𝑑𝑁
= 𝐶Δ𝐾𝑒𝑓𝑓

𝑚  
(2.10) 

 

The latter equation showed reasonably successful results when correlating fatigue crack growth data at 

different cyclic load ratios. This all led to a decrease in the fatigue crack growth rate by decreasing the 

effective stress intensity range for different low load ranges [23]. 
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2.6 Extended Finite Element Method (XFEM) 
To numerically simulate the crack propagation in the OSD targeted detail based on the LEFM theory the 

commercial finite element software Abaqus® will be made use of. 

2.6.1 XFEM formulation 
The numerical method used therefore is the Extended Finite Element Method. XFEM was first proposed 

by Belytschko and Black in 1999 [24]. The method is an extension of the polynomial function space of the 

conventional finite element method based on the concept of partition of unity. It was developed to address 

discontinuity problems. Furthermore, it extends the displacement vector of the FEM by adding two 

enrichment degrees of freedom with the accompanying special displacement functions to include the 

displacement discontinuity into the conventional FEM displacement vector. The displacement vector using 

the XFEM is expressed in equation (2.11). 

 
𝑢(𝑥) =  ∑ 𝑁𝑖(𝑥)[𝒖𝒊 + 𝐻(𝑥) ∙ 𝒂𝒊 + ∑ 𝐹𝛼(𝑥) ∙ 𝒃𝒊

𝜶

𝑚

α=1

]

𝑛

𝑖=1

  
 

(2.11) 

Where 𝑁𝑖(𝑥) is the usual nodal shape function;  𝒖𝒊 is the continuous nodal displacement vector;  𝐻(𝑥) is 

the Heaviside step function (for the displacement field of the elements penetrated by cracks) associated 

with the nodal enriched degree of freedom vector, 𝒂𝒊; and the third term of equation (2.11) is the product  

of the asymptotic crack tip function, 𝐹𝛼(𝑥), and the associated nodal enriched degree of freedom vector, 

𝒃𝒊
𝜶. Thus, the third term is used only for the elements which are cut by the crack tip.  

This all can be more obvious when looking at Figure 2.15 where the normal FE is indicated and the 

discontinuous element consisting of crack penetration and crack tip element can be seen.  

 

Figure 2.15: XFEM elements indication [25] 

The discontinuous jump function which addresses the displacement field of the cracked elements, 𝐻(𝑥), is 

expressed in equation (2.12), while the asymptotic crack tip function, 𝐹𝛼(𝑥),  for an isotropic elastic material 

is given in equation (2.13). 

  𝐻(𝑥) = {
1      𝑖𝑓  (𝑥 − 𝑥∗) ∙ 𝒏

−1               𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

 

(2.12) 

 

 
𝐹𝛼(𝑥) = [√𝑟 sin

𝜃

2
, √𝑟 cos

𝜃

2
, √𝑟 sin 𝜃 sin

𝜃

2
, √𝑟 sin 𝜃 cos

𝜃

2
] 

(2.13) 
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Where in equation (2.12) 𝑥 is a Gauss point, 𝑥∗ is the point on the crack closest to 𝑥 and 𝒏 is the unit 

outward normal to the crack at 𝑥∗, and in equation (2.13) the (𝑟, 𝜃) form a polar coordinate system with its 

origin at the crack tip as indicated in Figure 2.16.  

 

Figure 2.16: Indication of the normal and tangential coordinates for a smooth crack [26] 

Like conventional FEM the XFEM solves the unknown displacement vector by using the overall stiffness 

matrix and load vector. Then nodal displacements are obtained and the stresses in the integration points can 

be calculated and extrapolated at the nodes. Moreover, the numerical integration scheme used for XFEM is 

also the Gaussian integral. Note that the crack penetrated elements and the crack tip elements have a 

discontinuous displacement field, so the stiffness matrices are also discontinuous. This leads to the element 

division into sub-elements, subsequently, the stiffness matrix of the element is obtained by numerically 

integrating the stiffness matrix of the sub-elements using a Gaussian integration scheme and then summing 

up the stiffness matrices of the sub-elements. 

2.6.2 XFEM for propagating crack 
Resulting from the fact that modeling the crack tip singularity is an arduous task as it requires continuously 

tracking where the crack propagates, the asymptotic singularity function is only considered in the XFEM 

stationary crack modeling in Abaqus®. Hence, the displacement vector when using the XFEM to model 

propagating cracks reduces to the expression given in equation (2.14). 

 
𝑢(𝑥) =  ∑ 𝑁𝑖(𝑥)[𝒖𝒊 + 𝐻(𝑥) ∙ 𝒂𝒊]

𝑛

𝑖=1

 
 

(2.14) 

The propagating cracks that will be modelled in this research will be based on the principles of LEFM and 

phantom nodes [26]. This method is more convenient in modeling brittle crack moving in a bulk material. 

The phantom nodes are shown in Figure 2.17. These nodes symbolize the discontinuity of the cracked 

elements. Each phantom node is fully constrained to its corresponding real node when the element is 

uncracked.  

 

Figure 2.17: Schematic representation of the phantom nodes[27] 
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Since only the displacement jump function is considered in the XFEM for modeling moving crack (2.14), 

the crack must propagate across the entire element at a time to consider the element cracked and to avoid 

the necessity of modeling the stress singularity at the crack tip. Moreover, the element cracks once the 

fracture criterion has been met. Within the enriched element, this criterion will be met when the equivalent 

strain energy release rate exceeds the critical one at the crack tip as shown in expression (2.15). Thus, the 

crack extends after an equilibrium increment when the fracture criterion is met within a specific tolerance. 

The strain energy release rate is calculated at the crack tip based on the modified virtual crack closure 

technique (VCCT). VCCT relies on the assumption that the released strain energy when a crack is extended 

by an amount is the same as the required energy for the crack closing by the same amount.  

 
𝑓 =

𝒢𝑒𝑞𝑢𝑖𝑣

𝒢𝑒𝑞𝑢𝑖𝑣𝐶
≥ 1.0 

(2.15) 

The critical equivalent fracture energy release rate is computed in Abaqus® based on three mixed fracture 

modes. These modes include the BK law [28], the power-law [29], and the Reeder law [30] given in 

equations (2.16), (2.17), and (2.18) respectively. 

 
𝒢𝑒𝑞𝑢𝑖𝑣𝐶 = 𝒢𝐼𝐶 + (𝒢𝐼𝐼𝐶 − 𝒢𝐼𝐶) (

𝒢𝐼𝐼 + 𝒢𝐼𝐼𝐼

𝒢𝐼 + 𝒢𝐼𝐼 + 𝒢𝐼𝐼𝐼
) 

 

(2.16) 

 𝒢𝑒𝑞𝑢𝑖𝑣

𝒢𝑒𝑞𝑢𝑖𝑣𝐶
= (

𝒢𝐼

𝒢𝐼𝐶
)

𝑎𝑚

+ (
𝒢𝐼𝐼

𝒢𝐼𝐼𝐶
)

𝑎𝑛

+ (
𝒢𝐼𝐼𝐼

𝒢𝐼𝐼𝐼𝐶
)

𝑎𝑜

 

 

(2.17) 

 
𝒢𝑒𝑞𝑢𝑖𝑣𝐶 = 𝒢𝐼𝐶 + (𝒢𝐼𝐼𝐶 − 𝒢𝐼𝐶) (

𝒢𝐼𝐼 + 𝒢𝐼𝐼𝐼

𝒢𝐼 + 𝒢𝐼𝐼 + 𝒢𝐼𝐼𝐼
)

𝜂

 

                               + (𝒢𝐼𝐼𝐼𝐶 − 𝒢𝐼𝐼𝐶) (
𝒢𝐼𝐼𝐼

𝒢𝐼𝐼 + 𝒢𝐼𝐼𝐼
) (

𝒢𝐼𝐼 + 𝒢𝐼𝐼𝐼

𝒢𝐼 + 𝒢𝐼𝐼 + 𝒢𝐼𝐼𝐼
)

𝜂

 

 

(2.18) 

 

One of the main advantages of the extended finite element method is that it does not require that the mesh 

matches or conforms to the discontinuity of crack geometry. This is possible by the implementation of the 

level set function which is a numerical technique for the computation and analysis of the interface motion 

[31]. In Figure 2.18 two orthogonal signed distance functions define the crack geometry. The first defines 

the crack surface, while the second constructs an orthogonal surface so the intersection of the two surfaces 

defines the crack front.  

 

Figure 2.18: Indication of the 3D nonplanar crack by two signed distance functions [26] 
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2.6.3 XFEM based on LEFM using VCCT  
As has been illustrated in section 2.5.3 about the growing crack behavior and regions in fracture mechanics 

(FM). Since the fracture energy release rate is a global crack parameter, the fracture criterion (based on 

VCCT), as well as the Paris formula, have been implemented in Abaqus® in terms of relative fracture 

energy release rate (Δ𝐺). Where 𝑐3 and 𝑐4 are material constants calculated based on 𝐶 and 𝑚, in addition 

to 𝐺 = 𝒢. Unlike Figure 2.13, the crack growth response is described in terms of the fracture energy release 

rate as in Figure 2.19. However, the crack growth rate relation with the relative energy release rate has the 

same pattern as the relation between the former and the SIF.  

The Paris law has been given in expression (2.19) in terms of Δ𝐺. The expression holds when condition 

(2.20) is satisfied, and 𝐺𝑚𝑎𝑥 is the energy release rate when the structure is subjected to the maximum 

loading. As a deduction from Figure 2.19, the Paris regime is bounded at its beginning by the energy release 

rate threshold, 𝐺𝑡ℎ𝑟𝑒𝑠ℎ, below which there will be no fatigue crack initiation and growth. At the end of the 

Paris regime the energy release rate approaches its upper limit, 𝐺𝑝𝑙, above which the crack will grow rapidly 

at an unstable rate. The critical equivalent strain energy release rate, 𝐺𝐶 is calculated based on the mixed-

mode criterion (explained in section 2.6.2) and fracture strength specified by the user in Abaqus®. Some 

default values are given in (2.21). 

 

 

Figure 2.19:Fatigue crack growth in terms of energy release rate 

 

 

𝑑𝑎

𝑑𝑁
= 𝑐3 ΔG 𝐶4 

(2.19) 

 𝐺𝑡ℎ𝑟𝑒𝑠ℎ < 𝐺𝑚𝑎𝑥 < 𝐺𝑝𝑙 (2.20) 

 

 

𝐺𝑡ℎ𝑟𝑒𝑠ℎ

𝐺𝐶
= 0.01,

𝐺𝑝𝑙

𝐺𝐶
= 0.85 

 

(2.21) 

So that the enriched elements in front of the crack tip fracture and the crack initiates growing, the criterion 

in the following expression should be met. Where 𝑁 is the cycle number and 𝑐1,  𝑐2 are material constants. 

 
𝑓 =

𝑁

𝑐1Δ𝐺𝑐2
 

 

(2.22) 

In order to simulate crack growth in Abaqus® using XFEM, a cyclic loading must be inserted using the 

direct cyclic approach which considers a quasi-static analysis. This will introduce cyclic loading on the 

structure. The crack length 𝑎𝑁 corresponds to the cycle number 𝑁. As mentioned before, the crack will only 

start to grow when the relative energy release rate exceeds the threshold value, Δ𝐺𝑡ℎ. Shown in Figure 2.20 
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(where Δ𝑎𝑘 = Δ𝑎𝑁𝑗, Δ𝑁𝑘 = Δ𝑁𝑗), the crack length then increases by a certain value, 𝑎𝑁+Δ𝑁, due to the 

corresponding incremental number of cycles, Δ𝑁. Given that the FE element length, the crack propagation 

direction (from the enriched region), and the material constants  𝑐3 and 𝑐4 are all known, the number of 

cycles needed for the crack of each enriched element in front of the crack tip  can be calculated based on 

the Paris formula (2.19) as Δ𝑁𝑗. Where 𝑗 indicates the enriched element in front of the 𝑗𝑡ℎ crack tip. The 

XFEA leads to a crack in at least one enriched element as the analysis runs. The element that corresponds 

to the least cycles cracks, leading to the minimum change in cycle number as well as in the crack increment 

as indicated in (2.24) and (2.25). The critical element is then fractured after the loading cycle stabilizes. 

The element then has zero stiffness. Thus, a load redistribution is expected, and the new relative fracture 

energy will be calculated for the next enriched elements ahead of the crack tip under the influence of the 

next load cycle. This process then keeps repeating itself till the stop criterion has been met or the analysis 

has been manually stopped. This analysis leads to the complete fracture of at least one enriched element 

ahead of the crack tip after a stabilized load cycle. Consequently, the number of cycles needed to cause a 

certain fatigue crack length can be determined.  

 Δ𝑎𝑁𝑗 = 𝑎𝑁+Δ𝑁 − 𝑎𝑁 (2.23) 

 Δ𝑁𝑚𝑖𝑛 = min(Δ𝑁𝑗) (2.24) 

 Δ𝑎N 𝑚𝑖𝑛 = min(Δ𝑎𝑁𝑗) (2.25) 

 

 
Figure 2.20: Fatigue crack propagation in XFEA [25] 
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3  Fatigue Crack Propagation In CT 
 

In this chapter, a compact tension specimen with specific geometry is modelled using FEM and XFEM to 

simulate the fatigue crack propagation in this specimen under cyclic tensile load. Throughout this chapter 

the models’ details, properties, as well as the models’ output, will be indicated and discussed, then the 

results will be plotted and discussed at the end of the chapter. 

3.1 Introduction 
The compact tension specimen is a single edge-notch specimen that is mainly used in the field of fracture 

mechanics. It is used in cyclic tensile loading tests for fatigue crack propagation. These tests aim to measure 

the material fracture parameters (C & m) and study the fatigue crack growth. However, in this research, the 

CT-specimen test is simulated using FEA and XFEA to study the fatigue crack growth based on LEFM. 

Since the CT specimen is notched, it is a good representation of practical and real imperfections and 

inconsistencies such as the discontinuities due to welded connections in OSD. The CT specimen is only 

suitable for cyclic tensile loading and not for cyclic compressive loading or tensile compressive due to 

uncertainties at the crack tip. Throughout this chapter, CT specimen fatigue cracks propagation simulations 

(in both 2D and 3D) will be carried out for a cyclic tensile load with different stress ratios. Before making 

a propagating crack model a stationary crack model is made using the contour integral evaluation and 

stationery XFEM to evaluate the accuracy of the extracted SIFs (see Appendix A).  

3.2 FE Model description 

3.2.1 Geometry 
First of all, the used CT dimensions have to comply with the guidelines of the standard test method for 

measurements of fatigue crack growth rates (ASTM E647-13) [32]. The dimensions’ ranges stipulated for 

the CT specimen in the guideline are indicated in Figure 3.1.  

 

Figure 3.1: Standard CT specimen dimensions for fatigue crack growth testing [32] 

2D and 3D XFEM analyses are carried out for the CT-. The dimensions of the modelled CT specimen are 

shown in Figure 3.2. In the model, the ‘an’ is 7.5 mm, while ‘a0’ is 12.5 mm (7.5 mm + 5 mm). Thus initial 
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predefined crack (flaw) is 5 mm. In the 2D model, the model thickness is assigned as a plane stress/strain 

thickness and is equal to 6 mm, while in 3D, the CT part geometry has a 6 mm thickness in Z-direction.  

 

Figure 3.2: CT XFEM model dimensions [33] 

3.2.2 Material properties 
The considered material (steel) properties for all models are elastic material properties since fatigue crack 

occurs without the yield strength is reached on the global (model) level. Only a local plastic zone occurs at 

the crack tip when the fatigue crack is growing. Considering LEFM theory, the linear elastic material 

behaviour is generalized to the whole model. Hence, the material properties are indicated in Table 3.1. 

Table 3.1: Elastic material properties 

Young’s modulus of elasticity (E) 210,000 MPa 

Poisson’s ratio (𝜈) 0.3 

 

3.2.3 Boundary conditions 
In this thesis, two different boundary conditions are investigated in the FE simulation. The aim is to study 

the boundary conditions' effect on the crack propagation rate in both 2D and 3D XFEA and deduct the most 

suitable BC which complies with the most reasonable results.  

In Figure 3.3 the 2D and 3D XFE-models are shown with various boundary and loading conditions. Both 

single and double loading are considered for the CT model. First, in the 2D model, one tensile load is 

applied at the upper RP while constraining the lower RP [Figure 3.3 (a)] in the vertical direction (Y-

direction). Second, double tensile loading is considered, there is no constraining for any degree of freedom 

(DOF) in both RPs [Figure 3.3 (b)]. Then a 3D XFE-model is made by firstly applying single tensile loading 

at the upper RP with the rotations around X-and Y-axis constrained to bound the out-of-plane rotations in 

the simulation [Figure 3.3 (c)]. The same DOFs are constrained at the lower RP in addition to the translation 

in Y-direction as in the 2D model. The 3D model double loading case is slightly more challenging to reach 

the most suitable BCs. This is basically due to the extra DOFs attributed to the 3D elements used in the 3D 

model. Thus, a sensitivity analysis for the BCs applied for the double loading case is considered to obtain 

the most appropriate BCs (see Appendix A). The most suitable BC is to fix out of plain rotations at both 

RPs like in the upper RP in the single-loaded 3D XFE-model.  
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Figure 3.3: 2D & 3D CT-specimen FE-model with different BCs. (a) Single loaded 2D-model.                                                      

(b) Double loaded 2D-model. (c) Single loaded 3D-model. (d) Double loaded 3D-model 

 

3.2.4 Applied load 
The loading applied on the CT model to simulate the testing conditions has a cyclic characteristic using a 

direct cyclic analysis (Quasi-static) for the simulation. The cyclic loading causes material strength 

degradation leading to fatigue crack growth along an arbitrary path [26]. The time increment specified is 

0.25 with a maximum number of iterations equal to 200. Moreover, to model the progressive damage in 

bulk material, the low-cycle fatigue analysis is parallelly enabled to obtain directly a stabilized cyclic 

response of the structure. The loading itself is a periodic type loading with amplitude to simulate the cyclic 

loading condition which is also the case when the CT specimen is experimentally tested. The periodic 

loading function follows the amplitude in Figure 3.4.  
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Figure 3.4: Periodic loading function 

The initial load value is 1800N, which increases to the value of 3600N and drops to zero, leading to a stress 

ratio (R) equal to zero. The load is applied as a concentrated force at the CT-specimen perforation center 

points. Note that the reference points have been tied to the CT-specimen perforation lines in 2D and surfaces 

in 3D using kinematic coupling constraints as shown in Figure 3.5. In the 2D model, RP-1 and RP-2 have 

been tied to the shell edges in the upper and lower perforation, while in 3D the same reference points (RPs) 

are tied to the solid surface of the CT perforations. The coupling is made only to one-half of the holes as 

seen in the figure below.  

 

Figure 3.5: CT-specimen FE-model. (a) 2D FE-model. (b) 3D FE-model 

3.2.5 Propagating crack using XFEM 
To model the propagating crack in the CT specimen, the enriched feature has been used to model the 

discontinuity in the displacement field due to the crack propagation. In Figure 3.5 the enriched regions are 

shown with the initial predefined inserted crack in both 2D and 3D XFE-models. A user-defined subroutine 

is used to run the simulation in Abaqus®, the low cycle fatigue fracture criterion is used based on LEFM 

using VCCT. Paris law (2.8) is used in the subroutine with material parameters values taken same as in 

British Standard [34] which are also shown in Table 2.2, where 𝐶 = 5.21 ∙ 10−13 & 𝑚 = 3.0. Moreover, 

the LEFM implementation of the stress intensity factors for the mixed fracture modes is carried out by 

considering both plane stress and plane strain conditions. This is done by using equations (2.5) and (2.6) 

for both 2D and 3D models. For more information about the LEFM implementation, the subroutine’s 

Fortran code is attached in Appendix A . Note that for the 2D models 𝐾𝐼𝐼𝐼 is equal to zero. 
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3.2.6 Finite element mesh 
In the 2D XFE-model, two-element types are used depending on the situation considered (see Table 3.2). 

The used element types are plane stress (CPS4) and plane strain (CPE4). These element types are used in 

two finite element models with the LEFM equations (2.5) and (2.6) respectively. The meshing is applied in 

two zones, a local and a global mesh. The local mesh size is 0.25 mm and is applied in the enriched region 

around the crack front, while the global mesh size is 1 mm, applied at the rest of the CT geometry as shown 

in  Figure 3.6 (a).  

In the 3D XFE-model, 8-node brick elements (C3D8) are used with full numerical integration. Furthermore, 

a local and a global mesh are applied using structured and swept mesh controls. The local mesh size is 0.25 

mm as in the 2D model and the global mesh size is 1.5 mm as mentioned in Table 3.2. From Figure 3.5 (b), 

the local mesh is applied at the enriched region shown in Figure 3.6 (b). The areas above and below the 

enriched region have a 0.25 mm width and 1.5 mm height, the latter is the global element size. First, four 

elements with a 1.5 mm thickness are used through the thickness. Then, only one element is used through 

the thickness of the 3D CT model as indicated in Figure 3.6 (b). The one element through the thickness is 

applied to obtain a smooth crack front and have a converged XFE solution which gives reliable results.  

Table 3.2: Finite element mesh details 

Model Mesh region Element type Mesh Size 

2D-XFEM Local enriched shell 4-node plane stress quadrilateral (CPS4) 0.25 mm 

2D-XFEM Global non-enriched shell  4-node plane stress quadrilateral (CPS4) 1.00 mm 

2D-XFEM Local enriched shell 4-node plane strain quadrilateral (CPE4) 0.25 mm 

2D-XFEM Global non-enriched shell 4-node plane strain quadrilateral (CPE4) 1.00 mm 

3D-XFEM Local enriched solid 8-node linear brick (C3D8) 0.25 mm 

3D-XFEM Global non-enriched solid 8-node linear brick (C3D8) 1.50 mm 

 

 

Figure 3.6: Finite element mesh. (a) 2D-model meshing. (b) 3D-model meshing. 
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3.3 Results and discussion 
In this section, the output of the CT-specimen XFE models will be presented for both 2D and 3D models, 

which details have been explained in previous sections of this chapter. The output is then post-processed 

and results are shown and discussed.  

3.3.1 2D-XFEM output 
From the XFEA the provided output in the figures below has been requested in Abaqus®. To show the 

status of the extended finite elements (STATUSXFEM) and the crack openings. Below in Figure 3.7, a 3D-

view of the deformed shapes of the CT model under cyclic tensile loading has been provided for three 

different crack lengths at three different numbers of cycles. The crack lengths are 5 mm, 11 mm, and 30 

mm from the CT-specimen notch tip, and the corresponding number of cycles is 0, 30226, and 38803 cycles, 

respectively. These output values belong to the single-loaded XFE model with a 4-node plane strain element 

type and zero stress ratio (𝑅 = 0).  

 

Figure 3.7: 2D-XFE model output (STATUSXFEM). (a) Deformed model at initial flaw length (5 mm).                                        

(b) Deformed shape at crack length 11 mm. (c) Deformed shape at final crack length (30 mm) 

 

Figure 3.8: 2D-XFEM (undeformed) model output. (a) STATUSXFEM. (b) Level set value phi (PHILSM).                                   

(c) Level set value psi (PSILSM). 

  

(b) 

(c) 

(a) 
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3.3.2 3D-XFEM output 
Same as the 2D-XFEM output the 3D-XFEM model output is requested. The output of the 3D CT models 

where more elements are used through the thickness has been shown in  Figure 3.9. The output shown in 

the following figures belong to the single-loaded CT model using the plane strain condition with zero stress 

ratio (𝑅 = 0). The remaining models with the assumptions mentioned before in 3.2.3 and 3.2.5 gave 

normatively the same output, although the results of each case are quantitively different in terms of fatigue 

life and crack shape.  

In Figure 3.9 (a) and f (a), the deformed shape of the CT model is shown in the case of the initial predefined 

crack size (5 mm), where the corresponding number of cycles is still zero. Further, in Figure 3.9 (b) and f 

(b), the maximum crack size reached by the numerical simulation in Abaqus® has been shown. The crack 

length is equal to an average of 10.5 mm and the number of cycles corresponding to this crack size is 139211 

cycles as shown in Figure 3.10 (b).  

An important observation is that in Figure 3.10 the crack grows irregularly and unsymmetrically as it can 

be observed that the crack is longer at one side of the CT than on the other side. Finally, the number of 

cycles calculated numerically is much larger than the analytically calculated fatigue life. 

 

Figure 3.9: 3D  XFE models with more elements through-thickness output (STATUSXFEM). (a) The deformed shape at initial 

crack length (5 mm). (b) The deformed shape at maximum crack length reached (11.75 mm) 

 

Figure 3.10: Close up propagating crack using more elements through-thickness at different crack lengths 

The 3D-views of the model deformed shapes using only one element through the thickness are indicated in 

Figure 3.11. Note that the measurements following are for single loaded plane strain CT XFE model with 
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zero stress ratio (𝑅 = 0). It should be noted that for the 3D-models’ simulations only 8-node brick elements 

are used and the equivalent SIF range is calculated based on both plane strain and plane stress assumptions. 

However, this should not be confused with that for the 2D models, plane strain and plane stress finite 

elements as well as plane strain and stress assumptions for calculating the Δ𝐾𝑒𝑞 are used. For plane stain 

and stress constitutive assumptions, M1 and M2 are noted, respectively. 

The deformed shapes correspond to different crack sizes. Figure 3.11 (a) shows the deformed shape after 

only the predefined flaw (5 mm) at a zero-corresponding number of cycles. In Figure 3.11 (b) the crack 

length measured from the CT notch tip is equal to 11 mm with a corresponding number of cycles of 29435 

cycles. Finally, Figure 3.11 (c) shows the deformed shape of the final crack increment. In this phase, the 

crack size reached the end of the specimen model which is 30 mm and the number of cycles corresponding 

to this crack size is 38363 cycles. 

The three crack stages are shown again in Figure 3.12, with their corresponding number of cycles at each 

crack length. The zoomed-in figures also show that there is only one element used through the CT thickness. 

From the figure, it can be deduced that the crack growth shape here is close to the real situation. 

 

Figure 3.11: 3D XFE model with one element through-thickness output (STATUSXFEM). (a) Deformed model at initial crack 

length (5 mm). (b) Deformed shape at crack length 11 mm. (c) Deformed shape at final crack length (30 mm) 

 

Figure 3.12: Close up on the propagating crack using one element through-thickness at different crack lengths 

In Figure 3.13 some output data are presented for the 3D-XFEM model. The shown sub-figures correspond 

all to the CT when the crack size measured from the notch tip is equal to 11 mm. The maximum principal 

stresses around the crack tip are shown in Figure 3.13 (a) showing the local plastic zone at the crack tip. 

The strain energy release rate (G) corresponding to a crack size 11 mm is also shown in Figure 3.13 (b). In 

Figure 3.13 (c) and (d) the numerical result of the implementation of the level set functions phi and psi are 

shown, respectively  
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Figure 3.13: 3D-XFE model output at 11 mm crack. (a) Max. principal stress. (b) Strain energy release rate (G).                                                  

(c) Level set value phi (PHILSM). (d) Level set value psi (PSILSM) 

 

3.3.3 Validation of the numerical analysis using XFEM 
The results are plotted for the 2D and 3D-XFE models. Both the single-loaded and double-loaded XFE 

models’ results are presented in this section. The analytical results for the crack size versus the analytically 

calculated number of cycles for the CT using equations (2.8) and (3.1) are taken as a reference. In addition, 

the analytically calculated stress intensity factor range and crack growth rate are considered. The number 

of cycles calculated represented the fatigue life until the final fracture. A python code is scripted for the 

analytical fatigue life calculation and crack growth rate. The code is shown in Appendix A. Note that in the 

equation (3.1), 𝛼 =  
𝑎

𝑊
 . Moreover, equation (2.8) does not consider the mean stress effect. Hence, it 

considers a stress ratio equal to zero, thus the load ratio effect is not considered in this case.  

 
Δ𝐾 =

Δ𝑃

𝐵√𝑊

(2 + 𝛼)

(1 − 𝛼)
3
2

(0.886 + 4.64𝛼 − 13.32𝛼2 + 14.72𝛼3 − 5.6𝛼4) 
 

(3.1) 

 

 

Analytical and numerical fatigue life 

First, the 3D-XFE model using multiple elements through the thickness is considered, by plotting its fatigue 

life on the horizontal axis along with the corresponding crack length. This is then compared with the fatigue 

life calculated analytically by plotting both on the same graph as indicated in Figure 3.14. 

In Figure 3.14 it is clear that the numerically calculated fatigue life does not converge with the reference at 

all. Note that for other CT models considering double-loading a similar crack growth behaviour is found. 

Considering the information given in 3.3.2 on the output of the considered models and after analyzing 

Figure 3.14, one can conclude that when considering multiple elements through the thickness in a crack 

propagation analysis using automated crack propagation in the FEM software, the fatigue life calculated by 

the software may not be accurate and cannot be depended on as a tool or a method to calculate fatigue life. 
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Figure 3.14: Analytically vs Numerically calculated fatigue life (Multiple elements through-thickness) 

When using XFEM based on LEFM using VCCT to run an automated crack model, the software will make 

the crack start to grow when the relative energy release rate exceeds the threshold value, Δ𝐺𝑡ℎ. From 2.6.3 

and Figure 2.20 it is known how XFEA calculates the fatigue life of a propagating fatigue crack. Hence, 

when the number of elements through the thickness increases at the crack tip front the software will have 

to calculate Δ𝑁𝑗 more times because more elements have to be fractured. Thus, the total number of load 

cycles for a certain crack length will increase according to the following equation. 

 𝑁𝑗 = min(Δ𝑁𝑗−1 + Δ𝑁𝑗) (3.2) 

 

In figures Figure 3.15 and Figure 3.16 the fatigue life calculated from the analytical formulas is taken as 

the reference for 2D-and 3D-XFE models calibration using single and double tensile loading conditions. 

Figure 3.15 (a) shows the 2D-and 3D-XFE models’ results for a single loaded CT as shown in Figure 3.3 

(a) and (c), while Figure 3.15 (b) indicates the 2D-and 3D-XFE models’ results for the double-loaded CT 

case which is shown in Figure 3.3 (b) and (d) for the 2D-and 3D-XFE models, respectively. Note that all 

the 2D and 3D numerical results have been plotted for both plane stress and plane strain situations. 

Moreover, the output results are also post-processed to study the fatigue life based on the XFE modeling 

space (2D or 3D) as presented in Figure 3.16. All the 2D-XFE models’ results in the case of single and 

double loaded CT have been plotted together in Figure 3.16 (a) for both plane stress and plane strain 

situations. Additionally, the 3D-XFE models’ results are presented in Figure 3.16 (b) for the same two 

loading and boundary conditions mentioned before. Besides, the same two constitutive assumptions (plane 

strain and plane stress) are considered. 
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(a)  

 

b)  

 
Figure 3.15 Analytically vs Numerically calculated fatigue life. (a) Single loaded XFE-model. (b) Double loaded XFE-model. 

In Table 3.3 and Table 3.4 shown below, the number of cycles needed for the CT specimen to be completely 

cracked has been calculated and indicated. The difference percentage with the analytical (reference) 

solution has been also shown in the tables. The two tables are provided to give an elaboration for the above-

shown figures. From Figure 3.15 (a) and Table 3.3, one can see that in the case of single loading the plane 

stress consideration in both 2D and 3D CT models gives a much larger estimate for the fatigue life. Not to 

be overlooked, that there is a difference in fatigue life between the 2D and 3D plane stress consideration. 

In Figure 3.15 (b) and Table 3.4, the case of double loading shows almost similar results as in the case of 

the single loading. The plane stress constitutive assumption still shows higher fatigue life for the CT than 

that for the plane strain one. Similar to the single loading case, there is also a difference in fatigue life 

between the 2D and 3D plane stress constitutive hypotheses. However, the difference here differs less than 

in the case of single loading.  

(a)  

 

b)  

 

Figure 3.16: Analytical vs Numerically calculated fatigue life. (a) 2D-XFE model. (b) 3D-XFE model. 
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Furthermore, considering Figure 3.16 (a), (b), and Table 3.3, Table 3.4. In 2D analysis, the fatigue life 

resulting from both single and double loading cases are almost identical. However, in the case of 3D 

analysis, there are some small differences between single and double loading cases due to the 3D models 

DOFs definition. An important finding is that all the plane strain analyses (M1) for 2D and 3D have resulted 

in a similar number of cycles in comparison with the analytically calculated fatigue life till complete 

fracture. Nevertheless, all plane strain analyses except for the 3D single loading case slightly overestimate 

the fatigue resistance of the CT, while for the plane stress situation, all the analyses highly overestimate the 

fatigue resistance. The overestimation of the fatigue resistance makes predictions on the unsafe side in 

practical design applications. 

 

Table 3.3: Difference between the analytical and numerical calculated fatigue in case of single loading 

Single Loading 

Analytical 

calculation  

2D-M1 

 

2D-M2 

 

3D-M1 

 

3D-M2 

 

38425 cycles 

 

38803 cycles 

 

50651 cycles 

 

38363 cycles 

 

44181 cycles 

 

ΔN % 0.98 %  ↑ 31.82%  ↑ 0.99%  ↓ 13.03%  ↑ 

 

Table 3.4: Difference between the analytical and numerical calculated fatigue in case of double loading 

Double Loading 

Analytical 

calculation  

2D-M1 

 

2D-M2 

 

3D-M1 

 

3D-M2 

 

38425 cycles 

 

38643 cycles 

 

50325 cycles 

 

39637 cycles 

 

45655 cycles 

 

ΔN % 0.58 %  ↑ 30.97% ↑ 3.15%  ↑ 18.82%  ↑ 
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The difference in fatigue life between the 2D and 3D plane stress assumptions (M2) in both single-and 

double-loaded CT models reflects the nature of 3D solid elements (C3D8) in numerical modeling. Though 

only one element is used through the thickness, the fatigue life differs from the one calculated using 2D 

plane stress elements (CPS4). This is attributed to the 3D solid element characteristics in explicitly 

including the through-thickness mechanical behaviour. As a result of this, the 3D solid elements in-plane 

stress analysis tends more towards the plane strain condition. This shows that due to the thickness the 

through-thickness straining will be less leading to higher stresses at the crack tip. Hence, a faster 

propagating crack takes place as shown in Figure 3.15 (a) and (b). 

To elaborate more on the last paragraph, when a Mode I crack plate is loaded in uniaxial tension, the 

material adjacent to the crack tip which is highly stressed is constrained by the less stressed surrounding 

material which induces stresses in the thickness direction at the vicinity of the crack tip (see Figure 3.17). 

This phenomenon is referred to in fracture mechanics as plane strain. This must not be confused with the 

theory of elasticity definition of plane strain. Due to the practical determination of fracture toughness 𝐾𝑐 

from test results, this practical definition of plane strain is brought out, as it is found that for metallic 

materials there is an inverse relation between 𝐾𝑐 and the thickness [35].  

 

Figure 3.17: Plane strain and plastic zone in a tension specimen [36] 

The limited local plasticity adjacent to the crack tip due to local material yielding will not influence the 

material in the interior of the plate if it is a thick plate. For instance, when considering a very thin plate, the 

local plastic zone at the crack tip will become very close to the plate thickness. The highly stressed area is 

less constrained and the material yielding will occur on 45° planes. As a result, the stresses through the 

thickness will be relaxed leading to that the whole plate is in a plane stress state. Hence, in the simulations, 

the plane strain assumption came better along with the analytical calculation. In reality, the behaviour lies 

a bit between plane stress and plane strain, depending more on the plate thickness.  
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Analytical and numerical crack growth rate 

In the figures shown below, the fatigue crack growth rate has been plotted for all considered CT-model 

cases versus the analytically calculated crack growth rate, which is considered as the reference crack growth 

rate. A log-log scale is used to plot the crack growth rate on the vertical axis with the stress intensity factor 

range on the horizontal axis. First, the output data is post-processed for the 2D CT models using a Python 

script to automatically measure the strain energy release rate at the crack tip accompanying each crack 

increment in the CT. After that, the stress intensity factor range is calculated using equations (2.5) and (2.6) 

for plane stress and strain situations, respectively, taking into account that 𝐾𝐼𝐼𝐼 = 0 due to the 2D modelling 

space property. This is plotted in Figure 3.18 andFigure 3.19. Note that for all the plots, an extra plot is 

provided, only to highlight the region of interest which is the stable crack growth stage. 

(a) 

 

(b) 

 
 

Figure 3.18: Crack growth rate  vs SIF range for 2D single-loaded XFE model 

(a) 

 

b) 

 
Figure 3.19: Crack growth rate  vs SIF range for 2D double-loaded XFE model 

As for the 3D CT models, the strain energy release rate is measured manually. Due to the complexity of the 

stress state in the through-thickness direction, automatically measuring the strain energy release rate is not 

M1: 1.80%            

M2: 2.30% 

M1: 98.20%            

M2: 97.70% 

M1: 0.73%            

M2: 0.70% 

M1: 99.27%            

M2: 99.30% 
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possible. Similar to the 2D models the stress intensity factor range is calculated using equations (2.5) and 

(2.6) for plane stress and strain, respectively. This is plotted in Figure 3.20 and Figure 3.21. 

From Figure 3.18 and Figure 3.19, it is shown that crack growth includes two phases. The first phase is the 

stable crack growth stage (Paris regime) and the second one is the unstable crack growth rate. In the stable 

crack growth region, the crack growth rate follows the Paris law (2.8). After that, the crack growth enters 

an unstable region where the stress intensity factors at the crack tip approach the fracture toughness of the 

material. In the figures, the stable crack growth part is presented explicitly in the second plot of each figure. 

As can be seen from the figures, the stable stage occupies almost the whole fatigue life of the CT in all 

cases with a percentage of  98.20%, 97.70%, 99.27%, and 99.30%, for single-loaded plane strain, plane 

stress, and double-loaded plane strain, plane stress, respectively.  

(a) 

 

b)  

 

Figure 3.20: Crack growth rate  vs SIF range for 3D single-loaded XFE model 

(a) 

 

b)  

 

Figure 3.21: Crack growth rate  vs SIF range for 3D double-loaded XFE model 
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In the unstable crack growth region, there are fluctuations in the measures as can be seen from the plots. 

This stage is not included in LEFM as the corresponding area, shows plastic behaviour in reality. In the 

stable region, the total crack length after each increment is relatively short and the plasticity in the CT is 

present in the local area at the vicinity of the crack tip. This is described by the stress intensity factor, while 

the rest of the CT material is behaving elastically. Hence, LEFM simulates the fatigue crack growth 

behaviour accurately in this region. In reality, when the crack length reaches a critical length at which the 

crack length is large and the remaining surrounding material is small, the remaining material part around 

the crack tip area then behaves plastically.  

Moreover, in Figure 3.20 and Figure 3.21, almost all measured points after each crack increment from the 

3D CT models show fluctuations in their crack growth rate. As mentioned before this can be due to the 

manual measuring of each point after each crack increment due to some load cycles. Besides, the complex 

stress state when using 3D 8-node solid brick elements compared to 2D elements. 

Last but not least, a common behaviour in all the plots in all plots for both 2D and 3D analysis, is that at 

the end of fatigue life the crack growth rate reaches a constant value. Nonetheless, the stress intensity range 

rapidly increases. This somehow can relate to real situations where the plasticity of the material leads to 

very high-stress peaks at the crack tip, while the number of cycles at each increment becomes very small 

and the crack length increment size is constant. 
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3.4 Conclusion 
In the CT chapter, the fatigue life and crack growth behaviour of the CT were studied. An analytical study 

was analysed first and is considered to be a reference for the study. After that, numerical simulations were 

carried out using finite element software Abaqus®. The models considered are in 2D and 3D modeling 

space using 2D plane strain/stress and 3D solid brick elements. Furthermore, two loading cases were 

considered to simulate the CT test loading conditions. Single and double-loaded CT at the reference points 

in the CT perforations were considered for CT loading cases. The simulations were conducted using a 0.25 

mm mesh at the enriched zone and a 2 mm mesh in the rest of the CT model. For the 3D models’ 

simulations, first, more elements were used through the thickness. After that, this was reduced to only one 

element through the CT thickness. Based on the FE simulations results and the comparison with the 

analytical solution the following conclusions are found; 

 

• When applying 3D calculation for CT specimens, multi-element in the thickness may cause an 

overestimation of the fatigue life because the elements break one by one, and the corresponding 

fatigue life is accumulated. This is different from the 3D fatigue crack propagation observed in the 

experiments where crack front advances following the corresponding loading cycles. For different 

points at the crack front, the propagation distance depends on the driven force of the point. 

 

• Plane strain assumption is suitable in the transition of the material properties in Pars’ law from 

stress intensity factor-based law to strain energy release rate law as this is reflected by the accurate 

fatigue life calculation. 

 

• The 2D and 3D CT simulations considering the plane strain condition in the case of single loading 

showed the most realistic fatigue life. The 2D simulation slightly overestimates the fatigue strength 

of the CT, while the 3D model underestimates it, which means that the 3D model provides a safe 

fatigue life estimation when taking the analytically calculated one as a reference. 

 

• For all results, the crack growth rate in the stable region follows the Paris law. The stable crack 

growth is dominant in the fatigue life predictions carried out by analytical calculation and XFEM 

models using LEFM theory based on VCCT.  
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4  Crack Propagation In OSD 
 

This chapter considers three validations and analysis aspects. First, the orthotropic steel deck (OSD) static 

finite element (FE) model is explained and validated for stress distribution using experimental data. After 

that, the proposed methodology is validated by analyzing the static FE and XFE model results. Then, the 

extended finite element method (XFEM) is used to make a propagating crack model and study the fatigue 

crack propagation. In addition to that, the strains will be carefully studied at different crack sizes. The 

results are then validated and discussed at the end of this chapter.  

4.1 Introduction 
The OSD geometry considered is the one used in experimental testing by Wu et al [37] in the Stevin II 

laboratory at Technical University Delft (TU Delft). The FE model is made to simulate the tested OSD 

specimen at Stevin II lab. The experimental work from the work done by Wu et al is compared to the FEM 

and XFEM modeling to study the fatigue crack [root crack (c) in Figure 2.4] propagation in the rib-to-deck 

plate at the connection with the cross-beam. 

4.2 Methodology 
To model the propagating fatigue crack in the detail of interest, FEA software Abaqus® is used. The OSD 

deck plate is loaded under cyclic compression due to vehicle wheel loads. This leads to a research point of 

the thesis, which is that how the fatigue crack initiates under cyclic compressive load as mentioned before 

in 1.3. In welded connections, it is believed that tensile welding residual stresses exist. However, residual 

stress modeling is not considered here and will not be taken into account in the numerical calculations. 

Alternatively, an engineering approach needs to be introduced and will be applied to enable modeling a 

propagating fatigue crack using automated XFEM because it does not support modeling a propagating crack 

under compressive load. The stress ranges in the studied detail will be tension to tension. This method will 

be validated first and will then be used to model the propagating crack in the OSD detail. It should be 

stressed here that the research focuses on the relationship between local structural integrity and crack sizes. 

Simulating the loading cycles is out of the scope of this thesis. 

4.3 FE Model description 
In this section, the FE models will be described in detail for the used modulus in the FE models. Variables 

in the modulus may keep constant or change with the studied cases.  

4.3.1 Geometry 
The FE model dimensions are the same as the experimentally tested OSD specimen. The tested OSD part 

consists of a 20 mm thick deck plate stiffened by eight trapezoidal longitudinal stiffeners, which are carried 

on three cross beams. As can be seen from Figure 4.1 (a), in four of the eight ribs “Haibach” cope holes are 

present at the cross-beam web connection, while the remaining four ribs are fully welded with the cross-

beam. The thickness of the cross-beam webs is 16 mm and the lower flange thickness is 12 mm. 

Furthermore, the cross-beam lower flange width is 200 mm. 

The trough dimensions themselves are as indicated in Figure 4.1 (b). The closed stiffener’s thickness is 6 

mm and height is 350 mm. The trough width which is the distance between the trough webs is equal to 300 

mm. In addition to that, the spacing between the ribs is 300 mm at the deck plate. Hence the center-to-
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center distance of the closed stiffeners is 600 mm. Moreover, the spacing between the trough’s webs at the 

lower flange is equal to 105 mm as shown in Figure 4.1 (b).  

The welding details in this OSD segment are as follows. Butt welds are used to connect the deck plate to 

the rib web. In addition to that, fillet welds are used to connect the cross-beam to the deck plate as well as 

connecting the cross-beam to the rib webs. The weld has a 5 mm throat thickness.  

 

The objective of this thesis is to study the crack growth at the local detail in the OSD and according to Wu 

et al [37] a local loading patch is applied as indicated by the red area in Figure 4.1, this leads to only a local 

deformation in the model with minimum or no effect on the rest of the global model. This will lead to a FE 

model simplification and reduction to a smaller FE model considering only the highlighted parts in Figure 

4.1, which are explicitly shown in Figure 4.2. The simplified model is symmetric leading to a further 

reduction in the FE model size. This is pointed out in Figure 4.2 and explicitly indicated in Figure 4.3 where 

only half of the model in Figure 4.2 is considered. This model will be further used throughout this research 

for validation and crack propagation analysis using XFEM. In addition, this model will also be referred to 

further as the global model. The global model is divided into three parts as seen in Figure 4.4 where it 

consists of a global, local, and sub-local part. The last two parts are also referred to as sub 1 and 2. 

 

Figure 4.1: Experimentally tested OSD [37]. (a) Full-scale OSD segment. (b) Longitudinal stiffener’s details. 
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Figure 4.2: Reduced 3D FE model. (a) Side view (XY-plane). (b) Top view (XZ-plane). 

 

Figure 4.3: Final reduction of the 3D FE model. (a) 3D view (XYZ). (b) Side view (XY-plane). (c) Top view (XZ-plane). 

 

Figure 4.4: FE  model sections 
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4.3.2 Material properties 
The material used is steel and has the linear elastic property due to the same reasons explained in 3.2.2. The 

Young’s modulus of elasticity and Poisson’s ratio have the same values as given in Table 3.1. 

4.3.3 Boundary conditions 
The boundary conditions in the global model are applied such that the experiment is exactly simulated. 

Moreover, the symmetry conditions are applied because the total FE model is reduced to the global model 

(Figure 4.3). The boundary conditions applied are shown in Figure 4.5, where the translation in X-direction 

and the rotations around Y-and Z-axis are constrained for the outer longitudinal sides and the inner sides at 

the symmetry axis where the larger model is cut [Figure 4.5 (a)]. Additionally, the displacement in Z-

direction, as well as the rotations around X-and Y-axis, are restrained for the front and back sides of the 

deck plate and closed ribs [see Figure 4.5 (b)]. Finally, the lower flange of the cross-beam is fully fixed in 

the FE model as shown in Figure 4.5 (c).  

 

Figure 4.5: FE model boundary conditions. (a) Longitudinal & symmetry side. (b) Front & backside. (c) Crossbeam flange. 

4.3.4 Applied load 
The loading applied in the FE model has the same position as the experiment load and the loading patch 

has the same dimension as the steel deck plate contact area in the experiment. The loading area dimensions 

are 320 mm in Z-direction and 180 mm in the X-direction, which is reduced to 90 x 320 mm2 in the 

symmetric FE model. The location of the load is on top of the deck plate, centered above the middle rib in 

Figure 4.2 (rib 6) at the connection with the cross beam [see Figure 4.3 (a) and (c)]. The loading resembles 

the local wheel load, although the contact area dimensions are smaller than the wheel dimensions from 

NEN-EN-1993-2 [14].  

Static loading analysis 

The load is applied as a pressure load on the before-mentioned surface. In the case of the static crack 

analysis, the load magnitude considered is similar to the experiment load magnitude since 72 kN in the 

model corresponding to 144 kN in the experiment for the full specimen. To compare the output values of 

the SIFs the load is considered as it is in the experiment without generalizing the load to the unit load. 

Cyclic loading analysis 

A cyclic tensile load other than the compressive load with a similar amplitude to the CT is applied on the 

aforementioned area using 72 kN so that a crack can propagate. This assumption will be further validated. 

All DOFs 
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4.3.5 Stationary and propagating crack 
In order to use XFEM to make a propagating crack model, the assumed approach should be validated first. 

This will be done by carrying out static analyses and after that, a propagating crack model is made using 

cyclic loading analyses. SIFs of the various crack shapes are calculated in both conventional finite element 

and extended finite element under compression and tension using the contour integral evaluation method. 

Static loading analysis 

The XFE models are validated by comparing their output with the FE models' output. In the XFE models, 

predefined cracks are inserted in the sub-local part with different inclination angles. Likewise, cracks are 

defined using FEM with a crack extension direction similar to the inserted cracks in the XFE models as can 

be seen from Figure 4.6, where a side view of the sub-local part is indicated. The crack is first inserted 

vertically [see Figure 4.6 (a)], then the crack is inserted inclined with angles 15°, 30°, 45° and 60° with the 

vertical axis (Y-axis) as indicated in Figure 4.6 (b), (c), (d) and (e), respectively. 

 

Figure 4.6: Crack definition in the sub-local part, Left XFEM, right FEM: (a) Vertical crack. (b) 15° crack. (c) 30° crack. (d) 45° 

crack. (e) 60° crack 

Cyclic loading analysis 

For the propagating crack analysis first, an initial model is considered with a large initial semi-elliptical 

crack. The crack angle with the vertical axis (Y-axis) is zero, meaning that a vertical crack is inserted. The 

initial flaw dimensions are  𝑎𝑜 = 5𝑚𝑚, 𝑐 = 8.1 𝑚𝑚 𝑎𝑛𝑑 
𝑎𝑜

𝑐
= 0.62 as shown in Figure 4.7. Note that the 

initial crack dimensions are taken ten times as large as the ones proposed by Maljaars et al [8]. 
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Figure 4.7: The enriched region for the propagating crack and initial crack dimensions (first model) 

After that a second model has been made, this is a more accurate and more applicable model. This model 

is used further throughout this thesis to study fatigue crack propagation. Here a realistic initial flaw size is 

considered. The dimensions of this crack size are 𝑎𝑜 = 𝑐𝑜 = 0.5 𝑚𝑚 as in Figure 4.8. In this model, the 

enriched element region is extended through the whole sub-local part as seen in the figure below. Thus, 

both the deck plate and part of the trapezoidal rib web are considered here for the crack propagation.  

  

Figure 4.8: The enriched region for the propagating crack and initial crack dimensions (Improved model) 

Similar to the CT propagating crack simulation (see 3.2.5) the low cycle fatigue based on the LEFM fracture 

criterion (using the VCCT method) is used to simulate the progressive crack growth in the OSD detail. Paris 

law is used with material parameters equal to the parameters used by Maljaars et al. [8] (𝐶 = 1 ∙ 10−13, 𝑚 =

3.0). This all is implemented in a user-defined sub-routine for the mixed crack mode behaviour. In this 

subroutine the threshold value for the stress intensity factor (𝐾𝑡ℎ) is defined. Consequently, the crack will 

not propagate unless the equivalent stress intensity factor value exceeds the threshold value. The plane 

strain assumption is used for the improved cyclic loading model. Furthermore, the propagating crack 

direction is set normal to the direction of the maximum tangential stress (MTS).  
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4.3.6 Finite element mesh 
The global model is divided into three parts, a global part where a global large mesh is applied, a local part 

where a relatively small mesh is used, and a sub-local part where a very fine mesh is applied [see Figure 

4.9 (a), (b) and (c)]. To make local fine meshing possible in this model, the three parts are connected using 

tie constraints. Two refined local meshes are used at the location of the connection detail of this thesis (rib-

to-deck plate at the cross-beam junction). This is done to calculate and accurately measure the high-stress 

peaks at the vicinity of the welded connections. As for the global mesh, it is applied at the rest of the OSD 

global model as seen in Figure 4.9.  

Static loading analysis 

The element size is 50 mm for the global mesh [Figure 4.9 (a)]. Besides, a 2 mm element size is used to 

mesh the local part as shown in Figure 4.9 (a) and (b). Moreover, an element size equal to 0.5 mm is used 

for the sub-local part. This can be seen in the red highlighted area in Figure 4.9 (b). The element type used 

for these three meshes is an 8-node linear brick element with reduced numerical integration (C3D8R). 

Furthermore, the mentioned element sizes assigned to these three parts hold for the first static models used 

for initial stress state validation and stationary crack analysis. For more comprehension of the meshing used 

Table 4.1 gives a summary of all meshing strategies of the different models and analyses.  

The improved static model’s mesh is identical to that of the cyclic loading model for all three parts of the 

model. Hence, it will be completely described in the Cyclic loading analysis mesh description. Figure 4.11 

as well as Table 4.1 show the different meshes for all parts. 

 

Figure 4.9: Finite element mesh. (a) Global and local mesh. (b) Local mesh zoomed 3D view. (c) Local mesh 2D view (YZ-plane) 

In the stationary FE crack models, a very fine local mesh is assigned at the crack tip. The reason is to make 

a FE crack analysis possible and accurately calculate the stress intensity factors around the crack front. 

Therefore, a spiderweb shape mesh is created around the crack tip with wedge elements (C3D6) as shown 

in Figure 4.10 (a). A cylinder centered at the crack front with a 1 mm radius is considered. The cylinder is 

partitioned into four cylinders, each with a 0.25 mm thickness and C3D8R elements assigned, except for 

the inner one. While for the rest of the part C3D8R elements are assigned. For the XFE models, structured 

meshing is used with C3D8 elements [see Figure 4.10 (b)]. 
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Figure 4.10: Sub-local part mesh. (a) Static FE model with a zoomed view of spider mesh. (b) Static XFE model 

Cyclic loading analysis 

In the beginning, a propagating crack model is made using a very fine mesh. This mesh is associated with 

the first model with its assigned enriched zone indicated in Figure 4.7.  Both the local and sub-local parts 

are assigned a very fine mesh. The Local part mesh size is the same as that for the stationary crack model 

(2 mm). The sub-local mesh part mesh is different than that of the static analysis. The mesh size differs in 

the enriched zone. A 0.5 mm element size with full numerical integration is used in the crack propagation 

zone. This element size is then increased around the enriched zone to reach a 2 mm element size with 

reduced integration. All the elements have a 0.5 mm thickness in the deck plate thickness direction.  

The mesh used in this model gave good initial predictions for the crack propagation behaviour, but has a 

major drawback since the element size is very small. This led to a large FE model size and a much larger 

model output file which requires very high computational time and costs. The element sizes in the model 

are therefore increased to reduce the computational time as shown in Figure 4.8 for the improved models.  

The mesh size is enlarged in both the local and sub-local parts. The element size in the local part is now set 

equal to 8 mm and quadratic interpolation with reduced integration is used for these elements. As for the 

sub-local part meshing, the meshing strategy is implemented as shown in Figure 4.11 below. The principle 

is to reduce the model size by making the mesh at the crack initiation zone sufficiently fine and increase 

the element size away from that zone to reduce the model size and increase the calculation speed. This is 

done by making the element size equal to 0.75 mm at the crack initiation zone, and the mesh size then varies 

from 0.75 mm to 4 mm across different regions of the sub-local part as shown in Figure 3.11. It should be 

also mentioned that the mesh at part of the rib web at the detail of interest is refined by making the element 

size in the rib web length dimension smaller in the global part of the model. This is done so that the rib web 

part can capture sufficient bending deformation. Table 4.1 summarizes the different element sizes used for 

all considered FE models of the OSD. 
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Figure 4.11: Improved finite element mesh of the sub-local model. (a) 3D view. (b) Zoomed 3D view. (c) YZ view. (d) XY view 

 

Table 4.1: Finite element mesh details for OSD models’ parts 

 Global part Local part Sub-local part 

Element 

size 

Interpolation 

scheme 

Element 

size 

Interpolation 

scheme 

Element 

 size 

Interpolation 

scheme 

First static models (validation 

stationary crack analysis) 

50 mm Linear 

(C3D8R) 

2 mm 

 

Linear 

(C3D8R) 

0.5 mm Linear 

(C3D8R) 

(C3D8) 

First cyclic loading model 50 mm Linear 

(C3D8R) 

2 mm Linear 

(C3D8R) 

0.5 mm to    

2 mm 

Linear 

(C3D8R)  

(C3D8) 

Improved static and cyclic 

loading models 

15 mm to 

50 mm 

Linear 

(C3D8R) 

8 mm  Quadratic 

(C3D20R) 

0.3 mm to  

4 mm 

Linear 

(C3D8R) 

(C3D8) 
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4.4 Results and discussion 
Here the FEA and XFEA output and results of the 3D (X)FE models described in the previous section have 

been presented and explained. Based on these results the static and cyclic loading 3D FE/XFE models are 

validated by comparing the numerical results with the experimentally obtained results.  

4.4.1 Static FE model validation 
To validate the FE model in the before-mentioned section, the strains at the positions of the experimentally 

installed strain gauges were measured and are compared with the strains at the same positions in the FE 

model. The difference between both strains is then calculated and based on that difference percentage, the 

FE model is validated.  

The strain gauges were installed at the positions shown in Figure 4.12. On both the north and south side 

strain gauges were installed on top of the deck plate in the longitudinal direction with a 25 mm offset from 

the closed rib web center. The spacing between the gauges is 25 mm as shown in Figure 4.12. Moreover, 

other strain gauges were installed in the transverse direction on top and at the bottom of the deck plate on 

the center plane of the cross beam as shown in the figure below. The top gauges have a 25 mm spacing in 

between, starting at the rib web center. The bottom gauges started from the inward edge of the rib web with 

a spacing of 4mm, 8mm, and 8mm between the three gauges as in Figure 4.12. 

 

Figure 4.12: Strain gauge arrangement [37]. 

In the FE model, three paths are considered at the same locations of the strain gauges. Path 1 is in the 

longitudinal direction with a 25mm offset from the rib web center. This path corresponds to the strain gauges 

installed in the longitudinal direction of the OSD as seen in Figure 4.12. Paths 2 and 3 are in the transverse 

direction at the deck plate top and bottom, respectively. These two paths correspond to the strain gauges in 

the transverse direction which are shown in Figure 4.12. The FEA output data is then read and plotted using 

a continuous line as shown in Figure 4.13 where the strain (× 10−6) is plotted on the Y-axis and strain 

gauge location [mm] on the X-axis. In Figure 4.13 the experimentally measured strains for the north and 

south side of the closed ribs (2 and 7) in the longitudinal direction are measured at specific points (see 

Figure 4.12 for the points' locations).  
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From Figure 4.13 (a), the measured strains at the south side of rib 2 are not accurate since the scatter is 

large. This can be due to the movement of the strain gauges during testing or the gauges are not accurately 

installed before the experiment. The rest of the strains have good convergence with the FE solution. When 

the strains from the north and south side were averaged for both ribs 2 and 7 as presented in Figure 4.13 

(b), there is high convergence between the experiment results of rib 7 and the FEA results. The average 

accuracy of the numerical solution when compared to the mean value of the experiment’s strains for rib 7, 

is about 98%. The accuracy for the mean value of strains measured at rib 2 is lower due to the inaccurate 

test results of the south side. 

(a)  

 

b)  

 
Figure 4.13: Strains in X-direction along a longitudinal path.                                                                                                                                        

(a) Rib 2 & 7 (at N & S sides) measured strain vs FEA strains. (b) Averaged measured strains at rib 2 & 7 vs FEA strains 

(a)  

 

b)  

 
Figure 4.14: Strains in the X-direction along the transverse path. (a) Strain on deck plate top. (b) Strain at the deck plate bottom. 

In the transverse direction of the OSD, the numerically calculated strains are plotted against the 

experimentally measured ones in Figure 4.14 for the top and bottom of the deck plate of the OSD. In Figure 

4.14 (a) there is good convergence between the numerical calculated data and the experimentally measured 

ones. Moreover, close results are also obtained in the transverse direction at the bottom of the deck plate in 
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Figure 4.14 (b). The average differences between the numerically calculated results and the results 

measured during the experiment are 11% and 2% for Figure 4.14 (a) & (b), respectively. This all proves 

that the strains from the FEA are now valid as they strongly converge with the experimentally measured 

strains. Thus, the stress distribution is validated. 

4.4.2 Stationary crack models’ output 
In Figure 4.15 the deformed shapes of the sub-local parts displacements (when loaded in tension and 

compression) in both FEA and XFEA are shown. The resultant displacements in the analyses are very alike. 

However, the compression case shows an identical absolute value of the displacement for the FE model, 

and no crack opening is seen due to the compressive load. The stationary crack is present where the crack 

seam and the inserted crack in the XFEM model are defined. This can also be seen for the XFE model in 

Figure 4.16, where different views of the STATUSXFEM output are shown.  

 

Figure 4.15:Deformed shapes of the sub-local part displacement. (a) FE model (Tension). (b) XFE model (Tension).                  

(c) FE model (Compression). 

 

Figure 4.16: Various views of XFE model output (STATUSXFEM) 

4.4.3 3D stationary crack model validation 
The followed methodology is validated by first proving that the static XFE models’ output is almost 

identical to the static FE models’ one. This has been done by making a contour integral evaluation of the 

considered stationary cracks in tension and compression. Seven contours are evaluated around the crack 

front. Hence, the SIFs are calculated for seven contours at each node along the crack front. This has been 

done for all the inserted crack cases considered in 4.3.5 and Figure 4.6. To post-process this large amount 

of output data and be able to compare the results for the model validation, a Python code is scripted to plot 

the results for all cases in an optimized manner. Figure 8.4, Figure 8.5, and Figure 8.6 show the SIF values 

for all three fracture modes I, II, and III shown in Figure 2.7, respectively. The SIF values are first plotted 

for all seven contour integrals specified in the models’ output request. However, some contour integral 

values have some deviations and gave unrepresentative results. Hence the most reliable contour integral 
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value is shown in the before-mentioned figures to obtain realistic and accurate results. The most accurate 

contour integral value is the last one and has been plotted and explicitly shown. The SIF values plots for all 

contour integral evaluations have been provided in Figure 8.4, Figure 8.5, and Figure 8.6 Appendix B. 

a)

 

b)  

 
c) 

 
 

d)  

 

 

Figure 4.17: SIF values (KI) for different crack inclinations considering only the last contour (XFEM vs FEM).                                  

(a) Vertical crack.  (b) 15° crack. (c) 30° crack. (d) 45° crack. (e) 60° crack 

Note that in the case of fracture modes II and III for the models with crack slope 30°, 45°, and 60°, the real 

SIF values for these models in the case of XFEM and FEM are the same but have opposite signs. This is 

(e) 
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mostly due to the local coordinate system definition in the XFEM case, which differs from the local 

coordinate system definition in the case of the conventional FEM. Thus, for KII and KIII the absolute values 

are plotted in Figure 4.18 and Figure 4.19. However, the SIF real values for modes II and III are plotted 

and given in Appendix B [Figure 8.7 & Figure 8.8]. 

a) 

 

b) 

 
c) 

 

d) 

 
 

 

Figure 4.18: Absolute SIF values (KII) for different crack inclinations considering only the last contour (XFEM vs FEM).                                  

(a) Vertical crack.  (b) 15° crack. (c) 30° crack. (d) 45° crack. (e) 60° crack 

(e) 
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a) 

 

b) 

 
c) 

 

d) 

 
 

 
Figure 4.19: Absolute SIF values (KIII) for different crack inclinations considering only the last contour (XFEM vs FEM).                                  

(a) Vertical crack.  (b) 15° crack. (c) 30° crack. (d) 45° crack. (e) 60° crack 

From previous figures, it is obvious that there is a close match in the XFEM and FEM results. This proves 

that for stationary crack analysis, the FEM and XFEM give similar absolute values for SIF results in tension 

and compression. Hence the first step for validating the proposed methodology is satisfied and the method 

can be further used for propagating crack analysis.   

(e) 
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4.4.4 Cyclic loading XFE model initial state validation 
A comparison between the measured and FE calculated strain (improved FE model) at the aforementioned 

strain gauge positions is presented in Figures 4.19 and 4.20. The first FE model is also considered in this 

comparison. Note that the values from the improved FE-model here were altered in the sign after post-

processing because the methodology used assumes that the applied compressive wheel load will be altered 

to a tension load with the same magnitude as mentioned before in 4.2. This is done to be able to make 

comparisons with the first model and experiment.  

(a) 

 

(b) 

 
Figure 4.20: Strains in X-direction along a longitudinal path.                                                                                                                                        

(a) Rib 2 & 7 (at N & S sides) measured strain vs FEA strains. (b) Averaged measured strains at rib 2 & 7 vs FEA strains 

(a) 

 

(b) 

 

Figure 4.21: Strains in the X-direction along the transverse path. (a) Strain on deck plate top. (b) Strain at the deck plate bottom. 

From Figure 4.20 and Figure 4.21, it is visible that good convergence exists between the first FE model and 

the improved FE model which is used for the cyclic loading analysis to make a propagating crack model. 

The average differences with the first FE model for the three paths considered are 3.2%, 3.3%, and 3.5% 

for paths one, two, and three, respectively. As for the differences with the experimentally measured strains, 

these are 4.5 %, 11%, and 6.7% for the same three paths respectively. This showed that the different 

meshing strategy used in the improved model gives valid results for the stress distribution of the OSD detail.  
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4.4.5 Cyclic loading XFE model results and discussion 
To obtain an initial prediction for the crack propagation direction in the OSD detail, the first propagating 

crack model which has the meshing strategy described in 4.3.6 and Table 4.1 is submitted. After running 

the model for some time it is then terminated and post-processed. From Figure 4.22 one can see the 

deformed shape of the sub-local part after the crack has opened. The undeformed shape of the 

STATUSXFEM output is shown as well. Although the predefined crack is inserted vertically in this model 

as mentioned before (see 4.3.5) when the crack starts to grow in the deck plate thickness direction the crack 

gets an inclination of almost 60° as indicated in the figure below. This crack propagation direction is 

automatically predicted by the software without any user interference. 

 

Figure 4.22: Different views of the propagating crack for the first cyclic loading model 

It should be noted that the rib region in the sub-local part of the model is not selected in the propagating 

crack zone in this model. This model gave a good prediction for the initial crack propagation direction 

angle. This led to redefining the crack (see 4.3.5) and inserting it with an angle equal to 30° with the vertical 

axis. The model meshing is adjusted to reduce the computational time as previously explained in 4.3.6. In 

addition to this, the whole sub-local part is now assigned the enriched element feature using the VCCT 

fracture criterion, including the rib web segment in the sub-local part. 

 

Figure 4.23: Different views of the propagating crack deformed shape in the improved cyclic loading model 
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Figure 4.24: Undeformed shape of the cracked XFE model at the start and end of the analysis 

In Figure 4.23 the deformed shape of the OSD detail is shown. This output belongs to the improved 

propagating crack model which is described in previous sub-sections (4.3.5and 4.3.6). It is visible that the 

crack propagated through two components. The first component is the deck plate thickness and the second 

one is the part of the rib web considered in the sub-local FE model part. This can be more clearly seen in 

Figure 4.24, where the undeformed shape of the crack at the start and the end of the analysis is shown.  

In Figure 4.23 at the left side of the crossbeam web, there is a part of the crack which is visually not 

completely open while the element has lost its stiffness. Mechanically, this part can be treated as an opened 

region. When the displacement output result of the sub-local part is checked, it showed a smooth solution 

at the elements in this region. They have similar displacements as the detached elements in the propagating 

crack. This is shown in Figure 4.25, where more views of the displacement output are shown. 

 

Figure 4.25: 3D and YZ view of the total displacement magnitude of the sub-local part. 

Furthermore, like mentioned before in Figure 4.24 the undeformed shape of the crack in the XFE model is 

shown for two different moments of time where the crack sizes are different, at the beginning of the analysis, 

the initial predefined crack with its dimensions, which are given in Figure 4.8. When the analysis ended the 

crack dimensions measured are approximately; 𝑎 = 18.7 𝑚𝑚, 𝑑 = 14.7 𝑚𝑚, and 2𝑐 = 102𝑚𝑚 as in 

Figure 4.24. Where (a) and (d) are the inclined/actual and vertical crack depths, respectively.  
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Fatigue crack from the simulation compared to real cracks  

In Figure 4.26 (a) different views from Abaqus® output (STATUSXFEM) have been presented. The semi-

elliptical crack shape is visible here. However, for a closer look at the crack growth pattern through-

thickness of the deck plate, Figure 4.26 (b) and (c) is shown and the crack propagation behaviour has been 

studied. In addition to that, the crack obtained from the automated crack propagation method using XFEM 

is shown here for the sake of comparison with a similar crack in different studies. Note that in Figure 4.24 

the same crack is also shown with an indication of the vertical and inclined depth.  

Following the angle predicted by the first XFE analysis shown in Figure 4.22, the initial predefined crack 

shown in Figure 4.8 is inserted with a 30° angle. Figure 4.26 shows that the crack propagated with an angle 

equal to 28°. The crack reached a vertical depth of 14.7 mm (which is similar to the TOFD report from TU-

Delft), at a vertical depth of around 7.9 mm the crack propagation rate through the thickness slowed, and at 

a vertical crack depth equal to 13.1 mm the crack started to change its propagation direction. The crack got 

arrested and propagated almost parallel to the deck plate surface with a slow propagation rate. This 

behaviour is also found in previous studies by different scholars on real full-scale OSD specimen testing 

[37]. It can be seen that the propagation angle numerically calculated by Abaqus® is close to the angles 

obtained from the experimental work indicated in Figure 4.26 (c). 

 

Figure 4.26: Semi-elliptical fatigue crack. (a) 3D and YZ deformed and undeformed view. (b) XY view of the fatigue crack.        

(c) 20 mm steel deck plate including 6 mm bonded steel reinforcement [38]. 

Although the deck plate thicknesses or the loading conditions are not the same, the fatigue crack shape and 

angle converge to the fatigue crack obtained from the XFE analysis carried out using XFEM in this thesis. 

Hence, it can be concluded that when the hypothesis of load sign change is considered and the same stress 

state as the experiment [37] is obtained, the near 30° inclined crack will be obtained with a crack growth 

impedance as obtained from the XFE analyses. It should also be mentioned that the crack shape is not 

compared with the crack obtained from the TU-Delft experiment because the specimens were not cut. 

Figure 4.27 (a) shows the crack geometry parameters (crack depth and length) plot over the loading history 

of the XFE analysis. Moreover, in Figure 4.27 (b) only the crack inclined and vertical depths are highlighted 

and shown. For more indication, a small subfigure showing a cut in the cross-section of the sub-local part 

at the middle of its length is provided. From Figure 4.27 (a) and (b) the complete crack propagation 

behaviour in both length and depth direction can be described. The crack first started to grow in both 

thickness and length direction. Due to the limited depth (20 mm) compared to the part’s length (240 mm) 

the crack can grow in, the crack grows more in the length direction than in the depth direction. It should be 
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emphasized that the given loading history here is indicated as a tool to see how the crack evolves to check 

the trend. It is out of the scope of this research to study the accurate loading cycle history.  

The crack can be categorized into three different zones as in Figure 4.27 (b). The first phase is when the 

crack starts to propagate in the thickness direction of the 20 mm deck plate, here the crack grows very fast 

through the thickness until it reaches a vertical depth of 7.9 mm in less than 10% of the loading time history. 

This corresponds to a crack length increase from 1 mm to 38mm within almost 15% of the time. The crack 

depth then enters the second zone where the propagation speed becomes slower in the thickness direction 

since nearly 23% of the time is needed for a relatively small increase in-depth direction. The crack depth in 

this zone increases from 7.9 mm to 13.1 mm. As for the crack length increase, the increase rate is fluctuating 

a bit between 10% and 25% of the loading history. In this period, the crack length increased to a length 

equal to 53 mm. Returning to the crack depth increase, the crack started to slightly change propagation 

direction and got arrested when its depth exceeded 13.1 mm as shown in Figure 4.27 (b). This marked the 

third and last zone of the crack propagation in the thickness direction as the vertical depth increase rate 

almost became constant while the inclined depth increased very slowly until it stopped as well. However, 

the crack length kept increasing with an approximately linear increase rate as it increased from 53 mm to 

102 mm without considerable change in rate. 

 (a)  

 
 

b)   

 

Figure 4.27: Fatigue crack depth and length vs time history of the XFEA.                                                                                       

(a) Inclined and vertical crack depth and crack length. (b) Inclined and vertical crack depth only (OSD cut). 

An extra figure is added to show the crack from a different side and compare it with different experiment 

outputs. The details shown in Figure 4.28 (b) and (d) are from the experiment specimen mentioned before 

in 4.1 and 4.3.1 which is carried out by Wu et al. Figure 4.28 (a) shows a fatigue crack occurring and 

propagating through the rib web as well. It can be seen that after the crack has propagated a bit through the 

rib the crack also starts to propagate in the fillet weld between the rib web and deck plate as in Figure 4.28 

(c). The crack cuts through the rib web thickness and occurs on the rib and weld surface. This is somehow 

analogous to the real test specimen (S2) as a crack occurred at the same place. Nevertheless, Figure 4.28 

(d) showed a crack with a different shape than the simulation. The crack in the experiment propagated larger 

through the rib web and has a different propagation position. 
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Figure 4.28: Fatigue crack propagation. (a) XFEA output (STATUSXFEM). (b) Experiment output (Wu et al). 

 

Crack propagating normal to the maximum tangential stress direction 

The figures attached in the next section are showing the uniaxial strain change (in x-direction) at the 

different strain gauge positions along the three paths defined in 4.4.1. The strain change is measured and 

plotted as a function of actual crack depth (a), vertical crack depth (d), crack length (2c), and time history 

using the number of load cycles. Hence, these various parameters augmentation’s effects on how the strain 

changes are studied. Note that the time history consideration here is the number of cycles (loading history). 

It should be noted that the frequency for the loading considered is 1 Hz. Moreover, as stated before that the 

number of cycles or the fatigue life calculated by XFEM automated crack propagation analysis when using 

more elements through the thickness is much higher than in reality when more elements are present through 

the thickness. Hence, the fatigue life here is unreliable. However, the number of cycles shown here is used 

just as a tool to indicate the strain drop as a function of time as mentioned before. 

 

Strain output from FE-model at path 1-gauge locations 

In Figure 4.29 the strain change has been plotted for path 1 where the strain gauges were installed at the top 

of the deck plate along the longitudinal direction of the OSD segment. The behaviour of the strain change 

when considering the inclined crack depth (a) is almost the same as the strain behaviour when considering 

the vertical crack depth (d), this is explained by the fact that the vertical crack depth is a function of the 

inclined or actual crack length. This relation between the crack inclined and vertical depth holds till a 

loading history of less than two-thirds of the total crack propagation time in the model. Hence, the strain 

drop response is almost identical for the first two-thirds of the time in a qualitative way. The fact that the 

vertical and inclined crack depth differ qualitatively in the last third of the time is attributed to the change 
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of behaviour in the crack shape in the vertical direction as the crack starts to incline more and propagate 

parallel to the deck plate surface as mentioned before.  

Furthermore, in Figure 4.29 (a) and (b) the strain drop trend can be resembled by a linear top line for the 

strain gauge locations close to the crack initiation zone (-25 mm, 0 mm, and +25 mm). When moving away 

from the crack initiation zone (at strain gauges; -50 mm and +50 mm) the strain drops slightly in the 

beginning till the actual and vertical crack lengths reach 10 mm and 8 mm, respectively. After that, there is 

a steep slope in the strain drop till the crack reaches its largest length and the analysis is completed.    

a)  b)  

c)  

 

d)  

Figure 4.29: FEA strain drop at the top side (longitudinal path) of the deck plate vs;                                                                      

(a) Actual crack depth [a]. (b) Vertical crack depth [d]. (c) Crack length [2c]. (d) Time [Number of cycles]. 

In Figure 4.29 (c) the strain change is studied with the crack length (2c) increase. For the strain gauge 

positions close to the crack initiation zone (-25 mm, 0 mm, and +25 mm), until a crack length of around 15 

mm, there is no strain change and for the gauges, at -50 mm and +50 mm the strain is almost constant till a 
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crack length of 25 mm. Then a strain decrease takes place. Although the strain values have some 

fluctuations, the overall strain decrease in this region can be approximated as a linear decrease, this linear 

behaviour continues till a crack length of 65 mm for all before mentioned strain gauge locations. In the end, 

the decrease line slope reduces. Hence, the strain drops very slightly when the crack grows very large (65 

mm to 102 mm). Finally, the strain change is given as a function of loading history in Figure 4.29 (d). The 

strain decrease is relatively large at around a quarter of the total time taken for the crack to grow.  

From subfigures (a), (b), (c) and (d) one can deduce that the strain dropped around 40% and 30% from its 

initial value throughout the fatigue crack depth and length total growth. These drop percentages are 

experienced for the locations corresponding to the set of strain gauges at the crack initiation zone (-25 mm, 

0 mm, and +25 mm) and at a distance of -50 mm and +50 mm from the center of the detail of interest (crack 

initiation zone). Thus, a considerable loss of stiffness is experienced at these positions. The ±75 𝑚𝑚 strain 

gauge positions are slightly affected by the fatigue crack growth as the strains are reduced by less than 10%, 

while the strain positions coinciding with gauges at ±100𝑚𝑚 from the center of the detail are almost 

constant through the whole fatigue crack growth occurrence. This is similar to reality since the further the 

measuring point gets from the peak strain area and crack initiation zone the lower the influence on the stress 

becomes. For more clarity about the strain change percentages, a figure showing the relative strain changes 

is added in appendix B [Figure 8.9]. 

 

Strain output from FE-model at path 2-gauge locations 

The XFE calculated strains at the strain gauge locations of path 2 are analysed here. This is shown and 

explained in Figure 4.30. In all subfigures, when looking at the position of strain gauge located at 0 mm, 

there is a noticeable phenomenon taking place. The strain range at that location experience a linear-like 

increase before the strain starts to drop and the detail fails. The explanation for this strain deviation is that 

when the cyclic load is applied on the deck plate the OSD detail first behaves elastically. When the crack 

occurs, the strains and stresses at this location keep increasing due to strain redistribution till the detail fails 

and strain drops quickly. The strain increases till an inclined and vertical crack depth become 13.75 mm 

and 11.8 mm, respectively. After that, the strain falls sharply when the crack depth increases. This shows 

that the detail cross-section here has lost a large portion of its stiffness leading to the loss of structural 

integrity. In the last 10% and 5% of the inclined and vertical crack depth growth, also the strain stabilizes 

and does not change till the analysis stops.  

The strain also increases with the crack length increments. A non-linear increase is noticed in Figure 4.30 

(c). Then the strain drops and remains constant for relatively many length increments. When reviewing the 

loading cycle/time history versus strain change behaviour, it seems that the strain increases rapidly at the 

beginning of the time, then decreased leading to losing the detail’s integrity and the strain remained constant 

afterward with minimal change till the end. 

Furthermore, the maximum strain increase ratio for the position of the strain gauge located at the connection 

center (0 mm) is 23% approximately. This percentage converges with the relative strain increase which is 

around 24.5% for gauge A5, measured from the experiment by Wu et al [37] (see Figure 4.31). The strain 

values and their differences are given in Table 4.2. In the table, the initial, maximum, and minimum strain 

values are given in addition to the variance ratios between the numerically calculated and the experimentally 

measured strains at both sides of the rib (Gauge A2 and A5). It is found that the numerically calculated 

strain is closest to that measured from gauge A5, although there is a relatively large difference in the 

dropped strain value. The initial and maximum values from XFEA are appropriately meeting that from the 

experiment (gauge A5) with differences of 7.75 % and 10.95%, respectively.   
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The strain change trend of the position of the strain gauge at 25 mm from the rib web is almost identical for 

the actual and vertical crack depth, as well as the crack length. The strain decreases quickly in the beginning, 

then remains almost constant till the end. Eventually, there is roughly no strain change at the 50 mm strain 

change position due to the same reasoning about the distance mentioned before.  

a)  b)  

 

c)  

 

d)  

 
Figure 4.30: FEA strain drop at the top side (transverse path) of the deck plate. vs;                                                                      

(a)Actual crack depth [a]. (b) Vertical crack depth [d]. (c) Crack length [2c]. (d) Time [Number of cycles]. 
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Table 4.2: Strain values from XFEM and experiment and the difference ratios 

Strain gauge 

location 

Initial Strain 

Value [× 10−6] 
Maximum 

Strain 

[× 10−6] 

Minimum 

Strain 

[× 10−6] 

∆𝜀𝑖 
(XFEM - Test) 

[%] 

∆𝜀𝑀𝑎𝑥 
(XFEM -Test) 

[%] 

∆𝜀𝑀𝑖𝑛 
(XFEM -Test) 

[%] 

Node at 0 mm 756.4  935 600 - - - 

Gauge A2 645 1080 350 18.67% ↑ 13.4 % ↓ 71.4% ↑ 

Gauge A5 820 1050 480 7.75 %  ↓ 10.95 % ↓ 25 % ↑ 

Node at 4 mm 951 951 103 - - - 

Gauge C1 860 920 40 9.57 % ↑ 3.37 % ↑ 157.5 % ↑ 

Gauge C6 1030 1030 95 7.67 % ↓ 7.67 % ↓ 8.42 %  ↑ 

 

a) b) 

 
Figure 4.31: Strain change as a function of time history [number of cycles on log scale].                                                               

(a) Experimentally measured [37]. (b) Numerically calculated. 

Strain output from FE-model at path 3-gauge locations 

Path 3 measured dots are located at the bottom side of the deck plate with distances 4 mm, 12 mm, and 20 

mm from the weld root. For the location at 4 mm strain gauge the strain reduced swiftly at a small actual 

and vertical crack depth as in Figure 4.32 (a) and (b). This indicated the reduction of the local structural 

solidity. The strain change is constant at the beginning of the crack length increase to a length of almost 12 

mm then the strain started to drop until a length of 58 mm, then the strain change stopped till the end as in 

Figure 4.32 (c). When the strain change is studied with time, the plot showed a very sharp strain decrease 

(90% strain drop) within just 20% of the time, after that the strain stabilized and remained constant till the 

analysis ceased. An elaboration to this behaviour is that the 4 mm measured point from FE-model, lies in a 

singularity zone being close to the crack initiation point, so the stress and strain there drop very fast when 

the initial crack opens and starts to propagate. Moreover, the strain at the 4 mm node is validated with the 

strain measured from the experiment. The 4 mm node strain evolution with loading history is qualitatively 

similar to the strain measured from gauge C6 as in Figure 4.31. The relative strain change from XFEA is 

10.8 % which came very close to that of gauge C6 which has a value of 9.2 %. Additionally, the maximum 

and minimum strain values approached the experiment strain values with difference percentages equal to 

7.67 % and 8.42 %, respectively as given in Table 4.2. 
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The strain changes at 12 mm and 20 mm are more alike. For the change of strain when considering the crack 

depth increase, there is an approximately linear decrease of strain. The 12 mm location has a higher 

decreasing slope than the location at 20 mm distance. The relative strain change has been explicitly plotted 

and shown in Figure 8.11 in appendix B. Moreover, the strain dropped by around 77% and 61% for the 12 

mm and 20 mm locations, respectively. This happened at almost no more than a quarter of the crack 

propagation time. The strain values near the weld root not only drop faster but also decline more in  

a)  b)  

c)  d)  

Figure 4.32: FEA strain drop at the bottom side (transverse path) of the deck plate vs;                                                                      

(a) Actual crack depth [a]. (b) Vertical crack depth [d]. (c) Crack length [2c]. (d) Time [Number of cycles].         

This in general shows that there is a reasonable similarity between the modelled propagating crack model 

and the real OSD segment. The differences in strain values can be attributed to multiple reasons. These 

reasons can be briefly summarized by indicating that in FE modelling, the material properties used are 

perfectly homogeneous which is not the case in reality. In addition, the precisely defined boundary 

conditions and applied load in the FE-model can also affect the strains. The strain gauges installed during 

the test are also sensitive and can influence the results if they slightly shift. This has most probably happened 

for gauges A2 and C1. To sum up, finite element modeling here considers a perfect environment when 

making a fatigue crack simulation. However, this is not identical to the real practical circumstances. 

Considering the complex stress states of the detail and the uneven strain measuring found in the 

experiments, it is recommended to carry out more study with different detail preparation, i.e. welding 

penetration, and welding residual stress included. 
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4.5 Conclusion 
In this chapter, the fatigue crack growth behaviour in the OSD detail of interest was analysed and studied. 

This chapter includes the essence of this thesis as the main research question is tackled here. This was done 

by first validating the FE model's initial state by comparing the strain from static FEA with the strain gauge 

measurements from experiments. After that, the main methodology to model the fatigue crack under 

compression was divided into steps and was validated step by step. 

First, the stress intensity factors from XFEM and conventional FEM stationary crack analysis were 

compared. Based on the conclusion of this comparison, the considered FE model was updated as the 

discontinuities were modelled as an enriched feature using XFEM cyclic loading analysis. Therefore, the 

initial state had to be first rechecked with the experiment strain measurements and the first FE-model strain 

readings. Thus, the propagation of the fatigue crack was modelled with more confidence. Finally, the model 

meshing strategy is improved to be to reduce computational cost. Eventually, after discussing the results, 

the following conclusions are drawn from the analysis of this chapter: 

 

• The absolute SIFs values obtained from XFE and FE models are almost identical and this holds for 

the SIF values from all three fracture modes in compression and tension. Hence, more confidence 

is gained in modeling the propagating crack with the load-changing hypothesis. 

 

• The highest loss of stiffness happened at the node at 4 mm from the weld root as the strain there 

dropped by around 90% in less than a fifth of the loading time. This is because the node is located 

in the vicinity of the crack initiation region. This node is validated with the experiment and the 

relative strain change is 10.8 % and 9.2 % for the XFEA and experiment, respectively.  

 

• The first node in path 2 (0 mm) experiences a redistribution of stresses which led to different 

behaviour in the beginning as the strains first increased by almost 23%. This relative change is 

comparable with that of the experiment where gauge A5 has around a 24.5% increase ratio. Hence, 

the structural integrity of the detail reduces as the strain there dropped. 

 

• The crack propagation angle and shape are neatly predicted by Abaqus® using the automated crack 

propagation analysis and the load sign change hypothesis. The crack has an average angle of 28° 

which is validated with the literature. Besides, the crack has a semi-elliptical shape as expected. 

 

• Regarding the propagating crack rate, the approach also showed promising results. The crack depth 

increase is classified into three stages. This rate is highest in zone 1, then became smaller in zone 

2. Eventually, the increase rate almost came to an end in zone 3, as the crack is arrested in the depth 

direction and changed its angle. Further, the crack had a high length increase rate in the beginning, 

then the rate fluctuated for 10 % of the loading history and finally keeps increasing with an 

approximately linear increase rate. 

 

• The relation between the crack depth increase and the strain change can be concluded for the three 

paths as follows. An approximately linear relation between the crack depth increase and strain drop 

is found for the closest strain gauge locations on path 1. Moreover, the 0 mm node on path 2 shows 

a linear strain increase as the crack depth increases till the element fails and strain quickly 

decreases. Finally, a fast non-linear strain decrease is experienced with the increase of crack depth 

at the 4 mm node on path 3. All the relations mentioned hold till the crack depth increase stops. 
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• It can be concluded that the node at 0 mm in path 2, is the most important location for the strain 

data correlated with the crack depth growth in all phases. The node can give a correct representation 

of the local detail integrity and how it is affected by the crack growth. 

 

• The crack propagating through the closed rib web is noticed in the experiment done by Wu et al. 

However, the crack in the experiment is larger in the rib web, while this did not happen in XFEA 

due to the limited activated zone for crack propagation assigned to the XFE model. 
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5  Parameter analysis 
 

In this chapter, the most important parameter for the OSD detail crack considered in this study has been 

selected and will be analysed. The parameter will then be changed and the crack behaviour in the model 

will be studied and examined for its sensitivity for the variation of this parameter. The results of this 

parametric study will be discussed and validated based on experiments from different literature.  

 

5.1 Introduction 
The crack propagation behaviour has been studied for the OSD with a 20 mm thick deck plate. Hence, it is 

found necessary to study the crack characteristics for different OSD thicknesses. The weld root penetration 

was seen as a possible parameter to vary. However, after reviewing the literature it is found that partial 

weld penetration has little effect on the effective notch stress at the weld root [39]. Thus, little effect on the 

fatigue crack formation and propagation. In the end, it is decided to consider two thicknesses for the deck 

plate. The thicknesses studied are 16 mm and 10 mm.  

 

5.2 Methodology 
One parameter that is the deck plate thickness will be considered in this chapter for both values of 16 mm 

and 10 mm as mentioned before. The load applied on the deck plate will be adjusted in magnitude such that 

the hot spot stress remains the same. After that, cyclic loading analysis has been carried out for both models 

to make the crack propagate. The same hypothesis of changing the compression to tension load is used for 

these models to subject the crack initiation point to tension instead of compression. The two models’ outputs 

and results are compared to experiments from previous studies which has the same deck plate thicknesses. 

5.2.1 Load adjustment using SHSS 

2D beam model 

To adjust the applied load the structural hot spot stress will be calculated so that when the deck plate 

thickness changes, the corresponding HSS is kept similar, hence the same stresses for crack initiation. This 

is done first by a hand calculation using a 2D beam model to calculate the bending moments and after that, 

the load can be calculated. This 2D beam model was used by De Jong [1] to calculate the stresses at the 

deck plate detail and is shown in Figure 5.1.  

As can be seen from Figure 5.1, the deck plate segment can be schematized as a fixed-fixed beam. Where 

the clamped ends represent the crossbeam to deck plate and close rib web welded connection. The bending 

moment at the fixations is calculated using the formula (5.1). 
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Figure 5.1: Mechanical beam model schematization by De Jong [1]. 
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𝑞𝑐

24𝑙
(24

𝑑3

𝑙
− 6

𝑏𝑐2

𝑙
+ 3

𝑐3

𝑙
+ 4𝑐2 − 24𝑑2) 

(5.1) 

 

And q is the distributed line load when a unity length is considered and can be calculated using expression 

(5.2). 

 
𝑞 =

𝑄

𝑤𝑡 ∙ 𝑙𝑡
 

(5.2) 

Where: 

Q is the concentrated wheel load (N), 

q  is the uniformly distributed wheel load (N/mm), 

wt is the width of the tire footprint (mm), 

lt is the length of the tire footprint (mm), 

l is the deck plate span between the closed rib webs, taken 300 mm here. 

The calculation of the load has been carried out using NEN-EN 1993-2 NB [14] and is presented in 

Appendix C. The loads obtained giving the same stresses are 92.158 kN and 36 kN for the 16 mm and 10 

mm deck plate thicknesses, respectively.  

3D FE model 

The loads from the 2D beam schematization are verified by calculating the hot spot stresses using 3D finite 

element models. A static model is analysed for each thickness case with its corresponding load magnitude 

calculated previously. Static 3D FE models for the OSD with different deck plate thicknesses are analysed 

and the hot spot stresses are calculated for all cases and compared. The calculation is done using the linear 

stress extrapolation points at 0.4t and 1.0t (where t is the deck plate thickness) recommended by the IIW 

recommendations [11]. The structural hot spot stress for the welded detail was calculated using equation 

(5.3) from IIW [11]. This equation is also indicated in  Table 2.1 for type “a” hot spots in 3D FEA. The full 

calculation of the hot spot stress has been provided in Appendix C.  

 𝜎ℎ𝑠 = 1.67𝜎0.4𝑡 − 0.67𝜎1.0𝑡 (5.3) 
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The hot spot stress values obtained for the 20 mm, 16 mm, and 10 mm are 227.4 MPa, 228.1 MPa, and 

236.5 MPa, respectively. This is also given in Table 5.1. The table also shows the corresponding load for 

each deck plate thickness considered. In addition to that the 20 mm deck plate is considered as the reference 

case and the difference ratio in SHSS is calculated and given in the table for the two other cases. Hence, 

the ratios read 0.3 % and 3.4 % for the 16 mm and 10 mm, respectively and as given in Table 5.1. These 

differences are acceptable and the calculated load magnitudes are considered for the parametric analysis.  

Table 5.1: SHSS and difference ratio calculation for various deck plate thicknesses  

Deck plate thickness - tdp [mm]  Load [kN] SHSS - σhs [MPa] SHSS difference ratio - Δσhs [%] 

20 144 227.4 - 

16 92.16 228.1 0.3 

10 36 235.4 3.4 

 

The 3D finite element models considered for the stress HSS verification have almost the same models’ 

description as the improved cyclic loading model in 4.3. These models are using tie constraints The only 

main difference is that the analyses here are static analyses made to calculate and check the hot spot stresses. 

More information about the cyclic loading models will be given later in this chapter.  

 

Figure 5.2: Stress in X-direction from FEA for different deck plate and loadings with and without using tie constraints 

Figure 5.2 shows the stress in X-direction output from the different 3D FE models. The stresses are 

measured at distances from the rib web to the deck plate weld root. It can be seen that the stresses extracted 

from the static models when using three model parts are quite similar to the one using only two parts tied 

together without cutting a third sub-local part and tying it using tie constraints. However, there is one 

significant difference which is a sudden drop in the stress values measured from the models with tie 

constraints at the local region of the detail. This happens at the tie constraint connection surface between 

the two parts. On the other hand, the plots for the models with only two parts connected where a large local 

part is considered, show a smooth continuous stress field. This proves that the tie constraints cause a small 

discontinuity in the stress field, giving a bit erroneous values at the tied zone. These deviating values get 

closer to the correct values as the point measured moves away from the tied zone. Moreover, the average 
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differences were measured for the most deviating stress values read from after the tie constraint zone and 

are found to be 5%, 7%, and 11% for the 20 mm, 16 mm, and 10 mm deck plate thickness models, 

respectively. As a result, it can be concluded that the stress difference is acceptable and the stress values 

can be further considered for calculations. 

 

 

Another point worth mentioning here is that in Figure 5.2 there is a difference in the first stress value which 

is almost at the weld root. The models where tie constraints are used give a higher value than the ones 

without tie constraints. This is due to the difference in element sizes used in both models at the local weld 

regions and has no relation with using tie constraints. Table 5.2 shows that the size of the local element at 

the weld root zone for the models using tie constraints is 0.3 mm. This element size is smaller than that of 

the model without tie constraints at the local zone. This small element size leads to a high-stress peak 

compared to the stress from the other models. The smaller the element becomes at the weld root zone the 

more the singularity problem occurs and the higher the stress peak close to the root turns. 

 

Table 5.2: Finite element mesh for parametric static analysis 

FE models with deck plates of 

10 mm, 16 mm, and 20 mm 

Global part Local part Sub-local part 

Element 

size 

Interpolation 

scheme 

Element 

size 

Interpolation 

scheme 

Element 

 size 

Interpolation 

scheme 

Static analysis (Tie 

constraints) 

15 mm to 

50 mm 

Linear 

(C3D8R) 

8 mm  Quadratic 

(C3D20R) 

0.3 mm to  

4 mm 

Linear 

(C3D8R) 

(C3D8) 

Static analysis (No Tie 

constraints) 

15 mm to 

50 mm 

Linear 

(C3D8R) 

2 mm 

 

Linear 

(C3D8R) 

- - 

 

5.3 FE Models description 
The static and cyclic loaded finite element models considered in this chapter have very similar 

characteristics to FE models considered in chapter 4 . All the models have the same geometry as the model 

cuts are the same as in 4.3.1. Only the deck plate thickness varies with the models (16 mm and 10 mm), 

while all other geometry parameters remain constant. Moreover, the material properties are also linear 

elastic properties with Young’s modulus and Poisson ratio as in Table 3.1. In addition to that, the boundary 

conditions are left the same as in 4.3.3. As for the applied loading, the loading magnitude changed with the 

deck plate thickness variation as illustrated in 5.2.1, while the loading amplitude and area whereover the 

load is applied remained the same as in the previous chapter.  

5.3.1 Propagating crack for the varying deck plate thickness 
Using the same approach as in the previous chapter which is XFEM in Abaqus® based on LEFM with the 

VCCT fracture criterion, the propagating cracks are defined for the 16 mm and 10 mm deck plate thickness 

XFE models. It is known that the automated crack propagation method used here calculates and predicts 

the crack shape and angle. In Abaqus®, the crack propagation angle is by default obtained as the direction 

normal to the maximum tangential stress. Hence, the initial predefined cracks in the two models were first 

inserted with a 30° with the vertical axis. This is the angle obtained from the cyclic loaded XFE model in 

chapter 4  It was decided whether or not the initial inserted crack angle should be modified or kept the same 

after a preliminary analysis was run and the predicted crack angle was obtained. It was found that for the 

16 mm deck plate, there is no need to redefine the crack angle. On the other hand, the 10 mm deck plate FE 

model predicted an almost vertical crack. 
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Figure 5.3 shows the predicted crack angle for the FE model with the 10 mm deck plate thickness. It can be 

seen that the crack first started propagating with a 30° angle at the weld root as this was the predefined 

angle. Then the software automatically predicted the angle and modified it in an automated way. Due to 

this predicted behaviour by the software, the initial predefined flaw was then rotated to be vertical instead 

of the 30° angle with the vertical axis and the cyclic loading model is rerun to provide an accurate result. 

 

Figure 5.3: 10 mm deck plate predicted crack angle by Abaqus® 

Furthermore, the method used is identical to the technique implemented in 4.3.5 for the Cyclic loading 

analysis. With the same material parameters equal to the parameters used by Maljaars et al. [8] (𝐶 = 1 ∙

10−13, 𝑚 = 3.0) and the same initial crack size used by the final cyclic model in prvious chapter. Hence, 

the same subroutine is used without any changes. 

 

5.3.2 Finite element mesh 
The FE models of the two different deck plate thicknesses considered have almost identical meshing 

strategies and element sizes to that of the improved 20 mm cyclic loading OSD model from chapter 4  shown 

in Figure 4.11. This holds for the meshing of all three parts of the models in the case of the static analysis 

as can be seen from Table 4.1 and Table 5.2. For the cyclic loading parametric models, slight mesh 

adjustments in the sub-local parts of these models took place. These slight modifications were done to 

handle the software limitation since sometimes single elements got intersected by two cracks forcing the 

analysis to terminate. As a result, the mesh has to be enhanced as shown in Figure 5.4.  

The figure shows the mesh of the sub-local part for both 16 mm and 10 mm deck plate models. The 16 mm 

case has identical meshing to the reference case. There is no need to adjust the mesh here. On the other 

hand, the mesh had to be adjusted when the deck thickness is reduced to 10 mm as shown in Figure 5.4 (b). 

A single biased mesh through the thickness of the deck plate is used having an element size varying from 

0.5 mm to 2.5 mm. Details about the mesh sizes used in the sub-local part are indicated in Table 5.3. Only 

the sub-local part is shown in the table because the other parts’ meshing is identical to that of the parametric 

static analysis given in Table 5.2. 
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Figure 5.4: Finite element mesh for the sub-local part in parametric models. (a) 16 mm OSD. (b) 10 mm OSD 

 

Table 5.3:Finite element mesh for parametric cyclic loading  analysis 

Cyclic loading analysis  Sub-local part 

Element 

 size 

Interpolation scheme 

16 mm deck plate model 0.3 mm to 4 mm 

& 

1 mm element thickness 

Linear 

(C3D8) & (C3D8R) 

10 mm deck plate model 0.3 mm to 4 mm 

& 

From 0.5 mm to 2.5 mm element thickness 

Linear 

(C3D8) & (C3D8R) 
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5.4 Results and discussion 
The crack shapes and strain changes obtained from the XFE simulations for both deck plate thicknesses 

considered will be shown here. This numerical output will be compared to experimental tests output done 

by different researchers for quite some similar deck plate thickness cases. 

5.4.1 Crack propagation in the 16 mm thick deck plate 
The figure below shows different views of the deformed and undeformed shapes of the propagated crack 

in the deck plate and rib web. The figure indicates the crack length (2c) which is equal to 128 mm. The 

crack propagated through the rib web component considered in the sub-local model part.  However, the 

crack did not penetrate through the whole deck plate thickness as it has not reached the deck plate surface. 

In addition, there is a slight asymmetric crack growth in the length direction of the OSD. 

 

Figure 5.5: Different views of the deformed and undeformed 16 mm OSD 

The crack propagation behaviour is similar to the 20 mm OSD case, especially for the crack propagation in 

the thickness direction. The crack has an average propagation angle of 22° as in Figure 5.6 (a). This came 

very close to the crack propagation angle obtained from the experiment by Harada et al [40] for the same 

OSD deck plate thickness of 16 mm with 80 % partial weld root penetration (see Figure 5.6 (b)). The angle 

is hardly 24° and was measured at the center of the detail. The figure shows that the crack changed its 

propagation angle at the end, starting to propagate in a parallel direction to the deck plate surface.  

The crack growth is more thoroughly studied by considering the crack depth and length increase during 

loading. This is shown in Figure 5.7, where the first figure shows the inclined (a) and vertical (d) crack 

depth increase, in addition to the crack length (2c) increase with time. The figure is corresponding to Figure 

4.27 and it also shows that the crack depth increase behaviour in the case of a 16 mm deck is similar to that 

of the 20 mm OSD since the crack depth growth is categorized also into three zones. Figure 5.7 (b) shows 

that the crack depth has a high increasing rate from the initial crack size to a depth of 9.1 mm. 
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a) 

 

b) 

 

Figure 5.6: Fatigue crack in XFEA and experiment by Harada et al [40] 

The increase rate then reduces significantly in a relatively short period till the depth becomes equal to 11.08 

mm. Finally, the depth increase almost stops as the crack gets arrested like in the 20 mm deck case. The 

crack depth here also does not reach the deck plate surface. Moreover, the depth increase stops when 

reaching the value of 11.86 mm. This value is almost three-fourths the thickness of the deck plate. This is 

also the case for the 20 mm deck, as the crack there stopped at a 14.7 mm depth. 

The crack length got larger at a very high speed at the beginning till a 23 mm length. After that the fracture 

length changed its increasing slope, having an almost linear increase with time. This nearly constant crack 

length growth rate remained valid till the end of the simulation and the length reached a value of 128 mm. 

a) 

 
 

b) 

 

Figure 5.7: Fatigue crack depth and length vs time history of the XFEA (16 mm OSD).                                                                                        

(a) Inclined and vertical crack depth and crack length. (b) Inclined and vertical crack depth only (OSD cut). 
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5.4.2 Crack propagation in the 10 mm thick deck plate 
The propagating crack when the considered deck plate thickness is 10 mm is shown in Figure 5.8. This 

figure is analogous to Figure 5.5 which shows the same deformed and undeformed shapes but for the 16 

mm deck case. The crack in the below figure has a semi-elliptic shape which is cut from above. This cut is 

mainly due to the crack penetration through the deck plate. Unlike the reference case and the case of the 16 

mm deck, here the crack cuts through the total thickness of the deck plate as shown below in Figure 5.8. 

For a consistent notation, the lower and upper crack lengths have been given the same symbol with different 

subscripts as shown in the figure, where “cb” and “ct” stand for “cbottom” and “ctop” respectively. 

 

Figure 5.8: Different views of the deformed and undeformed 10 mm OSD 

As can be seen from Figure 5.8, the crack has a different behaviour than for the reference and 16 mm OSD 

cases. The crack here penetrates through the deck surface after a relatively short while from the crack 

growth initiation. This leads to that the crack depth parameter becomes fixed after the deck plate is fully 

penetrated. The crack propagation action has also been shown in Figure 5.9, where the lower and upper 

crack lengths are plot versus time. In addition, the crack depth is also plotted with its lengths to make a 

comparison between the depth and length, then it is shown explicitly in Figure 5.9 (b).  

It has been found that unlike the reference and 16 mm case, the crack here behaves dramatically different. 

The crack depth can be divided into two stages as in Figure 5.9 (b). It starts by propagating in the thickness 

with a high speed till its depth is almost equal to a third of the deck thickness (3.2 mm). Although the initial 

crack was inserted vertically in the model, the crack propagates with a 14° angle in the first stage, then the 

angle changes and becomes nearly 0 ° when entering zone 2. The crack depth increase rate becomes a little 

bit less in this zone and preserves its slope with minimal fluctuations. This holds until the crack fully 

penetrates through the deck plate thickness.  
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Moreover, the crack length increase at the bottom and top of the deck plate is given in Figure 5.9 (a). The 

length is growing approximately linear at the lower surface of the deck with negligible variation in the 

increase rate. Furthermore, the crack reaches the deck plate surface and comes to be visible when the lower 

crack length becomes almost 60 mm. At this moment the crack depth is 10 mm at more locations and 

elements, which means that the crack is perceivable on the deck and has a length of 6 mm. This takes place 

at around a third of the time. From the figure, it seems that the upper crack length propagation has a similar 

linear trend as that for its lower length. If the slight fluctuations are disregarded it can be deduced that both 

lower (2cb) and upper (2ct) crack lengths have similar propagation rates.    

a) 

 

b) 

 
Figure 5.9: Fatigue crack depth and length vs time history of the XFEA (10 mm OSD).                                                                                        

(a) Crack depth, lower, and upper crack length. (b) Crack depth only (OSD cut). 

In Figure 5.10 the global crack growth phases are shown. As for the crack depth propagation zones, these 

zones can be sub-listed under phase 2 in Figure 5.10. It should also be mentioned that when studying and 

measuring the upper crack length, the occurrence of the crack on the top of the deck plate is not as smooth 

as in reality as the crack at some moments appeared as a set of discrete cracks which over time blended and 

increased in length to form one long crack with 85 mm length as shown in Figure 5.11.  

 

Figure 5.10: Crack propagation stages through the deck plate at the crossbeam [1] 

In this figure, the crack shape at the top of the deck surface is qualitatively compared to the crack obtained 

in the experiment done by De Jong [1]. In the test carried out by De Jong, the rib was filled with 

polyurethane foam. The upper crack length obtained from the experiment was longer (208 mm) than the 
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one from the XFEM simulation. Both the cracks obtained from the simulation and the experiment have 

some curvature in the direction of the inner side of the rib. In practice, the investigated crack may be 

straighter than the ones obtained from the laboratory testing. This was explained by De Jong by mentioning 

that here the load position is fixed during the experiment and this leads to the rotation of the principal stress 

in the deck plate towards the crossbeam. 

 

Figure 5.11: Fatigue crack from XFEA and De Jong’s [1] experiment. 

 

5.4.3 Evolution of strains in XFEA models 
The uniaxial (X-direction) strain change due to the crack propagation has been studied here as in the 

previous chapter (4.4.5). Here only the most representing strain gauge locations are presented, while the 

rest can be found in appendix C. The strain adaptation is presented as a function of different crack 

parameters (crack depth and length). For some strain measurements, it is also important to show how the 

strain evolves with the loading/time history.  

Strain ranges on the deck surface in the longitudinal path 

Figure 5.12 and Figure 5.13 show the strain evolution for some nodes on path 1 for the 16 mm and 10 mm 

deck thicknesses, respectively. The strain drop behaviour for 0 mm and ±25 mm when the crack depth is 

increasing is approaching a linear decrease pattern. This holds until the crack gets arrested in the last zone 

and the crack depth growth stops. The crack is then arrested in the depth direction while the crack length 

continues to grow, leading to a strain decrease continuity as in Figure 5.12 (a) and (b) where the strain is 

reduced by an average of 50% for the formerly mentioned nodes as in Figure 8.14 in appendix C. As for 

the ±50 mm nodes, the strain at these nodes will get affected by the fracture when the crack starts to get 

larger in length. Hence, it can be seen that the strain will start to drop at a length of almost 35 mm and a 

depth of approximately 6.2 mm. Note that there is a difference in the decrease values of the strain of the 

−50 mm and +50 mm nodes, which is accredited to the asymmetric crack growth. 
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a) 

 

b) 

 
Figure 5.12: FEA strain change at the top side (longitudinal path) of the 16 mm deck plate vs;                                                                

(a) Vertical crack depth [d]. (b) Crack length [2c].  

For the 10 mm deck plate, first, the strain range at the same locations as in the 16 mm deck case is presented 

in Figure 5.13 (a) where the strain range is plotted as a function of the crack depth. The initial strain value 

at 0 mm and ±25 mm for this case is close to that of the 16 mm. Unlike the previous two cases, the strain 

remains almost constant for a larger crack depth in the beginning. Another noticeable difference is that the 

strain at ±25 mm drops earlier than at the 0 mm dot. However, in the end, the total reduction in strain is 

largest at the center node (0 mm) with a 45 % decrease of strain. Half of this strain decrease happened after 

the crack fully penetrated through the deck. It is also obvious from the figure that the strain reduces 

significantly when the crack reaches the deck plate surface. Note that the relative strain ranges for all dots 

are given in appendix C [Figure 8.19]. For the ±50 mm positions, there is very little change in strain till the 

crack touched the deck plate. Thus, it is decided to leave this dot out in Figure 5.13 (b). 

a) 

 

b) 

 
Figure 5.13: FEA strain change at the top side (longitudinal path) of the 10 mm deck plate vs;                                                                

(a) Crack depth [d]. (b) Lower and upper crack length [2cb & 2ct].  
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In Figure 5.13 (b), the strain range is plotted with the crack lengths. Both cb and ct are considered together 

in one plot to show the similarities in strain evolution with the crack growing at the top and bottom side of 

the deck plate. Similar to Figure 5.13 (a), the strain at 0 mm drops at a larger crack length than that at ±25 

mm. This holds for both crack lengths. When the strain change is compared for both, crack lengths at the 

bottom and top of the deck plate, there is a similar trend in strain change as can be seen in the figure.   

 

Strain ranges in the transverse paths 

Figure 5.14 shows the results at the most representing strain gauge locations, while the remaining gauge 

results can be found in appendix C. In the figure, the strain range at each node is presented for the 16 mm 

and 10 mm decks simultaneously, to point out the differences between both cases. First of all, for both cases, 

the initial strain values are relatively close for all the measured nodes from both cases. When considering 

the strain adaptation to the different crack parameters and loading history, it can be seen that the stress/strain 

redistribution for the parametric models is quite higher than that of the 20 mm deck plate [see Figure 5.14 

(a), (c), and (e)]. This happens at the 0 mm node where the strain increased by 43 % and 59 %, for 16 mm 

and 10 mm, respectively. Thereafter, the strain rapidly drops for the 16 mm deck when the crack depth 

exceeds two-thirds of the deck thickness as in Figure 5.14 (a), while the crack becomes almost 72 mm long 

[Figure 5.14 (c)]. Figure 5.14 (e) shows that this fall in strain starts at around the third of the crack growth 

time considered in the analysis. This shows that this node fails after the crack parameters and time have 

reached such values. Hence, the local strength of the detail is influenced. 

On the other hand, from the same three sub-figures, the 10 mm deck shows an unfamiliar strain behaviour 

for the last part of the strain change. The strain escalates at the beginning with the increase in loading time 

and crack’s parameters increase having a close pattern to the 16 mm OSD. Then the strain declines slightly 

after the crack reaches the deck surface with a crack length of around 66 mm and it becomes visible from 

the top of the deck plate. Afterward, the strain redistributes again and increases after a relatively short period 

of decrease. This is dissimilar to the other two OSD cases where the strain fails once. A possible explanation 

for this is that when the crack starts to get visible at the deck surface above the cross-beam center location 

(0 mm-node) the strain decreases as that position is losing its stiffness, then when other cracks are forming 

on the deck surface, the strain at the center node starts to redistribute again. It has been mentioned before 

that the crack grew discretely at certain periods, leading to separate crack parts at the deck surface before 

these parts blend into one crack. 

Like for the longitudinal path, the strain variation rate for the top crack length is similar to that of the lower 

crack length. Therefore, these figures are provided in Figure 8.21 (c) in appendix C. Moreover, it should 

also be mentioned that when selecting the 0 mm node from the XFE models’ output for these two cases, the 

change of strain shows high sensitivity corresponding to the position at the vicinity of the studied detail 

center. See Figure 8.22 in appendix C for more details. 
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a) 

 

b) 

 
c) 

 

d) 

 

e) 

 

f) 

 
Figure 5.14: FEA strain change at the top and bottom side of the deck plate (at 0mm & 4mm) for 16 mm and 10 mm OSD cases 

vs; (a) & (b) Crack depth. (c) & (d) Crack length. (e) & (f) Time [Number of cycles].         
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Looking at the strain range at 4 mm from the weld root shown in Figure 5.14 (b), (d), and (f), the strain 

reduction behaviour is close for both studied deck thicknesses. Figure 5.14 (b) and (d) show that the strain 

close to the local crack initiation point for the 10 mm deck drops, in the beginning, faster than that of the 

16 mm deck. In a later stage when the crack depth and length reach around the third of their maximum 

reached value, the strain decrease rate alters and becomes higher for the 16 mm instead of the 10 mm deck. 

Finally, in both cases, the node lost almost all its stiffness as the strain decreased by 92 % when the crack 

reached its maximum obtained depth and length. However, in the 10 mm deck, the strain is still decreasing 

after the crack fully penetrated through the deck plate as shown in Figure 5.14 (b). 

The 16 mm deck showed a faster strain decline with loading cycles than the 10 mm deck. This may not be 

accurate since the element size through the thickness is slightly changed for the 10 mm deck model. Besides, 

it is concluded before that the change of element number through the thickness affects the number of cycles 

calculated, which is here referred to as the time aspect. From Figure 5.14 (e) and (f), the number of cycles 

calculated for the 10 mm OSD model is larger than that for the 16 mm one. An additional remark about the 

studied crack parameters with the strain range at this path is that, similar to the other two paths, the strain 

range as a function of the upper crack length has a convergent behaviour to that of the lower length. The 

plots considering this parameter and all the nodes on this path are also provided in Figure 8.23 and Figure 

8.24 (c) in appendix C for more information.  
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5.5 Conclusion 
In this chapter, a deck thickness parameter of the OSD has been studied for its effect on the fatigue crack 

propagation at the detail of interest. The deck plate thickness is varied because of its importance for OSD 

integrity. The deck plate thickness values of 16 mm and 10 mm are considered. The 20 mm OSD case from 

the previous chapter is taken as a reference for the parameter analysis. The OSD is then modelled in 

Abaqus® for these two deck thicknesses, while the load applied on the deck plate is changed such that the 

hot spot stresses remain similar to the HSS in the reference model. Hence, the HSS at the crack initiation 

point is validated for the two static models. After that, the cyclic loading analyses are carried out for the 

parametric models by inserting an initial crack with the same size and angle as for the 20 mm deck plate 

and using the same approach. The crack angle is changed only when the software predicted a different 

angle. The analyses’ results were post-processed and compared to the crack growth from the 20 mm OSD 

analysis and literature. Conclusions of the results are provided below; 

 

• In general, the fatigue crack growth angle, shape, and rate in the case of the 16 mm deck plate are 

close to that of the reference case (20 mm) as the crack also got arrested at around 75 % of the deck 

thickness. In addition, the crack depth growth is divided into three phases as in the 20 mm thick 

deck plate, while only a small difference in the crack length growth behaviour is noticed. 

 

• The method predicts vertical crack propagation when a 10 mm deck is analysed. It is also showed 

that the crack penetrates through the deck plate thickness leading to a through-thickness crack. This 

crack shape is validated with the literature for the same deck thickness.  

 

• The crack depth growth in the 10 mm deck plate case is divided into two zones where the first zone 

is relatively small but has a fast crack depth enlargement, while in the second zone the crack slows 

down and keeps increasing till the deck plate surface is penetrated. Moreover, the crack growth rate 

in the length direction is almost constant. 

 

• In general, the considered OSD cases have a common global crack growth behaviour where the 

crack initiates then increases in the thickness and length direction, then only grows in the length 

direction. The main difference lies in whether the crack will penetrate through the deck plate and 

affect the traffic safety more explicitly or will get arrested and not reach the deck surface. 

 

• The strain change behaviour is comparable in all OSD cases including the 20 mm case at most 

nodes of paths 1 and 3. The main difference is the thickness influence as the crack depth is different 

in each case. The node corresponding to the 0 mm strain gauge has larger differences in the strain 

change behaviour, as the relative strain redistribution is increasing as the deck thickness decreases. 

Besides, the strain in the 10 mm OSD increases again after it is redistributed and declined. This is 

most likely due to the discrete crack formation at the deck surface before merging into one crack. 

 

 

  



84 

 

 

  



85 

 

6  Conclusions and Recommendations 
 

In this chapter, the final conclusions are given and discussed. In addition, recommendations for further 

research are provided. 

6.1 Conclusions 
In this thesis, the main focus is to reliably predict fatigue crack propagation and estimate its influence on 

structural integrity. This challenge is tackled by considering the following steps to solve the problem.  

Firstly, a simple CT case is considered and analyzed using XFEM  within the LEFM framework. This is 

done to understand 9the method of propagating fatigue crack modeling provided in Abaqus®, gaining more 

confidence in using it, and understanding its limitations. The following is concluded from the CT analyses 

comparing it to the analytical prediction: 

• The 3D fatigue cracks propagation simulation using strain energy release rate calculated from 

VCCT in Abaqus is sensitive to mesh sizes. The corresponding number of loading cycles extracted 

from direct cyclic step(s) may be overestimated when a refined mesh is applied and the crack front 

shape starts to change from a straight line through the thickness to curves. 

 

• From the 3D analysis, considering a single loaded model with a single element through the 

thickness, the plane strain condition gives the best fit for the fatigue life.  

Furthermore, the plane strain condition used to calculate the Paris’ law parameters is used for the crack 

propagation analysis in the OSD model. 

Secondly, an approach to model the OSD under tension-tension cyclic load proposed by [] is tested for 

which the absolute values of SIFs in stationary crack models are compared with the compressive load case. 

This answers a part of the first sub-research question which reads: “What approach using XFEM can be 

used to simulate crack propagation?”. The second part of the subquestion is answered by the conclusion 

from the CT simulations since a limitation of this method was found as the fatigue life is overestimated by 

the through-thickness mesh refinement. This limitation is relevant for the OSD simulations as well. For the 

stationary crack analysis, the same absolute SIFs values are found in the two loading situations. Thus, the 

engineering approach is validated and can be further used to simulate the propagating crack in the studied 

detail. Consequently, sub-question 2: How the stationary crack analysis simulated with XFEM and 

conventional FEM can support using this approach is answered. The conclusions of the 20 mm OSD 

crack simulations are given as follows. 

• The crack propagation shape, angle, and rate are predicted and have a good agreement with 

experimental observation. The crack has a semi-elliptical shape and an average angle of 28° to the 

vertical axis. In addition, the crack propagation rate in the depth direction consists of three zones, 

starting from a high rate, then smaller and very small. Finally, the crack arrest occurs. 

 

• The strain evolution is validated for the two significant nodes having the same positions of the 

corresponding strain gauges in their experimental arrangement. The strain difference ratios at the 

node on the deck surface (0 mm) vary from 7.8 % to 25 % for the initial to minimum strain value, 

while the differences for the node at the lower deck side (4 mm) are from 7.7 % to 8.4 % for the 

same strain values. 
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• In the studied detail, the simulation shows that the crack propagates in the rib in addition to 

propagating in the thickness of the deck plate. Similar cracks are observed in the tested specimens. 

However, there are some differences found in the positions and sizes for the rib crack between the 

simulation and experimental investigation.  

Since the considered methodology is validated for the 20 mm OSD deck plate in predicting the crack 

behaviour, two deck plate thicknesses are studied to investigate the effect of the deck thickness on the crack 

behaviour and structural integrity. The conclusions obtained by simulating the OSDs with 16 mm and 10 

mm thickness are given below. 

• In the  16 mm OSD deck plate, the crack shows similar behaviour as in the 20 mm deck plate, as 

the crack is arrested at 75% of the thickness and has an average angle of 22°. The same conclusion 

was found in the literature. In addition, the crack depth growth for the 16 mm deck plate can also 

be classified by the same three zones as in the 20 mm deck case. 

 

• For the 10 mm OSD deck plate, the crack propagates vertically in the deck plate and the crack depth 

growth is divided into two zones. The crack depth has a high growth rate in zone 1 which reduces 

slightly when moving to zone 2 where the crack depth is almost 1/3 of the deck thickness. In this 

zone, the crack penetrates completely through the deck plate thickness leading to a surface crack 

that may affect traffic safety. The crack length increase rate is nearly constant throughout the total 

propagated length.  

 

• A comparable strain evolution is obtained for all OSD deck plates including the 20 mm deck. 

However, an inverse relationship between the deck plate thickness and the relative redistribution 

of strain is found.  Moreover, the 10 mm deck plate strain evolution on top of the deck (0 mm) is 

different after the crack propagates through the total thickness of the deck plate.  

 

Considering the investigated cracks from the three studied OSD deck plates in this thesis. The behaviour 

of the crack propagation for the detail with these different deck plate thicknesses is interpreted. Thus, 

the third and final sub-research question is answered. It is demonstrated by these concluding remarks, that 

the method investigated has an acceptable level of accuracy for the investigated cracks. Hence, the crack 

behavior, as well as the local structural integrity, can be predicted. This finally leads to the answer to the 

main research question which is presented below. 

How is the structural integrity affected by the propagation of fatigue cracks at the rib-to-deck plate 

welded connection at the crossbeam junction? 

 

The structural integrity of the 16 mm and 20 mm thick steel decks is satisfactory because the crack is 

arrested, while the 10 mm thick deck plate safety is not validated.   
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6.2 Recommendations 
For the CT simulation the following recommendation can be provided; 

• The unstable crack growth region at the end of the fatigue life can be accurately simulated using 

elastic-plastic fracture mechanics (EPFM) theory. 

The following recommendations could be given for further studies based on the OSD XFEA results. 

• Using a larger part for the activated crack zone can be better, since this may help to detect and study 

the macro crack shape when it propagates and transcend the sub-local part’s boundaries. 

 

• The use of finer mesh will certainly lead to more realistic and more accurate results.  

 

• Fatigue crack propagation analysis with experimentally obtained material properties needs to be 

carried out using LEFM. Accurate SIFs along the crack should be guaranteed. The crack front needs 

to be propagated at all the calculated points using the fatigue propagation method, e.g. Paris’ law. 

 

• Taking the welding penetration rates and welding-induced residual stress into account for the crack 

propagation analysis. 
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8  Appendix 
 

(A) Fatigue Crack Propagation In CT 
 

Stationary crack analysis 
As mentioned in chapter 3  a comparison between the static models is done to validate that the SIF values 

in the static XFE model are similar to the SIF values in the FE model. Hence, the XFEM can be used for 

the propagating crack model. The SIF values are evaluated using the contour integral evaluation. 

 

 

Figure 8.1: FE and XFE 3D-models (CT) 

A 0.25 mm element size is used in both models in the local (crack front) region, while a 2 mm global 

mesh is used as can be seen in Figure 8.2.  

 

Figure 8.2: FE and XFE models’ meshes 
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Table 8.1: SIF values for FE model 

Contour number 1 2 3 4 5 Average 
Finite element 

KI (𝑀𝑃𝑎√𝑚𝑚) 

 

-6- 418.5 603.3 610 611.9 613.1 571.36 

-7- 431.5 623.5 630.6 632.6 633.9 590.42 

-8- 445 642.1 649.7 651.9 653.2 608.38 

-9- 431.5 623.6 630.7 632.6 633.9 590.46 

-10- 418.5 603.3 610 611.9 613.1 571.36 

 Total average 586.4 
 

 

Table 8.2: SIF values for XFE model 

Contour number 1 2 3 4 5 Average 
Extended finite element 

KI (𝑀𝑃𝑎√𝑚𝑚) 

 

1 588.7 592.4 571.5 558.3 631 588.38 

2 671.5 627 653.3 651.5 649.6 650.58 

3 697.1 593.1 641.7 628.7 638.4 639.8 

4 732.1 593.3 659.9 634.8 642.9 652.6 

5 581.1 593.8 543.4 471.4 507.4 539.42 

 Total average 614.2 

 

 

  



95 

 

Boundary conditions for CT  
A short sensitivity analysis is carried out by comparing the results from two cases. The first case is applying 

boundaries at two reference points as in Figure 8.3 (a), while the second case is applying an extra boundary 

point at the center of the CT backside (RP-3) as in Figure 8.3 (b).  

 

Figure 8.3: 3D double-loaded CT FE-model with different BCs. (a) Two boundary points. (b) Three boundary points 

Table 8.3: Boundary conditions for CT in case of 2 boundary points 

RP-1 (upper point) RP-2 (lower point) N (cycles) 

URX=URY=0 URX=URY=0 39638 

UX=UZ=0 UX=UZ=0 41427 

UX=UZ=URX=URY=0 UX=UZ=URX=URY=0 41414 

URX=0 URX=0 40868 

UZ=URY=0 UZ=URY=0 40826 

UZ=0 UZ=0 41092 

UZ=URX=0 UZ=URX=0 40567 

UZ=URX=URY=0 UZ=URX=URY=0 40569 

UX=UZ=URX=0 UX=UZ=URX=0 41376 

UX=UZ=URY=0 UX=UZ=URY=0 41419 

 

Table 8.4: Boundary conditions for CT in case of 3 boundary points 

RP-1 (upper point) RP-2 (lower point) RP-3 (Back pin) N (cycles) 

URX=URY=0 URX=URY=0 UY = 0 39783 

URX=URY=0 URX=URY=0 UZ = 0 42010 

URX=URY=0 URX=URY=0 URX=URY=0 42258 

URX=URY=0 URX=URY=0 UY = URX = 0 40846 

URX=URY=0 URX=URY=0 UY = URY = 0 40174 

URX=URY=0 URX=URY=0 UY = URZ = 0 42542 

URX=URY=0 URX=URY=0 UX = UY = 0 40876 

URX=URY=0 URX=URY=0 UY = UZ = 0 40331 

URX=URY=0 URX=URY=0 UY = URX = URY = 0 40334 

URX=URY=0 URX=URY=0 UY = UZ = URX = URY =0 40515 
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Analytical fatigue life and crack propagation rate calculation for CT 
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Fatigue MIXMODE subroutine (CT) 
 

Plane strain and plane stress situations for both 2D and 3D XFE models of the CT were considered. Thus, 

all 4 subroutines are provided here.  

1. 2D plane strain 

      SUBROUTINE UMIXMODEFATIGUE (DADN, GI_MAX, GII_MAX, GIII_MAX, 

     1 GI_MIN, GII_MIN, GIII_MIN, TEMP, DTEMP, PREDEF, DPRED, 

     2 NFIELD, NPROPS, PROPS, NSTATV, STATEV, 

     3 NIARRAY, I_ARRAY, NRARRAY, R_ARRAY, NCARRAY, C_ARRAY, DA) 

 

      INCLUDE 'ABA_PARAM.INC' 

 

C 

      DIMENSION PROPS(NPROPS),STATEV(NSTATV),PREDEF(NFIELD), 

     1 DPRED(NFIELD),I_ARRAY(NIARRAY), R_ARRAY(NRARRAY), 

     2 C_ARRAY(NCARRAY) 

C 

C     rC3=5.7757D-05 

      rC=5.21D-13 

      rm=3.0 

      rE=210000 

      rv=0.3 

      rE2=rE/(1-0.3**2) !PLANE STRAIN 

      ru=rE2/(2*(1+rv)) 

CCCCCCCCCCCCCCCCCCCCCCCC 

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

CCCCCC 

c     G1=K1**2/E2, G_2=K_2**2/E2, G_3=K_3**2/2u, u=E2/(2*(1+v)) 

      rKI_MAX=(GI_MAX*rE2)**0.5 

      rKII_MAX=(GII_MAX*rE2)**0.5 

CCCCCCCCCCCCCCCCCCCCCCCC 

      rKI_MIN=0 

      rKII_MIN=0 

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

CCCCCC 

      rKI_range=rKI_MAX-rKI_MIN 

      rKII_range=rKII_MAX-rKII_MIN 

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

CCCCCC 

      rK_eq=(rKI_range**2+rKII_range**2)**0.5 

      DADN=rC*rK_eq**rm 

C 

      RETURN 

      END  
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2. 2D plane stress 

 

      SUBROUTINE UMIXMODEFATIGUE (DADN, GI_MAX, GII_MAX, GIII_MAX, 

     1 GI_MIN, GII_MIN, GIII_MIN, TEMP, DTEMP, PREDEF, DPRED, 

     2 NFIELD, NPROPS, PROPS, NSTATV, STATEV, 

     3 NIARRAY, I_ARRAY, NRARRAY, R_ARRAY, NCARRAY, C_ARRAY, DA) 

 

      INCLUDE 'ABA_PARAM.INC' 

 

C 

      DIMENSION PROPS(NPROPS),STATEV(NSTATV),PREDEF(NFIELD), 

     1 DPRED(NFIELD),I_ARRAY(NIARRAY), R_ARRAY(NRARRAY), 

     2 C_ARRAY(NCARRAY) 

C 

C     rC3=5.7757D-05 

      rC=5.21D-13 

      rm=3.0 

      rE=210000 

      rv=0.3 

      rE2=rE/(1-0.0**2) !PLANE STRESS 

      ru=rE2/(2*(1+rv)) 

CCCCCCCCCCCCCCCCCCCCCCCC 

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

CCCCCC 

c     G1=K1**2/E2, G_2=K_2**2/E2, G_3=K_3**2/2u, u=E2/(2*(1+v)) 

      rKI_MAX=(GI_MAX*rE2)**0.5 

      rKII_MAX=(GII_MAX*rE2)**0.5 

CCCCCCCCCCCCCCCCCCCCCCCC 

      rKI_MIN=0 

      rKII_MIN=0 

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

CCCCCC 

      rKI_range=rKI_MAX-rKI_MIN 

      rKII_range=rKII_MAX-rKII_MIN 

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

CCCCCC 

      rK_eq=(rKI_range**2+rKII_range**2)**0.5 

      DADN=rC*rK_eq**rm 

C 

      RETURN 

      END  
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3. 3D plane strain 

      SUBROUTINE UMIXMODEFATIGUE (DADN, GI_MAX, GII_MAX, GIII_MAX, 

     1 GI_MIN, GII_MIN, GIII_MIN, TEMP, DTEMP, PREDEF, DPRED, 

     2 NFIELD, NPROPS, PROPS, NSTATV, STATEV, 

     3 NIARRAY, I_ARRAY, NRARRAY, R_ARRAY, NCARRAY, C_ARRAY, DA) 

 

      INCLUDE 'ABA_PARAM.INC' 

 

C 

      DIMENSION PROPS(NPROPS),STATEV(NSTATV),PREDEF(NFIELD), 

     1 DPRED(NFIELD),I_ARRAY(NIARRAY), R_ARRAY(NRARRAY), 

     2 C_ARRAY(NCARRAY) 

C 

C     rC3=5.7757D-05 

      rC=5.21D-13 

      rm=3.0 

      rE=210000 

      rv=0.3 

      rE2=rE/(1-rv**2) !PLANE STRAIN 

      ru=rE2/(2*(1+rv)) 

CCCCCCCCCCCCCCCCCCCCCCCC 

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

CCCCCC 

c     G1=K1**2/E2, G_2=K_2**2/E2, G_3=K_3**2/2u, u=E2/(2*(1+v)) 

      rKI_MAX=(GI_MAX*rE2)**0.5 

      rKII_MAX=(GII_MAX*rE2)**0.5 

      rKIII_MAX=(GIII_MAX*2*ru)**0.5 

CCCCCCCCCCCCCCCCCCCCCCCC 

      rKI_MIN=0 

      rKII_MIN=0 

      rKIII_MIN=0 

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

CCCCCC 

      rKI_range=rKI_MAX-rKI_MIN 

      rKII_range=rKII_MAX-rKII_MIN 

      rKIII_range=rKIII_MAX-rKIII_MIN 

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

CCCCCC 

      rK_eq=(rKI_range**2+rKII_range**2+(rKIII_range**2/(1-rv)))**0.5 

      DADN=rC*rK_eq**rm 

C 

      RETURN 

      END
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4. 3D plane stress 

 

      SUBROUTINE UMIXMODEFATIGUE (DADN, GI_MAX, GII_MAX, GIII_MAX, 

     1 GI_MIN, GII_MIN, GIII_MIN, TEMP, DTEMP, PREDEF, DPRED, 

     2 NFIELD, NPROPS, PROPS, NSTATV, STATEV, 

     3 NIARRAY, I_ARRAY, NRARRAY, R_ARRAY, NCARRAY, C_ARRAY, DA) 

 

      INCLUDE 'ABA_PARAM.INC' 

 

C 

      DIMENSION PROPS(NPROPS),STATEV(NSTATV),PREDEF(NFIELD), 

     1 DPRED(NFIELD),I_ARRAY(NIARRAY), R_ARRAY(NRARRAY), 

     2 C_ARRAY(NCARRAY) 

C 

C     rC3=5.7757D-05 

      rC=5.21D-13 

      rm=3.0 

      rE=210000 

      rv=0.3 

      rE2=rE/(1-00**2) !PLANE STRESS 

      ru=rE2/(2*(1+rv)) 

CCCCCCCCCCCCCCCCCCCCCCCC 

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

CCCCCC 

c     G1=K1**2/E2, G_2=K_2**2/E2, G_3=K_3**2/2u, u=E2/(2*(1+v)) 

      rKI_MAX=(GI_MAX*rE2)**0.5 

      rKII_MAX=(GII_MAX*rE2)**0.5 

      rKIII_MAX=(GIII_MAX*2*ru)**0.5 

CCCCCCCCCCCCCCCCCCCCCCCC 

      rKI_MIN=0 

      rKII_MIN=0 

      rKIII_MIN=0 

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

CCCCCC 

      rKI_range=rKI_MAX-rKI_MIN 

      rKII_range=rKII_MAX-rKII_MIN 

      rKIII_range=rKIII_MAX-rKIII_MIN 

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

CCCCCC 

      rK_eq=(rKI_range**2+rKII_range**2+(rKIII_range**2/(1-rv)))**0.5 

      DADN=rC*rK_eq**rm 

C 

      RETURN 

      END  
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(B) Fatigue crack propagation in OSD 
 

Fracture mode II (KII), real values [MPa√𝑚𝑚] 

 

 

 

 
 

 

 

 
 

 
Figure 8.4: SIF values (KI) for different crack inclinations considering all 7 contours (XFEM vs FEM). (a) Vertical crack.      (b) 

15° crack. (c) 30° crack. (d) 45° crack. (e) 60° crac 

(d) 

(e) 

(a) (b) 

(b) 
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Fracture mode II (KII), SIF absolute values [MPa√𝑚𝑚] 

 

 

 

 
 

 

 

 

 

 

 
Figure 8.5: Absolute SIF values (KII) for different crack inclinations considering all 7 contours (XFEM vs FEM). (a) Vertical 

crack. (b) 15° crack. (c) 30° crack. (d) 45° crack. (e) 60° crack 

(a) (b) 

(c) (d) 

(e) 
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Fracture mode III (KIII), SIF absolute values [MPa√𝑚𝑚] 

 

 

 

 
 

 

 

 
 

 
Figure 8.6: Absolute SIF values (KIII) for different crack inclinations considering all 7 contours (XFEM vs FEM). (a) Vertical 

crack. (b) 15° crack. (c) 30° crack. (d) 45° crack. (e) 60° crack 

(a) (b) 

(c) (d) 

(e) 
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Fracture mode II (KII), real values [MPa√𝑚𝑚] 

 

 

 

 
 

 

 

 
 

 
Figure 8.7: Real SIF values (KII) for different crack inclinations considering all 7 contours (XFEM vs FEM). (a) Vertical crack. 

(b) 15° crack. (c) 30° crack. (d) 45° crack. (e) 60° crack 

(a) (b) 

(c) (d) 

(e) 
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Fracture mode III (KIII), real values [MPa√𝑚𝑚] 

 

 

 

 
 

 

 

 
 

 
Figure 8.8: Real SIF values (KIII) for different crack inclinations considering all 7 contours (XFEM vs FEM). (a) Vertical crack. 

(b) 15° crack. (c) 30° crack. (d) 45° crack. (e) 60° crack 

(a) (b) 

(c) (d) 

(e) 
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Fatigue MIXMODE subroutine (OSD) 
 

      SUBROUTINE UMIXMODEFATIGUE (DADN, GI_MAX, GII_MAX, GIII_MAX, 

     1 GI_MIN, GII_MIN, GIII_MIN, TEMP, DTEMP, PREDEF, DPRED, 

     2 NFIELD, NPROPS, PROPS, NSTATV, STATEV, 

     3 NIARRAY, I_ARRAY, NRARRAY, R_ARRAY, NCARRAY, C_ARRAY, DA) 

 

      INCLUDE 'ABA_PARAM.INC' 

 

C 

      DIMENSION PROPS(NPROPS),STATEV(NSTATV),PREDEF(NFIELD), 

     1 DPRED(NFIELD),I_ARRAY(NIARRAY), R_ARRAY(NRARRAY), 

     2 C_ARRAY(NCARRAY) 

C material data from_Fatigue resistance of the deck plate in steel orthotropic deck structures 

C     rC3=9.623D-06 

      rC=1.0D-13 

      rm=3.0 

      rE=210000 

      rv=0.3 

      rE2=rE/(1-rv**2) !PLANE STRAIN 

      ru=rE2/(2*(1+rv)) 

CCCCCCCCCCCCCCCCCCCCCCCC 

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

CCCCCC 

c     G1=K1**2/E2, G_2=K_2**2/E2, G_3=K_3**2/2u, u=E2/(2*(1+v)) 

      rKI_MAX=(GI_MAX*rE2)**0.5 

      rKII_MAX=(GII_MAX*rE2)**0.5 

      rKIII_MAX=(GIII_MAX*2*ru)**0.5 

CCCCCCCCCCCCCCCCCCCCCCCC 

      rKI_MIN=0 

      rKII_MIN=0 

      rKIII_MIN=0 

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

CCCCCC 

      rKI_range=rKI_MAX-rKI_MIN 

      rKII_range=rKII_MAX-rKII_MIN 

      rKIII_range=rKIII_MAX-rKIII_MIN 

CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

CCCCCC 

      rK_eq=(rKI_range**2+rKII_range**2+(rKIII_range**2/(1-rv)))**0.5 

      rK_threshold=170 

      if (rK_eq .GT. rK_threshold) then 

      DADN=rC*rK_eq**rm 

      else 

      DADN=0*(rC*rK_eq**rm) 

      endif 

C 

      RETURN 

      END 
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Relative strain change at the gauge locations of path 1 
a) 

 

b) 

 
c) 

 

d) 

 

Figure 8.9: FEA relative strain drop at the top side (longitudinal direction) of the deck plate vs;                                                                      

(a) Actual crack depth [a]. (b) Vertical crack depth [d]. (c) Crack length [2c]. (d) Time [Number of cycles]. 
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Relative strain change at the gauge locations of path 2 
a) 

 

b) 

 
c) 

 

d) 

 

Figure 8.10: FEA relative strain drop at the top side (transverse direction) of the deck plate vs;                                                                      

(a) Actual crack depth [a]. (b) Vertical crack depth [d]. (c) Crack length [2c]. (d) Time [Number of cycles]. 
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Relative strain change at the gauge locations of path 2 
a) 

 

b) 

 
c) 

 

d) 

 

Figure 8.11: FEA relative strain drop at the bottom side (transverse direction) of the deck plate vs;                                                                      

(a) Actual crack depth [a]. (b) Vertical crack depth [d]. (c) Crack length [2c]. (d) Time [Number of cycles].       
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(C) Fatigue crack propagation in OSD (Parametric analysis) 
 

Hot spot stress calculation 

2D beam model load calculation 

First, the stresses were calculated for a load of 1 kN based on the different thicknesses used. Then, the 

stress calculated for the 20 mm deck plate case is linearly scaled to the experiment load value. From this 

stress value, the load values for the 16 mm and 10 mm thicknesses were obtained. 

𝑎 = 60 𝑚𝑚, 𝑏 = 240 𝑚𝑚, 𝑐 = 180 𝑚𝑚, 𝑑 = 300 − 30 − 120 = 150 𝑚𝑚 

The effect of the load distribution is taken into account. Moreover, the distributed line load is calculated 

for a unit length (lt  = 1 mm). 

𝑞 =
1000

(180 + 20) ∙ 1
= 5 𝑁/𝑚𝑚 

 

Figure 8.12: 2D beam model with 5N/mm distributed line load 

𝑀 =  
5 ∙ 180

23 ∙ 300
∙ (24

1503

300
− 6

240 ∙ 1802

300
+ 3

1803

300
+ 4 ∙ 1802 − 24 ∙ 1502) = 29700 𝑁. 𝑚𝑚 

The stress concentration factor (SCF)  for a deck plate without an asphalt layer is equal to the 1.11 value. 

Δ𝜎𝑑𝑝_20𝑚𝑚 =
1.11 ∙ 29700

1
6 ∙ 320 ∙ 202

= 1.545 𝑀𝑃𝑎 

Δ𝜎𝑑𝑝_16𝑚𝑚 =
1.11 ∙ 29700

1
6 ∙ 320 ∙ 162

= 2.415 𝑀𝑃𝑎 

Δ𝜎𝑑𝑝_10𝑚𝑚 =
1.11 ∙ 29700

1
6 ∙ 320 ∙ 102

= 6.181 𝑀𝑃𝑎 

Linear scaling of the stress corresponding to 1 kN gives; 

Δ𝜎𝑑𝑝20𝑚𝑚
= 144 ∙ 1.545 = 222.523 𝑀𝑃𝑎 
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Calculating the load for the 16 mm thick deck plate; 

𝑀16𝑚𝑚 =  
222.523 ∙ 320 ∙ 162

6 ∙ 1.11
= 2737102.184 𝑁. 𝑚𝑚 

𝑞10𝑚𝑚 =  
2737102.184 ∙ 24 ∙ 300 

180 ∙ (24
1503

300 − 6
240 ∙ 1802

300 + 3
1803

300 + 4 ∙ 1802 − 24 ∙ 1502)
= 460.792 𝑁/𝑚𝑚  

𝑄10𝑚𝑚 = 460.792 ∙ (180 + 20) ∙ 1 =  92158.323 𝑁 = 92.158 𝑘𝑁 

 

Calculating the load for the 10 mm thick deck plate; 

𝑀10𝑚𝑚 =  
222.523 ∙ 320 ∙ 102

6 ∙ 1.11
= 1069180.541 𝑁. 𝑚𝑚 

𝑞10𝑚𝑚 =  
1069180.541 ∙ 24 ∙ 300 

180 ∙ (24
1503

300 − 6
240 ∙ 1802

300 + 3
1803

300 + 4 ∙ 1802 − 24 ∙ 1502)
≈ 180 𝑁/𝑚𝑚 

𝑄10𝑚𝑚 = 180 ∙ (180 + 20) ∙ 1 =  36000 𝑁 = 36 𝑘𝑁 
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3D FEA model hot spot stress calculation 

 

 

  

Location 20mm_72kN

0.4t 7.8mm 5.44mm 7.8mm 3.26mm 5.44mm

-193.345 -214.014 -196.946 -202.52 -202.52

-178.434 -196.946 -181.136 -201.359 -190.354

-195.273 -214.013 -196.946 -238.947 -201.359

-174.753 -196.946 -181.136 -237.994 -193.003

Average -185.45125 -205.47975 -189.041 -220.205 -196.809

Total average (Sigma_0.4t) -185.45125 -197.26 -208.507

t 20mm 16mm 10mm

-183.036

-147.759

-175.971

-166.456

Sigma_t -122.898 -151.234 -168.306

Sigma_hs -227.361928 -228.098 -235.442

16mm_46kN 10mm_18kN



114 

 

Parametric models strain changes at all gauge locations 
 

XFEA output of 16 mm OSD 

All strains read from FEA at strain gauge locations on path 1 are given below. 

a) 

 

b) 

 

c) 

 

d) 

 

Figure 8.13: FEA strain drop at the top side (longitudinal path) of the deck plate vs;                                                                      

(a) Actual crack depth [a]. (b) Vertical crack depth [d]. (c) Crack length [2c]. (d) Time [Number of cycles]. 
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a) 

 

b) 

 
c) 

 

d) 

 

Figure 8.14: FEA relative strain drop at the top side (longitudinal path) of the deck plate vs;                                                                      

(a) Actual crack depth [a]. (b) Vertical crack depth [d]. (c) Crack length [2c]. (d) Time [Number of cycles]. 
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All strains read from FEA at strain gauge locations on path 2 are given below. 

a) 

 

b) 

 

c) 

 

d) 

 
Figure 8.15: FEA strain drop at the top side (transverse path) of the deck plate. vs;                                                                      

(a)Actual crack depth [a]. (b) Vertical crack depth [d]. (c) Crack length [2c]. (d) Time [Number of cycles]. 
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a) 

 

b) 

 

c) 

 

d) 

 
Figure 8.16: FEA relative strain drop at the top side (transverse path) of the deck plate vs;                                                                      

(a) Actual crack depth [a]. (b) Vertical crack depth [d]. (c) Crack length [2c]. (d) Time [Number of cycles]. 
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All strains read from FEA at strain gauge locations on path 3 are given below. 

a) 

 

b) 

 

c) 

 

d) 

 

Figure 8.17: FEA strain drop at the bottom side (transverse path) of the deck plate vs;                                                                      

(a) Actual crack depth [a]. (b) Vertical crack depth [d]. (c) Crack length [2c]. (d) Time [Number of cycles].         
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a) 

 

b) 

 

c) 

 

d) 

 

Figure 8.18: FEA relative strain drop at the bottom side (transverse path) of the deck plate vs;                                                                      

(a) Actual crack depth [a]. (b) Vertical crack depth [d]. (c) Crack length [2c]. (d) Time [Number of cycles].       
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XFEA output of 10 mm OSD 

All strains read from FEA at strain gauge locations on path 1 are given below. 

a) 

 

b) 

 

c) 

 

d) 

 

Figure 8.19: FEA strain drop at the top side (longitudinal path) of the deck plate vs;                                                                      

(a) Crack depth [a=d]. (b) Time [Number of cycles]. (c) Lower crack length [2cb]. (d) Upper crack length [2ct]. 
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a) 

 

b) 

 

c) 

 

d) 

 

Figure 8.20: FEA relative strain drop at the top side (longitudinal path) of the deck plate vs;                                                                      

(a) Crack depth [a=d]. (b) Time [Number of cycles]. (c) Lower crack length [2cb]. (d) Upper crack length [2ct]. 
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All strains read from FEA at strain gauge locations on path 2 are given below. 

a) 

 

b) 

 

c) 

 

d) 

 
Figure 8.21: FEA strain drop at the top side (transverse path) of the deck plate. vs;                                                                      

(a) Crack depth [a=d]. (b) Time [Number of cycles]. (c) Lower crack length [2cb]. (d) Upper crack length [2ct]. 
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a) 

 

b) 

 

c) 

 

d) 

 

Figure 8.22: FEA relative strain drop at the top side (transverse path) of the deck plate vs;                                                                      

(a) Crack depth [a=d]. (b) Time [Number of cycles]. (c) Lower crack length [2cb]. (d) Upper crack length [2ct]. 
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All strains read from FEA at strain gauge locations on path 3 are given below. 

a) 

 

b) 

 

c) 

 

d) 

 

Figure 8.23: FEA strain drop at the bottom side (transverse path) of the deck plate vs;                                                                      

(a) Crack depth [a=d]. (b) Time [Number of cycles]. (c) Lower crack length [2cb]. (d) Upper crack length [2ct]. 
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a) 

 

b) 

 

c) 

 

d) 

 

Figure 8.24: FEA relative strain drop at the bottom side (transverse path) of the deck plate vs;                                                                      

(a) Crack depth [a=d]. (b) Time [Number of cycles]. (c) Lower crack length [2cb]. (d) Upper crack length [2ct]. 
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Sensitivity of the output node 

For the 16 mm model the following nodes were considered. 

 

 

 

 

Figure 8.25: Finite element nodes considered for the sensitivity analysis (16 mm OSD) 

The nodes were considered with one and two elements offset from the center node as shown in the figure. 

The element size is approximately 0.7 mm. The maximum relative strain increase for all nodes is given by 

Table 8.5.  

Table 8.5:Maximum relative strain change values for all chosen nodes (16 mm OSD) 

Node Max1 Max2 Max3 Max4 Max5 Max6 Max7 Max8 Max9 

1-element offset 1.76 1.86 1.86 1.86 1.59 1.60 1.59 1.76 1.76 

2-element offset 1.76 
 

1.91 
 

1.90 
 

1.89 
 

1.42 
 

1.45 
 

1.44 
 

1.76 
 

1.75 
 

 

Node 5 is considered to have a two-element distance.  

9 8 

7 

6 4 5 

3 2 

1 

3 2 

4 5 6 

7 

8 9 
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For the 10 mm model the following nodes were considered. 

 

 
 

Figure 8.26: Finite element nodes considered for the sensitivity analysis (10 mm OSD) 

The nodes were considered with one and two elements offset from the center node as shown in the figure. 

The element size is approximately 0.5 × 1.0 mm2. The maximum relative strain increase for all nodes is 

given by Table 8.6.  

Table 8.6 Maximum relative strain change values for all chosen nodes (10 mm OSD) 

Node Max1 Max2 Max3 Max4 Max5 Max6 Max7 Max8 Max9 

1-element offset 1.36 1.18 1.20 1.59 1.59 1.57 1.19 1.39 1.33 

2-element offset 1.37 
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Node 5 is considered to have a one-element distance. 


