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τὸ τῆς ἀνάγκης ἔστ᾿ ἀδήριτον σθένος

the might of necessity is unconquerable
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Summary

�e ambitious goals towards the decarbonization of the global energy sector have ampli-
fied the demand for renewable energy resources. Amongst the renewables, offshore wind
possesses a pivotal role in this endeavour, showcasing remarkable growth in recent years.
However, this rapid expansion has been accompanied by a series of technical challenges.
Foundation installation comprises one of the most critical phases in the construction of an
offshore wind farm and engineering advancements in this topic are vital to accommodate
this developmental pace. Bottom-fixed foundations are primarily used to support offshore
wind turbines and amongst the available concepts, the monopile is the foremost one. �e
installation of these substructures is most commonly performed via impact hammering.
Notwithstanding the robustness and efficacy of this technique, major environmental con-
cerns have been raised due to the significant levels of underwater noise pollution during
driving. In view of this alarming issue, alternative and sustainable pile installation tech-
niques have been progressively drawing attention during the last decade and an increasing
number of research projects focus on their investigation and development.

At present, the offshore wind industry is increasingly adopting vibratory pile driving.
�e previous method has been successfully employed in onshore projects for decades, albeit
its wider use in the offshore environment is hindered due to the incompleteness of available
field observations. To boost the improvement of vibratory installation methods, a new tech-
nology has been recently proposed by the Delft University of Technology, namely the Gentle
Driving of Piles (GDP).�e precedingmethod aims to enhance the installation performance
of vibratory driving for tubular (mono)piles and to reduce the associated noise emissions,
via the simultaneous application of low-frequency/axial and high-frequency/torsional vi-
brations. Naturally, the shift to these technologies is accompanied by emerging research
questions pertaining to pile installation, vibro-acoustic and post-installation performances.
In this thesis, the development of an engineering-oriented modelling framework for axial
vibratory driving and GDP is the primary objective, thereby focusing on the topic of sus-
tainable monopile installation.

In the first chapters of the thesis, the theoretical background pertaining to the dynamic
pile and soil behaviours is presented, accompanied by the respective numerical develop-
ments. In particular, the dynamic pile behaviour is discussed on the basis of cylindrical
shells, according to Love’s first approximation theories. �e soil medium is described as a
linear elastic layered half-space in terms of Green’s functions in the frequency-space do-
main. For the purpose of numerical modelling, the developments introduced in this thesis
are briefly: (i) the Semi-analytical Finite Element (SAFE) method for thin/thick cylindrical
shells, (ii) the�in-Layer Method (TLM) coupled with Perfectly Matched Layers (PMLs) for
layered soil half-spaces and (iii) a sequential Harmonic Balance Method (HBM) for non-
linear dynamical systems with quasi-periodicity. �e preceding schemes are characterized
by remarkable versatility and computational performance while being applicable to a wide
set of engineering problems. For that purpose, the relevant treatments are retained as
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generic and accessible as possible, with a view to benefit a diverse readership.
�e experimental work follows and comprises one of the major highlights of this thesis,

namely the GDP field campaign. �e campaign scope encompassed both installation and
post-installation lateral loading tests. Focusing on the installation aspect, a purpose-built
GDP shaker was designed in order to demonstrate the efficacy of the GDPmethod and a
medium-scale field tests campaign was executed at the Maasvlakte II site in Rotterdam.
Following the successful proof of concept, a primary objective of the field tests was the
comparison of GDP with two conventional techniques, namely impact hammering and
axial vibratory driving. Furthermore, an extensive dataset of pile and soil measurements
was collected and utilized for comparison and numerical model development purposes,
thereby serving a multitude of objectives in the research line of GDP. Both pile and soil
response records provided favourable results for GDP, encouraging its further development
and upscaling. In summary, the field campaign provided a preliminary demonstration of
the GDP technology and the comparison of axial vibratory driving and GDP showcased the
beneficial effect of torsion.

As regards vibratory pile installation, a comprehensive understanding of the physical
mechanisms involved and their incorporation into effective engineering-orientedmodels
are still elusive for axial vibro-driving. To that end, thenumerical developments of this thesis
(i.e. SAFE and TLM+PMLs) are integrated into a computationally efficient model, that aims
to bridge the gap between the available medium- and high-fidelity approaches. �e present
approach alleviates physical drawbacks possessed by the former, without engendering the
practical and computational limitations of the latter. �e pile-soil interaction is governed
by a history-dependent frictional interface and a visco-elasto-plastic tip model, whereas
the non-linear problem is solved by a novel HB-based scheme. �emain component of the
soil reaction is found to correspond to the shaft friction, whereas its hereditary character is
based on amemory mechanism based on loading cycles accumulation; the latter effect is
commonly termed friction fatigue. Finally, drivability predictions are compared against
field data from the vibro-driven pile of the campaign, indicating the prediction potential of
the present model.

�e precedingmodelling framework is utilized as a basis and further developed, with
a view to analysing pile installation via GDP. By means of this numerical tool, the inter-
pretation of field observations is greatly facilitated and the drivingmechanism of GDP is
comprehended. Based on the numerical results, the redirection of the friction force vector
manifests itself as themajormechanism of GDP, that greatly enhances installation perform-
ance. In particular, the high-frequency torsion expends the majority of shaft friction in
the circumferential direction and the soil reaction along the penetration axis diminishes
substantially, thereby enabling faster installation and reduced axial driving loads. Conclus-
ively, a numerical investigation is conducted to assess the induced groundmotion by axial
vibro-driving and GDP, with the latter leading to reduced environmental disturbance and
energy redistribution from SV-P to SHwaves.

Pile drivability predictions are essential to assess the capability of a driving device to
install a pile to the target penetration depth and to anticipate and prevent occurrences of
high operational risk, e.g. early pile refusal or pile running. �e role of pile installation
cannot be overemphasized in offshore wind farm construction, as the installation process
itself affects greatly both vibro-acoustic and post-installation performances. By means
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of the present framework, a path towards integrated design of the preceding aspects is
enabled. In this thesis, an endeavour to bridge the gap between medium- and high-fidelity
approaches is presented, in order to shift the paradigm of standard engineering-oriented
frameworks and better the engineering aspects of sustainable monopile installation.





Samenvatting

De ambitieuze doelstellingen om de wereldwijde energiesector koolstofvrij te maken, heb-
ben de vraag naar hernieuwbare energiebronnen doen toenemen. Onder de hernieuwbare
energiebronnen speelt offshore-windenergie een centrale rol in dit streven, met een op-
merkelijke groei in de afgelopen jaren. Deze snelle groei gaat echter gepaard met een reeks
technische uitdagingen. De installatie van funderingen is een van de meest kritieke fasen
in de bouw van een offshore windmolenpark en technische vooruitgang op dit gebied is
van vitaal belang om dit ontwikkelingstempo aan te kunnen. Voor de ondersteuning van
offshore-windturbines wordt voornamelijk gebruik gemaakt van bodemfunderingen en
van de beschikbare concepten is de monopile de belangrijkste. De installatie van deze sub-
structuren gebeurt meestal door middel van hamerslagen. Ondanks de robuustheid en
doeltreffendheid van deze techniek is er grote bezorgdheid over hetmilieu ontstaan door de
aanzienlijke geluidsoverlast onder water tijdens het slaan. In het licht van dit alarmerende
probleem hebben alternatieve en duurzame paalinstallatietechnieken de laatste tien jaar
geleidelijk de aandacht getrokken en een toenemend aantal onderzoeksprojecten is gericht
op het onderzoek en de ontwikkeling ervan.

Momenteel wordt in de offshore windindustrie steeds meer gebruik gemaakt van trilpa-
len. De vorige methode wordt al tientallen jarenmet succes toegepast in onshore-projecten,
maar een ruimere toepassing in de offshore-omgeving wordt belemmerd door de onvolle-
digheid van de beschikbare veldwaarnemingen. Om de trilinstallatiemethoden te verbe-
teren, heeft de Technische Universiteit Delft onlangs een nieuwe technologie voorgesteld,
namelijk Gentle Driving of Piles (GDP). De voorgaande methode heeft tot doel de installa-
tieprestaties van het trillen van buisvormige (mono)palen te verbeteren en de bijbehorende
geluidsemissies te verminderen, via de gelijktijdige toepassing van laagfrequente/axiale en
hoogfrequente/torsietrillingen. Uiteraard gaat de verschuiving naar deze technologieën
gepaardmet opkomende onderzoeksvragenmet betrekking tot het installeren van palen,
vibro-akoestische en post-installatie prestaties. In dit proefschrift is de ontwikkeling van
een engineering-georiënteerd modelleringskader voor axiaal trillen en BBP de primaire
doelstelling, waarbij het onderwerp duurzamemonopaal installatie centraal staat.

In de eerste hoofdstukken van het proefschrift wordt de theoretische achtergrondmet
betrekking tot dynamisch paal- en grondgedrag gepresenteerd, vergezeld van de respec-
tievelijke numerieke ontwikkelingen. In het bijzonder wordt het dynamische paalgedrag
besproken op basis van cilindrische schalen, volgens de eerste benaderingstheorieën van
Love. Het grondmediumwordt beschreven als een lineair elastische gelaagde halve ruimte in
termen van groene functies in het frequentie-ruimtedomein. Ten behoeve van de numerieke
modellering worden in dit proefschrift kort de volgende ontwikkelingen geïntroduceerd:
(i) de Semi-analytische Eindige Elementen Methode (SAFE) voor dunne/dikke cilindri-
sche schalen, (ii) de Dunne-LagenMethode (TLM) gekoppeld aan Perfectly Matched Layers
(PMLs) voor gelaagde bodemhelften en (iii) een sequentiële Harmonic Balance Method
(HBM) voor niet-lineaire dynamische systemen met quasi-periodiciteit. De voorgaande
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schema’s worden gekenmerkt door een opmerkelijke veelzijdigheid en rekenprestaties, en
zijn tegelijkertijd toepasbaar op een brede reeks engineeringproblemen. Daartoe worden
de relevante behandelingen zo algemeen en toegankelijk mogelijk gehouden, met het oog
op een divers lezerspubliek.

Het experimentele werk volgt en omvat een van de belangrijkste hoogtepunten van dit
proefschrift, namelijk de GDP-veldcampagne. Deze campagne omvatte zowel installatie-
als post-installatieproevenmet zijdelingse belasting. Om de doeltreffendheid van de GDP-
methode aan te tonen werd een speciaal voor dit doel gebouwde GDP-schudder ontworpen
enwerd eenmiddelgrote veldtestcampagne uitgevoerd op de locatieMaasvlakte II in Rotter-
dam. Na de succesvolle proof of concept was een primaire doelstelling van de veldproeven
de vergelijking van GDPmet twee conventionele technieken, namelijk impacthameren en
axiaal trillen. Bovendien werd een uitgebreide dataset van paal- en bodemmetingen verza-
meld en gebruikt voor vergelijkingen en de ontwikkeling van numeriekemodellen. Zowel de
metingen van de heipalen als die van de bodemrespons leverden gunstige resultaten op voor
GDP,wat de verdere ontwikkeling en opschaling ervan bevordert. Kortom, de veldcampagne
gaf een eerste demonstratie van de GDP-technologie en de vergelijking tussen axiaal trillen
en GDP toonde het gunstige effect van torsie aan.

Wat de installatie van trilpalen betreft, is een volledig begrip van de betrokken fysische
mechanismen en de verwerking daarvan in effectieve engineeringgerichte modellen nog
steeds ver te zoeken voor axiaal trillen. Daartoe worden de numerieke ontwikkelingen van
dit proefschrift (d.w.z. SAFE en TLM+PMLs) geïntegreerd in een rekenkundig efficiënt
model, dat de kloof tussen de beschikbare medium- en high-fidelity benaderingenmoet
overbruggen. De huidige benadering vermindert de fysische nadelen van de eerste, zonder
de praktische en rekenkundige beperkingen van de tweede. De paal-bodem interactie wordt
beheerst door een historisch afhankelijkewrijvingsinterface en een visco-elastisch tipmodel,
terwijl het niet-lineaire probleemwordt opgelost door een nieuwHB-gebaseerd schema.
De belangrijkste component van de bodemreactie blijkt overeen te komenmet de schacht-
wrijving, terwijl het erfelijke karakter ervan berust op een geheugenmechanisme gebaseerd
op de accumulatie van belastingscycli; dit laatste effect wordt gewoonlijk wrijvingsmoeheid
genoemd. Ten slotte worden de voorspellingen van de berijdbaarheid vergeleken met veld-
gegevens van de trilpaal van de campagne, wat het voorspellingspotentieel van het huidige
model aantoont.

Het voorgaande modelkader wordt als basis gebruikt en verder ontwikkeld, met het
oog op de analyse van de installatie van palen via het BBP. Met behulp van dit numerieke
instrument wordt de interpretatie van veldwaarnemingen sterk vergemakkelijkt en wordt
het aandrijfmechanisme van GDP begrepen. Uit de numerieke resultaten blijkt dat de
heroriëntatie van de wrijvingskrachtvector het belangrijkste mechanisme van GDP is, dat
de installatieprestaties sterk verbetert. Met name de hoogfrequente torsie verdrijft het
grootste deel van de wrijving van de as in de omtrekrichting en de bodemreactie langs de
penetratieas vermindert aanzienlijk, waardoor een snellere installatie en minder axiale
aandrijfbelastingenmogelijk zijn. Er wordt een numeriek onderzoek uitgevoerd naar de
geïnduceerde bodembeweging door axiale vibro-aandrijving en GDP, waarbij de laatste
leidt tot minder verstoring van de omgeving en herverdeling van energie van SV-P naar
SH-golven.

Voorspellingen van de heibaarheid zijn essentieel om het vermogen van een heimachine
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te beoordelenomeenpaal tot opdebeoogde indringdiepte te installerenenomteanticiperen
op voorvallenmet een hoog operationeel risico, zoals vroegtijdige paalweigering of paalloop.
De rol van de hei-installatie kan niet genoeg worden benadrukt bij de bouw van offshore
windparken, aangezien het installatieproces zelf een grote invloed heeft op zowel de vibro-
akoestische als de post-installatieprestaties. Door middel van het huidige raamwerk wordt
een weg naar een geïntegreerd ontwerp van de voorgaande aspecten mogelijk gemaakt. In
dit proefschrift wordt een poging gedaan om de kloof tussen eenmedium- en high-fidelity
benadering te overbruggen, om het paradigma van standaard engineering-georiënteerde
kaders te verschuiven en de engineering-aspecten van duurzamemonopile installatie te
verbeteren.





Preface

�is dissertation signifies the culmination of a remarkable journey for me. �e doctoral
research is amulti-faceted process and each individual experiences it in a dissimilarmanner.
Inmy view, the doctoral journey is a transformation process that an individual goes through
in the pursuit of knowledge. Within the following pages, roughly spanning 200, the reader
may delve into the intricacies pertaining to the topic of monopile installation, thus I deem
it appropriate to omit any associated discussion in the ensuing. �e following paragraphs
are devoted to an indispensable element in the transformation process of a PhD, namely
the people that this experience is shared with. Reminiscing any part of my PhD trajectory,
it becomes evident to me that the people involved made it memorable, unique and most
certainly impossible without their contribution. �erefore, the following part of this preface
is dedicated to them, as a minor token of sincere appreciation and gratitude.

First, I would like to thankmy PhD supervisors, with whom I have had the honor and
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Introduction

1.1. Global energy outlook and renewables
�e global endeavour towards the decarbonisation of the energy sector has been intensified
in the past decades. A series of major international agreements between countries was
initiated at the United Nations Conference on Environment and Development (UNCED),
also known as the ‘Earth Summit’ in 1992 [1]. �e United Nations Framework Convention on
Climate Change (UNFCCC)was signed by the conference parties, aiming to stabilize the con-
centration of greenhouse gases in the atmosphere to preclude anthropogenic interference
with the climate [2]. As a follow-up of UNFCCC, the Kyoto protocol was established in 1997;
industrialized countries and economies in transition committed to adopt policies andmeas-
ures to reduce greenhouse gases emissions [3]. �e Kyoto Protocol was succeeded by the
Paris agreement, an international treaty of 196 countries on climate change with the utmost
goal to limit global warming and to achieve a climate-neutral world by the mid-century [4].
�is series of international pledges was concluded with the Sustainable Development Goals
(SDGs) established by the UN in 2015, not solely restricted to climate and energy-related
actions, albeit interlinked [5].

In this framework ofworldwidemobilization towards these commongoals, it is essential
to assess the current state and the future outlook of the energy sector. Global energy demand
has been ceaselessly rising the previous decades and the future projections indicate that
this trend will persevere [6]. Overall, investments and policies to meet the future energy
demand and achieve the aforementioned sustainability targets are falling short [7, 8].

Presently, a consensus has been reached that renewable energy resources comprise a
key feature to achieve the set climate objectives [9]. �e share of renewables among the
various energy sources has been growing tremendously over the past two decades [10, 8],
with solar and wind energy being the front-runners in the energy transition. In accordance
with the European Green Deal, Europe is leading the energy transition paradigm with
the aim of becoming the first climate-neutral continent by 2050 [11]. Notwithstanding
the notable increase in the deployment of renewables and the prodigious efforts towards
decarbonisation, the data analysis indicates that we are falling behind with the necessary
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investments to achieve the set climate targets [7, 8]. A short-term acceleration of the energy
transition via a carbon tax has been proposed by a number of studies [12, 13, 7]. However,
there is widespread consensus that investment in technological innovation constitutes the
most efficient approach to reduce the cost of renewables and to mitigate the risk of policy
volatility [14, 15, 9].

1.2. Engineering advancements in offshore wind energy – mono-
pile installation

In the wind energy sector, the majority of newly installed capacity has been traditionally
onshore [16]. In contrast to its onshore counterpart, that has been utilized for power gen-
eration for millennia, offshore wind energy is a recent technology with the first offshore
wind farm installed in 1991 at Vindeby, Denmark [17]. However, the share of installed wind
capacity that corresponds to offshore wind farms has increased rapidly during the last
decade [16], aided by the vast experience of the oil and gas industry in offshore operations
[18]. �is notable increase of offshore wind projects compared to onshore projects is due to
a multitude of advantages, e.g. the availability of vast areas for large offshore wind farms,
the higher and steadier wind speeds encountered at the offshore environment and the elim-
ination of visual and auditory nuisance [19, 20]. On the other hand, onshore wind remains
the most economical solution among the renewables; the levelized cost of electricity (LCoE)
is lower for onshore than offshore wind [21], yet the difference is declining [22]. Specifically,
the costs of offshore foundations and installation are significantly higher than the respective
costs for an onshore wind project.

Figure 1.1: Various concepts of offshore wind substructures based on water depth - after Smith et al. [23].
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Presently, 15-24% of the investment for an offshore wind farm relates to the design,
production and installation of substructures (see Fig. 1.1) [24]. In Europe, over 80% of the
existing offshore wind turbines are hitherto founded on so-called monopile foundations
[25, 26]. �e design simplicity and robustness, the mass-fabrication aptness and the ease of
installation constitute the major advantages of monopiles compared to other foundation
concepts [27, 28, 15, 25, 26]. Accordingly, these foundations are growing in unprecedented
sizes in the past years, as they are being employed in ever deeper waters and larger distances
to the shore [26, 29]. Inevitably, the latter rapid development is accompanied by significant
engineering challenges in the installation process.

During the installation phase, the monopile is driven into the seabed up to an adequate
embedment depth that fulfils the various design criteria, e.g. lateral bearing capacity. �e
installation process, commonly known in the field of civil engineering as pile driving, is
chiefly performed by means of an impact hammer [30, 31]. During impact pile driving,
a hammer device is mounted on the pile head (see Fig. 1.2a) and upon the application of
hundreds (or even thousands) hammer blows the pile penetrates into the seabed for tens of
meters. �is installationmethod, albeit robust and well-established, has raised concerns
about its environmental impact [31]. Specifically, the stress waves excited in the monopile
by the hammer impacts result in radial expansion of the pile surface; these waves propagate
in supersonic speeds and the resultant sound waves radiate in the seawater in the form of
Mach cones [32]. �is topic has been extensively researched in the last decade and recent
studies indicate that the noise emissions related to impact pile driving can lead to temporary
habitat loss for aquatic species, as well as potential auditory damage to marine mammals
[33, 34].

In response to these alarming concerns, regulatory bodies pose various criteria based on
noise emissions for new offshore wind projects [35]. To comply with the various regulations,
offshore wind industry is adopting a range of actions from noise mitigation strategies to
alternative monopile installationmethods. Noise mitigation strategies aim to reduce the
noise levels caused by pile installation via the use of various barrier mechanisms, e.g. air
bubble curtains [36–38], isolation casings [39] and resonator-based barriers [40]. However,
the adoption of such noise mitigationmeasures can increase the installation costs appre-
ciably and moves the energy sector further away from the ultimate goal of reducing the
offshore wind energy LCoE [41].

In view of these constraints, alternative and environmentally friendly methods are
investigated for monopile installation. �e community of impact pile driving has proposed
new alternatives to the traditional impact hammer approach, such as HiLo driving [42] and
BLUE Piling [43]. �e concept of piling with high (blow) frequency at low (impact) energy,
the so-called HiLo driving was conceived in order to lower the noise emissions by reducing
the amplitude of the impact. On the other hand, BLUE Piling technology utilizes a large
water column to force the pile into the seabed; the resultant pulse from the BLUEHammer
is longer in duration and the energy content of the force input is shifted to lower frequencies
compared to standard hammers. In essence, the aforementioned technologies operate on
the same principles of impact piling, attempting to lower the input amplitude and/or to
shift the energy content of the input force to lower frequencies.

Vibratory technology presents an interesting alternative to impact piling (see Fig. 1.2b),
as it has been widely used in the onshore environment since the 1930s [44]. In principle,
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(a)Hydrohammer S-90 (b)CV-25

Figure 1.2: (a) Impact hammer and (b) axial vibratory device mounted on the top of tubular piles from the GDP
field campaign.

vibratory pile driving is considered to achieve quiet and fast installation via the application
of low-amplitude (compared to impact) axial vibrations at the pile head [45, 46]. However,
the widespread employment of the vibratory method in monopile installation is hindered
by a number of factors, including the limited availability and inconclusiveness of field
observations. Major knowledge gaps are also associated with the dynamic soil behaviour
during vibratory driving [47] and the installation effects on the operational performance of
the pile [48].

To boost the development of vibratory methods, a new technology – the Gentle Driving
of Piles (GDP) – has been recently proposed in the Netherlands as the core of a joint industry
project led by the Delft University of Technology (TU Delft) [49]. GDP targets enhanced
piling performance and reduced noise emissions through the simultaneous application
of low-frequency/axial and high-frequency/torsional vibrations. �emajor hypothesis of
the method is that the introduction of torsion will enhance both installation and acoustic
performances by reducing the axial driving loads, since it does not induce radial expansion
in the pile. To that end, an experimental campaign has been executed atMaasvlakte II in the
Port of Rotterdam (Fig. 1.3) and a series of numerical works has been undertaken to support
the development of the GDPmethod [49–54].

1.3. State-of-the-art in pile installation modelling
Customarily, the operation of pile driving was based on simple empirical formulae until
the 1960s, when Smith [55] developed the first pile driving model, in particular for impact
piling. �is model was based on a pile described as a thin rod and discretized into a series
of lumpedmasses and springs, according to the central finite difference method of O (2).
�e soil reaction was represented by a rheological model comprised by an elastic-perfectly
plastic element in parallel with a non-linear dashpot. Moreover, the parameters of this
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Figure 1.3:�e test site of the GDP field campaign at Maasvlakte II in the Port of Rotterdam.

soil reaction analogue were not related to standard soil properties, but comprised a set
of empirical values initially proposed by Smith based on past field experience. Research
efforts to improve Smith’s model were undertaken promptly, given the significance of the
approach for engineering practice. Earlyworks in this direction focused on the experimental
identificationof theproposed soil parameters inSmith’smodel [56–60]. �eaforementioned
studies, albeit valuable, still were limited in the sense that the model parameters were
mostly correlation coefficients that neglected the physics of pile driving that were yet to be
understood.

�e next frontier in the development of pile driving models addressed that aspect, with
the aid of contributions originating in the area of earthquake engineering. Specifically,
a multitude of pioneering works related to vibrations of foundations and soil-structure
interaction were initiated in the 1960s with application to earthquake engineering and
seismology [61–78]. From this class of studies, elements of pile-soil interaction modelling
were incorporated into Smith’s model, i.e. replacing Smith’s empirical parameters with
values that were derived by an approximate analytical treatment of pile-soil interaction
problems [79, 66, 67]. A large collection of drivabilitymodels ensued upon this development,
the so-called rational pile driving models [80–84]. A limited number of studies focused
on the development of analytical models for the impact hammer, in order to facilitate
further parametric studies and provide an efficient alternative to numerical modelling
of the hammer component [85, 86]. Among recent studies, a more elaborate model that
accounts explicitly for the non-linear soil stiffness has been presented by Salgado et al. [87]
and has been employed for the derivation of pile driving formulas in sandy and clayey soil
layers. In that approach, the near-field soil was modelled as a shear band at the pile-soil
interface, connectedwith a thin disk characterized by a hyperbolic stress-strain relationship
in series with an approximate far-field boundary condition.

In parallel to the above developments, the geotechnical community focused on the im-
provement of a critical parameter that all rheological soil models shared, namely the static
resistance to driving (SRD), by utilizing the inflow of new data records [88–91]. Recent
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advances in the assessment of the axial static capacity of piles based on extensive field
tests have been valuable for that purpose [92, 93]. Even though these methods were not
developed as SRD models, Byrne et al. [94] attempted to incorporate these CPT-based
approaches in 1-D wave equation analyses. A modification factor was introduced in these
CPT-based approaches and improved the respective predictions, which were found to be
in good agreement with pile penetration records. However, the applicability of the SRD
models in large-diameter monopiles remains questionable, as these approaches are largely
empirical and their calibration has been performed based on databases of piles with diamet-
ers smaller than 2m. In an extensive study by Byrne et al. [95], both the existing SRDmodels
and the modified CPT-based approaches were proved not to provide reliable predictions of
the blow counts.

�e preceding works are dedicated to impact pile driving and employ 1-Dmodels that
are widely used in engineering practice. Naturally, vibratory driving approaches have
adopted components of the impact piling models, as the latter preceded the developments
in vibratory drivingmodelling. Even though thenumber of studies about vibratory driving is
appreciably smaller compared to the respective ones about impact piling, there is substantial
diversity in the models employed. As was stated above, the 1-D wave equation analysis was
one of the first approaches employed in the analysis of vibratory pile driving, including both
the original andmodified versions of Smith’s soil model [96–99]. In a recent study, Mazza
and Holeyman [47] employed a 1-Dmodel (ALLwave-VDP [100]) to back-analyse field data
of vibratory driving. �e authors concluded that inflow of additional data sets from field
tests is necessary to improve the available models, as most of the empirical parameters in
these approaches have been calibrated by impact pile driving databases and their values
were found unsuitable for vibratory driving analysis.

Next to the 1-D wave equation analysis, a class of single-degree-of-freedom (SDoF)
models was developed for vibratory driving and found wide acceptance in the community.
In essence, these models were based on the assumption that the pile behaves as a rigid body
during the vibratory installation process [44, 101–104]. �e latest developments in these
approaches have focused on the study of the input excitation [105] and the introduction of
CPT-based soil reaction accounting for ’friction fatigue’ [106]. An improvement to these
engineering-oriented models was realized by 1-D radial models [107–109]. In the latter
approach, a rigid pile is considered in contact with a series of concentric rigid cylinders
representing the discretized soil medium; the transmitted forces between the adjacent
cylinders and the pile followed a hypoplastic constitutive law [110, 111]. As can be understood,
such a modelling approach precludes the possibility to address the soil layering explicitly,
thus an averaging process of the soil properties over the depth is necessary (similarly to the
SDoFmodels).

As computational methods advanced, the number of studies employing high-fidelity
models for pile installation increased. Starting with impact pile driving, Smith and Chow
[112] developed a finite element (FE) model for the analysis of pile installation in clayey soil.
�is study was among the first that aimed at enabling the use of standard soil properties in
pile drivability analysis. One of the first main concerns in studies employing high-fidelity
models was the development of large soil deformations in the immediate vicinity of the pile.
In view of this challenge, the updated Lagrangian formulation of the finite element method
(FEM) became the method of choice [113, 114]. In the latter studies, the developments in
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soil constitutive modelling at the time were also utilized (i.e. bounding surface plasticity)
[115, 116].

In the analysis of pushed-in piles, an updated Lagrangian FEmodel was used to study
the installation process in clayey soil [117, 118]. �e contact kinematics at the pile-soil inter-
face permitted the formation of normal gap between the two bodies, while the tangential
contact was described by Coulomb’s friction law [119]. In the preceding studies, significant
mesh distortion was encountered and the authors remarked that the use of an arbitrary
Lagrangian-Eulerian (ALE) scheme is considered an effective remedy for this problem. An
ALE formulation allows the decoupling of mesh andmaterial points, although this process
is amenable to numerical errors from the remeshing andmapping of state variables [120].
A numerical method, that falls into the category of ALE schemes, has been applied to the
problem of pile jacking, namely the Material Point Method (MPM) [121, 120, 122]. �e latter
originates in the Particle-in-Cell (PiC) method, which was developed at the Los Alamos
National Laboratory (LANL) for problems in fluid dynamics involving highly distorted flows
[123–125]. Recently, the MPM has been also utilized to simulate cone penetration tests
(CPTs) in dry sand [126].

During the last decade, an appreciable number of studies have focused on the problemof
vibratorypile installation and thedevelopment of relevant computational schemes. As stated
previously, the large deformations developed during pile installation lead to significant
numerical issues, thus various approaches have been employed to tackle this challenge.
Machaček et al. [127] used an updated Lagrangian formulation in a comparative study
of three different soil models, namely two hypoplastic models [128, 129] and SANISAND
[130–132], against lab-scale vibratory driving tests and element tests. A total Lagrangian
formulation has been employed in numerical studies focusing on the comparison of pile
penetration with lab-scale experiments [133, 134], as well as in investigating the influence
of the relative acceleration between the solid and the water phases in saturated sands
[135]. Conclusively, Staubach et al. [136] developed a hydromechanically Coupled-Eulerian-
Lagrangian (CEL) method, which was applied to the back-analysis of vibratory pile tests
in saturated sand; good agreement was found between the CEL and the total Lagrangian
formulations.

1.4. Research scope
As can be understood from the preceding review, a multitude of approaches is available for
pile drivability analysis. Notwithstanding that certain connections are apparent between
the various frameworks, the different types of installation (e.g. impact, vibratory, jacking)
are fundamentally driven by dissimilar physical mechanisms. �e latter is strongly reflected
in the medium-fidelity approaches - hereafter also termed as engineering-oriented - where
the pile and soil reactionmodellingmay vary to a great degree for different drivingmethods.
In the following, the scope of this thesis is focused on the aspect of engineering-oriented
modelling for pile driving via vibratory and GDPmethods, with a view to further support
sustainable monopile installation.

Vibratory driving predictions are essential to assess the capability of a driving device to
install a pile in a certain soil profile to the target penetration depth, as well as to anticipate
and prevent occurrences that engender great risk for the operation or even the overall
project, e.g. early pile refusal or pile running. However, it is noted that reliable drivability
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predictions for offshore monopiles are not solely valuable per se, but they provide valuable
input for other design stages. In particular, twomajor aspects of offshore monopiles rely
heavily on the installation process, i.e. the underwater noise emissions during installation
and the lateral response of the structure during operation. Both aspects are studied during
the design phase and their output depends on the proper analysis of the installation process
(either in an integrated or a two-step approach). �erefore, drivability of offshoremonopiles
may greatly affect various design stages and its significance cannot be overemphasized.

As regardsmedium-fidelity approaches, theirmaindrawback lies in their (semi-)empirical
character, leading to insufficient description of the physical process (and by extension inac-
curacy). Customarily, medium-fidelitymodels possess a simplistic pile description (e.g. 1-D
rod) and almost exclusively disregard pile-soil interaction, by employing local, frequency-
independent soil reaction analogues (due to simplicity and ease of implementation). �e
existing approaches have already been found inadequate for impact piling of large-diameter
monopiles [95], whereas for vibratory driving an established approach cannot even be
distinguished. In particular, comprehensive understanding of the physical mechanisms
involved and their incorporation into effective engineering-oriented models are still elusive
for vibro-driving. In view of the above, an endeavour to bridge the gap betweenmedium-
and high-fidelity approaches is undertaken, to shift the paradigm of standard engineering-
oriented approaches and better the engineering aspects of monopile installation.

In this thesis, the research objectives are accomplished via the execution of an experi-
mental campaign and the development of numerical models for pile installation analysis.
�e former serves to better understand pile installation via vibratory and GDP techniques
with the aid of the collected data, which in turn will be utilized for model calibration and
validation purposes. �e numerical developments introduced in this thesis are briefly: i)
the Semi-analytical Finite Element (SAFE) method for thin/thick cylindrical shells, ii) the
�in-Layer Method (TLM) coupled with Perfectly Matched Layers (PMLs) for layered soil
half-spaces and iii) the Harmonic BalanceMethod (HBM) for non-linear dynamical systems.
�ese approaches - characterized by remarkable versatility and computational performance
- pertain to semi-analytical and numerical methods applicable to a wide set of engineering
problems. For that purpose, the relevant sections are retained as generic and accessible
as possible, in order to benefit the readership from diverse communities to the greatest
degree.

Conclusively, the first and primary aim of this thesis is the development of a method-
ology for the analysis of vibratory pile installation, that encompasses the mathematical
formulation, the process of parameter calibration based on in-situmeasurements and the
implementation of a high-performance numerical scheme for engineering purposes. As a
continuation of this objective, the potential extension of this numerical framework is pur-
sued to analyse the installation process via GDP and decipher its main drivingmechanisms;
the latter task is considered the ultimate aim of this thesis.

1.5. Thesis outline
Following the present introduction chapter, the vibrations of thin-walled cylindrical struc-
tures are studied in Chapter 2, with a view to large-diameter monopiles. �e first approx-
imation theory for thin shells is outlined, as the optimal choice for the analysis of these
tubular structures. Wave propagation and dispersion characteristics of thin-walled cyl-
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indrical structures are briefly discussed on the basis of different theories. Subsequently, a
Semi-analytical Finite Element (SAFE) model is developed, with the aim of facilitating the
study of thin (and thick) cylindrical shell vibrations in this thesis.

�e focus of Chapter 3 lies on the study of two physical mechanisms present in pile
installation and their significance for large-diameter monopiles, namely dispersion of
elastic waves and non-local soil reaction. �e formermechanism is addressed by description
of the pile as a thin cylindrical shell, whereas the latter is achieved by introducing non-local
kernel functions to the standard local reaction analogues. �e results of this study showcase
that physically sound pile description is pivotal for accurate drivability predictions, since
wave dispersion becomes more prominent with increasing pile diameter and larger impact
hammers. As regards the soil reaction, the adopted formulation is neither rigorously based
on a 3-D soil medium, nor possesses temporal non-locality (i.e. frequency dependence),
thus the direct treatment of the 3-D soil continuum is considered the optimal next step.

To realize the preceding objective, a discourse on wave propagation in linear elastic
layered media is presented in Chapter 4. A framework that can seamlessly treat arbitrarily
layered soil media is indispensable with regard to pile installation analysis. In view of this
challenge, the �in-Layer Method (TLM) is utilized to eradicate the formidable complic-
ations introduced by soil layering. Specifically, explicit expressions of Green’s functions
for ring sources are obtained bymeans of a normal modes approach in the context of the
TLM. Furthermore, a more recent formulation of the previous method, i.e. coupled with
Perfectly Matched Layers (PMLs), is employed for the approximate representation of the
underlying half-space. With these developments, the theoretical background that pertains
to the ensuing chapters has been presented along with the respective numerical approaches.

Chapter 5 focuses on the pile installation tests of the GDP field campaign and elucidates
on the motivation for this research work, namely the demand for sustainable methods of
offshore monopile installation. To contribute towards the latter objective, a new vibratory
installation technique has been recently proposed by TU Delft, namely the ’Gentle Driving
of Piles’ (GDP) method. �e founding principles of the method and the purpose-built GDP
shaker are first presented. Furthermore, the geotechnical characterisation of the test site is
outlined, with the main body of the chapter discussing the installation tests of vibro-driven
and GDP piles. �e comparison between piling data associated with classical vibratory
driving and GDP showcases the beneficial effect of torsion and the potential of the proposed
installation technology.

InChapter 6, the numerical developments of the preceding chapters are integrated into a
vibratory pile drivingmodel, that aims to bridge the gap between the availablemedium- and
high-fidelity modelling approaches. A numerical framework is proposed that significantly
reduces the simplifications and empirical components of the former and alleviates the
practical and computational impediments of the latter. �e pile-soil coupling is realized
through a history-dependent frictional interface and a visco-elasto-plastic tip reaction
model, both characterized by standard in-situ geotechnical tests (SCPT-based). For the
numerical solution, a hybrid time-frequency scheme is presented based on sequential
application of theHarmonic BalanceMethod (HBM). Finally, installation data from the GDP
campaign are comparedwithmodel predictions - showcasing its predictive capabilities - and
further investigation into certain aspects of the vibratory installation process is performed.

To further support and interpret the field observations from the GDP campaign, numer-
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ical modelling work is imperative in order to comprehend the main driving mechanisms.
For that purpose, the developed vibratory pile installation model is augmented in Chapter 7
to formulate a GDP framework. Numerical simulations lead to deciphering the mechanics
of the GDPmethod, themain novel contribution of this chapter. Specifically, the redirection
of the friction force vector emerges as the major driving mechanism of GDP, as it enhances
installation performance by greatly reducing the soil reaction along the penetration axis.
Conclusively, a case study is performed to compare the axial vibratory and GDPmethods
in terms of induced soil motion, showcasing abatement of environmental disturbance for
GDP by elicitation of SH waves and reduction of the SV-P wavefield.

Conclusively, Chapter 8 summarises the major findings of this thesis, accompanied by
recommendations for further research.



2
Vibration of thin cylindrical shells

Customarily, pile drivability models adopt simplified approaches that consider the pile
foundation either as a 1-D thin rod or even as a rigid body (mostly in vibratory driving). �e
validity of suchmodelling choices depends naturally on the pile geometry and the frequency
range of the structural response. For slender small-diameter piles, that have been the in-
dustry standard in offshore engineering applications in the past, the thin rod approximation
constitutes indeed an appropriate engineering model for drivability purposes. However,
the growth of offshore wind in the past two decades has prompted the re-assessment of
current design approacheswith the advent of large-diametermonopiles. �ese large tubular
structures fairly raise a concern about the capability of standard 1-Dmodels to sufficiently
capture their response during installation. With a view to thin-walled cylindrical structures
(e.g. tubular monopiles), a thin shell theory is considered the optimal choice for a physically
accurate and computationally efficient pile model.

In this chapter, the interest lies in the vibrations of thin-walled cylindrical structures. As
a point of departure, the first approximation theory for thin cylindrical shells is discussed,
based on Love’s postulates that form the theoretical basis for the shell governing equations.
�e propagation of harmonic waves in a thin cylindrical shell is studied in a brief, yet concise
manner, with a focus on wave dispersion in comparison with other associated structural
theories. Subsequently, the focus is placed on free vibrations of finite shells - inherently
connected to wave propagation - and the mathematical process to obtain the shell normal
modes is outlined. Conclusively, a Semi-analytical Finite Element (SAFE)model is presented
and validated, with the aim of facilitating the numerical modelling of thin/thick cylindrical
shells.

2.1. Love’s first approximation shell theories
A three-dimensional solid that is bounded by two closely-spaced curved surfaces is defined
as a shell [137]. �e engineering theories used to describe these bodies, in lieu of three-
dimensional elasticity, are categorized into thin and thick shell theories [138]. �is distinc-
tion is based on the thickness of the shell compared to its other characteristic dimensions.

11



2

12

�e dynamic behaviour of thin shells is decomposed into extensional and bending parts,
whereas the effects of shear deformation and rotary inertia are neglected [139]. �e theoret-
ical framework for the study of thin shells under small displacements is founded on Love’s
postulates [140]. �e shell theories derived in accordance with these four assumptions are
defined as Love’s first approximation theories. In the ensuing, the vibrations of cylindrical
shells will be studied based on Love’s first approximation theories, with a view to the shell
structures of our interest, i.e. tubular (mono)piles.

z

up

wp

vp

Lp

θ

hp
Rp

Figure 2.1: Geometry and coordinate system of a cylindrical shell.

A uniform thin cylindrical shell is considered, with finite length Lp, mid-surface radius
Rp, and wall thickness hp, as shown in Fig. 2.1. �e shell is comprised of linear isotropic
elastic material with Young’s modulus Ep, Poisson’s ratio νp and mass density ρp. �e
displacement components of anymaterial point on the shell satisfy the Kirchhoff hypothesis
[141] (one of the four Love’s postulates) for any first approximation shell theory and are
defined as [139]:

uz,p(r,θ, z, t ) = up(θ, z, t )+ (
r −Rp

)
βz (θ, z, t ) (2.1a)

uθ,p(r,θ, z, t ) = vp(θ, z, t )+ (
r −Rp

)
βθ(θ, z, t ) (2.1b)

ur,p(r,θ, z, t ) = wp(θ, z, t ) (2.1c)

where up, vp, wp are the mid-surface displacement components (r = Rp) with the shell
occupying radially the domain Rp−hp/2 ≤ r ≤ Rp+hp/2. �e rotations of the normal to the
mid-surface about the θ and z axes are denoted by βz and βθ, respectively, and read [139]:

βz =−∂wp

∂z
(2.2a)

βθ =
1

Rp

(
vp −

∂wp

∂θ

)
(2.2b)

As can be seen in Eq. (2.2), the shell rotations are fully determined by the mid-surface
displacement components. In the case of thick shells, these two rotations are unknown as
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well, thus the equations ofmotion increase in number (from three to five) and the governing
equations becomemuchmore complicated [142, 143].

r

N N

N

N

Q Q

z
zθ

z θ

θ

θz

z
θ

Nz
∂

∂z+ dzNz

∂
∂z+ dz

∂
∂z+ dzNzθ
Nzθ

Qz
Qz

  ∂θ
∂

+ dθNθzNθz

  ∂θ
∂

+ dθQ
θ

Qθ
  ∂θ
∂

+ dθNθNθ

Figure 2.2: Force resultants in a thin cylindrical shell element.

Even amongst the first approximation theories a multitude of discrepancies can be
found in their governing equations, due to different assumptions and/or the point at which
these assumptions are introduced in the derivation process. �e equations of motion in
force/moment resultant form are common for all first approximation shell theories and
read [144]:

∂Nz

∂z
+ 1

Rp

∂Nθz

∂θ
+pz,p = ρphp

∂2up

∂t 2 (2.3a)

∂Nzθ

∂z
+ 1

Rp

∂Nθ

∂θ
+ Qθ

Rp
+pθ,p = ρphp

∂2vp

∂t 2 (2.3b)

∂Qz

∂z
+ 1

Rp

∂Qθ

∂θ
− Nθ

Rp
+pr,p = ρphp

∂2wp

∂t 2 (2.3c)

where Nz , Nθ, Nzθ and Nθz are the in-plane force resultants,Qz andQθ are the transverse
shear force resultants and pz,p, pθ,p and pr,p are the external surface loads. In Fig. 2.2, the
force resultants are shown acting on a differential shell element. Equations (2.3a) to (2.3c)
describe the dynamic force equilibria for a thin cylindrical shell, which are supplemented
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by three dynamic moment equilibria as follows [144]:

∂Mz

∂z
+ 1

Rp

∂Mθz

∂θ
−Qz = 0 (2.4a)

∂Mzθ

∂z
+ 1

Rp

∂Mθ

∂θ
−Qθ = 0 (2.4b)

Nzθ−Nθz −
Mθz

Rp
= 0 (2.4c)

where Mz , Mθz , Mzθ and Mθ denote the moment resultants (see Fig. 2.3). In principle,
Eqs. (2.4a) and (2.4b) are substituted in Eqs. (2.3b) and (2.3c), while Eq. (2.4c) is identically
satisfied by virtue of the symmetry of the stress tensor, i.e. τzθ,p = τθz,p. �erefore, the
number of equations of motion that govern the vibrations of thin cylindrical shells may be
ultimately reduced to three. Equations (2.3a) to (2.4c) are widely accepted as the equations
of motion for thin cylindrical shells [139] and have been derived either by direct formula-
tion of force/moment resultant equilibria (Newtonian approach) [145] or by application
of Hamilton’s principle (variational approach) [137]. Finally, it is remarked that neither
Nzθ = Nθz nor Mzθ = Mθz is implied by the symmetry of the stress tensor invoked above;
the equivalence of these force andmoment resultants may or may not hold depending on
the shell theory under consideration.

r

z
θ

  ∂θ
∂

+ dθMθzMθz

  ∂θ
∂

+ dθMθMθ Mz
∂

∂z+ dzMz ∂
∂z+ dzMzθ
Mzθ

Mθ

MθzMz

Mzθ

Figure 2.3:Moment resultants in a thin cylindrical shell element.

�e last set of governing equations that are valid for any first approximation shell theory
corresponds to the constitutive relations. On the condition that the study is restricted to
linear elastic isotropic shells, the stress-strain equations for any first approximation theory
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read:

σz,p = Ep

1−ν2
p

(
εz,p +νpεθ,p

)
(2.5a)

σθ,p = Ep

1−ν2
p

(
εθ,p +νpεz,p

)
(2.5b)

τzθ,p = τθz,p = Ep

2
(
1+νp

)γzθ,p (2.5c)

while the remaining components of the stress tensor τzr,p, τθr,p and σr,p are considered
equal to zero, in accordance with Love’s postulates.

�e remaining sets of governing equations correspond to the kinematic relations - relat-
ing the strain tensor to the shell displacement field - and the force/moment resultants, that
are derived from the integration of stresses along the shell thickness. Based on the chosen
shell theory, different relations and assumptions at various stages of the derivations are
adopted; yet all the relations given up to this point are applicable to any first approximation
shell theory one may employ.

2.2. Wave propagation in thin-walled cylindrical structures
In this section, the propagation of harmonic waves in a thin-walled cylindrical structure,
e.g. a (mono)pile, is studied. In general, this topic has attracted significant research interest
from the middle of the 20th century up to the present, as thin and/or thick shells constitute
major structural elements in applications pertaining to aerospace, biomedical, civil and
marine engineering. In particular, the dispersion characteristics of thin cylindrical shells
have been studied for various configurations, for instance: (i) in vacuo cylindrical shells
[146–148], (ii) cylindrical shells supported by an elastic foundation [149–151], (iii) cylindrical
shells immersed and/or surrounded by fluid [152–154].

For any thin shell theory, the equations of motion of a cylindrical shell in vacuo can be
written in the following compact form [139]:

(
L DM +kp L MOD

) up

vp

wp

=
 0

0
0

 (2.6)

where L DM denotes the differential matrix operator that corresponds to the Donnell-
Mushtari shell theory [155–157] andL MOD denotes a modification differential matrix oper-
ator. Based on the Donnell-Mushtari theory,L DM is defined as follows:
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L DM(·) =



R2
p
∂2(·)
∂z2 + (1−νp)

2

∂2(·)
∂θ2 Rp

(1+νp)

2

∂2(·)
∂z ∂θ

νpRp
∂(·)
∂z

Rp
(1+νp)

2

∂2(·)
∂z ∂θ

R2
p

(1−νp)

2

∂2(·)
∂z2 + ∂2(·)

∂θ2

∂(·)
∂θ

νpRp
∂(·)
∂z

∂(·)
∂θ

(1+kp∇4)(·)


−

R2
p

c2
p

∂2(·)
∂t 2

 1 0 0
0 1 0
0 0 −1

 (2.7)

where kp = h2
p/(12R2

p) is a non-dimensional thickness parameter, cp =
√

Ep/(ρp(1−ν2
p))

is the (longitudinal) thin plate wave velocity and∇4(·) = R4
p∂

4(·)/∂z4 +2R2
p∂

4(·)/(∂z2∂θ2)+
∂4(·)/∂θ4.

�e differential matrix operatorL MOD can lead to any other first approximation shell
theory by extending the Donnell-Mushtari theory. A comprehensive review of various
thin shell theories can be found in Leissa [139], with focus on free vibrations and relevant
theoretical and experimental studies. In the ensuing, the so-called Love-Timoshenko thin
shell theory is considered [158, 140, 159], for whichLMOD-LT is defined as [139]:

LMOD-LT(·) =


0 0 0

0 R2
p(1−νp)

∂2(·)
∂z2 + ∂2(·)

∂θ2 −R2
p
∂3(·)
∂z2∂θ

− ∂3(·)
∂θ3

0 −R2
p(2−νp)

∂3(·)
∂z2∂θ

− ∂3(·)
∂θ3 0

 (2.8)

To study the propagation of harmonic waves the following generic solution is assumed:

up = A cos(nθ)e−iγz eiωt (2.9a)

vp = B sin(nθ)e−iγz eiωt (2.9b)

wp =C cos(nθ)e−iγz eiωt (2.9c)

where γ is the axial wavenumber, n is the circumferential mode number and A, B andC
are constant coefficients. �e wave solution given in Eq. (2.9) corresponds to a symmetric
waveformwith respect toθ = 0; an anti-symmetricwaveformcanbe prescribed by interchan-
ging sines and cosines in Eq. (2.9). Henceforth, the terms symmetric and anti-symmetric
configuration will correspond to the preceding definitions.

Upon substitution of Eq. (2.9) into Eq. (2.6), the free vibration problem is recasted as a
system of algebraic equations: L11 L12 L13

L21 L22 L23

L31 L32 L33

 A
B
C

=
 0

0
0

 (2.10)
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where thematrixLLT is populatedwith entries Li j , following from the Love-Timoshenko the-
ory. �e latter system possesses a non-trivial solution that leads to the dispersion equation
for a thin cylindrical shell:

det (LLT) = 0 (2.11)

At this stage, a distinction is made between two different types of motion, namely
axisymmetric (n = 0) and non-axisymmetric motion (n > 0). A mechanical system (e.g.
cylindrical shell) that is symmetric around the longitudinal axis z and its input excitation,
initial and boundary conditions possess the same symmetry is called axisymmetric, i.e. no
variation along the azimuth is present in the problem (∂(·)/∂θ = 0). In the general case of
non-axisymmetric motions, Eq. (2.11) becomes an eighth-order polynomial of the axial
wavenumber γ (for a given frequencyω) and all three displacement components are coupled
[160, 147]. However, under axisymmetric conditions a decoupling occurs and the shell
displacement field can be decomposed into two parts, i.e. a coupled axial-radial and a purely
circumferential part. �e former can be obtained by substituting Eq. (2.9) into Eq. (2.6),
while the latter is based on the anti-symmetric configuration of Eq. (2.9); in both cases n = 0.
Furthermore, this decoupling leads to a sixth-order dispersion equation for the axial-radial
wave motion and a second-order dispersion equation for the purely circumferential wave
motion.

�e focus of the ensuing study is restricted to the propagation of axisymmetric longitud-
inal waves in a thin-walled cylindrical structure. Customarily, the thin rod approximation
may be the first option to describe the one-dimensional wave propagation in a long and thin
structural member, by assuming a uni-axial stress state [161]. For a thin cylindrical shell, the
propagation of longitudinal waves under axisymmetric conditions (n = 0 and symmetric
waveform) is governed by the following dispersion equation:

kpR2
pc4

pγ
6 −kpR2

pω
2c2

pγ
4 +

(
c4

p(1−ν2
p)−R2

pω
2c2

p

R2
p

)
γ2 +

(
ω4 −

ω2c2
p

R2
p

)
= 0 (2.12)

In Figs. 2.4 and 2.5, the dispersion curves in the frequency-wavenumber plane are
presented for longitudinal waves in a thin rod, flexural waves in a thin plate and coupled
longitudinal-flexural waves in a thin cylindrical shell. �e properties of the thin cylindrical
shell considered in this example are given in Table 2.1. Branch 1 of the cylindrical shell
is in agreement with the non-dispersive branch of longitudinal waves in a thin rod up to
approximatelyω/ωr = 0.8, whereωr = cp/Rp denotes the ring frequency of the cylindrical
shell (see Fig. 2.4). �e harmonic waves corresponding to the aforementioned region of
branch 1 possess a dominant axial component andminor radial displacements. For this type
of waves, the thin rod approximation is customarily employed in long structural members
assumed to be in a uni-axial stress state [161]. For frequencies higher than the ring frequency,
the thin rod approaches branch 3 of the shell, where the wave motion is once again axially
dominated. However, as can be seen there are certain limitations to that theory, since
other motions are present as well. In the vicinity of the ring frequency, the phase wave
velocity of branch 1 is significantly reduced and asymptotically approaches that of the thin
plate theory in high frequencies and wavenumbers [162]. �is behavioural transition in
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branch 1 is accompanied by an interchange of the dominant displacement component, i.e.
radial motion becomes dominant resembling indeed propagation of flexural waves in a thin
plate. �erefore, waves of small wavelengths compared to the radius of the cylindrical shell
propagate almost identically in a cylindrical shell and in a thin plate, since the curvature has
a negligible effect - effectively the cylindrical shell tends to guide these waves as a thin plate.
As regards Fig. 2.5, the imaginary part of the dispersion curves for the thin cylindrical shell
are presented. It is remarked that the imaginary parts of the thin rod dispersion curve and
the thin plate branch (see Fig. 2.4) are omitted in Fig. 2.5, as they are equal to zero.

ρp [kg/m3] Ep [Pa] νp [-] Lp [m] Rp [m] hp [m]

7850 210·109 0.3 10 0.373 0.0159

Table 2.1: Geometrical andmaterial properties of the thin cylindrical shell considered in this study.

Figure 2.4: Comparison of dispersion curves between a thin rod, a thin plate and a thin cylindrical shell (real part).

Based on the preceding discussion, the dynamics of a thin-walled cylindrical structure
(above a certain frequency and/or wavenumber) cannot be adequately described by the
thin rod approximation. �e latter, also known as elementary theory, comprises a good
approximation for disturbances with long wavelengths and low frequencies [163]. Various
engineering theories have been proposed to improve the dispersion characteristics of the
elementary rod theory and to retain its one-dimensional character, by addressing effects
that the thin rod approximation neglected. Rayleigh [164] proposed a correction to improve
the thin rod approximation, by taking into account the lateral inertia arising from the
contraction and the expansion of the cross-section. �e equations of motion for the latter
theory were arrived at by Love [140] via Hamilton’s principle; accordingly, the said theory is
customarily stated as Rayleigh-Love rod theory [163]. Following these developments, the
shear stiffness was also introduced on top of the lateral inertia by Bishop [165]. However,
none of the preceding approximate theories describes accurately thewavepropagation in the
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Figure 2.5:Dispersion curves of a thin cylindrical shell (imaginary part).

vicinity of the ring frequency and above. Meijers et al. [166] presented a corrected rod theory
that resembles the Rayleigh-Love rod theory, albeit modified such that it approximates the
low-frequency dispersion branch of themembrane shell theory. �e latter comprises a good
approximation for longitudinal waves up to the ring frequency, albeit flexural waves above
the ring frequency are not adequately captured.

�e thin shell theory may be considered the best engineering approximation for the
description of axisymmetric wave propagation in a thin-walled cylindrical structure. �e
theoretical investigations to substantiate the latter statement have been carried out, by
comparing the dispersion curves of thin shell theory against the respective ones derived in
the context of three-dimensional elasticity [167–170]. As shown by Le [171], the agreement of
three-dimensional elasticity with shell theory is remarkable for axisymmetric wave propaga-
tion up to a certain wavenumber; above that threshold discrepancy is observed in the branch
corresponding to flexural waves. �e ratio hp/Rp constitutes the controlling parameter that
may assist in considering whether a thin or thick shell theory is appropriate for the problem
at hand [138]. However, in the case of short-wavelength motions that invalidate the linear
variation of the displacement field along the shell thickness, neither thin nor thick shell
theories are applicable.

2.3. Free vibration of thin cylindrical shells
For engineering applications, the free vibrations of cylindrical shells have been studied
extensively and various approaches have been employed to address this classical problem.
�e preponderance of studies on this topic have employed approximate methods such
as differential quadrature [172, 173], the Rayleigh-Ritz method in conjunction with beam
functions [174–177] and other standard numerical methods (e.g. finite differences, finite
elements) [139]. �emain reason for the use of approximatemethods in the previous studies
appears to be the mathematical complexity of the exact procedure [139]. �e exact solution
method for the free vibration problem of thin cylindrical shells was developed by Flügge
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[178], albeit its numerical implementation was realized at a later stage following the advent
of computers [160, 179, 180].

Following the exact solution method as outlined by Flügge [181], the displacement com-
ponents of the j -th free vibration modemay be expressed as follows:

up(θ, z, t ) = cos(nθ)Un j (z)eiωn j t (2.13a)

vp(θ, z, t ) = sin(nθ)Vn j (z)eiωn j t (2.13b)

wp(θ, z, t ) = cos(nθ)Wn j (z)eiωn j t (2.13c)

whereUn j (z), Vn j (z) andWn j (z) denote the dependency of the three modal displacement
components along the longitudinal axis. As can be seen in Eq. (2.13), different modal sets
may be obtained based on the circumferentialmode numbern. In general, the free vibration
modes of solids of revolution can be categorized into two different groups, namely the
special case of axisymmetric modes (n = 0) and the more general case of non-axisymmetric
modes (n > 0) [182, 183]. Both groups of modes can be obtained via the samemathematical
procedure, albeit with certain discrepancies due to the different general solution forms.

2.3.1. Axisymmetric motion (n = 0)
For axisymmetric vibrations, the shell motion decouples into two kinds, namely coupled
axial-radial motion and circumferential motion [139]. �e general solution of the j -th
axial-radial mode has the following form:

U0 j (z) =
6∑

m=1
A0m j C0m j e−iγ0m j z (2.14a)

V0 j (z) = 0 (2.14b)

W0 j (z) =
6∑

m=1
C0m j e−iγ0m j z (2.14c)

where γ0m j encompasses the wavenumbers that correspond to the natural frequencyω0 j

based on Eq. (2.12), i.e. the dispersion equation for axisymmetric axial-radial waves. �e
coefficient A0m j is known for eachm-th wave component and the coefficientC0m j is de-
termined by the boundary conditions. Evidently, the circumferential component vanishes
in Eq. (2.14).

For the j -th circumferential (also termed torsional) mode, the assumed solution may be
expressed as:

U0 j (z) = 0 (2.15a)

V0 j (z) =
2∑

m=1
B0m j e−iγ0m j z (2.15b)

W0 j (z) = 0 (2.15c)
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where the torsional wavenumbers denoted by γ0m j are obtained by a second-order disper-
sion equation. In this case, the axial and radial components are equal to zero. It is remarked
that axial-radial and torsional modes correspond to symmetric and anti-symmetric re-
sponse configurations, respectively, and the final values B0m j andC0m j are determined by
the boundary conditions.

2.3.2. Non-axisymmetric motion (n > 0)
In the case of non-axisymmetric motions, the coupling between the three displacement
components is retained and the free vibrations modes have the following form:

Un j (z) =
8∑

m=1
Anm j Cnm j e−iγnm j z (2.16a)

Vn j (z) =
8∑

m=1
Bnm j Cnm j e−iγnm j z (2.16b)

Wn j (z) =
8∑

m=1
Cnm j e−iγnm j z (2.16c)

where the coefficients Anm j andBnm j are knownandbasedon thedispersion characteristics
of them-th wave component with wavenumber γnm j . �e determination ofCnm j , as in the
axisymmetric case, is based on the boundary conditions.

�edeterminationof theunknowncoefficients is performedby assembling theboundary
conditions, i.e. algebraic equations, in a matrix equation as follows:

KLTcn j = 0 (2.17)

where the vector cn j =
[

Cn1 j · · · Cn8 j
]T encapsulates the unknown coefficients and

the matrix KLT is a function of frequency. �e natural frequencyωn j and, by extension, all
other modal quantities are found by requiring det (KLT) = 0, thus solving an optimization
problem.

In the original method, as put forward by Flügge [181], the longitudinal dependence of
the solution is given in terms of eknm j z . In Eqs. (2.14) to (2.16), the latter term is replaced by
e−iγnm j z , since the variableγnm j correspondsdirectly to the axialwavenumber in the context
of wave propagation. It is worth noting that the obtained modes for both axisymmetric and
non-axisymmetricmotionsmaybe complex-valued,whichmaybeperceivedas an indication
of an incorrect solution. However, that situation may arise for correct solutions as well,
due to the numerical implementation of the procedure. At this stage, all the displacement
components of a mode shape should be multiplied by a factor eiφ, which serves to rotate
the mode shapes in the complex space and align themwith the real axis [184]. If the latter
is not possible for the normal modes of a linear elastic shell, it delineates an inaccurate
implementation of the preceding procedure.
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2.4. A Semi-analytical Finite Element (SAFE) model for cylindrical
shells

In thepreceding sections, the analytical treatment ofwavepropagationand free vibrations of
thin cylindrical shells were outlined. However, a reader dealing with engineering problems
that include thin cylindrical shells inevitably demands a generic, versatile and efficient
numerical modelling framework. �e latter is not a minor consideration, in particular
when 3-D problems need to be addressed. Available approaches that are fully based on
the Finite Element Method (FEM) are abundant and well-established, as for instance the
MITC shell elements that constitute the model of choice in most commercial FE codes
[185]. Notwithstanding the merits of the preceding approaches, one may wish to resort
to other more flexible and efficient techniques for the problem at hand. In view of such
considerations, a Semi-analytical Finite Element (SAFE)model is formulated in the ensuing.

�e essence of the SAFEmethod lies in the combination of one- or bi-dimensional finite
element discretizationwith analytical solutions in the remaining coordinates. �is approach
has been successfully utilized in a wide range of applications, with a view to guided wave
propagation for non-destructive evaluation (NDE) and structural health monitoring (SHM)
in laminated composite plates and shells among other structures [186–189]. �e outlined
approach is applied to a cylindrical shell described by the Love-Timoshenko theory, yet the
framework is generic andmay be applied to other thin as well as thick shell theories in an
identical manner.

Consider a thin cylindrical shell segment with length dl . �e equations of motion
according to Love-Timoshenko shell theory may be expressed in a compact matrix form as
follows:

pp +L psp −I pAp
∂2up

∂t 2 = 0 (2.18)

where the pile displacement/rotation vector up, the surface forces/moments vector pp and
the force/moment resultants vector sp are defined as follows:

up = [
up vp wp βz

]T (2.19)

pp = [
pz,p pθ,p pr,p mz,p mθ,p

]T (2.20)

sp = SpApup = [
Nz Nθ Nzθ Nθz Qz Qθ Mz Mθ Mzθ Mθz

]T (2.21)

Furthermore, the differential matrix operatorsL p, Sp and Ap are defined as:

L p(·) =L z,p
∂(·)
∂z

+L θ,p
∂(·)
∂θ

+L 0,p(·) (2.22)

Sp(·) = Szz,p
∂2(·)
∂z2 +Sθθ,p

∂2(·)
∂θ2 +Szθ,p

∂2(·)
∂z ∂θ

+Sz,p
∂(·)
∂z

+Sθ,p
∂(·)
∂θ

+S0,p(·) (2.23)
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Ap(·) = Aθ,p
∂(·)
∂θ

+A0,p(·) (2.24)

In the above definitions,L p provides the shell stiffness based on the force/moment res-
ultants, Sp provides the force/moment resultants based on the shell displacements and
rotations and Ap forms the full displacement/rotation vector ap, which reads:

ap = Apup = [
up vp wp βz βθ

]T (2.25)

�e latterwill be employed in the principle of virtual work, which is invoked in the derivation
process of the SAFE shell model. Finally, the matrices I p, L z,p, L θ,p, L 0,p, Aθ,p, A0,p,
Szz,p, Sθθ,p, Szθ,p, Sz,p, Sθ,p and S0,p can be found in Appendix A.

For a cylindrical shell, the twomid-surface circumferences at the shell edges comprise
its boundary curves and in case of prescribed tractions the associated boundary conditions
read [139]:

t(u)
p =−(

Bpsp
)(u) (2.26a)

t(l)
p = (

Bpsp
)(l) (2.26b)

where the superscripts (u) and (l) correspond to the upper (z = zu) and lower (z = zl) shell
boundaries, respectively. �e internal force/moment resultants along the boundary curve
are defined as:

Bpsp =
[

Nz Nzθ+
Mzθ

Rp
Qz + 1

R

∂Mzθ

∂θ
Mz

]T

(2.27)

where the differential matrix operatorBp is defined as:

Bp(·) =Bθ,p
∂(·)
∂θ

+B0,p(·) (2.28)

�ematricesBθ,p andB0,p canbe found inAppendixA.Furthermore, theexternal force/moment
vector tp at the boundary reads:

tp = [
tz,p tθ,p tr,p tzz,p

]T (2.29)

Upon arranging all the necessary quantities in compact matrix form, we proceed to
formulate a SAFEmodel for a thin cylindrical shell. In this problem, analytical solutions in
θ are combined with a finite element discretization in z, resulting in a series of nodal rings
(see Fig. 2.6). First, a cylindrical shell segment is considered with the following assumed
solution:

up =Θn Npxp, xp =
[

x(u)
p

x(l)
p

]
(2.30)
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Figure 2.6: A thin cylindrical shell with axial discretization into nodal rings based on the SAFEmethod.

�e diagonal matrixΘn ensures that the response is periodic in θ. Both symmetric and
anti-symmetric configurations with respect to θ = 0 are admissible and can be expressed as:

Θs
n =


cos(nθ) 0 0 0

0 −sin(nθ) 0 0
0 0 cos(nθ) 0
0 0 0 cos(nθ)

 (2.31a)

Θa
n =


sin(nθ) 0 0 0

0 cos(nθ) 0 0
0 0 sin(nθ) 0
0 0 0 sin(nθ)

 (2.31b)

�e symmetric and anti-symmetric azimuthal matrices are related as follows:

dΘs
n

dθ
=−nΘa

n (2.32a)

dΘa
n

dθ
= nΘs

n (2.32b)

In the ensuing, the azimuthal matrixΘn will be used as a placeholder, since the generic
developments to be presented are valid for both symmetric and anti-symmetric cases.

�e interpolation matrixNp encapsulates the interpolation polynomials used to approx-
imate the response of the shell element along the z-axis based on the nodal ring values, i.e.
x(u)

p and x(l)
p :
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Np =


N l

1(z) 0 0 0 N l
2(z) 0 0 0

0 N l
1(z) 0 0 0 N l

2(z) 0 0

0 0 N c
1 (z) −N c

2 (z) 0 0 N c
3 (z) −N c

4 (z)

0 0 −dN c
1 (z)

dz

dN c
2 (z)

dz
0 0 −dN c

3 (z)

dz

dN c
4 (z)

dz


(2.33)

(a) (b)

Figure 2.7: (a) Linear Lagrange polynomials are used to approximate up and vp along z and (b) cubic Hermite
polynomials are used to approximate wp and βz along z (given as functions of ζ= z/dl ).

�e axial up and circumferential vp displacements are interpolated based on linear
Lagrange polynomials (see Fig. 2.7a), which are defined as:

N l
1(z) = dl − z

dl
(2.34a)

N l
2(z) = z

dl
(2.34b)

�eradial displacementwp and the rotationangleβz are approximatedby cubicHermite
polynomials (see Fig. 2.7b):

N c
1 (z) = 1− 3z2

d 2
l

+ 2z3

d 3
l

(2.35a)

N c
2 (z) = z − 2z2

dl
+ z3

d 2
l

(2.35b)

N c
3 (z) = 3z2

d 2
l

− 2z3

d 3
l

(2.35c)

N c
4 (z) =− z2

dl
+ z3

d 2
l

(2.35d)
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Without further delay, the principle of virtual work is formulated for a cylindrical shell
segment in order to derive the SAFE equations [190]. Accordingly, we require that the virtual
work performed by the residual surface forces/moments throughout the shell domain and
by the residual line forces/moments along the boundary curves to be zero:

2π∫
0

(
δu(u)

p

)T
r(u)

p +
(
δu(l)

p

)T
r(l)

p +
zl∫

zu

δaT
prp,V dz

Rp dθ = 0 (2.36)

where r(u)
p and r(l)

p denote the residual force/moment resultants at the upper (z = zu) and
lower (z = zl) shell segment boundaries, respectively, and rp,V denotes the residual surface
forces/moments in the shell domain. �e aforementioned residuals are expressed as follows:

r(u)
p = t(u)

p + (
Bpsp

)(u) (2.37a)

r(l)
p = t(l)

p − (
Bpsp

)(l) (2.37b)

rp,V =pp +L psp −I pAp
∂2up

∂t 2 (2.37c)

In the absence of boundary forces/moments and surface loading in the shell, Eq. (2.36)
is expanded as follows:

2π∫
0

−(
δuT

pBpsp

)∣∣∣(l)

(u)
+

zl∫
zu

δaT
p

(
L psp −I pAp

∂2up

∂t 2

)
dz

Rp dθ = 0 (2.38)

�e line integral that corresponds to the boundary terms can be recasted into a surface
integral, leading to:

2π∫
0

zl∫
zu

[
−

(
δuT

pBp
∂sp

∂z

)
−

(
∂(δuT

p)

∂z
Bpsp

)
+δaT

p

(
L psp −I pAp

∂2up

∂t 2

)]
Rp dzdθ = 0 (2.39)

By factoring out the virtual displacement/rotation vector δxT
p, given that the principle of

virtual work should hold for any arbitrary variation, Eq. (2.36) can been finally reformed as:

2π∫
0

zl∫
zu

(
(Nθn )TBpSpAp

dNθn
dz

+ d(Nθn )T

dz
BpSpApNθn − (Nθn )TAT

pL pSpApNθn

)
Rp dzdθ xp

+
2π∫

0

zl∫
zu

(Nθn )TAT
pI pApNθn Rp dzdθ

d2xp

dt 2 = 0 (2.40)

Upon the outlined series of mathematical operations, the element mass and stiffness
matrices Il

p,n and Ll
p,n , respectively, are derived and expressed as follows (see Appendix A):
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Il
p,n =

2π∫
0

zl∫
zu

(Nθn )TAT
pI pApNθn Rp dzdθ (2.41)

Ll
p,n =

2π∫
0

zl∫
zu

(
(Nθn )TBpSpAp

dNθn
dz

+ d(Nθn )T

dz
BpSpApNθn − (Nθn )TAT

pL pSpApNθn

)
Rp dzdθ

(2.42)
In the presence of external loads in the shell surface and/or along the boundary curves,

the vector of consistent forces/moments at the element nodal rings pl
p,n may be expressed

as:

pl
p,n =

2π∫
0

[
ΘT

n t(u)
p

ΘT
n t(l)

p

]
+

zl∫
zu

(Nθn )TAT
ppp dz

Rpdθ (2.43)

It is noted that Nθn = Θn Np has been introduced in all previous equations for notation
compactness.

�e final SAFE equations are formulated by overlapping all the obtained vectors and
matrices in the classical finite element sense and rearranging rows and columns to organize
per degrees of freedom instead of nodal rings. In that manner, the discretized equations of
motion of the cylindrical shell based on the SAFE approach read:

Ip,n
d2up,n

dt 2 +Lp,n up,n = pp,n (2.44)

where Ip,n is the shell mass matrix, Lp,n is the shell stiffness matrix, up,n is the displace-
ment/rotation vector at the nodal rings and pp,n is the vector of consistent forces/moments
at the nodal rings. Specifically, the displacements/rotations and forces/moments vectors
read:

up,n =


un

vn

wn

βz,n

 , pp,n =


pzn,p

pθn,p

pr n,p

mzzn,p

 (2.45)

As can be seen, all the aforementioned quantities are valid for any circumferential mode
number n and hold for both symmetric and anti-symmetric problems. In a general problem
with arbitrary dependence on θ and/or coupling of the response components of different n,
concurrent solution of multiple equations in the form of Eq. (2.44) is necessary. For that
purpose, the general solution at the nodal rings can be written as:

up =


u
v
w
βz

=
∞∑

n=0

[(
Θs

n ⊗ INl

)
us

p,n + (
Θa

n ⊗ INl

)
ua

p,n

]
(2.46)



2

28

where⊗ is the Kronecker product and INl is the Nl ×Nl identity matrix with Nl being the
number of nodal rings of the shell.

To accelerate the numerical solution of problems with the SAFE approach, the shell
response may be decomposed in terms of in vacuomodes as follows (e.g. for a symmetric
form):

us
p,n =Φs

p,n qs
n (2.47)

where qs
n = qs

n(t ) is the vector of modal coordinates and the modal matrixΦs
p,n is defined

as follows:

Φs
p,n =


Us

n
Vs

n
Ws

n
Bs

n

 (2.48)

with the modal sub-matricesUs
n , Vs

n ,Ws
n and Bs

n that read:

Us
n = [

us
n,1 us

n,2 · · · ]
(2.49a)

Vs
n = [

vs
n,1 vs

n,2 · · · ]
(2.49b)

Ws
n = [

ws
n,1 ws

n,2 · · · ]
(2.49c)

Bs
n = [

βs
n,1 βs

n,2 · · · ]
(2.49d)

2.5. Validation of the SAFE cylindrical shell model
In Section 2.4, a SAFEmodel for cylindrical shells has been presented that is valid for both
axisymmetric (n = 0) and non-axisymmetricmotions (n > 0). In the problem of our interest,
i.e. pile installation, only axisymmetric modes (n = 0) will be used. However, we proceed to
demonstrate the remarkable potential of the developed SAFEmodel for both axisymmetric
and non-axisymmetric motions. For that purpose, the SAFE approach is compared against
a finite element (FE) model developed in COMSOL Multiphysics® software [191]. A free-
free cylindrical shell is considered, which is modelled in COMSOL bymeans of MITC shell
elements using the Shell module [185]. It is remarked that the natural frequencies of the
COMSOLmodel were obtained for a certain frequency range and then categorized based on
the respective circumferential mode number n. �e pile properties are identical to the ones
presented in Table 2.1.

In Fig. 2.8, the natural frequencies of the first thirty axial-radial axisymmetric modes
(n = 0) are found by the SAFE shell model and comparedwith those obtained fromCOMSOL.
Similarly, for the non-axisymmetric case the first thirty modes for n = 1 are shown in
Fig. 2.9, with a view to the direct applicability of this type of motion to tubular structures
subject to lateral loading (e.g. monopiles). Evidently, the agreement is such that the two sets
(SAFE and COMSOL) are virtually indistinguishable for both n = 0 and n = 1, showcasing
the remarkable accuracy of the SAFEmethod in the prediction of natural frequencies.

To further supplement the validation study, the mode shapes for the two modal sets
under consideration (i.e. n = 0 and n = 1) are also compared. In Figs. 2.10 and 2.11, the
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Figure 2.8: Comparison of the shell natural frequencies obtained from the SAFE and the FE (COMSOL) models for
axial-radial modes (n = 0).

Figure 2.9: Comparison of the shell natural frequencies obtained from the SAFE and the FE (COMSOL) models for
n = 1.

axisymmetric axial-radial mode shapes are displayed for both the SAFE and the COMSOL
model. Similarly, in Figs. 2.12 and 2.13 the axial and radial modal displacements for the
set of n = 1 modes are compared. It is noted that the mode index j in these examples
corresponds to flexible-bodymode shapes, as rigid-bodymodes are trivially found and thus
were excluded herein. As can be seen, the agreement of the twomodels in terms of mode
shapes is remarkable both in axial and radial components. �is additional validation neatly
corroborates the results of the natural frequencies comparison for both n = 0 and n = 1.

In Fig. 2.14, a collection of mode shapes obtained via the SAFEmethod is visualized to
showcase its applicability to both axisymmetric and non-axisymmetric motions of arbitrary
circumferential mode numbers n. �ese normal modes can be obtained by substituting the
associated circumferential mode numbers n and the solution form of Eq. (2.47) in Eq. (2.44)
in the absence of external forcing. In that manner, a generalized linear eigenvalue problem
is obtained, which can be numerically solved via standard techniques [192].
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Figure 2.10: Comparison of the axial modal displacements us
0, j obtained from the SAFE and the FE (COMSOL)

models for n = 0.

Figure 2.11: Comparison of the radial modal displacementsws
0, j obtained from the SAFE and the FE (COMSOL)

models for n = 0.

Conclusively, the accuracy of the proposed SAFEmodel has been showcased in terms of
natural frequencies and mode shapes. It is clear that the SAFEmethod is a highly attractive
numerical framework as it provides: (i) computational savings, i.e. a 1-D FE discretization
may be applied to 2-D and 3-D problems, (ii) versatility of coupling to other FE-based
approaches, as its numerical core lies in the FEM, and (iii) remarkable accuracy, due to the
use of analytical solutions in place of additional discretization.

2.6. Conclusions
�is chapter has focused on the vibrations of thin-walled cylindrical structures, in view of
the need for accurate and computationally efficient modelling of large-diameter monopiles.
�e standard 1-D pile modelling approaches were established for slender small-diameter
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Figure 2.12: Comparison of the axial modal displacements us
1, j obtained from the SAFE and the FE (COMSOL)

models for n = 1.

Figure 2.13: Comparison of the radial modal displacementsws
1, j obtained from the SAFE and the FE (COMSOL)

models for n = 1.

piles, while their applicability to large tubular structures is questionable. To overcome
these limitations, a thin cylindrical shell theory has been proposed as an optimal choice
for a physically accurate and computationally efficient pile model. Furthermore, the wave
dispersion characteristics of thin-walled cylindrical waveguides have been explored, with
emphasis on thin shell theory.

To facilitate thenumericalmodellingof thinand thick cylindrical shells, aSemi-analytical
Finite Element (SAFE) model has been developed and numerically validated. By means of
this development, we introduced a valuable tool for future studies, aiming to investigate
the vibrations of these structures for a multitude of engineering applications. In the en-
suing chapters, the previous advancements will be utilized in order to incorporate a thin
cylindrical shell model in pile installation analysis.
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(a) n = 0, j = 5 (b) n = 1, j = 2 (c) n = 2, j = 4

(d) n = 3, j = 3 (e) n = 4, j = 6 (f) n = 5, j = 5

Figure 2.14: Shell mode shapes for various circumferential mode numbers n obtained via the SAFEmodel; the
modal index j starts from 1 and includes only flexible-body modes.
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Installation of large-diameter

monopiles: wave dispersion and
non-local soil reaction

During the last decade, the offshore wind industry grew ceaselessly and engineering chal-
lenges continuously arose in that area. Installation of foundation piles, commonly termed
as monopiles, is one of the most critical phases in the construction of offshore wind farms.
Prior to installation, a drivability study is performed, by means of pile driving models.
Since the latter have been developed for small-diameter piles, their applicability for the
analysis of large-diameter monopiles is questionable. �e focal points of this chapter are
associated with two physical mechanisms present in pile installation and their significance
for large-diameter monopiles, albeit they are commonly neglected for ease of numerical
modelling. First, the dispersion of elastic waves in a pile during installation is addressed,
showcasing the need for an accurate description of the pile motion based on a thin shell
theory. Secondly, the non-locality of soil reaction is discussed, with a view to set the stage
for the later developments dealing with the dynamic response of a 3-D soil medium.

To showcase the significance of these effects, a 3-D axisymmetric pile driving model
with non-local soil reaction is presented. �is model captures properly the elastic wave
propagation in the pile and utilizes a simple approach to introduce non-local soil reaction, as
an extension of its local counterpart. A numerical case study of impact piling is performed
to showcase the response disparities stemming from these effects and being already of
importance for the size of monopiles currently installed.

�is chapter is structured as follows. A brief review of modelling approaches utilized
in drivability analysis of piles installed via impact hammers is presented in Section 3.1. In
Section 3.2, the descriptions of the 1-D pile driving model and the non-local 3-D model
are given. �e comparison of the results obtained from the two modelling approaches
is presented in Section 3.3, highlighting the effects of wave dispersion and non-local soil

Parts of this chapter have been published in Tsetas et al. [193].
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reaction for various cases. Conclusively, in Section 3.4 the findings are discussed, alongside
the importance of the introduced effects and insights for further development.

3.1. Drivability analysis in impact piling
Installation of monopile foundations for offshore wind turbines (OWTs) is a considerably
challenging operation and the associated cost comprises a significant part of the total budget
for an offshore wind farm [28, 194]. For that reason, in the design stage, close attention is
required to various aspects, one of which is the analysis of pile drivability. Inaccurate pile
drivabilitypredictions cancause timedelays, excessivefinancial costs, or evengreaterproject
risks, e.g. pile refusal [195]. �us, it is evident that reliable numerical tools are needed for
pile driving analysis, primarily for offshore monopiles due to the aforementioned possible
complications. In view of the ceaseless advancements in offshore wind in recent years [25],
the monopiles used as foundations for OWTs have increased in both length and diameter,
and their installation process has raised various challenges.

For the prediction of pile drivability, an analysis is performed that takes into account the
pile characteristics, the soil profile at the location of installation and the impact/vibratory
hammer to drive the pile to the required depth [30]. �e vast majority of pile driving
models used in engineering practice are based on the model proposed by Smith [196]; a 1-D
model that describes the pile as a thin rod and the soil reaction by elasto-plastic springs
and viscous dashpots. Subsequently, various modifications have been proposed towards
rational pile driving models, by improving certain aspects of Smith’s model, such as the
empirical character of the soil reaction parameters [80, 81]. For that purpose, dynamic
models that represent the linear soil reaction based on approximate impedance formulas
[66, 67] have been used in conjunction with non-linear relations to account for the pile
penetration process (pile slip). However, the linear reaction of a soil continuum is frequency-
dependent and spatially non-local. �e latter fact is mostly neglected in pile driving analysis
and frequency-independent values are assigned to local elements, in order to facilitate the
numerical simulation in the time domain. As a result, local and frequency-independent
springs and dashpots are arranged together with non-linear elements, e.g. frictional sliders,
to represent the soil reaction during installation. It is evident that the preceding approaches
comprised significant steps towards less empirical, rational pile driving models.

In the advent of large-diameter monopiles used in offshore wind, the validity of the
existing approaches to analyse pile drivability was examined. Byrne et al. [94] investigated
the applicability of available design approaches with a focus on the static resistance to
driving (SRD), since these approaches are largely empirical and have been developed for
piles of relatively small diameter (less than 2 m) [94, 197]. Furthermore, Byrne et al. [94]
introduced a modification factor in the aforementioned approaches, which resulted in
improved drivability predictions. However, a subsequent andmore extensive study revealed
that both the existing and the modified approaches were proven not to provide reliable
predictions of the blow counts [95].

Albeit the preceding works mainly focused on the determination of the SRD and its
influence on drivability predictions, other aspects of available pile driving models have also
been examined. Due to the increase in the diameter ofmonopiles, variousworks questioned
the validity of the classical rod theory, which is exclusively used to describe the pile dynamics
during installation [198, 199]. Since the wave motions excited in a pile during a hammer
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impactmaypertain in the frequency rangewheredispersive effects arenot negligible, amore
accurate description of the pile structuremay be required. In thin-walled tubular structures,
frequencies in the vicinity of the so-called ring frequency correspond to predominantly
radial motions [149, 148] - which cannot be captured in current models - and are related
to strong Poisson effects that can significantly affect the soil reaction along the pile shaft
[200].

In view of these considerations, a 3-D axisymmetricmodel is developed herein, as a step
towards pile driving models that are suitable for large-diameter monopiles. �e dispersion
of longitudinal waves is taken into account by modelling the pile as a thin cylindrical shell
according to the Love-Timoshenko theory. Furthermore, the effect of non-local dynamic soil
reaction is introduced, by formulating a non-local foundation model based on the stiffness
and damping parameters of its local counterpart. To demonstrate the effects of these two
aspects, a 1-D pile drivingmodel with local soil reaction, as customarily used in engineering
practice, is formulated and a numerical study is performed to compare these twomodelling
approaches. It is observed that pile penetration is significantly affected by wave dispersion
and this effect becomes more prominent with ascending pile diameter. In the case of large-
diameter piles, foundation non-locality leads to a stronger deviation from the local reaction
models in terms of pile responses. Since for large-diameter cases, both examined aspects
significantly alter the drivability predictions of standard approaches, their incorporation in
pile driving models for large-diameter monopiles is deemed critical.

3.2. Modelling of pile driving
In Section 3.2.1, a 1-D pile driving model is formulated, based on approaches widely used
in engineering practice. A 3-D axisymmetric model is presented in Section 3.2.2, where
the pile is modelled as a thin cylindrical shell and non-locality is introduced in soil reaction.
Details about the numerical solution of the twomodels are given in Section 3.2.3.

3.2.1. 1-D pile driving model
An open-ended pipe pile is modelled as a linear elastic homogeneous rod occupying the
domain 0 ≤ z ≤ Lp, where Lp denotes the pile length (see Fig. 3.1). �e soil reaction is
represented by a combination of elastic springs, viscous dashpots and plastic sliders, as will
be described in the ensuing. �e equation of motion of the rod reads:

ρp Ap
∂2up(z, t )

∂t 2 = Ep Ap
∂2up(z, t )

∂z2 −H(z − l1)psh (3.1)

in which ρp is themass density of the pile, Ap is the area of the pile cross-section, up(z, t ) is
the axial displacement of the pile, Ep is the Young’smodulus of the pile,H(·) is theHeaviside
function, l1 is the non-embedded pile length and psh is the soil resistance along the pile
shaft. �e latter is defined as [80]:

psh =


ksh

(
up(z,t )−ueq,sh(z,t )

)
+csh

∂up(z,t )
∂t , for

∣∣∣ksh

(
up(z,t )−ueq,sh(z,t )

)
+csh

∂up(z,t )
∂t

∣∣∣≤2πRoqsh(z)

2πRoqsh(z)sgn
(
∂up(z,t )

∂t

)
, for

∣∣∣ksh

(
up(z,t )−ueq,sh(z,t )

)
+csh

∂up(z,t )
∂t

∣∣∣>2πRoqsh(z)

(3.2)
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In Eq. (3.2), ksh is the stiffness of the soil springs along the pile shaft, ueq,sh(z, t ) is the
equilibrium position of each point along the pile shaft once plastic deformation develops at
the pile-soil interface, csh is the soil dashpot coefficient along the pile shaft, Ro is the outer
radius of the pile and qsh(z) is the ultimate shaft resistance. �e spring and dashpot coeffi-
cients in this study are chosen in accordance with Deeks and Randolph [201] (viscous effects
neglected in plastic regime) and further modified as ksh = 2πGs and csh = 2πRo

√
ρsGs,

to account also for the inner shaft resistance of the open-ended piles, as proposed by Liy-
anapathirana et al. [202]. �e parametersGs and ρs denote the shear modulus andmass
density of the soil, respectively.

Lp

l1

l2

Ph(t)

Ep , ρp

ktip

qtip
ctip

2πRoqsh(z)

ksh csh

Embedded pile

z, up(z,t)

dz

Figure 3.1: A 1-D pile driving model, with the pile described as a rod.

�emathematical statement is supplemented by the initial and boundary conditions as
follows:

up(z,0) = 0,
∂up(z, t )

∂t

∣∣∣∣
t=0

= 0, N1(0, t ) =−Ph(t ), N1(Lp, t ) =−Ptip, (3.3)

in which N1 is the axial force and Ph(t ) is the force exerted on the pile head by the hammer
impact, computed analytically by the model of Deeks and Randolph [85]. Similarly, the soil
reaction Ptip at the pile tip of an open-ended pipe pile (z = Lp) reads [81]:

Ptip =


ktip(up(Lp,t )−ueq,tip(t ))+ctip

∂up(z,t )
∂t

∣∣∣
z=Lp

, for ∣∣ktip(up(Lp,t )−ueq,tip(t ))
∣∣≤qtip Ap

qtipApsgn

(
∂up(z,t )

∂t

∣∣∣
z=Lp

)
+ctip

∂up(z,t )
∂t

∣∣∣
z=Lp

, for ∣∣ktip(up(Lp,t )−ueq,tip(t ))
∣∣>qtipAp

(3.4)
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and

ktip = 2GsRo/
(
(1−νs)ηr

)
(3.5a)

ctip = 3.4
(
R2

o −R2
i

)√
ρsGs/(1−νs) (3.5b)

in which ktip is the soil spring stiffness at the pile tip, ueq,tip(t ) is the equilibrium position
of the pile tip after plastic deformation has occurred, ctip is the soil dashpot coefficient at
the pile tip, Ri is the inner radius of the pile, νs is the soil Poisson’s ratio, ηr is a function of
the ratio of the inner to outer radius of the pile Ri/Ro - according to Egorov [61] - and qtip is
the ultimate tip resistance.

�e ultimate shaft resistance at the pile-soil interface qsh(z), for a cohensionless layer of
sand, is estimated as a function of depth z according to theMohr-Coulomb failure criterion
[203]:

qsh(z) = K0σ
′
v(z) tanδ′s (3.6)

in which K0 is the coefficient of lateral earth pressure, σ
′
v(z) is the effective vertical soil

stress as a function of depth (for z ≥ l1 and σ′
v(l1) = 0) and δ′s is the critical friction angle of

the pile-soil interface. It is noted that in the present study, the shaft resistance is assumed
for all piles identical at the inner and outer surface of the pile shaft, leading to a total shaft
resistance qsh(z) = 2K0σ

′
v(z) tanδ′s. Similarly, at the pile tip soil failure takes place according

to the Mohr-Coulomb criterion and an associated flow rule, based on the work of Kumar
and Chakraborty [204]. Accordingly, the ultimate tip resistance reads:

qtip = ccNc +qoNqo +γs (Ro −Ri) Nγs (3.7)

in which the terms Nc , Nqo and Nγs denote the bearing capacity factors of soil cohesion cc,
soil surcharge pressure qo and soil unit weight γs, respectively [204].

3.2.2. 3-D axisymmetric pile driving model with non-local soil reaction
An open-ended pipe pile, due to its cylindrical geometry and its small wall thickness com-
pared to its other dimensions, may be described adequately as a thin cylindrical shell up to
a certain frequency range. In fact, the accurate description of elastic wave propagation in
such a structure requires a thin shell theory [139]. Specifically, the motion of a thin-walled
cylindrical structure is primarily radial and strong dispersive effects are present in the
frequency region around the so-called shell ring frequency fr [205]; classical rod theory
cannot capture such effects [149, 148]. Alternative rod theories may be used to introduce
dispersive effects (e.g. Rayleigh-Love rod), albeit such theories are mostly inaccurate in
the vicinity of the ring frequency andmay falsely predict a cut-off frequency. On the other
hand, thin shell theories are in excellent agreement with the results of three-dimensional
elasticity theory, for the greater part of the frequency spectrum in the case of axisymmetric
waves [138].

In great soil depths, large soil reaction may be encountered during offshore monopile
installation, thus the importance of accurate description of the pile motion cannot be
overemphasized. Excitation of strong radial motions can affect the soil resistance during
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installation and render the drivability predictions inaccurate, as this effect is altogether
neglected in current pile drivingmodels. For small-diameter piles that have beenmainly
used offshore in the past, that issue had not arisen for reasons that will become apparent in
the ensuing.

In view of the above considerations, a drivability model that describes the pile by means
of a thin shell theory is developed. As the pile, the force by the hammer impact, and the
soil reaction are symmetric around the pile longitudinal axis, the model used is considered
axisymmetric. �erefore, all the quantities involved in the problem are independent of the
azimuth θ, i.e. ∂(·)/∂θ = 0. Given the aforementioned considerations, the pile dynamic
equilibria of the coupled axial-radial motion during impact driving, according to the Love-
Timoshenko shell theory [159] read:

ρphp
∂2up(z, t )

∂t 2 = Ephp(
1−ν2

p
) ∂2up(z, t )

∂z2 + Ephpνp(
1−ν2

p
)

Rp

∂wp(z, t )

∂z
− H(z − l1)psh

2πRp
(3.8a)

ρphp
∂2wp(z, t )

∂t 2 =− Ephpνp(
1−ν2

p
)

Rp

∂up(z, t )

∂z
− Ephp(

1−ν2
p
)

R2
p

wp(z, t )−
Eph3

p

12
(
1−ν2

p
) ∂4wp(z, t )

∂z4

(3.8b)

in which hp is the pile wall thickness, νp is the Poisson’s ratio of the pile and wp(z, t ) is the
radial displacement of the pile. It is remarked that the soil reaction in the radial direction
may also be considered. However, in the ensuing study the radial soil reaction is not intro-
duced, such that the twomodels are directly comparable and the effect of wave dispersion
can be evaluated.

Similarly to Eq. (3.3), the initial conditions are set equal to zero. For the thin cylindrical
shell the axial force resultants are prescribed at the top and the bottom of the pile, while the
remaining boundaries are formulated as free [206]. Accordingly, the boundary conditions
read:

Nz (0, t ) =−Ph(t )

2πRp
, Nzθ(0, t ) = 0, Qz (0, t ) = 0, Mz (0, t ) = 0,

Nz (Lp, t ) =− Ptip

2πRp
, Nzθ(Lp, t ) = 0, Qz (Lp, t ) = 0, Mz (Lp, t ) = 0 (3.9)

inwhichNz (z, t ),Nzθ(z, t ) andQz (z, t ) denote the axial, in-plane shear and out-plane shear
force resultants, respectively, and Mz (z, t ) denotes the moment resultant of the thin cyl-
indrical shell [139]. �e natural boundary conditions from Eq. (3.3) have been reformulated
intoEq. (3.9), such that the prescribed forces at the boundaries,Ph(t ) andPtip, are uniformly
distributed along the pile circumference. Finally, the ultimate shaft and tip resistances
are identical to the ones described in Section 3.2.1 and the described model is displayed in
Fig. 3.2.

As stated before, one of the main challenges in pile drivability predictions lies in the
strong need for a simple and accurate description of the soil reaction. Available models
employ local and frequency-independent springs and dashpots, arranged together with
non-linear elements to account for the soil reaction in a computationally efficient manner.
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Figure 3.2: A 3-D axisymmetric pile driving model, in which the pile is described as a thin cylindrical shell.

�e significance of modelling accurately the linear part of these phenomenological models
is enhanced when a pile is close to refusal during driving and essentially the linear regime
is strongly present [84]. In view of the aforementioned, the employment of a non-local soil
reactionmodel comprises a significant step towards computationally efficient andmore
realistic foundationmodels [207], while it has been recently applied for capturing the lateral
response of monopiles [208].

In the present study, the approach adopted is similar to Friswell et al. [207]. Accordingly,
the derivation of non-local foundation models follows from the weighted average of state
variables (e.g. displacement, velocity) over a spatial domain via convolution integrals; the
associated spatial kernel functions are defined by a characteristic length measure. In the
ensuing, the spatial kernel is assumed to be a Gaussian function gG(z,ξ), normalized as
shown in [209], with the following form:

gG(z,ξ) = αGp
2π

e−
α2

G(z−ξ)2

2 (3.10)

inwhichαG is the inverse of the influence distance of the spatial kernel function gG(z,ξ) (see
Fig. 3.3). At this point let us remark that the local foundation models can also be described
in this form and essentially comprise a special case with spatial kernel equal to the Dirac
delta function, gG(z,ξ) = δ(z −ξ). �e latter means that the foundation is locally reacting.
According to the previous, the non-local soil reaction along the pile shaft p̄sh reads:
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p̄sh =


Lp∫
l1

gG(z,ξ)
(
ksh

(
up(ξ,t )−ueq,sh(ξ,t )

)
+csh

∂up(ξ,t )
∂t

)
dξ=GG(z,t ) , for |GG(z, t )| ≤ 2πRoqsh

2πRoqshsgn

(
∂up(z, t )

∂t

)
, for |GG(z, t )| > 2πRoqsh

(3.11)

�epresent non-local soil reactionmodel comprises an extension of its local counterpart,
by coupling of the locally reacting elements through prescribed spatial kernel functions. �e
accuracy of suchmodels can be evaluated properly, only by comparison with the dynamic
reaction of the three-dimensional soil continuum, which is not considered in this chapter.

Figure 3.3:�eGaussian function as spatial kernel gG(z,ξ)with αG =p
2π.

3.2.3. Numerical solution method
For the 1-Dmodel presented in Section 3.2.1, henceforth called 1-D FDmodel for brevity,
the method of central finite differences, of accuracy O (∆z2), is employed for the spatial
discretization. �eboundary conditions are treatedby introducingfictitiousnodes [210] and
the non-linear partial differential equation (PDE) governing the pile motion, is decomposed
into a set of non-linear ordinary differential equations (ODEs) representing the dynamic
equilibria of the pile nodes.

For the 3-D axisymmetric model, henceforth referred to as 3-D LT model for brevity,
the spatial discretization is performed by means of the Galerkin method [211]. A series
discretization method is advantageous for this system, compared to a method such as
finite differences that leads to ODEs at nodal points and thus increases the computational
complexity, due to the dimensions of the problem. �e Galerkin method circumvents the
problem of dimensions, albeit requires a more laborious analytical treatment to utilize
its benefits in our case. First, the reformulation of the boundary conditions is performed,
as we have a time-dependent boundary condition at z = 0 and a non-linear boundary
condition at z = Lp. �e concentrated body force method (CBFM) is used to reformulate the
boundary conditions into stress-free boundaries and to translate the boundary tractions
into the equation ofmotion bymeans of the Dirac delta function δ(·) [212]. At this point, the
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axisymmetric free vibrationmodes of the free-free cylindrical shell in vacuo are found and
employed in our solution as trial and test functions. �erefore, the solution of Eqs. (3.8a)
and (3.8b) is approximated by the series:

up =
Nm∑

m=0
U0m(z) q0m(t ) (3.12a)

wp =
Nm∑

m=0
W0m(z) q0m(t ) (3.12b)

in which q0m(t ) is them-th generalized coordinate and Nm is the upper limit of the trun-
cated summation, adequate to provide a sufficiently accurate solution. By substituting
Eqs. (3.12a) and (3.12b) into Eqs. (3.8a) and (3.8b), the residual is obtained and by integrat-
ing over the shell domain the product of each test function with the residual, the weighted
residual is derived. By setting the latter equal to zero, a set of Nm non-linear coupled ODEs
of q0m(t ) is formulated. Conclusively, for both 1-D FD and 3-D LT models the resulting
sets of ODEs are arranged in the state-space form, in order to solve them via numerical
integration. �e explicit Runge-Kutta method of accuracy O (∆t 4) is used in both cases [213].

For both models, the frequency at which the force amplitude is equal to 10% of the
maximum amplitude (see Section 3.3.2) and the corresponding wavelength are used to
determine the discretization parameters. For the 1-D FDmodel, the time step is defined
as ∆t =∆z/(10cp), in which ∆z denotes the spatial mesh size, equal to 1/8 of the smallest
wavelength to be analysed, and cp is the longitudinal wave velocity in the pile [214]. In
the 3-D LT model, the upper frequency limit is used to select the truncation limit Nm in
Eq. (3.12) and the time step is set equal to ∆t = π/(5ωm) (10 time steps for the highest
frequency componentωm ). Further refinement of the previous discretization parameters
is performed until convergence is met, defined as:

εi =
∣∣up,i+1(z, t )−up,i (z, t )

∣∣∣∣up,i+1(z, t )
∣∣ < 1% (3.13)

in which εi is the relative error of the displacement field between the i-th and (i +1)-th
analyses, used as the convergence criterion.

3.3. Results
In Section 3.3.1 the validity of the 3-D LT model is verified, by reducing it into a physic-
ally equivalent model to 1-D FD, for direct comparison. Furthermore, in Sections 3.3.2
and 3.3.3 numerical examples that consider the influence of wave dispersion and non-local
soil reaction, respectively, are presented.

3.3.1. Validation of the 3-D LT model
At first, a set of numerical analyses for a single hammer blow are performed to showcase the
validity of the 3-D LTmodel. For this purpose, the 1-D FDmodel formulated in Section 3.2.1
is used as reference and its results are compared with the respective ones obtained from the
3-D LTmodel, upon proper reduction to an equivalent classical rod with local soil reaction.
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By setting the Poisson’s ratio of the pile νp = 0 in Eq. (3.8a) and discarding Eq. (3.8b), the
equation of motion of the classical rod theory is retrieved. Furthermore, by considering
αG →∞, the spatial kernel becomes gG(z,ξ) = δ(z −ξ) and the soil reaction is rendered
local. Under these considerations, the pile is equivalently described by the classical rod
theory and the soil reaction is local, in both models. In view of the previous, the numerical
results of the 1-D FD and the reduced 3-D LTmodels should be identical. �e parameters of
the validation case are shown in Table 3.1 and the hammer force function Ph(t ), together
with the amplitude of its Fourier transform |P̃h( f )|, are depicted in Fig. 3.4.

Pile Young’s modulus Ep 210 GPa
Mass density ρp 7850 kg/m3

Poisson’s ratio νp 0.3
Length Lp 42 m
Radius Rp 1.1 m

Wall thickness hp 0.03 m
Initial embedment depth l2 25.2 m

Soil Shear modulus Gs 18.52 MPa
Mass density ρs 1900 kg/m3

Poisson’s ratio νs 0.35
Friction angle φ′ 35o

Soil-pile interface friction angle δ′ 31.5o

Hammer Rammass mr 10000 kg
Anvil mass ma 1000 kg

Cushion stiffness kc 70.87x106 kN/m
Ram impact velocity v0 5 m/s

Table 3.1: Parameters of the validation case.

In Fig. 3.5 the axial tip displacement up(Lp, t ) is presented for a single hammer blow, as
obtained by the twomodels in consideration. Evidently, the response obtained by the two
approaches is in excellent agreement. �erefore, in the following analyses the capabilities
of the 3-D LTmodel can be utilized fully, to study the dispersion of elastic waves in the pile
and the introduction of non-locality in the soil reaction along the pile shaft.

3.3.2. Influence of wave dispersion
To isolate the effect of wave dispersion, the 3-D LTmodel used in the following examples,
has local soil reaction and differs from the 1-D FD solely in the pile description as a thin
cylindrical shell. For the following numerical examples, all the parameter values are given in
Table 3.1, except for Rp, hp, l2 and the hammer parameters. �e initial embedment depths
of l2 = 0.4Lp,0.5Lp,0.6Lp are considered, while various pile radii are used (see Table 3.2), to
identify the effect of these parameters onwave dispersion. In Table 3.2 each columnprovides
a pair of pile radius Rp and wall thickness hp leading to eleven different pile geometries.

Regarding the properties of the hammer, attention is needed in order to have results
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Figure 3.4:Hammer force function Ph(t ) (in blue) and the amplitude of its Fourier transform |P̃h( f )| (in red) for a
pile with Rp = 1.1m and hp = 0.03m.

Rp 1.1 m 1.4 m 1.7 m 2.0 m 2.3 m 2.6 m 2.9 m 3.2 m 3.5 m 3.8 m 4.1 m
hp 3 cm 3 cm 3 cm 4 cm 4 cm 4 cm 4 cm 5 cm 5 cm 5 cm 5 cm

Table 3.2: Set of variable pile parameters.

that can be compared on a rational basis. For that purpose, normalization of the hammer
force was performed for all pile driving cases, such that the maximum axial stress at the
pile head was equal to 57% of the yield stress, fy = 355MPa. �e dimensionless mass ratio
m∗

a = ma/mr and the dimensionless cushion stiffness k∗
c = kc mr /Z 2

p with Zp denoting the
impedance of a semi-infinite rod, were used in order to achieve the normalization in all
cases [85]. �e aforementioned parameters were set tom∗

a = 0.1 and k∗
c = 10 in all the cases

studied, while the ram impact velocity v0 was equal to 5 m/s. �erefore, depending on the
pile geometry, the values of ram mass mr , anvil mass ma and cushion stiffness kc were
scaled in order to preserve the dimensionless quantities and the maximum axial stress level
constant. According to the previous, the Fourier transform of the hammer force normalized
over the maximum amplitude at zero frequency as P h( f ) = |P̃h( f )|/|P̃h(0)|, is identical for
all piles considered. In Fig. 3.6 the normalized amplitude of the hammer force spectrum is
depicted together with the normalized amplitude at the ring frequency of each pile of this
study, indicated by the red markers.

InFig. 3.7 theultimatepile set ratiouLT(Lp, tf)/uFD(Lp, tf) is displayed, inwhichuLT(Lp, tf)
and uFD(Lp, tf) denote the tip displacement of 3-D LT and 1-D FDmodels, respectively, at
the final timemoment of the analysis tf. It is noted that tf was adequate for the imparted
energy into the pile to dissipate through the soil reaction and the final pile set to be ob-
tained. As can be observed for all the examined pile radii and embedment depths, there
is deviation from the response of the 1-D FDmodel (i.e. ratio equal to 1.0). Consequently,
wave dispersion does have an effect even for small-diameter piles, albeit its influence on the
final pile set is not as pronounced as in the large-diameter cases. With ascending pile radius
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Figure 3.5: Axial tip displacement comparison between the 1-D FD and the reduced 3-D LTmodel (αG →∞ and
νp = 0).

Figure 3.6:Normalized amplitude of the hammer force spectrumP h( f ) (blue line), togetherwith the corresponding
normalized amplitudes at the ring frequency fr of all the examined piles (red markers).

Rp, the amount of energy imparted in frequencies around the ring frequency fr becomes
significant. As a result, the increase of P h( fr) leads clearly to reduction of the ultimate
set ratio, as direct consequence of dispersion effects. Embedment depth l2 seems to be
beneficial for the ultimate set ratio and mitigate partially these effects, which is rational
since additional damping is provided from the increased length of the shaft in contact with
the soil. Wave dispersion is strongly present in high-frequency motions, thus increased
embedment depth contributes to their decay and results in a weaker influence on the pile
response overall. Notwithstanding the remarks about embedment depth, it seems that
for large radii (Rp ≥ 3.0 m) - or better for high P h( fr) - the set ratio is less sensitive to its
influence. For these pile geometries, the ring frequency fr is significantly excited by the
hammer impact as P h( fr) approaches 0.5 and relevant induced pile motions obtain large
amplitudes. �e aforementioned observations and relevant remarks are better understood
through Figs. 3.8 and 3.9.

�e tip displacement obtained by the two considered models, for the extreme scenarios
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Figure 3.7: Ratios of ultimate set obtained by 3-D LTmodel to 1-D FDmodel, up,LT(Lp, tf)/up,FD(Lp, tf), for the all
considered pile radii Rp and initial embedment depths l2.

(a) (b)

Figure 3.8: Tip displacement up(Lp, t ) obtained by the 1-D FD and 3-D LTmodels for a pile with l2 = 25.2m, (a)
Rp = 1.1m and (b) Rp = 4.1m

of the smallest and the largest pile radii, are shown in Fig. 3.8. Evidently, the two responses
for Rp = 4.1m (Fig. 3.8b) deviate much more than for Rp = 1.1m (Fig. 3.8a). In Fig. 3.8a,
the displacements mainly diverge for the two approaches after the second arrival of the
impact-induced stress wave at the pile tip (after t = 0.02 s), but follow the same trend. On
the contrary, in Fig. 3.8b the response becomes dissimilar already after the first arrival
of the stress wave at the pile tip, as the frequency content of this motion is much richer
in components that display dispersive behaviour. �e amplitude of the discrete Fourier
transform (DFT) spectra of the velocities for the cases analysed in Fig. 3.8, are given in
Fig. 3.9 to supplement the previous observations.

In Fig. 3.9a, the amplitude of the axial velocity spectrum for both models is in good
agreement approximately up to 600 Hz. At that point, the amplitude of the axial velocity
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(a) (b)

Figure 3.9: Amplitude of axial velocity spectra
∣∣∣ ∂up(Lp , f )

∂t

∣∣∣ and radial velocity spectra ∣∣∣ ∂wp(Lp , f )
∂t

∣∣∣ (for the 3-D LT
model) for a pile with l2 = 0.6Lp, (a) Rp = 1.1m and (b) Rp = 4.1m.

in the 3-D LT model drops significantly and energy in axial motion is reduced at these
frequencies. However, it is not the case that energy is not present in this region of the
frequency spectrum in the pile motion. As can be observed, the radial velocity amplitudes
surge in this region of the spectrum and even surpass the amplitudes of the axial velocity in
some frequencies. For this case the ring frequency is fr =784.48 Hz, which supports our
observations as the frequency region of strong dispersive effects is traced around this value.
Considering further the case of Rp = 4.1m, in Fig. 3.9b the velocity spectrum shows some
differences with respect to Fig. 3.9a. First, the drop corresponding to the vicinity of the ring
frequency occurs much lower in the frequency axis, as fr =210.47 Hz and even in the low
frequency region of the axial velocity spectrum, discrepancy exists between the two models.
�e latter already indicates that dispersion is present in lower frequencies compared to
Fig. 3.9a, and its effect is more eminent as the energy imparted from the hammer impact is
greater in this frequency region (see Fig. 3.6). For Rp = 1.1m, the velocity amplitudes are
in good agreement up to a certain frequency (approximately 600 Hz), albeit for Rp = 4.1m
they clearly deviate along the whole spectrum indicating the inaccurate description of wave
propagation in the 1-D FDmodel. �e preceding remarks lead to the strong discrepancy
observed between 1-D FD and 3-D LT results in Fig. 3.8b.

3.3.3. Influence of non-local soil reaction
At this point, the introduction of non-locality in the soil reaction of the 3-D LTmodel is ex-
amined. For that purpose, the 3-DLTmodelwith local soil reaction and its non-local counter-
part are compared. �e exact spatial distribution of the non-local soil reaction is not known
and in this work the Gaussian function is assumed as the spatial kernel a priori, with three
different values of influence distance considered, namely 1/αG = Lp/100,Lp/200,Lp/500.
In Fig. 3.10, the axial tip displacement up(Lp, t ) is presented for Rp = 1.1m and Rp = 4.1m
(l2 = 25.2m). As can be seen, the divergence of the displacement obtained by the non-local
model compared to the local one is much stronger for the large-diameter pile.

To better evaluate the effects of non-locality, in Fig. 3.11 for each pile the displacement
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(a) Rp = 1.1m (b) Rp = 4.1m

Figure 3.10: Axial tip displacement up(Lp, t ) obtained by the local and non-local reactionmodels for l2 = 25.2m
and various values of αG.

ratio of non-local to local models, up(t ) = up(Lp, t )/ up(Lp, t )
∣∣
αG→∞ is examined for four

different pile radii. �e effect of non-locality seems to become more eminent for large-
diameter piles and the deviation even between the non-local models for different values of
αG becomes quite important. On the other hand, for Rp = 1.1m and Rp = 2.0m all the non-
local reaction models considered present a ratio, up(t ), from 0.9 to 1.0, practically meaning
that for the values of αG considered, local and non-local reactions do not significantly
alter the final pile penetration. In all cases, the non-locality seems to reduce the final pile
penetration for the considered soil profile. Furthermore, the increase of αG (decrease of
influence distance) tends to provide a response that converges to the one of the local reaction
model, which is rational. To summarize, Fig. 3.11 reveals that the non-locality of the soil
reaction can affect the pile response in variable degree and the pile radius seems to be a
significant factor that determines the amount of this influence by altering the pile motion
characteristics.

Apart from the pile radius, the parameter of the embedment depth l2, is finally con-
sidered. In Fig. 3.12, the results for the smallest (Rp = 1.1m) and the largest (Rp = 4.1m) pile
radii of this study are shown, for l2 = 16.8m and l2 = 25.2m. At a first glance, the different
values of l2 do not appear to significantly alter the displacement ratios, up(t ). For both piles
the larger l2 value seems to lead to a minor reduction of up(t ). Finally, the introduction
of the soil reaction in the radial direction and the study of its effect on pile penetration
comprise additional steps not considered herein, as this work focuses on dispersive wave
propagation and non-local soil reaction in the direction of driving.

3.4. Conclusions
In this chapter, a 3-D axisymmetric pile driving model with non-local soil reaction is de-
veloped, as an extension of standard local 1-Dmodelling approaches. �e pile description
is based on the Love-Timoshenko theory for thin cylindrical shells and the non-local soil
reaction is formulated as a convolution integral of local soil reaction models and the Gaus-
sian function as spatial kernel. Furthermore, the 1-D basis model is formulated according
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(a) Rp = 1.1m (b) Rp = 2.0m

(c) Rp = 3.2m (d) Rp = 4.1m

Figure 3.11:Displacement ratio of non-local to local reaction models, up(t ) = up(Lp, t )/ up(Lp, t )
∣∣
α→∞ for a pile

with l2 = 25.2m.

to widely adopted approaches in pile driving and is compared against the 3-Dmodel, with a
view to investigate the effects of elastic wave dispersion and non-locality of the soil reaction.

First, the effect of elastic wave dispersion in the pile was studied, for various pile geo-
metries and initial embedment depths. �e main argument of the significance of wave
dispersion in drivability of large-diameter monopiles was ascertained, as the effect of dis-
persion was even found to increase with ascending pile radius. Embedment depth provided
somemitigation of this effect for small-to-medium pile radii, while for large-diameter piles
the effect of wave dispersion was sustained even for large pile embedments. In the vicinity
of the ring frequency pile motion is predominantly radial and significantly excited by the
hammer impact for large-diametermonopiles. �is effect cannot be captured by 1-Dmodels
and can alter the soil resistance to driving (not considered herein). In the current effort to
modify, or even reinvent, the existing drivability approaches for large-diameter monopiles,
the proper description of the pile motion is essential. Otherwise, certain response features
in field data from monopile installation, resulting from wave dispersion, may be falsely
attributed to other mechanisms, e.g. non-linear soil behaviour, and lead us further away
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(a) Rp = 1.1m and l2 = 16.8m (b) Rp = 1.1m and l2 = 25.2m

(c) Rp = 4.1m and l2 = 16.8m (d) Rp = 4.1m and l2 = 25.2m

Figure 3.12:Displacement ratio of non-local to local reaction models, up(t ) = up(Lp, t )/ up(Lp, t )
∣∣
αG→∞.

from an accurate approach to predict monopile drivability.
Conclusively, the introduction of non-local soil reaction has been realized. A system of

integro-differential equations is obtained, which is solved bymeans of the Galerkinmethod
and numerical integration. �e effect of non-locality was found to bemore influential in the
case of large diameters, where the pilemotiondeviates significantly from thenon-dispersive
purely axial motion considered in standard rod-basedmodels. Furthermore, the variable
embedment depth yielded minor differences between local and non-local models. Decrease
of the influence distance 1/αG showcased the trend to converge to the response of the local
reaction model, which is the expected behaviour. �e results for various influence distances
comprise an indication of the degree to which non-locality may affect the overall behaviour.
�e refinement of the non-local soil reaction by also introducing frequency-dependence,
based on the response of the three-dimensional soil continuum is considered the optimal
next step. In that manner, a non-local - both in space and time - soil reactionmodel may
be employed in modelling approaches for impact piling, as well as for other installation
methods.





4
Wave propagation in layered soil

media

�e paradigm of the previous chapter showcased the significance of wave dispersion in the
pile and its accurate description, in particular in the case of large-diametermonopiles. How-
ever, another aspect of pile drivabilitymodellingwas touched upon, namely the soil reaction
modelling. With a view to modelling approaches applicable to engineering practice, certain
physical mechanisms are commonly discarded for the sake of simplicity and computational
convenience. Specifically, the reaction provided by a continuum (e.g. 3-D soil medium)
should be rigorously characterized by spatial and temporal non-locality. In the previous
chapter, a standard local and frequency-independent reaction model was transformed via
a spatial kernel to a non-local one. However, the spatially non-local model was neither
rigorously based on the 3-D soil medium at hand, nor possessed any form of frequency
dependence. In addition to these considerations, spatial and temporal non-locality are
essentially coupled through the dispersion characteristics of the soil medium, thus complic-
ating further the potential application of this process in soil-structure interaction problems.
In view of these considerations, it appears that to incorporate the true non-local - in space
and time - reaction provided by the soil medium at hand, the most sensible approach is also
the direct one, i.e. to treat the problem of the 3-D soil medium.

In the ensuing, the propagation of mechanical disturbances in a linear elastic soil me-
dium is studied. With a view to pile installation, amodelling framework that can seamlessly
treat arbitrarily layered soilmedia is indispensable. For that purpose, the�in-LayerMethod
(TLM) is considered as the optimal choice, in order to eradicate the formidable complica-
tions introduced by soil layering. Beginning from the resolution of wave motion in terms of
displacement potentials, the formulation of the TLM is presented, leading to the generalized
eigenvalue problem of cylindrical waves and the respective normal modes of wave propaga-
tion. �e outlined developments are suitable to analyse problems that deal with a layered
soil stratum of finite depth overlying a rigid bedrock. To extend the applicability of the
present TLM formulation, the approximation of the underlying half-space is accomplished
by coupling the TLMwith Perfectly Matched Layers (PMLs). Subsequently, we proceed to
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derive explicit expressions for the Green’s functions in the frequency-space domain in the
context of the TLM.�e latter are valid both for the original and the PMLs-augmented TLM
formulation, which is also verified by a set of numerical examples presented at the end of
the chapter.

4.1. Wave propagation in a linear isotropic elastic solid
Consider a linear elastic isotropic medium described in a cylindrical coordinate system
(r,θ, z)with unit basis vectors er , eθ, ez . �e dynamic equilibrium equations governing the
displacement vector field, commonly termed as Navier equations, may be expressed in the
frequency domain as [215]:

(λs +Gs)∇ (∇· ũs)+Gs∇2ũs +ω2ρsũs = 0 (4.1)

where λs andGs are the Lamé parameters and ρs is the mass density. �e displacement
vector ũs is defined as:

ũs =
[

ũr,s(r,θ, z,ω) ũθ,s(r,θ, z,ω) ũz,s(r,θ, z,ω)
]T (4.2)

�e Fourier transform pair of a general function f (t ) is defined as follows:

f (t ) = 1

2π

+∞∫
−∞

f̃ (ω)eiωt dω (4.3a)

f̃ (ω) =
+∞∫

−∞
f (t )e−iωt dt (4.3b)

We proceed to analyse the propagation ofmechanical waves in the absence of body loads
and boundary effects. �e displacement vector field governing the wave motion of a linear
elastic solid may be decomposed into an irrotational and a solenoidal vector field, based on
Lamé potentials [216]:

ũs =∇φ̃s +∇×ψ̃s (4.4)

Upon substitution of Eq. (4.4) into Eq. (4.1), the following set of identities from vector
calculus are invoked:

∇2 (∇φ̃s
)=∇(∇· (∇φ̃s)

)=∇(∇2φ̃s
)

(4.5a)

∇2
(
∇×ψ̃s

)
=∇×

(
∇2ψ̃s

)
(4.5b)

∇·
(
∇×ψ̃s

)
= 0 (4.5c)

Subsequently, a series ofmathematical operations and term rearrangements are applied
to the Navier equations leading to the following:
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∇(
(λs +2Gs)(∇2φ̃s)+ω2ρsφ̃s

)+∇×
(
Gs(∇2ψ̃s)+ω2ρsψ̃s

)
= 0 (4.6)

In the preceding equation, it is evident that the equations of motion are satisfied if both
terms vanish, thus resulting to:

∇2φ̃s + ω2

c2
P

φ̃s = 0 (4.7)

∇2ψ̃s +
ω2

c2
S

ψ̃s = 0 (4.8)

where cP =√
(λs +2Gs)/ρs and cS =

√
Gs/ρs denote, respectively, the P- and S-wave velo-

cities.

4.1.1. Propagation of dilatational (P) waves in a linear elastic solid
�e scalar Helmholtz equation that governs the propagation of dilatational waves in a linear
elastic medium reads:

∇2φ̃s +k2
Pφ̃s = 0 (4.9)

where kP =ω/cP denotes the P wavenumber. A solution is sought in the form of separation
of variables as follows:

φ̃s = Rφ(r )Θφ(θ)Zφ(z) (4.10)

By substitutingEq. (4.10) intoEq. (4.9) anduponseparating variables twice, the following
three equations are obtained:

d2Rφ

dr 2 + 1

r

dRφ

dr
+

(
k2

P −k2
z −

n2

r 2

)
Rφ = 0 (4.11)

d2Θφ

dθ2 +n2Θφ = 0 (4.12)

d2Zφ
dz2 +k2

z Zφ = 0 (4.13)

where kz is the vertical wavenumber and n is the azimuthal index. �e general solutions to
the preceding equations are readily available andmay be written as:

Rφ(r ) = d1 Jn(kαr )+d2Yn(kαr ) (4.14)

Θφ(θ) = d3 cos(nθ)+d4 sin(nθ) (4.15)

Zφ(z) = d5eikz z +d6e−ikz z (4.16)

where Jn(kαr ) and Yn(kαr ) denote, respectively, the Bessel functions of first and second
kinds of order n, kα =

√
k2

P −k2
z is the radial wavenumber and di are arbitrary constants.
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It is noted that the harmonic variation in the azimuth should also satisfy the period-
icity/continuity condition: Θφ(θ) = Θφ(θ+ 2π). �erefore, the azimuthal index n may
acquire only non-negative integer values. Conclusively, the scalar potential φ̃s may be
expressed as:

φ̃s = (d1 Jn(kαr )+d2Yn(kαr ))(d3 cos(nθ)+d4 sin(nθ))(d5eikz z +d6e−ikz z ) (4.17)

4.1.2. Propagation of distortional (S) waves in a linear elastic solid
�epropagation of distortional (S) waves in a linear elasticmedium is governed by the vector
Helmholtz equation:

∇2ψ̃s +k2
Sψ̃s = 0 (4.18)

where kS =ω/cS is the S wavenumber. In the context of elastodynamics, different solution
forms have been put forward for ψ̃s. �e solution of Eq. (4.1) by means of potentials is
customarily employed on the basis of the Helmholtz decomposition theorem. Accordingly,
a solution in the form of Eq. (4.4) is assumed together with the so-called gauge condition
that requires ψ̃s to be solenoidal, i.e. ∇·ψ̃s = 0. Based on these considerations the solution
to the vector Helmholtz equation reads [217, 161, 163, 218, 219]:

ψ̃s =∇× (
χ̃ez

)+∇×∇× (
η̃ez

)
(4.19)

where χ̃ and η̃ are scalar potentials. �e gauge condition poses an additional constraint
that relates the three displacement components to the four components (in total) of φ̃s and
ψ̃s. However, ψ̃s needs not to be necessarily solenoidal and another solution form can be
employed for Eq. (4.18) that reads [220, 221, 163, 222]:

ψ̃s = χ̃ez +∇× (η̃ez ) (4.20)

BothEqs. (4.19) and (4.20), upon substitution intoEq. (4.18), reduce the vectorHelmholtz
equation to the following two scalar Helmholtz equations:

∇2χ̃+k2
Sχ̃= 0 (4.21)

∇2η̃+k2
S η̃= 0 (4.22)

�erefore, the general solution to Eqs. (4.21) and (4.22) has identical form to Eq. (4.17)
and the general solution of ψ̃s may be found by direct substitution. Similar to the solenoidal
gauge condition that Eq. (4.19) is subject to, an additional constraint to reduce the number
of independent components of potentials is essential for Eq. (4.20). For that purpose, a
generalized gauge condition can be formulated as follows [163]:(∇2 +k2

S

)(∇·ψ̃s

)
= 0 (4.23)

As canbe seen, the solenoidal gauge condition corresponds to the trivial solutionofEq. (4.23),
i.e. ∇·ψ̃s = 0, whereas Eq. (4.20) satisfies Eq. (4.23) in a non-trivial manner.
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�e preceding developments were based on the resolution of the displacement field in
terms of Lamé potentials. It is worth noting that another representation can be formulated
based on the so-called Somigliana potentials [223]. However, the displacement field is
mostly expressed in terms of Lamé potentials, due to their compactness and simplicity
[220]. Naturally, Lamé and Somigliana potentials are related to each other, with the latter
fulfilling the solenoidal gauge condition.

Considering that the general solutions for the two displacement potentials φ̃s and ψ̃s
have been obtained, the general solution to the displacement field can be formulated by
substitution. For purposes that will become evident in the ensuing developments, the
general solution of the displacement field is arranged in a compact matrix form as follows
[219]:

ũs = Tn Cn f̃ (4.24)

where the diagonal matrix Tn is an azimuthal matrix that expands the displacement field
into a Fourier series in θ. �e displacement fieldmay be either symmetric or anti-symmetric
with respect to θ = 0, with the corresponding azimuthal matrices defined as:

Ts
n =

 cos(nθ) 0 0
0 −sin(nθ) 0
0 0 cos(nθ)

 (4.25a)

Ta
n =

 sin(nθ) 0 0
0 cos(nθ) 0
0 0 sin(nθ)

 (4.25b)

Conclusively, the Bessel matrix Cn is defined as follows:

Cn =


dJn(kr )

d(kr )

n

kr
Jn(kr ) 0

n

kr
Jn(kr )

dJn(kr )

d(kr )
0

0 0 Jn(kr )

 (4.26)

where k is the radial wavenumber variable and Jn(kr ) denotes the Bessel function of the first
kind of ordern. �e formofCn implies that P and Swaves have common radial wavenumber,
satisfying compatibility and equilibrium conditions to adjoin adjacent soil layers with a
view to problems of horizontally stratifiedmedia. Finally, f̃ provides both the dependency
in frequency and in the vertical coordinate in terms of exponential functions - the latter are
omitted here for reasons that will become apparent in the ensuing.

4.2. Normal modes of a layered soil medium via the Thin-Layer
Method (TLM)

In the following, the development of the�in-LayerMethod (TLM) is presented. As a generic
framework, the TLM is a superbly efficient computational method to analyse dynamic
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problems in two and three dimensions [224]. �emain field of application is the analysis of
wave motion in layeredmedia, where the TLM has been instrumental in a vast number of
contributions in the last decades. �e fundamental concept of the TLM lies in the partial
discretization of the problem at hand only along the direction of layering. In particular,
a finite element discretization is performed along one spatial coordinate combined with
analytical solutions in the remaining directions. In essence, the TLM corresponds to the
discrete version of the normal modes approach, that is widely used in acoustic, elastic and
acousto-elastic problems [218, 225], and by virtue of its discrete formulation the modes are
obtained via a quadratic eigenvalue problem circumventing the need for complex search
techniques.

Lysmer [226] was the first to employ a form of the TLM, albeit the development of its
present formulation is attributed toWaas [227] and Kausel [75]. Following these seminal
works, a number of studies followed focusing on various aspects of wave propagation in
layered soil media and soil-structure interaction problems [228–232]. Subsequent develop-
ments were realized extending the application of the TLM to fluid [233–235], poro-elastic
[236, 237] and anisotropicmedia [238]. More recently, the TLM - owing to its versatility - has
been coupled to other powerful frameworks as, for instance, the stochastic finite element
method (SFEM) for the analysis of stochastic media (stochastic TLM) [239–241], and the
domain reduction method (DRM) [242, 243] for the simulation of seismic scenarios with
topographic features [244]. �is is by nomeans an exhaustive list of the most significant
developments in the topic, but merely a brief outline of some of the major works that have
formed the TLM up to the present.

Without further delay, let us consider a soil layer of infinite horizontal extent comprised
of a linear elastic isotropic material with mass density ρs and Lamé constants λs andGs.
�e equations of motion in cylindrical coordinates (r,θ, z)may be expressed in matrix form
as follows [219]:

ps +LT
σ,sσs −ρs

∂2us

∂t 2 = 0 (4.27)

where us is the displacement vector, ps is the body force vector and σs is the soil stress
tensor. �e preceding quantities are defined as:

us =
[

ur,s uθ,s uz,s
]T (4.28)

ps =
[

pr,s pθ,s pz,s
]T (4.29)

σs = Dsεs =
[
σr,s σθ,s σz,s τθz,s τr z,s τrθ,s

]T (4.30)

where the constitutive matrixDs and the strain tensor εs read:

Ds =



λs +2Gs λs λs 0 0 0
λs λs +2Gs λs 0 0 0
λs λs λs +2Gs 0 0 0
0 0 0 Gs 0 0
0 0 0 0 Gs 0
0 0 0 0 0 Gs

 (4.31)
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εs = Lε,sus =
[
εr,s εθ,s εz,s γθz,s γr z,s γrθ,s

]T (4.32)

�e differential matrix operators Lσ,s and Lε,s may be written as:

Lσ,s(·) = Lr,s
∂(·)
∂r

+Lθ,s
1

r

∂(·)
∂θ

+Lz,s
∂(·)
∂z

+ (
Lr,s −L1,s

) 1

r
(·) (4.33a)

Lε,s(·) = Lr,s
∂(·)
∂r

+Lθ,s
1

r

∂(·)
∂θ

+Lz,s
∂(·)
∂z

+L1,s
1

r
(·) (4.33b)

and the partition matrices Lr,s, Lθ,s, Lz,s and L1,s are defined as follows:

Lr,s =



1 0 0
0 0 0
0 0 0
0 0 0
0 0 1
0 1 0

 , Lθ,s =



0 0 0
0 1 0
0 0 0
0 0 1
0 0 0
1 0 0

 (4.34a)

Lz,s =



0 0 0
0 0 0
0 0 1
0 1 0
1 0 0
0 0 0

 , L1,s =



0 0 0
1 0 0
0 0 0
0 0 0
0 0 0
0 −1 0

 (4.34b)

For a soil layer bounded by two horizontal planes (see Fig. 4.1), the boundary conditions
in the presence of external tractions read:

t(u)
s =−s(u)

z (4.35a)

t(l)
s = s(l)

z (4.35b)

where the superscripts (u) and (l) correspond to the upper (z = zu) and lower (z = zl) hori-
zontal planes, respectively. �e traction vector ts and the stress vector along a horizontal
surface sz are defined as:

ts =
[

tr,s tθ,s tz,s
]T (4.36)

sz =
[
τzr,s τzθ,s σz,s

]T = LT
z,sσs (4.37)

To deal with our numerical problem the spatial discretization of the soil domain is
needed. At this point the physical domain is discretized into thin horizontal layers of
infinite lateral extent, and the displacement field us can be approximated within each thin
layer l as:

us = Tn Cn Nsxs (4.38)
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Figure 4.1: A horizontal soil layer of infinite lateral extent with t(u)
s and t(l)

s being the traction applied at the upper
and lower horizontal boundary surfaces, respectively.

As can be seen, the chosen dependencies in the radial (Cn ) and circumferential (Tn )
directions are based on the exact solutions that were derived in Section 4.1. Finally, the soil
displacements are interpolated along z based on the vector of interface values xs and the
interpolation matrixNs which can be expressed as:

Ns =
[

N l
1(z)I3 N l

2(z)I3
]

, xs =
[

x(u)
s

x(l)
s

]
(4.39)

whereN l
1(z) andN l

2(z) are linear Lagrange polynomials and I3 is a 3×3 identitymatrix. �e
interpolation matrixNs for quadratic interpolation polynomials can be found in Appendix
B.

By substituting Eq. (4.38) into Eqs. (4.27) and (4.35) and considering that the adopted
solution is approximate, residual body forces and surface tractions at the boundaries are
generated. By invoking the principle of virtual work and requiring that residual body forces
and surface tractions perform virtual work equal to zero, we obtain:

+∞∫
0

2π∫
0

(
δu(u)

s

)T
r(u)

s +
(
δu(l)

s

)T
r(l)

s +
zl∫

zu

δuT
s rs,Vdz

r dθdr = 0 (4.40)

where rs,V is the vector of residual body forces in the interior of the thin layer and r(u)
s , r(l)

s
are the vectors of residual surface tractions at the upper (z = zu) and lower (z = zl) bounding
horizontal planes, respectively. �e residuals r(u)

s , r(l)
s and rs,V are defined as:

r(u)
s = t(u)

s +s(u)
z (4.41a)

r(l)
s = t(l)

s −s(l)
z (4.41b)

rs,V =ps +LT
σ,sDsLε,sus −ρs

∂2us

∂t 2 (4.41c)

At this point, Eq. (4.27) in the absence of external body forcesmay be expanded as follows
[219]:



4.2. Normal modes of a layered soil medium via the Thin-Layer Method (TLM)

4

59

z

rInterface 1

Thin
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Thin layer 1
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Figure 4.2: A layered soil stratum discretized according to the TLM, overlying a rigid bedrock.

Dr r
∂2us

∂r 2 +Dθθ
1

r 2

∂2us

∂θ2 +Dzz
∂2us

∂z2 + (Drθ+Dθr )
1

r

∂2us

∂r∂θ

+ (Dr z +Dzr )
∂2us

∂r∂z
+ (Dθz +Dzθ)

1

r

∂2us

∂z∂θ
+Dr r

1

r

∂us

∂r

+ (Dθ1 −D1θ)
1

r 2

∂us

∂θ
+ (Dr z +Dz1 −D1z )

1

r

∂us

∂z
−D11

us

r 2 −ρs
∂2us

∂t 2 = 0 (4.42)

where all the partition matricesDi j are defined in Appendix B.
By substituting Eq. (4.38) into Eq. (4.42), it is possible to factor out the azimuthal and

radial dependencies:

Tn Cn

(
Dzz

∂2χs

∂z2 −k (Dr z +2Dz1 −Dzr −2D1z )
∂χs

∂z
−k2Dr rχs −ρs

∂2χs

∂t 2

)
= 0 (4.43)

where χs = Nsxs and for notation convenience the vectorws is also defined as:

ws = Dzz
∂2χs

∂z2 −k (Dr z +2Dz1 −Dzr −2D1z )
∂χs

∂z
−k2Dr rχs −ρs

∂2χs

∂t 2 (4.44)

So the vector of residual body forces in the layer can be written as:

rs,V =ps +Tn Cn ws (4.45)
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In a similarmanner, the stresses in the principal surface z may also be rewritten as [219]:

sz = Dzr
∂us

∂r
+Dzθ

1

r

∂us

∂θ
+Dzz

∂us

∂z
+Dz1

us

r
(4.46)

Based on the assumed solution, Eq. (4.46) can be expressed in the following compact
form:

sz = Tn Cn Szχs (4.47)

where Sz denotes a differential matrix operator that is defined as:

Sz (·) = Dzz
∂(·)
∂z

+k(Dzr −2Dz1)(·) (4.48)

Returning back to the principle of virtual work, we employ Eqs. (4.45) and (4.47) and in
the absence of surface loads at the boundary surfaces and external body loads in the domain,
Eq. (4.40) may be recasted as follows:

+∞∫
0

2π∫
0

−δuT
s Tn Cn Szχs

∣∣∣(l)

(u)
+

zl∫
zu

δuT
s Tn Cn wsdz

r dθdr = 0 (4.49)

Recasting the surface integral that corresponds to the boundary terms into a volume
integral and performing a series of mathematical operations, we obtain:

+∞∫
0

2π∫
0

δxT
s HT

n Hn

− zl∫
zu

NT
s Sz

dNs

dz
xs dz −

zl∫
zu

dNT
s

dz
Sz Nsxs dz +

zl∫
zu

NT
s ws dz

r dθdr = 0 (4.50)

where the matrixHn is defined as:

Hn =
[

Tn Cn 0
0 Tn Cn

]
(4.51)

�e principle of virtual work holds for any arbitrary variation δxT
s and given that the

matrix HT
n Hn is not singular, the following may be deduced upon transformation to the

frequency domain:

zl∫
zu

(
k2 (

NT
s Dr r Ns

)+k

(
dNT

s

dz
(Dzr −2Dz1)Ns +NT

s (Dr z −2D1z )
dNs

dz

)

+dNT
s

dz
Dzz

dNs

dz
−ρsω

2NT
s Ns

)
x̃s dz = 0 (4.52)

Based on the latter expression the TLMmatricesAl ,Bl ,Gl andMl are defined as follows:

Al =
zl∫

zu

NT
s Dr r Ns dz (4.53)
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Bl =
zl∫

zu

dNT
s

dz
(Dzr −2Dz1)Ns dz +

zl∫
zu

NT
s (Dr z −2D1z )

dNs

dz
dz (4.54)

Gl =
zl∫

zu

dNT
s

dz
Dzz

dNs

dz
dz (4.55)

Ml = ρs

zl∫
zu

NT
s Ns dz (4.56)

�e above matrices characterize a single thin layer l and their explicit expressions are
given for linear and quadratic approximation polynomials in Appendix B. By overlapping
all the thin layer matrices in the usual finite element sense, the matrices for the layered soil
medium are formed in the context of the TLM (see Fig. 4.2). Subsequently, we group the
degrees of freedom instead of the layer interfaces by rearranging rows and columns, which
leads to the followingmatrix equation:(

k2A*+kB*+G*−ω2M*
)
φ= 0 (4.57)

where the soil matrices A*, B*,G* andM* are defined as:

A* =
 Ar 0 0

0 Aθ 0
0 0 Az

 , B* =
 0 0 Br z

0 0 0
Bzr 0 0

 (4.58)

G* =
 Gr 0 0

0 Gθ 0
0 0 Gz

 , M* =
 Mr 0 0

0 Mθ 0
0 0 Mz

 (4.59)

It is noted that all the above sub-matrices are symmetric, except for Bzr and Br z for which
Bzr = BT

r z holds.
As canbe seen, Eq. (4.57) describes aquadratic eigenvalueproblemin the radialwavenum-

ber k. A standard solution technique for quadratic eigenvalue problems is linearization, by
transforming the original equation into a generalized linear eigenvalue problem of double
dimension and then solving the latter bymeans of standard techniques [192, 245, 246]. How-
ever, the special structure of the matrices in Eqs. (4.58) and (4.59) may be exploited and two
uncoupled generalized linear eigenvalue problemsmay be obtained for the normalmodes of
generalized Rayleigh (SV-P) and Love (SH) waves, respectively. So the generalized Rayleigh
(SV-P) eigenvalue problem becomes a linear non-symmetric eigenvalue problem in k2:(

k2A+C
)[

φr
kφz

]
=

[
0
0

]
(4.60)

where the matrices A and C are defined as:
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A =
[

Ar 0
Bzr Az

]
(4.61a)

C =
[

Gr −ω2Mr Br z

0 Gz −ω2Mz

]
(4.61b)

and similarly the generalized Love (SH) eigenvalue problem becomes linear and symmetric
as follows: (

k2Aθ+Cθ

)
φθ = 0 (4.62)

where Cθ = Gθ −ω2Mθ andφr , φθ andφz are the radial, circumferential and vertical
modal displacements at the interfaces (i.e. eigenvectors), respectively.

4.3. Half-space approximation in the TLM via Perfectly Matched
Layers (PMLs)

�enumerical simulationofwavepropagation in infinite or semi-infinitemedianecessitates
in most cases the truncation of the physical domain into a finite computational one [247].
�e bounded domain is necessarily accompanied by artificial boundary conditions that aim
to minimize the reflections of incident waves in order to obtain an accurate solution. �e
number of available approaches for that purpose is vast, yet they can be broadly categorized
into two groups: (i) non-local and (ii) local boundaries [248]. �e former correspond to
rigorous and highly accurate, even exact in certain cases (e.g. boundary elements [249, 250]),
approaches that reproduce the spatial and temporal non-locality of the unboundedmedium
reaction. However, non-local approaches may become cumbersome and computationally
impractical, thus one may resort to less accurate yet simple local boundary conditions [251].
In the latter approaches, larger computational domains may be required compared to non-
local ones and the range of applicability is reduced, yet these drawbacks are tolerated on the
premise of simplicity and compactness.

In the context of the TLM, the original contributions in the topic focused on layered
soil strata supported by rigid bedrock and the effect of the underlying half-space was com-
pensated by appropriate enlargement of the computational domain [227, 75, 252, 253, 229,
230]. Hull and Kausel [254] introduced a second-order paraxial approximation to the half-
space dynamic stiffness that was shown to be in agreement with the paraxial boundary
condition developed by Clayton and Engquist [255]. Following that development, the study
of unbounded domains in the context of the TLMwas customarily performed in conjunction
with paraxial boundaries (PBs) [256–259] and further aspects of PBs have been elaborated
in [260].

Presently, the Perfectly Matched Layers (PMLs) comprise one of the most successful
techniques to describe semi-infinite media with finite computational domains augmented
with absorbing boundary layers. �e concept of PMLs was introduced in a seminal work by
Berenger [261] for the absorption of electromagnetic waves and their excellent performance
rendered them supreme in electromagnetic wave propagation. �eir potential was early
recognized by the community of solid mechanics and they were widely adopted in problems
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of elastodynamics [262–265]. In the ensuing, we will briefly outline the coupling of PMLs to
the TLM [266, 267] in order to formulate an approach for wave propagation in semi-infinite
layered media that combines the merits of these two powerful techniques.

HEL

HPML PML
domain

0

z
Propagating
wave

Attenuated

Reflected

Regular
domain

Figure 4.3: Attenuation of propagating waves inside the PML region.

�e key principle of PMLs lies in the transformation of the spatial coordinates into
complex-valued coordinates by means of complex stretching functions. In our case, the
vertical coordinate z is transformed to a complex-valued stretched coordinate z as follows:

z =
z∫

0

εs
(
z ′,ω

)
dz ′ (4.63)

where εs (z,ω) denotes the complex-valued stretching function and the form that leads to
the standard PML formulation reads:

εs (z,ω) =αs (z)+ βs (z)

iω
(4.64)

whereαs (z) is the scaling function andβs (z) is the attenuation function; the former controls
the amplitude decay of evanescent waves, while the latter is responsible for the attenuation
of propagatingwaves. In principle, there are different classes of stretching functions εs (z,ω)
that can be employed and define the PML formulation in the problem. A different form of
complex-valued stretching function has been proposed, giving rise to the so-called complex-
frequency-shifted (CFS) PMLs [268–271], with a view to achieving long-time numerical
stability in time domain simulations. In general, the CFS-PMLs require the evaluation of
convolution integrals for inversion to time domain, so a non-convolutional formulation of
CFS-PMLs has also been recently developed to circumvent that complexity [271]. Conclus-
ively, the last category of complex-valued stretching functions is based on the combination
of the regular and CFS formulations that leads to a higher-order PMLmodel.
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In the ensuing, the standard PML formulation is employed according to Eq. (4.64).
Both scaling and attenuation function should increase monotonically with z and ensure
continuity of the vertical coordinate at the interface between the regular and the PML
domains, i.e. αs (HEL) = 1 and βs (HEL) = 0 [272]. To comprehend the rationale of these
general rules it suffices to consider a harmonic wave propagating in a 1-D PMLmedium:

exp(iωt )exp
(−iγz

)= exp(iωt )exp
(−iℜ(γ)ℜ(z)+ iℑ(γ)ℑ(z)

)
exp

(ℜ(γ)ℑ(z)+ℑ(γ)ℜ(z)
)

(4.65)
where γ denotes the wavenumber and:

ℜ(z) =
z∫

0

αs (z ′) dz ′ (4.66)

ℑ(z) =− 1

ω

z∫
0

βs (z ′) dz ′ (4.67)

As can be seen in Eq. (4.65), the last exponential term is effectively controlling the amplitude
of the waveform in the PML region. For a propagating wave (ℜ(γ) > 0 and ℑ(γ) = 0), the
argument of the preceding term becomes negative and decreases monotonically, based on
the preceding rules for the attenuation function βs (z). �erefore, the initially propagating
wave becomes an evanescent wave with strongly increasing attenuation along the propaga-
tion direction (see Fig. 4.3). In the case of an evanescent wave (ℑ(γ) < 0), the contribution of
the scaling function αs (z) is to artificially enlarge the domain, accelerating the amplitude
decrease of the waveform inside the PML. Admittedly, this simple yet effective example
demonstrates the basic principle of PMLs and offers a glimpse of their superb capability to
attenuate both propagating and evanescent waves.

Based on the previous considerations, the scaling and attenuation functions are cus-
tomarily expressed as follows [271]:

αs (z) =
1, 0 ≤ z ≤ HEL

1+α0

(
z −HEL

HPML

)mPML

, HEL ≤ z ≤ HEL+HPML

(4.68)

βs (z) =
0, 0 ≤ z ≤ HEL

β0

(
z −HEL

HPML

)mPML

, HEL ≤ z ≤ HEL+HPML

(4.69)

where HEL is the thickness of the regular domain, HPML is the thickness of the PML domain
andmPML is the degree of the polynomial attenuation inside the PMLs. �e scalar tuning
parameters α0 and β0 control the scaling and attenuation inside the PMLs, respectively.

By employing the stretching function used by Collino and Tsogka [263] and substituting
it in Eq. (4.63), the complex-valued stretched coordinate z is obtained:

z = z − iH(z −HEL)
β0HPML

ω(mPML+1)

(
z −HEL

HPML

)mPML+1

(4.70)
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where H(·) is the Heaviside function. �erefore, Eq. (4.70) describes both the vertical co-
ordinate in the elastic domain and its complex-valued stretched counterpart in the PML
domain.

�e treatment up to this point has set the stage for the introduction of PMLs in the
TLM. Consider a PML domain with thickness HPML that is discretized into NPML thin layers
of equal thickness. Following the procedure developed by Kausel and de Oliveira Barbosa
[266], PMLsmay be readily incorporated in the TLM by simply replacing the thickness of
the l-th thin layer hl in the PML domain with a complex-valued stretched thickness hl (see
Fig. 4.4), defined as:

hl = HPML

[
1

NPML

− i
β0

ω(mPML+1)

((
l

NPML

)mPML+1

−
(

l −1

NPML

)mPML+1)]
, 1 ≤ l ≤ NPML (4.71)

z

rInterface 1

Regular
layers

PMLs

Thin layer 1

Thin layer i

Interface 2

Interface i

Interface i+1

Thin PML 1
Interface j

Interface j+1

Figure 4.4: A layered soil half-space modelled via the TLM+PMLs.

In essence, the substitution of the layer thicknesshl with its complex-valued counterpart
hl is reflected in the TLM matrices given in Eqs. (4.53) to (4.56). In particular, the TLM
matrices corresponding to thin PMLsmay be expressed as:

Al = hl

hl
Al , Bl = Bl , Gl = hl

hl

Gl , Ml = hl

hl
Ml (4.72)
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It follows that the generalized Rayleigh (SV-P) and Love (SH) eigenvalue problems will
result in new eigenvalues and normal modes. Next to the physical modes, the so-called
Berenger modes are obtained, which contribute to the overall response in a manner that
resembles the branch cut integrals of the half-space [267]. Conclusively, a comparison of
PMLs against PBs showcased their superior performance, rendering PMLs the approach of
choice for half-space approximation in the TLM [267, 273].

4.4. Green’s functions for spatially arbitrary sources in layered
soil media

Elastodynamics problems and their solution has traditionally attracted the interest of the
mechanics community for more than a century [274–276]. �e response elicited by dynamic
loads acting on or within a medium, customarily termed as fundamental solution (full-
space) or Green’s function (half-space), has been the subject of a vast number of studies with
applications ranging from seismology and geophysics to acoustics [161, 218, 225]. In the
ensuing, the focus lies on the Green’s functions of a linear elastic layeredmedium, which
has been a classical topic in the field of soil dynamics and soil-structure interaction.

Numerous techniques are available for the derivation ofGreen’s functions for layeredme-
dia, albeit most elastodynamics problems are addressed by: (i) the transfer matrix method
[277, 278], (ii) the method of wavenumber integration [279–283], (iii) the stiffness matrix
method [252, 284, 265] and (iv) the�in-LayerMethod (TLM) [78, 253, 285, 232]. An extensive
reviewof the preceding - aswell asmany other - approaches and their relevant developments
up to the present has been recently presented by Dineva et al. [286]. As may be already
apparent, in the ensuing the Green’s functions for a layeredmedium are obtained via the
TLM based on the framework developed by Kausel [78].

We proceed to derive the Green’s functions in the frequency-space domain due to a
spatially arbitrary dynamic load. First, the displacement vector ũ(i )

s at i-th elevation (layer
interface) is defined in the frequency-space domain as:

ũ(i )
s =


ũ(i )

r,s

ũ(i )
θ,s

ũ(i )
z,s

=
∞∑

n=0
Tn

∞∫
0

kCn û(i )
s,n dk (4.73)

where û(i )
s,n denotes thedisplacement vector at elevation z(i ) in the frequency-(radial-azimuthal)-

wavenumber domain. In the ensuing, the symbols (̃·) and (̂·) refer to quantities in the
frequency-space and frequency-(radial-azimuthal)-wavenumber domains, respectively.
Transformation to the latter can be achieved by means of the discrete Fourier transform in
the azimuth θ and the Hankel transform in the radial coordinate r :

û(i )
s,n =


û(i )

r,s,n

û(i )
θ,s,n

û(i )
z,s,n

= an

∞∫
0

r Cn

2π∫
0

Tn ũ(i )
s dθdr (4.74)

where a0 = 1

2π
and an = 1

π
(n 6= 0). �e azimuthal matrix Tn is a placeholder that can be
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substituted by its symmetric (Ts
n ) or anti-symmetric (Ta

n ) form, depending on the case
considered. For the external load vector, an analogous transformation pair is defined at
the j -th layer interface, involving the exact same transformations employed in Eqs. (4.73)
and (4.74), as follows:

p̃( j )
s =


p̃( j )

r,s

p̃( j )
θ,s

p̃( j )
z,s

=
∞∑

n=0
Tn

∞∫
0

kCn p̂( j )
s,n dk (4.75)

in the frequency-space domain and:

p̂( j )
s,n =


p̂( j )

r,s,n

p̂( j )
θ,s,n

p̂( j )
z,s,n

= an

∞∫
0

r Cn

2π∫
0

Tn p̃( j )
s dθdr (4.76)

in the frequency-(radial-azimuthal)-wavenumber domain.
As shown in Section 4.2, the problem of spatially arbitrary wave motion in a three-

dimensional layeredmedium can be decomposed in terms of the azimuthal index n and the
generalized Rayleigh (SV-P) and Love (SH)wavemotions. �e overall response is constructed
by superposition of these components. So we proceed to formulate the Green’s functions on
the basis of these considerations, for the SV-P and SH cases.

�e following equilibrium equation is formed, on the basis of the TLM, between ex-
ternal sources of the SV-P type and displacements in the frequency-(radial-azimuthal)-
wavenumber domain: (

k2A+C
)[

ûr,n

kûz,n

]
=

[
p̂r,n

kp̂z,n

]
(4.77)

Upon introducing the matrices Y and Z, we premultiply Eq. (4.77) by YT and substitute
ZZ−1 = I:

YT
(
k2A+C

)
ZZ−1

[
ûr,n

kûz,n

]
= YT

[
p̂r,n

kp̂z,n

]
(4.78)

where the matrices Y and Z encapsulate the left and right eigenvectors, respectively:

Y =
[
Φr KR

Φz

]
, Z =

[
Φr

Φz KR

]
(4.79)

In Eq. (4.79), KR = diag{
kR,1 kR,2 · · ·} is a diagonal matrix containing the wavenumbers

kR,m associatedwith the generalizedRayleigh (SV-P)modes; the latter are foundbyEq. (4.60).
As can be seen in Eq. (4.79), the left and right eigenmatrices Y and Z are defined on the basis
of the modal matricesΦr andΦz :

Φr =
[
φr,1 φr,2 · · · ]

(4.80a)

Φz =
[
φz,1 φz,2 · · · ]

(4.80b)
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�e previous steps are necessary in order to invoke the following orthogonality and
normalization relations employed byWaas [227] and Kausel [78]:

YTAZ = KR, YTCZ =−K3
R (4.81)

By employing Eq. (4.81) and carrying out the relevant mathematical operations we
obtain: [

ûr,n

kûz,n

]
= Z

(
k2I−K2

R

)−1
K−1

R YT
[

p̂r,n
kp̂z,n

]
(4.82)

Finally, it can be shown that the response of the soil medium in the presence of spatially
arbitrary SV-P sources can be brought into the following form in the frequency-(radial-
azimuthal)-wavenumber domain:

[
ûr,n

ûz,n

]
=

 Φr DRΦ
T
r kΦr K−1

R DRΦ
T
z

1

k
Φz DRKRΦ

T
r Φz DRΦ

T
z

[
p̂r,n
p̂z,n

]
(4.83)

whereDR = (
k2I−K2

R

)−1.
�e corresponding procedure for the displacement field due to SH-type sources is sim-

ilar, yet simpler. First, the modal matrix Φθ is obtained from the generalized Love (SH)
eigenvalue problem:

Φθ =
[
φθ,1 φθ,2 · · · ]

(4.84)

Basedon theTLM, forSH-type sources in the frequency-(radial-azimuthal)-wavenumber
domain the equilibrium equation reads:(

k2Aθ+Cθ

)
ûθ,n = p̂θ,n (4.85)

�e corresponding orthogonality and normalization relations for the generalized Love
(SH) modes read:

ΦT
θAθΦθ = I, ΦT

θCθΦθ =−K2
L (4.86)

Premultiplying with ΦT
θ
, employing ΦθΦ

−1
θ

= I and following the same steps as in
the SV-P case, the displacements in the presence of spatially arbitrary SH sources in the
frequency-(radial-azimuthal)-wavenumber domain may be expressed as:

ûθ,n =ΦθDLΦ
T
θ p̂θ,n (4.87)

whereDL = (
k2I−K2

L

)−1 and KL = diag{
kL,1 kL,2 · · ·} is a diagonal matrix containing the

wavenumbers kL,m associated with the generalized Love (SH) modes as found by Eq. (4.62).
At this point, it is possible to formulate a complete expression of the soil response in

terms of any spatially arbitrary source, as a combination of SV-P and SH sources, as follows:
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ûs,n =
 ûr,n

ûθ,n

ûz,n

=


Φr DRΦ

T
r 0 kΦr K−1

R DRΦ
T
z

0 ΦθDLΦ
T
θ 0

1

k
Φz DRKRΦ

T
r 0 Φz DRΦ

T
z


 p̂r,n

p̂θ,n
p̂z,n

 (4.88)

Based on Eq. (4.88), the displacement vector û(i )
s,n at the i-th layer interface due to a

harmonic spatially arbitrary load p̂( j )
s,n at the j -th layer interface may be explicitly written as:

û(i )
s,n =



NR∑
m=1

(
φ(i )

r,mφ
( j )
r,m

k2 −k2
R,m

p̂( j )
r,s,n + kφ(i )

r,mφ
( j )
z,m

kR,m(k2 −k2
R,m)

p̂( j )
z,s,n

)
NL∑

m=1

φ(i )
θ,mφ

( j )
θ,m

k2 −k2
L,m

p̂( j )
θ,s,n

NR∑
m=1

(
kR,mφ

(i )
z,mφ

( j )
r,m

k(k2 −k2
R,m)

p̂( j )
r,s,n + φ(i )

z,mφ
( j )
z,m

k2 −k2
R,m

p̂( j )
z,s,n

)


(4.89)

Transformation of Eq. (4.89) to the frequency-space domain is achieved based on Eq. (4.73).
In the following chapters, the Green’s functions due to axisymmetric (n = 0) circular

ring sources will be of interest. Without further delay, let us derive the Green’s functions
due to the following harmonic unit ring sources:

Figure 4.5: Schematic of a radial ring source at elevation z j .

(i) A unit radial ring load (see Fig. 4.5)
�e load vector for a harmonic radial ring source at the j -th layer interface in the

frequency-space domain reads:

p̃( j )
s =

 δ(r −R)
0
0

 (4.90)
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Upon application of the transform given in Eq. (4.76), the load vector in the frequency-
(radial-azimuthal)-wavenumber is obtained as:

p̂( j )
s,0 =

1

2π

∞∫
0

r C0

2π∫
0

Ts
0

 δ(r −R)
0
0

 dθdr =
 −R J1(kR)

0
0

 (4.91)

Combining Eqs. (4.73), (4.89) and (4.91), the displacements at the i-th layer interface in
the frequency-space domain read:

ũ(i )
s = Ts

0

∞∫
0

kC0û(i )
s,0 dk = R



NR∑
m=1

φ(i )
r,mφ

( j )
r,m

∞∫
0

k
J1(kr )J1(kR)

k2 −k2
R,m

dk

0
NR∑

m=1
φ(i )

z,mφ
( j )
r,mkR,m

∞∫
0

−J0(kr )J1(kR)

k2 −k2
R,m

dk


(4.92)

(ii) A unit torsional ring load (see Fig. 4.6)
�e transformation pair of the load vector for a harmonic torsional ring source at the

j -th layer interface reads:

p̃( j )
s =

 0
δ(r −R)

0

 , p̂( j )
s,0 =

 0
−R J1(kR)

0

 (4.93)

Subsequently, the associated displacement vector at the i-th layer interface may be
expressed in the frequency-space domain as:

ũ(i )
s = Ta

0

∞∫
0

kC0û(i )
s,0 dk = R


0

NL∑
m=1

φ(i )
θ,mφ

( j )
θ,m

∞∫
0

k
J1(kr )J1(kR)

k2 −k2
L,m

dk

0

 (4.94)

(iii) A unit vertical ring load (see Fig. 4.7)
Finally, for a harmonic vertical ring source at the j -th layer interface the load vector

transformation pair is defined as:

p̃( j )
s =

 0
0

δ(r −R)

 , p̂( j )
s,0 =

 0
0

R J0(kR)

 (4.95)

and the corresponding displacement vector at the i-th layer interface reads:
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Figure 4.6: Schematic of a torsional ring source at elevation z j .

ũ(i )
s = Ts

0

∞∫
0

kC0û(i )
s,0 dk = R



NR∑
m=1

φ(i )
r,mφ

( j )
z,m

1

kR,m

∞∫
0

−k2 J1(kr )J0(kR)

k2 −k2
R,m

dk

0
NR∑

m=1
φ(i )

z,mφ
( j )
z,m

∞∫
0

k
J0(kr )J0(kR)

k2 −k2
R,m

dk


(4.96)

Figure 4.7: Schematic of a vertical ring source at elevation z j .

As can be seen, Eqs. (4.92), (4.94) and (4.96) involve certain integrals corresponding to
inverse Hankel transforms - the latter are analytically tractable (see [78, 253]). �erefore,
one can truly obtain the Green’s functions in the frequency-space domain in an explicit form
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in the context of the TLM for circular ring sources. Furthermore, a collection of Green’s
functions for various other source types have explicit expressions in the context of the TLM
and can be found in [78, 285].

Conclusively, one may utilize the preceding framework to compute the soil response
at a set of receivers in the frequency-space domain for any input excitation of interest. A
rearrangement of the obtained displacements and the applied loads per degree of freedom
leads to the following:

ũs =
 ũr,s

ũθ,s

ũz,s

=
 F̃r r F̃rθ F̃r z

F̃θr F̃θθ F̃θz

F̃zr F̃zθ F̃zz

 p̃r,s

p̃θ,s

p̃z,s

 (4.97)

As can be seen in Eq. (4.97), the flexibility matrix in the frequency-space domain pos-
sesses additional coupling matrices, compared to the flexibility matrix in the frequency-
(radial-azimuthal)-wavenumber domain given by Eq. (4.88). �ese couplingmatrices are
associated with dynamic loads that excite simultaneously SV-P and SHwaves, which are
amenable to decoupling in the (radial-azimuthal)-wavenumber domain, yet not in the spa-
tial one. �is occurrence corresponds to non-axisymmetric motions (n > 0), thus in the
problems of interest in the following chapters F̃rθ = F̃θr = F̃zθ = F̃θz = 0.

Conclusively, energy dissipation in the soilmaterialmay be included bymeans of the cor-
respondence principle in the preceding developments [287]. �erefore, hysteretic soil damp-
ing is considered in the formof complex-valued Lamé constants, where the damping ratio ξs

is taken identical for both dilatational and distortional waves, i.e. λ∗
s =λs

(
1+2iξssgn(ω)

)
andG∗

s =Gs
(
1+2iξssgn(ω)

)
.

4.5. Validation of Green’s functions via the TLM+PMLs
In the preceding sections, a framework to obtain the Green’s functions of a linear elastic
layered half-space in an accurate and computationally efficientmanner has been formulated
based on the TLM coupled with PMLs (TLM+PMLs). �e Green’s functions constitute an
indispensable element of the pile installation models to be presented in Chapters 6 and 7.
For that purpose, we proceed to validate the results obtained via the TLM+PMLs, bymeans of
a numerical example, against a 3-D FEmodel developed in COMSOLMultiphysics® software
[191]. In particular,

ρs [kg/m3] Gs [MPa] νs [-] ξs [-]

Upper soil layer 2000 20 0.3 0.025

Bottom half-space 1800 23 0.499 0.025

Table 4.1: Soil parameters for the validation case of the Green’s functions.
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(a) (b)

Figure 4.8: Comparison of Green’s functions (ũz,s) obtained via the TLM+PMLs and the FE (COMSOL) model for a
unit vertical ring load applied at r = 0.4m (source) and receiver radius at (a) r = 0.4m and (b) r = 0.8m.

�e case study is based on a two-layer soil profile as described in Table 4.1. �ree types of
harmonic ring sources, namely vertical, radial and circumferential, with frequency f = 23
Hz are applied at z = 4m and r = 0.4m, while the Green’s functions are evaluated along
the vertical axis and at different radii. �e upper layer is unsaturated with a thickness
HEL,1 = 5mand underlain by a water-saturated half-space. In the TLM+PMLs, the half-space
is substituted by a linear elastic layer with thickness HEL,2 = 5 m and a PML domain with
thickness HPML = 5 m. For the half-space approximation in the COMSOL model, a linear
elastic layer with large depth (HEL,2 = 25m) is modelled and supported below by a horizontal
low-reflecting boundary. Similarly, the radial extent of the FEmodel is finite with a domain
radius of 50m and bounded by a cylindrical low-reflecting boundary. In the TLM+PMLs,
such an approach is altogether avoided, due to analytical solutions employed in the radial
direction that satisfy naturally the radiation condition at infinity. It is noted that the Solid
Mechanics module was used for the COMSOLmodel and the computations were performed
in the frequency domain.

In Figs. 4.8 and 4.9, the vertical (ũz,s) and radial (ũr,s) Green’s functions due to a vertical
ring source are displayed, respectively. Furthermore, the Green’s functions are computed
for all cases at two different receiver radii, i.e. r = 0.4m and r = 0.8m. As can be seen, the
agreement between the results of the TLM+PMLs and the FE (COMSOL)model is remarkable
for both vertical and radial displacements; a discrepancy appears solely in Fig. 4.8a for the
source-receiver concurrence, which is expected due to a singularity at that point.
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(a) (b)

Figure 4.9: Comparison of Green’s functions (ũr,s) obtained via the TLM+PMLs and the FE (COMSOL) models for a
unit vertical ring load applied at r = 0.4m (source) and receiver radius at (a) r = 0.4m and (b) r = 0.8m.

(a) (b)

Figure 4.10: Comparison of Green’s functions (ũr,s) obtained via the TLM+PMLs and the FE (COMSOL) models for
a unit radial ring load applied at r = 0.4m (source) and receiver radius at (a) r = 0.4m and (b) r = 0.8m.
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Figures 4.10 and 4.11 depict the radial (ũr,s) and vertical (ũz,s) components of the Green’s
functionsdue to a radial ring source for the source/receiver radii given above. Similarly to the
case of the vertical ring source, there is great agreement for both displacement components
and at all receiver locations. Conclusively, Fig. 4.12 presents the Green’s functions due to a
circumferential ring source, which also displays virtually identical results for the twomodels;
in this case, the sole displacement component is the circumferential one (ũθ,s). By means of
these three examples, the validation of the presented TLM+PMLs framework is showcased,
with a particular emphasis on the computation of three types of Green’s functions for ring
sources that will be utilized in the following chapters.

(a) (b)

Figure 4.11: Comparison of Green’s functions (ũz,s) obtained via the TLM+PMLs and the FE (COMSOL) models for
a unit radial ring load applied at r = 0.4m (source) and receiver radius at (a) r = 0.4m and (b) r = 0.8m.
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(a) (b)

Figure 4.12: Comparison of Green’s functions (ũθ,s) obtained via the TLM+PMLs and the FE (COMSOL) models for
a unit circumferential ring load applied at r = 0.4m (source) and receiver radius at (a) r = 0.4m and (b) r = 0.8m.

4.6. Conclusions
In this chapter, we treated the propagation of mechanical disturbances in a 3-D layered soil
medium, with a view to overcome the limitations of local and frequency-independent soil
reaction analogues. As a point of departure, the wave motion in linear elastic solids was
studied, laying the foundations for the subsequent numerical developments. In particular,
the TLM has been proposed, as a superbly efficient numerical scheme for the analysis of
wave propagation in linear elastic layeredmedia. Additionally, the incorporation of PMLs
in the TLM has been presented, as an advantageous method to approximate the underlying
half-space via complex-valued coordinate stretching.

Bymeans of the TLM+PMLs framework, the Green’s functions for ring sources in the
frequency-space domain are obtained and validated. �e previous developments are presen-
ted in a generic manner, as their applicability vastly exceeds the topic of this thesis. In
the ensuing chapters, the Green’s functions derived via the TLM+PMLs are integrated in a
numerical framework for pile driving analysis, thus facilitating the computation of pile and
soil responses during installation.



5
Gentle Driving of Piles (GDP) at a
sandy site combining axial and
torsional vibrations: field tests

In the preceding chapters, the theoretical background related to dynamic pile and soil
behaviours during driving has been presented, along with relevant numerical approaches.
�e latter components will be merged into a computationally efficient framework for pile
installation analysis purposes. However, let us first elucidate the motivation for these
developments, i.e. the demand for sustainable methods of offshore monopile installation.
In the last decade, alarming concerns have emerged regarding the environmental impact of
the most commonly adoptedmonopile installationmethod, i.e. impact hammer driving.
Two courses of action have been followed to tackle this problem: i) introduction ofmitigation
measures in impact piling and ii) use of alternative installation techniques. �e former
approach has a major practical drawback, irrespectively of the mitigation efficiency, i.e. the
increase of offshore wind energy cost. �erefore, mitigationmeasures effectively lead the
sector further away from itsmain goal, namely cheaper andmore accessible wind energy. To
that end, alternative pile installation techniques have been progressively drawing attention
in the last decade and an increasing number of research projects are focusing on their
investigation.

Gentle Driving of Piles (GDP) is a new technology for the vibratory installation of tubular
(mono)piles, in line with the preceding objective. Its founding principle is that both high
installation performance and low levels of noise emissions can be achieved by applying to the
pile a combination of axial and torsional vibrations. Preliminary development and demon-
stration of the proposed technology have been the main objectives of the GDP research
programme. To this end, onshore medium-scale pile installation tests have been performed
in sand, using both impact and vibratory driving methods (including GDP). Following the
development of a purpose-built GDP device and the geotechnical characterisation of the test

Parts of this chapter have been published in Tsetas et al. [51].
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site, the main body of this chapter describes the execution and the experimental findings of
theGDPfield tests. Focus is on the installation performance ofGDPpiles, which is discussed
with the aid of structural and ground monitoring data. �e comparison between piling
data associated with GDP and standard axial vibratory driving showcases the potential of
the proposed installation technology, particularly with regard to the beneficial effect of the
torsional vibration component.

5.1. Sustainable installation of offshore monopiles - the ’Gentle
Driving of Piles’ method

Ever more countries worldwide are working to shift their energy mix towards renewables.
In this regard, offshore wind energy will continue to play an increasingly relevant role as an
abundant, cost-effective resource [26], on the condition that the pace of its technological
development is further expedited. Presently, 15-24% of the investment for the construction
of an offshore wind farm relates to the design, production and installation of substructures
[24]. Continual improvement of engineering methodologies in this area is therefore key to
achieving further cost reduction [288, 289, 194].

Based on the latest EuropeanWind Energy Association (EWEA) report [26], over 80%
of the existing offshore wind turbines (OWTs) in European wind farms are founded on
so-called monopile foundations, which are most commonly installed bymeans of impact
hammering. �e impact technology is to date very well established in the offshore industry
[27]. However, impact installation in certain soil conditions (e.g., dense sands)maybe slower
than desired [44, 48], which causes increased installation costs and, potentially, higher pile
damage undermany hammer blows [46, 166]. Moreover, the high levels of underwater noise
emissions generated during pile installation are known to be harmful to marine life [290].
�is alarming concern has motivated over the years the enforcement of strict regulations to
limit its negative environmental effects [35]. Such regulations include the adoption of costly
soundproofingmeasures (e.g. bubble curtains, isolation casings, and cofferdams) [291, 36].

An interesting alternative to impact piling is provided by vibratory technologies, which
can achieve quiet(er)/fast pile installation through the application of low-amplitude axial vi-
brations. �e input excitation is induced through the harmonic rotation of eccentricmasses,
usually at a frequency no larger than 40 Hz. Vibratory driving devices (or simply ‘vibro-
hammers’) have beenmanufactured and studied since the 1940s [44], and their benefits in
terms of driving performance and noise emissions are known since then [45, 46, 292, 290].
�e use of piling loads lower than in impact driving can effectively reduce both damage and
radial expansion of the pile during driving – the latter (Poisson effect) is a major culprit
for noise emissions and larger soil resistance to driving [200]. Despite its obvious benefits,
vibratory driving is not yet widely adopted for offshore piling. Its use is hindered by a
number of factors, including the incompleteness (and inconclusiveness) of available field
observations. Major knowledge gaps are also associatedwith dynamic soil behaviour during
vibro-driving [47] and the effects of vibro-installation on the operational performance of
the pile [293, 50, 48].

To boost the improvement of vibratory installation methods, a new technology – the
Gentle Driving of Piles (GDP) – has been recently proposed in the Netherlands as the core of
a joint industry project led by the Delft University of Technology (TU Delft) [49]. GDP tar-
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gets enhanced piling performance and reduced noise emissions through the simultaneous
application of low-frequency/axial and high-frequency/torsional vibrations. �is thread of
research was originally inspired by observing that torsional vibrations do not induce radial
pile expansion during driving, which was foreseen to play in favour of both driving and
acoustic performances. A preliminary demonstration of the proposed technology was pur-
sued by performingmedium-scale field tests on identical test piles installed using impact
and vibratory driving methods, including GDP.�e tests were performed in sandy soil at
the Port of Rotterdam and comprised two distinct stages, the first to investigate the driving
performance, and the second to explore installation effects in the response of the test piles
to repeated lateral loading [54]. �e GDP field campaign adds to the research carried out
within other major programmes onmonopile foundations, such as PISA [288] in the UK,
REDWIN [294] andWAS-XL [295] in Norway, Vibro [296, 48] in Germany, and DISSTINCT
[297], MIDAS [298] and BLUE Piling [299] in the Netherlands.

�e GDP project was initiated to achieve a preliminary demonstration of the proposed
pile driving method at medium scale – particularly, with respect to the inclusion of a high-
frequency torsional vibration component. In what follows, the installation performance of
the GDPmethod is described in detail with the aid of selected field measurements, and in
comparison to other piling data associated with standard axial vibro-driving. Although the
GDP project was originally motivated by offshore wind developments, this work aims to
attract the interest of the piling community, and foster further studies for an even broader
range of applications and geotechnical conditions.

5.2. The GDP shaker
�e design of the GDP shaker built on the idea of installing monopiles by combining low-
frequency/axial and high-frequency/torsional motions. �e effectiveness of such a pile
driving approach was envisioned in light of the following considerations:

(i) high-frequency torsional motion is expected to reduce the axial frictional resistance
along the pile shaft. Since torsional vibrationmobilises soil shear resistance in the
circumferential direction, less frictional resources are left to oppose axial pile penet-
ration [300, 301];

(ii) as a consequence of point (i), the axial vibratory load that is necessary to drive the
pile can be reduced, so the amplitude of the generated stress waves will decrease
in comparison to the case of axial vibro-driving. �erefore, the amplitude of the
radial pile motion (Poisson effect) will also decrease, as a result of the so-called ring
frequency effect [205, 193];

(iii) the mentioned decrease in radial pile expansion during installation is believed to be
beneficial for two reasons. First, it is expected to enable faster penetration, due to
lower soil confinement; secondly, less radial expansion of the pile results in reduced
underwater noise emissions.

It is worth recalling that, under axisymmetric loading conditions (e.g. in the presence of
a torque), the circumferential motion of an elastic cylindrical structure (pile) is uncoupled
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from its axial and radial deformations [180]. �erefore, a pile subjected to torsional vibra-
tions can only transmit shear (SH) waves to the surrounding media [219]. Such shear waves
cannot propagate in seawater [225], nor do they contribute to underwater noise.

Importantly, the preference for torsional vibrations at high frequency relates to the short
wavelengths that are accordingly transmitted to the soil, which decay in amplitude within
a short distance from the pile. �erefore, the torsional mobilisation of the soil resistance
(also reduced by pore pressure build-up [301]) is expected to occur locally around the pile
shaft, and likely with a lower impact on the post-installation lateral response than in the
case of low-frequency axial vibrations.

(a) (b)

Figure 5.1:�eGDP shaker: (a) view at themanufacturing site; (b) shaker connected to a test pile via a bolted flange
connection
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A novel GDP shaker was designed and purpose-built for the execution of GDP tests (see
Fig. 5.1). As shown in Fig. 5.2, the shaker is formed by three gear trains directly connected
to masses that can counter-rotate with a given (constant) eccentricity. Such masses are
accommodated within exciter blocks, which are in turn bolted to a support structure. In its
first design, the GDP shaker operated by means of hydraulic motors and was connected to
each test pile via a bolted flange connection, which was a preliminary solution adopted for
the GDP experimental campaign (see Fig. 5.1b).

Similarly to conventional vibratory hammers, the eccentric masses in the GDP shaker
are set to counter-rotate in order to generate a dynamic load along a certain direction. In
the case of the GDP shaker, the exciter block at the top of the support structure can generate
a harmonic load Fa(t ) along the pile axis with frequencyΩa. To induce torsional and axial
vibrations of different amplitude and frequency, a separate set of exciter blocks was needed.
To this end, two additional exciter blocks weremechanically connected through a shaft with
the twofold goal of (i) assembling all units into a single substructure and (ii) positioning
them properly. Furthermore, vibratory loads were generated based on a control system
that ensured synchronisation, so as to obtain the application of a torque Mt (t ) of frequency
Ωt at the top of the pile (Fig. 5.2). Overall, the GDP shaker can apply to the pile head load
combinations of the following type:

Fa(t ) = maeaΩ
2
a sin(Ωa t ) (5.1)

Mt (t ) = Rt mt etΩ
2
t sin(Ωt t ) (5.2)

where maea and mt et denote, respectively, the axial and torsional eccentric moments*
associated with the eccentric masses in both exciter blocks. �e distance between the centre
of the pile cross-section and the torsional eccentric masses is denoted by Rt (see Fig. 5.2).
According to Eqs. (5.1) and (5.2), the resulting load amplitudes are mainly governed by the
frequency as the eccentric moments (maea andmt et ) and the radius (Rt ) are fixed.

Figure 5.3 illustrates the axial and torsional inputs generated based on the counter-
rotation of the respective eccentric masses, along with their representation as part of a
pile-soil interaction model. �e axial load is associated with the force resultant of Fa1(t )
and Fa2(t ), whereas the torque is the net moment resultant of Ft1(t ), Ft2(t ), Ft3(t ), and
Ft4(t ); it is remarked that the net force resultant of the latter set of forces is always equal
to zero. Further details regarding GDP shaker specifications may be found in Gómez and
Metrikine [302].

�e final design of the GDP shaker stemmed directly from the conceptual foundation
of the GDP method, though with constraints imposed by practical limitations. In the
installation tests described in the following, the axial vibration frequency of GDP was set to
be similar to the frequency adopted for a parallel axial vibro-driving test, so as to gain insight
into the effect of the torsional vibrations. On the other hand, the GDP torsional frequency
was maximised within the manufacturing constraints of the GDP shaker. In particular, the
choice of the torsional frequency was driven by the need of maintaining comparable power
capacity for the installation tests associated both with GDP and axial vibro-driving. �e

*Although not rigorously moments, ma ea and mt et are usually referred to as such within the vibro-driving
community.
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Figure 5.3: Generation of axial and torsional loads through the rotating eccentric masses in the GDP shaker.

final design of the GDP shaker enabled the application of axial and torsional vibratory loads
with frequencies up to 23 Hz and 80 Hz, respectively.

�emain technical specifications of the GDP shaker and the standard vibratory hammer
(CV-25) used in the GDP campaign are summarised in Table 5.1.

GDP shaker Vibro-hammer CV-25
Axial shaker Torsional shaker Axial shaker

Total mass [kg] 5150 4100
Eccentric momentme [kgm] 15 4 25
Rotational speed [rpm] 1400 4800 1800
Operational power [kW] 72 188 263

Table 5.1: Technical specifications of the GDP shaker and the axial vibro-hammer CV-25.

5.3. Geotechnical site characterisation
�eGDP experimental campaign was planned to achieve a preliminary proof of concept
for the proposed pile driving technology. To this end, medium-scale onshore field tests
in sandy soil were performed. Both geotechnical and logistical considerations led to the
selection of the Maasvlakte II site at the Port of Rotterdam, which offers space and facilities
for field tests and is presently supporting an increasing number of offshore-related demon-
stration projects. �is part of the port comprises North Sea sand that was used to create a
reclaimed/compacted site. �e GDP field tests took place at the Maasvlakte II over a surface
of 60×60m2 in the so-called area E. Site location and access routes are shown in Fig. 5.4.
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5.3.1. Site investigation
�e geotechnical investigation of the test site was carried out between June and September
2019 in two phases of preliminary and detailed site investigation (PSI and DSI, respectively).
First, the PSI was performed to identify suitable locations for installing the test piles, mostly
in light of site homogeneity considerations. During the PSI, 25 cone penetration tests with
pore water pressure measurements (CPTu’s) were performed down to a target depth of
10 m over a regular grid with a spacing of about 12.5 m. After reaching the target depth,
dissipation tests were executed for the CPTu’s at the four corners of the site to measure
the depth of the ground water table. Each dissipation test lasted for one hour, which was
deemed sufficient for the achievement of hydraulic steady-state conditions. Based on these
tests, the depth of the water table was estimated to range, at the time of the PSI, between
3.5 and 4.5 m depth below the ground surface (phreatic fluctuations are to be expected at
the test site due to its proximity to open waters).

Figure 5.4: GDP test site and its access routes – edited after [303].

After selecting all pile locations based on the PSI, the DSI phase was carried out by
performing additional tests around and at the centre of each pile location (see Fig. 5.5).
Eight test piles were installed along with a larger reaction pile (RP).�e latter would later
serve the post-installation loading tests [54]. �e embedded length was 8 m for all piles, i.e.
2 m less than the target depth of the CPTu’s. Four of the test piles, henceforth referred to as
Main Test Piles (MTPs), were extensively instrumented and installed with a radial, centre-
to-centre distance of 12 m from the RP.�e other four piles, labelled as Auxiliary Test Piles
(ATPs), were installed uninstrumented for preliminary testing purposes, at a distance of 16
m from the RP (see Fig. 5.5). As detailed in the following, the fourMTPs were installed using
different driving methods, namely impact hammering (IH), axial vibro-driving (VH), and
GDP. For the two standard drivingmethods, the Hydrohammer S-90 and the vibro-hammer
CV-25 were used for the IH and VH piles, respectively.

�e DSI programme included:

– four CPTu tests at the ATP locations (target depth: 10 m);

– four Seismic CPTu (SCPTu) tests at the MTP locations (target depth: 10 m);
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Figure 5.5: Site layout (left – ATPs in grey) and soil monitoring around the MTPs (right). For better readability, the
site layout on the left is shown with MTP diameters and distances from the central RP that are not to scale.

– four hydro-profiling tests with mini pump tests (HPT-MPT) around the MTPs (target
depth: 15 m).

– borehole sampling around the MTPs. A total of eight boreholes (two per MTP) of 10
m depth and 15 cm diameter were dug and simultaneously sustained with hollow
PVC tubes, which would then enable the execution of Cross-hole Sonic Logging (CSL)
tests;

– three boreholes (15 cm diameter) around eachMTP to host groundmonitoring instru-
mentation, including Shape Acceleration Arrays (SAAVs), soil pressure cells (SPCs),
and pore water pressure transducers (PPTs). As shown in Fig. 5.5, two pairs of SPC
and PPT sensors were installed in two different boreholes to reach different target
depths (6 m and 8m).

�e layout and locations of DSI tests and boreholes are shown on the right side of Fig. 5.5
for the case of the MTP GDP1. Both PSI and DSI data confirmed the predominantly sandy
nature of the soil deposit from the ground surface (NAP +5 m –Normaal Amsterdams Peil, i.e.
AmsterdamOrdnance Datum) down to approximately 10 m below (NAP -5m). �e upper 5 m
consist of the dredgedmaterial employed to create the Maasvlakte II site, which overlays a
layer of sand and clayey/silty sand from the holocenic Naaldwijk formation [304].

�e whole SCPTu dataset is visualised in Fig. 5.6 after post-processing according to
Robertson’s soil classification framework (SBTn charts) [305, 306]. Robertson’s approach
relies on the notion of normalised soil behaviour type, which is identified for any soil at hand
based on the values of relevant dimensionless indices – namely, the normalised cone resist-
ance (Qtn ) and the normalised friction ratio (Fr ). In Fig. 5.6, all data points from the four
soil profiles lie mostly in zone 6 (sand), with some excursions into zone 5 (sand-mixtures)
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Figure 5.6: Robertson’s soil classification at the four MTP locations.

(a) (b) (c)

Figure 5.7: Profiles of (a) cone tip resistance (qc ), (b) shear wave velocity (cS) and (c) relative density (Dr).

and zone 7 (gravelly sand to sand). �e cone penetration data from the four MTP locations
indicate altogether reasonably consistent profiles of soil type/properties – see Figs. 5.7a
and 5.7c.

�e profiles in Fig. 5.7 of (a) cone resistance (qc ), (b) shear wave velocity (cS), and (c)
relative density (Dr ) (obtained following [307]) suggest that the site comprises very dense
sand (Dr = 80−100%) in the upper 5 m, andmedium-dense to dense sand (Dr = 60−80%)
in the 5 m below. An exception can be observed at the VH pile location (Fig. 5.7), where the
SCPTu data showmuch lower cone resistance and relative density (Dr < 40%) in the lower 5
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m. Obviously, the effects of this site anomaly will require special attention when comparing
the results of different pile tests.

�e cS profiles obtained from seismic measurements are largely consistent with the
corresponding qc-Dr distributions, with cS values mostly in the range from 200 to 300
m/s (and occasionally up to 350m/s). �e VH location exhibits the same aforementioned
anomaly also in terms of cS – note that a significant portion of the profile exhibits cS values
lower than 150 m/s.

Soil samples were also extracted from the aforementioned boreholes for further charac-
terisation of the soil at the Maasvlakte II site. Visual observation, borehole analysis, and
particle size distribution (PSD) tests (see Fig. 5.8) confirmed the presence of two different
sand types, respectively in the upper and lower 5 m of the deposit. Overall, sieving andmi-
crometric analyses revealed that sand, slightly silty and slightly gravelly, with very spherical
andmoderately round particles, was present down to 10 m below the ground surface. Two
distinct batches of soil were created by mixing borehole material associated with either
sand type: soil from the upper layer (0-5 m) was used for Batch 1 (B1), while Batch 2 (B2) was
made of soil from the lower layer (5-10 m). As reported in Table 5.2, rather similar index
properties were found for B1 and B2 sand samples.

gs emax emin D50 Cu Cc

[–] [–] [–] [mm] [–] [–]
B1 2.65 0.82 0.44 0.317 2.346 0.912
B2 2.65 0.83 0.46 0.244 2.161 0.845

Table 5.2: Index properties of Maasvlakte II sand (gs – specific gravity; emax – maximum void ratio; emin –
minimumvoid ratio;D50 –median particle diameter;Cu – coefficient of uniformity;Cc – coefficient of curvature).

Figure 5.8: Particle size distribution (PSD) curves for two representative soil samples from batches B1 and B2.
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5.4. Installation tests and pile-soil monitoring
5.4.1. Field testing programme
Asmentioned in the previous section, nine piles in total were used for field testing purposes,
namely four MTPs, four ATPs, and one RP, with geometrical specifications reported in
Table 5.3. �e distinction between MTPs and ATPs relates to their different roles in the
GDP experimental campaign. �e ATPs were exploited for preliminary testing of the GDP
shaker, so that relevant driving settings could be first adjusted during the installation of
non-instrumented test piles. After the installation of the ATPs, it was decided to target
for MTPs axial and torsional vibration frequencies approximately equal to 16.5 Hz and 63
Hz, respectively. �e latter pair of values was chosen to exploit as much as possible the
vibratory capacity of the GDP shaker, though without compromising the testing agenda or
operational safety. An axial frequency of around 24.8 Hz was adopted for the installation of
the VH pile. �e ATPs also served post-installation tests, in that they enabled the calibration
of specific settings for the subsequent lateral loading tests [54]. Since the main goal of the
GDP campaign was to monitor and analyse the performance of the MTPs, they were fully
instrumented prior to all tests. �e present experimental data were exclusively recorded
on/around the MTPs, with a focus on the GDP piles.

Test piles Reaction pile
Length Lp 10 m 10m

Embedded length Le 8 m 8m
Outer diameter Dp 0.762 m 1.6 m
Aspect ratio Lp/Dp 13.12 6.25
Wall thickness hp 0.0159 m 0.02 m

Table 5.3: Geometrical characteristics of the piles indicated in Fig. 5.5.

Extensive instrumentation of all MTPs and the soil in their surrounding was set in place
to monitor the complex soil-pile response during driving – see Fig. 5.5. As previously men-
tioned, the final pile locations were selected based on the results of the PSI and DSI, with
mutual distances limited by the length of the lateral loading frame that was employed after-
wards [54]. �e circular arrangement shown in Fig. 5.5 allowed tominimise the interference
between consecutive pile driving tests. In chronological order, the MTPs were installed
as follows: (i) GDP2 (30/10/2019), (ii) GDP1 (30/10/2019), (iii) VH (31/10/2019) and (iv) IH
(4/11/2019). �e installation sequencemay generally be relevant to assessing the interference
of consecutive pile installations over a limited soil surface. However, since all pile-to-pile
distances were larger than 10Dp at the GDP test site, it is argued that such interference
must have been negligible in all instances [114, 308].

�e same installation protocol was followed for all piles, regardless of the specific driving
method. In particular, such a protocol included the following three phases (see Fig. 5.9): (i)
in the first phase, the top flange of the pile was connected to the shaker (for VH and GDP
piles), then the pile was upended by a crane and positioned vertically at the corresponding
installation location. �e pile was stabilised by means of lateral restraints, and driven
for 0.5 m into the soil. At that point the installation was paused to check that all sensors
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were functioning properly; (ii) in the second phase, each pile, still laterally restrained, was
driven further down to 3 m of total penetration; (iii) in the third phase, lateral restraints
were removed and each pile was driven up to the target penetration depth of 8 m. In the
remainder of this work, only data measured during the third phase of the installation
protocol are presented. Such data are believed to be most meaningful in that they relate
to pile penetration in water-saturated soil. It is worth noting that both axial and torsional
vibration frequencies – and therefore the corresponding load amplitudes (cf. to Equations
(5.1)-(5.2)) – were kept constant during the installation tests.

(a) (b) (c)

Figure 5.9: (a) First, (b) second and (c) third installation phases of an ATP.

5.4.2. Pile instrumentation
During the installation of the MTPs, a number of measurements were performed simul-
taneously, both on the piles and in the surrounding soil, in order to monitor the dynamic
behaviour of the complete pile-soil system. As the GDPmethod comprises a combination
of axial and torsional vibrations, non-zero components of motion in all directions were
anticipated. Accordingly, the following sensing instrumentation was deployed:

– two tri-axial micro-electro-mechanical systems (MEMS) accelerometers to record
the dynamic motion of the pile during installation. �eMEMS accelerometers were
positioned 1.56m below the pile head at diametrically opposite locations (see Fig. 5.10
and their technical specifications in Table 5.4);

– fiber Bragg grating (FBG) sensors (12 per side) tomonitor pile strains along the length
(see specifications in Table 5.5). �e same technology has been recently adopted for
pile monitoring during impact driving tests [309]. Two types of FBG configurations
were adopted, namely in-line FBGs and FBG rosettes (see Fig. 5.10). In-line FBGs
were installed at multiple cross sections along the length, two per cross section at
diametrically opposite locations to monitor axial strains. FBG rosettes were placed at
three selected locations along the length, two per cross-section and diametrically op-
posite, in order to monitor strains along the longitudinal and two inclined directions,
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at angles of 60◦ and 120◦ with respect to the horizontal plane;

– two FBG temperature sensors to measure temperature variations on the pile surface
during pile penetration. �e main purpose of such measurements was to obtain
quantitative factors for temperature compensation of the FBGmeasurements. �e
temperature sensors were positioned next to the location of the last FBG sensor
(approximately 35 cm above the pile tip);

– one potentiometer (draw-wire type) to record the penetration of each pile into the soil
by measuring its axial displacement. �emeasurement range of the potentiometer
was±10 m and its accuracy equal to 0.1 mm.

Type of sensor MEMS ADXLL377
Number of sensors per pile 2 (1 per side)

Measurement range ±200 g
Bandwidth (x, y axes) 0.5 Hz – 1300 Hz
Bandwidth (z axis) 0.5 Hz – 1000 Hz
Sensitivity (x axis) 5.8 mV/g
Sensitivity (y axis) 6.5 mV/g
Sensitivity (z axis) 7.2 mV/g

Table 5.4: Technical specifications of tri-axial MEMS accelerometers

Type of FBG strain sensor Sylex FFA-01
Number of sensors per pile 24 (12 per side)

Measurement range ±3000 µm/m
FBGwavelength range 1510 nm - 1590 nm

Fiber coating Polyimide

Table 5.5: Technical specifications of in-line FBG strain sensors.

All the pile sensors operated at a sampling frequency equal to 1 kHz. Additional details
about sensor specifications are provided in Tables 5.4 and 5.5.

5.4.3. Ground monitoring
�e response of the soil surrounding the MTPs was monitored during pile driving tests by
means of the following groundmonitoring instrumentation:

– Eight VWPC2100 RST Instruments sensors containing both soil pressure cells (SPCs)
and pore water pressure transducers (PPTs) were deployed to simultaneously record
the evolution in time of the total radial stress (σr ) and the pore pressure (pw ), with
accuracy and resolution of 5.0 kPa and 0.25 kPa, respectively. For eachMTP and prior
to pile driving, the sensors were installed at two different depths (6 m and 8m below
the ground surface, see Fig. 5.5);



5

90

Figure 5.10: Pile instrumentation.

– shape-acceleration arrays (SAAVs) located at the front side of each pile with respect to
the lateral loading direction (see Fig. 5.5) to record lateral soil displacements during
installation. �e SAAV sensors comprised a cable-shaped series of half-meter rigid
segments from 0.5 m to 8.5 m, which would detect lateral soil displacement through
the tilt of the individual segments.

After installing the above soil sensors in boreholes dug during the DSI, all SPCs, PPTs and
SAAVs were set to sample data at 1 kHz for all pile installation tests.

Finally, cross-hole sonic logging (CSL) tests were performed before and after pile driving
tests, in order to evaluate possible installation effects in the soil by means of P-wave meas-
urements. For these tests, two 10-meter long PVC access tubes were installed at a distance
of 0.5 m and 1.5 m from the pile wall (see Fig. 5.5), while two ultrasonic transmitter/receiver
probes were lowered to the bottom of the tubes. �e transmitted P-waves (50 kHz nominal
frequency) were recorded by the receiver probe at a sample rate of 0.5 MHz. To assess
repeatability, CSL tests were performed twice for each pile before and after installation.

5.5. Field observations during GDP installation
�is section presents relevant field observations associated with the dynamic response of
the MTPs and the surrounding soil during the installation tests – namely, during the third
phase of the installation protocol described above. �e following analysis of field data is a
preliminary effort to demonstrate the potential of the GDPmethod, particularly in compar-
ison to standard axial vibratory driving (VH). Due to site inhomogeneity and the inherent
differences between the considered driving methods (IH, VH, GDP), further interpretation
of the whole dataset may only be achieved through future numerical modelling work.
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5.5.1. Pile penetration rates
Figure 5.11 displays the penetration time series for theVHand the twoGDPpiles. �e red and
blue lines correspond to thedisplacement ofGDP1 andVHasmeasuredby thepotentiometer
(PM), respectively, while the respectivemeasurement for GDP2 is not available due to sensor
failure during driving. �emarkers in the same figure represent the ”slow” measurements
of the driving logging (DL) system, which includes displacement values recorded every 25
cm of pile penetration. Average penetration rates equal to 20.9 mm/s, 37.1 mm/s and 18.7
mm/s were determined for VH, GDP1, and GDP2, respectively, based on the driving logging
system; the more reliable data returned by the potentiometer transducer for VH and GDP1

indicate average penetration rates of 19.8 mm/s and 34.3 mm/s, respectively. �e good
agreement between the data from the potentiometer and the driving log led to consider the
latter reliable also for the GDP2 installation.

As can be observed in Fig. 5.11, GDP1 had a shorter installation time compared to VH
and GDP2 (and therefore a larger penetration rate). Since the two GDP piles were driven
with identical installation settings, the higher installation rate of GDP1 was presumably
due to the lower cone resistance (qc ) and relative density (Dr ) at the corresponding soil
location – see Fig. 5.7. Although VH was installed in weaker soil, GDP1 penetrated at an
almost double average rate. Further, while GDP2 was driven into the stiffest soil (among the
four MTP locations), its average penetration rate was found to be very similar to that of VH
(see Fig. 5.11). �ese facts seem to support that combining axial and torsional vibrations
was indeed beneficial from a pile driving perspective.

Figure 5.11: Pile penetration curves (uR) for VH, GDP1 and GDP2, with average penetration rates (u̇R) obtained
from potentiometer (PM) and driving log (DL) data.

It was also possible to obtain more detailed information about the penetration rates by
numerically differentiating the pile penetration time series – which could be done using
the potentiometer data, therefore only for VH and GDP1. �e differentiated time series
are given in Figs. 5.12a and 5.12b alongside their low-pass filtered counterparts (a moving
average filter with a cut-off frequency of 2 Hz). Figure 5.12b indicates that the penetration
rate of GDP1 was on average fairly constant during installation. In contrast, VH penetrated
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(a) (b)

Figure 5.12: Time evolution of the pile penetration rate
(

duR

dt

)
obtained for (a) VHand (b)GDP1 frompotentiometer

(PM) data.

at a more variable rate, with some abrupt changes during the penetration process – see for
instance the peak around 100 s. Considering the penetration depth reached by the pile tip
of VH after such time (between 4 and 5 m), it is likely that the transition from unsaturated
to saturated soil had a temporary influence on the penetration rate. It is again apparent
that GDP1 driving outperformed VH, especially considering that the latter was installed in
weaker soil (see Fig. 5.7). Overall, the penetration rates observed at the GDP site resemble
quite closely the (high) values reported by [310] during the axial vibro-driving of similarly
sized open-ended pipe piles. Importantly, no refusal was experienced during GDP driving,
as is testified by the rather steady penetration rates in Fig. 5.11.

5.5.2. Power and energy consumption
In addition to pile penetration measurements, the power consumption of the GDP shaker
and the axial vibro-hammer was also monitored to assess the efficiency of the different
methods. In agreement with the GDP shaker specifications in Table 5.1, two independent
exciter blocks were used for the axial and the torsional excitation. In Fig. 5.13a, the power
consumption of the hydraulic power unit (HPU) is plotted against time for the axial excit-
ation provided by the GDP shaker and the axial vibro-hammer; the torsional HPU power
consumption is shown in Fig. 5.13b, exclusively for the two GDP piles.

It is readily apparent that the power consumed to impose torsional vibrations is sub-
stantially larger than its axial counterpart for both GDP1 and GDP2. Generally, the HPU
power consumed for axial loading of both GDP piles was found to be almost identical, and
significantly lower than the power consumed to axially vibrate the VH pile (see Fig. 5.13a).
In contrast, the power associated with the torsional loading of the GDP piles is larger than
that consumed for the VH pile, as one would expect in light of the higher frequency of
torsion. Overall, the power consumed by the GDP shaker lies inside the power capacity of
the VH device, as was indeed a target of the first GDP shaker design in order to enable fair
comparisons.

It is also worth noting that GDP2 consumed through torsion more power than GDP1, as
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(a) (b)

Figure 5.13:HPU power consumption (P ) associated with (a) axial and (b) torsional loads applied to VH, GDP1, and
GDP2.

a likely outcome of the denser soil profile at the GDP2 location – this is also confirmed by
the longer installation time (see Fig. 5.13b). Further, a drop in torsional power consumption
is visible for GDP2 between 50 s to 100 s: since power was delivered to maintain a given
vibration frequency (which was constant during driving), a local reduction in soil resistance
may have caused a temporary power drop of the kind shown in Fig. 5.13. As time elapsed, the
power consumed to axially vibrate both GDP piles slightly decreased with the penetration
depth, while the torsional power tended to increase in time for both piles. Overall, these
trends indicate that the soil resistance to pile driving was mainly overcome through the
torsional mechanism. �is observation strongly supports the conceptual foundation of the
GDPmethod, i.e. the beneficial effect of torsional vibrations in overcoming the frictional
soil resistance along the pile shaft.

Figure 5.14: Time evolution of the total energy consumption (E ) during the installation of VH, GDP1, and GDP2
(both axial and torsional components included for GDP piles).
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As a final comparison between VH and GDP driving performances, the total energy
consumption (both axial and torsional for GDP) is plotted against the installation time in
Fig. 5.14. �e efficiency of the GDPmethod is clearly supported by the fact that GDP1 con-
sumed approximately the same total energy as VH (only 2.8% larger), even thoughGDP1 was
driven in substantially stronger soil. On the other hand, GDP2 required approximately twice
as much energy as needed for GDP1, which wasmostly due to the stronger soil encountered
at that location (see Fig. 5.7). A detailed discussion of energy efficiency matters and their
quantification both for VH and GDP piles is provided by Gómez et al. [52]. For clarity, the
values of average cone resistance along the soil profile, total energy consumption, and the
average penetration rate are summarised in Table 5.6 for VH, GDP1, and GDP2.

VH GDP1 GDP2

Average cone resistance, qc 5.75 MPa 11.9 MPa 18.6 MPa
Total energy consumption, E 33.44 MJ 34.39 MJ 67.38 MJ

Average penetration rate,

(
duR

dt

)
19.8 mm/s 34.3 mm/s 18.7 mm/s

Table 5.6: Comparison of geotechnical properties and driving performance for VH, GDP1, and GDP2.

5.5.3. Pile response during driving
To portray relevant features of the dynamic pile response during GDP, acceleration spectra
have been obtained from the output of the twoMEMS accelerometers. In particular, the
amplitudes of the acceleration spectra (denoted by |F (·)|) are shown in Fig. 5.15 both for
GDP1 and GDP2, and for each spatial direction, i.e. axial, radial and circumferential. �e
driving frequency of the GDP shaker in the axial direction was measured at 16.3 Hz and
16.5 Hz for piles GDP1 and GDP2, respectively. �ese frequencies correspond to well-visible
peaks in Figs. 5.15a and 5.15b. Next to these primary amplitude peaks, which are directly
related to the main driving frequencies, the pile response is amplified at multiple other
harmonics. �e reason for this observation is twofold. First, the shaker itself excites the
system at multiple super-harmonics (of the main driving frequency) due tominor imperfec-
tions in the rotation of the eccentricmasses. �is statement applies to both vibrationmodes
excited in the pile, i.e., axial and torsional. Secondly, the dynamic response of the system
is inherently non-linear even at low vibration amplitudes, and this fact may cause further
amplification of the mentioned super-harmonics [311]. �e extent to which each of these
twomechanisms contributes to the energy content in the super-harmonics has not been
quantified – however, the first mechanism is believed to be dominant. It is also interesting
to note that frequencies (including super-harmonics) associatedwith the torsional vibration
are clearly visible in the other acceleration spectra. By comparing the spectra in Fig. 5.15
for the two GDP piles, it can be stated that the acceleration response is almost identical
regardless of moderately different soil conditions, which indicates strong dependence on
the GDP excitation.

�e amplitudes of the circumferential acceleration spectra show for both GDP piles a
distinct peak at themain torsional driving frequency, i.e., at 62.6Hzand63Hz for pilesGDP1
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(a) (b)

Figure 5.15: Amplitudes of acceleration spectra
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)∣∣∣∣∣ in all directions for piles (a) GDP1 and (b) GDP2.

and GDP2, respectively. Once again, the frequencies of 125 Hz and 188 Hz (approximately),
corresponding to the first and second super-harmonics, are associated with prominent
spectral amplitudes.

(a) (b)

Figure 5.16: Amplitudes of the STFT in axial direction
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)∣∣∣∣∣ for (a) GDP1 and (b) GDP2.

�e acceleration spectra in Fig. 5.15 provide a detailed picture of the frequency content
during the time interval taken into account. Such an interval was chosen to be a 10 s time
windowapproximately in themiddle of the third driving phase. Such a choicewasmotivated
by the abrupt variation in frequency content at the beginning and the end of the driving
process, due to the (de)activation of the GDP shaker. It is however worth recalling that
the acceleration signals recorded during pile penetration may not be a priori regarded as
stationary. InFigs. 5.16 and 5.17 the amplitudes of thediscrete short-timeFourier transforms
(STFTs) of the sensor-averaged pile accelerations - denoted by |STFT(·)| - are shown in
spectrogram form [312]. Specifically, the axial and circumferential components of motion
are presented, as they are themost relevant to the GDP vibratory excitation. In the resulting



5

96

time-frequency analysis, a trade-off between resolution in time and frequency had to be
found, as a consequence of the Gabor limit [313].

(a) (b)

Figure 5.17: Amplitudes of the STFT in circumferential direction
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)∣∣∣∣∣ for (a) GDP1 and (b) GDP2.

Figure 5.16 confirms that the frequency content was relatively constant during the main
part of the installation (phase three), as was expected based on the installation settings (con-
stant frequency) and the steady pile penetration trends observed in Fig. 5.11. �e existence
of the previously identified super-harmonics is confirmed throughout thewhole installation
process. For GDP1, Fig. 5.16a shows that the super-harmonics associated with the axial
driving frequency slightly decreased in amplitude towards the end of driving – conversely,
this observation does not apply to the main driving frequency above 16 Hz and its first
super-harmonic at 33 Hz, which seem to have maintained a fairly constant amplitude. �e
amplitude of the frequency component close to the torsional excitation frequency decreased
significantly towards the end of driving.

�e results of the time-frequency analysis performed for the circumferential acceleration
signals are reported in Fig. 5.17. In this case, the main driving frequency is clearly apparent,
and its energy level is considerably larger than that associated with the super-harmonics.
�is is in full agreement with what has been observed in Fig. 5.15. �e amplification of the
second torsional super-harmonic towards the end of GDP2 installation is further supported
by Fig. 5.17b. Similarly to the case of the axial acceleration (Fig. 5.16), the spectrogram of
the circumferential acceleration (Fig. 5.17) corroborates that the torsional driving frequency
(and the associated amplitude) remained nearly constant during GDP installation, as per
the intended installation settings.

5.5.4. Ground monitoring data
Further insight into the mechanics of GDP can be obtained by inspecting the groundmon-
itoring data. In Fig. 5.18, pore water pressure variations ∆pw (with respect to local, pre-
installation values) are plotted against time for both GDP piles and at two different depths
(6 m and 8m below the ground surface). �e vertical lines in all subplots of Fig. 5.18 indic-
ate the times when the pile reaches a penetration depth of 6 m (location of the first PPT)
and 8m (location of the second PPT and target penetration depth). A common feature of
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(a) (b)

Figure 5.18: Pore water pressure variations (∆pw ) recorded during the installation of (a) GDP1 and (b) GDP2 at
depths, z, equal to 6 m and 8m below the ground surface. �e vertical dashed lines indicate the times when the
pile tip penetration (uR) equals the depths of the two PPT sensors.

all ∆pw trends in Fig. 5.18 is the gradual increase in pore water pressure during driving,
which is consistent with previous observations regarding vibratory driving in saturated
granular soils [301]. Subsequently, excess pore pressures attenuate as pile driving reaches
its conclusion: pore pressure dissipation takes only a fewminutes in a soil as permeable as
that at the Maasvlakte site. �e outlook of Fig. 5.18a (for GDP1) and Fig. 5.18b (for GDP2)
revealsmaximumpore pressure variations in the order of 10 kPa for both piles and reference
depths, although larger ∆pw emerge for the pile installed in denser soil (GDP2). A sudden
increase in pore water pressure is visible at 60 s (approximately 4 m penetration), followed
by a temporary drop in excess pore pressure at z = 6m in Fig. 5.18b. �e former increase
may be attributed to a local inhomogeneity in the GDP2 soil profile between 3 m and 5 m –
cf. to the qc profile in Fig. 5.7a – while the ensuing drop seems to be closely related to the
decrease in torsional power consumption (and therefore in mobilisation of soil resistance)
that has been previously observed for GDP2 in Fig. 5.13. Figure 5.18b does not show a similar
behaviour at z = 8m, whichmay be due to the larger distance of the PPT from the pile tip
during the relevant time interval.

At the same depths where pore water pressures were measured, variations in total
horizontal/radial soil stresses (∆σr ) were also monitored (see Fig. 5.19). �e soil pressure
measurements for GDP2 in Fig. 5.19b show different trends at the two reference depths.
Nonetheless, ∆σr evolves to reach soil pressures lower than the estimated pre-installation
values both at 6 m and 8m below the ground surface –more prominently at the shallower
location (z = 6 m). �e overall reduction in radial (total) confinement is likely associated
with vibration-induced sand densification. Such a densification is indeed expected to be
more significant at shallower soil locations, i.e., where the soil experiences a larger number
of dynamic loading cycles.

As for ∆σr measurements around GDP1, it should be noted that a significantly larger
reduction was measured for no obvious reason – see Fig. 5.19a. Although decreasing ∆σr is
consistently found in both GDP piles, full reliability of soil pressure data around GDP1 may
not be taken for granted. In principle, the stiffness of the SPCs should be similar to the soil
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(a) (b)

Figure 5.19: Total radial soil stress variations (∆σr ) recorded during the installation of (a) GDP1 and (b) GDP2 at
depths, z, equal to 6 m and 8m below the ground surface. �e vertical dashed lines indicate the times when the
pile tip penetration (uR) equals the depths of the two SPC sensors.

stiffness to avoid arching effects and properly capture soil stress conditions. A number of
factors, such as local soil inhomogeneity and/or sensor installation in a soil of quite different
stiffness, might have produced inaccuracies in the measured data.

5.5.5. Impact of GDP on soil stiffness
During the PSI and the DSI, well-established in-situ procedures such as CPTu, SCPTu, and
HPT-MPT were performed. However, it was the first time – to the authors’ knowledge –
that CSL tests were planned for geotechnical investigation purposes; CSL tests are most
usually performed to detect mechanical anomalies in drilled shafts and diaphragmwalls
[314]. Specifically, CSL tests were performed before and after pile installation to evaluate the
impact of GDP on the stiffness of the surrounding soil. Since compression wave velocity cP

is related to the stiffness of the medium, variations in wave velocity can be used for general
quantification of installation effects. Depth-profiles of average compression wave velocity
(tests were performed twice) before and after pile installation are reported in Fig. 5.20. �e
cP profiles in the upper soil layers exhibit significant scatter, and are generally unreliable as a
consequence of unsaturated soil conditions. Conversely, deeper cP measurements appear to
be reliable and in agreement with expectations. In particular, appreciable cP enhancement
can be observed in the lower water-saturated soil, which indicates an overall stiffening of
the soil around the pile. �is finding is consistent with the ∆σr trends shown in Fig. 5.19,
and reinforces the belief that GDP driving can induce soil densification/stiffening with no
apparent evidence of soil degradation.

5.6. Concluding remarks
Recent research related to the GDP project (‘Gentle Driving of Piles’) has been presented in
this chapter. GDP is a TU Delft-led research project on the development of a new vibratory
driving technology for monopiles. Its stepping stone is the idea that both efficient install-
ation and low noise emissions can be achieved by applying to the pile a combination of
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(a) (b)

Figure 5.20: CSL test results: cP profiles obtained before (solid lines) and after (dotted lines) pile installation in the
vicinity of (a) GDP1 and (b) GDP2.

low-frequency/axial and high-frequency/torsional vibrations. To achieve a first demonstra-
tion of the GDP concept, medium-scale field tests were performed at the sandy Maasvlakte
II site in Rotterdam. Such tests included installation experiments with different driving
methods (impact hammering, axial vibro-driving and GDP), followed by cyclic/dynamic
loading of the same piles.

�emain experimental evidence presented in this chapter may be summarised as fol-
lows:

– two test piles have been smoothly installed at the reference site via GDP, with fairly
constant/high penetration rates and no instances of pile refusal;

– the comparison between GDP and axial vibro-installation has highlighted the remark-
able potential of the GDP method. Compared to standard axial vibro-driving, the
GDPmethod enabled faster installation in stiffer soil with comparable total energy
consumption (cf. GDP1 installation data to VH);

– the values of HPU power consumed to impose axial and torsional vibrations have
proven consistent with typical magnitude levels for vibro-piling. Particularly, the
evolution in time of such power values has suggested that the torsional mechanism
contributed the most to pile penetration;

– the frequency and time-frequency analyses of pile acceleration signals have indicated
that frequenciesmainly associatedwith the vibrations of the GDP shaker were excited
during driving, which has turned out to be a nearly stationary process under the
reference site conditions;
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– the hydro-mechanical response of the soil during driving has been found to be in line
with expectations for vibratory driving processes. Pore pressures in the order of a few
kPa built up and rapidly dissipated in the permeable soil at hand. A gradual relaxation
in the total radial soil stress has beenobserved as a likely outcomeof vibration-induced
soil densification;

– the results of in-situ CSL tests have shown an increase in P-wave soil velocity after
pile installation, whichmay be associated with an overall increase in soil stiffness due
to the mentioned densification.

�e field campaign has preliminarily demonstrated the potential of the GDPmethod as
a pile installation technology with high installation performance and low environmental
impact. �e results presented from the installation tests, along with those regarding the
post-installation performance of the test piles [54], encourage further development of the
GDPmethod and its future extension to full-scale offshore conditions. To that end, a set of
numerical tools that can serve for quantitative analysis, interpretation of the installation
tests and design purposes are indispensable for future development and constitute the
focus of the ensuing chapters.
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Anon-linear 3-D pile-soil model for
vibratory pile installation in layered

media

�e scope of the GDP field campaign encompassed various objectives, with a view to further
the bodyof knowledgeon the topic of pile installation. It is apparent that theproof of concept
of the GDPmethod comprised themain novel contribution of the experimental campaign by
itself. Furthermore, the collected dataset and the field observations served another central
purpose of the GDP project, i.e. the comparison of standard pile driving techniques (and
GDP) in terms of installation and post-installation performances. �ese two aspects are
associated with major open research questions in vibratory pile installation. Focusing on
the installation process, we endeavour to advance the state of modelling approaches in
vibratory driving, by joining the numerical developments of the preceding chapters and
utilizing the experimental results of the GDP campaign.

In the ensuing, a vibratory pile driving model is developed that aims to bridge the gap
between the available medium- and high-fidelity approaches and comprises the main novel
contribution of this chapter. �e former approaches possessmultiple empirical components
and are largely based on simplifications, whereas the latter are hindered by computational
and practical aspects. As a consequence, an established modelling approach - applicable to
engineering practice - to study vibratory pile installation cannot be distinguished. �ere-
fore, a modelling framework that can adequately address the physics of the process, while
retaining computational efficiency and engineering applicability is indispensable. With
a view to achieving this aim, the theoretical elements presented in Chapters 2 and 4 are
integrated into a non-linear dynamic pile-soil interaction model. Furthermore, the soil
model parameters are calibrated based on standard in-situ geotechnical measurements,
thus rendering the overall approach SCPT-based. Finally, installation data from the GDP
field tests (Chapter 5) are compared with model predictions - showcasing the predictive

Parts of this chapter have been published in Tsetas et al. [315].
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capabilities of the model - and this framework is further utilized to investigate certain
aspects of the vibratory installation process.

6.1. Numerical modelling of vibratory pile driving
Bottom-fixed foundations are primarily used to support OWTs and amongst the available
concepts, the monopile is the foremost one [25]. �e installation of offshore monopiles is
most commonly performed by means of impact hammering. However, in view of the envir-
onmental concerns related to impact piling and the challenges entailed in the continuous
size increase of monopiles, the investigation and further development of alternative install-
ation methods with low environmental impact are indispensable. At present, the offshore
wind industry is increasingly adopting vibratory techniques, albeit their use in the past
was hindered by a number of factors, including the incompleteness (and inconclusiveness)
of available field observations. To further accelerate this shift, knowledge gaps and open
questions regarding pile drivability, installation efficiency and post-installation effects need
to be addressed [48, 50, 52].

�e available modelling approaches for vibratory pile installation can be broadly divided
into two categories. �e first category comprises high-fidelity models. In these approaches,
computational schemes such as the total Lagrangian [134], the updated Lagrangian [127]
and the Coupled-Eulerian Lagrangian formulation [136] have been employed in conjunction
with advanced soil constitutive models (e.g. hypoplasticity), whereas the pile is treated
as a rigid body. Significant insights can be gained with such approaches, regarding the
post-installation soil stress state and themechanisms of vibratory driving. However, the
limitations of these models lie in their excessive computational cost, which renders them
rather prohibitive for engineering purposes, and the large number of constitutive soil
parameters that need to be calibrated. �e previous cannot be retrieved by standard in-situ
measurements, thus suchmodels require additional extensive laboratory testing.

On the other hand, a range ofmedium-fidelitymodels exists for vibratory driving, albeit
no established approach can be distinguished. One-dimensional (1-D) radial models have
been widely used, where the pile is modelled as a rigid body and the soil is discretized
into concentric rigid cylinders [107, 109]. Such an approach disregards the pile flexible
motion and precludes the consideration of soil layering. Furthermore, 1-D wave equation
models have been adopted from the area of impact piling [316, 47]. In these approaches,
the pile is modelled as a thin rod and the soil reaction is considered through local and
frequency-independent mechanical analogues [84]. However, these approaches were ori-
ginally developed for small-diameter piles and their applicability to offshore monopiles
has been questioned in terms of pile [193] and soil reaction modelling [95]. It is evident
that an engineering-orientedmodel that captures adequately the mechanics of vibratory
installation is essential.

In response to the preceding shortcomings, a computationally efficient model is presen-
ted, that amalgamates rigorous theoretical elements and promising prediction capabilities
in an engineering-oriented framework. A SAFE cylindrical shell model is utilized to rep-
resent the pile and the dynamic response of a layered soil half-space is expressed in terms
of Green’s functions for ring sources. �e latter are obtained via the �in-Layer Method
(TLM) [285], coupled with Perfectly Matched Layers (PMLs) to approximate the underlying
half-space [267, 317]. Furthermore, the non-linear pile-soil interaction is addressed through
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a history-dependent frictional interface and a visco-elasto-plastic tip reaction model, both
characterized on the basis of standard geotechnical in-situmeasurements (i.e. SCPT).�e
solution to the non-linear pile-soil interaction problem is obtained by means of sequential
application of the Harmonic Balance Method (HBM) [318, 319], leading to a computation-
ally efficient yet accurate scheme. �is approach is one of the major contributions of this
chapter, being uniquely inspired by the physics of the installation process, rendering the
computational cost similar to a 1-Dmedium-fidelity approach and is applicable to a broader
class of non-linear systems that possess quasi-periodicity due to amplitude modulation.

6.2. Pile-soil model description
�epresentmodel describes the process of vibratory pile installation. �e pile is represented
as a thin cylindrical shell and the soil medium as a layered half-space. As regards the input
excitation, either a harmonic (or periodic) load can be directly applied at the pile head, or a
mechanical analogue of a few degrees-of-freedom (DoFs) can be coupled with the pile by
virtue of the FE-based framework employed. In the latter case, the harmonic (or periodic)
load is applied at a certain component and the overall interaction is taken into account.
Considering that all the components of our model are symmetric around the vertical axis,
i.e. pile, soil and input excitation, the overall 3-Dmodel is axisymmetric and circumferential
motion is absent. A schematic of the describedmodel is shown in Fig. 6.1 and a flowchart
that outlines the overall computational framework is presented in Fig. 6.2.

Figure 6.1: A pipe pile partially embedded in a layered soil medium.

6.2.1. Modelling of a tubular pile as a thin cylindrical shell
Consider a thin cylindrical shell with wall thickness hp, length Lp andmid-surface radius
Rp. �e thin shell is comprised of linear isotropic elastic material with Young’s modulus
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Figure 6.2: A flowchart of the present computational framework for vibratory pile installation.

Ep, Poisson’s ratio νp and mass density ρp. �e SAFE method is employed to model the
thin cylindrical shell (see Fig. 6.3); the development of this approach has been presented
in detail in Chapter 2. �e process of vibratory pile installation corresponds to an axisym-
metric problem (n = 0) in symmetric configuration, due to the absence of circumferential
motion/loading. Given these considerations, the SAFE shell governing equations reduce to:

Is
p,0

d2us
p,0

dt 2 +Ls
p,0us

p,0 = ps
p,0 (6.1)

where Is
p,0 is the shell mass matrix, Ls

p,0 is the shell stiffness matrix, us
p,0 is the displace-

ment/rotation vector at the nodal rings and ps
p,0 is the vector of consistent forces/moments

at the nodal rings. Specifically, the displacements/rotations and forces/moments vectors
read:

us
p,0 =

 us
0

ws
0
βs

z,0

 , ps
p,0 =

 ps
z0,p

ps
r 0,p

ms
zz0,p

 (6.2)

To further improve the computational aspects of the problem, the shell response is
decomposed in terms of the normal modes in vacuo:

us
p,0 =Φs

p,0qs
0 (6.3)

whereΦs
p,0 is themodalmatrix of the symmetric form forn = 0 andqs

0 denotes the respective
generalized coordinates. In particular, the modal matrixΦs

p,0 reads:
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Φs
p,0 =

 Us
0

Ws
0

Bs
0

 (6.4)

where the modal sub-matricesUs
0,Ws

0 and Bs
0 are defined as follows:

Us
0 =

[
us

0,1 us
0,2 · · · ]

(6.5a)

Ws
0 =

[
ws

0,1 ws
0,2 · · · ]

(6.5b)

Bs
0 =

[
βs

0,1 βs
0,2 · · · ]

(6.5c)

As can be seen, the circumferential modal sub-matrix Vs
0 (equal to zero) is erased for

convenience in Eq. (6.4), as well as in all subsequent shell expressions. �e system of or-
dinary differential equations that govern the shell response is transformed to the space of
generalized coordinates qs

0 and reads:(
Φs

p,0

)T
Is
0Φ

s
p,0

d2qs
0

dt 2 +
(
Φs

p,0

)T
Ls
0Φ

s
p,0qs

0 =
(
Φs

p,0

)T
ps

p,0 (6.6)

u

wv

hl

Ring 1

Ring i

Ring i+1
Lp

θ

z

Ring 2

Figure 6.3: A thin cylindrical shell with axial discretization into nodal rings based on the SAFEmethod.

At this point, it is noted that the vector of consistent forces/moments ps
p,0 encompasses

both external excitation applied to the shell body and the soil reaction terms. Finally, the
pile displacements/rotation vector up and line load vector pp, based on the premises of
axisymmetric response and symmetric configuration, can be obtained as follows:

up =


us

0
0
ws

0
βs

z,0

 , pp = 1

2πRp


ps

z0,p

0
ps

r 0,p

ms
zz0,p

 (6.7)
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6.2.2. Wave motion in a layered half-space via the TLM+PMLs
To attain a physically sound description of the dynamic soil response and to retain computa-
tional efficiency, the TLM+PMLs approach is employed tomodel a layered soil half-space. On
the premise of linear elastic response of the soil medium, this approach can treat arbitrarily
layered soil profiles with exemplary accuracy and efficiency; the relevant formulations are
extensively presented in Chapter 4. In this problem, only vertical and radial motions (and
loads) are present in both pile and soil, leading us to consider only the generalized Rayleigh
(SV-P) modes of the soil medium. Specifically, the generalized eigenvalue problem for the
SV-P waves is written as: (

k2A+C
)[

φr
kφz

]
=

[
0
0

]
(6.8)

where k is the radial wavenumber variable, andφr andφz denote the radial and vertical
modal displacements at the layer interfaces, respectively. �e TLMmatrices A and C are
defined as:

A =
[

Ar 0
Bzr Az

]
(6.9a)

C =
[

Gr −ω2Mr Br z

0 Gz −ω2Mz

]
(6.9b)

�e original formulation of the TLM is suitable to analyse wave propagation in a layered
mediumwith fixed base (e.g. bedrock). For that purpose, we proceed to couple the TLMwith
PMLs [266, 267], as outlined in Section 4.3. As a result, PMLsmay be readily incorporated in
the TLM as thin layers with complex-valued stretched thickness h̄l and the respective TLM
matrices are reformed as follows:

Al = hl

hl
Al , Bl = Bl , Gl = hl

hl

Gl , Ml = hl

hl
Ml (6.10)

Based on the presented TLM+PMLs approach, the Green’s functions of a linear elastic
layered half-space are computed in the frequency-space domain. In particular, the present
model requires the evaluation of the Green’s functions due to: (i) unit radial ring sources
at r = Rp and (ii) unit vertical ring sources at r = Rp (see Fig. 6.4). �e explicit expressions
of the Green’s functions in the frequency-(radial-azimuthal)-wavenumber domain read
[78, 253]:

[
ûr,n

ûz,n

]
=

 Φr DRΦ
T
r kΦr K−1

R DRΦ
T
z

1

k
Φz DRKRΦ

T
r Φz DRΦ

T
z

[
p̂r,n
p̂z,n

]
(6.11)

where ûr,n and ûz,n are the soil displacements and p̂r,n and p̂z,n are the external loads,
both expressed in the frequency-(radial-azimuthal)-wavenumber domain. �e matrices
KR = diag{

kR,1 kR,2 · · ·} andDR = (
k2I−K2

R

)−1 are diagonal matrices based solely on the
generalized Rayleigh (SV-P) wavenumbers kR,m and the modal matrices Φr and Φz are
defined as:
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Φr =
[
φr,1 φr,2 · · · ]

(6.12a)

Φz =
[
φz,1 φz,2 · · · ]

(6.12b)

�e transformation to the frequency-space domain is the subsequent step in this process.
Detailed discussion and the relevant developments can be found in Section 4.4 to avoid
repetition of content. Without entering into lengthy details, the soil displacements ũr and
ũz are readily obtained in the frequency-space domain by virtue of the dynamic flexibility
matrix F̃s as follows: [

ũr,s

ũz,s

]
=

[
F̃r r F̃r z

F̃zr F̃zz

][
p̃r,s

p̃z,s

]
(6.13)

(a) (b)

Figure 6.4: Schematic of a (a) unit radial and (b) unit vertical ring source at elevation z j .

In the present problem, the ring loads p̃r,s and p̃z,s correspond to the pile-soil interaction
loads applied from both the pile shaft and tip. �ey are formulated similarly to external
loads for reasons that will become apparent in the ensuing computational treatment.

6.2.3. Pile-soil compatibility conditions
�e numerical method to be employed is based on the solution of the pile-soil system at
discrete depths coinciding with the vertical mesh of pile and soil. Consider the pile at a
certain embedment depth, where nodal rings and layer interfaces corresponding to the
region of pile-soil contact are defined by the superscripts c and the remaining rings and
interfaces (out-of-contact) are defined by the superscriptnc. �erefore, vectors of quantities
related to both pile and soil are partitioned into in-contact and out-of-contact parts, e.g.

pz,s =
[ (

pc
z,s

)T (
pnc

z,s

)T
]T
and pz,p =

[ (
pnc

z,p

)T (
pc

z,p

)T ]T
. �e latter partitioning into

in-contact and out-of-contact quantities is employed in the following for both displacement
and traction components. Evidently, the pile-soil interface is comprised by the lower part of
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the pile nodal rings (embedded) and the upper part of soil layer interfaces, irrespectively of
the size of the contact region.

�e pile and soil motions are described by Eq. (6.6) and Eq. (6.13), respectively, and the
compatibility conditions that complete the mathematical formulation are:
(i) continuity of radial displacements at the pile-soil interface:

wc = uc
r,s

∣∣∣
r=Rp

(6.14)

(ii) compatibility of vertical tractions applied at the pile-soil interface and the pile tip:

pc
z,s =−pc

z,p, p(t)
z,s =−p(t)

z,p (6.15)

in which the superscript (t) denotes the tip related component. It is remarked that the load
at the tip and the last entry of the load vector at the shaft, correspond to the same nodal
ring/layer interface, albeit they are split for computational purposes.
(iii) compatibility of radial tractions applied at pile and soil:

pc
r,s =−pc

r,p (6.16)

�e above conditions require the compatibility of tractions applied to both pile and soil
along the shaft and at the tip, whereas continuity of displacements is retained only for the
radial displacements. As regards the vertical motion, there is continuous pile sliding along
the interface during installation, thus the vertical pile and soil velocities (and displacements)
are different.

�e frictional forces along the pile shaft are described according to a hereditary Coulomb
friction law. Several numerical schemes are available for frictional contact problems; in the
present work the hyperbolic tangent regularization is employed to retain computational
efficiency and accuracy [320, 119, 321]

p(i )
z,s =−p(i )

z,p = f (i )
s,ultl

(i ) tanh

(
1

vtol

(
∂u(i )

p

∂t
− ∂u(i )

z,s

∂t

∣∣∣∣
r=Rp

))
(6.17)

where vtol is a velocity tolerance parameter, l (i ) is the length of influence derived from the
finite element projection and f (i )

s,ult defines the amplitude of the static (and kinetic) friction.
It is remarked that Eq. (6.17) includes the friction forces resulting from both the inner and
outer pile surfaces. A distinction between the two is beyond the scope of the present model.

In the present friction law, amemorymechanism is incorporated that leads to reduction
of the friction amplitude under cyclic loading conditions. �e latter effect is known to occur
due to soil strength degradation and reduction of effective stresses in the immediate vicinity
of the pile shaft [301]. Moriyasu et al. [322] performed field tests with different driving
frequencies and found that the shaft degradation follows closely the number of loading
cycles. A more detailed investigation on the quantitative and qualitative character of shaft
friction degradation will follow in Section 6.4.3. We proceed to formulate such a hereditary
law that incorporates that effect with the least number of parameters as follows:

f (i )
s,ult = f (i )

s,0

(
β∞+ (1−β∞)e

−cN N (i )
cycl

)
(6.18)



6.3. A solution to the coupled problem via the Harmonic Balance Method (HBM)

6

109

where β∞ is the ratio of the ultimately degraded friction amplitude to the initial one ( f (i )
s,0 ),

cN is a memory parameter that controls the rate of degradation and N (i )
cycl is the number of

loading cycles accumulated at the soil interface (i ) during driving. �erefore, the accumula-
tion of loading cycles at a specific point in the soil, as the pile penetrates into the ground,
leads to reduction of the friction force at this particular point.

�e ring load at the pile tip includes a contribution of both shaft friction as well as
tip reaction, due to the adopted discretization. For the tip reaction, the following local
description is considered:

p(t)
z,s =−p(t)

z,p =


kt(u(t)

p −upl)+ ct
∂u(t)

p

∂t
, |kt(u(t)

p −upl)| < ft,ulthp

ft,ulthpsgn

(
∂u(t)

p

∂t

)
+ ct

∂u(t)
p

∂t
, |kt(u(t)

p −upl)| = ft,ulthp

(6.19)

where upl is the plastic tip displacement, ft,ult is the plastic tip resistance and the stiffness
and damping coefficients are defined as kt and ct, respectively. �e latter are extracted from
the diagonal entry of the soil dynamic stiffness matrix K̃s that corresponds to the pile tip;
the matrix K̃s is obtained via inversion of F̃s given in Eq. (6.13). �e present tip reaction
model parallels that of a mechanical analogue comprised of a spring-slider in parallel with
a viscous dashpot. However, in the present model the parameters kt and ct are derived
from the exact dynamic stiffness of the layered soil medium and rely solely on standard soil
properties, instead of being computed on the basis of approximate formulas and empirical
parameters.

6.3. A solution to the coupled problem via the Harmonic Balance
Method (HBM)

In this problem, a time domain solution would be strictly prohibitive for engineering pur-
poses, due to the excessive computational cost. For that purpose, a novel solution scheme is
proposed uniquely inspired by the physics of the installation process, based on sequential
application of the Harmonic Balance Method (HBM).

6.3.1. A sequential HBM: application to vibratory pile driving
�eHBM has been successfully employed in various applications, such as buckling analysis
of composite plates [323], vibrations of beams on non-linear and visco-elastic foundations
[324] andbladeddisks in turbomachinery [325]. However, itsuse in soil-structure interaction
problems has not been realized as yet. In vibratory pile installation, the excitation induced
by the vibrator is harmonic (or periodic), thus theHBM is appealing. Yet, the overall problem
is not periodic as the pile penetration into the soil leads to an increase of the pile embedment
and varying soil reactions along the shaft and at the tip. To tackle this challenge, we propose
a solution based on sequential HB analyses for different pile positions, that once assembled
together can provide the total solution. �e present approach is structured as follows:

(i) First, we define a compatible vertical mesh for the pile (SAFE) and soil (TLM), e.g.
uniformmesh of identical size.
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(ii) For each compatible position, i.e. elevations at which pile nodal rings and soil layer
interfaces coincide, a solution is sought via theHBM.�is solution is valid for a time interval
significantly larger than the HB fundamental period, as the pile position and the overall
response vary in a much slower rate than the driving frequency (different time scales).
�erefore, the HB coefficients of the solution for each pile position along the mesh can be
found in a sequential manner.

(iii) �e HB coefficients are considered to vary linearly (in time) in the transition from
each position to the subsequent one, given that the adjacent positions are close enough to
allow for such an approximation.

(iv) �e solutions from the sequential HB analysis are assembled into the total solution,
leading effectively to a piece-wise linear amplitude modulation of the involved harmonics
and thus an overall quasi-periodic system response.

A visual representation of the process described is also shown in Fig. 6.5. Two adjacent
positions are denoted by states i and i + 1 and linear interpolation of the resulting HB
coefficients takes place to transition from state i to state i +1. It is noted that by degrees-
of-freedom (DoFs) we consider all the quantities that are approximated by the HBM.

f 

t

DoFs

State i State i+1

State i

State i+1

Figure 6.5: Schematic of the sequential HB approach for two pile positions i and i +1, accompanied by the linear
interpolation of the HB coefficients in the frequency-time plane.

Weproceed to define our solution ansatz according to theHBM. For the pile generalized
coordinates the following ansatz is considered:
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qs
0,m =


c0,0t +

Nh∑
j=1

(
c0, j cos( jΩt )+ s0, j sin( jΩt )

)
, m = 0

cm,0 +
Nh∑
j=1

(
cm, j cos( jΩt )+ sm, j sin( jΩt )

)
, m > 0

(6.20)

where cm = [
cm,0 cm,1 · · · ]T and sm = [

sm,1 sm,2 · · · ]T denote the vectors encap-
sulating the Fourier coefficients of the m-th mode related to the cosine and sine terms,
respectively. As can be seen, the ansatz that corresponds to the rigid body mode (m = 0) is
periodic in velocity, such that linear pile progression into the soil with time can be addressed
[326].

To obtain the soil response, it is chosen to approximate the non-linear reaction forces at
the soil-pile interface and at the tip as Fourier series. Furthermore, to reduce the dimen-
sionality of the friction forces along the pile-soil interface, a matrix decomposition of the
following form is applied:

pc
z,s =Ψ

(
α0 +

Nh∑
j=1

(
α j cos( jΩt )+β j sin( jΩt )

))
(6.21)

in which α j =
[
α j ,0 α j ,1 · · · ]T and β j =

[
β j ,1 β j ,2 · · · ]T are the vectors of the

Fourier coefficients related to the j -th cosine and sine terms and thematrixΨ encapsulates
the basis vectors employed to approximate the spatial distribution of the interface forces.
In particular, these basis vectors are obtained by projection of the respective function class
to the vertical finite element mesh; a multitude of functions is suitable for that purpose, e.g.
Lagrange polynomials, Fourier-based shape functions and B-splines [327]. As follows from
the HBM, the tip reaction is also assumed to be periodic:

p(t)
z,s =αt,0 +

Nh∑
j=1

(
αt, j cos( jΩt )+βt, j sin( jΩt )

)
(6.22)

where αt =
[
αt,0 αt,1 · · · ]T and βt =

[
βt,1 βt,2 · · · ]T denote the vectors encap-

sulating the Fourier coefficients of the tip reaction related to the cosine and sine terms,
respectively.

In all the above equations, the involved quantities are in the space-time domain, albeit
in Eq. (6.13) the soil response and the applied loads are in the frequency-space domain.
Based on the premise of periodic response, transformation to the time domain via the
inverse Fourier transform is analytically tractable - indicatively, the tip reaction (Eq. (6.22))
is transformed in the frequency domain as follows:

p̃(t)
z,s =

+∞∫
−∞

p(t)
z,se−iωt dt=2πδ(ω)αt,0+

Nh∑
j=1

(παt, j (δ(ω− jΩ)+δ(ω+ jΩ))−iπβt, j (δ(ω− jΩ)−δ(ω+ jΩ))) (6.23)
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By substituting the assumed solutions into the dynamic equilibria of pile and soil and
the compatibility conditions, it can be shown that the following residuals are required to
vanish:

rc =ΨT
(
pc

z,s +pc
z,p

)
(6.24a)

rt = p(t)
z,s +p(t)

z,p (6.24b)

rq =
(
Φs

p,0

)T
(

Is
0Φ

s
p,0

d2qs
0

dt 2 +Ls
0Φ

s
p,0qs

0−ps
p,0

)
(6.24c)

which can be arranged in the following residual vector:

r =
 rc

rt

rq

 (6.25)

Following the HBM, we require that the Fourier coefficients of the residual vector r
vanish up to the truncation limit and are obtained via a Fourier-Galerkin projection as
follows:

RF = 1

T

T∫
0

rh dt (6.26)

where RF is a matrix that encapsulates the Fourier coefficients of the residuals, T is the
period corresponding to the fundamental frequency, i.e. the driving frequencyΩ, and the
row vector h encapsulates the test functions (i.e. Fourier harmonics) h j (t ) defined as:

h j (t ) = 1

2

[(
1+ (−1) j

)
cos

(
jΩt

2

)
+

(
1+ (−1) j+1

)
sin

(
j +1

2
Ωt

)]
, j = 0, . . . ,2Nh (6.27)

�e outlined approach corresponds to the classical HBM, i.e. a Galerkin method, as the
Fourier series is chosen both as the set of trial and test functions. With a view to successful
and/or accelerated convergence of the method, the notion of HB as a weighted residual
method can be expanded by introducing various sets of trial and test functions (e.g. B-
splines, periodized wavelets) and exploring the possibility of differentiation between the
two sets, thus leading to a Petrov-Galerkin scheme [328]. �ese ideas will not be pursued
in this work, albeit they are considered highly promising for systems characterized by
responses of bounded continuity.

It is noted that the non-linear reaction forces in the present problem cannot be analytic-
ally expanded in terms of the assumed Fourier coefficients, thus the Alternating Frequency-
Time (AFT) HBM is applied [329, 330]. �e latter is based on the evaluation of the non-linear
forcing terms in the time domain and the subsequent application of the Discrete Fourier
Transform (DFT) via the Fast Fourier Transform (FFT) algorithm. �e AFT-HBM entails an
iterative process that in our solution approach is posed as a vector optimization problem
and customarily is solved by the Newton-Raphson or similar algorithms [319, 329, 331]. In
our solution scheme, the Powell’s hybrid method is found to be superior both in terms of
accuracy and computational performance and is employed in the ensuing analyses [332].
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Briefly, the overall process can be summarized as follows:
(i) a periodic ansatz is considered for the pile generalized coordinates (Eq. (6.20)) and

the vertical tractions (Eqs. (6.21) and (6.22)), thus the pile and soil displacement fields
can be obtained via Eqs. (6.3) and (6.13), respectively. It is remarked that the radial soil
displacements are directly obtained via Eq. (6.14).

(ii) a residual is formed by the assumed tractions and the tractions resulting from the
pile-soil relative motion according to Coulomb’s friction (Eq. (6.17)). Similarly, the residual
of the SAFE equations of motion in the modal domain is formed.

(iii) the Fourier coefficients of the preceding residuals are required to vanish - implying
vanishing of the residuals - according to the HBM.�e vectors of Fourier coefficients (cm,
sm,α j ,β j ,αt,βt) obtained from the vector optimization problem and leading to RF = 0
provide the final solution to the problem.

Conclusively, the described procedure corresponds to the solution of the system at a
single embedment depth. For each subsequent depth, it follows that the involved vector
andmatrix quantities need to be updated in accordance with Fig. 6.2. It is remarked that
the presented numerical model is an effective engineering-oriented model of the vibratory
pile installation process. �erefore, the large soil deformations that may develop in the pile
vicinity and the associated physical processes are not fully considered in the model herein,
as they are not not encompassed in the model purposes. Essentially, the present model
represents an effective framework, in which the following conditions are necessary for pile
penetration to occur: i) gross sliding at the pile shaft (Eq. (6.17)) and ii) plastic deformation
at the pile tip (Eq. (6.19)). In that manner, sequential non-linear equilibria of the pile-soil
model are computed and their assemblage with the presented HB-based scheme leads to
the overall solution.

6.3.2. Validation of the sequential HB scheme: 1-D benchmark problem
In Section 6.3.1, a new solution scheme based on the HBM has been presented for the
problem at hand. To focus on the validation of the proposed sequential HB solution scheme,
we formulate a corresponding 1-D problem [333]. Specifically, two rods in frictional contact
are considered, where the first rod may slide along the second. Modal decomposition is
applied to rod 1 and rod 2 is described via its Green’s functions in the frequency domain.
�erefore, all the problem components are corresponding fully to the respective ones in the
pile-soil problem of interest. However, the advantage of this benchmark problem is that
it lends itself to direct solution in the time domain via numerical integration, alleviating
the rest of the complexities associated with the installation process. For the process of
numerical integration, an explicit Runge–Kutta method (RK45) is employed [213].

ρi [kg/m3] Ai [m2] Ei [Pa] P0 [N] P1 [N] Ω1 [rad/s] fc [N/m]

7850 0.03726 210·109 10·103 100·103 157.08 8.379·103

Table 6.1: Parameters of 1-D validation example (i = 1,2).

In brief, two linear homogeneous elastic rods are considered with domains 0 ≤ z1 ≤ L1

and 0 ≤ z2 ≤ L2, respectively (see Fig. 6.6), and their equations of motion read:
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ρ1 A1
∂2u1

∂t 2 = E1 A1
∂2u1

∂z2
1

+ f (6.28a)

ρ2 A2
∂2u2

∂t 2 = E2 A2
∂2u2

∂z2
2

− f (6.28b)

where Ei , Ai , ρi , ui (zi , t ) denote the modulus of elasticity, the area of the cross section, the
mass density per unit length and the axial displacements of the rods (i = 1,2), while f is the
distributed Coulomb friction force. Conclusively, the boundary conditions read as follows:

N1(0, t ) =−P (t ) =−P0 −P1 sin(Ω1t ), N1(L1, t ) = 0, N2(0, t ) = 0, u2(L2, t ) = 0
(6.29)

where N1(z1, t ) and N2(z2, t ) denote the axial forces of rods 1 and 2, respectively, and P (t )
is the external force at the top of rod 1. In this example, two identical rods are considered
and the contact region is equal to 50% of their length. �e excitation at the top of rod 1
is comprised by a static component P0 and a harmonic component of amplitude P1 and
frequencyΩ1. �e contact interface is described byCoulomb frictionwith static (and kinetic)
friction amplitude of fc , which is constant along the longitudinal axis. �e properties of the
overall system can be found in Table 6.1.

P(t)

z2,u2

z1,u1

L2

L1

l1

l2

E1, A1, ρ1

E2, A2, ρ2

Rod 1

Rod 2

Frictional
interfacef

Figure 6.6: Two rods in frictional contact.

In Fig. 6.7a, the displacement at the top of rod 1 is shown. �e dashed red line corres-
ponds to the first HB solution found at the initial position of rod 1 and is used to indicate the
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(a) (b)

Figure 6.7: (a) Comparison of displacements at the top of rod 1 for the full analysis and (b) zoomed-in comparison
of velocities at the top of rod 1 for a time window in the middle of the analysis, obtained via numerical integration
(RK-45) and the sequential AFT-HBM.

initial (andmaximum)penetration rate. As rod 1 progresses and the contact length increases,
the penetration rate reduces due to the increase in the total friction force. As can be seen,
the proposed sequential HB scheme captures remarkably the overall penetration process. A
more detailed view of the comparison can be found in Fig. 6.7b, where the velocities of the
two rods are shown in a time window of 0.6 s located at the middle of the analysis (t = 10 s).
�e results of the two approaches are in great agreement and showcase the accuracy of the
presented sequential HB scheme in a problemwith non-stationary motion.

6.4. Numerical results and comparison with field data
�e presented numerical model is used to study the vibratory-driven pile from the GDP
experimental campaign [51, 54]. First, input data from in-situ tests are used to characterize
the relevant model parameters. Subsequently, model predictions are compared with field
data and further investigations are performed that pertain to soil reaction evolution and
memory mechanisms, pile dynamics and effect of driving frequency.

6.4.1. Input data
In the GDP campaign different installationmethods (impact, axial vibratory and GDP) were
tested and the pile considered herein is the only one installed via axial vibratory driving (VH).
�e driven pile properties and the specifications of the vibratory device used are given in
Tables 6.2 and 6.3, respectively. For both pile and soil, hysteretic damping is consideredwith
ratios ξp = 0.001 and ξs = 0.025 (for both P- and S-waves), respectively. In the installation
tests, for the upper 3 m of penetration the pile was laterally restrained to eliminate any
inclination and controlled by a crane, thus the interval from 3m to 8 m is considered in this
study. �e dynamic excitation at the pile top is introduced in the model based on strain
measurements via fiber Bragg grating (FBG) sensors; the FBG sensors were located 1.62
m from the pile top. In our solution approach via the HBM, the dynamic excitation is
considered nearly stationary, i.e. periodic for time intervals significantly larger than the
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fundamental period during which we apply the HBM.�e latter has been found to hold
for both vibratory methods (VH and GDP) in the GDP field tests [52, 51]. Furthermore, a
time-frequency analysis of the top axial strain (εzz,p) by means of a discrete short-time
Fourier transform (STFT) is also performed to support that finding. As can be seen in
Fig. 6.8, the frequency content and the associated amplitudes remain fairly constant during
installation, indicating a quasi-periodic excitation due to amplitude modulation of the
involved harmonics.

ρp [kg/m3] Ep [Pa] νp [-] Lp [m] Rp [m] hp [m]

7850 210·109 0.3 10 0.373 0.0159

Table 6.2: Properties of the piles driven in the GDP field campaign.

Figure 6.8: Amplitude of the axial strain (|ε̃zz,p|) STFT for the VH pile.

For the characterization of the soil properties, Seismic Cone Penetration Tests with pore
water pressure measurements (SCPTu’s) were performed (see Fig. 6.9) and the depth of the
water table was found at 4.5 m. From the SCPTumeasurements, the basic soil properties
that characterize the linear elastic layered medium can be obtained. �erefore, the Green’s
functions can be directly computed, as well as the values of kt and ct that follow from the
dynamic stiffness matrix. In general, ultimate shaft (friction amplitude) and tip resistances
are known to correlate strongly with the cone tip resistance qc measured during CPT tests
[334–336]. �e relevant studies were focused on static axial pile capacity and recent field
tests by Moriyasu et al. [322] investigated such correlations also in the case of vibro-driving
of pipe piles. Based on the latter tests, an initial friction amplitude of f (i )

s,0 = 0.012qc (zi ) is

Mass [kg] Eccentric moment [kgm] Rotational speed [rpm] Operational power [kW]
4100 25 1800 204

Table 6.3: Technical specifications of the vibro-hammer CV-25.
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adopted in our analysis. Regarding the ratio of ultimately degraded to initial shaft resistance,
a value of β∞ = 0.2 is selected for the sandy soil considered [101, 337]. In the latter studies
the ultimately degraded value is typically reached at approximately 10000 loading cycles,
while a range from approximately 7000 to 15000 cycles was observed byMoriyasu et al. [322].
For the proposedmemorymechanism, this range of loading cycles corresponds to cN values
between 0.0003 and 0.0005. As regards to the tip reaction during vibratory driving, field
observations are scarce, so we investigate a range of ft,ult values. As will be shown in the
ensuing, this uncertainty has insignificant effect on the pile drivability.

(a) (b) (c)

Figure 6.9: Profiles of (a) cone tip resistance (qc ), (b) mass density (ρs), and (c) shear modulus (Gs) obtained from
the SCPTu tests.

6.4.2. Field measurements and model predictions
In Fig. 6.10, the pile penetration is shown, as measured by the potentiometer transducer
(PM) and thedriving logging (DL) system. �e formermeasurement has a high sampling rate
( f = 1000Hz) and is consideredmore reliable than the latter, which is a sparsemeasurement
(recorded per 25 cm of penetration). As can be seen, the predictions of the model provide
fairly similar penetration trends and form an upper and lower bound (of soil reaction),
respectively. �e best prediction was found for cN = 0.0004 for the overall duration of
installation (in least squares sense). �is result is promising for the predictive potential of
our model, which is expected to further improve with the inflow of additional field data.
Furthermore, the small number of non-standard parameters that need to be calibrated and
its robust theoretical formulation for both pile and soil are considered advantageous for
engineering practice.

For theanalyses shown inFig. 6.10, ft,ult = 0.5qc wasconsidered in the tip reactionmodel,
due to its fair comparison with the FBG-measured reaction 0.5 m from the pile tip as shown
inFig. 6.11a. Weproceed to showcase that theplastic tip resistance is ofminor importance for
the overall penetration process of the studied pile. In Fig. 6.11b, the penetration for different
analyses is shown, where a range of ft,ult from 0.3qc to 0.7qc has been considered. Based
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Figure 6.10: Comparison of vibratory installation model predictions with field data as recorded by a potentiometer
(PM) and the vibratory device logging system (DL).

on the two extrema ( ft,ult = 0.3qc and ft,ult = 0.7qc ), an increase of the plastic tip resistance
ft,ult by 133.3% led to a minor increase of 12.8% in the total installation time. �erefore, for
the present pile, the elasto-plastic component of the tip reaction has a secondary effect
on the installation rate and the pile-soil friction at the shaft provides the main resistance
to driving. �is observation is expected to be even more prominent in the installation of
offshore monopiles given the significantly larger embedment depth. For that purpose,
field campaigns that include in their scope the identification of the memory mechanism
that leads to soil-pile friction reduction are considered of major importance for better
understanding the vibratory installation process.

(a) (b)

Figure 6.11: (a) Comparison of tip reaction p(t)
z,s from vibratory installation model ( ft,ult = 0.5qc ) with the FBG-

based axial force resultant close to the pile tip. (b) Comparison of penetration model predictions for different
ultimate tip resistance ft,ult values.

�e preceding discussion was focused on the identification of plastic tip resistance ft,ult



6.4. Numerical results and comparison with field data

6

119

and its minor effect on the pile penetration. However, this finding does not necessarily
imply that the overall tip reaction, including both the elasto-plastic and the viscous compon-
ents, is necessarily of minor significance for the installation rate. To elaborate further, the
comparison of the tip and the total shaft reactions is depicted in Fig. 6.12a. As can be seen,
the total shaft reaction is arguably the major component, albeit without rendering the tip
reaction negligible. In Fig. 6.12b, the total shaft and tip reactions are given as fractions of the
total soil reaction (p(t)

z,s +
∑
i

p(i )
z,s). �e arithmetic means of the two ratios are approximately

77% and 23% for the shaft and tip components, respectively, showcasing the dominance of
the former as well as the appreciable magnitude of the latter.

(a) (b)

Figure 6.12: (a) Total shaft and tip reactions and (b) ratios of total shaft and tip reactions to total soil reaction during
driving.

Figure 6.13: Friction amplitude distribution along soil depth z for different embedment depths (per 0.5 m),
showcasing the memory effect on the shaft friction reduction.

An interesting remark in Fig. 6.12a is the relatively small variation of the total shaft
reaction as the pile progresses into the soil. �is occurrence results from the combination of
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the friction amplitude distributionwith depth z, directly related to the cone tip resistance qc

profile, and the degradation of the friction amplitude at each soil material point in contact
with the pile shaft. �e latter mechanism has been described in Section 6.3.1 and the effect
of the memory parameter cN on penetration is shown in Fig. 6.10. To better visualize the
function of the cyclic memory mechanism, Fig. 6.13 presents the distribution of the friction
amplitude f (i )

s,ult along depth z for different instances during driving, i.e. every 0.5 m of pile
penetration. �e gradual reduction of friction amplitude with the accumulation of loading
cycles (and thus pile penetration) is clear. Furthermore, the "saturation" of the degradation
effect in the shallow soil layers is visible, as the associated soil horizons have been exposed
to a greater number of loading cycles.

�e dynamic pile response during installation is also of great interest in order to assess
the model capabilities and identify its limitations. For that purpose, the time-frequency
analysis of the axial acceleration at the pile head is considered for the model output and
the accelerometer recording. Specifically, a short-time Fourier transform (STFT) is applied
to both signals and the amplitudes of both STFTs are shown in Fig. 6.14. As can be seen,
the nearly stationary nature of the response is supported by both field data and numer-
ical results, and good agreement in terms of acceleration amplitudes is found up to the
second super-harmonic. From the third super-harmonic onward, the acceleration record-
ing possesses lower amplitudes compared to the model prediction. Considering that these
super-harmonics result from the non-linear pile-soil interaction - with major contributor
the shaft friction - this observationmay be interpreted as an indication that the pile response
is smoother than the model predicts. �is outcome is most likely owed to the non-smooth
character of Coulomb friction and points out a presumably smoother friction model for the
shaft reaction. For drivability purposes, the Coulomb frictionmodel appears satisfactory
and circumvents the complications of identifying additional friction model parameters, as
Coulomb friction is characterized by the lowest possible number of parameters, i.e. only
one.

(a) (b)

Figure 6.14: Amplitude of the axial acceleration STFT (a) obtained from the installationmodel and (b) recorded
during installation of the VH pile.
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6.4.3. Comparison of different memory mechanisms for the frictional inter-
face: friction fatigue - the h/R effect

�edecrease of the ultimate shaft friction that corresponds to a fixed (spatially) soil material
point is not solely occurring during vibratory pile installation. Heerema [338] observed
that pile progression was accompanied by shaft friction reduction during impact piling
tests in clayey soil and termed this phenomenon as "friction fatigue". A mechanism was
proposed to account for friction fatigue based on the distance between the pile tip and
the considered soil horizon, whereas the phenomenon was attributed to the decrease of
horizontal soil stresses [338]. �e reduction of radial effective stresses was recorded in pile
jacking experiments and the ratio h/R was identified as the control parameter[339, 340],
where h and R denote the distance of a soil material point from the pile tip and the pile
radius, respectively. Sheng et al. [117] captured the so-called h/R effect in pile jacking via
advanced FE simulations and found that the radial stress decrease above the tip level was
associated with soil softening around the pile (upon the tip passage). Friction fatigue has
been further considered in studies related to static pile capacity [93, 92, 341].

�e preceding outline indicates that friction fatigue has received appreciable attention
in certain topics related to pile foundations. However, studies of this phenomenon in
the context of vibratory driving are scarce. White and Lehane [335] performed centrifuge
tests and studied, among other techniques, the two-way cyclic jacked installation and its
influence on the penetration process. It was found that shaft friction degradation was
better characterized based on the number of cycles accumulated at a fixed soil material
point than the normalized distance from the tip h/R. In a recent experimental campaign
focused on vibratory pile installation tests, Moriyasu et al. [322] corroborated the previous
finding and showed that the number of accumulated cycles was a better control parameter
than the h/R ratio. Based on the preceding findings, we were motivated to formulate
a hereditary Coulomb friction law that accounts for shaft friction degradation, with the
number of accumulated loading cycles being the control variable (see Section 6.2.3). To
further investigate the plausibility of normalized distance-based friction reduction, we
proceed to formulate an associated memory mechanism as follows:

f (i )
s,ult = f (i )

s,0

(
β∞+ (1−β∞)e−cDl (i )

D

)
(6.30)

where l (i )
D is the normalized distance of the soil interface (i ) from the pile tip and cD is the

memory parameter that controls the rate of degradation, whereas f (i )
s,0 and β∞ have the

same definitions as in the case of the cyclic memory mechanism.
As can be seen in Fig. 6.15a, a range of cD values from 0.8Rp to 1.0Rp has been used in

numerical analyses. �e model results showcase an appreciable mismatch compared to
the field data, both in quantitative and qualitative terms; for cD values outside the present
range the deviation was even larger. In particular, the model displays a monotonic increase
in penetration rate for all cD values, which is largely dissimilar to the installation record.
�e absolute penetration error between numerical results (uR) and field data (uR,DM) is
shown in Fig. 6.15b for all cD values, as well as for cyclic memory model with cN = 0.0004.
Based on the considered model andmemory mechanisms, the cyclic formulation leads to a
significantly better match with the field data compared to the normalized distance-based
model. �e absolute error is confined to significantly lower levels during almost the whole
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(a) (b)

Figure 6.15: (a) Comparison of model predictions with normalized distance-basedmemory mechanism against
field data - both potentiometer (PM) and driving logging system (DL) - in terms of pile penetration. (b) Compar-
ison of model predictions with normalized distance-based and cyclic memory mechanisms in terms of absolute
penetration error.

course of pile installation. Conclusively, this numerical study further corroborates that the
number of accumulated loading cycles is superior to the h/R ratio as a control variable for
shaft friction reduction during vibratory pile driving.

Naturally, the proposed cyclic memory mechanism is an effective one andmore depend-
encies may be important with a view to future model refinement, e.g. driving frequency,
loading amplitude and soil properties. Both experimental and numerical studies are re-
quired to better understand the physical mechanisms at hand and develop a reduced-order
formulation suitable for engineering-oriented models.

6.4.4. Effect of driving frequency on penetration rate
An interesting aspect of vibratory driving is the effect of the driving frequency on the
penetration rate. We proceed to analyse the penetration of the VH pile for a range of driving
frequencies without altering any other parameter (e.g. excitation amplitude). In Fig. 6.16,
the average penetration rates for all driving frequencies and degradation rate values cN are
shown. �egeneral trend indicates that the average penetration rate is amonotonic function
of frequency for the examined range, i.e. from 16 Hz to 60 Hz. �is observation persists
for all three cN values considered and a plateau region becomes apparent above 45 Hz. A
similar trend has also been reported by Xiao and Ge [109], based on numerical analyses.
Field experiments that will investigate the effect of driving frequency are necessary to test
the validity of the trend presented in Fig. 6.16, as well as the effect of driving frequency on
the post-installation performance.

6.4.5. Computational aspects of the model
�epresentmodel development provides a new path in vibratory pile installationmodelling,
by virtue of its physical rigour and computational performance. �erefore, some additional
details regarding the latter are required. For both pile and soil a verticalmesh of sizeh = 0.05
mwas considered, while 5 trial functions (i.e. in vacuo normal modes) were adequate to
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Figure 6.16: Comparison of average penetration rates for different driving frequencies, based onmodel predictions.

obtain an accurate pile response. In the HB analyses, terms up to the 15-th super-harmonic
were retained (31 terms in total) in each Fourier series. A parametric study of 54 numerical
analyses for the VH pile was performed on a computer desktop with a 10-core 3.3 GHz
processor. A parallel implementation of the described task had a run time of 3 hours,
leading to a remarkable CPU time of 3∼4 minutes per analysis (for 5 m of pile penetration).
�erefore, the present modelling framework can be readily employed in large parametric
and uncertainty quantification studies.

6.5. Conclusions
In this chapter, a computationally efficient model for vibratory pile installation has been
presented, that aims to bridge the gap betweenmedium- and high-fidelity approaches. �e
pile is described by a thin shell theory and the soil is modelled as a linear elastic layered
half-space. In particular, a SAFEmodel is used for the thin cylindrical shell and the Green’s
functions in the frequency-space domain are computed for the layered soil medium via
the TLM coupled with PMLs. �e pile-soil interaction is described by a history-dependent
frictional interface, based on loading cycles accumulation and a visco-elasto-plastic tip
reaction model, both characterized by SCPTmeasurements. For the solution of the coupled
problem, a sequential HBM has been developed, that was motivated by the quasi-periodic
character of the response. �e latter approach comprises a remarkably efficient scheme
for this problem and a potential candidate for a wider class of systems with quasi-periodic
response due to slow amplitude modulation of the involved harmonics. �e present model-
ling framework was employed to study the case of a vibro-driven pile from the GDP field
campaign. Conclusively, the numerical results were compared with field data and themajor
points are listed as follows:

(i) vibratory pile installation comprises a quasi-periodic process, i.e. amplitude modu-
lation of the involved harmonics is induced by the continuous - yet slow compared to the
excitation time scale - change of the non-linear soil reaction and the input excitation.

(ii) the normalized distance from the pile tip is widely used as control parameter for
friction reduction in impact piling, jacking and axial capacity purposes. In this study, the
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distance-basedmechanism is proved to be inadequate - both qualitatively and quantitatively
- to provide accurate drivability predictions for vibratory pile installation.

(iii) a memory mechanism that accounts for friction reduction at the pile-soil interface
is proposed and implemented, based on the number of accumulated loading cycles. Com-
parison betweenmodel predictions and field data showcases the potential of the proposed
shaft reaction model in the analysis of vibratory pile installation.

(iv) the shaft friction is identified as the main mechanism of soil reaction to driving in
the present case, while the pile penetration is found insensitive to variation of the plastic
tip resistance. �is finding is strongly dependent on the pile dimensions and for offshore
monopiles it is expected to be even more apparent, given the large embedment depths
required.

(v) the average penetration rate was found to be a monotonic function of the driving fre-
quency, based on a numerical study conducted bymeans of the presentedmodel. Field tests
that focus on the effect of the driving frequency on both installation and post-installation
performances are necessary to define what may constitute the optimal driving frequency.



7
�emechanics of the Gentle

Driving of Piles

�emain findings of the experimental campaign (see Chapter 5) showcased the potential of
the GDPmethod and encouraged its further development. �e proof of concept of the GDP
method has been successful and the hypothesis that it can enhance installation performance
was experimentally confirmed. Numerical modelling is the following necessary step in
order to further analyse and interpret the field observations. To achieve that aim, the
development of a numerical framework for the analysis of the GDPmethod is one of the
foremost objectives in this research line.

In Chapter 6, a new vibratory pile installation model has been presented, that signific-
antly advances the capabilities of engineering-orientedmodels, while retaining applicability
and computational efficiency. Based on the physical similarity of the two processes (i.e.
GDP and axial vibro-driving), the developed vibratory model is utilized in this chapter as
the basis for the GDPmodelling framework. By means of this development, the main novel
contribution of the present chapter is realized, namely deciphering the mechanics of the
GDPmethod and the beneficial effect of torsion on pile-soil interaction. �e redirection of
the friction force vector emerges as the major drivingmechanism of GDP, as it enhances
installation performance by greatly reducing the soil reaction along the penetration axis.
Conclusively, a case study is performed to compare the performance of axial vibratory
technique with GDP, on the basis of the respective benchmarked numerical models.

7.1. A numerical model for pile installation via the GDP method
A modelling framework to analyse pile installation by the GDP method is presented in
the ensuing sections. �e numerical model of vibratory pile driving (see Chapter 6) forms
the basis of this development and is expanded accordingly to address the pile and soil
circumferential motions. Some repetition of mathematical expressions is inescapable in

Parts of this chapter have been submitted for publication in Tsetas et al. [342].
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order to render this chapter self-contained. A schematic of the GDPmodel is depicted in
Fig. 7.1.

Figure 7.1: A tubular pile installed in a layered soil medium via vertical and torsional excitations at the pile head.

7.1.1. A SAFE cylindrical shell model of a tubular pile
A tubular pile is considered with wall thickness hp, length Lp andmid-surface radius Rp.
�e pile material is linear elastic and isotropic with Young’s modulus Ep, Poisson’s ratio νp

andmass density ρp. Similarly to the vibratory installationmodel, the GDPmodel is also
axisymmetric (n = 0). However, the application of axial and circumferential loads (from the
GDP shaker) at the pile top requires the consideration of both the symmetric (axial-radial)
and the anti-symmetric (circumferential) modes for n = 0. Accordingly, the equations of
motion for a thin cylindrical shell based on the SAFEmethod read:

Is
p,0

d2us
p,0

dt 2 +Ls
p,0us

p,0 = ps
p,0 (7.1a)

Ia
p,0

d2ua
p,0

dt 2 +La
p,0ua

p,0 = pa
p,0 (7.1b)

where Is
p,0, Ia

p,0 are the shell mass matrices, Ls
p,0, La

p,0 are the shell stiffness matrices, us
p,0,

ua
p,0 are the displacement/rotation vectors at the nodal rings, and ps

p,0, pa
p,0 are the vectors

of consistent forces/moments at the nodal rings. Specifically, the displacements/rotations
vectors read:

us
p,0 =

 us
0

ws
0

βs
z,0

 , ua
p,0 = va

0 (7.2)
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and similarly the consistent forces/moments vectors may be expressed as follows:

ps
p,0 =

 ps
z0,p

ps
r 0,p

ms
zz0,p

pa
p,0 = pa

θ0,p (7.3)

To further improve the computational aspects of the problem, the shell response is
decomposed in terms of normal modes in vacuo:

us
p,0 =Φs

p,0qs
0 (7.4a)

ua
p,0 =Φa

p,0qa
0 (7.4b)

whereΦs
p,0,Φa

p,0 are themodalmatrices for the symmetric andantisymmetric formsofn = 0,
respectively, and qs

0(t ), qa
0(t ) denote the respective generalized coordinates. In particular,

the modal matrices read:

Φs
p,0 =

 Us
0

Ws
0

Bs
0

 , Φa
p,0 = Va

0 (7.5)

where the modal sub-matricesUs
0,Ws

0, Bs
0 and Va

0 are defined as follows:

Us
0 =

[
us
0,1 us

0,2 · · · ]
(7.6a)

Ws
0 =

[
ws
0,1 ws

0,2 · · · ]
(7.6b)

Bs
0 =

[
βs
0,1 βs

0,2 · · · ]
(7.6c)

Va
0 =

[
va
0,1 va

0,2 · · · ]
(7.6d)

As can be seen in Eq. (7.5), the modal sub-matrices Vs
0, Ua

0 , Wa
0 and Ba

0 are erased for
convenience, since they are equal to zero. �erefore, the system of ordinary differential
equations that governs the shell response is transformed to the space of generalized co-
ordinates:

(
Φs

p,0

)T
Is

p,0Φ
s
p,0

d2qs
0

dt 2 +
(
Φs

p,0

)T
Ls

p,0Φ
s
p,0qs

0 =
(
Φs

p,0

)T
ps

p,0 (7.7)

(
Φa

p,0

)T
Ia

p,0Φ
a
p,0

d2qa
0

dt 2 +
(
Φa

p,0

)T
La

p,0Φ
a
p,0qa

0 =
(
Φa

p,0

)T
pa

p,0 (7.8)

Finally, the pile displacements/rotation vector up and the line load vector pp, based on
the premise of axisymmetric response, may be expressed as follows:

up =


us
0

va
0

ws
0

βs
z,0

 , pp = 1

2πRp


ps

z0,p

pa
θ0,p

ps
r 0,p

ms
zz0,p

 (7.9)
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7.1.2. Green’s functions of a layered soil half-space via the TLM+PMLs
During pile installation by the GDPmethod, all three motion components are present in
both pile and soil. �erefore, the elicited wave motion in the soil mediumwill include both
generalized Rayleigh (SV-P) and Love (SH) wave modes. Briefly, the generalized eigenvalue
problem for the SV-P waves may be written as:(

k2A+C
)[

φr
kφz

]
=

[
0
0

]
(7.10)

and the generalized eigenvalue problem for the SHwaves reads:(
k2Aθ+Cθ

)
φθ = 0 (7.11)

whereCθ = Gθ−ω2Mθ, k is the radial wavenumber variable, andφr ,φθ andφz denote the
radial, circumferential and vertical modal displacements at the layer interfaces, respectively.
Furthermore, the TLMmatrices A and C are defined as:

A =
[

Ar 0
Bzr Az

]
(7.12a)

C =
[

Gr −ω2Mr Br z

0 Gz −ω2Mz

]
(7.12b)

It is noted that the TLM sub-matrices Ar , Aθ, Az , Gr , Gz , Mr and Mz are associated
with the soil domain as modelled by the coupled TLM+PMLs, i.e. including thin layers with
complex-valued stretched thickness[266, 267]; the sub-matricesBzr ,Br z remain unaffected
by the complex-valued coordinate stretching.

Weproceed toutilize theGreen’s functionsof a linear elastic layeredhalf-space in thenon-
linear coupled formulation of our problem. For that purpose, the explicitmatrix expressions
of the Green’s functions in the frequency-(radial-azimuthal)-wavenumber domain have
been derived in Section 4.4 and read as follows:

ûs,n =
 ûr,n

ûθ,n

ûz,n

=


Φr DRΦ

T
r 0 kΦr K−1

R DRΦ
T
z

0 ΦθDLΦ
T
θ 0

1

k
Φz DRKRΦ

T
r 0 Φz DRΦ

T
z


 p̂r,n

p̂θ,n
p̂z,n

 (7.13)

where ûr,n , ûθ,n and ûz,n are the soil displacements and p̂r,n , p̂θ,n and p̂z,n are the applied
loads, both expressed in the frequency-(radial-azimuthal)-wavenumber domain. �e diag-
onal matrices KR, KL,DR andDL are defined as:

KR = diag{
kR,1 kR,2 · · ·} (7.14a)

KL = diag{
kL,1 kL,2 · · ·} (7.14b)

DR = (
k2I−K2

R

)−1 (7.14c)

DL = (
k2I−K2

L

)−1 (7.14d)
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where kR,m and kL,m denote the radial wavenumbers related to the generalized Rayleigh
(SV-P) and generalized Love (SH) wave modes, respectively. Finally, the modal matricesΦr ,
Φθ andΦz are defined as:

Φr =
[
φr,1 φr,2 · · · ]

(7.15a)

Φθ =
[
φθ,1 φθ,2 · · · ]

(7.15b)

Φz =
[
φz,1 φz,2 · · · ]

(7.15c)

Specifically, theGreen’s functions thatneed tobe evaluated in thisproblemareassociated
with: (i) unit radial ring sources at r = Rp, (ii) unit circumferential ring sources at r = Rp

and (iii) unit vertical ring sources at r = Rp. Finally, the vectors of soil displacements ũr ,
ũθ and ũz may be readily expressed in terms of the ring loads p̃r,s, p̃θ,s and p̃z,s in the
frequency-space domain by virtue of the dynamic flexibility matrix F̃s as follows:

ũs =
 ũr,s

ũθ,s

ũz,s

=
 F̃r r 0 F̃r z

0 F̃θθ 0
F̃zr 0 F̃zz

 p̃r,s

p̃θ,s

p̃z,s

 (7.16)

It is noted that the ring loads p̃r,s, p̃θ,s and p̃z,s correspond to the pile-soil interaction
loads from both pile shaft and tip, and their formulation as external loads is owed to the
solution method to be employed in the following sections.

7.1.3. Pile-soil compatibility conditions during installation via the GDP method
As described in Section 6.2.3, the pile-soil system is considered at discrete depths where the
elevations of the pile nodal rings and the soil (thin) layer interfaces coincide along the contact
surface. In particular, the nodal rings and layer interfaces corresponding to the region of
pile-soil contact are defined by the superscripts c and the remaining rings and interfaces
(out-of-contact) are defined by the superscript nc. �e compatibility conditions that hold
in pile installation via the GDPmethod are identical with the ones valid for axial vibratory
driving, with the addition of the compatibility of circumferential tractions. �erefore, the
following compatibility conditions are considered:
(i) continuity of radial displacements at the pile-soil interface:

wc = uc
r

∣∣∣
r=Rp

(7.17)

(ii) compatibility of vertical tractions applied at the pile-soil interface and the pile tip:

pc
z,s =−pc

z,p, p(t)
z,s =−p(t)

z,p (7.18)

in which the superscript (t) denotes the tip related component.
(iii) compatibility of radial tractions applied at the pile-soil interface:

pc
r,s =−pc

r,p (7.19)

(iv) compatibility of circumferential tractions applied at the pile-soil interface:
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pc
θ,s =−pc

θ,p (7.20)

�e soil reaction to driving is based on the samemechanisms that were formulated for
the case of axial vibratory driving, i.e. a history-dependent frictional interface based on
Coulomb friction and a visco-elasto-plastic tip reaction. �e frictional interface is identical,
albeit the presence of circumferential motion - in both pile and soil - results in both vertical
and circumferential friction forces. In particular, each pile material point slides (with
respect to the soil) along a 2-D cylindrical surface during GDP, instead of sliding along a
vertical line as in axial vibro-driving. �erefore, the friction force along the pile shaft is
decomposed into:

p(i )
z,s =

f (i )
s,ultl

(i )
∂u(i )

rel
∂t√√√√(

∂u(i )
rel

∂t

)2

+
(
∂v (i )

rel
∂t

)2
tanh

 1

vtol

√√√√(
∂u(i )

rel
∂t

)2

+
(
∂v (i )

rel
∂t

)2
 (7.21)

p(i )
θ,s =

f (i )
s,ultl

(i )
∂v (i )

rel
∂t√√√√(

∂u(i )
rel

∂t

)2

+
(
∂v (i )

rel
∂t

)2
tanh

 1

vtol

√√√√(
∂u(i )

rel
∂t

)2

+
(
∂v (i )

rel
∂t

)2
 (7.22)

where vtol is a velocity tolerance parameter, l (i ) is the length of influence derived from the
FE projection and f (i )

s,ult defines the amplitude of static (and kinetic) friction. Finally, the

relative velocity is decomposed into a vertical and a circumferential component, i.e.
∂u(i )

rel
∂t

and
∂v (i )

rel
∂t

, respectively, which are defined as follows:

∂u(i )
rel

∂t
= ∂u(i )

p

∂t
− ∂u(i )

z,s

∂t

∣∣∣∣
r=Rp

(7.23)

∂v (i )
rel

∂t
= ∂v (i )

p

∂t
−
∂u(i )

θ,s

∂t

∣∣∣∣
r=Rp

(7.24)

�e formulation of the friction interface is concluded with the hereditary law that gov-
erns the friction reduction mechanism and reads:

f (i )
s,ult = f (i )

s,0

(
β∞+ (1−β∞)e

−cN N (i )
cycl

)
(7.25)

whereβ∞ is the ratio of theultimately degraded frictionamplitude to the initial one ( f (i )
s,0 ), cN

is amemory parameter that controls the rate of friction degradation andN (i )
cycl is the number

of loading cycles accumulated at the soil interface (i ) during driving. In the case of GDP,
it is postulated that loading cycles corresponding to vertical and circumferential friction
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forces are considered equivalent, irrespectively of the dissimilar stress state induced in the
surrounding soil and their frequency content; more details on these aspects are discussed
in subsequent sections.

Finally, the tip reaction follows a visco-elasto-plastic formulation that reads:

p(t)
z,s =−p(t)

z,p =


kt(u(t)

p −upl)+ ct
∂u(t)

p

∂t
, |kt(u(t)

p −upl)| < ft,ulthp

ft,ulthpsgn

(
∂u(t)

p

∂t

)
+ ct

∂u(t)
p

∂t
, |kt(u(t)

p −upl)| = ft,ulthp

(7.26)

where upl is the plastic tip displacement, ft,ult is the plastic tip resistance and the stiffness
and damping coefficients are defined as kt and ct, respectively. As can be seen, the tip
reaction is based solely on the axial pile tip response without any effects due to the circum-
ferential motion. �is choice will be elaborated further in the discussion of the numerical
results and the comparison against the field data.

7.2. A solution to the coupled problem via the Adjusted Harmonic
Balance Method

In Section 6.3, we presented a time-frequency method for the problem of vibratory pile
installation, based on sequential application of the HBM.�e latter was enabled by postu-
lating that the pile-soil response is virtually periodic "microscopically", i.e. for a small time
interval around a certain state of the system. �erefore, assemblage of these solutions via
linear interpolation of the response Fourier coefficients in time leads to a quasi-periodic
response due to slow amplitude modulation of the involved harmonic components. �e
preceding approach was validated numerically and was successfully applied to vibratory
pile installation in Chapter 6.

During pile installation via the GDP method, a low-frequency (Ωa) axial and a high-
frequency (Ωt) torsional excitation are applied simultaneously at the pile top. Most likely
the torsional driving frequency will not be an integer multiple of the axial one, due to
the impracticality of imposing a true integer ratioΩt/Ωa or even by choice, e.g. to avoid
potential interaction that may lead to shaker damage. Hence, the premise of periodic pile-
soil response (for a single state) with the axial driving frequency as the fundamental one
is invalidated. In this case, the response of the system around a single state may even be
quasi-periodic in its classical sense, i.e. characterized by a discrete frequency spectrum
with at least two incommensurable fundamental frequencies. �erefore, this development
requires a generalization of the classical HBM to render our framework applicable in the
case of the GDPmethod.

A HB scheme has been developed for systems exhibiting at least two incommensurable
base frequencies, commonly referred to as the generalized or multi-dimensional HBM
(MHBM) [343–347, 330, 348]. �eMHBM is based on the expansion of the response quantit-
ies in terms of multi-dimensional Fourier series and the introduction of the so-called hyper-
time concept [344, 330]. For a problemwith two fundamental frequenciesΩ1 andΩ2, the
two-dimensional Fourier series of a function f (t )may be expressed in the bi-dimensional
time (τ1,τ2) (hyper-time) as follows:
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f (τ1,τ2) =
h1∑

j1=−h1

h2∑
j2=−h2

(
c j1, j2 cos( j1τ1 + j2τ2)+ s j1, j2 sin( j1τ1 + j2τ2)

)
(7.27)

where τ1 = Ω1t , τ2 = Ω2t are the hyper-time variables and c j1, j2 , s j1, j2 are the Fourier
coefficients. To further elucidate the preceding ideas, a quasi-periodic velocity signal and
the associated friction force are displayed both in time and hyper-time domain (see Fig. 7.2).
�e time series in Figs. 7.2a and 7.2c are uniquely mapped to their representations in the
hyper-time plane shown in Figs. 7.2b and 7.2d, respectively, by tracking the trajectory of
the real time variable t on the (τ1,τ2)-plane.

(a) (b)

(c) (d)

Figure 7.2: A quasi-periodic velocity signal f (t ) = cos(100t )+cos(100
p

17t )+cos(100t +100
p

17t ) and the asso-
ciated friction force p f = tanh( f (t )) in time (a,c) and hyper-time (b,d) domain representations, respectively.

�e preceding outline of the multi-dimensional HBM indicates that the formulation of
the pile-soil problem at handmay become highly cumbersome, with a laborious numerical
implementation. An efficient alternative for quasi-periodic problems has been proposed
by Guskov and�ouverez [347], based on amono-harmonic approximation of the multiple
fundamental frequencies leading to the so-called adjustedHBM (AHBM).�e lattermethod
is identical to the classical HBM, albeit based on a new fundamental frequencyΩ0 that is
the greatest common divisor ofΩ2 andΩ1:
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Ω0 = Ω2

p2
= Ω1

p1
(7.28)

where p1, p2 are appropriate integers to approximate the original frequency ratio ηΩ =
Ω2/Ω1 up to the desired precision and the approximate frequenciesΩ2,Ω1 are obtained as
follows:

ηΩ = Ω2

Ω1
≈ ηΩ = Ω2

Ω1
= p2

p1
(7.29)

where the rational number ηΩ is the new approximate frequency ratio. Accordingly, in the
AHBM a response quantity f (t )may be assumed to possess the following form:

f (t ) = ∑
j∈S0

(
c j cos( jΩ0t )+ s j sin( jΩ0t )

)
(7.30)

where the set S0 is defined as follows:

S0 =
{

j1p1 + j2p2
∣∣ j1 ∈ [−h1,h1] , j2 ∈ [−h2,h2]

}
(7.31)

where j1, j2 can obtain integer values from the designated intervals and h1, h2 are positive
integers that denote the truncation limits of the super-harmonics to be included.

�e targetedharmonics in theAHBMencompass the twodistinct sets of super-harmonic
components associated with the two fundamental frequencies, as well as the harmonics
thatmay emerge from the interaction of the previous two sets. It is noted that certain values
of j may be generated bymore than one pair of ( j1, j2), so only one term is retained in these
scant cases, and the number of terms can be further reduced by virtue of the symmetries
of the Fourier series. As regards the accuracy of the AHBM, the discrepancy between the
discrete frequency spectra of the AHBM and the MHBM is the decisive factor. As can be
seen in Fig. 7.3, the use of ηΩ that is approximated in the second decimal place is in great
agreement with the frequency spectrum of the MHBM.

Figure 7.3: Comparison of the frequency components in the discrete spectra of MHBM and AHBM for an example
case withΩ1 = 100 rad/s,Ω2 = 100

p
17 rad/s, h1 = h2 = 10, ηΩ = 4.123105... and ηΩ = 4.12.

Finally, it is remarked that imposing a predefined irrational ratio of fundamental fre-
quencies in pile driving is infeasible from an engineering point of view; similar to imposing
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an integer frequency ratio (as stated above). In all likelihood the driving frequencies cannot
be set in practicewith such precision to achieve an irrational frequency ratio (even if desired).
�erefore, the AHBMmay be considered not solely an efficient alternative to MHBM, but
also the rational engineering approach to this problem.

Based on the preceding developments, the assumed solutions that were employed in
Section 6.3 are identical to the ones to be employed for the case of the GDPmethod, simply
with a new base frequency, i.e. Ω0 as defined above. �e pile generalized coordinates are
defined as follows:

qs
0,m =


cs
0,0t + ∑

j∈S0

(
cs
0, j cos( jΩ0t )+ ss

0, j sin( jΩ0t )
)

, m = 0

cs
m,0+

∑
j∈S0

(
cs

m, j cos( jΩ0t )+ ss
m, j sin( jΩ0t )

)
, m > 0

(7.32)

qa
0,m = ca

m,0+
∑

j∈S0

(
ca

m, j cos( jΩ0t )+ sa
m, j sin( jΩ0t )

)
, m ≥ 0 (7.33)

where cs
m = [

cs
m,0 cs

m,1 · · · ]T and ss
m = [

ss
m,1 ss

m,2 · · · ]T denote the vectors of Four-
ier coefficients associatedwith them-th axial-radialmode; similarly, the Fourier coefficients
of the m-th torsional mode are arranged in the vectors ca

m = [
ca

m,0 ca
m,1 · · · ]T and

sa
m = [

sa
m,1 sa

m,2 · · · ]T. Furthermore, the vertical and circumferential friction forces
along the pile-soil interface may be expressed as:

pc
s,z =Ψz

(
αz0+

∑
j∈S0

(
αz j cos( jΩ0t )+βz j sin( jΩ0t )

))
(7.34)

pc
s,θ =Ψθ

(
αθ0+

∑
j∈S0

(
αθ j cos( jΩ0t )+βθ j sin( jΩ0t )

))
(7.35)

in which αz j = [
αz j ,0 αz j ,1 · · · ]T, βz j = [

βz j ,1 βz j ,2 · · · ]T are the vectors of
Fourier coefficients related to the j -th cosine and sine terms and Ψz is the matrix en-
capsulating the basis vectors for the vertical friction forces. Correspondingly, the vec-
tors of Fourier coefficients for the circumferential friction forces are denoted as αθ j =[
αθ j ,0 αθ j ,1 · · · ]T,βθ j =

[
βθ j ,1 βθ j ,2 · · · ]T andΨθ is the matrix containing the

basis vectors for spatial approximation. Finally, the axial tip reaction is also assumed to be
periodic:

p(t)
s,z =αt,0+

∑
j∈S0

(
αt, j cos( jΩ0t )+βt, j sin( jΩ0t )

)
(7.36)

whereαt =
[
αt,0 αt,1 · · · ]T andβt =

[
βt,1 βt,2 · · · ]T denote the vectors encapsu-

lating the Fourier coefficients of the tip reaction.
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By substituting the assumed solutions into the dynamic equilibria of pile and soil and
the compatibility conditions, the following residuals are obtained:

rc,z =ΨT
z

(
pc

z,s +pc
z,p

)
(7.37a)

rc,θ =ΨT
θ

(
pc
θ,s +pc

θ,p

)
(7.37b)

rt = p(t)
z,s +p(t)

z,p (7.37c)

rq,s =
(
Φs

p,0

)T
(

Is
p,0Φ

s
p,0

d2qs
0

dt 2 +Ls
p,0Φ

s
p,0qs

0−ps
p,0

)
(7.37d)

rq,a =
(
Φa

p,0

)T
(

Ia
p,0Φ

a
p,0

d2qa
0

dt 2 +La
p,0Φ

a
p,0qa

0 −pa
p,0

)
(7.37e)

which can be arranged in the following residual vector:

r =


rc,z

rc,θ

rt

rq,s

rq,a

 (7.38)

Based on the AHBM, the Fourier coefficients of the residual vector r are obtained via a
Fourier-Galerkin projection and are required to vanish:

RF = 1

T0

T0∫
0

rh dt (7.39)

where RF is the Fourier coefficients matrix of the residuals, T0 is the period corresponding
to the base frequency of the AHBM (Ω0) and the row vector h encapsulates the test functions
(i.e. Fourier harmonics) h j (t ) defined as:

h j (t ) = 1

2

[(
1+ (−1) j

)
cos

(
jΩ0t

2

)
+

(
1+ (−1) j+1

)
sin

(
j +1

2
Ω0t

)]
(7.40)

7.3. Numerical results and comparison with field data
�e preceding modelling aspects conclude the numerical developments of this thesis by
presenting a complete computational framework for the analysis of pile installation via
axial vibratory and GDP techniques. In the ensuing, the characterization of the GDPmodel
parameters is presented on the basis of in-situ tests from the GDP field campaign [51]. Nu-
merical results are compared against field data showcasing the model potential and further
investigation into the GDPmethod uncovers the mechanisms that lead to its remarkable
installation performance. Finally, a comparison study between axial vibratory and GDP
techniques is performed, with a view to the induced wave motion in the soil medium.
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7.3.1. Model predictions and installation measurements
�e installation process is studied for an embedment interval from 3m to 8 m, with the aid
of field data from two piles driven via the GDP method (i.e. GDP1 and GDP2). Similarly
to the case of axial vibratory driving (see Chapter 6), the dynamic input excitation - both
axial and circumferential - is inferred from strainmeasurements at the pile top, which were
monitored by means of fiber Bragg grating (FBG) sensors. Furthermore, the properties of
the GDP piles and the specifications of the GDP shaker used in the field campaign can be
found in Tables 7.1 and 7.2, respectively. As regards the characterization of the soil medium,
Seismic Cone Penetration Tests with pore water pressure measurements (SCPTu’s) were
performed and the depth of the water table was found at 4.5 m (see Fig. 7.4). It is noted
that material dissipation is introduced in the form of frequency-independent hysteretic
damping for pile and soil with ratios ξp = 0.001 and ξs = 0.025 (identical for P- and S-waves),
respectively.

ρp [kg/m3] Ep [Pa] νp [-] Lp [m] Rp [m] hp [m]

7850 210·109 0.3 10 0.373 0.0159

Table 7.1: Properties of the piles driven in the GDP field campaign.

(a) (b) (c)

Figure 7.4: Profiles of (a) cone tip resistance (qc ), (b) relative density (Dr), and (c) shear wave velocity (cS) obtained
from the SCPTu tests.

As remarked in the preceding sections, the present modelling framework is aimed to
be applicable for the analysis of both axial vibratory and GDP techniques. It is evident
that the pile and soil modelling approaches - as a cylindrical shell and a layered half-space,
respectively - are common to both installation techniques. With a view to proposing a
unifiedmodelling framework, the frictional interface and tip reaction formulations of the
axial vibratory model are employed and adjusted to a minimal degree to accommodate the



7.3. Numerical results and comparison with field data

7

137

GDP shaker
Axial shaker Torsional shaker

Total mass [kg] 5150
Eccentric momentme [kgm] 15 4
Rotational speed [rpm] 1400 4800
Operational power [kW] 72 188

Table 7.2: Technical specifications of the GDP shaker.

additional requirements for the GDPmethod. �emotivation to retain the formulation of
the twomodels as common as possible lies in the similarity of the installation process (in
terms of physics) between the twomethods; to put it simply, a physically soundmodel for
GDP should be capable to capture axial vibratory driving as well.

As regards the frictional interface, the generic dependence of friction on relative velocity
directly encompasses the caseofGDP;however, thequestionabout theparameter calibration
for the memory mechanism may be raised. We proceed to retain the expression f (i )

s,0 =
0.012qc (zi ) and the value β∞ = 0.2, due to the common soil type encountered in the GDP
test site. Subsequently, for the degradation rate parameter cN an admissible range of values
(i.e. cN = 0.0003−0.0005) is considered, as proposed in Chapter 6. Furthermore, the tip
reaction brings about the complication of the additional circumferential component and its
coupling with the axial one. Due to the lack of a dataset that may facilitate the distinction of
such effects, the following choices are made: (i) the torsional reaction at the tip is discarded
and (ii) the effect of torsion is accounted by modifying the axial tip reaction. Effectively,
this approach retains the parameters kt and ct as defined in the axial vibratory model and
the value of the plastic tip resistance ft,ult is to be modified. �ese considerations allow
to circumvent the introduction of additional parameters, which would be inescapable if
axial-torsional reaction coupling and/or torsional reaction were to be considered.

In Fig. 7.5, the GDPmodel predictions are compared with the pile penetration records
from the GDPfield campaign. Specifically, two penetration records are considered, asmeas-
ured by the potentiometer transducer (PM) and the driving logging (DL) system. �e former
measurement has a high sampling rate ( f = 1000Hz) and is considered more reliable than
the latter, which is a sparsemeasurement (recorded per 25 cmof penetration). It is remarked
that PM data are not available for pile GDP2, due to failure of the sensor during driving. To
achieve a first proper validation of the drivabilitymodel, the calibrated parameters for GDP1

and GDP2 were aimed to be identical. �is validation process was successful and resulted in:
(i) adoption of cN = 0.0003 for the shaft reaction and (ii) elimination of the viscous damping
term and setting ft,ult = 0.15qc for the tip reaction. �e value of the degradation parameter
falls in the range proposed for the axial vibratory model, while the modification of tip reac-
tion is considered to be a result of the axial-torsional coupling at the pile tip. �e latter is
clearly an efficient manner to address a presumably more complicated mechanism, which
may be better identified by means of additional experiments. As can be seen in Fig. 7.5,
these two calibration options led to a great agreement between the GDPmodel predictions
and the penetration records for both GDP1 and GDP2. Naturally, further refinement of
the calibration process is of utmost importance at this early stage of development; yet the
degree of agreement with field data achieved through a single calibration approach for two
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different piles is considered more than satisfactory.

Figure 7.5: Comparison of GDPmodel predictions with field data for piles GDP1 and GDP2; penetration profiles as
recorded both by the potentiometer (PM) and the vibratory device logging system (DL) are shown.

A supplementary comparison between numerical results and field data can be provided
by studying the dynamic pile response. To that end, the short-time Fourier transform
(STFT) is employed for the time-frequency analysis of the axial acceleration at the pile head.
�e amplitudes of the STFTs for the model output and the acceleration measurement are
presented in Figs. 7.6 to 7.9. As regards the axial spectra (see Figs. 7.6 and 7.7), both model
output and field data indicate responses with frequency content rich in super-harmonics
of appreciable amplitude. However, for both GDP piles it is discernible that the model
slightly overestimates the amplitude with ascending frequency compared to the field data.
�e latter has been observed in the case of axial vibratory driving as well (see Chapter 6)
and is considered an indication of a smoother soil reaction than the one adopted in the
present models. On the other hand, the circumferential STFT of the model output pos-
sesses significant amplitude in the torsional driving frequency and its first super-harmonic,
while the STFT of the accelerometer record showcases an appreciable drop in amplitude
already from the first super-harmonic. Furthermore, components of minor amplitude are
present in manymore frequencies related to the axial excitation, as well as its combinations
with torsional super-harmonics. �e latter are not present in the model output and this
discrepancy - along with the previous observations - suggest that that soil reaction can be
better identified. For drivability purposes, it is apparent that the present model is more
than suitable, thus these observations are to be assessed in the light of further numerical
and experimental investigations.

7.3.2. Redirection of the friction force vector: the major driving mechanism of
GDP

�e preceding discussion focused on the comparison betweenmodel output and field data,
showcasing the predictive potential of the present GDPmodel. However, the mechanism
that leads to the remarkable performance of the GDPmethod is yet to be deciphered. As pos-
tulated in Chapter 5, the introduction of torsion will mobilize friction in the circumferential



7.3. Numerical results and comparison with field data

7

139

(a) (b)

Figure 7.6: Amplitude of the axial acceleration STFT of (a) themodel output and (b) the accelerometer record during
installation of pile GDP1.

(a) (b)

Figure 7.7: Amplitude of the axial acceleration STFT of (a) themodel output and (b) the accelerometer record during
installation of pile GDP2.

(a) (b)

Figure 7.8: Amplitude of the circumferential acceleration STFT of (a) the model output and (b) the accelerometer
record during installation of pile GDP1.
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(a) (b)

Figure 7.9: Amplitude of the circumferential acceleration STFT of (a) the model output and (b) the accelerometer
record during installation of pile GDP2.

direction, thus the vertical soil reaction along the shaft will be reduced. �is hypothesis is
confirmed by the friction forces developed at the pile shaft, based on the numerical results
of the present model. Specifically, the vertical and circumferential (line) friction forces
at an elevation of 3 m below the ground surface are displayed in Figs. 7.10 and 7.11; two
distinct time windows are chosen occurring when the pile reaches the penetration depths
of 5.5 m and 7.5 m. As can be seen, both friction force components have a common pattern,
irrespective of the pile (GDP1 or GDP2) and the penetration depth. In Figs. 7.10 and 7.11, it
is demonstrated that friction is predominantly expended in the circumferential direction
resisting the torsional motion and is accompanied by a substantially lower friction force
along the vertical direction. �erefore, the redirection of the friction force vector emerges
as the major driving mechanism of GDP, by virtue of major reduction of the soil reaction
along the penetration axis.

(a)GDP1 (b)GDP2

Figure 7.10: Friction force components (p(i )
z,s, p(i )

θ,s
) at zi = 3.0m and uR = 5.5m

Another visualization of the friction force vector during the studied time intervals is
presented in Figs. 7.12 and 7.13. Specifically, the trajectories of the friction force vectors
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(a)GDP1 (b)GDP2

Figure 7.11: Friction force components (p(i )
z,s, p(i )

θ,s
) at zi = 3.0m and uR = 7.5m

are shown for all the cases discussed in Figs. 7.10 and 7.11. Two loci may be distinguished,
which correspond to two horizontal lines that the majority of the points approach. In
particular, these two lines (loci) correspond to the cases of zero vertical friction and the
extrema of circumferential friction force. �is is an additional testament to the mechanism
of friction redirection, as the majority of points approach these loci and the extrema of
vertical friction are scarcely present. It is noted that a fixed time step of ∆t = 0.0001 s is
used for the evaluation of the friction force vectors in the previous plots.

(a)GDP1 (b)GDP2

Figure 7.12: Friction force trajectories at zi = 3.0m and uR = 5.5m; the color of the markers is based on the ratio
of circumferential to total friction force, i.e. ranging from -1 (blue) to 1 (red).

�e identification of the friction redirection mechanism inescapably leads to new re-
search questions regarding the nature of this mechanism and its implications. It becomes
evident that successful pile installation via the GDP method requires a set of axial and
torsional excitation parameters (amplitudes and frequencies) suitable to achieve the desired
result, i.e. redirection of the friction force vector. �e latter depends both on the shaker
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(a)GDP1 (b)GDP2

Figure 7.13: Friction force trajectories at zi = 3.0m and uR = 7.5m; the color of the markers is based on the ratio
of circumferential to total friction force, i.e. ranging from -1 (blue) to 1 (red).

specifications, as well as on the soil profile at the driving location, thus special attention
is needed for each pile installation and this GDP aspect requires further investigation. Fi-
nally, it is recognized that other mechanismsmay be present, even though not considered
herein; however, friction redirection is solely based on the mechanics of the process - thus
requires no further complicating assumptions - and suffices to explain the GDPmethod
both qualitatively and quantitatively.

From the preceding investigations, it became apparent that the bulk of friction is ex-
pended in the circumferential direction. Accordingly, the ratio of circumferential to total
friction force is an interesting metric that may provide further insight into the mechanics
of GDP. In Figs. 7.14 and 7.15, the aforementioned ratio is mapped along the soil depth
(in contact with the pile) and during the installation time windows described above. It is
apparent that high friction ratios are present along the whole interaction surface for the
majority of the installation time. By comparing Figs. 7.14 and 7.15, the friction ratio appears
to slightly decrease overall with penetration depth; the region with the lowest friction ratio
is consistently found to be close to the pile tip. �is outcome is rational (based on the CPT
profile), as the soil reaction closer to the tip is the least degraded due to the small number of
accumulated loading cycles (i.e. friction fatigue).

Another interesting aspect of GDP is the power redistribution that follows from the
introduction of torsion. Specifically, the quantity of interest is the dissipated power due
to friction along the pile-soil interface. It is apparent that in the case of axial vibratory
driving, power is dissipated solely due to the friction along the vertical axis and the tip
reaction. In Figs. 7.16 and 7.17, a comparison in terms of dissipated power is presented
due to: (i) the vertical friction forces, (ii) circumferential friction forces and (iii) vertical tip
reaction. It is remarked that for the power dissipated at the shaft, the power sum along
the shaft in contact with the soil is considered. Evidently, the preponderance of dissipated
power corresponds to circumferential friction, whereas vertical friction forces and tip
reaction have approximately similar contributions (yet marginal overall). Conclusively, the
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(a)GDP1 (b)GDP2

Figure 7.14: Ratio of circumferential to total friction force
∣∣∣p(i )
θ,s

∣∣∣/

√
(p(i )

z,s)2 + (p(i )
θ,s

)2 at uR = 5.5m.

(a)GDP1 (b)GDP2

Figure 7.15: Ratio of circumferential to total friction force
∣∣∣p(i )
θ,s

∣∣∣/

√
(p(i )

z,s)2 + (p(i )
θ,s

)2 at uR = 7.5m.

friction redirection mechanism irrefutably benefits the installation process in terms of
performance, yet it implies that the driving-induced soil motion is dissimilar from axial
vibratory driving. Section 7.3.4 is focused on this aspect, i.e. the investigation of the soil
response characteristics in the case of axial vibro-driving and GDP.

7.3.3. Friction amplitude reduction in GDP due to memory effects - friction
fatigue

In Fig. 7.18, the distribution of friction force amplitude f (i )
s,ult along depth z is shown for

both GDP piles at different driving instances, i.e. every 0.5 m of pile penetration. As
stated in Section 7.1.3, the number of loading cycles experienced at a soil material point
is the direct sum of cycles due to vertical and circumferential friction forces. �erefore,
no differentiation exists between the contribution of the two components in the memory
mechanism. A rational modification would be to differentiate the value of cN for vertical
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(a)GDP1 (b)GDP2

Figure 7.16: Comparison of power dissipated by (i) circumferential shaft reaction, (ii) vertical shaft reaction and
(iii) tip reaction at uR = 5.5m.

(a)GDP1 (b)GDP2

Figure 7.17: Comparison of power dissipated by (i) circumferential shaft reaction, (ii) vertical shaft reaction and
(iii) tip reaction at uR = 7.5m.

and circumferential loading cycles, as their contribution to friction reduction cannot be
claimed a priori to be equivalent. Presumably, the different type andmagnitude of induced
stresses in the soil medium at different frequencies support the view that dissimilar values
of degradation rate parameter cN may be adopted for vertical and circumferential friction.
However, this approach is practically hindered in this study, given the lack of an extensive
data set thatmay facilitate that distinction. �e preceding considerationsmay be supported
by the fact that the degradation rate for GDPwas cN = 0.0003 (optimal prediction), whereas
the corresponding value in axial vibratory driving was cN = 0.0004 (optimal prediction), i.e.
a smaller value was found in GDP due to the lumping of vertical and circumferential loading
cycles. Naturally, a more thorough investigation along with additional experimental data is
necessary to better understand this mechanism and implement it in the numerical model
for GDP.
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(a)GDP1 (b)GDP2

Figure 7.18: Friction amplitude distribution along soil depth z for different embedment depths (per 0.5 m),
showcasing the memory effect leading to shaft friction reduction.

7.3.4. A comparison of induced ground motion between axial vibratory and
GDP methods

In this section, a case study is carried out, focusing on the comparison between the axial
vibratory and the GDPmethods in terms of the induced groundmotion. To facilitate this
comparison, the respective benchmarked models are employed to analyse installation cases
of piles identical to the GDP piles. To eliminate the influence of dissimilar soil conditions,
installations of vibro-driven piles are considered at the locations of the GDP piles, i.e. GDP1

and GDP2; hereafter vibro-driven piles in the locations GDP1 and GDP2 will be denoted as
VH1 and VH2, respectively. �e installation settings from the GDP field tests are used as
a benchmark for GDP1 and GDP2, whereas for VH1 and VH2 adjustments to the original
VH settings are made for comparison purposes. In particular, the driving frequency is
considered constant at 24.8 Hz (similar to VH pile), whereas the vibratory device mass is
taken equal to the mass of the GDP shaker to erase the bias of increased static load in the
GDP cases.

To assess whether the introduction of torsion in GDP enhances certain aspects of the
pile installation process (apart from the installation performance), we focus on the induced
disturbance in the vicinity of the pile. Specifically, a trial-and-error process is performed
with the aim of achieving a fairly similar penetration profile between VH and GDP piles. In
the aforementioned process, the dynamic input load of the vibratory device results from
adjustmentduring the installation inorder tomeet the requiredpenetrationof theGDPpiles.
As shown in Fig. 7.19, the trial-and-error process led to satisfactory penetration profiles for
VH1 and VH2, so we can proceed to the comparison of the induced soil disturbance between
the twomethods.

In Fig. 7.20a, the amplitudes of the dynamic input loads of piles VH1 and VH2 - required
to achieve the penetration profiles in Fig. 7.19 - are shown as functions of the penetration
depth. �e corresponding amplitudes for GDP1 and GDP2 as extracted by the FBG strain
measurements are presented in Fig. 7.20b for completeness. It already becomes apparent
that the introduction of torsion leads to a substantially lower vertical load compared to axial
vibratory driving (even one order of magnitude lower). �is observation already confirms
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(a)GDP1 location (b)GDP2 location

Figure 7.19: Comparison of pile penetration predictions from vibratory and GDPmodels for the GDP1 and GDP2
locations; the data recorded by the potentiometer (PM) and the vibratory device logging system (DL) are also
shown.

one of the main hypothesis of the GDPmethod, i.e. the reduction of the vertical driving
loads due to the introduction of torsion. Furthermore, the merit of increasing the driving
frequency is also evident, as it leads to a higher penetration rate - based on the results
presented in Sec. 6.4.4 for constant amplitude - and increased amplitude of dynamic
input load; thus increase of driving frequency leads to higher installation performance in
essentially twomanners. In the following case study, the driving frequency from the VH
pile is retained, as it is fairly similar to the commonly used driving frequency of 23 Hz. It
is remarked that the significant increase of the input load in Fig. 7.20a after the depth of
4.5 m is due to pile penetration into water-saturated layers, which are characterized by
high (linear part of) tip reaction. In particular, for VH2 this transition also coincides with
encountering the stiffest layers of the respective soil profile (approximately at 5 m depth)
leading to a substantial input load necessary to match the penetration profile of pile GDP2

(see Fig. 7.4).
For all the subsequent comparisons, the time windows employed are common with the

ones from the previous results (i.e. uR = 5.5 m and uR = 7.5 m). �e intensity of ground
motion in the immediate vicinity of construction activities (e.g. pile driving) is customarily
assessed by means of the peak particle velocity (PPV) [349, 308, 350]. In the ensuing, the
so-called true vector sum (TVS) form of PPV is employed [349]. �e first andmost pivotal
comparison of the induced groundmotion between the twomethods in terms of PPVs at
the ground surface is presented in Figs. 7.21 and 7.22. It becomes apparent that GDP leads
to substantially reduced PPVs for both penetration depths studied and for any receiver
radius (shown up to r ≈ 25Dp). In particular, the twomethods present almost one order of
magnitude difference in PPV values, while the soil response is found to be larger at uR = 5.5
m for vibratory driving. �e latter is better understood in view of the penetration into
water-saturated layers - tip reaction increased significantly leading to high load amplitude
(see Fig. 7.20a) - and the high shaft reaction due to the encounter of stiff soil layers (see
Figs. 7.4 and 7.18). It is noted that this quantitative disparity between the resulting ground
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(a) (b)

Figure 7.20: Amplitude of the dynamic axial line load at the pile top for (a) the piles VH1 and VH2 and (b) the piles
GDP1 and GDP2.

motions corresponds to significantly different vibration perception levels. In particular, the
reported PPVs for GDP pertain to the levels of disturbing up to slightly perceptible (with
increasing receiver distance), whereas groundmotion from vibratory driving ranges from
very disturbing to disturbing throughout the examined region [349].

(a) (b)

Figure 7.21: PPV at the ground surface for uR = 5.5m.

It is evident that the application of GDP in onshore construction projects appears prom-
ising, even though the initialmotivation of themethod has been the installation ofmonopile
foundations for offshore wind turbines. In the case of the latter, the induced SV-P wavefield
(ur,s, uz,s) - as well as the axial-radial pile motion - are of utmost interest, since they are
directly related to the generation of underwater noise. In view of this remark, we proceed to
analyse the PPV profiles shown in Figs. 7.21 and 7.22 in terms of the individual components.
In Figs. 7.23 and 7.24, the maxima of the surface velocity norms for vertical, radial and
circumferential components are shown for the GDP piles. As can be seen, for GDP1 the
circumferential velocity is either larger or equal to the vertical one close to the pile and with
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(a) (b)

Figure 7.22: PPV at the ground surface for uR = 7.5m.

(a)GDP1 (b)GDP2

Figure 7.23: PPV at the ground surface per component (r , θ, z) for uR = 5.5m.

(a)GDP1 (b)GDP2

Figure 7.24: PPV at the ground surface per component (r , θ, z) for uR = 7.5m.
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increasing receiver distance drops to even lower levels than the radial component. On the
other hand, for GDP2 the circumferential component is clearly dominant close to the pile
and attenuates rapidly with radius, approaching the vertical and radial velocities. In both
cases, the reduced groundmotion observed for GDP in Figs. 7.21 and 7.22 is characterized by
a torsion-induced SHwavefield of either higher or similar intensity with the SV-P wavefield
throughout the examined region.

�e results shown in Figs. 7.21 to 7.24 are of great significance, as they facilitate a first
direct comparison between the twomethods in terms of induced soil motion. Specifically,
PPVs at the ground surface are pivotal disturbancemetrics and of direct interest for onshore
applications. To further comprehend the dissimilar response of the soil medium during pile
installation, a global view of the resulting response may be of great value. For that reason,
in Figs. 7.25 and 7.26 the PPV of each material point in the soil is shown as a contour in the
r − z plane. It is noted that the displayed contour patterns do not resemble the wavefield at
any instant, as they are not snapshots of the response; they are simply a collection of the
PPVs for each soil material point attained during the studied time window (sufficient for
stationary response). Furthermore, the colormaps are common for vibro-driven and GDP
piles, in order to facilitate the comparison of the resulting fields.

(a)VH1 (b)GDP1

Figure 7.25: PPVs (surface and interior soil domain) at GDP1 location for uR = 5.5m.

As can be seen, the first major observation corresponds to significantly lower velocities
in the interior of the soilmedium forGDP compared to axial vibratory driving. Furthermore,
the disturbance induced by GDP is strongly localized in the pile vicinity, which results from
the high-frequency friction forces induced by torsion. �e latter observation is in line with
one of the main hypotheses of the GDPmethod, i.e. that the induced disturbance in the
surrounding mediumwill be reduced (compared to axial vibratory driving) due to the high-
frequencies that will lead to the preceding localization. It is remarked that for bothmethods
and locations, the PPVs close to the tip present large magnitudes, as is anticipated due to
the combined effect of tip reaction and least shaft reaction degradation in the tip vicinity.
In general, the preceding observations (both for the surface and the interior soil domain)
can be understood as the result of (i) the reduction of vertical loads and (ii) the introduction
of torsion-induced circumferential loads. �e former reduction led to a large decrease in
the amplitude of the SV-P wavefield (ur,s, uz,s) (compared to vibro-driving) and particularly
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(a)VH1 (b)GDP1

Figure 7.26: PPVs (surface and interior soil domain) at GDP1 location for uR = 7.5m.

(a)VH2 (b)GDP2

Figure 7.27: PPVs (surface and interior soil domain) at GDP2 location for uR = 5.5m.

(a)VH2 (b)GDP2

Figure 7.28: PPVs (surface and interior soil domain) at GDP2 location for uR = 7.5m.

of Rayleigh waves that dominate the surface response with increasing receiver distance. On
the other hand, the introduction of torsion elicits SHwaves - of appreciable magnitude -
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that decay rapidly away from the pile by virtue of the high-frequencies excited, whereas Love
waves are not visible presumably due to the mild stratification of the shallow soil layers.

(a)VH1 at uR = 5.5m (b)GDP1 at uR = 5.5m

(c)VH1 at uR = 7.5m (d)GDP1 at uR = 7.5m

Figure 7.29: Trajectory of particle motion (u(0)
r,s,u

(0)
z,s) at the ground surface for GDP1 location.

To further complement the preceding considerations, we conclude the study of the
driving-induced soilmotionwith the particle trajectories at the ground surface. In Figs. 7.29
and 7.30, the particle trajectories at the ground surface for multiple receiver radii are de-
picted. It is remarked that the axes are not common for VH and GDP piles, due to the
large difference in magnitude. �e latter has been previously discussed to a large extent
and will not be repeated; yet it is interesting to assess the distinctive behavior of the two
driving methods. For vibro-driven piles, the motion is predominantly vertical for small
radii, whereas with increasing distance from the source the trajectories transition from
vertically-polarized orbits to retrograde elliptical orbits (typical of Rayleigh waves) [218].
�is observation is also the case for GDP, with the discrepancy that the frequency content is
much richer for GDP as testified by the respective orbits. Naturally, these components decay
quicklywith radius and at larger receiver distances the characteristic trajectories of Rayleigh
waves dominated by lower frequencies also emerge in GDP. It is interesting to note that
the particle trajectories appear to shrink at a higher rate with radius for GDP; this stronger
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decay is due to the high-frequency components present in the Rayleigh waves elicited in
GDP cases. Conclusively, the groundmotion results showcased that indeed GDP can lead to
lower disturbance in the surroundingmedium, following from the samemechanism that
enhanced the installation performance, namely the torsion-induced friction redirection.

(a)VH2 at uR = 5.5m (b)GDP2 at uR = 5.5m

(c)VH2 at uR = 7.5m (d)GDP2 at uR = 7.5m

Figure 7.30: Trajectory of particle motion (u(0)
r,s,u

(0)
z,s) at the ground surface for GDP2 location.

7.4. Conclusions
In this chapter, a pile installation model for GDP was presented and utilized to decipher
the driving mechanisms of the method, as well as to compare GDP with axial vibratory
driving in terms of the induced soil motion. �e GDP model is based on the numerical
framework developed for vibratory driving (see Chapter 6), with main discrepancies the
increase of the degrees-of-freedom (DoFs) (due to the addition of circumferential motion)
and the application of the AHBM (due to the relation of driving frequencies). As regards
the soil reaction, the (S)CPT-based formulation from vibratory driving was employed as an
initial basis. Upon modification of the tip reaction, the adopted set of parameters led to
GDPmodel predictions that compared favourably with field data from the GDP campaign.
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�erefore, a unified modelling framework that is suitable to analyse pile installation via
axial vibratory and GDPmethods has been realized. Conclusively, the main observations
and findings pertaining to the developments of this chapter are summarized as follows:

(i) the friction force at the pile-soil interface was predominantly expended in the cir-
cumferential direction, thus torsion was leading the driving process. �is redirection of the
friction force vector emerges as the main GDP driving mechanism that leads to enhanced
installation performance.

(ii) the vertical friction forces possessed appreciable amplitude in super-harmonics of
axial, torsional driving frequency and their combinations, leading to a vibration pattern
that spread widely in the frequency spectrum.

(iii) the proper estimation of axial and torsional excitations - both in terms of amplitudes
and driving frequencies - becomes highly important in GDP, since the successful application
of the method relies on the realization of friction redirection.

(iv) a comparison study between axial vibratory and GDP techniques by means of the
benchmarked installationmodels was performed with a view to assess the associated soil
motion. GDP consistently led to significantly lower PPVs for all receiver depths and radii
examined in this study.

(v) a reduction of SV-P waves was achieved in GDP via (i) the reduction of axial driving
loads that are necessary for pile penetration and (ii) the introduction of SHwaves (via friction
redirection) that decay rapidly away from the pile by virtue of the high frequencies involved.

(vi) the coupling of vertical-circumferential friction forces in GDP leads to SV-P waves
with a wide frequency spectrum, accompanied by fast attenuation of these high-frequency
components and thus large amplitude reductionwith increasing distance from the pile even
for the SV-P wavefield.

(vii) GDP did not solely reduce the amplitude of the wavefield overall, but also localized
the high-amplitude soil motion in the pile vicinity.





8
Conclusions and recommendations

Offshore wind demand soars at a remarkable pace in recent years, continuously posing
technical challenges on various fronts. Engineering advancement and innovation are vital
to tackle these challenges and accommodate the rapid growth of the offshore wind sector.
�e foundation installation for offshore wind turbines constitutes one of the most crucial,
challenging and costly operations during the construction of an offshore wind farm. At
present, monopiles comprise the vast majority of offshore wind foundations and the fore-
most monopile installation method is impact hammering. However, this technique has
raised alarming environmental concerns, leading to intensified investigation and develop-
ment of sustainablemethods formonopile installation. In this thesis, a numericalmodelling
framework for pile installation is presented, that encompasses the mathematical formula-
tion, the parameter calibration based on in-situ measurements and the implementation
of a performant numerical scheme for engineering purposes. �e present methodology
focuses on two propitious and environmentally friendly installationmethods, namely the
axial vibratory driving and the Gentle Driving of Piles (GDP).

8.1. Conclusions
As a point of departure, the vibrations of thin-walled cylindrical structures are studied in
Chapter 2,with a view to tubular (mono)piles. For that purpose, thin shell theory is presented
as the optimal modelling option in terms of physical soundness and computational effi-
ciency. �e propagation of harmonic waves and the free vibrations of thin cylindrical shells
are both treated briefly, focusing on the dynamic behaviour of such cylindrical waveguides.
To facilitate the integration of shell theories in numerical frameworks, a Semi-analytical
Finite Element (SAFE) model is developed and validated. �e contribution of the preced-
ing framework can be readily realized via its direct incorporation into existing 1-D Finite
Element (FE) approaches by mere substitution of tabulated FEmatrices.

For drivability purposes, the pile is commonly treated either as a 1-D thin rod or as a rigid
body (mostly in vibratory driving). �e preceding choices may be invalidated, depending
on the pile geometry and the excitation spectrum. Furthermore, pile-soil interaction is
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customarily taken into account via local and frequency-independent analogues, mainly due
to simplicity and ease of numerical implementation. To investigate the effects of elasticwave
dispersion and non-local soil reaction, a case study focusing on impact piling is presented
in Chapter 3. Specifically, a standard 1-D impact piling model is compared against its 3-D
axisymmetric counterpart, i.e. modified to treat the pile as a thin cylindrical shell under
axisymmetric conditions and to include spatially non-local soil reaction.

�e significance of elastic wave dispersion in drivability was ascertained for all pile
geometries, albeit its effect was amplified with increasing pile diameter. �is occurrence is
associated with the excitation of motions in the vicinity of the shell ring frequency and is
characterized by predominantly radial displacement components. It is remarked that wave
dispersion is intrinsic to the dynamic response ofmonopiles and its oversightmay be falsely
attributed to other mechanisms, e.g. soil non-linear behaviour. As regards the soil reaction,
a flexible approach was employed to generate a spatially non-local model by means of
convolving its local counterpart with a spatial kernel (e.g. Gaussian function). However, the
previous treatment introduces additional complexity, as a calibration process is necessary
in order to reproduce the spatial behaviour of the 3-D soil continuum. Furthermore, non-
locality in space and time is coupled in a continuum via its dispersion relation, thus the
overall undertaking becomes rather arduous.

To overcome these limitations, the problem of the 3-D soil continuum is addressed
directly, towards a rigorous non-local approach (in space and time). Chapter 4 treats the
propagation of mechanical waves in a vertically inhomogeneous solid, comprised by arbit-
rarily thick homogeneous horizontal layers of dissimilar material properties. For drivability
analysis purposes, numerical modelling of arbitrarily layered soil media is indispensable.
To that end, a semi-discrete approach is employed to analyze layeredmedia in a versatile
manner, namely the�in-Layer Method (TLM).�e formulation of the TLM is first outlined,
followed by the derivation of the generalized eigenvalue problem of cylindrical waves and
the respective normal modes. Furthermore, the incorporation of Perfectly Matched Layers
(PMLs) into the TLM is addressed via complex-valued stretching of the vertical coordinate,
leading to a superbly efficient approach for half-space approximation in the context of
the TLM. By means of these numerical developments, we proceed to derive explicit mat-
rix expressions for the Green’s functions in the frequency-space domain based on normal
modes. �e preceding formulation is valid both in the original, i.e. soil layers resting on
rigid bedrock, and in the PMLs-augmented TLM cases. Finally, a set of numerical examples
is presented to validate the numerical framework, implemented in the ensuing pile-soil
interaction models.

In Chapter 5, the Gentle Driving of Piles (GDP) is presented as a propitious technology,
motivated by the growingdemand for sustainablemethods of offshoremonopile installation.
Specifically, the proposed technique is characterized by the simultaneous application of low-
frequency axial andhigh-frequency torsional vibrations, aiming to enhanceboth installation
and vibro-acoustic performances. To achieve a first demonstration of this method, a GDP
shaker was built and a medium-scale field campaign was executed at the Maasvlakte II site
in Rotterdam. Next to the proof of concept, a primary objective of the field tests was the
comparison of GDPwith two conventional techniques, namely impact hammering and axial
vibratory driving. �e successful proof of concept accommodated a multitude of objectives
encompassed in the research line of GDP, focused on installation and post-installation



8.1. Conclusions

8

157

performances.
�e main highlight of the experimental campaign was the successful installation of

two instrumented GDP piles (GDP1 and GDP2). �ese installation tests showcased the
remarkable potential of GDP, as it led to a higher penetration rate compared to axial vibro-
driving (VH) even though the former piles were installed in significantly stiffer soil. It is
noted that the energy consumption between VH andGDP1 was comparable, suggesting that
GDP can also be advantageous in terms of energy efficiency. However, the required power
was appreciably higher for GDP - as an outcome of the high-frequency torsion - pointing
towards amplitude-frequency decoupling as further advancement of the GDP shaker design.
�e time-frequency analyses of thepile response revealed that installation is a quasi-periodic
process, characterized by slow amplitudemodulation of the involved harmonic components.
As regards the soil response, excess pore water pressures were measured in the pile vicinity
and rapidly dissipated in the permeable soil at hand, accompanied by relaxation of total
radial stresses. Furthermore, in-situCross-hole Sonic Logging (CSL) tests recorded anoverall
increase in theP-wavevelocityprofile in the soilmedium,whichmaybe linkedwith increased
soil stiffness due to the installation-induced densification. In summary, the described field
campaign provided a preliminarily demonstration of the GDP technology, showcasing its
potential in terms of both installation and post-installation performances. Towards future
development, further experimental studies and quantitative tools are indispensable both
for axial vibratory driving and GDP.

By integrating the numerical developments of the preceding chapters, a computation-
ally efficient model for vibratory pile installation is presented in Chapter 6. �is numerical
framework aims to bridge the gap betweenmedium- and high-fidelity approaches, by allevi-
ating the physical drawbacks of the former, while overcoming the practical limitations of the
latter. Specifically, the SAFE cylindrical shell model (Chapter 2) is coupled to a layered soil
half-spacemodelled via the TLM+PMLs (Chapter 4). �e non-linear pile-soil coupling is real-
ized through a history-dependent frictional interface and a visco-elasto-plastic tip reaction
model, both characterized on the basis of (S)CPTmeasurements. To retain computational
efficiency, a performant scheme based on the sequential application of the Alternating
Frequency-Time (AFT) Harmonic Balance Method (HBM) is developed, by postulating that
the system response is virtually periodic ’microscopically’. �erefore, the total response is
obtained by transitioning between the computed non-linear states via linear interpolation
in the time-frequency plane. As a result, a quasi-periodic response is formed due to slow
amplitude modulation of the involved harmonics. �e present method is applicable to a
broad class of non-linear dynamical systems that possess quasi-periodicity of this type. Fi-
nally, model predictions are compared with field data from the GDP campaign, showcasing
the prediction potential of the vibratory driving model.

On the basis of the previous model, further aspects of vibratory pile installation have
been investigated. �e identification of the shaft reaction as the main soil reaction mechan-
ism constitutes one of the major findings of this chapter. It is noted that this result strongly
depends on the test scale, yet it is anticipated that this trend will be further reinforced for
offshore monopiles. A memory mechanism is proposed and implemented to capture the
occurrence of shaft friction reduction during driving - commonly termed as friction fatigue
- based on the accumulation of loading cycles at each soil material point. Friction fatigue is
vastly reported and highly relevant for impact piling, jacking and static axial capacity of
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piles. However, the normalized distance of a soil point from the pile tip ismainly considered
as the control variable of friction fatigue in the previous cases. In this study, the cyclic and
distance-basedmemory mechanisms have been compared with the field data, leading to ac-
curate predictions for the former, whereas the latter is found inadequate in both qualitative
and quantitative terms. Conclusively, a numerical investigation is presented pertaining to
the effect of driving frequency onpenetration rate, that indicates amonotonically increasing
relationship between the two variables. Field tests that focus on such effects are vital to
identify what may constitute the optimal driving frequency in terms of installation and
post-installation performances.

In Chapter 7, the previousmodelling framework is utilized and expanded further, with a
view to analyse pile installation via GDP.�e circumferential motion is introduced into both
pile and soil components, while the frictional interface is retained in view of the inherent
physical similarity between the two methods (i.e. axial vibro-driving and GDP). From a
computational perspective, the basis of the HB-based scheme (Chapter 6) is modified to
utilize the adjusted HBM (AHBM), i.e. an approximate scheme to treat a problem with two
different driving (base) frequencies. As regards the soil reaction parameters, the original
SCPT-based formulation is employed as the initial basis, leading to favourable comparison
of model predictions with field data. �e mechanics of the GDP method are deciphered
and the advantageous effect of torsion in pile installation is showcased. In particular,
the redirection of the friction force vector emerges as the major driving mechanism of
GDP. To elaborate further, shaft friction is predominantly expended in the circumferential
direction and is greatly reduced along the penetration axis, hence enhancing the installation
performance. �e dynamic pile response indicates that axial-radial and circumferential
motions are coupled through friction (and potentially through the excitation) leading to
a vibration pattern with wide spread in the frequency spectrum. As a consequence of the
previous findings, the reliable selection of installation settings - both in terms of amplitudes
and driving frequencies - is of utmost significance for GDP, as the successful application of
the method relies on the realization of friction redirection.

�e study of the GDPmethod is concluded with a comparison between axial vibratory
driving and GDP, on the basis of the respective benchmarked numerical models. A trial and
error process (in terms of input) was performed to reproduce axial vibro-driving cases with
identical penetration profiles to the GDP piles in common soil locations. In thatmanner, the
associated soil motion by the two techniques can be assessed on a fair basis. �e numerical
results indicate that GDP leads to consistently lower peak particle velocities (PPVs) both
on the surface and the interior soil domain for all receiver depths and radii. Furthermore,
an overall reduction of the SV-P wavefield (compared to axial vibro-driving) is achieved in
GDP due to (i) decrease of required axial loads for pile penetration and (ii) elicitation of
SHwaves by torsion-induced circumferential friction, which decay rapidly with distance
due to their high-frequency content. It is noted that the reduced SV-P wavefield in GDP
also attenuates rapidly with distance, as the frictional coupling redistributes energy to
higher frequencies and results in a localized region of high-amplitude soil motion in the pile
vicinity. Evidently, GDP is found to be an advantageous installation technology in terms of
installation performance and induced environmental disturbance, based on the numerical
studies performed in Chapter 7.
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8.2. Recommendations for future research
In view of the findings presented in this thesis, a set of recommendations is outlined herein,
pertaining to numerical modelling and engineering aspects of pile driving via vibratory
and GDPmethods. Focusing on the former objective, the ensuing proposals have broader
applicability beyond the scope of pile driving and their potential in various engineering
problems should be realized. Particularly, the SAFE approach introduced in Chapter 2
may be applied to shells of revolution (e.g. conical and spherical shells), thus enabling the
study of various structural configurations - e.g. assemblage of conical, cylindrical and
spherical segments – in a versatile and efficient manner. �is potential development holds
significant promise beyond pile driving, as it relates to the broader topic of shell vibrations.
Furthermore, as was highlighted in Chapter 6, the extension of the classical HBM to a
Petrov-Galerkin schemewould greatly benefit the study of non-linear systems characterized
by bounded response continuity. It is deemed that such an advancement will be timely, as
ongoing researchworks are attempting to utilize theHBM in large-scale dynamical systems;
this synergy would be amajormilestone in the study of periodic and quasi-periodic systems.
Finally, the presented numerical framework can be extended by incorporating the Green’s
functions of an acousto-elastic layered half-space, thus encompassing the presence of
seawater fluid. As a result, a coupled approach may be formulated, which would enable
the simultaneous prediction of pile drivability and underwater noise emissions during pile
installation via vibratory and GDPmethods.

With a view to monopile installation, extensive research works are currently ongoing,
focusing on diverse engineering aspects. Towards future development, it is essential to
undertake comprehensive field campaigns that encompass the major installation aspects,
namely drivability, underwater acoustics and response to lateral loading. Adopting a holistic
approach is crucial, as progress in these topics independently may not necessarily yield
themost effective outcomes. �rough such research endeavours, the numerical findings
presented in this thesis can be validated through field experiments, reinforcing important
observations suchas thepositive influenceofdriving frequencyonpenetration rate -without
necessitating higher vibratory amplitudes - as well as the abatement of environmental
disturbance induced by GDP compared to axial vibro-driving. Furthermore, experimental
validation of relevant findings will contribute significantly towards the formulation of a
multi-objective framework for optimizing driving settings in both axial vibratory and GDP
techniques. Specifically, for GDP, the field observations of the GDP campaign, combined
with the numerical results from this thesis, suggest the potential for further advancements
in GDP technology through amplitude-frequency decoupling. Finally, it is worth noting
that both axial vibro-driving and GDPmethods will encounter unprecedented challenges
from a dynamics perspective, as sub- and super-harmonic resonances may come into play
in the installation of large-diameter monopiles.

Conclusively, this thesis has presented a unifiedmodelling framework for the analysis
of pile installation via axial vibratory driving and GDP.�e role of pile installation cannot
be overemphasized in offshore wind farm construction, as the installation process itself
has also major effects on vibro-acoustic and post-installation behaviours. �erefore, the
present framework significantly advances the state of engineering-oriented approaches for
drivability prediction and simultaneously initiates a new path towards foundation design,
that enables the integration of the previous installation aspects. With a view to vibratory
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monopile installation, the non-linear dynamics of the driving process are deemed focal
in the forthcoming challenges. As regards GDP, its potential lies in breaking away from
the simplicity of the single-variable setting that is common in standard vibro-driving.
�e versatility of multiple installation parameters, accompanied by the benefits of high-
frequency torsion, engenders complexity and harnessing the latter is key to GDP future
development.
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A
SAFEmatrices for a

Love-Timoshenko cylindrical shell

�e followingmatrices follow from the Love-Timoshenko shell theory [158, 140, 159]:

Aθ,p =
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0 0 0 0
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0 0 0 0
0 0 0 0
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Rp
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L z,p =


1 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
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L 0,p =
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Sθθ,p = Ephp
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For n = 0, the SAFE mass and stiffness matrices Il
p,0 and Ll

p,0 for a cylindrical shell
segment l with length dl read:

Il
p,0 = 2πRphpρp
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
(A.15)

whereDp = Ephp

1−ν2
p
.



B
Soil constitutive and TLMmatrices

�e soil constitutive matrices are defined as [219]:

Dr r =
 λs +2Gs 0 0

0 Gs 0
0 0 Gs

 ,Dθθ =
 Gs 0 0

0 λs +2Gs 0
0 0 Gs

 (B.1)

Dzz =
 Gs 0 0

0 Gs 0
0 0 λs +2Gs

 , Drθ = DT
θr =

 0 λs 0
Gs 0 0
0 0 0

 (B.2)

Dr z = DT
zr =

 0 0 λs

0 0 0
Gs 0 0

 , Dθz = DT
zθ =

 0 0 0
0 0 λs

0 Gs 0

 (B.3)

Dr 1 = D1r =
 λs 0 0

0 −Gs 0
0 0 0

 , Dθ1 = DT
1θ =

 0 −Gs 0
λs +2Gs 0 0

0 0 0

 (B.4)

Dz1 = DT
1z =

 0 0 0
0 0 0
λs 0 0

 , D11 =
 λs +2Gs 0 0

0 Gs 0
0 0 0

 (B.5)
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For the case of linear Lagrange polynomials used as interpolation functions, the TLM
matrices read:

Al = hl

6



2(λs +2Gs) 0 0 λs +2Gs 0 0
0 2Gs 0 0 Gs 0
0 0 2Gs 0 0 Gs

λs +2Gs 0 0 2(λs +2Gs) 0 0
0 Gs 0 0 2Gs 0
0 0 Gs 0 0 2Gs

 (B.6)

Bl = 1

2



0 0 −Gs +λs 0 0 −Gs −λs

0 0 0 0 0 0
−Gs +λs 0 0 Gs +λs 0 0

0 0 Gs +λs 0 0 Gs −λs

0 0 0 0 0 0
−Gs −λs 0 0 Gs −λs 0 0

 (B.7)

Gl = 1

hl



Gs 0 0 −Gs 0 0
0 Gs 0 0 −Gs 0
0 0 λs +2Gs 0 0 −λs −2Gs

−Gs 0 0 Gs 0 0
0 −Gs 0 0 Gs 0
0 0 −λs −2Gs 0 0 λs +2Gs

 (B.8)

Ml = ρshl

6



2 0 0 1 0 0
0 2 0 0 1 0
0 0 2 0 0 1
1 0 0 2 0 0
0 1 0 0 2 0
0 0 1 0 0 2

 (B.9)

Similarly, for quadratic Lagrange polynomials, the interpolationmatrix and vector of
layer interface values read:

Ns =
[

N q
1 (z)I3 N q

2 (z)I3 N q
3 (z)I3

]
, xs =

 x(i )
s

x(i+1)
s

x(i+2)
s

 (B.10)

where the quadratic Lagrange polynomials N q
1 (z), N q

2 (z) and N q
3 (z) are defined as:
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N q
1 (z) = 1− 3z

hl
+ 2z2

h2
l

, N q
2 (z) = 4z

hl
− 4z2

h2
l

, N q
3 (z) = 2z2

h2
l

− z

hl
(B.11)

�eTLMmatrices, following fromquadratic Lagrange polynomials used as interpolation
functions, read:

Al = hl

30



4(λs+2Gs) 0 0 2(λs+2Gs) 0 0 −(λs+2Gs) 0 0

0 4Gs 0 0 2Gs 0 0 −Gs 0

0 0 4Gs 0 0 2Gs 0 0 −Gs

2(λs+2Gs) 0 0 16(λs+2Gs) 0 0 2(λs+2Gs) 0 0

0 2Gs 0 0 16Gs 0 0 2Gs 0

0 0 2Gs 0 0 16Gs 0 0 2Gs

−(λs+2Gs) 0 0 2(λs+2Gs) 0 0 4(λs+2Gs) 0 0

0 −Gs 0 0 2Gs 0 0 4Gs 0

0 0 −Gs 0 0 2Gs 0 0 4Gs


(B.12)

Bl = 1

6



0 0 3(λs−Gs) 0 0 −4(λs+) 0 0 λs+Gs

0 0 0 0 0 0 0 0 0

3(λs−Gs) 0 0 4(λs+Gs) 0 0 −(λs+Gs) 0 0

0 0 4(λs+Gs) 0 0 0 0 0 −4(λs+Gs)

0 0 0 0 0 0 0 0 0

−4(λs+Gs) 0 0 0 0 0 4(λs+Gs) 0 0

0 0 −(λs+Gs) 0 0 4(λs+Gs) 0 0 −3(λs−Gs)

0 0 0 0 0 0 0 0 0

(λs+Gs) 0 0 −4(λs+Gs) 0 0 −3(λs−Gs) 0 0


(B.13)

Gl = 1

3hl



7Gs 0 0 −8Gs 0 0 Gs 0 0

0 7Gs 0 0 −8Gs 0 0 Gs 0

0 0 7(λs+2Gs) 0 0 −8(λs+2Gs) 0 0 λs+2Gs

−8Gs 0 0 16Gs 0 0 −8Gs 0 0

0 −8Gs 0 0 16Gs 0 0 −8Gs 0

0 0 −8(λs+2Gs) 0 0 16(λs+2Gs) 0 0 −8(λs+2Gs)

Gs 0 0 −8Gs 0 0 7Gs 0 0

0 Gs 0 0 −8Gs 0 0 7Gs 0

0 0 λs+2Gs 0 0 −8(λs+2Gs) 0 0 7(λs+2Gs)


(B.14)
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Ml = ρshl

30



4 0 0 2 0 0 −1 0 0
0 4 0 0 2 0 0 −1 0
0 0 4 0 0 2 0 0 −1
2 0 0 16 0 0 2 0 0
0 2 0 0 16 0 0 2 0
0 0 2 0 0 16 0 0 2
−1 0 0 2 0 0 4 0 0
0 −1 0 0 2 0 0 4 0
0 0 −1 0 0 2 0 0 4


(B.15)
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