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Summary

The ambitious goals towards the decarbonization of the global energy sector have ampli-
fied the demand for renewable energy resources. Amongst the renewables, offshore wind
possesses a pivotal role in this endeavour, showcasing remarkable growth in recent years.
However, this rapid expansion has been accompanied by a series of technical challenges.
Foundation installation comprises one of the most critical phases in the construction of an
offshore wind farm and engineering advancements in this topic are vital to accommodate
this developmental pace. Bottom-fixed foundations are primarily used to support offshore
wind turbines and amongst the available concepts, the monopile is the foremost one. The
installation of these substructures is most commonly performed via impact hammering.
Notwithstanding the robustness and efficacy of this technique, major environmental con-
cerns have been raised due to the significant levels of underwater noise pollution during
driving. In view of this alarming issue, alternative and sustainable pile installation tech-
niques have been progressively drawing attention during the last decade and an increasing
number of research projects focus on their investigation and development.

At present, the offshore wind industry is increasingly adopting vibratory pile driving.
The previous method has been successfully employed in onshore projects for decades, albeit
its wider use in the offshore environment is hindered due to the incompleteness of available
field observations. To boost the improvement of vibratory installation methods, a new tech-
nology has been recently proposed by the Delft University of Technology, namely the Gentle
Driving of Piles (GDP). The preceding method aims to enhance the installation performance
of vibratory driving for tubular (mono)piles and to reduce the associated noise emissions,
via the simultaneous application of low-frequency/axial and high-frequency/torsional vi-
brations. Naturally, the shift to these technologies is accompanied by emerging research
questions pertaining to pile installation, vibro-acoustic and post-installation performances.
In this thesis, the development of an engineering-oriented modelling framework for axial
vibratory driving and GDP is the primary objective, thereby focusing on the topic of sus-
tainable monopile installation.

In the first chapters of the thesis, the theoretical background pertaining to the dynamic
pile and soil behaviours is presented, accompanied by the respective numerical develop-
ments. In particular, the dynamic pile behaviour is discussed on the basis of cylindrical
shells, according to Love’s first approximation theories. The soil medium is described as a
linear elastic layered half-space in terms of Green's functions in the frequency-space do-
main. For the purpose of numerical modelling, the developments introduced in this thesis
are briefly: (i) the Semi-analytical Finite Element (SAFE) method for thin/thick cylindrical
shells, (ii) the Thin-Layer Method (TLM) coupled with Perfectly Matched Layers (PMLs) for
layered soil half-spaces and (iii) a sequential Harmonic Balance Method (HBM) for non-
linear dynamical systems with quasi-periodicity. The preceding schemes are characterized
by remarkable versatility and computational performance while being applicable to a wide
set of engineering problems. For that purpose, the relevant treatments are retained as
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generic and accessible as possible, with a view to benefit a diverse readership.

The experimental work follows and comprises one of the major highlights of this thesis,
namely the GDP field campaign. The campaign scope encompassed both installation and
post-installation lateral loading tests. Focusing on the installation aspect, a purpose-built
GDP shaker was designed in order to demonstrate the efficacy of the GDP method and a
medium-scale field tests campaign was executed at the Maasvlakte II site in Rotterdam.
Following the successful proof of concept, a primary objective of the field tests was the
comparison of GDP with two conventional techniques, namely impact hammering and
axial vibratory driving. Furthermore, an extensive dataset of pile and soil measurements
was collected and utilized for comparison and numerical model development purposes,
thereby serving a multitude of objectives in the research line of GDP. Both pile and soil
response records provided favourable results for GDP, encouraging its further development
and upscaling. In summary, the field campaign provided a preliminary demonstration of
the GDP technology and the comparison of axial vibratory driving and GDP showcased the
beneficial effect of torsion.

As regards vibratory pile installation, a comprehensive understanding of the physical
mechanisms involved and their incorporation into effective engineering-oriented models
are still elusive for axial vibro-driving. To that end, the numerical developments of this thesis
(i.e. SAFE and TLM+PMLs) are integrated into a computationally efficient model, that aims
to bridge the gap between the available medium- and high-fidelity approaches. The present
approach alleviates physical drawbacks possessed by the former, without engendering the
practical and computational limitations of the latter. The pile-soil interaction is governed
by a history-dependent frictional interface and a visco-elasto-plastic tip model, whereas
the non-linear problem is solved by a novel HB-based scheme. The main component of the
soil reaction is found to correspond to the shaft friction, whereas its hereditary character is
based on a memory mechanism based on loading cycles accumulation; the latter effect is
commonly termed friction fatigue. Finally, drivability predictions are compared against
field data from the vibro-driven pile of the campaign, indicating the prediction potential of
the present model.

The preceding modelling framework is utilized as a basis and further developed, with
a view to analysing pile installation via GDP. By means of this numerical tool, the inter-
pretation of field observations is greatly facilitated and the driving mechanism of GDP is
comprehended. Based on the numerical results, the redirection of the friction force vector
manifests itself as the major mechanism of GDP, that greatly enhances installation perform-
ance. In particular, the high-frequency torsion expends the majority of shaft friction in
the circumferential direction and the soil reaction along the penetration axis diminishes
substantially, thereby enabling faster installation and reduced axial driving loads. Conclus-
ively, a numerical investigation is conducted to assess the induced ground motion by axial
vibro-driving and GDP, with the latter leading to reduced environmental disturbance and
energy redistribution from SV-P to SH waves.

Pile drivability predictions are essential to assess the capability of a driving device to
install a pile to the target penetration depth and to anticipate and prevent occurrences of
high operational risk, e.g. early pile refusal or pile running. The role of pile installation
cannot be overemphasized in offshore wind farm construction, as the installation process
itself affects greatly both vibro-acoustic and post-installation performances. By means
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of the present framework, a path towards integrated design of the preceding aspects is
enabled. In this thesis, an endeavour to bridge the gap between medium- and high-fidelity
approaches is presented, in order to shift the paradigm of standard engineering-oriented
frameworks and better the engineering aspects of sustainable monopile installation.






Samenvatting

De ambitieuze doelstellingen om de wereldwijde energiesector koolstofvrij te maken, heb-
ben de vraag naar hernieuwbare energiebronnen doen toenemen. Onder de hernieuwbare
energiebronnen speelt offshore-windenergie een centrale rol in dit streven, met een op-
merkelijke groei in de afgelopen jaren. Deze snelle groei gaat echter gepaard met een reeks
technische uitdagingen. De installatie van funderingen is een van de meest kritieke fasen
in de bouw van een offshore windmolenpark en technische vooruitgang op dit gebied is
van vitaal belang om dit ontwikkelingstempo aan te kunnen. Voor de ondersteuning van
offshore-windturbines wordt voornamelijk gebruik gemaakt van bodemfunderingen en
van de beschikbare concepten is de monopile de belangrijkste. De installatie van deze sub-
structuren gebeurt meestal door middel van hamerslagen. Ondanks de robuustheid en
doeltreffendheid van deze techniek is er grote bezorgdheid over het milieu ontstaan door de
aanzienlijke geluidsoverlast onder water tijdens het slaan. In het licht van dit alarmerende
probleem hebben alternatieve en duurzame paalinstallatietechnieken de laatste tien jaar
geleidelijk de aandacht getrokken en een toenemend aantal onderzoeksprojecten is gericht
op het onderzoek en de ontwikkeling ervan.

Momenteel wordt in de offshore windindustrie steeds meer gebruik gemaakt van trilpa-
len. De vorige methode wordt al tientallen jaren met succes toegepast in onshore-projecten,
maar een ruimere toepassing in de offshore-omgeving wordt belemmerd door de onvolle-
digheid van de beschikbare veldwaarnemingen. Om de trilinstallatiemethoden te verbe-
teren, heeft de Technische Universiteit Delft onlangs een nieuwe technologie voorgesteld,
namelijk Gentle Driving of Piles (GDP). De voorgaande methode heeft tot doel de installa-
tieprestaties van het trillen van buisvormige (mono)palen te verbeteren en de bijbehorende
geluidsemissies te verminderen, via de gelijktijdige toepassing van laagfrequente/axiale en
hoogfrequente/torsietrillingen. Uiteraard gaat de verschuiving naar deze technologieén
gepaard met opkomende onderzoeksvragen met betrekking tot het installeren van palen,
vibro-akoestische en post-installatie prestaties. In dit proefschrift is de ontwikkeling van
een engineering-georiénteerd modelleringskader voor axiaal trillen en BBP de primaire
doelstelling, waarbij het onderwerp duurzame monopaal installatie centraal staat.

In de eerste hoofdstukken van het proefschrift wordt de theoretische achtergrond met
betrekking tot dynamisch paal- en grondgedrag gepresenteerd, vergezeld van de respec-
tievelijke numerieke ontwikkelingen. In het bijzonder wordt het dynamische paalgedrag
besproken op basis van cilindrische schalen, volgens de eerste benaderingstheorieén van
Love. Het grondmedium wordt beschreven als een lineair elastische gelaagde halve ruimte in
termen van groene functies in het frequentie-ruimtedomein. Ten behoeve van de numerieke
modellering worden in dit proefschrift kort de volgende ontwikkelingen geintroduceerd:
(i) de Semi-analytische Eindige Elementen Methode (SAFE) voor dunne/dikke cilindri-
sche schalen, (ii) de Dunne-Lagen Methode (TLM) gekoppeld aan Perfectly Matched Layers
(PMLs) voor gelaagde bodemhelften en (iii) een sequentiéle Harmonic Balance Method
(HBM) voor niet-lineaire dynamische systemen met quasi-periodiciteit. De voorgaande
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schema’s worden gekenmerkt door een opmerkelijke veelzijdigheid en rekenprestaties, en
zijn tegelijkertijd toepasbaar op een brede reeks engineeringproblemen. Daartoe worden
de relevante behandelingen zo algemeen en toegankelijk mogelijk gehouden, met het oog
op een divers lezerspubliek.

Het experimentele werk volgt en omvat een van de belangrijkste hoogtepunten van dit
proefschrift, namelijk de GDP-veldcampagne. Deze campagne omvatte zowel installatie-
als post-installatieproeven met zijdelingse belasting. Om de doeltreffendheid van de GDP-
methode aan te tonen werd een speciaal voor dit doel gebouwde GDP-schudder ontworpen
en werd een middelgrote veldtestcampagne uitgevoerd op de locatie Maasvlakte II in Rotter-
dam. Na de succesvolle proof of concept was een primaire doelstelling van de veldproeven
de vergelijking van GDP met twee conventionele technieken, namelijk impacthameren en
axiaal trillen. Bovendien werd een uitgebreide dataset van paal- en bodemmetingen verza-
meld en gebruikt voor vergelijkingen en de ontwikkeling van numerieke modellen. Zowel de
metingen van de heipalen als die van de bodemrespons leverden gunstige resultaten op voor
GDP, wat de verdere ontwikkeling en opschaling ervan bevordert. Kortom, de veldcampagne
gaf een eerste demonstratie van de GDP-technologie en de vergelijking tussen axiaal trillen
en GDP toonde het gunstige effect van torsie aan.

Wat de installatie van trilpalen betreft, is een volledig begrip van de betrokken fysische
mechanismen en de verwerking daarvan in effectieve engineeringgerichte modellen nog
steeds ver te zoeken voor axiaal trillen. Daartoe worden de numerieke ontwikkelingen van
dit proefschrift (d.w.z. SAFE en TLM+PMLs) geintegreerd in een rekenkundig efficiént
model, dat de kloof tussen de beschikbare medium- en high-fidelity benaderingen moet
overbruggen. De huidige benadering vermindert de fysische nadelen van de eerste, zonder
de praktische en rekenkundige beperkingen van de tweede. De paal-bodem interactie wordt
beheerst door een historisch athankelijke wrijvingsinterface en een visco-elastisch tipmodel,
terwijl het niet-lineaire probleem wordt opgelost door een nieuw HB-gebaseerd schema.
De belangrijkste component van de bodemreactie blijkt overeen te komen met de schacht-
wrijving, terwijl het erfelijke karakter ervan berust op een geheugenmechanisme gebaseerd
op de accumulatie van belastingscycli; dit laatste effect wordt gewoonlijk wrijvingsmoeheid
genoemd. Ten slotte worden de voorspellingen van de berijdbaarheid vergeleken met veld-
gegevens van de trilpaal van de campagne, wat het voorspellingspotentieel van het huidige
model aantoont.

Het voorgaande modelkader wordt als basis gebruikt en verder ontwikkeld, met het
oog op de analyse van de installatie van palen via het BBP. Met behulp van dit numerieke
instrument wordt de interpretatie van veldwaarnemingen sterk vergemakkelijkt en wordt
het aandrijfmechanisme van GDP begrepen. Uit de numerieke resultaten blijkt dat de
heroriéntatie van de wrijvingskrachtvector het belangrijkste mechanisme van GDP is, dat
de installatieprestaties sterk verbetert. Met name de hoogfrequente torsie verdrijft het
grootste deel van de wrijving van de as in de omtrekrichting en de bodemreactie langs de
penetratieas vermindert aanzienlijk, waardoor een snellere installatie en minder axiale
aandrijfbelastingen mogelijk zijn. Er wordt een numeriek onderzoek uitgevoerd naar de
geinduceerde bodembeweging door axiale vibro-aandrijving en GDP, waarbij de laatste
leidt tot minder verstoring van de omgeving en herverdeling van energie van SV-P naar
SH-golven.

Voorspellingen van de heibaarheid zijn essentieel om het vermogen van een heimachine
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te beoordelen om een paal tot op de beoogde indringdiepte te installeren en om te anticiperen
op voorvallen met een hoog operationeel risico, zoals vroegtijdige paalweigering of paalloop.
De rol van de hei-installatie kan niet genoeg worden benadrukt bij de bouw van offshore
windparken, aangezien het installatieproces zelf een grote invloed heeft op zowel de vibro-
akoestische als de post-installatieprestaties. Door middel van het huidige raamwerk wordt
een weg naar een geintegreerd ontwerp van de voorgaande aspecten mogelijk gemaakt. In
dit proefschrift wordt een poging gedaan om de kloof tussen een medium- en high-fidelity
benadering te overbruggen, om het paradigma van standaard engineering-georiénteerde
kaders te verschuiven en de engineering-aspecten van duurzame monopile installatie te
verbeteren.






Preface

This dissertation signifies the culmination of a remarkable journey for me. The doctoral
research is a multi-faceted process and each individual experiences it in a dissimilar manner.
In my view, the doctoral journey is a transformation process that an individual goes through
in the pursuit of knowledge. Within the following pages, roughly spanning 200, the reader
may delve into the intricacies pertaining to the topic of monopile installation, thus I deem
it appropriate to omit any associated discussion in the ensuing. The following paragraphs
are devoted to an indispensable element in the transformation process of a PhD, namely
the people that this experience is shared with. Reminiscing any part of my PhD trajectory,
it becomes evident to me that the people involved made it memorable, unique and most
certainly impossible without their contribution. Therefore, the following part of this preface
is dedicated to them, as a minor token of sincere appreciation and gratitude.

First, I would like to thank my PhD supervisors, with whom I have had the honor and
privilege of working over the past four years. Apostolos, as my supervisor and mentor
throughout my PhD journey, your guidance and support have been truly invaluable. Your
unwavering motivation and encouragement have propelled me forward, while at the same
time you provided me with absolute freedom and autonomy to shape my work. I am deeply
grateful for your faith in me, starting from the very first day we embarked on this academic
endeavour together. Andrei, you have been an endless source of inspiration for me, both as
an academic and as an individual. Your intellectual prowess never ceases to astound me,
while the more I have come to know you, the more I admire your remarkable character. The
flourishing of our amazing research group, of which I am honoured to be a part, is the most
tangible testament of your qualities. In summary, I am genuinely proud to have been a PhD
student of both of you.

I would like to extend my heartfelt thanks to the individuals who comprised the GDP
team, making the field campaign an incredible success. My sincere appreciation goes out
to Ahmed, Faraz, Federico, Kees, Maxim, Rob and Sergio for their invaluable contribu-
tions. Their expertise, diligence, and collaborative spirit were instrumental in making this
experimental campaign possible, and for that, I am immensely grateful. Sergio, we have
spent a considerable amount of time working together following the completion of the GDP
experiments. It is through this collaboration that I got to know you better and truly enjoyed
our time spent together.

The contribution of my research group has been paramount in making my PhD jour-
ney immensely enjoyable and memorable. Our cherished coffee breaks, engaging group
seminars, early-Monday Bright minds meetings, lively PSOR drinks, EM symposia, great
conference trips and delightful Christmas dinners will remain etched in my mind, as they
fostered a genuine group atmosphere that I will always treasure and reminisce. It is the
remarkable individuals within this group who made these experiences truly special and
unforgettable. Among these amazing people, special thanks go to my roommates Timo
and Vagelis, for our enjoyable office atmosphere and mostly for tolerating my charming
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presence the last four years.

My wonderful friends have played a significant role in the attainment of this milestone. I
am immensely grateful to Annie, Giorgos, Ioanna, Konstantina, Thomas and Vagelis, whose
presence in my life during my time in Delft has been truly invaluable. Your friendship is the
first generous thing that life in Delft offered me and without you, this journey would have
not been the same. My dear friends, Christos, Tasos and Thanasis, you have been my beloved
company all these years, despite living in different countries and not being able to spend as
much time together as we used to in the past. Every reunion with you invigorates me greatly
and feels like coming home. You have a special place in my heart and I am certain that
without you, I would not have made it this far. Lastly, Angeliki, you have been my guardian
angel during these years and supported me in literally every aspect of my life. Being there
in my best and worst moments, I cannot thank you enough for doing so with genuine care.
Thank you wholeheartedly for being my friend. I look forward to cherishing many more
significant moments with all of you in the future.

To my parents, Fotis and Varvara, and my little sister Kelly, thank you for your love and
unconditional support all these years. As you know, I may not be the most expressive person,
but I am deeply thankful for your understanding and support during my PhD and your
unwavering encouragement throughout my life. In conclusion, there is a special person,
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Introduction

1.1. Global energy outlook and renewables

The global endeavour towards the decarbonisation of the energy sector has been intensified
in the past decades. A series of major international agreements between countries was
initiated at the United Nations Conference on Environment and Development (UNCED),
also known as the ‘Earth Summit in 1992 [1]. The United Nations Framework Convention on
Climate Change (UNFCCC) was signed by the conference parties, aiming to stabilize the con-
centration of greenhouse gases in the atmosphere to preclude anthropogenic interference
with the climate [2]. As a follow-up of UNFCCC, the Kyoto protocol was established in 1997;
industrialized countries and economies in transition committed to adopt policies and meas-
ures to reduce greenhouse gases emissions [3]. The Kyoto Protocol was succeeded by the
Paris agreement, an international treaty of 196 countries on climate change with the utmost
goal to limit global warming and to achieve a climate-neutral world by the mid-century [4].
This series of international pledges was concluded with the Sustainable Development Goals
(SDGs) established by the UN in 2015, not solely restricted to climate and energy-related
actions, albeit interlinked [5].

In this framework of worldwide mobilization towards these common goals, it is essential
to assess the current state and the future outlook of the energy sector. Global energy demand
has been ceaselessly rising the previous decades and the future projections indicate that
this trend will persevere [6]. Overall, investments and policies to meet the future energy
demand and achieve the aforementioned sustainability targets are falling short [7, 8].

Presently, a consensus has been reached that renewable energy resources comprise a
key feature to achieve the set climate objectives [9]. The share of renewables among the
various energy sources has been growing tremendously over the past two decades [10, 8],
with solar and wind energy being the front-runners in the energy transition. In accordance
with the European Green Deal, Europe is leading the energy transition paradigm with
the aim of becoming the first climate-neutral continent by 2050 [11]. Notwithstanding
the notable increase in the deployment of renewables and the prodigious efforts towards
decarbonisation, the data analysis indicates that we are falling behind with the necessary



investments to achieve the set climate targets [7, 8]. A short-term acceleration of the energy
transition via a carbon tax has been proposed by a number of studies [12, 13, 7]. However,
there is widespread consensus that investment in technological innovation constitutes the
most efficient approach to reduce the cost of renewables and to mitigate the risk of policy
volatility [14, 15, 9].

1.2. Engineering advancements in offshore wind energy — mono-

pileinstallation

In the wind energy sector, the majority of newly installed capacity has been traditionally
onshore [16]. In contrast to its onshore counterpart, that has been utilized for power gen-
eration for millennia, offshore wind energy is a recent technology with the first offshore
wind farm installed in 1991 at Vindeby, Denmark [17]. However, the share of installed wind
capacity that corresponds to offshore wind farms has increased rapidly during the last
decade [16], aided by the vast experience of the oil and gas industry in offshore operations
[18]. This notable increase of offshore wind projects compared to onshore projects is due to
amultitude of advantages, e.g. the availability of vast areas for large offshore wind farms,
the higher and steadier wind speeds encountered at the offshore environment and the elim-
ination of visual and auditory nuisance [19, 20]. On the other hand, onshore wind remains
the most economical solution among the renewables; the levelized cost of electricity (LCoE)
is lower for onshore than offshore wind [21], yet the difference is declining [22]. Specifically,
the costs of offshore foundations and installation are significantly higher than the respective
costs for an onshore wind project.

T - m

Figure 1.1: Various concepts of offshore wind substructures based on water depth - after Smith et al. [23].
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Presently, 15-24% of the investment for an offshore wind farm relates to the design,
production and installation of substructures (see Fig. 1.1) [24]. In Europe, over 80% of the
existing offshore wind turbines are hitherto founded on so-called monopile foundations
[25, 26]. The design simplicity and robustness, the mass-fabrication aptness and the ease of
installation constitute the major advantages of monopiles compared to other foundation
concepts [27, 28, 15, 25, 26]. Accordingly, these foundations are growing in unprecedented
sizes in the past years, as they are being employed in ever deeper waters and larger distances
to the shore [26, 29]. Inevitably, the latter rapid development is accompanied by significant
engineering challenges in the installation process.

During the installation phase, the monopile is driven into the seabed up to an adequate
embedment depth that fulfils the various design criteria, e.g. lateral bearing capacity. The
installation process, commonly known in the field of civil engineering as pile driving, is
chiefly performed by means of an impact hammer [30, 31]. During impact pile driving,
a hammer device is mounted on the pile head (see Fig. 1.2a) and upon the application of
hundreds (or even thousands) hammer blows the pile penetrates into the seabed for tens of
meters. This installation method, albeit robust and well-established, has raised concerns
about its environmental impact [31]. Specifically, the stress waves excited in the monopile
by the hammer impacts result in radial expansion of the pile surface; these waves propagate
in supersonic speeds and the resultant sound waves radiate in the seawater in the form of
Mach cones [32]. This topic has been extensively researched in the last decade and recent
studies indicate that the noise emissions related to impact pile driving can lead to temporary
habitat loss for aquatic species, as well as potential auditory damage to marine mammals
[33, 34].

In response to these alarming concerns, regulatory bodies pose various criteria based on
noise emissions for new offshore wind projects [35]. To comply with the various regulations,
offshore wind industry is adopting a range of actions from noise mitigation strategies to
alternative monopile installation methods. Noise mitigation strategies aim to reduce the
noise levels caused by pile installation via the use of various barrier mechanisms, e.g. air
bubble curtains [36-38], isolation casings [39] and resonator-based barriers [40]. However,
the adoption of such noise mitigation measures can increase the installation costs appre-
ciably and moves the energy sector further away from the ultimate goal of reducing the
offshore wind energy LCoE [41].

In view of these constraints, alternative and environmentally friendly methods are
investigated for monopile installation. The community of impact pile driving has proposed
new alternatives to the traditional impact hammer approach, such as HiLo driving [42] and
BLUE Piling [43]. The concept of piling with high (blow) frequency at low (impact) energy,
the so-called HiLo driving was conceived in order to lower the noise emissions by reducing
the amplitude of the impact. On the other hand, BLUE Piling technology utilizes a large
water column to force the pile into the seabed; the resultant pulse from the BLUE Hammer
islonger in duration and the energy content of the force input is shifted to lower frequencies
compared to standard hammers. In essence, the aforementioned technologies operate on
the same principles of impact piling, attempting to lower the input amplitude and/or to
shift the energy content of the input force to lower frequencies.

Vibratory technology presents an interesting alternative to impact piling (see Fig. 1.2b),
as it has been widely used in the onshore environment since the 1930s [44]. In principle,



(a) Hydrohammer S-90 (b) CV-25

Figure 1.2: (a) Impact hammer and (b) axial vibratory device mounted on the top of tubular piles from the GDP
field campaign.

vibratory pile driving is considered to achieve quiet and fast installation via the application
of low-amplitude (compared to impact) axial vibrations at the pile head [45, 46]. However,
the widespread employment of the vibratory method in monopile installation is hindered
by a number of factors, including the limited availability and inconclusiveness of field
observations. Major knowledge gaps are also associated with the dynamic soil behaviour
during vibratory driving [47] and the installation effects on the operational performance of
the pile [48].

To boost the development of vibratory methods, a new technology — the Gentle Driving
of Piles (GDP) — has been recently proposed in the Netherlands as the core of a joint industry
project led by the Delft University of Technology (TU Delft) [49]. GDP targets enhanced
piling performance and reduced noise emissions through the simultaneous application
of low-frequency/axial and high-frequency/torsional vibrations. The major hypothesis of
the method is that the introduction of torsion will enhance both installation and acoustic
performances by reducing the axial driving loads, since it does not induce radial expansion
in the pile. To that end, an experimental campaign has been executed at Maasvlakte Il in the
Port of Rotterdam (Fig. 1.3) and a series of numerical works has been undertaken to support
the development of the GDP method [49—-54].

1.3. State-of-the-art in pile installation modelling

Customarily, the operation of pile driving was based on simple empirical formulae until
the 1960s, when Smith [55] developed the first pile driving model, in particular for impact
piling. This model was based on a pile described as a thin rod and discretized into a series
of lumped masses and springs, according to the central finite difference method of G (2).
The soil reaction was represented by a rheological model comprised by an elastic-perfectly
plastic element in parallel with a non-linear dashpot. Moreover, the parameters of this



1.3. State-of-the-art in pile installation modelling 5

Figure 1.3: The test site of the GDP field campaign at Maasvlakte II in the Port of Rotterdam.

soil reaction analogue were not related to standard soil properties, but comprised a set
of empirical values initially proposed by Smith based on past field experience. Research
efforts to improve Smith's model were undertaken promptly, given the significance of the
approach for engineering practice. Early works in this direction focused on the experimental
identification of the proposed soil parameters in Smith’'s model [56-60]. The aforementioned
studies, albeit valuable, still were limited in the sense that the model parameters were
mostly correlation coefficients that neglected the physics of pile driving that were yet to be
understood.

The next frontier in the development of pile driving models addressed that aspect, with
the aid of contributions originating in the area of earthquake engineering. Specifically,
a multitude of pioneering works related to vibrations of foundations and soil-structure
interaction were initiated in the 1960s with application to earthquake engineering and
seismology [61-78]. From this class of studies, elements of pile-soil interaction modelling
were incorporated into Smith’s model, i.e. replacing Smith’s empirical parameters with
values that were derived by an approximate analytical treatment of pile-soil interaction
problems [79, 66, 67]. Alarge collection of drivability models ensued upon this development,
the so-called rational pile driving models [80-84]. A limited number of studies focused
on the development of analytical models for the impact hammer, in order to facilitate
further parametric studies and provide an efficient alternative to numerical modelling
of the hammer component [85, 86]. Among recent studies, a more elaborate model that
accounts explicitly for the non-linear soil stiffness has been presented by Salgado et al. [87]
and has been employed for the derivation of pile driving formulas in sandy and clayey soil
layers. In that approach, the near-field soil was modelled as a shear band at the pile-soil
interface, connected with a thin disk characterized by a hyperbolic stress-strain relationship
in series with an approximate far-field boundary condition.

In parallel to the above developments, the geotechnical community focused on the im-
provement of a critical parameter that all rheological soil models shared, namely the static
resistance to driving (SRD), by utilizing the inflow of new data records [88—91]. Recent




advances in the assessment of the axial static capacity of piles based on extensive field
tests have been valuable for that purpose [92, 93]. Even though these methods were not
developed as SRD models, Byrne et al. [94] attempted to incorporate these CPT-based
approaches in 1-D wave equation analyses. A modification factor was introduced in these
CPT-based approaches and improved the respective predictions, which were found to be
in good agreement with pile penetration records. However, the applicability of the SRD
models in large-diameter monopiles remains questionable, as these approaches are largely
empirical and their calibration has been performed based on databases of piles with diamet-
ers smaller than 2 m. In an extensive study by Byrne et al. [95], both the existing SRD models
and the modified CPT-based approaches were proved not to provide reliable predictions of
the blow counts.

The preceding works are dedicated to impact pile driving and employ 1-D models that
are widely used in engineering practice. Naturally, vibratory driving approaches have
adopted components of the impact piling models, as the latter preceded the developments
invibratory driving modelling. Even though the number of studies about vibratory driving is
appreciably smaller compared to the respective ones about impact piling, there is substantial
diversity in the models employed. As was stated above, the 1-D wave equation analysis was
one of the first approaches employed in the analysis of vibratory pile driving, including both
the original and modified versions of Smith’s soil model [96-99]. In a recent study, Mazza
and Holeyman [47] employed a 1-D model (ALLwave-VDP [100]) to back-analyse field data
of vibratory driving. The authors concluded that inflow of additional data sets from field
tests is necessary to improve the available models, as most of the empirical parameters in
these approaches have been calibrated by impact pile driving databases and their values
were found unsuitable for vibratory driving analysis.

Next to the 1-D wave equation analysis, a class of single-degree-of-freedom (SDoF)
models was developed for vibratory driving and found wide acceptance in the community.
In essence, these models were based on the assumption that the pile behaves as a rigid body
during the vibratory installation process [44, 101-104]. The latest developments in these
approaches have focused on the study of the input excitation [105] and the introduction of
CPT-based soil reaction accounting for 'friction fatigue’ [106]. An improvement to these
engineering-oriented models was realized by 1-D radial models [107-109]. In the latter
approach, a rigid pile is considered in contact with a series of concentric rigid cylinders
representing the discretized soil medium; the transmitted forces between the adjacent
cylinders and the pile followed a hypoplastic constitutive law [110, 111]. As can be understood,
such a modelling approach precludes the possibility to address the soil layering explicitly,
thus an averaging process of the soil properties over the depth is necessary (similarly to the
SDoF models).

As computational methods advanced, the number of studies employing high-fidelity
models for pile installation increased. Starting with impact pile driving, Smith and Chow
[112] developed a finite element (FE) model for the analysis of pile installation in clayey soil.
This study was among the first that aimed at enabling the use of standard soil properties in
pile drivability analysis. One of the first main concerns in studies employing high-fidelity
models was the development of large soil deformations in the immediate vicinity of the pile.
In view of this challenge, the updated Lagrangian formulation of the finite element method
(FEM) became the method of choice [113, 114]. In the latter studies, the developments in
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soil constitutive modelling at the time were also utilized (i.e. bounding surface plasticity)
[115, 116].

In the analysis of pushed-in piles, an updated Lagrangian FE model was used to study
the installation process in clayey soil [117, 118]. The contact kinematics at the pile-soil inter-
face permitted the formation of normal gap between the two bodies, while the tangential
contact was described by Coulomb's friction law [119]. In the preceding studies, significant
mesh distortion was encountered and the authors remarked that the use of an arbitrary
Lagrangian-Eulerian (ALE) scheme is considered an effective remedy for this problem. An
ALE formulation allows the decoupling of mesh and material points, although this process
is amenable to numerical errors from the remeshing and mapping of state variables [120].
A numerical method, that falls into the category of ALE schemes, has been applied to the
problem of pile jacking, namely the Material Point Method (MPM) [121, 120, 122]. The latter
originates in the Particle-in-Cell (PiC) method, which was developed at the Los Alamos
National Laboratory (LANL) for problems in fluid dynamics involving highly distorted flows
[123-125]. Recently, the MPM has been also utilized to simulate cone penetration tests
(CPTs) in dry sand [126].

During the last decade, an appreciable number of studies have focused on the problem of
vibratory pile installation and the development of relevant computational schemes. As stated
previously, the large deformations developed during pile installation lead to significant
numerical issues, thus various approaches have been employed to tackle this challenge.
Machacek et al. [127] used an updated Lagrangian formulation in a comparative study
of three different soil models, namely two hypoplastic models [128, 129] and SANISAND
[130-132], against lab-scale vibratory driving tests and element tests. A total Lagrangian
formulation has been employed in numerical studies focusing on the comparison of pile
penetration with lab-scale experiments [133, 134], as well as in investigating the influence
of the relative acceleration between the solid and the water phases in saturated sands
[135]. Conclusively, Staubach et al. [136] developed a hydromechanically Coupled-Eulerian-
Lagrangian (CEL) method, which was applied to the back-analysis of vibratory pile tests
in saturated sand; good agreement was found between the CEL and the total Lagrangian
formulations.

1.4. Research scope

As can be understood from the preceding review, a multitude of approaches is available for
pile drivability analysis. Notwithstanding that certain connections are apparent between
the various frameworks, the different types of installation (e.g. impact, vibratory, jacking)
are fundamentally driven by dissimilar physical mechanisms. The latter is strongly reflected
in the medium-fidelity approaches - hereafter also termed as engineering-oriented - where
the pile and soil reaction modelling may vary to a great degree for different driving methods.
In the following, the scope of this thesis is focused on the aspect of engineering-oriented
modelling for pile driving via vibratory and GDP methods, with a view to further support
sustainable monopile installation.

Vibratory driving predictions are essential to assess the capability of a driving device to
install a pile in a certain soil profile to the target penetration depth, as well as to anticipate
and prevent occurrences that engender great risk for the operation or even the overall
project, e.g. early pile refusal or pile running. However, it is noted that reliable drivability



predictions for offshore monopiles are not solely valuable per se, but they provide valuable
input for other design stages. In particular, two major aspects of offshore monopiles rely
heavily on the installation process, i.e. the underwater noise emissions during installation
and the lateral response of the structure during operation. Both aspects are studied during
the design phase and their output depends on the proper analysis of the installation process
(either in an integrated or a two-step approach). Therefore, drivability of offshore monopiles
may greatly affect various design stages and its significance cannot be overemphasized.

Asregards medium-fidelity approaches, their main drawback lies in their (semi-)empirical
character, leading to insufficient description of the physical process (and by extension inac-
curacy). Customarily, medium-fidelity models possess a simplistic pile description (e.g. 1-D
rod) and almost exclusively disregard pile-soil interaction, by employing local, frequency-
independent soil reaction analogues (due to simplicity and ease of implementation). The
existing approaches have already been found inadequate for impact piling of large-diameter
monopiles [95], whereas for vibratory driving an established approach cannot even be
distinguished. In particular, comprehensive understanding of the physical mechanisms
involved and their incorporation into effective engineering-oriented models are still elusive
for vibro-driving. In view of the above, an endeavour to bridge the gap between medium-
and high-fidelity approaches is undertaken, to shift the paradigm of standard engineering-
oriented approaches and better the engineering aspects of monopile installation.

In this thesis, the research objectives are accomplished via the execution of an experi-
mental campaign and the development of numerical models for pile installation analysis.
The former serves to better understand pile installation via vibratory and GDP techniques
with the aid of the collected data, which in turn will be utilized for model calibration and
validation purposes. The numerical developments introduced in this thesis are briefly: i)
the Semi-analytical Finite Element (SAFE) method for thin/thick cylindrical shells, ii) the
Thin-Layer Method (TLM) coupled with Perfectly Matched Layers (PMLs) for layered soil
half-spaces and iii) the Harmonic Balance Method (HBM) for non-linear dynamical systems.
These approaches - characterized by remarkable versatility and computational performance
- pertain to semi-analytical and numerical methods applicable to a wide set of engineering
problems. For that purpose, the relevant sections are retained as generic and accessible
as possible, in order to benefit the readership from diverse communities to the greatest
degree.

Conclusively, the first and primary aim of this thesis is the development of a method-
ology for the analysis of vibratory pile installation, that encompasses the mathematical
formulation, the process of parameter calibration based on in-situ measurements and the
implementation of a high-performance numerical scheme for engineering purposes. As a
continuation of this objective, the potential extension of this numerical framework is pur-
sued to analyse the installation process via GDP and decipher its main driving mechanisms;
the latter task is considered the ultimate aim of this thesis.

1.5. Thesis outline

Following the present introduction chapter, the vibrations of thin-walled cylindrical struc-
tures are studied in Chapter 2, with a view to large-diameter monopiles. The first approx-
imation theory for thin shells is outlined, as the optimal choice for the analysis of these
tubular structures. Wave propagation and dispersion characteristics of thin-walled cyl-
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indrical structures are briefly discussed on the basis of different theories. Subsequently, a
Semi-analytical Finite Element (SAFE) model is developed, with the aim of facilitating the
study of thin (and thick) cylindrical shell vibrations in this thesis.

The focus of Chapter 3 lies on the study of two physical mechanisms present in pile
installation and their significance for large-diameter monopiles, namely dispersion of
elastic waves and non-local soil reaction. The former mechanism is addressed by description
of the pile as a thin cylindrical shell, whereas the latter is achieved by introducing non-local
kernel functions to the standard local reaction analogues. The results of this study showcase
that physically sound pile description is pivotal for accurate drivability predictions, since
wave dispersion becomes more prominent with increasing pile diameter and larger impact
hammers. As regards the soil reaction, the adopted formulation is neither rigorously based
on a 3-D soil medium, nor possesses temporal non-locality (i.e. frequency dependence),
thus the direct treatment of the 3-D soil continuum is considered the optimal next step.

To realize the preceding objective, a discourse on wave propagation in linear elastic
layered media is presented in Chapter 4. A framework that can seamlessly treat arbitrarily
layered soil media is indispensable with regard to pile installation analysis. In view of this
challenge, the Thin-Layer Method (TLM) is utilized to eradicate the formidable complic-
ations introduced by soil layering. Specifically, explicit expressions of Green’s functions
for ring sources are obtained by means of a normal modes approach in the context of the
TLM. Furthermore, a more recent formulation of the previous method, i.e. coupled with
Perfectly Matched Layers (PMLs), is employed for the approximate representation of the
underlying half-space. With these developments, the theoretical background that pertains
to the ensuing chapters has been presented along with the respective numerical approaches.

Chapter 5 focuses on the pile installation tests of the GDP field campaign and elucidates
on the motivation for this research work, namely the demand for sustainable methods of
offshore monopile installation. To contribute towards the latter objective, a new vibratory
installation technique has been recently proposed by TU Delft, namely the ‘Gentle Driving
of Piles’ (GDP) method. The founding principles of the method and the purpose-built GDP
shaker are first presented. Furthermore, the geotechnical characterisation of the test site is
outlined, with the main body of the chapter discussing the installation tests of vibro-driven
and GDP piles. The comparison between piling data associated with classical vibratory
driving and GDP showcases the beneficial effect of torsion and the potential of the proposed
installation technology.

In Chapter 6, the numerical developments of the preceding chapters are integrated into a
vibratory pile driving model, that aims to bridge the gap between the available medium- and
high-fidelity modelling approaches. A numerical framework is proposed that significantly
reduces the simplifications and empirical components of the former and alleviates the
practical and computational impediments of the latter. The pile-soil coupling is realized
through a history-dependent frictional interface and a visco-elasto-plastic tip reaction
model, both characterized by standard in-situ geotechnical tests (SCPT-based). For the
numerical solution, a hybrid time-frequency scheme is presented based on sequential
application of the Harmonic Balance Method (HBM). Finally, installation data from the GDP
campaign are compared with model predictions - showcasing its predictive capabilities - and
further investigation into certain aspects of the vibratory installation process is performed.

To further support and interpret the field observations from the GDP campaign, numer-
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ical modelling work is imperative in order to comprehend the main driving mechanisms.
For that purpose, the developed vibratory pile installation model is augmented in Chapter 7
to formulate a GDP framework. Numerical simulations lead to deciphering the mechanics
of the GDP method, the main novel contribution of this chapter. Specifically, the redirection
of the friction force vector emerges as the major driving mechanism of GDP, as it enhances
installation performance by greatly reducing the soil reaction along the penetration axis.
Conclusively, a case study is performed to compare the axial vibratory and GDP methods
in terms of induced soil motion, showcasing abatement of environmental disturbance for
GDP by elicitation of SH waves and reduction of the SV-P wavefield.

Conclusively, Chapter 8 summarises the major findings of this thesis, accompanied by
recommendations for further research.



Vibration of thin cylindrical shells

Customarily, pile drivability models adopt simplified approaches that consider the pile
foundation either as a 1-D thin rod or even as a rigid body (mostly in vibratory driving). The
validity of such modelling choices depends naturally on the pile geometry and the frequency
range of the structural response. For slender small-diameter piles, that have been the in-
dustry standard in offshore engineering applications in the past, the thin rod approximation
constitutes indeed an appropriate engineering model for drivability purposes. However,
the growth of offshore wind in the past two decades has prompted the re-assessment of
current design approaches with the advent of large-diameter monopiles. These large tubular
structures fairly raise a concern about the capability of standard 1-D models to sufficiently
capture their response during installation. With a view to thin-walled cylindrical structures
(e.g. tubular monopiles), a thin shell theory is considered the optimal choice for a physically
accurate and computationally efficient pile model.

In this chapter, the interest lies in the vibrations of thin-walled cylindrical structures. As
a point of departure, the first approximation theory for thin cylindrical shells is discussed,
based on Love's postulates that form the theoretical basis for the shell governing equations.
The propagation of harmonic waves in a thin cylindrical shell is studied in a brief, yet concise
manner, with a focus on wave dispersion in comparison with other associated structural
theories. Subsequently, the focus is placed on free vibrations of finite shells - inherently
connected to wave propagation - and the mathematical process to obtain the shell normal
modes is outlined. Conclusively, a Semi-analytical Finite Element (SAFE) model is presented
and validated, with the aim of facilitating the numerical modelling of thin/thick cylindrical
shells.

2.1. Love’s first approximation shell theories

A three-dimensional solid that is bounded by two closely-spaced curved surfaces is defined
as a shell [137]. The engineering theories used to describe these bodies, in lieu of three-
dimensional elasticity, are categorized into thin and thick shell theories [138]. This distinc-
tion is based on the thickness of the shell compared to its other characteristic dimensions.

11
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The dynamic behaviour of thin shells is decomposed into extensional and bending parts,
whereas the effects of shear deformation and rotary inertia are neglected [139]. The theoret-
ical framework for the study of thin shells under small displacements is founded on Love's
postulates [140]. The shell theories derived in accordance with these four assumptions are
defined as Love’s first approximation theories. In the ensuing, the vibrations of cylindrical
shells will be studied based on Love's first approximation theories, with a view to the shell
structures of our interest, i.e. tubular (mono)piles.

A
v

Figure 2.1: Geometry and coordinate system of a cylindrical shell.

A uniform thin cylindrical shell is considered, with finite length L,,, mid-surface radius
Ry, and wall thickness hp, as shown in Fig. 2.1. The shell is comprised of linear isotropic
elastic material with Young’s modulus Ep, Poisson’s ratio v, and mass density p,. The
displacement components of any material point on the shell satisfy the Kirchhoff hypothesis
[141] (one of the four Love’s postulates) for any first approximation shell theory and are
defined as [139]:

Uzp(r,0,2,1) = up0,z,1) + (r - Rp) B0, 2,1 (2.12)
ug,p(r,0,z,1) = vp(0,2, 1)+ (r—Rp) o0, 2, 1) (2.1b)
Urp(r,0,z,1) = wp(0, 2, 1) (2.1¢0)

where up, vp, wp are the mid-surface displacement components (r = Rp,) with the shell
occupying radially the domain Ry, — hp/2 < r < Ry + hyy /2. The rotations of the normal to the
mid-surface about the 8 and z axes are denoted by 8, and By, respectively, and read [139]:

__ 2 2.2
27752 (2.22)
1 owp
Po = R (Vp__ag ) (2.2b)

As can be seen in Eq. (2.2), the shell rotations are fully determined by the mid-surface
displacement components. In the case of thick shells, these two rotations are unknown as
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well, thus the equations of motion increase in number (from three to five) and the governing
equations become much more complicated [142, 143].

Figure 2.2: Force resultants in a thin cylindrical shell element.

Even amongst the first approximation theories a multitude of discrepancies can be
found in their governing equations, due to different assumptions and/or the point at which
these assumptions are introduced in the derivation process. The equations of motion in
force/moment resultant form are common for all first approximation shell theories and
read [144]:

ON, 1 0Ng, 0 uy
— =pphy— 2.3
9z 'Ry, o0 | PePTPrTp 232)
ONzg 1 ONp Qp 0 vp
=220 0 e = Pl 2.3b
9z R, 00 ' R, PorTPrinTap (2.30)
0Q; 10Qy Ny 0% wp
—_<xrt_7 = 0phpy—— 2.3
9z "R, 00 R, TP Top (2:39

where N;, Ny, N, and Ny, are the in-plane force resultants, Q, and Qg are the transverse
shear force resultants and p , pg,p and py,, are the external surface loads. In Fig. 2.2, the
force resultants are shown acting on a differential shell element. Equations (2.32) to (2.3¢)
describe the dynamic force equilibria for a thin cylindrical shell, which are supplemented
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by three dynamic moment equilibria as follows [144]:

oM, 1 My,
- ~0,=0 2.4
0z "Ry 00 & (2.42)
O0Mz 1 0My
— Y _0,=0 2.4b
oz "Ryoo & (2.45)
M,
N9 — Ng, — RGZ =0 (2.40)
P

where Mz, Mp,, M9 and My denote the moment resultants (see Fig. 2.3). In principle,
Egs. (2.4a) and (2.4b) are substituted in Egs. (2.3b) and (2.3c), while Eq. (2.4c¢) is identically
satisfied by virtue of the symmetry of the stress tensor, i.e. 7,9, = Tg.p. Therefore, the
number of equations of motion that govern the vibrations of thin cylindrical shells may be
ultimately reduced to three. Equations (2.3a) to (2.4c) are widely accepted as the equations
of motion for thin cylindrical shells [139] and have been derived either by direct formula-
tion of force/moment resultant equilibria (Newtonian approach) [145] or by application
of Hamilton’s principle (variational approach) [137]. Finally, it is remarked that neither
N,g = Ny, nor M 9 = My, is implied by the symmetry of the stress tensor invoked above;
the equivalence of these force and moment resultants may or may not hold depending on
the shell theory under consideration.

T

M+ Mo gg oM. ﬁf T oM
e o6 M(?’ + —2 do ]tlz+ P Zdz Mz() Z()dz
iz

Figure 2.3: Moment resultants in a thin cylindrical shell element.

The last set of governing equations that are valid for any first approximation shell theory
corresponds to the constitutive relations. On the condition that the study is restricted to
linear elastic isotropic shells, the stress-strain equations for any first approximation theory
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read:

E

p
Tap =712 (e2p+Vpeo,p) (2.52)
p
E,
p
0p =15 (€0 +Vpezp) 2.5b)
p
= (2.5¢)
T20p =T0zp= 57 Y .5¢
z0,p 0z,p > (1 N Vp) Y z0,p

while the remaining components of the stress tensor 7., Tgrp and o, are considered
equal to zero, in accordance with Love’s postulates.

The remaining sets of governing equations correspond to the kinematic relations - relat-
ing the strain tensor to the shell displacement field - and the force/moment resultants, that
are derived from the integration of stresses along the shell thickness. Based on the chosen
shell theory, different relations and assumptions at various stages of the derivations are
adopted; yet all the relations given up to this point are applicable to any first approximation
shell theory one may employ.

2.2. Wave propagation in thin-walled cylindrical structures

In this section, the propagation of harmonic waves in a thin-walled cylindrical structure,
e.g. a(mono)pile, is studied. In general, this topic has attracted significant research interest
from the middle of the 20th century up to the present, as thin and/or thick shells constitute
major structural elements in applications pertaining to aerospace, biomedical, civil and
marine engineering. In particular, the dispersion characteristics of thin cylindrical shells
have been studied for various configurations, for instance: (i) in vacuo cylindrical shells
[146-148], (ii) cylindrical shells supported by an elastic foundation [149-151], (iii) cylindrical
shells immersed and/or surrounded by fluid [152-154].

For any thin shell theory, the equations of motion of a cylindrical shell in vacuo can be
written in the following compact form [139]:

Up 0
(Lom+kpZLmop) | vp |=] 0 (2.6)
Wp 0

where £pm denotes the differential matrix operator that corresponds to the Donnell-
Mushtari shell theory [155-157] and £ mop denotes a modification differential matrix oper-
ator. Based on the Donnell-Mushtari theory, £ pwm is defined as follows:
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RIQIWEY LW E
0| REGEES R W
vap% % A+kpVhHe) |
ol 3] o
p 0 0 -1

where kp, = hIZ)/(IZRIZ)) is a non-dimensional thickness parameter, ¢, = \/Ep/(pp(1 - vf,))
is the (longitudinal) thin plate wave velocity and V*(-) = Rgd“(-) 10z* + 2R564 ()/(02%200%) +
a*(-)/00*.

The differential matrix operator Zyop can lead to any other first approximation shell
theory by extending the Donnell-Mushtari theory. A comprehensive review of various
thin shell theories can be found in Leissa [139], with focus on free vibrations and relevant
theoretical and experimental studies. In the ensuing, the so-called Love-Timoshenko thin
shell theory is considered [158, 140, 159], for which £ mop-r is defined as [139]:

0 0 0
8%()  0%() a3 %)
2 2
ZLvop-1r() = 0 RP(I ~Vp) 922 + 902 - P 52200 - 003 (2.8)
a3 330
“R22 -y )— 2
0 ~RpC=vo)5 350~ 305 0

To study the propagation of harmonic waves the following generic solution is assumed:

Up = Acos(nf)e Vel®! (2.93)
vp = Bsin(nf)e %l (2.9b)
wp = Ccos(nf)e 1zeivt (2.9¢)

where 7y is the axial wavenumber, n is the circumferential mode number and A, B and C
are constant coefficients. The wave solution given in Eq. (2.9) corresponds to a symmetric
waveform with respect to 6 = 0; an anti-symmetric waveform can be prescribed by interchan-
ging sines and cosines in Eq. (2.9). Henceforth, the terms symmetric and anti-symmetric
configuration will correspond to the preceding definitions.

Upon substitution of Eq. (2.9) into Eq. (2.6), the free vibration problem is recasted as a
system of algebraic equations:

L1 Lip Lis A 0
Ly Ly Ly B |=(0 (2.10)
L31 L3p L33 C 0
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where the matrix Ly is populated with entries L; j, following from the Love-Timoshenko the-
ory. The latter system possesses a non-trivial solution that leads to the dispersion equation
for a thin cylindrical shell:

det(Li1) =0 (2.11)

At this stage, a distinction is made between two different types of motion, namely
axisymmetric (n = 0) and non-axisymmetric motion (n > 0). A mechanical system (e.g.
cylindrical shell) that is symmetric around the longitudinal axis z and its input excitation,
initial and boundary conditions possess the same symmetry is called axisymmetric, i.e. no
variation along the azimuth is present in the problem (0(-)/36 = 0). In the general case of
non-axisymmetric motions, Eq. (2.11) becomes an eighth-order polynomial of the axial
wavenumber y (for a given frequency w) and all three displacement components are coupled
[160, 147]. However, under axisymmetric conditions a decoupling occurs and the shell
displacement field can be decomposed into two parts, i.e. a coupled axial-radial and a purely
circumferential part. The former can be obtained by substituting Eq. (2.9) into Eq. (2.6),
while the latter is based on the anti-symmetric configuration of Eq. (2.9); in both cases n = 0.
Furthermore, this decoupling leads to a sixth-order dispersion equation for the axial-radial
wave motion and a second-order dispersion equation for the purely circumferential wave
motion.

The focus of the ensuing study is restricted to the propagation of axisymmetric longitud-
inal waves in a thin-walled cylindrical structure. Customarily, the thin rod approximation
may be the first option to describe the one-dimensional wave propagation in a long and thin
structural member, by assuming a uni-axial stress state [161]. For a thin cylindrical shell, the
propagation of longitudinal waves under axisymmetric conditions (n = 0 and symmetric
waveform) is governed by the following dispersion equation:

4 2 2 2 2 2.2
co(1-v2)— Riw~c w*c
kpRgcéyﬁ—kpstzc§y4+ P P P2 4 P

P Y+ |w* - ) =0 (2.12)
Ry Ry

In Figs. 2.4 and 2.5, the dispersion curves in the frequency-wavenumber plane are
presented for longitudinal waves in a thin rod, flexural waves in a thin plate and coupled
longitudinal-flexural waves in a thin cylindrical shell. The properties of the thin cylindrical
shell considered in this example are given in Table 2.1. Branch 1 of the cylindrical shell
is in agreement with the non-dispersive branch of longitudinal waves in a thin rod up to
approximately w/w; = 0.8, where w; = ¢,/ R, denotes the ring frequency of the cylindrical
shell (see Fig. 2.4). The harmonic waves corresponding to the aforementioned region of
branch 1 possess a dominant axial component and minor radial displacements. For this type
of waves, the thin rod approximation is customarily employed in long structural members
assumed to be in a uni-axial stress state [161]. For frequencies higher than the ring frequency,
the thin rod approaches branch 3 of the shell, where the wave motion is once again axially
dominated. However, as can be seen there are certain limitations to that theory, since
other motions are present as well. In the vicinity of the ring frequency, the phase wave
velocity of branch 11is significantly reduced and asymptotically approaches that of the thin
plate theory in high frequencies and wavenumbers [162]. This behavioural transition in
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branch 1is accompanied by an interchange of the dominant displacement component, i.e.
radial motion becomes dominant resembling indeed propagation of flexural waves in a thin
plate. Therefore, waves of small wavelengths compared to the radius of the cylindrical shell
propagate almost identically in a cylindrical shell and in a thin plate, since the curvature has
a negligible effect - effectively the cylindrical shell tends to guide these waves as a thin plate.
As regards Fig. 2.5, the imaginary part of the dispersion curves for the thin cylindrical shell
are presented. It is remarked that the imaginary parts of the thin rod dispersion curve and
the thin plate branch (see Fig. 2.4) are omitted in Fig. 2.5, as they are equal to zero.

pp kg/m®]  Ep[Pa]l wvp[-]1 Ly [m]

Ry [m]  hp [m]

7850 210109 0.3 10 0.373  0.0159

Table 2.1: Geometrical and material properties of the thin cylindrical shell considered in this study.
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Figure 2.4: Comparison of dispersion curves between a thin rod, a thin plate and a thin cylindrical shell (real part).

Based on the preceding discussion, the dynamics of a thin-walled cylindrical structure
(above a certain frequency and/or wavenumber) cannot be adequately described by the
thin rod approximation. The latter, also known as elementary theory, comprises a good
approximation for disturbances with long wavelengths and low frequencies [163]. Various
engineering theories have been proposed to improve the dispersion characteristics of the
elementary rod theory and to retain its one-dimensional character, by addressing effects
that the thin rod approximation neglected. Rayleigh [164] proposed a correction to improve
the thin rod approximation, by taking into account the lateral inertia arising from the
contraction and the expansion of the cross-section. The equations of motion for the latter
theory were arrived at by Love [140] via Hamilton's principle; accordingly, the said theory is
customarily stated as Rayleigh-Love rod theory [163]. Following these developments, the
shear stiffness was also introduced on top of the lateral inertia by Bishop [165]. However,
none of the preceding approximate theories describes accurately the wave propagation in the
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Figure 2.5: Dispersion curves of a thin cylindrical shell (imaginary part).

vicinity of the ring frequency and above. Meijers et al. [166] presented a corrected rod theory
that resembles the Rayleigh-Love rod theory, albeit modified such that it approximates the
low-frequency dispersion branch of the membrane shell theory. The latter comprises a good
approximation for longitudinal waves up to the ring frequency, albeit flexural waves above
the ring frequency are not adequately captured.

The thin shell theory may be considered the best engineering approximation for the
description of axisymmetric wave propagation in a thin-walled cylindrical structure. The
theoretical investigations to substantiate the latter statement have been carried out, by
comparing the dispersion curves of thin shell theory against the respective ones derived in
the context of three-dimensional elasticity [167-170]. As shown by Le [171], the agreement of
three-dimensional elasticity with shell theory is remarkable for axisymmetric wave propaga-
tion up to a certain wavenumber; above that threshold discrepancy is observed in the branch
corresponding to flexural waves. The ratio hy, /Ry, constitutes the controlling parameter that
may assist in considering whether a thin or thick shell theory is appropriate for the problem
at hand [138]. However, in the case of short-wavelength motions that invalidate the linear
variation of the displacement field along the shell thickness, neither thin nor thick shell
theories are applicable.

2.3. Free vibration of thin cylindrical shells

For engineering applications, the free vibrations of cylindrical shells have been studied
extensively and various approaches have been employed to address this classical problem.
The preponderance of studies on this topic have employed approximate methods such
as differential quadrature [172, 173], the Rayleigh-Ritz method in conjunction with beam
functions [174-177] and other standard numerical methods (e.g. finite differences, finite
elements) [139]. The main reason for the use of approximate methods in the previous studies
appears to be the mathematical complexity of the exact procedure [139]. The exact solution
method for the free vibration problem of thin cylindrical shells was developed by Fliigge
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[178], albeit its numerical implementation was realized at a later stage following the advent
of computers [160, 179, 180].

Following the exact solution method as outlined by Fliigge [181], the displacement com-
ponents of the j-th free vibration mode may be expressed as follows:

up(6,z,1) = cos(nB) Uy (z)el@nit (2.13a)
vp(0, 2, 1) = sin(nf) Vy, (2)e i’ (2.13b)
wp (0, 2, 1) = cos(nO) Wy j (2)e™ni’ (2.13¢)

where U, (2), Vyj(2) and W), ;(z) denote the dependency of the three modal displacement
components along the longitudinal axis. As can be seen in Eq. (2.13), different modal sets
may be obtained based on the circumferential mode number 7. In general, the free vibration
modes of solids of revolution can be categorized into two different groups, namely the
special case of axisymmetric modes (n = 0) and the more general case of non-axisymmetric
modes (n > 0) [182, 183]. Both groups of modes can be obtained via the same mathematical
procedure, albeit with certain discrepancies due to the different general solution forms.

2.3.1. Axisymmetric motion (1 = 0)

For axisymmetric vibrations, the shell motion decouples into two kinds, namely coupled
axial-radial motion and circumferential motion [139]. The general solution of the j-th
axial-radial mode has the following form:

6 .
Uoj(2) = Y. AomjComje”Tomi* (2.142)
m=1
Voj(2) =0 (2.14b)
6 .
Woj(2) = Y. Comje Yomi” (2.140)
m=1

where yo,,j encompasses the wavenumbers that correspond to the natural frequency wy;
based on Eq. (2.12), i.e. the dispersion equation for axisymmetric axial-radial waves. The
coefficient A is known for each m-th wave component and the coefficient Co,; is de-
termined by the boundary conditions. Evidently, the circumferential component vanishes
in Eq. (2.14).

For the j-th circumferential (also termed torsional) mode, the assumed solution may be
expressed as:

Upj(2) =0 (2.152)
2 .
Voj(2) = Y Bomje 1omi* (2.15b)
m=1

Wyj(z)=0 (2.15¢)
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where the torsional wavenumbers denoted by yo,j are obtained by a second-order disper-
sion equation. In this case, the axial and radial components are equal to zero. It is remarked
that axial-radial and torsional modes correspond to symmetric and anti-symmetric re-
sponse configurations, respectively, and the final values By, and Cy,j are determined by
the boundary conditions.

2.3.2. Non-axisymmetric motion (72 > 0)
In the case of non-axisymmetric motions, the coupling between the three displacement
components is retained and the free vibrations modes have the following form:

8 .
Unj(2) =Y. ApmjCpmje” " mmi* (2.16a)
m=1
8 .
Vnj(2)= Y. BumjCnmje Vrmi* (2.16b)
m=1
8 .
Wyj(2)= ) Cpmje Trmi? (2.16¢)
m=1

where the coefficients A, j and B, j are known and based on the dispersion characteristics
of the m-th wave component with wavenumber y ,,,j. The determination of Cy,, as in the
axisymmetric case, is based on the boundary conditions.

The determination of the unknown coefficients is performed by assembling the boundary
conditions, i.e. algebraic equations, in a matrix equation as follows:

Kircn,j=0 (2.17)

where the vector ¢,,j = [ Cuj -+ Cugj ]T encapsulates the unknown coefficients and
the matrix Ky is a function of frequency. The natural frequency w,; and, by extension, all
other modal quantities are found by requiring det (Kir) = 0, thus solving an optimization
problem.

In the original method, as put forward by Fligge [181], the longitudinal dependence of
the solution is given in terms of eknmiZ In Egs. (2.14) to (2.16), the latter term is replaced by
e YnmiZ since the variable y,,, j corresponds directly to the axial wavenumber in the context
of wave propagation. It is worth noting that the obtained modes for both axisymmetric and
non-axisymmetric motions may be complex-valued, which may be perceived as anindication
of an incorrect solution. However, that situation may arise for correct solutions as well,
due to the numerical implementation of the procedure. At this stage, all the displacement
components of a mode shape should be multiplied by a factor e'?, which serves to rotate
the mode shapes in the complex space and align them with the real axis [184]. If the latter
is not possible for the normal modes of a linear elastic shell, it delineates an inaccurate
implementation of the preceding procedure.
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2.4. ASemi-analytical Finite Element (SAFE) model for cylindrical

shells

Inthe preceding sections, the analytical treatment of wave propagation and free vibrations of
thin cylindrical shells were outlined. However, a reader dealing with engineering problems
that include thin cylindrical shells inevitably demands a generic, versatile and efficient
numerical modelling framework. The latter is not a minor consideration, in particular
when 3-D problems need to be addressed. Available approaches that are fully based on
the Finite Element Method (FEM) are abundant and well-established, as for instance the
MITC shell elements that constitute the model of choice in most commercial FE codes
[185]. Notwithstanding the merits of the preceding approaches, one may wish to resort
to other more flexible and efficient techniques for the problem at hand. In view of such
considerations, a Semi-analytical Finite Element (SAFE) model is formulated in the ensuing.

The essence of the SAFE method lies in the combination of one- or bi-dimensional finite
element discretization with analytical solutions in the remaining coordinates. This approach
has been successfully utilized in a wide range of applications, with a view to guided wave
propagation for non-destructive evaluation (NDE) and structural health monitoring (SHM)
in laminated composite plates and shells among other structures [186-189]. The outlined
approach is applied to a cylindrical shell described by the Love-Timoshenko theory, yet the
framework is generic and may be applied to other thin as well as thick shell theories in an
identical manner.

Consider a thin cylindrical shell segment with length d;. The equations of motion
according to Love-Timoshenko shell theory may be expressed in a compact matrix form as
follows:

0%u,
pp+$psp—ﬂpApF:0 (2.18)
where the pile displacement/rotation vector wy,, the surface forces/moments vector p,, and
the force/moment resultants vector sy, are defined as follows:

w=[up vp wp Pz ]T 2.19)
po=| Pep Pop Prp Mzp mop | (2.20)
sp=SpAptp=[ N: Ng Nig Npo Q. Qp M. My My M, | (22D)
Furthermore, the differential matrix operators £}, Sp and A;, are defined as:
Zp() =$z,p% +$9,p% +ZLop() (2.22)
() () () () a()

Sp()=Szzp 322 +Sg9,p 302 +Sz0p 3200 + Sz,pg + Sg'pﬁ +80,p() (2.23)
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a(-
Ap() = A@,pa% +Agp(") (2.24)

In the above definitions, &£}, provides the shell stiffness based on the force/moment res-
ultants, S, provides the force/moment resultants based on the shell displacements and
rotations and A, forms the full displacement/rotation vector ap,, which reads:

T

ap=Apup=[ up vp wp Pz Po ] (2.25)

The latter will be employed in the principle of virtual work, which is invoked in the derivation

process of the SAFE shell model. Finally, the matrices %, £, p, Lop, Lop, Agp, Aop,
Szzp>806,p» Sz0,p» Szp, So,p and Sp p can be found in Appendix A.

For a cylindrical shell, the two mid-surface circumferences at the shell edges comprise

its boundary curves and in case of prescribed tractions the associated boundary conditions
read [139]:

tl = — (Bys,) " (2.26a)
t0 = (Bys,)" (2.26b)

where the superscripts (u) and (1) correspond to the upper (z = z,,) and lower (z = z)) shell
boundaries, respectively. The internal force/moment resultants along the boundary curve
are defined as:

M 1 0My T
.%psp = Nz Nzg + R_p QZ + E 90 Mz (227)
where the differential matrix operator 28, is defined as:
_ a()
e%p() —.@9'p£ +'%0,P(') (2.28)

The matrices % , and %y, can be found in Appendix A. Furthermore, the external force/moment
vector tp at the boundary reads:

T
to={ tzp lop lrp lzzp | (2.29)

Upon arranging all the necessary quantities in compact matrix form, we proceed to
formulate a SAFE model for a thin cylindrical shell. In this problem, analytical solutions in
0 are combined with a finite element discretization in z, resulting in a series of nodal rings
(see Fig. 2.6). First, a cylindrical shell segment is considered with the following assumed
solution:

X(u)

up =0,NpXp, Xp= xg) (2.30)
P
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Figure 2.6: A thin cylindrical shell with axial discretization into nodal rings based on the SAFE method.

The diagonal matrix @, ensures that the response is periodic in 6. Both symmetric and
anti-symmetric configurations with respect to 6 = 0 are admissible and can be expressed as:

cos(nf) 0 0 0
s 0 —sin(n0) 0 0
= 0 0 cos(nf) 0 (2.312)
0 0 0 cos(nf)
sin(n6) 0 0 0
a 0 cos(n0) 0 0
6, = 0 0 sin(n8) 0 (2.31b)
0 0 0 sin(n@)
The symmetric and anti-symmetric azimuthal matrices are related as follows:
des
1 0” = -n@? (2.32a)
de?
1 9” = n@; (2.32b)

In the ensuing, the azimuthal matrix @, will be used as a placeholder, since the generic
developments to be presented are valid for both symmetric and anti-symmetric cases.

The interpolation matrix N, encapsulates the interpolation polynomials used to approx-
imate the response of the shell element along the z-axis based on the nodal ring values, i.e.

(u) (ON
Xp and Xp
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Figure 2.7: (a) Linear Lagrange polynomials are used to approximate up and vp along z and (b) cubic Hermite
polynomials are used to approximate wp and 8, along z (given as functions of ¢ = z/d).

The axial up and circumferential vy, displacements are interpolated based on linear
Lagrange polynomials (see Fig. 2.7a), which are defined as:

1 dl —Z
Nl(z) = 7 (2.342)
Nj(2) = dil (2.34b)

The radial displacement wp, and the rotation angle B, are approximated by cubic Hermite
polynomials (see Fig. 2.7b):

N(z) =1 3z° 22 (2.352)
1\ =1==5 T 73 ’
dl dl
222 73
N§(2) = 2— —+ 2 (2.35b)
d &
NE(z) = 32° _22° (2.350)
3\ =" " 73 ’
dl dl
2 Z3
Ni(2) = - 2.35d)

_+_
i d?
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Without further delay, the principle of virtual work is formulated for a cylindrical shell
segment in order to derive the SAFE equations [190]. Accordingly, we require that the virtual
work performed by the residual surface forces/moments throughout the shell domain and
by the residual line forces/moments along the boundary curves to be zero:

2n
f (( ug”) <u)+(5u“) rd + [ ba rpvdz) R, do=0 (2.36)

0

where rgl) and rg) denote the residual force/moment resultants at the upper (z = z,;) and

lower (z = z)) shell segment boundaries, respectively, and rp v denotes the residual surface
forces/moments in the shell domain. The aforementioned residuals are expressed as follows:

(u) _ ¢(u) (w
rp! =t + (Bpsp) (2.37a)
0 =) — (Bs,)" (2.37b)
2
0°uyp

rp,VZPp"'gpsp_']pApF (2.37C)

In the absence of boundary forces/moments and surface loading in the shell, Eq. (2.36)
is expanded as follows:
27

/

The line integral that corresponds to the boundary terms can be recasted into a surface
integral, leading to:

Rpdf=0 (2.38)

- O fo. 0*u,
—(6up%psp)‘(u)+f6ap ‘jfpsp—ﬂpApa—t2 dz
2u

2” Zl . 35| _ (00
) R,dzd0 =0 (2.39)
0 Zu

0*u,
p pa e ———%BpSp +6a ZLpSp — JPAPOZ

By factoring out the virtual displacement/rotation vector x, given that the principle of
virtual work should hold for any arbitrary variation, Eq. (2.36) can been finally reformed as:

27 Z
e dNp  dN)T 0 O TAT 0
(NG BySpAp — + — 2By SpApN,) — () TAS £ SpApN;) | Ry dzdf xp
0 zu
27 3 d
f f (N9)TALZ AN Ry dzdf — d =0 (2.40)
0 zu

Upon the outlined series of mathematical operations, the element mass and stiffness

matrices Il ,and Lp ., tespectively, are derived and expressed as follows (see Appendix A):
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2w 2

I, = f f (N9)'AL.7,ALNS R, dzdO (2.41)
0 zu
27 2
dN§  dN)T
= f f ((NS)T@pspAp P (d ) 28,5,A,N¢ (N)TAT£,S,A,N | R, dzd6
0 Zu

(2.42)
In the presence of external loads in the shell surface and/or along the boundary curves,
the vector of consistent forces/moments at the element nodal rings pf,' ,, may be expressed

as:
2
I _
pp,n _f
0

It is noted that N§ = @,N,, has been introduced in all previous equations for notation
compactness.

The final SAFE equations are formulated by overlapping all the obtained vectors and
matrices in the classical finite element sense and rearranging rows and columns to organize
per degrees of freedom instead of nodal rings. In that manner, the discretized equations of
motion of the cylindrical shell based on the SAFE approach read:

®T (u)

O\TAT
ol (D NO)TAlp, dz | Rydo (2.43)

d?up

Ip,n dtz — + Lp,nup,n =Pp,n (2.44)
where I, , is the shell mass matrix, L;, ,, is the shell stiffness matrix, up, ,, is the displace-
ment/rotation vector at the nodal rings and py, , is the vector of consistent forces/moments
at the nodal rings. Specifically, the displacements/rotations and forces/moments vectors
read:

u; Pznp
Vn Pon,p
Up = Pp,n = ’ (2.45)
p,n W, ) p,n Prup
Bzn Mmzznp

As can be seen, all the aforementioned quantities are valid for any circumferential mode
number n and hold for both symmetric and anti-symmetric problems. In a general problem
with arbitrary dependence on 8 and/or coupling of the response components of different n,
concurrent solution of multiple equations in the form of Eq. (2.44) is necessary. For that
purpose, the general solution at the nodal rings can be written as:

u

v (]
wp = Z

Bz

+ (0% eIy, )ud

b1 (2.46)

®IN1

P
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where ® is the Kronecker product and Iy, is the N; x N identity matrix with N; being the
number of nodal rings of the shell.

To accelerate the numerical solution of problems with the SAFE approach, the shell
response may be decomposed in terms of in vacuo modes as follows (e.g. for a symmetric
form):

u;n = Q;'nq; (2.47)

where qj, = qj, () is the vector of modal coordinates and the modal matrix @}, ,, is defined
as follows:

U,
@0 = x’a (2.48)

B;,

with the modal sub-matrices U$;, V5, W, and Bj, that read:

Uy =[u,, u, -] (2.49a)
Vo= Vil Va2 ] (2.49b)
Wo=[wh, wh, -] (2.49¢)
B, =[ By Bhz -] (2.49d)

2.5. Validation of the SAFE cylindrical shell model

In Section 2.4, a SAFE model for cylindrical shells has been presented that is valid for both
axisymmetric (n = 0) and non-axisymmetric motions (n > 0). In the problem of our interest,
i.e. pile installation, only axisymmetric modes (n = 0) will be used. However, we proceed to
demonstrate the remarkable potential of the developed SAFE model for both axisymmetric
and non-axisymmetric motions. For that purpose, the SAFE approach is compared against
a finite element (FE) model developed in COMSOL Multiphysics® software [191]. A free-
free cylindrical shell is considered, which is modelled in COMSOL by means of MITC shell
elements using the Shell module [185]. It is remarked that the natural frequencies of the
COMSOL model were obtained for a certain frequency range and then categorized based on
the respective circumferential mode number n. The pile properties are identical to the ones
presented in Table 2.1.

In Fig. 2.8, the natural frequencies of the first thirty axial-radial axisymmetric modes
(n = 0) are found by the SAFE shell model and compared with those obtained from COMSOL.
Similarly, for the non-axisymmetric case the first thirty modes for n = 1 are shown in
Fig. 2.9, with a view to the direct applicability of this type of motion to tubular structures
subject to lateral loading (e.g. monopiles). Evidently, the agreement is such that the two sets
(SAFE and COMSOL) are virtually indistinguishable for both #n =0 and n = 1, showcasing
the remarkable accuracy of the SAFE method in the prediction of natural frequencies.

To further supplement the validation study, the mode shapes for the two modal sets
under consideration (i.e. n =0 and n = 1) are also compared. In Figs. 2.10 and 2.11, the
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Figure 2.8: Comparison of the shell natural frequencies obtained from the SAFE and the FE (COMSOL) models for
axial-radial modes (n = 0).
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Figure 2.9: Comparison of the shell natural frequencies obtained from the SAFE and the FE (COMSOL) models for
n=1.

axisymmetric axial-radial mode shapes are displayed for both the SAFE and the COMSOL
model. Similarly, in Figs. 2.12 and 2.13 the axial and radial modal displacements for the
set of n = 1 modes are compared. It is noted that the mode index j in these examples
corresponds to flexible-body mode shapes, as rigid-body modes are trivially found and thus
were excluded herein. As can be seen, the agreement of the two models in terms of mode
shapes is remarkable both in axial and radial components. This additional validation neatly
corroborates the results of the natural frequencies comparison forbothn=0and n=1.

In Fig. 2.14, a collection of mode shapes obtained via the SAFE method is visualized to
showcase its applicability to both axisymmetric and non-axisymmetric motions of arbitrary
circumferential mode numbers n. These normal modes can be obtained by substituting the
associated circumferential mode numbers n and the solution form of Eq. (2.47) in Eq. (2.44)
in the absence of external forcing. In that manner, a generalized linear eigenvalue problem
is obtained, which can be numerically solved via standard techniques [192].
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Figure 2.11: Comparison of the radial modal displacements w{, i obtained from the SAFE and the FE (COMSOL)
models for n=0.

Conclusively, the accuracy of the proposed SAFE model has been showcased in terms of
natural frequencies and mode shapes. It is clear that the SAFE method is a highly attractive
numerical framework as it provides: (i) computational savings, i.e. a 1-D FE discretization
may be applied to 2-D and 3-D problems, (ii) versatility of coupling to other FE-based
approaches, as its numerical core lies in the FEM, and (iii) remarkable accuracy, due to the
use of analytical solutions in place of additional discretization.

2.6. Conclusions

This chapter has focused on the vibrations of thin-walled cylindrical structures, in view of
the need for accurate and computationally efficient modelling of large-diameter monopiles.
The standard 1-D pile modelling approaches were established for slender small-diameter
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piles, while their applicability to large tubular structures is questionable. To overcome
these limitations, a thin cylindrical shell theory has been proposed as an optimal choice
for a physically accurate and computationally efficient pile model. Furthermore, the wave
dispersion characteristics of thin-walled cylindrical waveguides have been explored, with
emphasis on thin shell theory.

To facilitate the numerical modelling of thin and thick cylindrical shells, a Semi-analytical
Finite Element (SAFE) model has been developed and numerically validated. By means of
this development, we introduced a valuable tool for future studies, aiming to investigate
the vibrations of these structures for a multitude of engineering applications. In the en-
suing chapters, the previous advancements will be utilized in order to incorporate a thin
cylindrical shell model in pile installation analysis.
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Installation of large-diameter
monopiles: wave dispersion and
non-local soil reaction

During the last decade, the offshore wind industry grew ceaselessly and engineering chal-
lenges continuously arose in that area. Installation of foundation piles, commonly termed
as monopiles, is one of the most critical phases in the construction of offshore wind farms.
Prior to installation, a drivability study is performed, by means of pile driving models.
Since the latter have been developed for small-diameter piles, their applicability for the
analysis of large-diameter monopiles is questionable. The focal points of this chapter are
associated with two physical mechanisms present in pile installation and their significance
for large-diameter monopiles, albeit they are commonly neglected for ease of numerical
modelling. First, the dispersion of elastic waves in a pile during installation is addressed,
showcasing the need for an accurate description of the pile motion based on a thin shell
theory. Secondly, the non-locality of soil reaction is discussed, with a view to set the stage
for the later developments dealing with the dynamic response of a 3-D soil medium.

To showcase the significance of these effects, a 3-D axisymmetric pile driving model
with non-local soil reaction is presented. This model captures properly the elastic wave
propagation in the pile and utilizes a simple approach to introduce non-local soil reaction, as
an extension of its local counterpart. A numerical case study of impact piling is performed
to showcase the response disparities stemming from these effects and being already of
importance for the size of monopiles currently installed.

This chapter is structured as follows. A brief review of modelling approaches utilized
in drivability analysis of piles installed via impact hammers is presented in Section 3.1. In
Section 3.2, the descriptions of the 1-D pile driving model and the non-local 3-D model
are given. The comparison of the results obtained from the two modelling approaches
is presented in Section 3.3, highlighting the effects of wave dispersion and non-local soil

Parts of this chapter have been published in Tsetas et al. [193].
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reaction for various cases. Conclusively, in Section 3.4 the findings are discussed, alongside
the importance of the introduced effects and insights for further development.

3.1. Drivability analysis in impact piling

Installation of monopile foundations for offshore wind turbines (OWTs) is a considerably
challenging operation and the associated cost comprises a significant part of the total budget
for an offshore wind farm [28, 194]. For that reason, in the design stage, close attention is
required to various aspects, one of which is the analysis of pile drivability. Inaccurate pile
drivability predictions can cause time delays, excessive financial costs, or even greater project
risks, e.g. pile refusal [195]. Thus, it is evident that reliable numerical tools are needed for
pile driving analysis, primarily for offshore monopiles due to the aforementioned possible
complications. In view of the ceaseless advancements in offshore wind in recent years [25],
the monopiles used as foundations for OWTs have increased in both length and diameter,
and their installation process has raised various challenges.

For the prediction of pile drivability, an analysis is performed that takes into account the
pile characteristics, the soil profile at the location of installation and the impact/vibratory
hammer to drive the pile to the required depth [30]. The vast majority of pile driving
models used in engineering practice are based on the model proposed by Smith [196];a1-D
model that describes the pile as a thin rod and the soil reaction by elasto-plastic springs
and viscous dashpots. Subsequently, various modifications have been proposed towards
rational pile driving models, by improving certain aspects of Smith’s model, such as the
empirical character of the soil reaction parameters [80, 81]. For that purpose, dynamic
models that represent the linear soil reaction based on approximate impedance formulas
[66, 67] have been used in conjunction with non-linear relations to account for the pile
penetration process (pile slip). However, the linear reaction of a soil continuum is frequency-
dependent and spatially non-local. The latter fact is mostly neglected in pile driving analysis
and frequency-independent values are assigned to local elements, in order to facilitate the
numerical simulation in the time domain. As a result, local and frequency-independent
springs and dashpots are arranged together with non-linear elements, e.g. frictional sliders,
to represent the soil reaction during installation. Itis evident that the preceding approaches
comprised significant steps towards less empirical, rational pile driving models.

In the advent of large-diameter monopiles used in offshore wind, the validity of the
existing approaches to analyse pile drivability was examined. Byrne et al. [94] investigated
the applicability of available design approaches with a focus on the static resistance to
driving (SRD), since these approaches are largely empirical and have been developed for
piles of relatively small diameter (less than 2 m) [94, 197]. Furthermore, Byrne et al. [94]
introduced a modification factor in the aforementioned approaches, which resulted in
improved drivability predictions. However, a subsequent and more extensive study revealed
that both the existing and the modified approaches were proven not to provide reliable
predictions of the blow counts [95].

Albeit the preceding works mainly focused on the determination of the SRD and its
influence on drivability predictions, other aspects of available pile driving models have also
been examined. Due to the increase in the diameter of monopiles, various works questioned
the validity of the classical rod theory, which is exclusively used to describe the pile dynamics
during installation [198, 199]. Since the wave motions excited in a pile during a hammer
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impact may pertain in the frequency range where dispersive effects are not negligible, a more
accurate description of the pile structure may be required. In thin-walled tubular structures,
frequencies in the vicinity of the so-called ring frequency correspond to predominantly
radial motions [149, 148] - which cannot be captured in current models - and are related
to strong Poisson effects that can significantly affect the soil reaction along the pile shaft
[200].

In view of these considerations, a 3-D axisymmetric model is developed herein, as a step
towards pile driving models that are suitable for large-diameter monopiles. The dispersion
of longitudinal waves is taken into account by modelling the pile as a thin cylindrical shell
according to the Love-Timoshenko theory. Furthermore, the effect of non-local dynamic soil
reaction is introduced, by formulating a non-local foundation model based on the stiffness
and damping parameters of its local counterpart. To demonstrate the effects of these two
aspects, a 1-D pile driving model with local soil reaction, as customarily used in engineering
practice, is formulated and a numerical study is performed to compare these two modelling
approaches. It is observed that pile penetration is significantly affected by wave dispersion
and this effect becomes more prominent with ascending pile diameter. In the case of large-
diameter piles, foundation non-locality leads to a stronger deviation from the local reaction
models in terms of pile responses. Since for large-diameter cases, both examined aspects
significantly alter the drivability predictions of standard approaches, their incorporation in
pile driving models for large-diameter monopiles is deemed critical.

3.2. Modelling of pile driving

In Section 3.2.1, a 1-D pile driving model is formulated, based on approaches widely used
in engineering practice. A 3-D axisymmetric model is presented in Section 3.2.2, where
the pile is modelled as a thin cylindrical shell and non-locality is introduced in soil reaction.
Details about the numerical solution of the two models are given in Section 3.2.3.

3.2.1.1-D pile driving model

An open-ended pipe pile is modelled as a linear elastic homogeneous rod occupying the
domain 0 < z < L, where L, denotes the pile length (see Fig. 3.1). The soil reaction is
represented by a combination of elastic springs, viscous dashpots and plastic sliders, as will
be described in the ensuing. The equation of motion of the rod reads:

0 uy(z, 1) 0% uy(z, 1)
Ppdp—s 53— = EpAp—2—— ~H(z~)pan G.1)

in which py, is the mass density of the pile, Ap, is the area of the pile cross-section, up(z, 1) is
the axial displacement of the pile, E,, is the Young’s modulus of the pile, H(-) is the Heaviside
function, [; is the non-embedded pile length and pg, is the soil resistance along the pile
shaft. The latter is defined as [80]:

Oup (z,1) dup (z,1)
K (1 (2,0)~tg, a0 (20) |+ 50 5, FOT [k (1 (20~ teg an (2.1) ) +cn “5 72 | <27 Ro i (2)

Psh = (.2)

dup (z,1) Oup (z,1)
2nRoqsh(z)sgn(%), for ksh(up(z,t)—ueq,sh(z,t))+csh D10 | 527 Ro s (2)
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In Eq. (3.2), ksn is the stiffness of the soil springs along the pile shaft, uq (2, #) is the
equilibrium position of each point along the pile shaft once plastic deformation develops at
the pile-soil interface, cqy is the soil dashpot coefficient along the pile shaft, R, is the outer
radius of the pile and g4, (2) is the ultimate shaft resistance. The spring and dashpot coeffi-
cients in this study are chosen in accordance with Deeks and Randolph [201] (viscous effects
neglected in plastic regime) and further modified as kg, = 271G and ¢, = 27 Ry+/psGs,
to account also for the inner shaft resistance of the open-ended piles, as proposed by Liy-
anapathirana et al. [202]. The parameters G, and ps denote the shear modulus and mass
density of the soil, respectively.

lp h(t)
Z, up(z,1)
I
T Epo Py
Ly {
L - dz 27Rogy(2)
kg, Csh
qﬁp

klip - Clip
B Embedded pile

Figure 3.1: A1-D pile driving model, with the pile described as a rod.

The mathematical statement is supplemented by the initial and boundary conditions as
follows:

Oup(z, 1)

up(z,0) =0, S

=0, Ni0,0)=-Pp(1), Ni(Lp, 1) =—Pyp, 3.3)
t=0
in which N is the axial force and Py, (#) is the force exerted on the pile head by the hammer
impact, computed analytically by the model of Deeks and Randolph [85]. Similarly, the soil
reaction Py at the pile tip of an open-ended pipe pile (z = L;,) reads [81]:

dup (z,1)
Keip (p (Lp, 1) leqtip (1)) +Ciip — 37
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and

kiip = 2GsRo/ (1 =vs)1y) (3.52)
Ciip = 3.4 (R5 — RY) /psGs/ (1 - vs) (3.5b)

in which kip, is the soil spring stiffness at the pile tip, teq1ip(#) is the equilibrium position
of the pile tip after plastic deformation has occurred, cp, is the soil dashpot coefficient at
the pile tip, R; is the inner radius of the pile, vy is the soil Poissor’s ratio, 7); is a function of
the ratio of the inner to outer radius of the pile R;/R, - according to Egorov [61] - and g, is
the ultimate tip resistance.

The ultimate shaft resistance at the pile-soil interface gg, (2), for a cohensionless layer of
sand, is estimated as a function of depth z according to the Mohr-Coulomb failure criterion
[203]:

qsn(2) = Koai,(z) tan ., (3.6)

in which K, is the coefficient of lateral earth pressure, o, (2) is the effective vertical soil
stress as a function of depth (for z = I; and ¢/,(I;) = 0) and &7 is the critical friction angle of
the pile-soil interface. It is noted that in the present study, the shaft resistance is assumed
for all piles identical at the inner and outer surface of the pile shaft, leading to a total shaft
resistance gsp (2) = 2K,0%,(z) tan§,. Similarly, at the pile tip soil failure takes place according
to the Mohr-Coulomb criterion and an associated flow rule, based on the work of Kumar
and Chakraborty [204]. Accordingly, the ultimate tip resistance reads:

Giip = €cNe + goNg, + Vs (Ro — Ri) Ny, 3.7)

in which the terms N¢, Ny, and Ny, denote the bearing capacity factors of soil cohesion c,
soil surcharge pressure ¢, and soil unit weight ys, respectively [204].

3.2.2.3-D axisymmetric pile driving model with non-local soil reaction
An open-ended pipe pile, due to its cylindrical geometry and its small wall thickness com-
pared to its other dimensions, may be described adequately as a thin cylindrical shell up to
a certain frequency range. In fact, the accurate description of elastic wave propagation in
such a structure requires a thin shell theory [139]. Specifically, the motion of a thin-walled
cylindrical structure is primarily radial and strong dispersive effects are present in the
frequency region around the so-called shell ring frequency f; [205]; classical rod theory
cannot capture such effects [149, 148]. Alternative rod theories may be used to introduce
dispersive effects (e.g. Rayleigh-Love rod), albeit such theories are mostly inaccurate in
the vicinity of the ring frequency and may falsely predict a cut-off frequency. On the other
hand, thin shell theories are in excellent agreement with the results of three-dimensional
elasticity theory, for the greater part of the frequency spectrum in the case of axisymmetric
waves [138].

In great soil depths, large soil reaction may be encountered during offshore monopile
installation, thus the importance of accurate description of the pile motion cannot be
overemphasized. Excitation of strong radial motions can affect the soil resistance during
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installation and render the drivability predictions inaccurate, as this effect is altogether
neglected in current pile driving models. For small-diameter piles that have been mainly
used offshore in the past, that issue had not arisen for reasons that will become apparent in
the ensuing.

In view of the above considerations, a drivability model that describes the pile by means
of a thin shell theory is developed. As the pile, the force by the hammer impact, and the
soil reaction are symmetric around the pile longitudinal axis, the model used is considered
axisymmetric. Therefore, all the quantities involved in the problem are independent of the
azimuth 0, i.e. 4(-)/86 = 0. Given the aforementioned considerations, the pile dynamic
equilibria of the coupled axial-radial motion during impact driving, according to the Love-
Timoshenko shell theory [159] read:

Ozup(z, 1) B Ephyp 62up(z, 1) Ephpvp Owpl(z, 1) _ H(z— 1) psh

h = + 3.8
Peiy—5p (1-v5) 022 (1-v§)R, 0z 27 Ry (3.82)
ook Pwp(z,t) _ Ephpvp dup(zt)  Ephy (1)~ Ephy  0*wy(z, 1)
PTP g2 (1-v3)R, 0z (1-v3)R3 L 12(1-v3) a0z

(3.8b)

in which hy, is the pile wall thickness, vj, is the Poisson's ratio of the pile and wp(z, £) is the
radial displacement of the pile. It is remarked that the soil reaction in the radial direction
may also be considered. However, in the ensuing study the radial soil reaction is not intro-
duced, such that the two models are directly comparable and the effect of wave dispersion
can be evaluated.

Similarly to Eq. (3.3), the initial conditions are set equal to zero. For the thin cylindrical
shell the axial force resultants are prescribed at the top and the bottom of the pile, while the
remaining boundaries are formulated as free [206]. Accordingly, the boundary conditions
read:

Py (1)

N0, =-
0=

» NZG (0) t) = O) QZ(O) t) = Or MZ(Oy t) = 0)

Py
Ny(Lp, ) = ———-, Ng(Lp,)=0, Qu(Lp, =0, My(Lp,)=0  (3.9)
27 Ry

inwhich N,(z, 1), N (z, t) and Q,(z, t) denote the axial, in-plane shear and out-plane shear
force resultants, respectively, and M,(z, t) denotes the moment resultant of the thin cyl-
indrical shell [139]. The natural boundary conditions from Eq. (3.3) have been reformulated
into Eq. (3.9), such that the prescribed forces at the boundaries, Py, (¢) and Py, are uniformly
distributed along the pile circumference. Finally, the ultimate shaft and tip resistances
are identical to the ones described in Section 3.2.1 and the described model is displayed in
Fig.3.2.

As stated before, one of the main challenges in pile drivability predictions lies in the
strong need for a simple and accurate description of the soil reaction. Available models
employ local and frequency-independent springs and dashpots, arranged together with
non-linear elements to account for the soil reaction in a computationally efficient manner.
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Figure 3.2: A 3-D axisymmetric pile driving model, in which the pile is described as a thin cylindrical shell.

The significance of modelling accurately the linear part of these phenomenological models
is enhanced when a pile is close to refusal during driving and essentially the linear regime
is strongly present [84]. In view of the aforementioned, the employment of a non-local soil
reaction model comprises a significant step towards computationally efficient and more
realistic foundation models [207], while it has been recently applied for capturing the lateral
response of monopiles [208].

In the present study, the approach adopted is similar to Friswell et al. [207]. Accordingly,
the derivation of non-local foundation models follows from the weighted average of state
variables (e.g. displacement, velocity) over a spatial domain via convolution integrals; the
associated spatial kernel functions are defined by a characteristic length measure. In the
ensuing, the spatial kernel is assumed to be a Gaussian function gg(z,¢), normalized as
shown in [209], with the following form:

_ aé(l—f)z
2

ga(z,$) = (3.10)

aG e
V2n
inwhich ag is the inverse of the influence distance of the spatial kernel function gg(z, &) (see
Fig. 3.3). At this point let us remark that the local foundation models can also be described
in this form and essentially comprise a special case with spatial kernel equal to the Dirac
delta function, gg(z,&) = 6(z — ). The latter means that the foundation is locally reacting.
According to the previous, the non-local soil reaction along the pile shaft pgy, reads:
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The present non-local soil reaction model comprises an extension of its local counterpart,
by coupling of the locally reacting elements through prescribed spatial kernel functions. The
accuracy of such models can be evaluated properly, only by comparison with the dynamic
reaction of the three-dimensional soil continuum, which is not considered in this chapter.
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Figure 3.3: The Gaussian function as spatial kernel g (z, &) with ag = v27.

3.2.3. Numerical solution method

For the 1-D model presented in Section 3.2.1, henceforth called 1-D FD model for brevity,
the method of central finite differences, of accuracy @(Az?), is employed for the spatial
discretization. The boundary conditions are treated by introducing fictitious nodes [210] and
the non-linear partial differential equation (PDE) governing the pile motion, is decomposed
into a set of non-linear ordinary differential equations (ODEs) representing the dynamic
equilibria of the pile nodes.

For the 3-D axisymmetric model, henceforth referred to as 3-D LT model for brevity,
the spatial discretization is performed by means of the Galerkin method [211]. A series
discretization method is advantageous for this system, compared to a method such as
finite differences that leads to ODEs at nodal points and thus increases the computational
complexity, due to the dimensions of the problem. The Galerkin method circumvents the
problem of dimensions, albeit requires a more laborious analytical treatment to utilize
its benefits in our case. First, the reformulation of the boundary conditions is performed,
as we have a time-dependent boundary condition at z = 0 and a non-linear boundary
condition at z = L,,. The concentrated body force method (CBFM) is used to reformulate the
boundary conditions into stress-free boundaries and to translate the boundary tractions
into the equation of motion by means of the Dirac delta function §(-) [212]. At this point, the



3.3. Results 41

axisymmetric free vibration modes of the free-free cylindrical shell in vacuo are found and
employed in our solution as trial and test functions. Therefore, the solution of Egs. (3.8a)
and (3.8b) is approximated by the series:

N

up =) Uom(2) Gom(t) (3.12a)
m=0
N

wp= Y Wom(2) gom(t) (3.12b)
m=0

in which go,, (1) is the m-th generalized coordinate and Ny, is the upper limit of the trun-
cated summation, adequate to provide a sufficiently accurate solution. By substituting
Egs. (3.12a) and (3.12b) into Eqs. (3.8a) and (3.8b), the residual is obtained and by integrat-
ing over the shell domain the product of each test function with the residual, the weighted
residual is derived. By setting the latter equal to zero, a set of Ny, non-linear coupled ODEs
of qom (1) is formulated. Conclusively, for both 1-D FD and 3-D LT models the resulting
sets of ODEs are arranged in the state-space form, in order to solve them via numerical
integration. The explicit Runge-Kutta method of accuracy @ (At*) is used in both cases [213].

For both models, the frequency at which the force amplitude is equal to 10% of the
maximum amplitude (see Section 3.3.2) and the corresponding wavelength are used to
determine the discretization parameters. For the 1-D FD model, the time step is defined
as At = Az/(10cp), in which Az denotes the spatial mesh size, equal to 1/8 of the smallest
wavelength to be analysed, and ¢, is the longitudinal wave velocity in the pile [214]. In
the 3-D LT model, the upper frequency limit is used to select the truncation limit Ny, in
Eq. (3.12) and the time step is set equal to At = 7/ (5w,,) (10 time steps for the highest
frequency component w,;). Further refinement of the previous discretization parameters
is performed until convergence is met, defined as:

Nupin (2,0 - up (2, 0)|

“is |up,i+1(z, f)|

<1% (3.13)

in which ¢; is the relative error of the displacement field between the i-th and (i + 1)-th
analyses, used as the convergence criterion.

3.3. Results

In Section 3.3.1 the validity of the 3-D LT model is verified, by reducing it into a physic-
ally equivalent model to 1-D FD, for direct comparison. Furthermore, in Sections 3.3.2
and 3.3.3 numerical examples that consider the influence of wave dispersion and non-local
soil reaction, respectively, are presented.

3.3.1. Validation of the 3-D LT model

At first, a set of numerical analyses for a single hammer blow are performed to showcase the
validity of the 3-D LT model. For this purpose, the 1-D FD model formulated in Section 3.2.1
is used as reference and its results are compared with the respective ones obtained from the
3-D LT model, upon proper reduction to an equivalent classical rod with local soil reaction.
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By setting the Poisson's ratio of the pile v, = 0in Eq. (3.8a) and discarding Eq. (3.8b), the
equation of motion of the classical rod theory is retrieved. Furthermore, by considering
ag — oo, the spatial kernel becomes gg(z,¢) = 6(z — ¢) and the soil reaction is rendered
local. Under these considerations, the pile is equivalently described by the classical rod
theory and the soil reaction is local, in both models. In view of the previous, the numerical
results of the 1-D FD and the reduced 3-D LT models should be identical. The parameters of
the validation case are shown in Table 3.1 and the hammer force function Py (1), together
with the amplitude of its Fourier transform |Pn(f)l, are depicted in Fig. 3.4.

Pile Young's modulus Ep 210 GPa
Mass density Pp 7850 kg/m?3
Poisson’s ratio Vp 0.3
Length Ly 42m
Radius Ry 1.lm
Wall thickness hy 0.03m
Initial embedment depth I 25.2m
Soil Shear modulus Gs 18.52 MPa
Mass density 0s 1900 kg/m3
Poisson’s ratio Vg 0.35
Friction angle ¢ 35
Soil-pile interface friction angle & 31.5°
Hammer Ram mass my 10000 kg
Anvil mass My 1000 kg
Cushion stiffness k. 70.87x108 kN/m
Ram impact velocity Vo 5m/s

Table 3.1: Parameters of the validation case.

In Fig. 3.5 the axial tip displacement uy, (Lp, ) is presented for a single hammer blow, as
obtained by the two models in consideration. Evidently, the response obtained by the two
approaches is in excellent agreement. Therefore, in the following analyses the capabilities
of the 3-D LT model can be utilized fully, to study the dispersion of elastic waves in the pile
and the introduction of non-locality in the soil reaction along the pile shaft.

3.3.2. Influence of wave dispersion
To isolate the effect of wave dispersion, the 3-D LT model used in the following examples,
has local soil reaction and differs from the 1-D FD solely in the pile description as a thin
cylindrical shell. For the following numerical examples, all the parameter values are given in
Table 3.1, except for Ry, hp, I and the hammer parameters. The initial embedment depths
of I =0.4Lp,0.5Lp,0.6 Ly, are considered, while various pile radii are used (see Table 3.2), to
identify the effect of these parameters on wave dispersion. In Table 3.2 each column provides
a pair of pile radius Ry, and wall thickness &), leading to eleven different pile geometries.
Regarding the properties of the hammer, attention is needed in order to have results
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Figure 3.4: Hammer force function Py, (#) (in blue) and the amplitude of its Fourier transform | Py (f)] (in red) for a
pile with Rp = 1.1 m and hp = 0.03 m.

Rp 1Im 14m 17m 20m 23m 26m 29m 32m 35m 3.8m 41lm
hp 3cm 3cm 3cm 4cm 4 cm 4 cm 4cm 5cm 5cm 5cm 5cm

Table 3.2: Set of variable pile parameters.

that can be compared on a rational basis. For that purpose, normalization of the hammer
force was performed for all pile driving cases, such that the maximum axial stress at the
pile head was equal to 57% of the yield stress, fy = 355 MPa. The dimensionless mass ratio
m;; = mg/m, and the dimensionless cushion stiffness k; = kcmr/ZE with Z, denoting the
impedance of a semi-infinite rod, were used in order to achieve the normalization in all
cases [85]. The aforementioned parameters were set to m, = 0.1 and k = 10 in all the cases
studied, while the ram impact velocity vy was equal to 5 m/s. Therefore, depending on the
pile geometry, the values of ram mass m;, anvil mass m, and cushion stiffness k. were
scaled in order to preserve the dimensionless quantities and the maximum axial stress level
constant. According to the previous, the Fourier transform of the hammer force normalized
over the maximum amplitude at zero frequency as Py, (f) = |P,(f)|/|Py(0)], is identical for
all piles considered. In Fig. 3.6 the normalized amplitude of the hammer force spectrum is
depicted together with the normalized amplitude at the ring frequency of each pile of this
study, indicated by the red markers.

InFig. 3.7 the ultimate pile set ratio urr (Lp, )/ urp (Lp, &) is displayed, in which uir (Lp, #)
and urp (Lp, ty) denote the tip displacement of 3-D LT and 1-D FD models, respectively, at
the final time moment of the analysis #. It is noted that f; was adequate for the imparted
energy into the pile to dissipate through the soil reaction and the final pile set to be ob-
tained. As can be observed for all the examined pile radii and embedment depths, there
is deviation from the response of the 1-D FD model (i.e. ratio equal to 1.0). Consequently,
wave dispersion does have an effect even for small-diameter piles, albeit its influence on the
final pile set is not as pronounced as in the large-diameter cases. With ascending pile radius
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Figure 3.5: Axial tip displacement comparison between the 1-D FD and the reduced 3-D LT model (ag — co and
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Figure 3.6: Normalized amplitude of the hammer force spectrum Py, (f) (blue line), together with the corresponding
normalized amplitudes at the ring frequency f; of all the examined piles (red markers).

Ry, the amount of energy imparted in frequencies around the ring frequency f; becomes
significant. As a result, the increase of Py,(f;) leads clearly to reduction of the ultimate
set ratio, as direct consequence of dispersion effects. Embedment depth I, seems to be
beneficial for the ultimate set ratio and mitigate partially these effects, which is rational
since additional damping is provided from the increased length of the shaft in contact with
the soil. Wave dispersion is strongly present in high-frequency motions, thus increased
embedment depth contributes to their decay and results in a weaker influence on the pile
response overall. Notwithstanding the remarks about embedment depth, it seems that
for large radii (R, = 3.0 m) - or better for high Py (f;) - the set ratio is less sensitive to its
influence. For these pile geometries, the ring frequency f; is significantly excited by the
hammer impact as Py, (f;) approaches 0.5 and relevant induced pile motions obtain large
amplitudes. The aforementioned observations and relevant remarks are better understood
through Figs. 3.8 and 3.9.

The tip displacement obtained by the two considered models, for the extreme scenarios
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Figure 3.8: Tip displacement up (Lp, t) obtained by the 1-D FD and 3-D LT models for a pile with I» = 25.2 m, (a)
Rp=1.1mand(b)Rp=4.1m

of the smallest and the largest pile radii, are shown in Fig. 3.8. Evidently, the two responses
for Ry = 4.1 m (Fig. 3.8b) deviate much more than for R, = 1.1 m (Fig. 3.8a). In Fig. 3.8a,
the displacements mainly diverge for the two approaches after the second arrival of the
impact-induced stress wave at the pile tip (after ¢ = 0.02 s), but follow the same trend. On
the contrary, in Fig. 3.8b the response becomes dissimilar already after the first arrival
of the stress wave at the pile tip, as the frequency content of this motion is much richer
in components that display dispersive behaviour. The amplitude of the discrete Fourier
transform (DFT) spectra of the velocities for the cases analysed in Fig. 3.8, are given in
Fig. 3.9 to supplement the previous observations.

In Fig. 3.9a, the amplitude of the axial velocity spectrum for both models is in good
agreement approximately up to 600 Hz. At that point, the amplitude of the axial velocity
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Figure 3.9: Amplitude of axial velocity spectra ’ W ‘ and radial velocity spectra ‘ W ) (for the 3-D LT
model) for a pile with I =0.6Lp, (@) Rp = 1.1 m and (b) Rp = 4.1 m.

in the 3-D LT model drops significantly and energy in axial motion is reduced at these
frequencies. However, it is not the case that energy is not present in this region of the
frequency spectrum in the pile motion. As can be observed, the radial velocity amplitudes
surge in this region of the spectrum and even surpass the amplitudes of the axial velocity in
some frequencies. For this case the ring frequency is f; =784.48 Hz, which supports our
observations as the frequency region of strong dispersive effects is traced around this value.
Considering further the case of R, = 4.1 m, in Fig. 3.9b the velocity spectrum shows some
differences with respect to Fig. 3.9a. First, the drop corresponding to the vicinity of the ring
frequency occurs much lower in the frequency axis, as f; =210.47 Hz and even in the low
frequency region of the axial velocity spectrum, discrepancy exists between the two models.
The latter already indicates that dispersion is present in lower frequencies compared to
Fig. 3.9a, and its effect is more eminent as the energy imparted from the hammer impact is
greater in this frequency region (see Fig. 3.6). For R, = 1.1 m, the velocity amplitudes are
in good agreement up to a certain frequency (approximately 600 Hz), albeit for R, =4.1 m
they clearly deviate along the whole spectrum indicating the inaccurate description of wave
propagation in the 1-D FD model. The preceding remarks lead to the strong discrepancy
observed between 1-D FD and 3-D LT results in Fig. 3.8b.

3.3.3. Influence of non-local soil reaction
At this point, the introduction of non-locality in the soil reaction of the 3-D LT model is ex-
amined. For that purpose, the 3-D LT model with local soil reaction and its non-local counter-
part are compared. The exact spatial distribution of the non-local soil reaction is not known
and in this work the Gaussian function is assumed as the spatial kernel a priori, with three
different values of influence distance considered, namely 1/ag = L, /100, L,,/200, L,/500.
In Fig. 3.10, the axial tip displacement up (L, t) is presented for R, = 1.1 mand R, =4.1m
(I = 25.2 m). As can be seen, the divergence of the displacement obtained by the non-local
model compared to the local one is much stronger for the large-diameter pile.

To better evaluate the effects of non-locality, in Fig. 3.11 for each pile the displacement
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Figure 3.10: Axial tip displacement uy (Lp, t) obtained by the local and non-local reaction models for I, =25.2 m
and various values of a.

ratio of non-local to local models, 7y (£) = up (L, 1)/ up(Lp, ) |06G_>oo is examined for four
different pile radii. The effect of non-locality seems to become more eminent for large-
diameter piles and the deviation even between the non-local models for different values of
ag becomes quite important. On the other hand, for R, = 1.1 m and R}, = 2.0 m all the non-
local reaction models considered present a ratio, %, (#), from 0.9 to 1.0, practically meaning
that for the values of ag considered, local and non-local reactions do not significantly
alter the final pile penetration. In all cases, the non-locality seems to reduce the final pile
penetration for the considered soil profile. Furthermore, the increase of ag (decrease of
influence distance) tends to provide a response that converges to the one of the local reaction
model, which is rational. To summarize, Fig. 3.11 reveals that the non-locality of the soil
reaction can affect the pile response in variable degree and the pile radius seems to be a
significant factor that determines the amount of this influence by altering the pile motion
characteristics.

Apart from the pile radius, the parameter of the embedment depth I, is finally con-
sidered. In Fig. 3.12, the results for the smallest (R, = 1.1 m) and the largest (R, = 4.1 m) pile
radii of this study are shown, for I, = 16.8 m and I, = 25.2 m. At a first glance, the different
values of I, do not appear to significantly alter the displacement ratios, 7 (£). For both piles
the larger I, value seems to lead to a minor reduction of %, (#). Finally, the introduction
of the soil reaction in the radial direction and the study of its effect on pile penetration
comprise additional steps not considered herein, as this work focuses on dispersive wave
propagation and non-local soil reaction in the direction of driving.

3.4. Conclusions

In this chapter, a 3-D axisymmetric pile driving model with non-local soil reaction is de-
veloped, as an extension of standard local 1-D modelling approaches. The pile description
is based on the Love-Timoshenko theory for thin cylindrical shells and the non-local soil
reaction is formulated as a convolution integral of local soil reaction models and the Gaus-
sian function as spatial kernel. Furthermore, the 1-D basis model is formulated according
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Figure 3.11: Displacement ratio of non-local to local reaction models, 7y (£) = up (Lp, 1)/ up(Lp, t)|a_.oo for a pile

with I =25.2 m.

to widely adopted approaches in pile driving and is compared against the 3-D model, with a
view to investigate the effects of elastic wave dispersion and non-locality of the soil reaction.

First, the effect of elastic wave dispersion in the pile was studied, for various pile geo-
metries and initial embedment depths. The main argument of the significance of wave
dispersion in drivability of large-diameter monopiles was ascertained, as the effect of dis-
persion was even found to increase with ascending pile radius. Embedment depth provided
some mitigation of this effect for small-to-medium pile radii, while for large-diameter piles
the effect of wave dispersion was sustained even for large pile embedments. In the vicinity
of the ring frequency pile motion is predominantly radial and significantly excited by the
hammer impact for large-diameter monopiles. This effect cannot be captured by 1-D models
and can alter the soil resistance to driving (not considered herein). In the current effort to
modify, or even reinvent, the existing drivability approaches for large-diameter monopiles,
the proper description of the pile motion is essential. Otherwise, certain response features
in field data from monopile installation, resulting from wave dispersion, may be falsely
attributed to other mechanisms, e.g. non-linear soil behaviour, and lead us further away
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Figure 3.12: Displacement ratio of non-local to local reaction models, T (¢) = up (Lp, £)/ tp (Lp, t)|ag——oo'

from an accurate approach to predict monopile drivability.

Conclusively, the introduction of non-local soil reaction has been realized. A system of
integro-differential equations is obtained, which is solved by means of the Galerkin method
and numerical integration. The effect of non-locality was found to be more influential in the
case of large diameters, where the pile motion deviates significantly from the non-dispersive
purely axial motion considered in standard rod-based models. Furthermore, the variable
embedment depth yielded minor differences between local and non-local models. Decrease
of the influence distance 1/a showcased the trend to converge to the response of the local
reaction model, which is the expected behaviour. The results for various influence distances
comprise an indication of the degree to which non-locality may affect the overall behaviour.
The refinement of the non-local soil reaction by also introducing frequency-dependence,
based on the response of the three-dimensional soil continuum is considered the optimal
next step. In that manner, a non-local - both in space and time - soil reaction model may
be employed in modelling approaches for impact piling, as well as for other installation
methods.







Wave propagation in layered soil
media

The paradigm of the previous chapter showcased the significance of wave dispersion in the
pile and its accurate description, in particular in the case of large-diameter monopiles. How-
ever, another aspect of pile drivability modelling was touched upon, namely the soil reaction
modelling. With a view to modelling approaches applicable to engineering practice, certain
physical mechanisms are commonly discarded for the sake of simplicity and computational
convenience. Specifically, the reaction provided by a continuum (e.g. 3-D soil medium)
should be rigorously characterized by spatial and temporal non-locality. In the previous
chapter, a standard local and frequency-independent reaction model was transformed via
a spatial kernel to a non-local one. However, the spatially non-local model was neither
rigorously based on the 3-D soil medium at hand, nor possessed any form of frequency
dependence. In addition to these considerations, spatial and temporal non-locality are
essentially coupled through the dispersion characteristics of the soil medium, thus complic-
ating further the potential application of this process in soil-structure interaction problems.
In view of these considerations, it appears that to incorporate the true non-local - in space
and time - reaction provided by the soil medium at hand, the most sensible approach is also
the direct one, i.e. to treat the problem of the 3-D soil medium.

In the ensuing, the propagation of mechanical disturbances in a linear elastic soil me-
dium is studied. With a view to pile installation, a modelling framework that can seamlessly
treat arbitrarily layered soil media is indispensable. For that purpose, the Thin-Layer Method
(TLM) is considered as the optimal choice, in order to eradicate the formidable complica-
tions introduced by soil layering. Beginning from the resolution of wave motion in terms of
displacement potentials, the formulation of the TLM is presented, leading to the generalized
eigenvalue problem of cylindrical waves and the respective normal modes of wave propaga-
tion. The outlined developments are suitable to analyse problems that deal with a layered
soil stratum of finite depth overlying a rigid bedrock. To extend the applicability of the
present TLM formulation, the approximation of the underlying half-space is accomplished
by coupling the TLM with Perfectly Matched Layers (PMLs). Subsequently, we proceed to
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derive explicit expressions for the Green’s functions in the frequency-space domain in the
context of the TLM. The latter are valid both for the original and the PMLs-augmented TLM
formulation, which is also verified by a set of numerical examples presented at the end of
the chapter.

4.1. Wave propagation in a linear isotropic elastic solid
Consider a linear elastic isotropic medium described in a cylindrical coordinate system

(1,0, z) with unit basis vectors e, eg, .. The dynamic equilibrium equations governing the
displacement vector field, commonly termed as Navier equations, may be expressed in the
frequency domain as [215]:

(As + G) V (V- Tig) + G5 V21l + w? psiis = 0 4.1)
where A and G; are the Lamé parameters and ps is the mass density. The displacement
vector g is defined as:

=] Urs(r,0,2,0) Ggs(r,0,2,0) f(60,z0) | 4.2)

The Fourier transform pair of a general function f () is defined as follows:

+00

f(t)=% f fw)e®! dw (4.32)
+oo

flw) = f fne @tde (4.3b)

We proceed to analyse the propagation of mechanical waves in the absence of body loads
and boundary effects. The displacement vector field governing the wave motion of a linear
elastic solid may be decomposed into an irrotational and a solenoidal vector field, based on
Lamé potentials [216]:

iy = Vebs + V x g 4.4)

Upon substitution of Eq. (4.4) into Eq. (4.1), the following set of identities from vector
calculus are invoked:

V2 (Veps) =V (V- (Vps)) = V (V2 bs) (4.52)
v2 (v x J)S) =V x (vzﬁ)s) (4.5b)
v-(vXﬁ)s) =0 (4.5¢)

Subsequently, a series of mathematical operations and term rearrangements are applied
to the Navier equations leading to the following:
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V (A +2Gs) (V2hs) + w2 psps) + V x (GS(VZIT)S) + wzpslT)s) =0 4.6)

In the preceding equation, it is evident that the equations of motion are satisfied if both
terms vanish, thus resulting to:

27 w*
V2Ps+ — s =0 4.7)
%
27 w* ~
V 'll)s + ?11)5 = 0 (48)
S

where cp = \/(As + 2G;)/ ps and ¢s = 1/ Gs/ ps denote, respectively, the P- and S-wave velo-
cities.

4.1.1. Propagation of dilatational (P) waves in a linear elastic solid
The scalar Helmholtz equation that governs the propagation of dilatational waves in a linear
elastic medium reads:

Vs + ks =0 4.9
where kp = w/cp denotes the P wavenumber. A solution is sought in the form of separation
of variables as follows:

Bs = Ry (104 (0) Zy(2) (4.10)

By substituting Eq. (4.10) into Eq. (4.9) and upon separating variables twice, the following
three equations are obtained:

d2R¢ 1 dR¢ 2 2 I’l2
dr2 +;F+(kp—kz—ﬁ)R¢—0 (411)
d%e
gr + 10 =0 (4.12)
2
Z
dz;) +k2Zp=0 (4.13)

where k; is the vertical wavenumber and n is the azimuthal index. The general solutions to
the preceding equations are readily available and may be written as:

R(p(r) =diJnlker)+do Y, (kor) (4.14)
04 (0) = d3 cos(nb) + dy sin(nb) (4.15)
Zy(2) = dse'=* + dge k=" (4.16)

where J,,(kqr) and Y, (kqr) denote, respectively, the Bessel functions of first and second
kinds of order n, kg = ¢/ k}% — k2 is the radial wavenumber and d; are arbitrary constants.
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It is noted that the harmonic variation in the azimuth should also satisfy the period-
icity/continuity condition: ©4(6) = ©4(6 + 27m). Therefore, the azimuthal index n may
acquire only non-negative integer values. Conclusively, the scalar potential ¢s may be
expressed as:

Gs = (dy Jn (ko) + do Yy (kar) (ds cos(nf) + dy sin(n)) (dse' ¥ + dge k=% 4.17)

4.1.2. Propagation of distortional (S) waves in a linear elastic solid
The propagation of distortional (S) waves in a linear elastic medium is governed by the vector
Helmholtz equation:

VA + ki =0 (4.18)

where ks = w/cs is the S wavenumber. In the context of elastodynamics, different solution
forms have been put forward for . The solution of Eq. (4.1) by means of potentials is
customarily employed on the basis of the Helmholtz decomposition theorem. Accordingly,
a solution in the form of Eq. (4.4) is assumed together with the so-called gauge condition
that requires 1, to be solenoidal, i.e. V-1, = 0. Based on these considerations the solution
to the vector Helmholtz equation reads [217, 161, 163, 218, 219]:

Py =V x (Je,) +V x V x (fe,) (4.19)

where ¥ and 7] are scalar potentials. The gauge condition poses an additional constraint
that relates the three displacement components to the four components (in total) of ¢s and
. However, 1, needs not to be necessarily solenoidal and another solution form can be
employed for Eq. (4.18) that reads [220, 221, 163, 222]:

P = 7e, +V x (fe,) (4.20)
Both Egs. (4.19) and (4.20), upon substitution into Eq. (4.18), reduce the vector Helmholtz

equation to the following two scalar Helmholtz equations:

VY + kY =0 (4.21)

VA + k3T =0 (4.22)

Therefore, the general solution to Egs. (4.21) and (4.22) has identical form to Eq. (4.17)
and the general solution of ), may be found by direct substitution. Similar to the solenoidal
gauge condition that Eq. (4.19) is subject to, an additional constraint to reduce the number
of independent components of potentials is essential for Eq. (4.20). For that purpose, a
generalized gauge condition can be formulated as follows [163]:

(V24 K2) (V-tbs) =0 (4.23)

Ascanbe seen, the solenoidal gauge condition corresponds to the trivial solution of Eq. (4.23),
i.e. V-1, =0, whereas Eq. (4.20) satisfies Eq. (4.23) in a non-trivial manner.
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The preceding developments were based on the resolution of the displacement field in
terms of Lamé potentials. It is worth noting that another representation can be formulated
based on the so-called Somigliana potentials [223]. However, the displacement field is
mostly expressed in terms of Lamé potentials, due to their compactness and simplicity
[220]. Naturally, Lamé and Somigliana potentials are related to each other, with the latter
fulfilling the solenoidal gauge condition.

Considering that the general solutions for the two displacement potentials ¢ and 1,
have been obtained, the general solution to the displacement field can be formulated by
substitution. For purposes that will become evident in the ensuing developments, the
general solution of the displacement field is arranged in a compact matrix form as follows
[219]:

g =T, Cpf (4.24)

where the diagonal matrix T}, is an azimuthal matrix that expands the displacement field
into a Fourier series in 0. The displacement field may be either symmetric or anti-symmetric
with respect to = 0, with the corresponding azimuthal matrices defined as:

cos(nf) 0 0
T;, = 0 —sin(nf) 0 (4.25a)
0 0 cos(n6)
sin(n@) 0 0
T3 = 0 cos(nf) 0 (4.25b)
0 0 sin(n6)
Conclusively, the Bessel matrix C,, is defined as follows:
dj,(kr) n
d(kr) Er]] ’z](ck;) 0
Cu=| 1 n(kr (4.26)
oD e 0
0 0 Ju(kr)

where k is the radial wavenumber variable and J,, (kr) denotes the Bessel function of the first
kind of order n. The form of C,, implies that P and S waves have common radial wavenumber,
satisfying compatibility and equilibrium conditions to adjoin adjacent soil layers with a
view to problems of horizontally stratified media. Finally, f provides both the dependency
in frequency and in the vertical coordinate in terms of exponential functions - the latter are
omitted here for reasons that will become apparent in the ensuing.

4.2. Normal modes of a layered soil medium via the Thin-Layer

Method (TLM)

In the following, the development of the Thin-Layer Method (TLM) is presented. As a generic
framework, the TLM is a superbly efficient computational method to analyse dynamic
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problems in two and three dimensions [224]. The main field of application is the analysis of
wave motion in layered media, where the TLM has been instrumental in a vast number of
contributions in the last decades. The fundamental concept of the TLM lies in the partial
discretization of the problem at hand only along the direction of layering. In particular,
a finite element discretization is performed along one spatial coordinate combined with
analytical solutions in the remaining directions. In essence, the TLM corresponds to the
discrete version of the normal modes approach, that is widely used in acoustic, elastic and
acousto-elastic problems [218, 225], and by virtue of its discrete formulation the modes are
obtained via a quadratic eigenvalue problem circumventing the need for complex search
techniques.

Lysmer [226] was the first to employ a form of the TLM, albeit the development of its
present formulation is attributed to Waas [227] and Kausel [75]. Following these seminal
works, a number of studies followed focusing on various aspects of wave propagation in
layered soil media and soil-structure interaction problems [228-232]. Subsequent develop-
ments were realized extending the application of the TLM to fluid [233-235], poro-elastic
[236, 237] and anisotropic media [238]. More recently, the TLM - owing to its versatility - has
been coupled to other powerful frameworks as, for instance, the stochastic finite element
method (SFEM) for the analysis of stochastic media (stochastic TLM) [239-241], and the
domain reduction method (DRM) [242, 243] for the simulation of seismic scenarios with
topographic features [244]. This is by no means an exhaustive list of the most significant
developments in the topic, but merely a brief outline of some of the major works that have
formed the TLM up to the present.

Without further delay, let us consider a soil layer of infinite horizontal extent comprised
of a linear elastic isotropic material with mass density ps and Lamé constants A and Gs.
The equations of motion in cylindrical coordinates (r,6, z) may be expressed in matrix form
as follows [219]:

0%ug

psﬁ =0 (427)

T
st LO‘,SUS -

where ug is the displacement vector, p, is the body force vector and oy is the soil stress
tensor. The preceding quantities are defined as:

T
Us = [ Urs Ups Uzs ] (4.28)
T
Ps= [ Prs Pos Pzs ] (4.29)
T
0s=Dggg = [ Ors 0fs Ozs Thzs Trzs Tros ] (4.30)
where the constitutive matrix Dg and the strain tensor gg read:
As +2Gg As As 0 0 0
As As +2Gg As 0 0 0
_ As As As+2Gs 0 0 0
D = 0 0 0 G 0 0 (4.31)
0 0 0 0 Gs O
0 0 0 0 0 G
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T
8s:Le,susz[ Ers €0s Ezs VYOzs Yrzs Yros ] (4.32)

The differential matrix operators Ly s and L, ¢ may be written as:

o 00) 10() o) 1
Los() = Lr,s? + L@,S; % + Lz,sg + (Lr,s - Ll,s) ;() (4.332)
() 10() o) 1
Les() = Lr,sg +L0,s;£ +Lz,s§ +L1,s;(') (4.33b)

and the partition matrices Ly, Lg 5, Lz s and L; s are defined as follows:

1 0 0 0 0 O
0 0 0 01 0
0 0 0 0 0 O
Lys= 00 ol Los = 00 1 (4.34a)
0 0 1 0 0 O
01 0 1 0 0
0 0 O 0o 0 O
0 0 O 1 0 0
0 0 1 0o 0 O
L;s= o1 0l Lis= 0 0 0 (4.34b)
1 0 0 0 0 O
0 0 O 0 -1 0

For a soil layer bounded by two horizontal planes (see Fig. 4.1), the boundary conditions
in the presence of external tractions read:

! = —sW (4.352)
) =s¥ (4.35b)
where the superscripts (u) and (1) correspond to the upper (z = z,) and lower (z = z)) hori-

zontal planes, respectively. The traction vector ty and the stress vector along a horizontal
surface s, are defined as:

ts:[ Irs t@,s Iz,s ]T (4.36)

T
$:=[ Ters Taps 0Ozs | =L1 0% (4.37)

To deal with our numerical problem the spatial discretization of the soil domain is
needed. At this point the physical domain is discretized into thin horizontal layers of
infinite lateral extent, and the displacement field 115 can be approximated within each thin
layer [ as:

us =T, C,NeXxg (4.38)
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Figure 4.1: A horizontal soil layer of infinite lateral extent with t* and tg) being the traction applied at the upper
and lower horizontal boundary surfaces, respectively.

As can be seen, the chosen dependencies in the radial (C;) and circumferential (T,)
directions are based on the exact solutions that were derived in Section 4.1. Finally, the soil
displacements are interpolated along z based on the vector of interface values x; and the
interpolation matrix Ng which can be expressed as:

Ne=[ Nl@I; N2l |, %= (4.39)

<0

where N!(z) and N} () are linear Lagrange polynomials and I5 is a 3 x 3 identity matrix. The
interpolation matrix N for quadratic interpolation polynomials can be found in Appendix
B.

By substituting Eq. (4.38) into Egs. (4.27) and (4.35) and considering that the adopted
solution is approximate, residual body forces and surface tractions at the boundaries are
generated. By invoking the principle of virtual work and requiring that residual body forces
and surface tractions perform virtual work equal to zero, we obtain:

400271 z]

T
ff (6u§“))Tr§“)+(5u§D) r§1)+f6u3rs,vdz rdodr=0 (4.40)
00 2

where ry v is the vector of residual body forces in the interior of the thin layer and r™, r

are the vectors of residual surface tractions at the upper (z = z,,) and lower (z = z;) bounding

horizontal planes, respectively. The residuals r'™, rl’ and ry y are defined as:

rW =W 4 sW (4.41a)
1) =) ¥ (4.41b)
0%ug

rsyv=pg+ Lg,stLs,sus - (4.41¢)

Ps 5

Atthis point, Eq. (4.27) in the absence of external body forces may be expanded as follows
[219]:
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Interface 1 -
Thin layer 1 r

Interface 2
Thin
Interface i layers

Thin layer i
Interface i+1

'z

Figure 4.2: A layered soil stratum discretized according to the TLM, overlying a rigid bedrock.

0%ug 1 0%u, 0%ug Ozus
Drr6_2+ BB—ZWJFDZZ 32 + (Do +Dgr) - 3730
+(D;,+D ) Oy +(D +Dp) — 1 Fus +D,, 1 0us
rz zr 0z z0 6 50 r or
1 dug g 0%ug
+ (Dg1 — Dl@) 2 69 +(Drz+Dz1 Dlz)__Z_Dllﬁ_Psﬁzo (4.42)

where all the partition matrices D;; are defined in Appendix B.
By substituting Eq. (4.38) into Eq. (4.42), it is possible to factor out the azimuthal and
radial dependencies:

> 2 52X
—k(D;;+2D;1 Dy — 2Dlz)__k D Xs— Ps 912 =0 (4.43)

07X,
TCnDzzaz

where x; = Ngx; and for notation convenience the vector wy is also defined as:

0? Xs
or?

0? Xs

wg=D,,—=
s 2252

—kD;;+2D; -D;, - ZDIZ) =2 kPDrrXs — Ps (4.44)
So the vector of residual body forces in the layer can be written as:

rsyv = Ppg+T,Crws (4.45)
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In a similar manner, the stresses in the principal surface z may also be rewritten as [219]:

auS laus 0us Ug
s:=D;—+Dyp-—+D,,— +D, — 4.46
¥4 zr or zHr 96 zz 9z zl r ( )

Based on the assumed solution, Eq. (4.46) can be expressed in the following compact
form:

s; =T,CnSzXs (4.47)

where S, denotes a differential matrix operator that is defined as:

a()
0z

Returning back to the principle of virtual work, we employ Eqgs. (4.45) and (4.47) and in
the absence of surface loads at the boundary surfaces and external body loads in the domain,
Eq. (4.40) may be recasted as follows:

Sz() = Dzz + k(Dzr - 2Dz1)(‘) (4-48)

+o027m
ff(_au;rTnCnssz
0 0

Recasting the surface integral that corresponds to the boundary terms into a volume
integral and performing a series of mathematical operations, we obtain:

z
(0]
w?* f 5u;ancnwsdz) rdodr =0 (4.49)
u
Zu

dz dz

Zu Zu Zu

+o02m 3] 2] 2]
TqqT 1o dNs stT T
fféxSHan —fNSSZ—dez— —Sstxsdz+stwsdz rdédr=0 (4.50)

where the matrix H,, is defined as:

(4.51)

Hn=[ T,C, 0 ]

0 T,Cy,
The principle of virtual work holds for any arbitrary variation 6x. and given that the

matrix HYH,, is not singular, the following may be deduced upon transformation to the
frequency domain:

4
dN{! dN
f (kz (N;FDrrNs) +k — (Dzr - 2Dzl) Ns + N;r (Drz - 2Dlz) —
dz dz
Zu
dN!  dN

+d_zSDZZd_zS - psszENs)is dz=0 (4.52)

Based on the latter expression the TLM matrices A’, B!, G! and M! are defined as follows:

g
Al= fN}D,,NS dz (4.53)

Zu
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2] 2]
dNT dN
B! = f d—;(Dzr—ZDzl)Nsdz+ f N{ (D, -2Dy,) d; dz (4.54)
Zy Zu
2|
dNI  dN
G'=| —p,—2d 4.55
dz ** dz ‘ ( )
Zu
2
M’ = pg f N!Nsdz (4.56)

2u

The above matrices characterize a single thin layer [ and their explicit expressions are
given for linear and quadratic approximation polynomials in Appendix B. By overlapping
all the thin layer matrices in the usual finite element sense, the matrices for the layered soil
medium are formed in the context of the TLM (see Fig. 4.2). Subsequently, we group the
degrees of freedom instead of the layer interfaces by rearranging rows and columns, which
leads to the following matrix equation:

(sz"’ +kB +G’ —sz*) d=0 .57)

where the soil matrices A", B", G  and M~ are defined as:

, A- 0 0 0 0 B,
A=|0 A O0|,B=| 0 0 0 (4.58)
0 0 A, B, 0 0
J G 0 0 M, 0 O
G=|0 Gy 0 |,M=| 0 Mg O (4.59)
0 0 G, 0 0 M,

It is noted that all the above sub-matrices are symmetric, except for B, and B, for which
B, = B!, holds.

Ascanbeseen, Eq. (4.57) describes a quadratic eigenvalue problem in the radial wavenum-
ber k. A standard solution technique for quadratic eigenvalue problems is linearization, by
transforming the original equation into a generalized linear eigenvalue problem of double
dimension and then solving the latter by means of standard techniques [192, 245, 246]. How-
ever, the special structure of the matrices in Egs. (4.58) and (4.59) may be exploited and two
uncoupled generalized linear eigenvalue problems may be obtained for the normal modes of
generalized Rayleigh (SV-P) and Love (SH) waves, respectively. So the generalized Rayleigh
(SV-P) eigenvalue problem becomes a linear non-symmetric eigenvalue problem in k?:

(k2§+6) kq;)’z ]:[ g ] (4.60)

where the matrices A and C are defined as:
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~ [ A 0 ]
A= 4.61a
[Bzr A (4.612)
~ [ G —w*M, B,.
= 0 G.— M, (4.61b)

and similarly the generalized Love (SH) eigenvalue problem becomes linear and symmetric
as follows:

(K*Ag+Cp) by =0 (4.62)

where Cy = Gg — w>My and ¢, ¢y and ¢, are the radial, circumferential and vertical
modal displacements at the interfaces (i.e. eigenvectors), respectively.

4.3. Half-space approximation in the TLM via Perfectly Matched
Layers (PMLs)

The numerical simulation of wave propagation in infinite or semi-infinite media necessitates
in most cases the truncation of the physical domain into a finite computational one [247].
The bounded domain is necessarily accompanied by artificial boundary conditions that aim
to minimize the reflections of incident waves in order to obtain an accurate solution. The
number of available approaches for that purpose is vast, yet they can be broadly categorized
into two groups: (i) non-local and (ii) local boundaries [248]. The former correspond to
rigorous and highly accurate, even exact in certain cases (e.g. boundary elements [249, 250]),
approaches that reproduce the spatial and temporal non-locality of the unbounded medium
reaction. However, non-local approaches may become cumbersome and computationally
impractical, thus one may resort to less accurate yet simple local boundary conditions [251].
In the latter approaches, larger computational domains may be required compared to non-
local ones and the range of applicability is reduced, yet these drawbacks are tolerated on the
premise of simplicity and compactness.

In the context of the TLM, the original contributions in the topic focused on layered
soil strata supported by rigid bedrock and the effect of the underlying half-space was com-
pensated by appropriate enlargement of the computational domain [227, 75, 252, 253, 229,
230]. Hull and Kausel [254] introduced a second-order paraxial approximation to the half-
space dynamic stiffness that was shown to be in agreement with the paraxial boundary
condition developed by Clayton and Engquist [255]. Following that development, the study
of unbounded domains in the context of the TLM was customarily performed in conjunction
with paraxial boundaries (PBs) [256—259] and further aspects of PBs have been elaborated
in [260].

Presently, the Perfectly Matched Layers (PMLs) comprise one of the most successful
techniques to describe semi-infinite media with finite computational domains augmented
with absorbing boundary layers. The concept of PMLs was introduced in a seminal work by
Berenger [261] for the absorption of electromagnetic waves and their excellent performance
rendered them supreme in electromagnetic wave propagation. Their potential was early
recognized by the community of solid mechanics and they were widely adopted in problems
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of elastodynamics [262-265]. In the ensuing, we will briefly outline the coupling of PMLs to
the TLM [266, 267] in order to formulate an approach for wave propagation in semi-infinite
layered media that combines the merits of these two powerful techniques.

Propagating l
wave

Regular
He domain
Reflected
Hpyr| PML ) Attenuated

domain

Figure 4.3: Attenuation of propagating waves inside the PML region.

The key principle of PMLs lies in the transformation of the spatial coordinates into
complex-valued coordinates by means of complex stretching functions. In our case, the
vertical coordinate z is transformed to a complex-valued stretched coordinate z as follows:

Z
z= f (7, w) d7’ (4.63)
0
where €4(z, w) denotes the complex-valued stretching function and the form that leads to
the standard PML formulation reads:

&s(z,w) = as(2) + ﬁf(z) (4.64)
iw

where a5(2) is the scaling function and (%) is the attenuation function; the former controls
the amplitude decay of evanescent waves, while the latter is responsible for the attenuation
of propagating waves. In principle, there are different classes of stretching functions £(z, )
that can be employed and define the PML formulation in the problem. A different form of
complex-valued stretching function has been proposed, giving rise to the so-called complex-
frequency-shifted (CFS) PMLs [268—-271], with a view to achieving long-time numerical
stability in time domain simulations. In general, the CFS-PMLs require the evaluation of
convolution integrals for inversion to time domain, so a non-convolutional formulation of
CFS-PMLs has also been recently developed to circumvent that complexity [271]. Conclus-
ively, the last category of complex-valued stretching functions is based on the combination
of the regular and CFS formulations that leads to a higher-order PML model.
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In the ensuing, the standard PML formulation is employed according to Eq. (4.64).
Both scaling and attenuation function should increase monotonically with z and ensure
continuity of the vertical coordinate at the interface between the regular and the PML
domains, i.e. as(Hy) =1 and Bs(H;) = 0 [272]. To comprehend the rationale of these
general rules it suffices to consider a harmonic wave propagating in a 1-D PML medium:

exp (iw?) exp (—iyz) = exp (iw?) exp (iR (V)R () +iS(Y)3(2)) exp (RS (2) + S()R(2))

(4.65)

where y denotes the wavenumber and:

Z
R(z) = f a(z') dz’ (4.66)
0
¥4
I(z) = —é f Bs(z) dz (4.67)
0

As can be seen in Eq. (4.65), the last exponential term is effectively controlling the amplitude
of the waveform in the PML region. For a propagating wave (R(y) > 0 and S(y) = 0), the
argument of the preceding term becomes negative and decreases monotonically, based on
the preceding rules for the attenuation function B,(z). Therefore, the initially propagating
wave becomes an evanescent wave with strongly increasing attenuation along the propaga-
tion direction (see Fig. 4.3). In the case of an evanescent wave (3(y) < 0), the contribution of
the scaling function a;(z) is to artificially enlarge the domain, accelerating the amplitude
decrease of the waveform inside the PML. Admittedly, this simple yet effective example
demonstrates the basic principle of PMLs and offers a glimpse of their superb capability to
attenuate both propagating and evanescent waves.

Based on the previous considerations, the scaling and attenuation functions are cus-
tomarily expressed as follows [271]:

1, 0<z<H,

as(z) = z— H,, \Meme 4.68)
s 1+a0(—“) , Hy,<z<H,+H,, (

PML

0, 0<z<H,
Bs(z) = z— Hy, ™o (4.69)
ﬁO (H—EL) , Hy <2< Hy+ Hyy,
PML

where Hy, is the thickness of the regular domain, H,,, is the thickness of the PML domain
and my,, is the degree of the polynomial attenuation inside the PMLs. The scalar tuning
parameters @ and S control the scaling and attenuation inside the PMLs, respectively.

By employing the stretching function used by Collino and Tsogka [263] and substituting
itin Eq. (4.63), the complex-valued stretched coordinate z is obtained:

z=z—-1iH(z— Hy,)

ﬁOHPML (Z_HEL)mPML+1 (4.70)

W(Mpyy, + 1)\ Hypyg,
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where H(-) is the Heaviside function. Therefore, Eq. (4.70) describes both the vertical co-
ordinate in the elastic domain and its complex-valued stretched counterpart in the PML
domain.

The treatment up to this point has set the stage for the introduction of PMLs in the
TLM. Consider a PML domain with thickness H,,, that is discretized into N, thin layers
of equal thickness. Following the procedure developed by Kausel and de Oliveira Barbosa
[266], PMLs may be readily incorporated in the TLM by simply replacing the thickness of
the [-th thin layer h; in the PML domain with a complex-valued stretched thickness ; (see
Fig. 4.4), defined as:

=i = M o B |
hj=Hpy | — - i———— - , 1=<I=<N, 4.71
l e NPML w(mPML + 1) NPML NPML e ( )

Interface 1 1 5 —>
E Thin layer 1 E r
Interface 2 . E
Interface i ' :
, Thin layer i . | Regular
Interface i+1 E E layers
Interface j : E
Thin PML 1
Interface j+1 ¢ !
! : PML;
L d.

I

Figure 4.4: A layered soil half-space modelled via the TLM+PMLs.

_ Inessence, the substitution of the layer thickness /; with its complex-valued counterpart
hy is reflected in the TLM matrices given in Egs. (4.53) to (4.56). In particular, the TLM
matrices corresponding to thin PMLs may be expressed as:

hy hy

0 _ _ _
A=Al B'=B!, G'=Zlg!, m'=-Mm 4.72)
hy hy hy
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It follows that the generalized Rayleigh (SV-P) and Love (SH) eigenvalue problems will
result in new eigenvalues and normal modes. Next to the physical modes, the so-called
Berenger modes are obtained, which contribute to the overall response in a manner that
resembles the branch cut integrals of the half-space [267]. Conclusively, a comparison of
PMLs against PBs showcased their superior performance, rendering PMLs the approach of
choice for half-space approximation in the TLM [267, 273].

4.4. Green’s functions for spatially arbitrary sources in layered

soil media

Elastodynamics problems and their solution has traditionally attracted the interest of the
mechanics community for more than a century [274—276]. The response elicited by dynamic
loads acting on or within a medium, customarily termed as fundamental solution (full-
space) or Green's function (half-space), has been the subject of a vast number of studies with
applications ranging from seismology and geophysics to acoustics [161, 218, 225]. In the
ensuing, the focus lies on the Green's functions of a linear elastic layered medium, which
has been a classical topic in the field of soil dynamics and soil-structure interaction.

Numerous techniques are available for the derivation of Green’s functions for layered me-
dia, albeit most elastodynamics problems are addressed by: (i) the transfer matrix method
[277, 278], (ii) the method of wavenumber integration [279-283], (iii) the stiffness matrix
method [252, 284, 265] and (iv) the Thin-Layer Method (TLM) [78, 253, 285, 232]. An extensive
review of the preceding - as well as many other - approaches and their relevant developments
up to the present has been recently presented by Dineva et al. [286]. As may be already
apparent, in the ensuing the Green’s functions for a layered medium are obtained via the
TLM based on the framework developed by Kausel [78].

We proceed to derive the Green's functions in the frequency-space domain due to a
spatially arbitrary dynamic load. First, the displacement vector ti{” at i-th elevation (layer
interface) is defined in the frequency-space domain as:

7 (D)
urfs oo [o'e)
a’=| @l [=) T, f kC,al"), dk 4.73)
—(0) n=0 0
uZ,S
where iié”n denotes the displacement vector at elevation z') in the frequency-(radial-azimuthal)-

wavenumber domain. In the ensuing, the symbols () and () refer to quantities in the
frequency-space and frequency-(radial-azimuthal)-wavenumber domains, respectively.
Transformation to the latter can be achieved by means of the discrete Fourier transform in
the azimuth 6 and the Hankel transform in the radial coordinate r:

(1)

ur,s,n fo's) 271

al),=| @y, | =an f rCp f T,a dodr 4.74)
(i) 0 0
uZ,S,l’l

1 1
where ag = o and a;, = — (n # 0). The azimuthal matrix T}, is a placeholder that can be
7 /2
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substituted by its symmetric (T5,) or anti-symmetric (T%) form, depending on the case
considered. For the external load vector, an analogous transformation pair is defined at
the j-th layer interface, involving the exact same transformations employed in Egs. (4.73)
and (4.74), as follows:

~()
Prs -
<) _ | =0 o ~()
Ps Po. | =2 TnkanpS,n dk (4.75)
n=0
~()
Py

in the frequency-space domain and:

=)
rs,n

o] 2n
pon=| L, | =an f rCp f T,p. dodr (4.76)
~() 0 0
pZ]Sﬂ

in the frequency-(radial-azimuthal)-wavenumber domain.

As shown in Section 4.2, the problem of spatially arbitrary wave motion in a three-
dimensional layered medium can be decomposed in terms of the azimuthal index n and the
generalized Rayleigh (SV-P) and Love (SH) wave motions. The overall response is constructed
by superposition of these components. So we proceed to formulate the Green'’s functions on
the basis of these considerations, for the SV-P and SH cases.

The following equilibrium equation is formed, on the basis of the TLM, between ex-
ternal sources of the SV-P type and displacements in the frequency-(radial-azimuthal)-
wavenumber domain:

(kZR+C

Uy, Prn
~ Py 4.77
kug,, ] [ kPzn ] ( )

Upon introducing the matrices Y and Z, we premultiply Eq. (4.77) by Y' and substitute
Z27' =1

~ “~
Ur,n pr,n

T(12% 4 &) 77-1 _yT
Y (kA +C)zz [ e |20 (4.78)
where the matrices Y and Z encapsulate the left and right eigenvectors, respectively:
[ ®,Kg [ o
Y= [ o, | Z= &, K 4.79)

In Eq. 4.79), Kg = diag{kr1 kg2 ---} is a diagonal matrix containing the wavenumbers
kg m associated with the generalized Rayleigh (SV-P) modes; the latter are found by Eq. (4.60).
As can be seen in Eq. (4.79), the left and right eigenmatrices Y and Z are defined on the basis
of the modal matrices ®, and ®:

(Dr:[ d)r,l ¢r,2 ] (4.80a)
.= b, b, o] (4.80b)
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The previous steps are necessary in order to invoke the following orthogonality and
normalization relations employed by Waas [227] and Kausel [78]:

YAZ=K, Y'Cz=-K} (4.81)

By employing Eq. (4.81) and carrying out the relevant mathematical operations we
obtain:

Uy n

ku

=Z(K1-K2) T Ky'Y! [ Prn

kPz,n

(4.82)

Finally, it can be shown that the response of the soil medium in the presence of spatially
arbitrary SV-P sources can be brought into the following form in the frequency-(radial-
azimuthal)-wavenumber domain:

Uz n

where Dg = (K*1— KZR)fl.

The corresponding procedure for the displacement field due to SH-type sources is sim-
ilar, yet simpler. First, the modal matrix ®y is obtained from the generalized Love (SH)
eigenvalue problem:

®,Dr®,  k®,K;'Dr®

1 T T
L ®:DRKp®;  @.DR®;

[ Prn (4.83)

=
Pz

Qo=[ o1 bgp ] (4.84)

Based onthe TLM, for SH-type sources in the frequency-(radial-azimuthal)-wavenumber
domain the equilibrium equation reads:

(k*Ag +Co)Tig,n = Po,n (4.85)

The corresponding orthogonality and normalization relations for the generalized Love
(SH) modes read:

DyA)Dp =1, ®,Co®y=-K (4.86)

Premultiplying with ®, employing ®4®,"' = I and following the same steps as in
the SV-P case, the displacements in the presence of spatially arbitrary SH sources in the
frequency-(radial-azimuthal)-wavenumber domain may be expressed as:

tip,, = DD Dy Pp, (4.87)

where Dy, = (K*1— K%f1 and K = diag{ki,; ki - -} isadiagonal matrix containing the
wavenumbers ky, ,, associated with the generalized Love (SH) modes as found by Eq. (4.62).

At this point, it is possible to formulate a complete expression of the soil response in
terms of any spatially arbitrary source, as a combination of SV-P and SH sources, as follows:
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Based on Eq. (4.88), the displacement vector ﬁél, at the i-th layer interface due to a

harmonic spatially arbitrary load ﬁg’,)l at the j-th layer interface may be explicitly written as:

@) 0 @) ) ]
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Transformation of Eq. (4.89) to the frequency-space domain is achieved based on Eq. (4.73).

In the following chapters, the Green’s functions due to axisymmetric (n = 0) circular
ring sources will be of interest. Without further delay, let us derive the Green’s functions
due to the following harmonic unit ring sources:

Regular
layers

Figure 4.5: Schematic of a radial ring source at elevation z;.

(i) A unit radial ring load (see Fig. 4.5)
The load vector for a harmonic radial ring source at the j-th layer interface in the
frequency-space domain reads:

5(r—R)
p) = 0 (4.90)
0
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Upon application of the transform given in Eq. (4.76), the load vector in the frequency-
(radial-azimuthal)-wavenumber is obtained as:

2 6(r—R) —RJ1(kR)
pU) = _frcofTo 0 dodr = 0 (4.91)
0 0

Combining Egs. (4.73), (4.89) and (4.91), the displacements at the i-th layer interface in
the frequency-space domain read:

dk

rm nm

o) ) fkh(kr)h(kR)

o0
il =T} f kCotily dk =R (4.92)
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(i) A unit torsional ring load (see Fig. 4.6)
The transformation pair of the load vector for a harmonic torsional ring source at the
j-th layer interface reads:

0 0
pY = [ sr-R |, pl)=| -RIGKR (4.93)
0 0

Subsequently, the associated displacement vector at the i-th layer interface may be
expressed in the frequency-space domain as:

0
. - . kr)J1(kR
il :Tgfkcoﬁgfg dk =R Z o by, f % dk 4.94)
0 0
0
(iii) A unit vertical ring load (see Fig. 4.7)

Finally, for a harmonic vertical ring source at the j-th layer interface the load vector
transformation pair is defined as:

0 0
pY) = 0 . B)= 0 (4.95)
8(r—R) RJo(kR)

and the corresponding displacement vector at the i-th layer interface reads:
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Figure 4.6: Schematic of a torsional ring source at elevation z;.
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Figure 4.7: Schematic of a vertical ring source at elevation z;.

As can be seen, Egs. (4.92), (4.94) and (4.96) involve certain integrals corresponding to
inverse Hankel transforms - the latter are analytically tractable (see [78, 253]). Therefore,
one can truly obtain the Green's functions in the frequency-space domain in an explicit form
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in the context of the TLM for circular ring sources. Furthermore, a collection of Green’s
functions for various other source types have explicit expressions in the context of the TLM
and can be found in [78, 285].

Conclusively, one may utilize the preceding framework to compute the soil response
at a set of receivers in the frequency-space domain for any input excitation of interest. A
rearrangement of the obtained displacements and the applied loads per degree of freedom
leads to the following:

iir,s Err Erf) Erz ﬁr,s
us=| Ugs [=| Fgr Fgg Fy, Pos (4.97)
lPiz,s Fzr FzH Fzz ﬁz,s

As can be seen in Eq. (4.97), the flexibility matrix in the frequency-space domain pos-
sesses additional coupling matrices, compared to the flexibility matrix in the frequency-
(radial-azimuthal)-wavenumber domain given by Eq. (4.88). These coupling matrices are
associated with dynamic loads that excite simultaneously SV-P and SH waves, which are
amenable to decoupling in the (radial-azimuthal)-wavenumber domain, yet not in the spa-
tial one. This occurrence corresponds to non-axisymmetric motions (n > 0), thus in the
problems of interest in the following chapters F,g = Fg, = F,9 = Fy, = 0.

Conclusively, energy dissipation in the soil material may be included by means of the cor-
respondence principle in the preceding developments [287]. Therefore, hysteretic soil damp-
ing is considered in the form of complex-valued Lamé constants, where the damping ratio &g
is taken identical for both dilatational and distortional waves, i.e. A} = A (1 +2i¢ Ssgn(w))
and G! = Gs (1 +2iéssgn(w)).

4.5. Validation of Green’s functions via the TLM+PMLs

In the preceding sections, a framework to obtain the Green'’s functions of a linear elastic
layered half-space in an accurate and computationally efficient manner has been formulated
based on the TLM coupled with PMLs (TLM+PMLs). The Green’s functions constitute an
indispensable element of the pile installation models to be presented in Chapters 6 and 7.
For that purpose, we proceed to validate the results obtained via the TLM+PMLs, by means of
anumerical example, against a 3-D FE model developed in COMSOL Multiphysics® software
[191]. In particular,

Ps [kg/m3] Gs [MPa] v [-] és [-]
Upper soil layer 2000 20 0.3  0.025

Bottom half-space 1800 23 0.499 0.025

Table 4.1: Soil parameters for the validation case of the Green's functions.
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Figure 4.8: Comparison of Green’s functions (liz,s) obtained via the TLM+PMLs and the FE (COMSOL) model for a
unit vertical ring load applied at r = 0.4 m (source) and receiver radius at (2) r = 0.4 m and (b) r = 0.8 m.

The case study is based on a two-layer soil profile as described in Table 4.1. Three types of
harmonic ring sources, namely vertical, radial and circumferential, with frequency f =23
Hz are applied at z =4 m and r = 0.4 m, while the Green’s functions are evaluated along
the vertical axis and at different radii. The upper layer is unsaturated with a thickness
H;,, =5 m and underlain by a water-saturated half-space. In the TLM+PMLs, the half-space
is substituted by a linear elastic layer with thickness H;,, =5 m and a PML domain with
thickness H,,, =5 m. For the half-space approximation in the COMSOL model, a linear
elastic layer with large depth (H;,, = 25 m) is modelled and supported below by a horizontal
low-reflecting boundary. Similarly, the radial extent of the FE model is finite with a domain
radius of 50 m and bounded by a cylindrical low-reflecting boundary. In the TLM+PMLs,
such an approach is altogether avoided, due to analytical solutions employed in the radial
direction that satisfy naturally the radiation condition at infinity. It is noted that the Solid
Mechanics module was used for the COMSOL model and the computations were performed
in the frequency domain.

In Figs. 4.8 and 4.9, the vertical (i, ¢) and radial (Wi,,s) Green’s functions due to a vertical
ring source are displayed, respectively. Furthermore, the Green's functions are computed
for all cases at two different receiver radii, i.e. r =0.4 m and r = 0.8 m. As can be seen, the
agreement between the results of the TLM+PMLs and the FE (COMSOL) model is remarkable
for both vertical and radial displacements; a discrepancy appears solely in Fig. 4.8a for the
source-receiver concurrence, which is expected due to a singularity at that point.
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Figure 4.9: Comparison of Green’s functions (ti;,s) obtained via the TLM+PMLs and the FE (COMSOL) models for a
unit vertical ring load applied at r = 0.4 m (source) and receiver radius at (2) r = 0.4 m and (b) r = 0.8 m.
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Figure 4.10: Comparison of Green's functions (ti;,s) obtained via the TLM+PMLs and the FE (COMSOL) models for
a unit radial ring load applied at r = 0.4 m (source) and receiver radius at (@) 7 =0.4 mand (b) r =0.8 m.
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Figures 4.10 and 4.11 depict the radial (ti,,s) and vertical (i s) components of the Green's
functions due to a radial ring source for the source/receiver radii given above. Similarly to the
case of the vertical ring source, there is great agreement for both displacement components
and at all receiver locations. Conclusively, Fig. 4.12 presents the Green's functions due to a
circumferential ring source, which also displays virtually identical results for the two models;
in this case, the sole displacement component is the circumferential one (i ). By means of
these three examples, the validation of the presented TLM+PMLs framework is showcased,
with a particular emphasis on the computation of three types of Green's functions for ring
sources that will be utilized in the following chapters.
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Figure 4.11: Comparison of Green's functions (tiz,s) obtained via the TLM+PMLs and the FE (COMSOL) models for
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a unit radial ring load applied at r = 0.4 m (source) and receiver radius at (a) r = 0.4 m and (b) r = 0.8 m.
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Figure 4.12: Comparison of Green's functions (fig ;) obtained via the TLM+PMLs and the FE (COMSOL) models for
a unit circumferential ring load applied at r = 0.4 m (source) and receiver radius at (a) r = 0.4 m and (b) r = 0.8 m.

4.6. Conclusions

In this chapter, we treated the propagation of mechanical disturbances in a 3-D layered soil
medium, with a view to overcome the limitations of local and frequency-independent soil
reaction analogues. As a point of departure, the wave motion in linear elastic solids was
studied, laying the foundations for the subsequent numerical developments. In particular,
the TLM has been proposed, as a superbly efficient numerical scheme for the analysis of
wave propagation in linear elastic layered media. Additionally, the incorporation of PMLs
in the TLM has been presented, as an advantageous method to approximate the underlying
half-space via complex-valued coordinate stretching.

By means of the TLM+PMLs framework, the Green’s functions for ring sources in the
frequency-space domain are obtained and validated. The previous developments are presen-
ted in a generic manner, as their applicability vastly exceeds the topic of this thesis. In
the ensuing chapters, the Green’s functions derived via the TLM+PMLs are integrated in a
numerical framework for pile driving analysis, thus facilitating the computation of pile and
soil responses during installation.



Gentle Driving of Piles (GDP) at a
sandy site combining axial and
torsional vibrations: field tests

In the preceding chapters, the theoretical background related to dynamic pile and soil
behaviours during driving has been presented, along with relevant numerical approaches.
The latter components will be merged into a computationally efficient framework for pile
installation analysis purposes. However, let us first elucidate the motivation for these
developments, i.e. the demand for sustainable methods of offshore monopile installation.
In the last decade, alarming concerns have emerged regarding the environmental impact of
the most commonly adopted monopile installation method, i.e. impact hammer driving.
Two courses of action have been followed to tackle this problem: i) introduction of mitigation
measures in impact piling and ii) use of alternative installation techniques. The former
approach has a major practical drawback, irrespectively of the mitigation efficiency, i.e. the
increase of offshore wind energy cost. Therefore, mitigation measures effectively lead the
sector further away from its main goal, namely cheaper and more accessible wind energy. To
that end, alternative pile installation techniques have been progressively drawing attention
in the last decade and an increasing number of research projects are focusing on their
investigation.

Gentle Driving of Piles (GDP) is a new technology for the vibratory installation of tubular
(mono)piles, in line with the preceding objective. Its founding principle is that both high
installation performance and low levels of noise emissions can be achieved by applying to the
pile a combination of axial and torsional vibrations. Preliminary development and demon-
stration of the proposed technology have been the main objectives of the GDP research
programme. To this end, onshore medium-scale pile installation tests have been performed
in sand, using both impact and vibratory driving methods (including GDP). Following the
development of a purpose-built GDP device and the geotechnical characterisation of the test

Parts of this chapter have been published in Tsetas et al. [51].
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site, the main body of this chapter describes the execution and the experimental findings of
the GDP field tests. Focus is on the installation performance of GDP piles, which is discussed
with the aid of structural and ground monitoring data. The comparison between piling
data associated with GDP and standard axial vibratory driving showcases the potential of
the proposed installation technology, particularly with regard to the beneficial effect of the
torsional vibration component.

5.1. Sustainable installation of offshore monopiles - the 'Gentle

Driving of Piles’ method

Ever more countries worldwide are working to shift their energy mix towards renewables.
In this regard, offshore wind energy will continue to play an increasingly relevant role as an
abundant, cost-effective resource [26], on the condition that the pace of its technological
development is further expedited. Presently, 15-24% of the investment for the construction
of an offshore wind farm relates to the design, production and installation of substructures
[24]. Continual improvement of engineering methodologies in this area is therefore key to
achieving further cost reduction [288, 289, 194].

Based on the latest European Wind Energy Association (EWEA) report [26], over 80%
of the existing offshore wind turbines (OWTs) in European wind farms are founded on
so-called monopile foundations, which are most commonly installed by means of impact
hammering. The impact technology is to date very well established in the offshore industry
[27]. However, impact installation in certain soil conditions (e.g., dense sands) may be slower
than desired [44, 48], which causes increased installation costs and, potentially, higher pile
damage under many hammer blows [46, 166]. Moreover, the high levels of underwater noise
emissions generated during pile installation are known to be harmful to marine life [290].
This alarming concern has motivated over the years the enforcement of strict regulations to
limit its negative environmental effects [35]. Such regulations include the adoption of costly
soundproofing measures (e.g. bubble curtains, isolation casings, and cofferdams) [291, 36].

An interesting alternative to impact piling is provided by vibratory technologies, which
can achieve quiet(er)/fast pile installation through the application of low-amplitude axial vi-
brations. The input excitation is induced through the harmonic rotation of eccentric masses,
usually at a frequency no larger than 40 Hz. Vibratory driving devices (or simply ‘vibro-
hammers’) have been manufactured and studied since the 1940s [44], and their benefits in
terms of driving performance and noise emissions are known since then [45, 46, 292, 290].
The use of piling loads lower than in impact driving can effectively reduce both damage and
radial expansion of the pile during driving — the latter (Poisson effect) is a major culprit
for noise emissions and larger soil resistance to driving [200]. Despite its obvious benefits,
vibratory driving is not yet widely adopted for offshore piling. Its use is hindered by a
number of factors, including the incompleteness (and inconclusiveness) of available field
observations. Major knowledge gaps are also associated with dynamic soil behaviour during
vibro-driving [47] and the effects of vibro-installation on the operational performance of
the pile [293, 50, 48].

To boost the improvement of vibratory installation methods, a new technology — the
Gentle Driving of Piles (GDP) — has been recently proposed in the Netherlands as the core of
ajoint industry project led by the Delft University of Technology (TU Delft) [49]. GDP tar-
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gets enhanced piling performance and reduced noise emissions through the simultaneous
application of low-frequency/axial and high-frequency/torsional vibrations. This thread of
research was originally inspired by observing that torsional vibrations do not induce radial
pile expansion during driving, which was foreseen to play in favour of both driving and
acoustic performances. A preliminary demonstration of the proposed technology was pur-
sued by performing medium-scale field tests on identical test piles installed using impact
and vibratory driving methods, including GDP. The tests were performed in sandy soil at
the Port of Rotterdam and comprised two distinct stages, the first to investigate the driving
performance, and the second to explore installation effects in the response of the test piles
to repeated lateral loading [54]. The GDP field campaign adds to the research carried out
within other major programmes on monopile foundations, such as PISA [288] in the UK,
REDWIN [294] and WAS-XL [295] in Norway, Vibro [296, 48] in Germany, and DISSTINCT
[297], MIDAS [298] and BLUE Piling [299] in the Netherlands.

The GDP project was initiated to achieve a preliminary demonstration of the proposed
pile driving method at medium scale — particularly, with respect to the inclusion of a high-
frequency torsional vibration component. In what follows, the installation performance of
the GDP method is described in detail with the aid of selected field measurements, and in
comparison to other piling data associated with standard axial vibro-driving. Although the
GDP project was originally motivated by oftfshore wind developments, this work aims to
attract the interest of the piling community, and foster further studies for an even broader
range of applications and geotechnical conditions.

5.2.The GDP shaker

The design of the GDP shaker built on the idea of installing monopiles by combining low-
frequency/axial and high-frequency/torsional motions. The effectiveness of such a pile
driving approach was envisioned in light of the following considerations:

(1) high-frequency torsional motion is expected to reduce the axial frictional resistance
along the pile shaft. Since torsional vibration mobilises soil shear resistance in the
circumferential direction, less frictional resources are left to oppose axial pile penet-
ration [300, 301];

(i) asa consequence of point (i), the axial vibratory load that is necessary to drive the
pile can be reduced, so the amplitude of the generated stress waves will decrease
in comparison to the case of axial vibro-driving. Therefore, the amplitude of the
radial pile motion (Poisson effect) will also decrease, as a result of the so-called ring
frequency effect [205, 193];

(iii) the mentioned decrease in radial pile expansion during installation is believed to be
beneficial for two reasons. First, it is expected to enable faster penetration, due to
lower soil confinement; secondly, less radial expansion of the pile results in reduced
underwater noise emissions.

It is worth recalling that, under axisymmetric loading conditions (e.g. in the presence of
a torque), the circumferential motion of an elastic cylindrical structure (pile) is uncoupled




80

from its axial and radial deformations [180]. Therefore, a pile subjected to torsional vibra-
tions can only transmit shear (SH) waves to the surrounding media [219]. Such shear waves
cannot propagate in seawater [225], nor do they contribute to underwater noise.

Importantly, the preference for torsional vibrations at high frequency relates to the short
wavelengths that are accordingly transmitted to the soil, which decay in amplitude within
a short distance from the pile. Therefore, the torsional mobilisation of the soil resistance
(also reduced by pore pressure build-up [301]) is expected to occur locally around the pile
shaft, and likely with a lower impact on the post-installation lateral response than in the
case of low-frequency axial vibrations.

Figure 5.1: The GDP shaker: (a) view at the manufacturing site; (b) shaker connected to a test pile via a bolted flange
connection
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Figure 5.2: Detailed design of the GDP shaker.



5.2. The GDP shaker 81

A novel GDP shaker was designed and purpose-built for the execution of GDP tests (see
Fig. 5.1). As shown in Fig. 5.2, the shaker is formed by three gear trains directly connected
to masses that can counter-rotate with a given (constant) eccentricity. Such masses are
accommodated within exciter blocks, which are in turn bolted to a support structure. In its
first design, the GDP shaker operated by means of hydraulic motors and was connected to
each test pile via a bolted flange connection, which was a preliminary solution adopted for
the GDP experimental campaign (see Fig. 5.1b).

Similarly to conventional vibratory hammers, the eccentric masses in the GDP shaker
are set to counter-rotate in order to generate a dynamic load along a certain direction. In
the case of the GDP shaker, the exciter block at the top of the support structure can generate
a harmonic load F, () along the pile axis with frequency Q,. To induce torsional and axial
vibrations of different amplitude and frequency, a separate set of exciter blocks was needed.
To this end, two additional exciter blocks were mechanically connected through a shaft with
the twofold goal of (i) assembling all units into a single substructure and (ii) positioning
them properly. Furthermore, vibratory loads were generated based on a control system
that ensured synchronisation, so as to obtain the application of a torque M, (¢) of frequency
Q; at the top of the pile (Fig. 5.2). Overall, the GDP shaker can apply to the pile head load
combinations of the following type:

Fa(t) = mgeaQ2%sin(Qqt) (5.1)
M,(8) = Ryme, Q% sin(Q, 1) (5.2)

where mge, and mye; denote, respectively, the axial and torsional eccentric moments”
associated with the eccentric masses in both exciter blocks. The distance between the centre
of the pile cross-section and the torsional eccentric masses is denoted by R; (see Fig. 5.2).
According to Egs. (5.1) and (5.2), the resulting load amplitudes are mainly governed by the
frequency as the eccentric moments (mg e, and m;e;) and the radius (R;) are fixed.

Figure 5.3 illustrates the axial and torsional inputs generated based on the counter-
rotation of the respective eccentric masses, along with their representation as part of a
pile-soil interaction model. The axial load is associated with the force resultant of F,; (1)
and F,» (1), whereas the torque is the net moment resultant of Fy; (), Fr2(8), Fr3(t), and
Fa(1); it is remarked that the net force resultant of the latter set of forces is always equal
to zero. Further details regarding GDP shaker specifications may be found in Gémez and
Metrikine [302].

The final design of the GDP shaker stemmed directly from the conceptual foundation
of the GDP method, though with constraints imposed by practical limitations. In the
installation tests described in the following, the axial vibration frequency of GDP was set to
be similar to the frequency adopted for a parallel axial vibro-driving test, so as to gain insight
into the effect of the torsional vibrations. On the other hand, the GDP torsional frequency
was maximised within the manufacturing constraints of the GDP shaker. In particular, the
choice of the torsional frequency was driven by the need of maintaining comparable power
capacity for the installation tests associated both with GDP and axial vibro-driving. The

* Although not rigorously moments, mgeq and m;e; are usually referred to as such within the vibro-driving
community.
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Figure 5.3: Generation of axial and torsional loads through the rotating eccentric masses in the GDP shaker.

final design of the GDP shaker enabled the application of axial and torsional vibratory loads
with frequencies up to 23 Hz and 80 Hz, respectively.

The main technical specifications of the GDP shaker and the standard vibratory hammer
(CV-25) used in the GDP campaign are summarised in Table 5.1.

GDP shaker Vibro-hammer CV-25
Axial shaker Torsional shaker Axial shaker
Total mass [kg] 5150 4100
Eccentric moment me [kg m] 15 4 25
Rotational speed [rpm] 1400 4800 1800
Operational power [kW] 72 188 263

Table 5.1: Technical specifications of the GDP shaker and the axial vibro-hammer CV-25.

5.3. Geotechnical site characterisation

The GDP experimental campaign was planned to achieve a preliminary proof of concept
for the proposed pile driving technology. To this end, medium-scale onshore field tests
in sandy soil were performed. Both geotechnical and logistical considerations led to the
selection of the Maasvlakte II site at the Port of Rotterdam, which offers space and facilities
for field tests and is presently supporting an increasing number of offshore-related demon-
stration projects. This part of the port comprises North Sea sand that was used to create a
reclaimed/compacted site. The GDP field tests took place at the Maasvlakte II over a surface
of 60 x 60 m? in the so-called area E. Site location and access routes are shown in Fig. 5.4.
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5.3.1.Site investigation

The geotechnical investigation of the test site was carried out between June and September
2019 in two phases of preliminary and detailed site investigation (PSI and DSI, respectively).
First, the PSI was performed to identify suitable locations for installing the test piles, mostly
in light of site homogeneity considerations. During the PSI, 25 cone penetration tests with
pore water pressure measurements (CPTw's) were performed down to a target depth of
10 m over a regular grid with a spacing of about 12.5 m. After reaching the target depth,
dissipation tests were executed for the CPTu’s at the four corners of the site to measure
the depth of the ground water table. Each dissipation test lasted for one hour, which was
deemed sufficient for the achievement of hydraulic steady-state conditions. Based on these
tests, the depth of the water table was estimated to range, at the time of the PSI, between

3.5 and 4.5 m depth below the ground surface (phreatic fluctuations are to be expected at
the test site due to its proximity to open waters).
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Figure 5.4: GDP test site and its access routes — edited after [303].

After selecting all pile locations based on the PSI, the DSI phase was carried out by
performing additional tests around and at the centre of each pile location (see Fig. 5.5).
Eight test piles were installed along with a larger reaction pile (RP). The latter would later
serve the post-installation loading tests [54]. The embedded length was 8 m for all piles, i.e.
2 m less than the target depth of the CPTu’s. Four of the test piles, henceforth referred to as
Main Test Piles (MTPs), were extensively instrumented and installed with a radial, centre-
to-centre distance of 12 m from the RP. The other four piles, labelled as Auxiliary Test Piles
(ATPs), were installed uninstrumented for preliminary testing purposes, at a distance of 16
m from the RP (see Fig. 5.5). As detailed in the following, the four MTPs were installed using
different driving methods, namely impact hammering (IH), axial vibro-driving (VH), and

GDP. For the two standard driving methods, the Hydrohammer S-90 and the vibro-hammer
CV-25 were used for the IH and VH piles, respectively.

The DSI programme included:
— four CPTu tests at the ATP locations (target depth: 10 m);

— four Seismic CPTu (SCPTu) tests at the MTP locations (target depth: 10 m);
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Figure 5.5: Site layout (left — ATPs in grey) and soil monitoring around the MTPs (right). For better readability, the

site layout on the left is shown with MTP diameters and distances from the central RP that are not to scale.

— four hydro-profiling tests with mini pump tests (HPT-MPT) around the MTPs (target
depth: 15 m).

— borehole sampling around the MTPs. A total of eight boreholes (two per MTP) of 10
m depth and 15 cm diameter were dug and simultaneously sustained with hollow
PVC tubes, which would then enable the execution of Cross-hole Sonic Logging (CSL)
tests;

— three boreholes (15 cm diameter) around each MTP to host ground monitoring instru-
mentation, including Shape Acceleration Arrays (SAAVs), soil pressure cells (SPCs),
and pore water pressure transducers (PPTs). As shown in Fig. 5.5, two pairs of SPC
and PPT sensors were installed in two different boreholes to reach different target
depths (6 m and 8 m).

The layout and locations of DSI tests and boreholes are shown on the right side of Fig. 5.5
for the case of the MTP GDP;. Both PSI and DSI data confirmed the predominantly sandy
nature of the soil deposit from the ground surface (NAP +5 m — Normaal Amsterdams Peil, i.e.
Amsterdam Ordnance Datum) down to approximately 10 m below (NAP -5m). The upper 5 m
consist of the dredged material employed to create the Maasvlakte I site, which overlays a
layer of sand and clayey/silty sand from the holocenic Naaldwijk formation [304].

The whole SCPTu dataset is visualised in Fig. 5.6 after post-processing according to
Robertson’s soil classification framework (SBTn charts) [305, 306]. Robertson’s approach
relies on the notion of normalised soil behaviour type, which is identified for any soil at hand
based on the values of relevant dimensionless indices — namely, the normalised cone resist-
ance (Qty) and the normalised friction ratio (F;). In Fig. 5.6, all data points from the four
soil profiles lie mostly in zone 6 (sand), with some excursions into zone 5 (sand-mixtures)
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Figure 5.7: Profiles of (a) cone tip resistance (¢.), (b) shear wave velocity (cs) and (c) relative density (D).

and zone 7 (gravelly sand to sand). The cone penetration data from the four MTP locations
indicate altogether reasonably consistent profiles of soil type/properties — see Figs. 5.7a
and 5.7c.

The profiles in Fig. 5.7 of (a) cone resistance (q.), (b) shear wave velocity (cg), and (c)
relative density (D;) (obtained following [307]) suggest that the site comprises very dense
sand (D, = 80 — 100%) in the upper 5 m, and medium-dense to dense sand (D, = 60 — 80%)
in the 5 m below. An exception can be observed at the VH pile location (Fig. 5.7), where the
SCPTu data show much lower cone resistance and relative density (D, < 40%) in the lower 5
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m. Obviously, the effects of this site anomaly will require special attention when comparing
the results of different pile tests.

The cs profiles obtained from seismic measurements are largely consistent with the
corresponding ¢.-D, distributions, with cg values mostly in the range from 200 to 300
m/s (and occasionally up to 350 m/s). The VH location exhibits the same aforementioned
anomaly also in terms of ¢s — note that a significant portion of the profile exhibits cs values
lower than 150 m/s.

Soil samples were also extracted from the aforementioned boreholes for further charac-
terisation of the soil at the Maasvlakte II site. Visual observation, borehole analysis, and
particle size distribution (PSD) tests (see Fig. 5.8) confirmed the presence of two different
sand types, respectively in the upper and lower 5 m of the deposit. Overall, sieving and mi-
crometric analyses revealed that sand, slightly silty and slightly gravelly, with very spherical
and moderately round particles, was present down to 10 m below the ground surface. Two
distinct batches of soil were created by mixing borehole material associated with either
sand type: soil from the upper layer (0-5 m) was used for Batch 1 (B1), while Batch 2 (B2) was
made of soil from the lower layer (5-10 m). As reported in Table 5.2, rather similar index
properties were found for Bl and B2 sand samples.

8s €max  €min Dso Cy Cec

[-] [-] [-] [mm] [-] [-]
Bl 2.65 0.82 0.44 0.317 2.346 0.912
B2 2.65 0.83 0.46 0.244 2.161 0.845

Table 5.2: Index properties of Maasvlakte II sand (g5 — specific gravity; emax — maximum void ratio; epjn —
minimum void ratio; D5g — median particle diameter; Cy, — coefficient of uniformity; C. - coefficient of curvature).
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Figure 5.8: Particle size distribution (PSD) curves for two representative soil samples from batches Bl and B2.
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5.4. Installation tests and pile-soil monitoring

5.4.1. Field testing programme

As mentioned in the previous section, nine piles in total were used for field testing purposes,
namely four MTPs, four ATPs, and one RP, with geometrical specifications reported in
Table 5.3. The distinction between MTPs and ATPs relates to their different roles in the
GDP experimental campaign. The ATPs were exploited for preliminary testing of the GDP
shaker, so that relevant driving settings could be first adjusted during the installation of
non-instrumented test piles. After the installation of the ATPs, it was decided to target
for MTPs axial and torsional vibration frequencies approximately equal to 16.5 Hz and 63
Hz, respectively. The latter pair of values was chosen to exploit as much as possible the
vibratory capacity of the GDP shaker, though without compromising the testing agenda or
operational safety. An axial frequency of around 24.8 Hz was adopted for the installation of
the VH pile. The ATPs also served post-installation tests, in that they enabled the calibration
of specific settings for the subsequent lateral loading tests [54]. Since the main goal of the
GDP campaign was to monitor and analyse the performance of the MTPs, they were fully
instrumented prior to all tests. The present experimental data were exclusively recorded
on/around the MTPs, with a focus on the GDP piles.

Test piles  Reaction pile

Length Lp I0m 10m
Embedded length L, 8 m 8 m
Outer diameter D, 0.762m l.6m
Aspect ratio Ly/ Dy 13.12 6.25
Wall thickness hp 0.0159 m 0.02m

Table 5.3: Geometrical characteristics of the piles indicated in Fig. 5.5.

Extensive instrumentation of all MTPs and the soil in their surrounding was set in place
to monitor the complex soil-pile response during driving — see Fig. 5.5. As previously men-
tioned, the final pile locations were selected based on the results of the PSI and DSI, with
mutual distances limited by the length of the lateral loading frame that was employed after-
wards [54]. The circular arrangement shown in Fig. 5.5 allowed to minimise the interference
between consecutive pile driving tests. In chronological order, the MTPs were installed
as follows: (i) GDP, (30/10/2019), (ii) GDP; (30/10/2019), (iii) VH (31/10/2019) and (iv) IH
(4/11/2019). The installation sequence may generally be relevant to assessing the interference
of consecutive pile installations over a limited soil surface. However, since all pile-to-pile
distances were larger than 10Dy, at the GDP test site, it is argued that such interference
must have been negligible in all instances [114, 308].

The same installation protocol was followed for all piles, regardless of the specific driving
method. In particular, such a protocol included the following three phases (see Fig. 5.9): (i)
in the first phase, the top flange of the pile was connected to the shaker (for VH and GDP
piles), then the pile was upended by a crane and positioned vertically at the corresponding
installation location. The pile was stabilised by means of lateral restraints, and driven
for 0.5 m into the soil. At that point the installation was paused to check that all sensors
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were functioning properly; (ii) in the second phase, each pile, still laterally restrained, was
driven further down to 3 m of total penetration; (iii) in the third phase, lateral restraints
were removed and each pile was driven up to the target penetration depth of 8 m. In the
remainder of this work, only data measured during the third phase of the installation
protocol are presented. Such data are believed to be most meaningful in that they relate
to pile penetration in water-saturated soil. It is worth noting that both axial and torsional
vibration frequencies — and therefore the corresponding load amplitudes (cf. to Equations
(5.1)-(5.2)) — were kept constant during the installation tests.

(b) (c)

Figure 5.9: (a) First, (b) second and (c) third installation phases of an ATP.

5.4.2. Pile instrumentation

During the installation of the MTPs, a number of measurements were performed simul-
taneously, both on the piles and in the surrounding soil, in order to monitor the dynamic
behaviour of the complete pile-soil system. As the GDP method comprises a combination
of axial and torsional vibrations, non-zero components of motion in all directions were
anticipated. Accordingly, the following sensing instrumentation was deployed:

- two tri-axial micro-electro-mechanical systems (MEMS) accelerometers to record
the dynamic motion of the pile during installation. The MEMS accelerometers were
positioned 1.56 m below the pile head at diametrically opposite locations (see Fig. 5.10
and their technical specifications in Table 5.4);

— fiber Bragg grating (FBG) sensors (12 per side) to monitor pile strains along the length
(see specifications in Table 5.5). The same technology has been recently adopted for
pile monitoring during impact driving tests [309]. Two types of FBG configurations
were adopted, namely in-line FBGs and FBG rosettes (see Fig. 5.10). In-line FBGs
were installed at multiple cross sections along the length, two per cross section at
diametrically opposite locations to monitor axial strains. FBG rosettes were placed at
three selected locations along the length, two per cross-section and diametrically op-
posite, in order to monitor strains along the longitudinal and two inclined directions,



5.4. Installation tests and pile-soil monitoring 89

at angles of 60° and 120° with respect to the horizontal plane;

— two FBG temperature sensors to measure temperature variations on the pile surface
during pile penetration. The main purpose of such measurements was to obtain
quantitative factors for temperature compensation of the FBG measurements. The
temperature sensors were positioned next to the location of the last FBG sensor
(approximately 35 cm above the pile tip);

— one potentiometer (draw-wire type) to record the penetration of each pile into the soil
by measuring its axial displacement. The measurement range of the potentiometer
was +10 m and its accuracy equal to 0.1 mm.

Type of sensor MEMS ADXLL377
Number of sensors per pile 2 (1 per side)
Measurement range +200¢g
Bandwidth (x, y axes) 0.5 Hz — 1300 Hz
Bandwidth (z axis) 0.5 Hz — 1000 Hz
Sensitivity (x axis) 5.8mvV/g
Sensitivity (y axis) 6.5mvV/g
Sensitivity (z axis) 7.2mvV/g

Table 5.4: Technical specifications of tri-axial MEMS accelerometers

Type of FBG strain sensor Sylex FFA-01
Number of sensors per pile 24 (12 per side)
Measurement range +3000 pm/m
FBG wavelength range 1510 nm - 1590 nm
Fiber coating Polyimide

Table 5.5: Technical specifications of in-line FBG strain sensors.

All the pile sensors operated at a sampling frequency equal to 1 kHz. Additional details
about sensor specifications are provided in Tables 5.4 and 5.5.

5.4.3. Ground monitoring
The response of the soil surrounding the MTPs was monitored during pile driving tests by
means of the following ground monitoring instrumentation:

— Eight VWPC2100 RST Instruments sensors containing both soil pressure cells (SPCs)
and pore water pressure transducers (PPTs) were deployed to simultaneously record
the evolution in time of the total radial stress (o) and the pore pressure (p,,), with
accuracy and resolution of 5.0 kPa and 0.25 kPa, respectively. For each MTP and prior
to pile driving, the sensors were installed at two different depths (6 m and 8 m below
the ground surface, see Fig. 5.5);
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Figure 5.10: Pile instrumentation.

— shape-acceleration arrays (SAAVs) located at the front side of each pile with respect to
the lateral loading direction (see Fig. 5.5) to record lateral soil displacements during
installation. The SAAV sensors comprised a cable-shaped series of half-meter rigid
segments from 0.5 m to 8.5 m, which would detect lateral soil displacement through
the tilt of the individual segments.

After installing the above soil sensors in boreholes dug during the DSI, all SPCs, PPTs and
SAAVs were set to sample data at 1 kHz for all pile installation tests.

Finally, cross-hole sonic logging (CSL) tests were performed before and after pile driving
tests, in order to evaluate possible installation effects in the soil by means of P-wave meas-
urements. For these tests, two 10-meter long PVC access tubes were installed at a distance
of 0.5 m and 1.5 m from the pile wall (see Fig. 5.5), while two ultrasonic transmitter/receiver
probes were lowered to the bottom of the tubes. The transmitted P-waves (50 kHz nominal
frequency) were recorded by the receiver probe at a sample rate of 0.5 MHz. To assess
repeatability, CSL tests were performed twice for each pile before and after installation.

5.5. Field observations during GDP installation

This section presents relevant field observations associated with the dynamic response of
the MTPs and the surrounding soil during the installation tests — namely, during the third
phase of the installation protocol described above. The following analysis of field data is a
preliminary effort to demonstrate the potential of the GDP method, particularly in compar-
ison to standard axial vibratory driving (VH). Due to site inhomogeneity and the inherent
differences between the considered driving methods (IH, VH, GDP), further interpretation
of the whole dataset may only be achieved through future numerical modelling work.
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5.5.1. Pile penetration rates

Figure 5.11 displays the penetration time series for the VH and the two GDP piles. The red and
blue lines correspond to the displacement of GDP; and VH as measured by the potentiometer
(PM), respectively, while the respective measurement for GDP;, is not available due to sensor
failure during driving. The markers in the same figure represent the "slow” measurements
of the driving logging (DL) system, which includes displacement values recorded every 25
cm of pile penetration. Average penetration rates equal to 20.9 mmy/s, 37.1 mm/s and 18.7
mm/s were determined for VH, GDP;, and GDPy, respectively, based on the driving logging
system; the more reliable data returned by the potentiometer transducer for VH and GDP,
indicate average penetration rates of 19.8 mm/s and 34.3 mm/s, respectively. The good
agreement between the data from the potentiometer and the driving log led to consider the
latter reliable also for the GDPs installation.

As can be observed in Fig. 5.11, GDP; had a shorter installation time compared to VH
and GDP; (and therefore a larger penetration rate). Since the two GDP piles were driven
with identical installation settings, the higher installation rate of GDP; was presumably
due to the lower cone resistance (q.) and relative density (D,) at the corresponding soil
location — see Fig. 5.7. Although VH was installed in weaker soil, GDP; penetrated at an
almost double average rate. Further, while GDP, was driven into the stiffest soil (among the
four MTP locations), its average penetration rate was found to be very similar to that of VH
(see Fig. 5.11). These facts seem to support that combining axial and torsional vibrations
was indeed beneficial from a pile driving perspective.

34 © VH-PM (g = 19.8 mm/s)
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Figure 5.11: Pile penetration curves (ug) for VH, GDP; and GDP,, with average penetration rates (iig) obtained
from potentiometer (PM) and driving log (DL) data.

It was also possible to obtain more detailed information about the penetration rates by
numerically differentiating the pile penetration time series — which could be done using
the potentiometer data, therefore only for VH and GDP; . The differentiated time series
are given in Figs. 5.12a and 5.12b alongside their low-pass filtered counterparts (a moving
average filter with a cut-off frequency of 2 Hz). Figure 5.12b indicates that the penetration
rate of GDP; was on average fairly constant during installation. In contrast, VH penetrated
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Figure 5.12: Time evolution of the pile penetration rate (%] obtained for (2) VH and (b) GDP; from potentiometer

(PM) data.

at a more variable rate, with some abrupt changes during the penetration process — see for
instance the peak around 100 s. Considering the penetration depth reached by the pile tip
of VH after such time (between 4 and 5 m), it is likely that the transition from unsaturated
to saturated soil had a temporary influence on the penetration rate. It is again apparent
that GDP; driving outperformed VH, especially considering that the latter was installed in
weaker soil (see Fig. 5.7). Overall, the penetration rates observed at the GDP site resemble
quite closely the (high) values reported by [310] during the axial vibro-driving of similarly
sized open-ended pipe piles. Importantly, no refusal was experienced during GDP driving,
as is testified by the rather steady penetration rates in Fig. 5.11.

5.5.2. Power and energy consumption

In addition to pile penetration measurements, the power consumption of the GDP shaker
and the axial vibro-hammer was also monitored to assess the efficiency of the different
methods. In agreement with the GDP shaker specifications in Table 5.1, two independent
exciter blocks were used for the axial and the torsional excitation. In Fig. 5.13a, the power
consumption of the hydraulic power unit (HPU) is plotted against time for the axial excit-
ation provided by the GDP shaker and the axial vibro-hammer; the torsional HPU power
consumption is shown in Fig. 5.13b, exclusively for the two GDP piles.

It is readily apparent that the power consumed to impose torsional vibrations is sub-
stantially larger than its axial counterpart for both GDP; and GDP,. Generally, the HPU
power consumed for axial loading of both GDP piles was found to be almost identical, and
significantly lower than the power consumed to axially vibrate the VH pile (see Fig. 5.13a).
In contrast, the power associated with the torsional loading of the GDP piles is larger than
that consumed for the VH pile, as one would expect in light of the higher frequency of
torsion. Overall, the power consumed by the GDP shaker lies inside the power capacity of
the VH device, as was indeed a target of the first GDP shaker design in order to enable fair
comparisons.

It is also worth noting that GDP, consumed through torsion more power than GDPy, as
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Figure 5.13: HPU power consumption (P) associated with (a) axial and (b) torsional loads applied to VH, GDPy, and
GDP».

a likely outcome of the denser soil profile at the GDP; location - this is also confirmed by
the longer installation time (see Fig. 5.13b). Further, a drop in torsional power consumption
is visible for GDP, between 50 s to 100 s: since power was delivered to maintain a given
vibration frequency (which was constant during driving), a local reduction in soil resistance
may have caused a temporary power drop of the kind shown in Fig. 5.13. As time elapsed, the
power consumed to axially vibrate both GDP piles slightly decreased with the penetration
depth, while the torsional power tended to increase in time for both piles. Overall, these
trends indicate that the soil resistance to pile driving was mainly overcome through the
torsional mechanism. This observation strongly supports the conceptual foundation of the
GDP method, i.e. the beneficial effect of torsional vibrations in overcoming the frictional
soil resistance along the pile shaft.
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Figure 5.14: Time evolution of the total energy consumption (E) during the installation of VH, GDP;, and GDP,
(both axial and torsional components included for GDP piles).
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As a final comparison between VH and GDP driving performances, the total energy
consumption (both axial and torsional for GDP) is plotted against the installation time in
Fig. 5.14. The efficiency of the GDP method is clearly supported by the fact that GDP; con-
sumed approximately the same total energy as VH (only 2.8% larger), even though GDP; was
driven in substantially stronger soil. On the other hand, GDP; required approximately twice
as much energy as needed for GDP;, which was mostly due to the stronger soil encountered
at that location (see Fig. 5.7). A detailed discussion of energy efficiency matters and their
quantification both for VH and GDP piles is provided by Gémez et al. [52]. For clarity, the
values of average cone resistance along the soil profile, total energy consumption, and the
average penetration rate are summarised in Table 5.6 for VH, GDP;, and GDP,.

VH GDP, GDP,
Average cone resistance, ¢, 5.75 MPa 11.9 MPa 18.6 MPa
Total energy consumption, E 33.44 M]J 34.39 M] 67.38 MJ

. du
Average penetration rate, (d_tR) 19.8 mm/s 34.3mm/s 18.7mm/s

Table 5.6: Comparison of geotechnical properties and driving performance for VH, GDP;, and GDP;.

5.5.3. Pile response during driving
To portray relevant features of the dynamic pile response during GDP, acceleration spectra
have been obtained from the output of the two MEMS accelerometers. In particular, the
amplitudes of the acceleration spectra (denoted by |