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ABSTRACT
Often, real-world problems are of the gray-box type. It has been
shown that the Real-Valued Gene-pool Optimal Mixing Evolution-
ary Algorithm (RV-GOMEA) is in principle capable of exploiting
such a Gray-Box Optimization (GBO) setting using linkage models
that capture dependencies between problem variables, resulting in
excellent performance and scalability on both benchmark and real-
world problems that allow for partial evaluations. However, linkage
models proposed for RV-GOMEA so far cannot explicitly capture
overlapping dependencies. Consequently, performance degrades
if such dependencies exist. In this paper, we therefore introduce
various ways of using conditional linkage models in RV-GOMEA.
Their use is compared to that of non-conditional models, and to
VkD-CMA, whose performance is among the state of the art, on
various benchmark problems with overlapping dependencies. We
find that RV-GOMEA with conditional linkage models achieves the
best scalability on most problems, with conditional models leading
to similar or better performance than non-conditional models. We
conclude that the introduction of conditional linkage models to
RV-GOMEA is an important contribution, as it expands the set of
problems for which optimization in a GBO setting results in sub-
stantially improved performance and scalability. In future work,
conditional linkage models may prove to benefit the optimization
of real-world problems.
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• Mathematics of computing→ Evolutionary algorithms.
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1 INTRODUCTION
Traditionally, research in the field of Evolutionary Algorithms (EAs)
has mainly been focused on the optimization of Black-Box Opti-
mization (BBO) problems. In a BBO setting, no prior information of
the objective function is assumed to be available, and only function
evaluations can reveal the structure of the problem to be optimized.
However, in various real-world problems [14, 24] the underlying
structure, or even an exact definition, of the optimization problem is
known. Despite this knowledge, such problems may still be difficult
to optimize. As such, problem-specific knowledge has recently been
used in EAs to greatly improve performance, e.g., through the use
of problem-specific variation operators [14], partition crossover
[13, 37], or partial evaluations [10].

Partial evaluations are used to efficiently calculate the objective
value of a solution following the modification of a subset of its
variables. The possibility to use partial evaluations is by no means
an indicator of the difficulty of the problem, as partial evaluations
may be possible for problems that are, e.g., non-separable, non-
smooth, multi-modal, and/ormulti-objective. It has been shown that
partial evaluations can be efficiently leveraged in the Real-Valued
Gene-pool Optimal Mixing Evolutionary Algorithm (RV-GOMEA)
[10]. RV-GOMEA achieves excellent performance and scalability on
single-objective and multi-objective benchmark problems [10, 11],
but also on real-world problems such as medical deformable image
registration [9], and treatment planning for prostate cancer [24].
However, the problems considered thus far are either separable or
have relatively weak dependencies.
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It is as of yet unclear if it is possible to efficiently leverage partial
evaluations in case the optimization problem has strong overlapping
dependencies, because partial evaluations are only beneficial when
some form of selection is applied after the modification of a subset
of variables of a solution. Applying variation not to all variables at
once, but only to subsets of variables, may however be detrimental
to the optimization of problems with strong overlapping depen-
dencies. Such problems cannot be decomposed into disjoint sets
of independent variables, and are therefore generally difficult to
solve for optimization methods relying on decompositions if the
dependencies themselves are strong, i.e., a rotated ellipsoid with
high condition number [25, 35]. They can however be efficiently
optimized by other decomposition methods like VkD-CMA [2, 3],
a variant of the well-known Covariance Matrix Adaptation Evo-
lution Strategy (CMA-ES) [19], using a covariance matrix that is
parameterized by a smaller number of parameters than the problem
dimensionality. VkD-CMA can however not directly benefit from
the possibility of partial evaluations, as variation is always applied
to all problem variables at once.

In this paper, we aim to improve the performance of RV-GOMEA
on problemswith strong overlapping dependencies in a GBO setting.
For this purpose, we explore the use of different novel linkage mod-
els, which are used by RV-GOMEA to model dependencies between
problem variables. In particular, we explore linkage models that
can capture conditional dependencies, as these models may benefit
the optimization of problems with overlapping dependencies.

We first introduce the GBO setting in more detail in Section 2,
followed by background on RV-GOMEA in Section 3. In Section 4
we discuss a number of conditional linkage models, and how they
can be employed in RV-GOMEA. In Section 5 the performance and
scalability of these conditional linkage models is compared to non-
conditional models, and to VkD-CMA. The results are discussed in
Section 6, followed by our conclusions in Section 7.

2 GRAY-BOX OPTIMIZATION
We consider the optimization of an objective function f (x) : Rℓ →
R, subject to minimization. We refer to problem variables as X =
{X 1, . . . ,X ℓ}, which is indexed through the set I = [1, . . . , ℓ].
A realization of the problem variables, i.e., a solution, is denoted
x = {x1, . . . ,xℓ}.

In particular, we focus on a GBO setting (as previously defined
[8]) that allows for partial evaluations, meaning that the objective
value of a solution can be efficiently computed after the modifi-
cation of a subset of its variables. Let Y ⊆ I refer to a subset
of problem variables. We denote by xY the variables of x corre-
sponding to the indices specified by Y . In this setting, the objective
function is composed of q sub-functions F = { f1, f2, . . . , fq }. A sub-
function fj (x�j ) ∈ F takes problem variables x i with i ∈ �j ⊆ I
as input, where � = {�1, �2, . . . , �q } is given by the problem defini-
tion. Each sub-function itself is treated as a black box. Moreover, a
sub-function fi is assumed not to be separable itself.

Problem variables xu and xv with u,v ∈ I are considered to be
directly dependent, i.e., xu ↔ xv , when a sub-function fj (x�j ) ∈ F
exists with {u,v} ⊆ �j . Problem variables xu and xv are indirectly
dependent when a set {u, . . . ,v} ⊆ I exists such that xu ↔ · · · ↔
xv but not xu ↔ xv .

An objective function in a GBO setting can be written as:

f (x) = д
(
f1(x�1 ) ⊕ f2(x�2 ) ⊕ · · · ⊕ fk (x�q )

)
, (1)

with ⊕ a binary operator that has a known inverse ⊖ (e.g., addition
or multiplication[8]), and д : R→ R any (potentially non-linear)
function.

A change in some variablexu requires the evaluation of each sub-
function fj (x�j ) for which u ∈ �j . If д is not the identity function,
the intermediate result of f1(x�1 ) ⊕ · · · ⊕ fq (x�q ) must be stored in
memory for each solution in the population.

We assume that the computational complexity of each sub-
function is approximately equal. Therefore, given a total of q sub-
functions, a partial evaluation of n sub-functions is counted as a
fraction n/q of an evaluation in a GBO setting.

Given the GBO definition of an optimization problem, as in
Equation (1), a Variable Interaction Graph (VIG) [37] can be created.
A VIG is an undirected graphG = (V ,E) where each vertex v ∈ V
corresponds to a problem variable xv , and each edge (u,v) ∈ E
denotes that problem variables xu and xv are directly dependent.
Problem variables xu and xv are indirectly dependent if a path
between vertices u and v exists in the VIG, but not an edge (u,v).

3 REAL-VALUED GENE-POOL OPTIMAL
MIXING EVOLUTIONARY ALGORITHM

In this sectionwe present an outline of RV-GOMEA. Amore detailed
description is provided in [10].

3.1 Linkage Model
In RV-GOMEA, dependencies between problem variables are explic-
itly modeled by a linkage model. Such linkage models are described
by a Family of Subsets (FOS) F = {F1,F2, . . . ,Fm } that is a subset
of the powerset of I, i.e., Fi ⊆ I. Each FOS element Fi ∈ F models
a group of variables that is considered to be jointly dependent.

The univariate FOS F = {{1}, {2}, . . . , {ℓ}}, which models all
problem variables to be independent, is considered to be the sim-
plest FOS model. A marginal product FOS models disjoint sets of
dependent variables, i.e., Fi ∩ Fj = ∅ for Fi ,Fj ∈ F . The full FOS
models all variables as jointly dependent, i.e., F = {{1, . . . , ℓ}}.

A linkage tree is a linkage model, which was first introduced for
the discrete GOMEA [36], that is capable of modeling hierarchical
dependencies. A linkage tree FOS firstly includes all singleton ele-
ments. All other FOS elements are the union of two smaller FOS
elements. Formally stated, for each Fi ∈ F there exist Fj ,Fk ∈ F
such that Fj ∩ Fk = ∅ and Fj ∪ Fk = Fi . Building a linkage tree
is often done using the Unweighted Pair Grouping Method with
Arithmetic-mean (UPGMA) [18]. Therefore, pairs of FOS elements
with the strongest dependencies are the first to be merged. The
dependency strength of variables can either be determined based
on problem-specific knowledge or based on mutual information.

The elements of a linkage tree may be restricted to a maximum
size k . In this case, the linkage tree is generally learned offline based
on problem-specific information, in which case we refer to it as the
Bounded Fixed Linkage Tree (BFLT) [10].
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3.2 Gene-pool Optimal Mixing
RV-GOMEA uses Gene-pool Optimal Mixing (GOM) as its variation
operator. During GOM, variation is applied based on the dependen-
cies defined by the linkage model F . During each generation, one
iteration of GOM is applied to each solution in the population for
each FOS element Fi . One iteration of GOM, applied to a parent
solution in the population, consists of the sampling of new values
for the problem variables contained in the FOS element in question.
These values are inserted into the parent and this solution is eval-
uated. Because few variables change, as specified by Fi , a partial
evaluation can be performed. The modification of the parent is only
accepted if it results in an improvement. Otherwise, the modifi-
cation is accepted with probability paccept. If the modification is
rejected, the parent is returned to its previous state.

A sampling model is used to generate new problem variables.
This can be taken from any EA that has an identifiable sampling
model, such as CMA-ES [19]. Here, we build on the original version
of RV-GOMEA that uses the sampling model of AMaLGaM [5].

Sampled values for problem variables are generated from aMulti-
variate Gaussian (MVG) that is estimated with maximum likelihood
based on the selection S, consisting of the ⌊τn⌋ best solutions in
the population P, with n the population size. For each FOS element
Fj , an MVG N(µ̂ j , Ĉ j ) is estimated for all problem variables in Fj .
Each such distribution is scaled by a distribution multiplier that is
updated each generation based on the location of improvements
found. This process is called Adaptive Variance Scaling (AVS).

Furthermore, RV-GOMEA includes a generational shift that is
applied to nAMS solutions in the population, named the Anticipated
Mean Shift (AMS), and a procedure aimed at avoiding stagnation
caused by spreading the population across multiple local minima,
named the Forced Improvement (FI) procedure. The FI procedure
is triggered when a solution has not been improved for a number
of generations larger than the maximum No-Improvement Stretch
(NIS). These procedures are described in more detail in [10]. High-
level pseudo-code of RV-GOMEA is shown in Algorithm 1. The
GOM procedure is shown in Algorithm 2.

Algorithm 1 RV-GOMEA

1: procedure RV-GOMEA(n,τ )
2: P ← InitializeAndEvaluatePopulation(n)
3: F ← InitializeLinkageModel()
4: while ¬TerminationCriterionSatisfied() do
5: P1 ← xelitist

6: for Fj ∈ F do ▷ Random order
7: S ← ⌊τn⌋ best in P
8: P({Xu : u ∈ Fj }) ← MaxLikelihoodEstimate(S)
9: for x ∈ P2...n do
10: GenepoolOptimalMixing(x ,Fj )

11: AdaptiveVarianceScaling(Fj )

12: for x ∈ P2...nAMS+1 do
13: AnticipatedMeanShift(x)

14: for x ∈ P2...n do
15: if NIS(x) > NISMAX then
16: ForcedImprovement(x)

Algorithm 2 Gene-pool Optimal Mixing

1: procedure GenepoolOptimalMixing(x ,Fj )
2: b ← xFj
3: xFj ← P({Xu : u ∈ Fj }) ▷ Sampling
4: fo ← PartialEvaluation(x , fx ,Fj )
5: if fo < fx orU(0, 1) < paccept then fx ← fo
6: else xFj ← b

Here, we deviate from the original RV-GOMEA definition in
that selection is now performed at the start of each iteration of
GOM, whereas previously, selection was only performed at the
start of each generation [10]. This modification is important when
the linkagemodel is not a marginal product. In such a case, variation
is applied to a problem variable more than once per generation.
The estimated distribution may then become outdated throughout
a generation, making GOM less effective and efficient. Supporting
experiments are included as supplementary material.

4 LINKAGE MODELING
Different methods for the modeling of dependencies between vari-
ables have previously been used for the design of Estimation of
Distribution Algorithms (EDAs) [22]. Some of the models used by
early EDAs include univariate [21, 28], tree-based [12], or multi-
variate [20] models. Marginal product models were however shown
to be too restrictive to solve difficult problems [6]. Alternatively,
Bayesian networks were later used in EDAs for discrete [26, 27]
and real-valued optimization [1, 4, 7, 16]. Also Markov networks, or
Markov random fields [34], have been proposed for use in (discrete)
EDAs [33], for example in the Markovianity-based Optimization
Algorithm (MOA) [32], the Distribution Estimation using Markov
networks (DEUM) [30] algorithm, or the Markov Network Estima-
tion of Distribution Algorithm (MN-EDA) [29]. Factorized Gaussian
Markov networks were previously used in real-valued optimiza-
tion in the Gaussian Markov Random Field EDA (GMRF-EDA) [23],
though the latter method is focused on problems with disjoint sets
of dependent variables. Here, we focus on the introduction of condi-
tional linkage models, in particular based on Markov and Bayesian
networks, because such models appear most suitable for problems
with overlapping dependencies and integration with RV-GOMEA.

4.1 Non-conditional Linkage Models
A marginal product linkage model is an appropriate model for
problems with disjoint groups of dependent variables. However,
this is not efficient in case long chains of (pairwise) dependent
variables exist, as such dependencies must be modeled by a single
joint group. This requires the estimation of an ℓ-variateMVG,which
becomes computationally expensive to sample from for large ℓ and
requires a relatively large population to accurately estimate.

We illustrate the difficulty of optimizing problems with strong
overlapping dependencies through the f REBChain(x , c,θ ) function,
defined in Equation (2), where Rθ (x) applies a rotation to x of θ
degrees around the origin in a clockwise direction for each pair
of variables. This function is the sum of a 2-dimensional (2-D)
rotated ellipsoid function with condition number c (see Equation
(3)) for each pair of consecutive variables. In Figure 1 we show
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the number of evaluations required to solve the 20-D f REBChain

function for varying rotation angles and condition numbers using
RV-GOMEA with different marginal linkage models. In all cases,
the InterleavedMultistart Scheme (IMS) [10] was used, which scales
the population size over time by interleaving runs with gradually
increasing population sizes, using an initial population size of 20.

Figure 1a clearly shows that a univariate linkage model is not
adequate in case of a large condition number and large rotation
angles, i.e., when dependencies are strong. Results for the BFLT,
shown in Figure 1b, shows that a hierarchical model that does not
include the joint distribution, leads to only minor improvements.
The best performance for strongly dependent problems is obtained
with the full linkage model, shown in Figure 1c. It is however
known that the full linkage model does not scale well to very high-
dimensional problems, and cannot benefit from a GBO setting.
Furthermore, a full linkage model is often overkill, as most variables
are not directly and/or strongly dependent in real-world problems.

f REBChain(x , c, θ ) =
ℓ−1∑
i=1

f 2DEllipsoid(Rθ ({x i , x i+1 }), c), (2)

f 2DEllipsoid(x , c) = x 2
1 + 10

cx 2
2 . (3)
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Figure 1: Median (30 runs) number of evaluations (color-
coded) required to find the optimum with a precision of
10−10 of the 20-D f REBChain(x , c,θ ), or the budget of 107 func-
tion evaluations was used, for RV-GOMEA using different
marginal linkage models.

4.2 Bayesian Factorization
Updating variables �j pertaining to a single sub-function fj while
taking variables pertaining to overlapping sub-functions into ac-
count, can be done by conditional sampling. To be precise, instead
of sampling new values for problem variables x�j using the mul-
tivariate marginal P(X �j ), one could sample conditionally on the
other variables of x , i.e., x¬�j with ¬�j = I \ �j , giving,

x �j ← P (X �j |X ¬�j = x ¬�j ). (4)

In this way, partial evaluations can still be performed.
As we use an MVG distribution to sample from, its conditional

distribution is also anMVG, which is easy to sample from [15]. How-
ever, directly using this conditional distribution to sample from is
also computationally expensive, as conditioning on all other vari-
ables has a computational complexity of O(ℓ3). To reduce computa-
tional cost, we can exploit the VIG. The VIGG = (V ,E) represents
a Markov network (or field), and specifically a Gaussian Markov
Field (GMF), between problem variables. In a GMF, the probability
density function of a variable is completely defined in terms of
a conditional probability function given its neighbors. Therefore,

samples can be drawn from a GMF without modeling the joint
probability distribution of all variables [30, 31]. Let N(�j ) be the set
of all neighbors of �j in the VIG. Then, the conditional probability
in Equation (4) simplifies to,

P
(
X �j |X ¬�j = x ¬�j

)
= P

(
X �j |X N (�j ) = x N (�j )

)
. (5)

This has two advantages. First, it reduces computational cost of
sampling from the conditional distribution, as sampling from P(X )
has a complexity of O(ℓd3) when the maximum degree of the VIG
is bounded by a constant d . Second, the sample distribution explic-
itly takes conditional independencies into account. Estimating the
sample distribution of a GMF, instead of the full MVG, requires
fewer parameters to be estimated, which can therefore be done
with a smaller population size, furthermore improving efficiency.

4.2.1 Partitioning. More in general, large groups of variables may
be sampled from a joint MVG. Given a partitioning of variables C,
the variables in each partition Ci can be jointly sampled conditioned
on XN (Ci ). For a non-overlapping partitioning of variables C ⊂
P(I), i.e., with Ci ∩ Cj = ∅ for Ci ,Cj ∈ C, this results in,

P (X ) =
∏
Cj ∈C

P
(
X Cj |X N (Cj )

)
. (6)

The larger the clusters Cj , the less the independence structure im-
posed by the VIG is leveraged. This effect is smaller if the variables
in Cj form a clique in the VIG, and guaranteed to be minimal if the
clusters are set to be the singletons. If a univariate partitioning, i.e.,
C = {{1}, . . . , {ℓ}}, is used, Equation (6) represents a univariate
conditional factorization. We refer to this factorization as UCond.

When each factor Ci may consist of multiple variables, Equation
(6) represents a multivariate conditional factorization. We aim to
have these multivariate factors correspond to the sub-functions, as
all variables required for a sub-function may be jointly sampled. As
such, these factors are constructed by traversingG in a breadth-first
order, and finding maximal cliques. Given the current vertex u and
its previously visited neighbors, a maximal clique including both u
and these neighbors is constructed, if possible. A factor Ci is then
defined as this clique, excluding the previously visited neighbors,
and is added to C. This process continues until each variable (or
node) is contained by a factor Ci . We refer to this factorization as
MCond.

Note that the univariate and multivariate conditional factoriza-
tions may define the same probability distribution. Their distinction
becomes important when a selection step is performed after sam-
pling variables for some factor Ci , as discussed in Section 4.3.1.

4.2.2 Sampling. We use forward sampling [33] to sample from the
distribution described in Equation (6). This requires a topological
ordering of the GMF. As each partition Ci is jointly sampled, it is
sufficient to direct the edges between vertices in different partitions.
This is done by defining an order O in which the partitions of C
are sampled. The order O is defined as a function mapping the
index of a partition to its precedence. As such, Cu precedes Cv if
O(u) < O(v), indicating that each edge (q,w) ∈ E with q ∈ Cu
and w ∈ Cv is directed as w ← q. Variables are then sampled
conditioned on all variables from which an incoming edge exists.

Directing the edges of the GMF will generally result in a different
joint probability distribution than represented by the GMF, and
may break dependencies between variables due to d-separation
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[17]. This is undesirable, because we aim to model a conditional
dependency between each pair of variables between which a path
exists in the VIG. Tominimize the number of breaks, we traverse the
network in a breadth-first manner, starting from the partition of a
randomly selected vertex. This ensures that only the first partition is
sampled independently from all others, and all remaining variables
are sampled conditionally dependent. For each partition Cj , values
are sampled for problem variablesXu withu ∈ Cj . These values are
sampled from a normal probability distribution that is conditioned
on the problem variables corresponding to the neighboring vertices
ofu ∈ Cj that have already been sampled. The values of the starting
partition are sampled independently of all other variables. Doing
so simplifies the probability distribution in Equation (6) to,

P
(
X Cj |X N (Cj ) = x N (Cj )

)
≈ P

(
X Cj |X π (Cj ) = x π (Cj )

)
, (7)

with π (Cj ) = {u ∈ N (Cj ) : O(u) < O(v) for all v ∈ Cj } the
neighbors of Cj that preceded Cj in the sampling orderO .

Figure 2 shows a VIG of the 13-D REB5SmallOverlap (Equation
(15)) problem, given a UCond factorization. Figure 3 then shows the
same VIG color coded according to the MCond factorization. An
edgeu → v indicates thatXv is sampled conditioned onXu . Edges
are directed corresponding to an arbitrary (breadth-first) ordering
starting from vertex 7.
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Figure 2: A VIG for the 13-D REB5SmallOverlap problem,
showing a potential breadth-first ordering starting from ran-
domly selected vertex 7.
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Figure 3: A VIG for the 13-D REB5SmallOverlap problem,
showing a color-coded partitioning starting from randomly
selected vertex 7.

4.3 GOM with Conditional Linkage Model
Because the application of GOM is themain strength of RV-GOMEA,
and the way in which GOM is applied substantially influences
performance and scalability, we explore different options of using
GOM when variables are sampled from a conditional distribution.

4.3.1 FOS of Conditional Linkage Model. How GOM is applied
using a conditional linkage model is still defined by a FOS, now in-
dicated F C . However, each FOS element F Ci now indicates which
factors of C are resampled during one iteration of GOM. Apply-
ing GOM for a FOS element F Ci to a solution x then amounts to

sampling from the Bayesian factorization for each factor Cj with
j ∈ F Ci , i.e.,

P
(
X
FCi

)
=

∏
j∈FCi

P
(
X Cj |X π (Cj )

)
, (8)

followed by the selection step of GOM. We consider three different
options for the FOS F C used in conditional linkage models.

First we consider the option where all variables are sampled dur-
ing each iteration of GOM, i.e., F C = {{1, . . . , |C|}}. The selection
step of GOM is therefore only applied after all variables have been
sampled. In this case RV-GOMEA reverts to a classic EDA. Because
of the estimation and sampling used, it is similar to the Bayesian
factorized version of AMaLGaM [5], but without learning the fac-
torization structure each generation. As all variables are sampled
during each iteration of GOM, partial evaluations do not benefit
the optimization in this case. The benefit of a GBO setting is the
fact that a Markov network can be constructed from the VIG. This
option is referred to as Generational GOM (GG), as each solution in
the population is subject to one iteration of GOM per generation.

In the second option we consider, we aim to benefit from par-
tial evaluations by sampling only the variables for one factor Ci
during each iteration of GOM, i.e., F C = {{1}, . . . , {|C|}}. This
option is referred to as Factorized GOM (FG). As a selection step
is applied after sampling a subset of variables, optimization for
strongly dependent problems may be hindered, because the selec-
tion step between these univariate variation operations prohibit
moving a solution in a strongly correlated multi-dimensional cone
of improvement.

Thirdly, we combine GG and FG to potentially combine their
strengths. As such, GOM is first applied to each factor separately, fol-
lowed by all factors jointly, i.e.,F C = {{1}, . . . , {|C|}, {1, . . . , |C|}}.
We refer to this option as Hybrid GOM (HG).

4.3.2 Application of GOM. A conditional linkage model is a com-
bination of an underlying Bayesian factorization and a FOS F C
that describes how GOM is performed.

Algorithm 3 describes how GOM is applied to a solution x for a
FOS element F Cj of a conditional linkage model.

Algorithm 3 Conditional Gene-pool Optimal Mixing

1: procedure GenepoolOptimalMixing(x ,F Cj , (V ,E),O)
2: b ← x

FCj

3: for u ∈ F Cj do ▷ In orderO
4: Y ← {w ∈ I : w ∈ π (Cu )}
5: x Cu ← P(X Cu | XY = xY ) ▷ Eq. (7)
6: fo ← PartialEvaluation(x , fx ,F

C
j )

7: if fo < fx orU(0, 1) < paccept then fx ← fo
8: else x

FCj
← b

In Figure 4 we repeat the experiments shown in Figure 1 for
a number of introduced conditional linkage models. This shows
that UCond-FG and UCond-GG perform better than their non-
conditional counterparts, i.e., univariate and full, respectively. Fur-
thermore, the hybrid model UCond-HG achieves the best perfor-
mance on strongly dependent problems, but also benefits from the
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univariate steps on weakly dependent problems. The MCond mod-
els are not shown here, as they are almost identical to the UCond
models for this problem.
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Figure 4: Median (30 runs) number of evaluations (color-
coded) required to find the optimum with a precision of
10−10 of the 20-D f REBChain(x , c,θ ) for RV-GOMEA using dif-
ferent conditional linkage models.

5 EXPERIMENTS
In this section, we analyze the performance of RV-GOMEA with
conditional linkage models, and compare it to non-conditional link-
age models. We only consider benchmark problems that are non-
separable, because disjoint sets of variables in the VIG are inde-
pendent, and can therefore be reduced to multiple non-separable
problems that can be solved independently if д (see Equation (1))
is the identity function. All experiments are performed in a GBO
setting that allows for partial evaluations.

We compare the univariate (Uni), full, UCond-GG, UCond-FG,
UCond-HG, and MCond-HG linkage models. As the MCond-GG
model is essentially identical to the UCond-GGmodel for our bench-
mark problems, and the MCond-FG was never found to be more
effective than the UCond-FG, no results are shown for MCond.

We furthermore compare the performance of RV-GOMEA to
VkD-CMA [2, 3]. VkD-CMA is among the current state of the
art in continuous optimization, and is also capable of exploiting
the fact that the number of dependencies is less than all possible
dependencies, albeit through a means that is incompatible with
exploiting partial evaluations.

5.1 Benchmark Problems
We firstly consider the Rosenbrock function, defined as:

f Rosenbrock(x ) =
ℓ−1∑
i=1

[
100(x i+1 − x 2

i )
2 + (1 − x i )2

]
. (9)

Each remaining benchmark problem we consider is constructed us-
ing rotated ellipsoid sub-functions, as defined in Equation (10). For a
large condition number and rotation angle, the ellipsoid function is
strongly dependent and cannot be solved efficiently using a linkage
model that does not model the variables of the ellipsoid as jointly
dependent. Furthermore, using rotated ellipsoid sub-functions al-
lows us to analyze benchmark problems with different overlapping
dependency structures.

Secondly, we introduce the Rotated Ellipsoid Blocks (REB) prob-
lem in Equation (11), defined as the sum of a number of rotated
ellipsoid functions (Equation (10)) of size k with condition number
10c , rotation angle θ , and stride 1 ≤ s ≤ k . The REB function is
a generalization of the Sum of Rotated Ellipsoid Blocks (SoREB)

function [10]. The function Rθ (x) applies a counter-clockwise rota-
tion to x of θ degrees around the origin for each pair of variables.
The stride s determines the number of overlapping variables, as
the starting indices of consecutive ellipsoid blocks are s apart. For
s = k , each ellipsoid block is disjoint and therefore independent.

f Ellipsoid(x , c) =
|x |∑
i=1

10c (i−1)/(|x |−1)x 2
i . (10)

f REB(x , c, θ, k, s) =

|x |−k
s∑
i=0

f Ellipsoid(Rθ (x [1 + is : k + is]), c). (11)

To havemore flexibility in testing problems with overlapping depen-
dencies, we define the EllipsoidGraph problem in Equation (12), of
which the dependency structure is defined by the graphG = (V ,E).
For each vertex v ∈ V , a rotated ellipsoid of v and its neighboring
vertices N (v) is added, i.e.,

f REBGraph(x , c, θ, (V , E )) =
∑
v∈V

f Ellipsoid(Rθ ({v } ∪ N (v)), c). (12)

For convenience, we define the following functions:
f REBChainWeak(x ) = f REB(x , c = 1, θ = 5, k = 5, s = 4), (13)

f REBChainStrong(x ) = f REB(x , c = 6, θ = 45, k = 5, s = 4), (14)

f REB5SmallOverlap(x ) = f REB(x , c = 6, θ = 45, k = 5, s = 4), (15)

f REB5LargeOverlap(x ) = f REB(x , c = 6, θ = 45, k = 5, s = 1), (16)

f REBGrid(x ) = f REBGraph(x , c = 6, θ = 45, G Grid), (17)

f REBTorus(x ) = f REBGraph(x , c = 6, θ = 45, G Torus), (18)

f REBCube(x ) = f REBGraph(x , c = 6, θ = 45, G Cube), (19)

withGGrid a graph where the vertices are arranged into a
√
ℓ ×
√
ℓ

square grid, and an edge is added between each horizontally or
vertically neighboring pair of vertices, with no wrap-around. The
graphGGrid is therefore a planar graph with 2(ℓ −

√
ℓ) edges, and

the degree of each vertex is at least 2 and at most 4.
The graphGTorus is identical toGGrid, but has wrap-around at

the edges of the square grid. Therefore, the GTorus has 2ℓ edges
and the degree of each edge is 4. We only consider the REBGrid
and REBTorus problems for a square number of variables.

For the graphGCube, the vertices are arranged into a 3√
ℓ×

3√
ℓ×

3√
ℓ

simple cubic lattice. An edge is added between pairs of vertices
neighboring in the x, y, or z-direction, with no wrap-around. The
total number of edges is therefore 3(ℓ − ℓ2/3), and each vertex has
a degree of at least 3 and at most 6. We only consider the REBCube
problem for a cubic number of variables.

5.2 Experimental Set-up
In each run, a budget of 107 function evaluations was used, and
a time limit of 3 hours. In case of premature convergence before
exceeding the budget, a run is restarted using the same popula-
tion size. An implementation of RV-GOMEA [10] in C++, and an
implementation of VkD-CMA [2, 3] in Python were used. Unless
stated otherwise, default parameters were used for these algorithms.
Source code for these algorithms is available on the web pages of
the respective authors. The additions to RV-GOMEA introduced in
this paper were also implemented in C++. Source code is publicly
available on the web page of the last author1.
1https://homepages.cwi.nl/~bosman/

https://homepages.cwi.nl/~bosman/
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5.3 Optimal Population Size
We first determine how the optimal population size scales with
the increase of problem dimensionality for these linkage models,
as this can be seen as a clear indicator of how well the linkage
model matches the problem structure. For this purpose, we report
the median population size of a number of bisections (1 for VkD-
CMA, 5 for RV-GOMEA, due to substantial differences in required
computation time) in Figure 5, with each data point in the bisection
the median of 30 optimization runs. Estimated optimal population
size for larger dimensions (dashed lines) were linearly extrapolated
(on a log-log scale) with non-decreasing slope, as these populations
were used to obtain results shown in Figure 6. Running bisections
for all problem dimensionalities would require an exceptionally
large amount of computation time.

5.4 Scalability
In Figure 6 we show the scalability of the number of function
evaluations needed by RV-GOMEAwith conditional linkagemodels,
RV-GOMEA with non-conditional linkage models, and VkD-CMA.
The population size is set to the value found through bisections or
extrapolation, displayed in Figure 5.

In Figure 6 we generally observe the same trends as in Fig-
ure 5. The UCond-HG model is found to achieve the best perfor-
mance on all problems with strong dependencies, except on the
REB5SmallOverlap problem, where it performs slightly worse than
the UCond-GG model, but seems to have better scalability. Further-
more, on the problems with weak overlapping dependencies, the
UCond-HG was only a constant factor worse than the univariate
models, which obtained the best performance.

Interestingly, the Uni and UCond-FG linkage models performed
fairly well on the REB5LargeOverlap, REBGrid, REBTorus and RE-
BCube problems, despite these problems consisting of 3-D to 6-D
rotated ellipsoids with high condition number and rotation angle, in-
dicating that the optimization problem becomes easier when many
dependencies overlap. This is caused by the fact that the problem
landscape of a subset of variables Y becomes less ill-conditioned
when overlapping additive rotated ellipsoid sub-functions exist.

Furthermore, though the Uni and UCond-FG linkage models
required over 106 function evaluations for even small dimension-
alities of the REB5SmallOverlap function, this remained roughly
constant for larger problem dimensionalities. This is caused by the
fact that the sub-functions in this problem do not overlap much and
are each relatively difficult to solve for univariate linkage models.
Problem difficulty does however not increase with dimensionality
if more such sub-functions are added, due to GOM.

6 DISCUSSION
Based on the results discussed in Sections 5.3 and 5.4, we argue
that conditional linkage models have a clear benefit over non-
conditional linkage models in RV-GOMEA. In particular, we find
that using a conditional linkage model with Hybrid GOM (HG)
achieves the best or close to the best performance on all problems,
while also achieving the best scalability on all problems. The UCond-
HG variant seems to be the best of the two conditional variants, as
it was only slightly worse on the REB5SmallOverlap problem, and
better on all other problems.

We find that VkD-CMA generally requires a smaller population
size than RV-GOMEA, and performed better than the variants of
RV-GOMEA that do not benefit from partial evaluations (full and
UCond-GG). This is likely a result of the fact that variants of CMA-
ES are known to obtain excellent performance on problems with
quadratic surfaces, such as the benchmark problems considered
here. Though RV-GOMEA here used a sampling model based on
AMaLGaM [5], as it was originally introduced [10], it is possible to
incorporate a sampling model based on CMA-ES into RV-GOMEA,
potentially decreasing the required population size, and improving
performance. This is left to future work.

In this work, we have only considered artificial benchmark prob-
lems, in particular benchmark problems constructed using rotated
ellipsoids. In these problems, the dependency strength is equally
strong for each rotated ellipsoid, though real-world problems may
have varying degrees of dependency for different groups of vari-
ables, even if strictly speaking the problem is completely jointly
dependent. For example, this is the case for HDR brachytherapy
treatment planning for prostate cancer [24], where each variable is
associated with a physical location, and the dependency strength
of two variables correlates to the distance between their respective
physical locations. To deal with such problems, it may be necessary
to limit the linkage model to only the strongest dependencies, for
example by removing edges corresponding to weak dependencies
in the VIG. This does however require a notion of dependency
strength with associated cut-off value, which we currently lack.

In this work, we limited our study to a GBO setting, because
this is where RV-GOMEA mainly excels. The scalability of the
UCond-HG linkage model will become worse in a BBO setting,
because the univariate operations of GOM cannot benefit from
partial evaluations. The UCond-GG linkage model does however
not benefit from partial evaluations, and only benefits from the fact
that the VIG is known a-priori, which would need to be learned
online in a BBO setting. In contrast, the performance of VkD-CMA
is identical in the GBO and BBO settings.

7 CONCLUSIONS
In this paper, we aimed to improve the performance of RV-GOMEA
on problemswith strong overlapping dependencies in a GBO setting
that allows for partial evaluations. For this purpose, various new
sorts of conditional linkage models capable of capturing conditional
dependencies were introduced to be combined with RV-GOMEA.

The efficiency of RV-GOMEAwith these new conditional models
was compared to when non-conditional linkage models are used,
and to the efficiency of VkD-CMA, which is considered to be among
the state of the art for continuous optimization with EAs.

To compare performance, a number of benchmark problems with
overlapping dependencies were were constructed to have different
dependency structures and different dependency strength.

We observed that the UCond-HG linkagemodel with RV-GOMEA
obtained the best overall performance, and scaled better than or
equally good as VkD-CMA on all considered benchmark problems.
Note that all benchmark problems were considered in a GBO set-
ting that allows for partial evaluations, from which RV-GOMEA
can benefit, unlike VkD-CMA. This GBO setting has previously
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Figure 5: Estimated optimal population size for various linkage models for various benchmark problems, determined as me-
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Figure 6:Median (30 runs) number of evaluations for various linkagemodels for various benchmark problems in aGBO setting
using the population size shown in Figure 5.

appeared in various real-world problems [9, 24], which also have
an overlapping dependency structure.

Furthermore, the UCond-HG linkage model was able to match
the scalability of univariate linkage models on problems with weak
overlapping dependencies, and that of full linkage models on prob-
lems with strong overlapping dependencies. For two benchmark
problems, the UCond-HG linkage model scaled better than all other
considered linkage models.

We conclude that the introduction of conditional linkage models
can greatly benefit the performance of RV-GOMEA on problems
with overlapping dependencies in a GBO setting. These results are

promising and may benefit the optimization of real-world problems
with similar dependency structures [9, 24] in future work.
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