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Abstract. Deep-learning-based surrogate models represent
a powerful alternative to numerical models for speeding up
flood mapping while preserving accuracy. In particular, solu-
tions based on hydraulic-based graph neural networks (SWE-
GNNs) enable transferability to domains not used for train-
ing and allow the inclusion of physical constraints. However,
these models are limited due to four main aspects. First, they
cannot model rapid differences in flow propagation speeds;
secondly, they can face instabilities during training when us-
ing a large number of layers, needed for effective modelling;
third, they cannot accommodate time-varying boundary con-
ditions; and fourth, they require initial conditions from a nu-
merical solver. To address these issues, we propose a multi-
scale hydraulic-based graph neural network (mSWE-GNN)
that models the flood at different resolutions and propaga-
tion speeds. We include time-varying boundary conditions
via ghost cells, which enforce the solution at the domain’s
boundary and drop the need for a numerical solver for the
initial conditions. To improve generalization over unseen
meshes and reduce the data demand, we use invariance prin-
ciples and make the inputs independent from coordinates’ ro-
tations. Numerical results applied to dike-breach floods show
that the model predicts the full spatio-temporal simulation
of the flood over unseen irregular meshes, topographies, and
time-varying boundary conditions, with mean absolute errors
in time of 0.05 m for water depths and 0.003 m2 s−1 for unit
discharges. We further corroborate the mSWE-GNN in a re-
alistic case study in the Netherlands and show generalization
capabilities with only one fine-tuning sample, with mean ab-
solute errors of 0.12 m for water depth, a critical success in-

dex for a water depth threshold of 0.05 m of 87.68 %, and
speed-ups of over 700 times. Overall, the approach opens up
several avenues for probabilistic analyses of realistic config-
urations and flood scenarios.

1 Introduction

Precise flood models are invaluable for evaluating risks, is-
suing early warnings, and improving preparedness against
flood events. Two-dimensional hydrodynamic models de-
termine the spatio-temporal evolution of floods by solving
the shallow-water equations (SWEs) (Teng et al., 2017).
To address the intensive computational demands required to
solve the SWEs, we can resort to several strategies, such
as using simplified physical models (e.g. Van den Bout
et al., 2023) and high-performance clusters (e.g. Caviedes-
Voullième et al., 2023). More recently, deep learning mod-
els have emerged as an in-between option that can acceler-
ate flood simulations while maintaining high accuracy (Ben-
tivoglio et al., 2022). Most deep learning models predict
the flood evolution or its maximum depths while general-
izing over different boundary conditions, such as rainfall,
on a single domain. These models include transformers (Pi-
anforini et al., 2024), convolutional neural networks (CNNs)
(Berkhahn and Neuweiler, 2024; Liao et al., 2023; Kabir
et al., 2020; Guo et al., 2021; He et al., 2023), graph neu-
ral networks (GNNs) (Burrichter et al., 2023), Fourier neu-
ral operators (Xu et al., 2024), and long short-term memory
(LSTM) networks (Wei et al., 2024). Although these meth-
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ods are effective over a given area, they must be trained again
when applied to a different domain, thus hindering their use
as surrogate models.

As such, research is now focusing on generalizing deep
learning flood models to unseen case studies that the models
were not trained on. For example, Löwe et al. (2021), Guo
et al. (2022), and Cache et al. (2024) proposed CNN mod-
els to estimate the maximum water depth of pluvial floods
in urban and catchment settings, respectively. A conditional
generative adversarial network to predict the maximum water
depth for unseen rain events and urban catchments was devel-
oped by do Lago et al. (2023, 2024). Bentivoglio et al. (2023)
proposed a hydraulic-based graph neural network (SWE-
GNN) that could predict the spatio-temporal evolution of
dike-breach floods over unseen topographies. The main ad-
vantages of this model are its link with finite-volume meth-
ods that makes it suitable to simulate the physics on meshes
and a hydraulic-based propagation rule that enforces conti-
nuity in water propagation. Moreover, compared to previous
works, it can also predict the full flood’s spatio-temporal evo-
lution. However, the model cannot reproduce very different
propagation speeds and needs a high number of layers when
simulating large time steps, which can make the training pro-
cess unstable. Moreover, this approach uses a fixed boundary
condition and requires the first time step to be given by a
numerical solver.

To overcome these limitations, we propose a multi-scale
hydraulic graph neural network, based on an SWE-GNN.
Multi-scale models combine the domain information coming
from different resolutions and have shown benefits for simu-
lating other partial differential equations (Lino et al., 2022;
Fortunato et al., 2022). To drop the dependency from the
numerical solver, we integrate time-varying boundary con-
ditions via ghost cells, i.e. mesh cells that receive a known
value of a given variable at the domain boundary (LeVeque,
2002). To improve the generalization to unseen meshes,
we remove all coordinate-dependent inputs. This makes the
model invariant to rotations (Bronstein et al., 2021); that is,
rotations of the inputs do not affect the outputs. This helps
because it prevents the direction of flooding from being bi-
ased towards a specific direction in the training data.

We validate the model on dike-breach flood simulations
over non-squared domains, discretized by irregular meshes
and with different topographies and time-varying boundary
conditions. To test the applicability of this model to real-
world case studies, we consider a flood scenario for the
breaching of a levee system in the Netherlands.

The key novelties of this paper can be summarized as fol-
lows:

– We develop a multi-scale approach which improves the
simulations in both speed and accuracy, with speed-ups
of up to 1000 times and mean absolute errors of 0.05 m
and 0.003 m2 s−1 for water depth and unit discharges,
respectively.

– We include time-varying boundary conditions via the
use of ghost cells to remove the dependency from the
numerical models, and we improve generalization to un-
seen meshes by making the model’s inputs invariant to
rotations.

– We show that the model generalizes well to a realistic
case study with a bigger area and wider range of bound-
ary conditions than the training ones, with only one fine-
tuning simulation.

The rest of the paper is organized as follows: in Sect. 2, we
give an overview of the methods – we describe the mesh cre-
ation process, introduce the multi-scale hydraulic graph neu-
ral network model, describe how to include boundary con-
ditions via ghost cells, detail the inputs and outputs of the
model, and present the training loss function. Then in Sect. 3
we describe the synthetic and case study datasets, and we
present the results in Sect. 4. We discuss the method in Sect. 5
and conclude in Sect. 6.

2 Methodology

We developed a multi-scale graph neural network that com-
bines the information at progressively coarser resolutions to
propagate floods in space and time with different flow speeds
(Fig. 1). As input the proposed model takes static features
that represent the topography and connectivity of the domain
at different resolutions and dynamic features that represent
the hydraulic variables at time t . It then processes them via
a U-shaped architecture that applies graph neural networks
at different scales and combines them with downsampling
and upsampling operators. The outputs are the predicted hy-
draulic variables at the following time step t + 1 at the finest
available resolution. We added boundary conditions by as-
signing a known value of water depth or discharge to a set of
cells at the domain boundary.

In the following, we detail the multi-scale mesh cre-
ation procedure (Sect. 2.1) and the model architecture
(Sect. 2.2). Then we show how to include boundary condi-
tions (Sect. 2.3) and rotation-invariant inputs (Sect. 2.4). Fi-
nally, we describe the employed loss function (Sect. 2.5). We
denoted variables x at a given scale or resolution Mm as x·,m,
where · is a placeholder for other indices and where the vari-
able can be a scalar x, a vector x, a matrix X, or a tensor X .
When the superscript m is omitted, we refer to the variables
at the finest scale.

2.1 Multi-scale mesh creation

We designed a multi-scale model that combines meshes with
progressively coarser resolutions. We employed an iterative
process that requires only the boundary polygon of a se-
lected area without any prior knowledge of the underlying
topography. First, we create a coarse mesh from a bound-
ary polygon using the MeshKernel software (Deltares, 2024).
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Figure 1. Overview of the proposed mSWE-GNN model. As input the model 8(·) takes a fine mesh and its coarser versions, along with
the static and dynamic inputs defined on them (blue box, top left) and produces an estimate of the hydraulic variables in time (orange box,
top right). The model is then repeated auto-regressively using its predictions as inputs (top black arrow) to determine the spatio-temporal
evolution of the flood. Boundary conditions are provided at each time step by assigning a known value to a set of cells in the dynamic
inputs Ut−p:t . In the black box, black arrows indicate multi-layer perceptrons (MLPs) present in the encoders and the decoder; purple arrows
represent graph neural network layers; light-green arrows represent downsampling layers; dark-green arrows represent upsampling layers;
and red arrows skip connections across different parts of the architecture.

This corresponds to the mesh in the bottleneck of the multi-
scale module (Fig. 1). Then we refine the mesh by splitting
each mesh edge in two and connecting the newly formed
points via edges. Next the mesh undergoes an iterative or-
thogonalization algorithm needed for the underlying numer-
ical software Delft3D to run because of its staggered grid
scheme (Deltares, 2022). For the same numerical constraints,
after the orthogonalization, all elongated elements are re-
moved, resulting in a mixture of triangular and quadrilat-
eral elements. We define elongated elements as those whose
line connecting the barycentre and edge middle points is 0.1
times smaller than the other lines in the same element. We
repeat these steps multiple times depending on the required

scale of computations in the fine mesh. The obtained set of
meshes constitutes our multi-scale mesh.

2.1.1 Multi-scale graph

The computational graph used in the proposed model con-
siders the barycentres of the mesh cells to be nodes, while
edges connect neighbouring cells. We connect the graphs at
two scales based on the spatial position of the mesh barycen-
tres, as shown in Fig. 2. If a fine mesh cell’s centre is within
a coarse mesh cell centre, then a directed inter-scale edge ex-
ists between the two nodes.

We can describe the connectivity of the obtained multi-
scale graph via a block-diagonal connectivity matrix com-
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Figure 2. (a) Adjacency matrix representation of the multi-scale
graph for a mesh with three scales. Am ∈ RNm×Nm represents the
adjacency matrix at scale m, while Pm→n ∈ RNm×Nn represents
the prolongation matrix from scale m to scale n. (b) Example con-
nection between a fine mesh A1 and a coarse mesh A2, where P2→1

indicates the connectivity across the two scales.

posed of adjacency matrices Am and prolongation matrices
Pm→n. Adjacency matrices are squared matrices that rep-
resent the connectivity of a graph at scale m by assigning
amij = 1 if edge (i,j) exists. Prolongation matrices are rect-
angular matrices that act like adjacency matrices but connect
one scale m to its upper or lower scale n ∈ {m+ 1,m− 1}.
They can also be seen as adjacency matrices for bipartite
graphs whose nodes can be divided into two disjoint sets.

2.2 Architecture

We develop a multi-scale hydraulic graph neural network
(mSWE-GNN) by building upon Bentivoglio et al. (2023).
This is an encoder–processor–decoder architecture that auto-
regressively predicts the hydraulic variables at time t + 1 as

Ût+1
= Ut +8(Xs,Ut−p:t ,E), (1)

where the output Ût+1 corresponds to the predicted hy-
draulic variables; Ut denotes the hydraulic variables (water
depth [m] and unit discharge [m2 s−1]) at time t ; 8(·) is an
encoder–processor–decoder model that determines the evo-
lution of the hydraulic variables for a fixed time step; Xs de-
notes the static node features; Ut−p:t denotes the dynamic
node features, i.e. the hydraulic variables for time steps t−p
to t ; and E denotes the edge features that describe the geom-
etry of the mesh. We include different mesh resolutions by
defining the model 8(·) in a U-shaped architecture, inspired
by Gao and Ji (2019), starting from a fine mesh and going to
coarser ones and back to a fine mesh output. Hereafter, we
describe the details of the architecture shown in Fig. 1.

2.2.1 Encoder

We increase the expressivity of the inputs by employing
three separate encoders for processing the static node fea-
tures Xs ∈ RN×Is , the dynamic node features Xd ≡ Ut−p:t ∈

RN1
×O(p+1), and the edge features E ∈ RE×Iε , with N be-

ing the total number of nodes, Is the number of static node
features, N1 the number of nodes at the finest scale, O the
number of hydraulic variables, p the number of input previ-
ous time steps, E the number of edges, and Iε the number of
input edge features. The encoded variables are defined as

Hs = φs (Xs) ,Hd = φd (Xd) ,E ′ = φε (E) , (2)

where φs(·) and φd(·) are three-layer MLPs shared across all
nodes, H ∈ RN×G denotes the encoded node features, and
φε(·) is a three-layer MLP shared across all edges that en-
codes the edge features into E ′ ∈ RE×G, with G being the
number of features in the latent space. The encoded vari-
ables Hs , Hd , and E ′ represent a higher-dimensional version
of the original inputs that is more expressive. We apply the
shared encoders of the static features φs(·) and φε(·) to all
features at all scales, while the encoder of the dynamic fea-
tures φd(·) is applied only to the finest scale. The rationale
behind having a shared static feature encoder for all scales is
that higher-dimensional features should have similar embed-
ding independently of the scale, since the physical quantities
are the same.

2.2.2 Processor

The processor propagates the encoded inputs throughout the
multi-scale graph. We employ a sequence of GNN layers to
propagate information at a given scale and connect two scales
via downsampling and upsampling operators. The operations
are organized in a U-shaped fashion, with a downsampling
branch from fine to coarse and an upsampling branch from
coarse to fine, as shown in Fig. 1.

In the downsampling branch, we start by applying L GNN
layers at the encoded node and edge features H1

s , H1
d , and

E ′1 at the finest-scale mesh M1. Then we apply a downsam-
pling operator ↓:Mm→Mm+1 that maps the features of
the finer scale Mm to the coarser scale Mm+1. We repeat
these two operations until reaching the final coarser scale.
In the upsampling branch, we apply an upsampling opera-
tor ↑:Mm+1→Mm that maps the features from the coarser
scale Mm+1 to the finer scale Mm. We add skip connections
to sum the output of the downsampling GNN at scale Mm

with the output of the upsampling operator from scale Mm+1
to Mm. These connections facilitate information transfer and
training, similarly to Ronneberger et al. (2015). Finally, we
apply another set of L GNN layers to the output of the skip
connections and repeat these operations until the finest scale.
All GNNs, downsampling operators, and upsampling opera-
tors are not shared, meaning that each acts independently at
one scale or across two given scales.

Nat. Hazards Earth Syst. Sci., 25, 335–351, 2025 https://doi.org/10.5194/nhess-25-335-2025
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The GNN layers follow Bentivoglio et al. (2023) and can
be expressed as

s
(`+1)
ij = ψ

(
hsi,hsj ,h

(`)
di ,h

(`)
dj ,ε

′

ij

)
�

(
h
(`)
dj −h

(`)
di

)
, (3)

h
(`+1)
di = h

(`)
di +

∑
j∈Ni

s
(`+1)
ij W (`+1), (4)

where ψ(·) : R5G
→ RG is an MLP, � is the Hadamard

(element-wise) product, h
(`)
di is the embedding of the dy-

namic inputs at node i and layer `, hsi is the embedding of
the static inputs at node i, and W (`)

∈ RG×G denotes learn-
able parameter matrices. The propagation rule in Eq. (3) has
a hydraulic gradient-like term, h(`)dj −h

(`)
di , that acts as a physi-

cal constraint that allows water to propagate only from nodes
which already have water. In fact, hdi only equals 0 if node
i has both zero water depth and zero discharge, since the dy-
namic node encoder has no bias term. The predicted fluxes
across nodes sij then combine the information from neigh-
bouring nodes Ni by following the principles of numerical
methods.

The downsampling operator ↓:Mm→Mm+1 is a mean
pooling operator1 from a fine mesh Mm to a coarse mesh
Mm+1 defined as

hm+1
di ←

1

|Nm→m+1
i |

∑
Nm→m+1
i

hmdi, (5)

where Nm→m+1
i is the set of neighbouring nodes in the finer

mesh Mm connected vertically to the nodes in the coarser
mesh Mm+1 and hm+1

di ∈ RG denotes the downsampled dy-
namical features at node i. We used a mean pooling opera-
tion since physical features at coarser scales should resem-
ble those at the finer scale. This approach offers a trade-off
between simpler resampling methods such as nearest neigh-
bours and more computationally intensive ones such as cubic
interpolation (Maeland, 1988).

The upsampling operator ↑:Mm+1→Mm is a learnable
operator defined as

hmdi←
∑

Nm+1→m
i

ψm+1→m
(
hmsi ,h

m+1
si ,hmdi,h

m+1
di

)
�hm+1

di , (6)

where hmdi denotes the upsampled dynamic node features at
node i in scale Mm, ψm+1→m(·) : R4G

→ RG is an MLP,
and Nm+1→m

i is the set of neighbouring nodes in the coarser
mesh Mm+1 to the nodes in the finer mesh Mm. This expres-
sion has two important features: first, it is independent of the
number of nodes at the fine scale, meaning that it works both
from one node to one node or from one node to several nodes,
and second, the multiplication by hm+1

di ensures that this op-
eration is only activated when a node on the coarse cell has
water in it; i.e. hm+1

di 6= 0. Differently from the SWE-GNN

1We also evaluated a learnable pooling operator, but the perfor-
mance was lower, as highlighted in the ablation study in Sect. 4.3.

layer (Eq. 3), we avoid edge features, since there are none
across scales, and the hydraulic gradient term, since the val-
ues at one scale should be close to those at the previous scale.
Thus, using a difference would result in a zero value when the
features at two scales are identical.

We add skip connections to combine the outputs of the
downsampling GNNs h

m↓
di with the outputs of the upsam-

pling operations h
m↑
di before applying another GNN layer.

The skip connections can be expressed as

hmdi← h
m↓
di +h

m↑
di . (7)

Skip connections should improve the connectivity between
different parts of the architecture and combine the different
propagation speeds.

The obtained mSWE-GNN architecture allows us to
model the flood’s propagation speed at a different scales.
This is because each scale’s GNN covers different portions
of space based on the physical nodes’ distances. These sep-
arate flow speeds are combined in the architecture, allow-
ing the model to better capture their variations from one
time step to another. This is particularly relevant to captur-
ing a broader scale of dynamics with rapidly time-varying
boundary conditions that significantly change the propaga-
tion speed. Moreover, this setup alleviates the requirements
regarding the number of GNN layers at the finest scale since
one layer at a coarse scale can cover the equivalent of several
layers at the finest scale. Hence, we end up with a model that
is more efficient and better captures the time-varying depen-
dencies of the flood.

2.2.3 Decoder

The decoder estimates the predicted hydraulic variables
ût+1
i ∈ RO as a combination of the input previous time steps

U
t−p:t
i ∈ RO×(p+1) and the output of the processor at the

finest scale hdi ∈ RG. This can be expressed as

ût+1
i = ReLU

(
U
t−p:t
i wp +ϕ (hdi)

)
, (8)

where p is the number of previous time steps, wp ∈ Rp+1

is a learnable vector, and ϕ(·) is a three-layer MLP which
decodes the embedding of the processor hdi. We added a
ReLU=max{0,x} activation function at the output of the de-
coder to guarantee physical values of water depths, since we
know that water depth and unit discharges cannot be nega-
tive, similarly to Palmitessa et al. (2022). The learnable pa-
rameters wp weigh the contribution of each input time step
to the output of the model, thus acting as a 1D convolutional
layer along the temporal axis.

2.3 Boundary conditions

To include external forcings, we add boundary conditions via
ghost cells, as done in numerical methods (LeVeque, 2002).
Ghost cells are elements which belong to the computational
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Figure 3. Schematic representation of an arbitrary triangular vol-
ume mesh (a) with two ghost cells for inflow and outflow boundary
conditions (BCs). The ghost cells (red) are added in correspondence
to a boundary cell which receives a given boundary condition. In the
dual graph (b), a directed edge is added from the ghost cell to the
domain cell or vice versa, depending on whether the boundary con-
dition is an inflow or an outflow, respectively.

domain but are not in the physical one and act as link to ex-
ternal conditions. Boundary conditions related to inflows and
outflows are represented via directed edges towards the real
mesh and the ghost cells, respectively, as shown in Fig. 3.
The computations with directed edges in the model follow
the same propagation rules as those with undirected edges.
Based on the forcing type, we can assign a prescribed con-
dition for each time step of the simulation and at a specific
point in the domain to strictly enforce boundary conditions.
For water levels, we impose the known value at the bound-
ary. For discharge hydrographs, we first transform discharges
[m3 s−1] into unit discharges [m2 s−1] by dividing the input
discharge by the length of the edge across which it is pass-
ing, as in numerical methods. Wall boundaries are modelled
without any ghost cell instead of imposing reflection since
this is implicitly assumed by the dual graph’s structure that
cannot propagate over the wall.

2.4 Rotation-invariant inputs

Most deep learning models consider coordinate-dependent
features, such as the x and y components of the slopes. When
applying a rotation to a domain, these values change, causing
a change in the output, which is not necessarily equivalent
to the applied rotation. This is a well-studied challenge in
deep learning (DL) models (Bronstein et al., 2021) and can
be solved via data augmentation, i.e. by training the model
using rotated instances of the training data, or by modify-
ing the deep learning model (e.g. Lino et al., 2022). Since
the outputs of our model are scalars, we avoid using any
rotation-dependent features to simplify the model and obtain
a rotation-invariant model; i.e. rotations of the inputs do not
affect the output. The static node features can then be ex-
pressed as xsi = (ai,ei,mi,w

t
i ), where ai is the area of the

ith finite-volume cell, ei its elevation, mi its Manning co-
efficient, and wti its water level given by the sum of the el-
evation and water depth at time t . To determine the values
of elevation ei,m, Manning coefficient mi,m, and water level
wti,m at the coarser scales, we perform a mean pooling oper-

ation from the finest scale to each of the coarser scales as in
Eq. (5). As edge features, we consider εij = (lij ), where lij
is the length of the dual edge between node i and node j . The
dynamic node features are defined as xdi = u

t−p:t
i = (ut−pi ,

. . . , ut−1
i , uti), with uti = (hti , |q|

t
i), where hti is the water depth

at time t and node i and |q|ti is the unit discharge at time t
and node i.

2.5 Loss function

We employ a multi-step-ahead forecasting loss Lf that con-
siders multiple model outputs using its own predictions as
inputs. This helps the model deal with incorrect inputs and is
useful in reducing the accumulation of errors in time (Ben-
tivoglio et al., 2023). It can be expressed as

Lf =
1
HO

H∑
τ=1

O∑
o=1

γo|û
t+τ
o −ut+τo |2, (9)

where ut+τo ∈ RN denotes the predicted hydraulic variables
at time t+τ ,H is the prediction horizon,O is the number of
output hydraulic variables, and γo denotes coefficients used
to weigh the influence of each hydraulic variable on the loss.

3 Experimental setup

3.1 Synthetic dataset

We created a synthetic dataset of dike-breach flood simula-
tions using the numerical software Delft3D (Deltares, 2022).
Each simulation is discretized via an irregular mesh cre-
ated from randomly generated polygons, based on ellipsoidal
shapes, as described in Sect. 2.1. The multi-scale mesh ob-
tained with this procedure has a total of four scales. This
is an arbitrary choice selected to showcase the expressivity
of the model, but a different number of mesh scales would
work as well, unless the coarsest scale has excessively few
cells. For each mesh, we use a randomly generated digital
elevation model (DEM) based on Perlin noise and combined
with a small slope in a random direction, as exemplified in
Fig. 4. As a boundary condition, we apply an inflow dis-
charge hydrograph to one random border edge. The hydro-
graph’s shape is generated based on Weibull-like probability
density functions with different shape parameters (Bhunya
et al., 2011). All hydrographs are right-tailed since most
dike-breach hydrographs have this shape (e.g. D’Oria et al.,
2022; Shustikova et al., 2020), and their peaks vary from 150
to 300 m3 s−1, as shown in Fig. 6, in line with realistic breach
inflows. For Manning’s roughness coefficient, we used a spa-
tially uniform value of 0.023 m−1/3 s, which is kept the same
throughout all simulations. The dataset comprises 100 sim-
ulations, 60 used for training, 20 for validation, and 20 for
testing. Each simulation has as output a temporal resolution
of 2 h for a total simulation time of 96 h, or 48 steps ahead.
The datasets’ statistics in terms of elevation (above sea level),

Nat. Hazards Earth Syst. Sci., 25, 335–351, 2025 https://doi.org/10.5194/nhess-25-335-2025



R. Bentivoglio et al.: Multi-scale hydraulic graph neural networks for flood modelling 341

Figure 4. Example mesh with the corresponding digital elevation
model (DEM) for one simulation in the synthetic dataset.

number of cells, cell area, edge length, and total flood vol-
ume are reported in Table 1. Compared to the dataset in Ben-
tivoglio et al. (2023), this has more complexity, in terms of
both mesh structure and discharge conditions.

3.2 Case study: dike ring 15

We assess the transferability of the trained model by apply-
ing it to dike ring 15 Lopiker- and Krimpenerwaard in the
Netherlands, which surrounds and protects the area between
Rotterdam and Utrecht (Fig. 5). This area is prone to flood-
ing and protected entirely by a system of levees. This case
study has an area of 31 400 ha, with a total population of
201 500 inhabitants and an expected flood damage cost per
event of EUR 5.1 billion (Boon and Witteveen+Bos, 2011).
We chose this area because, depending on the location of the
breach, the basin has a bathtub or sloped response, mean-
ing that water fills up the domain evenly or has a preferen-
tial drainage direction, respectively (Rijkswaterstaat, 2014).
We simplified the hydraulic components not represented in
the training dataset. Specifically, we removed all waterbod-
ies and every infrastructure that is not directly included in
the DEM. Moreover, we assumed constant roughness coeffi-
cients throughout the whole area.

As boundary conditions, we created a set of inflow dis-
charges that follow a different distribution from the train-
ing ones. This has an initial rise, following a hypothetical
widening of the breach, and a decreasing limb in time that
ends with non-zero discharge. We also increased the peak
discharge to match realistic values for the case study consid-
ered, with values between 700 and 1000 m3 s−1, correspond-
ing to inflows of a fully developed breach, which could be
more than 100 m wide. This results in an approximately 9-
fold increase in the total flood volumes with respect to the
synthetic dataset. For the breaching locations, we selected 11
approximately equidistant spots along the contour of the dike
ring (see Fig. 5). This allows us to capture the comprehensive
hydraulic responses of the basin.

The selected case study is more than twice as big as the
synthetic datasets and has different elevation patterns, leav-
ing more space to develop different flood dynamics. Hence,
we decided to also test the model with a fine-tuning step, em-
ploying a single simulation for training and validation. In the
experiments, we analyse the effect of adding this fine-tuning
step after training the model on the synthetic dataset.

3.3 Normalization

The static attributes (node and edge features) are determined
at all scales when creating the dataset. Since the values
of areas a and edge lengths l change significantly across
scales, we standardize those features separately for each
scale. Specifically, we collect all training instances of a given
variable x at mesh scale Mm and determine their mean µ
and variance σ . The normalized variables are then obtained
as x̂ = x−µ

σ
, where x̂ indicates the standardized variable. The

remaining variables are not processed by any normalization
procedure.

3.4 Training setup

We trained all models with the PyTorch (Version 2.0.1)
(Paszke et al., 2019) and PyTorch Geometric (Version 2.4)
(Fey and Lenssen, 2019) libraries, using the Adam optimiza-
tion algorithm (Kingma and Ba, 2014). We performed sev-
eral preliminary trials to identify a set of suitable training
hyperparameters for the experiments; see Table D1. We used
a learning rate scheduler with a fixed step decay of 0.7, ev-
ery 20 epochs, starting from 0.003. The training was car-
ried out for 200 epochs with early stopping, using 16-bit
mixed precision to decrease the computational burden. Dur-
ing training, we clipped the gradients with a value higher
than 1 to improve training stability and employed a curricu-
lum learning strategy as in Bentivoglio et al. (2023), with
a maximum training prediction horizon H = 6 steps ahead
(Eq. 9). We used p = 2 previous time steps as dynamic in-
puts; i.e. Xd = (Ut−2,Ut−1,Ut ). The coefficients used in the
loss function (Eq. 9) are γ1 = 1 for the weight of the water
depths and γ2 = 7 for the weight of the unit discharge. We
used these values to weight more water depths, whose values
are generally more than 10 times larger than the discharge
ones, as we deem them more important.

In terms of hardware, we employed an NVIDIA A100
80 GB PCIe (Delft High Performance Computing Centre,
2022) for training and deployment of the deep learning mod-
els and an Intel® Core™ i7-8665U at 1.9 GHz CPU for
the execution of the numerical model. Note that the nu-
merical model cannot run on GPUs, but we used the avail-
able OpenMP option to parallelize the computations on eight
CPU threads.
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Table 1. Mean and standard deviation of elevation (above sea level), number of cells, cell area, edge length, and total flood volume for the
training, validation, and testing datasets. All geometric variables refer to the properties of the finest mesh in each dataset.

Dataset No. of simulations Elevation [m] Number of cells Cell area [m2] Edge length [m] Flood volume [106 m3]

Train 60 −0.04± 0.6 10 018± 1251 14 817± 5717 182.8± 37.2 3.07± 0.66
Validation 20 −0.06± 0.58 10 029± 904 13 741± 5125 176.3± 34.9 2.9± 0.69
Test 20 −0.03± 0.53 9803± 1130 13 480± 4917 174.9± 33.7 3.02± 0.64
Test dike ring 15 10 −1.07± 1.17 22 881 13 544± 5521 174.7± 36.9 26.5± 2.54

Figure 5. Dike ring 15 in the Netherlands (coordinate system EPSG:28992 Amersfoort / RD New). The crosses indicate the location of the
dike breaches used for training and testing. The maps are taken from ©OpenStreetMap contributors 2024. Distributed under the Open Data
Commons Open Database License (ODbL) v1.0.

Figure 6. Distribution and shape of the hydrographs used as in-
puts for the training (blue), synthetic test (orange), and dike ring
15 test (green) simulations. The shaded region indicates 1 standard
deviation away from the mean at each time step. The dashed lines
represent the envelopes of the minimum and maximum discharges
at each time step.

3.5 Metrics

We evaluated the models’ performance using a multi-step-
ahead mean absolute error (MAE) for each hydraulic variable
ûτo over the full simulation, expressed as

MAEo =
1
H

H∑
τ=1
|ûτo −uτo |1, (10)

with H being the prediction horizon. Note that while the
training loss in Eq. (9) is evaluated over a limited number
of time steps, the validation loss function in Eq. (10) is eval-
uated on the full simulation to mimic the testing conditions.

We also measured the spatio-temporal error distribution
of the water depth using the critical success index (CSI) for
threshold values of 0.05 and 0.3 m as in Bentivoglio et al.
(2023). The CSI measures the spatial accuracy of detecting a
certain class (e.g. flood or no-flood), and for a given threshold
it is evaluated as

CSI=
TP

TP+FP+FN
, (11)
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where TP denotes the true positives, i.e. the number of cells
where both numerical and deep learning models predict wa-
ter depth above a given threshold; FP denotes the false posi-
tives, i.e. the number of cells where the deep learning model
wrongly predicts water depth above a given threshold; and
FN denotes the false negatives, i.e. the number of cells where
the deep learning model does not predict water depth above
a given threshold. We measured the computational speed-up
as the ratio between the computational time required by the
numerical model and the inference time of the deep learning
model. We did not consider the computational time to create
the meshes, since they are needed for both methods. Unless
otherwise mentioned, the deep learning model is run in paral-
lel over all testing simulations, differently from the numerical
model (see Appendix C). This choice is reasonable since we
can use this model for probabilistic forecasts, where multiple
simulations may be run in parallel.

4 Results

4.1 Comparison with SWE-GNN

To highlight the improvements given by multi-scale mod-
elling, we compared the mSWE-GNN model with an en-
hanced SWE-GNN model that includes ghost cells, rotation-
invariant inputs, and the 1D CNN in the decoder but lacks the
multi-scale component. We did not compare it with the stan-
dard SWE-GNN since it would not be able to run without
a numerical input. We also did not compare it against other
baselines as the SWE-GNN performs better than them (Ben-
tivoglio et al., 2023), so we assumed the same holds for the
enhanced version. Both models underwent a hyperparameter
search procedure based on the number of GNN layers and
the number of hidden features, as reported in Table D1.

This resulted in a set of models with different perfor-
mance levels in terms of accuracy and speed, as reported in
Fig. 7. The results show that the multi-scale structure helps
the model to better capture flow variations across time, re-
sulting in a better Pareto front for validation losses and CSI.
The mSWE-GNN has, on average, more parameters than the
SWE-GNN because it has several GNNs (two per scale, ex-
cept one for the bottleneck), which makes it by default big-
ger. Despite this, the mSWE-GNN is comparatively fast, with
speed-ups of up to 1200 times, since at the finest scale it has
fewer layers than the SWE-GNN. This substantially reduces
the computations since the finest scale is the one with the
most nodes and edges. Moreover, the training process also
resulted in being more stable in the mSWE-GNN, probably
due to the lower number of GNN layers.

For the remaining analyses, we selected the mSWE-GNN
model with the best performance, which consists of four
GNN layers for each scale, a hidden feature dimension of 64,
and around 811 000 learnable parameters. Despite the limited
number of training samples and the amount of variability in

simulated conditions, the model captures the flow patterns.
Figure 8 reports the evolution of the critical success index
(CSI) for the water depth thresholds of 0.05 and 0.3 m and
the mean absolute errors (MAE) for water depth and unit dis-
charge for the test dataset. CSI0.05 m stays constantly high for
all simulations. On the other hand, CSI0.3 m starts low; this is
due to an initial scarcity of water depths higher than 0.3 m,
which skews the performance to lower values. The MAE of
unit discharge seems correlated with the input breach dis-
charge values, meaning that the biggest errors occur at the
hydrograph peak and the smallest close to the tail. Indeed,
the highest errors are generally located near the breach loca-
tion, where the most rapid processes occur. Thus, when the
inflow discharge decreases, so does the error. The MAE of
water depth instead rises with time, as also reported in Ben-
tivoglio et al. (2023). The main reason for the increase in
water depth MAE over time is that as the flood progresses, it
covers a greater spatial extent, increasing the number of cells
where prediction errors can occur. In this case, however, the
errors plateau at the end of the inflow hydrograph, indicating
that water flow is stopping.

4.2 Transfer learning to realistic case study

After training the model with the synthetic dataset, we tested
it on dike ring 15 for different breach locations with vary-
ing discharges. The zero-shot testing of the model without
any fine-tuning resulted in modest performance levels, seen
in Table 2. We attribute this mismatch to not only the differ-
ence in total flood volume but also the domain size and the
different elevation patterns when compared to the training
ones (see Table 1). Moreover, this implies different hydraulic
dynamics, such as the presence of a sloped basin which ac-
cumulates water in a downstream area (in the bottom left of
the domain) without further propagation, which are not suf-
ficiently represented in the training domain.

We then performed a fine-tuning step consisting of training
the previously trained model again with one extra simulation
from the new case study. We trained and validated data on
the same simulation since we wanted to minimize the num-
ber of data needed to fine-tune the model. While in principle
this might lead to overfitting, this was not the case here. This
is probably due to the inductive biases of the model which
constrain the model to learning only local dynamics. Addi-
tionally, the training process considers only a limited number
of predicted steps ahead, while the full simulation has many
more. Consequently, the model is forced to learn different
dynamics in time rather than overfitting on a single temporal
pattern, even if we are training on a single simulation. Table 2
shows that adding just one simulation improves the testing
performance on the rest of the dike ring by 158% and 62%
in terms of MAE for water depth and discharge, respectively,
and by 38% and 78% for CSI0.05 m and CSI0.3 m.

Figure 9 shows the model performance for the prediction
in time of water depth for one test case. Water depths are
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Figure 7. Pareto front of the mSWE-GNN and SWE-GNN models for speed-ups: validation RMSE (a) and validation CSI with a 0.05 m
water depth threshold (b). The models’ size varies with the number of hidden features and number of GNN layers.

Table 2. Effect of fine-tuning the mSWE-GNN model on dike ring 15. The provided uncertainty estimates account for the variability across
different simulations. All metrics refer only to the finest mesh.

Fine-tuning MAE ↓ CSIτ [%] ↑

h [10−2 m] |q| [10−2 m2 s−1] τ = 0.05 m τ = 0.3 m

No 31.09± 5.42 3.37± 1.24 63.36± 19.54 46.06± 18.62
Yes 12.07± 4.19 2.08± 0.82 87.68± 10.3 81.82± 16.07

Figure 8. Temporal evolution of CSI scores (a) and MAE of water
depth h and unit discharge q (b) for the test dataset. The confidence
bands refer to 1 standard deviation from the mean.

predicted well overall in the domain, including water accu-
mulation in the western part of the area. While the absolute
values of the difference may be relatively high in these areas,
they do not matter as much for practical purposes since those
locations are flooded with a high water depth either way; thus
the associated damage will be equivalent.

Figure 10 shows that the spatio-temporal evolution of the
predicted flood is in line with the corresponding numerical
simulations, as indicated by the low errors in flood arrival
times (FATs) for the critical threshold of 0.05 m of water
depth. FATs indicate the arrival time of water with a given
depth threshold for each cell in the domain. Most errors are
located at the wave front during the end of the simulation, as
previously mentioned, or in false-positive areas that are not
flooded in the numerical model.

Figure 11 indicates that the model performance is consis-
tently high for all testing breach locations of the dike ring

15 dataset, as suggested by the high CSI0.05 m values, which
are always above 0.8. One reason why the model performs
so well is that the final flood map tends to converge to the
downslope accumulation area in the bottom-left area of the
domain. This also proves that the model can correctly model
the response dynamics of the system, independently of where
the breaching starts.

The good performance of the mSWE-GNN model is
accompanied by a substantial speed-up of the underlying
model. When testing, the model has a speed-up of more than
700 times with respect to the original simulations, as high-
lighted in Table A1. This indicates a good scaling with the
size of the domain, with higher speed-ups for bigger do-
mains. One other possible explanation is related to the sim-
ulated discharges. Numerical simulations of slow flows are
generally more stable and faster to compute than those with
high Froude numbers, which are more present in dike ring
15. Contrarily to numerical models, the mSWE-GNN has
no such stability constraints, which makes it unbound by the
same limitations and thus faster.

4.3 Ablation study

Finally, we performed an ablation study to determine the role
of the different components in the mSWE-GNN (Table 3),
such as the multi-scale module, the convolutional decoder,
and the rotation-invariant inputs. We also reported the per-
formance of the best SWE-GNN model from Sect. 4.1. The
results reported in Table 3 show that all of the added or re-
moved components contribute to the performance on the test
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Figure 9. The mSWE-GNN’s predictions for water depth on a test-
ing simulation for dike ring 15. The topography is presented in the
top-left plot and the discharge hydrograph in the top right. Below is
the evolution over time for the ground-truth output of the numerical
simulation (top row) with the predictions (middle row). The dif-
ference (bottom row) is evaluated as the predicted value minus the
ground-truth one; thus, positive values correspond to model over-
predictions, while negative values correspond to under-predictions.
All plots represent values only on the finest mesh.

dataset. The speed-up was consistent throughout all mSWE-
GNN configurations, and we report it in Table A1.

4.3.1 Multi-scale module

We analysed the effects of using a learnable downsampling
operator in place of a mean pooling operator in Eq. (5) and
of removing skip connections in Eq. (7). For the learnable
downsampling operator, we used a three-layer MLP shared
across each intra-scale edge that takes as inputs the dynamic
node feature at nodes i in Mm and node j in Mm+1, simi-
larly to Eq. (6).

Using a learned downsampling operator results in a lower
performance. We argue this is caused by the unnecessary
complexity of the operation and by the common mean aggre-
gation term, which is needed to make the model work with a
flexible number of nodes and cancels out the expressivity of
the MLP.

Removing skip connections does not influence the perfor-
mance as much. This indicates that most of the computa-
tions are performed after the architecture bottleneck, while
the down-going branch is responsible for smaller details that
are not captured in the up-going branch. This means that the
number of layers in the down-going branch can probably be

reduced while keeping good performance with less model
complexity.

4.3.2 Decoder

We compared the convolutional decoder (Eq. 8) with a resid-
ual connection which simply sums the output of the previ-
ous time step and the output of the decoder’s MLP before
applying a ReLU activation; i.e. Ût+1

= σ
(

Ut +ϕ
(

H(L)
d

))
.

Using the 1D CNN in the decoder results in better testing
and validation metrics, meaning that different time steps con-
tribute unevenly to the final model output. This allows the
model to better capture variations in time, especially due to
rapid variations in boundary conditions.

4.3.3 Rotation-invariant inputs

We added the x and y components of the slope and orien-
tation of mesh edges as static inputs to show that including
rotation-dependent inputs worsens generalization (Table 3).
The reason for this is that all simulations are quite differ-
ent from one another in terms of breach location and ori-
entation of the meshes. Consequently, a model with rotation-
dependent inputs would require far more training data to gen-
eralize well to all spatial configurations.

5 Discussion

We proposed a multi-scale graph neural network model
(mSWE-GNN) that can generalize flood simulations to
unseen irregular meshes, topographies, and time-varying
boundary conditions, with speed-ups up to 700 times com-
pared to the underlying numerical model. The mSWE-GNN
generalizes well to realistic case studies with as little as one
fine-tuning simulation. We expect the model to further im-
prove performance and reduce risk of overfitting by increas-
ing the number of fine-tuning simulations. This result is in
line with a similar finding for pluvial flooding, where one
fine-tuning simulation was enough to help in generalization
to diverse case studies (Cache et al., 2024). Since the model
can generalize well with as few as 60 training simulations, we
believe that training the model on a substantially larger num-
ber of data might even remove the need for fine-tuning, al-
though this could still be needed for more complex domains.

One key to the model’s success comprises the different
scales, which enable learning varying speeds of flood prop-
agation and capturing the hydraulic processes, contrarily to
the SWE-GNN, which learns a more limited range of speeds.
The multi-scale nature of the model allows optimizing com-
putations for areas where fine details are relevant only in
small portions of the domain. In the same way, scales can
be used to better include the presence of 1D structures in the
domain such as channels and elevated elements. These can be
included in the coarser meshes using slimmer cells that over-
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Figure 10. Flood arrival times (FATs) for a water depth threshold of 0.05 m for a test case from dike ring 15, given for the numerical
simulation (a), the predictions (b), and the difference (c). Darker colours in the first two maps indicate a faster arrival of the water, while
white cells indicate absence of water. In the difference map, positive values indicate that the model estimates later arrival times than the
numerical simulation, while negative values indicate that the model predicts earlier arrival times. All plots represent values only on the finest
mesh.

Table 3. Ablation study on the removal or addition of individual architectural and training components for the synthetic testing dataset. These
are using a learnable pooling for the downsampling operator, removing skip connections in Eq. (7), removing the 1D CNN in Eq. (8), and
using rotation-dependent inputs. The best results are reported in bold; w/o denotes “without”.

DL model MAE ↓ CSIτ [%] ↑

h [10−2 m] |q| [10−2 m2 s−1] τ = 0.05 m τ = 0.3 m

SWE-GNN 9.52± 5.03 0.42± 0.16 68.7± 18.9 51.7± 22.1
mSWE-GNN 4.84± 2.3 0.27± 0.13 84.02± 9.18 69.56± 17.25

mSWE-GNN

with learnable pooling 5.72± 3.09 0.32± 0.13 81.23± 12.23 63.67± 19.66
w/o skip connections 5.22± 2.22 0.32± 0.15 82.44± 10.82 66.81± 17.31

w/o 1D CNN 5.57± 2.5 0.32± 0.14 80.75± 10.83 65.03± 19.21

w/o rotation-invariant inputs 6.07± 2.27 0.34± 0.15 79.93± 10.18 62.89± 18.28

Figure 11. Performance in terms of CSI for a water depth of 0.05 m
for all testing breach locations in dike ring 15 for the fine-tuned
mSWE-GNN.

lap with the channel, as done in numerical models (Bomers
et al., 2019). On the other hand, structures that markedly in-
fluence the flow propagation, like levees, can simply be omit-
ted in the coarser meshes by leaving holes in correspondence
to them. This artificially blocks the possibly faster flow prop-
agation of coarser scales. Once over-topping of said levee
occurs at the fine scale, then the faster propagation can begin
anew at the coarser scales. We improved the model gener-
alization to unseen meshes by considering rotation-invariant

inputs. This was possible because we considered scalar out-
puts, since we deemed the intensity of the flood more im-
portant than also knowing its direction for practical uses
(Kreibich et al., 2009).

While the current model framework can work for dike-
breach floods, we did not evaluate it for other types of floods.
For river and coastal floods, the model should work without
any changes since the inputs are of the same type as dike-
breach floods, e.g. upstream discharge hydrographs or sea-
water levels. On the other hand, pluvial floods require pre-
cipitation as a further input. Assuming rainfall as a spatially
distributed variable, it could be added as a dynamic forcing;
this could work in a way similar to how it works for static
features but changing at each time step, independently of
the predicted output. For urban floods, the drainage system
should also be included. This could be done, as in numeri-
cal methods, by coupling the overland flow, predicted by the
mSWE-GNN, with a 1D model for the sewers, possibly with
another learned GNN as in Garzón et al. (2024).

Regarding the process of mesh creation, we constructed
the coarse-scale meshes based on the boundary polygon of
the areas considered. However, this requires the user to create
a mesh with a top-down approach and limits the use of an ex-
isting fine-scale mesh. This could be solved using a different
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multi-scale mesh creation approach. For example, Lino et al.
(2022) used a sampling strategy based on regular partition-
ing of the domain, which allows the coarse meshes to have
similar edge lengths, independently from the fine mesh. Al-
ternatively, we could use the same mesh creation procedure
to only generate the coarse-scale meshes and use existing de-
tailed meshes on the fine scale. The latter may be problematic
when fine structures are present that markedly alter the flow
of the flood, making the automatic mesh generation proce-
dure challenging.

The boundary condition insertion also technically works
for given water levels at the boundary, but we did not analyse
it. Moreover, we did not analyse the performance for mul-
tiple concurring boundary conditions, despite the model al-
ready being able to accommodate them. We employed a con-
stant and spatially uniform roughness coefficient, meaning
that we did not assess how the model generalizes to different
values and spatial distributions. This might lead to different
dynamics that, following the same reasoning as for the dif-
ferent speeds of propagation, the model should still be able
to capture.

To simplify the hyperparameter selection process, we also
selected an equal number of GNN layers for all scales. In-
stead, we could further optimize the Pareto front by changing
the number of layers at each scale independently. Addition-
ally, we did not make a comparison with other recent de-
velopments in deep learning models, such as Fourier neural
operators (Li et al., 2020) or neural fields (Yin et al., 2023),
since either they do not generalize across different irregular
meshes or their application to flooding would not be trivial.
We remark that most of the speed-ups come from the use of a
GPU, as all processes are parallelizable. This is a well-known
benefit of deep learning models, and the mSWE-GNN enjoys
it.

For practical applications, there are still several compo-
nents that must be included to match numerical models for
real case studies. Future studies should investigate the inclu-
sion of time-varying breach growth models or components
such as existing waterbodies and linear elements, such as
roads and secondary dikes. Eventually, the proposed model
could be used to create a probabilistic framework to assess
many different flood scenarios and uncertainties in bound-
ary conditions, breaching conditions, and topography (Voro-
gushyn et al., 2010).

6 Conclusion

We proposed a multi-scale hydraulic graph neural network,
called the mSWE-GNN, that models flood propagation in
space and time across multiple resolutions. As input the
model takes static attributes, such as topography, and dy-
namic attributes, such as water depth and unit discharge at
time t , and predicts their evolution at the following time
step t + 1. This is done via a U-shaped architecture that

applies graph neural networks at different scales and com-
bines them with downsampling and upsampling operators.
This captures a broader range of dynamics by jointly mod-
elling the flood propagation speeds at different scales. We in-
cluded time-varying boundary conditions via ghost cells. We
also improved the generalization to unseen meshes by using
rotation-independent inputs.

The model can accurately replicate the overall dynamics
of the flood evolution over unseen meshes, topographies, and
boundary conditions, with no dependence on any numerical
solver. The model can also generalize to realistic case stud-
ies with more complex and bigger domains than the train-
ing ones with only a single fine-tuning simulation. Moreover,
the new model is better and faster than its non-multi-scale
counterpart, indicating that the insertion of this module con-
tributes significantly to the model’s performance.

Overall, these results open up new possibilities for mod-
elling flood uncertainties probabilistically in real case stud-
ies. This will allow practitioners to have a complementary
tool for the fast evaluation of several flooding scenarios be-
fore analysing in more depth critical ones with numerical
models.

Appendix A: Additional results

We analysed the evolution in space and time of the unit dis-
charges for one test simulation in the synthetic dataset to
highlight that the model is now able to correctly model the
filling and emptying dynamics. Figure A1 shows that dis-
charges are modelled very well by the model, in both the as-
cending and the descending phases of the input hydrograph.
This is in line with the hypothesis of Bentivoglio et al. (2023)
according to which the model is able to capture this draining
and the decreases in discharges when presented with suffi-
cient samples of it in the training dataset.

We report the execution runtimes of the numerical and
trained mSWE-GNN models for both testing datasets. Since
the deep learning model is run in parallel, the prediction
times per simulation are averaged out through all simula-
tions. We measure the runtime variability by running the
model 10 times and reporting the corresponding mean and
standard deviation. For both dataset, the model achieves a
great speed-up, of more than 2 orders of magnitude, which
could further increase when selecting a smaller model from
the Pareto front in Fig. 7.

In terms of training times, the SWE-GNN model took be-
tween 5 and 30 h, while the mSWE-GNN took between 2 and
15 h, depending on the model complexity. The fine-tuning
process, with the selected mSWE-GNN model in Sect. 4.1,
took around 20 min. The fine-tuning time can be reduced to
5 min by decreasing the number of epochs while still obtain-
ing comparable performance. If we evaluate the speed-up on
dike ring 15 also including the time to run the fine-tuning nu-
merical simulation and the time to train it, we still achieve a
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Figure A1. The mSWE-GNN’s predictions for unit discharges in a
test simulation from the synthetic dataset. The evolution over time
for ground-truth output of the numerical simulation (top row) with
the predictions (middle row) is represented using a logarithmic scale
to better appreciate the values’ distribution. The difference (bottom
row) is evaluated as the predicted value minus the ground-truth one
and is kept with a standard scale to highlight the use of the loga-
rithmic scale; positive values correspond to model over-predictions,
while negative values correspond to under-predictions.

Table A1. Runtimes of the numerical model and the selected
mSWE-GNN model for the two testing datasets and their respec-
tive speed-ups.

Dataset Numerical model mSWE-GNN Speed-up
[s] [s] [–]

Test 80.8± 15.4 0.33± 0.10 250± 25
Test dike ring 15 611± 211 0.81± 0.23 750± 50

speed-up of 4 to 8 times, depending on the number of fine-
tuning epochs.

Appendix B: Mass conservation

We proposed a regularization term Lc that enforces a global
mass conservation per each time step. This reads as

Lc =

∣∣∣∣∣ N∑
i=1

ai1ĥi −Q1t

∣∣∣∣∣ , (B1)

where N is the number of nodes in the output mesh; 1ĥi
is the variation in predicted water depth at node i; ai1ĥi is
the variation in predicted volume at node i; Q is the inflow

Figure A2. Performance in terms of validation loss and CSI0.05 m
for varying values of the mass conservation weight αM.

discharge; and 1t is the time interval between t and t +1, in
which the discharge is assumed to be constant. This enforces
the total amount of volume entering the domain Q1t to be
redistributed in the domain so that the volume is conserved.

We carried out supplementary experiments to explore the
benefit of adding this term to the forecasting loss in Eq. (9).
The combined loss L can be expressed as

L= Lf +α ·Lc, (B2)

where α weighs the contribution of the mass conservation
term.

Figure A2 shows that the validation loss and CSI are
slightly negatively correlated with α, meaning that losses
tend to improve and classification worsens. The reason why
losses slightly improve might be because the added loss term
depends only on the predicted water depth, so it forces that
value to be more precise. However, the conservation loss acts
globally for each time step instead of locally. Therefore, the
model cannot correctly improve the spreading of the flood
but only the absolute values of total water depth. From these
plots, we cannot extract any meaningful conclusion since
there is no statistical significance, as highlighted by p values
of 0.42 and 0.48, respectively. Moreover, the performance in
the testing dataset follows an opposite trend, further indicat-
ing that inclusion of this term is not consistently better.

This in part contradicts the idea of physics-informed neu-
ral networks (PINNs), according to which adding a phys-
ical loss term improves performance (Raissi et al., 2019).
One motivation is that the loss we employ does not rely
on auto-differentiation in the same way that PINNs do. We
also evaluate it globally, rather than at individual points as
in PINNs. Implementing a PINN loss would require ad-
justments to the model’s inputs and outputs to allow auto-
differentiation to estimate the derivatives of the predicted
target variables. Moreover, PINNs are typically designed to
solve a given physical problem for a single set of boundary
and initial conditions, thus limiting the model’s capacity to
generalize across varying conditions, which is a prerogative
of our work. Although we did not adopt this approach here, it
could be explored in future studies. Notably, our loss term is
independent of ground-truth data, making it a possible self-
supervised loss that could be explored in future works.
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Appendix C: Parallel simulations

We refactored the code to compute all testing simulations
in parallel, instead of in series, using batches. To analyse
the speed-ups provided by parallel execution, we selected
all models in the Pareto front of the mSWE-GNN in Fig. 7,
which have different numbers of parameters and numbers of
GNN layers per scale. We then ran the models using an in-
creasing number of simulations in parallel, indicated by the
batch size.

Figure C1 indicates that the speed-up almost doubles with
the batch size, independently of the size of the model. It also
highlights that the main computational effort comes from an
increase in the number of GNN layers, rather than just the
total number of model parameters, as also reported in Ben-
tivoglio et al. (2023). When running 20 simulations, i.e. the
full testing dataset, in parallel instead of in series, we pro-
vide a further speed-up of 4.5 times on average across dif-
ferent model sizes. Further speed-ups may be achievable by
optimizing the code; for example just-in-time (JIT) compil-
ing of the PyTorch code into optimized kernels can further
accelerate the execution of the model by 2 or 3 times (Paszke
et al., 2019). In a similar fashion, intelligence processing
units (IPUs), which are novel processing units that perform
faster inference on graphs, can further speed up the model by
2 to 4 times (Knowles, 2021).

Figure C1. Speed-ups of the mSWE-GNN for the synthetic test
dataset, considering varying batch sizes, i.e. how many simulations
are run in parallel. The results are reported for all Pareto front mod-
els from Fig. 7. Both axes are on a log2 scale.

Appendix D: Hyperparameter ranges

We reported the hyperparameters used to create and train the
model and their ranges in Table D1. Since the number of hy-
perparameters is high, some values are taken based on simi-
lar studies in the literature (e.g. Bentivoglio et al., 2023). For
the mass conservation weight α in Eq. (B1), we uniformly
sampled values in an interval from 10−8 to 5× 10−5 using
a logarithmic distribution. The reason why these values are
small is due to the flood volumes being more than 106 times
higher than water depths.

Table D1. Summary of the hyperparameters and related values’
ranges employed for the different deep learning models. The bold
values indicate the best configuration in terms of validation loss.

DL model Hyperparameter name Values’ range (best)

All models Initial learning rate 0.003
Input previous time steps (p) 2
Maximum training steps ahead (H ) 6
Optimizer Adam
Batch size 12
α 0, [10−8, 5× 10−5]

SWE-GNN Embedding dimension (G) 16, 32, 50, 64
Number of GNN layers (L) 10, 12, 14, 16, 18

mSWE-GNN Embedding dimension (G) 16, 32, 50, 64
Number of GNN layers (L) 2, 3, 4, 5

Code and data availability. The dataset employed can be
found at https://doi.org/10.5281/zenodo.13326595 (Ben-
tivoglio, 2024a). The code repository is available at
https://github.com/RBTV1/mSWE-GNN (Bentivoglio, 2024;
https://doi.org/10.5281/zenodo.14673842, Bentivoglio, 2025).
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