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ABSTRACT
Depletion of fossil fuel and the ever-increasing need for energy in
residential and commercial buildings have triggered in-depth re-
search on many energy saving and energy monitoring mechanisms.
Currently, users are only aware of their overall energy consumption
and its cost in a shared space. Due to the lack of information on in-
dividual energy consumption, users are not being able to fine-tune
their energy usage. Further, even-splitting of energy cost in shared
spaces does not help in creating awareness. With the advent of the
Internet of Things (IoT) and wearable devices, apportioning of the
total energy consumption of a household to individual occupants
can be achieved to create awareness and consequently promoting
sustainable energy usage. However, providing personalized energy
consumption information in real-time is a challenging task due
to the need for collection of fine-grained information at various
levels. Particularly, identifying the user(s) utilizing an appliance in
a shared space is a hard problem. The reason being, there are no
comprehensive means of collecting accurate personalized energy
consumption information. In this paper we present the Personal-
ized Energy Apportioning Toolkit (PEAT) to accurately apportion
total energy consumption to individual occupants in shared spaces.
Apart from performing energy disaggregation, PEAT combines
data from IoT devices such as smartphones and smartwatches of
occupants to obtain fine-grained information, such as their location
and activities. PEAT estimates energy footprint of individuals by
modeling the association between the appliances and occupants
in the household. We propose several accuracy metrics to study
the performance of our toolkit. PEAT was exhaustively evaluated
and validated in two multi-occupant households. PEAT achieves
90% energy apportioning accuracy using only the location infor-
mation of the occupants. Furthermore, the energy apportioning
accuracy is around 95%when both location and activity information
is available.

CCS CONCEPTS
• Information systems→Mobile informationprocessing sys-
tems; • Human-centered computing → Ubiquitous and mo-
bile computing design and evaluation methods; • Hardware
→ Energy distribution; Smart grid;
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1 INTRODUCTION
Global energy consumption in residential and commercial buildings
is estimated to be 35-40% of generation. This is expected to rise
further due to increase in a number of appliances and electronic de-
vices [1]. Many investigations, hitherto, focused on real-time energy
monitoring in households and also provided feedback to the occu-
pants about their energy consumption [2–5]. These studies have
shown that feedback to occupants on their energy consumption in
real-time can effectively raise awareness and promote energy con-
servation behavior [8]. With the advent of the Internet of Things
(IoT), multiple data streams from various sensors could be gathered.
Thus the corroborating information about the location of a user
and the appliance being used can provide much more dividend.
This work explores a focused and highly difficult challenge that is
providing individual energy footprint with least number of sensors
in shared spaces.

To provide users with detailed energy consumption breakdown
several intrusive [3–6] and non-intrusive methods [9, 10] have been
proposed. However, Non-Intrusive Load Monitoring (NILM) tech-
niques have prevailed due to its lower deployment cost. NILM aims
to estimate appliance level energy consumption from the aggregate
consumption data of households. While these techniques help in
understanding energy consumption in a building, they lack the
ability to provide energy footprint of individuals. A recent study
highlighted advantages of providing energy consumption informa-
tion to individuals and has the potential to reduce up to 20% of
the total energy consumption [11, 12]. In shared spaces – such as
student housing, office environments, multi-occupant household –
lack of individual occupant (from now on, we use the terms ‘indi-
vidual occupant’, ‘individual’ and ‘per-occupant’ interchangeably)
consumption data necessitates even-splitting of energy cost. This
results in inefficient energy usage where occupants minimize their
own cost by taking advantage of others [11, 13]. To analyze this
we collected energy consumption data in a multi-occupant student
housing and a residential household. Fig. 1 shows the daily energy
usage of occupants across various appliances. It can be clearly seen
that the amount of energy consumed by each occupant significantly
varies in both the settings. This necessitates the need for personal-
ized energy disaggregation system moving towards user level from
appliance level. The disaggregated individual energy usage informa-
tion can be used to develop better energy management techniques
apart from raising awareness [17].
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Figure 1: Energy consumption distribution across occu-
pants.

The current literature focuses mainly on energy consumption
of buildings or households as a whole. NILM techniques fail to
provide energy disaggregation at the user level, limiting the op-
portunities for encouraging energy-saving behavior. Aggregated
energy information of households fail to answer questions such
as,“how much energy each occupant has used today?", “who amongst
us burns most of the energy?", “which occupant is more energy ef-
ficient in the household?". Currently, there are no comprehensive
means of providing information to individual occupants on their
energy consumption. Hence, it is required to an design energy ap-
portioning system that disaggregates the total consumption of a
household into per-occupant, per-appliance level.

Recently, there have been few research efforts [14, 15, 18–20]
that aim to study per-occupant energy footprint in various settings.
However, providing energy consumption information of individ-
uals, in shared spaces, is a challenging task due to the following
requirements: (i) Collection of fine-grained information at various
levels. This fine-grained information include which occupant per-
formed what activity and where in the household. (ii) Deployment
of additional sensors to identify the occupant using a particular
appliance at a specific location. This is cumbersome in terms of cost
and maintenance. (iii) Real-time identification of the correct occu-
pant using an appliance when multiple occupants are present in the
same location. The current approaches apportion the energy equally
to all the occupants in that location [14, 19]. (iv) Most of the tech-
niques, proposed hitherto, are centralized with either third-party
services or energy utilities having privacy-sensitive information
of consumers. This raises several issues related to scalability and
privacy. (v) The resolution of apportioning may vary depending
upon the environment i.e., residential household -Ű where some of
the shared appliances is for total family consumption (e.g., kitchen
utilities, fridge); student housing Ű - where a shared appliance is
used by only one occupant at that instance (This can also be seen
in Fig. 1). Hence, identifying the granularity of apportioning is a
challenging issue.

To this end, we presentPersonalizedEnergyApportioningToolkit
(PEAT) that combines readily available data from the ubiquitous
IoT sensors present in the household to derive fine-grained occu-
pant level energy consumption information. Specifically, we use
a single smart meter energy data to derive fine-grained appliance
level energy information. A modified Combinatorial Optimization
(ModCO) algorithm is proposed to significantly reduce the computa-
tional complexity for energy disaggregation. Internet of things (IoT)
devices such as smartphones and/or smartwatches withWiFi radios
are used for indoor room level localization and to determine the
activities performed by the occupants. In this work, data from these
sensors are used to detect user occupancy and the micro-activities
performed by occupants. PEAT combines NILM technique with
WiFi-based localization and activity monitoring to determine when
an appliance is being used, and which occupant is currently using
the appliance. Specifically, PEAT studies and models the association
between appliances and occupants in a shared space. Furthermore,
PEAT runs on a low-cost embedded system such as Raspberry Pi,
to apportion energy consumption to individuals. Privacy-sensitive
data of occupants are stored and processed locally at the household
making this approach highly scalable and privacy preserving. Our
system was extensively evaluated in two real-world multi-occupant
settings, viz., (i) student housing and (ii) residential house. The
collected data and the toolkit are publicly available1 for the com-
munity to support additional analysis. The main contributions of
this paper are:

• Wepresent a personalized energy apportioning toolkit (PEAT)
to derive real-time per-occupant energy footprint in shared
spaces.

• We propose a modified CO algorithm to accurately derive
fine-grained appliance level information from aggregated
energy consumption.

• We describe our inference algorithm, which models the asso-
ciation between appliances and users to study the dynamics
of appliance usage.

• We provide an extensive experimental evaluation of PEAT
from two multi-occupant buildings, viz., student housing
and residential settings. PEAT was empirically evaluated in
both the settings for over two months.

2 RELATEDWORK
Energy apportioning in shared spaces covers a broad range of re-
search areas from appliance monitoring, user monitoring to person-
alized energy monitoring. Recent studies have shown that provid-
ing per-occupant energy footprint offers the potential for energy
reduction and promotes energy saving behavior [2, 11, 12]. We
first describe in detail the state-of-the-art techniques proposed for
monitoring in shared spaces.

Appliance monitoring. Energy consumption of a household
at various levels can be derived either by embedding more sen-
sors in the household [3, 4, 6, 7] or by using a minimal number
of sensors [9, 10]. Ho et al. [7] employ a thermal camera to de-
tect a change in appliance surface temperature to infer appliance
on/off state. However, their system can only detect on/off state of

1DRED dataset: http://www.st.ewi.tudelft.nl/~akshay/dred/
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Table 1: Comparison of various efforts towards energy apportioning.

Work Environment Architecture Appliance
monitoring User monitoring Apportionment policies Additional

sensor
[14] Office Centralized Appliance level Security access logs Cannot distinguish between occupants NA

[15] Residential Centralized Appliance level room level localization
using doorway sensors

Evenly apportions to all occupants
present in the room for shared
appliances

Doorway
sensors

[18] Office Centralized Appliance level proximity based using
magnetic inductance Assigns usage to the nearest occupant

Temperature,
special
wearables

[19] Residential Centralized
Audio based
appliance
detection

WiFi based room level
localization

Evenly apportions to all occupants
present in the room for shared
appliances

Microphone for
appliance
detection

[20] Residential Centralized
Appliance level
with unique
sensors

RFID anklets and RFID
antennas

Applies heuristics to determine
per-occupant footprint RFID antennas

PEAT Office &
residential Distributed Aggregate data

using NILM

WiFi based localization,
smartwatch for activity
recognition

Apportions energy based on historic
consumption pattern & activities
performed

None

an appliance and hence apportioning may not be accurate. Specif-
ically, NILM techniques propose disaggregating appliance level
information from a single energy meter data. Unsupervised NILM
techniques use no prior knowledge of the appliances but often re-
quire appliances to be manually labeled [9, 10]. These approaches
are computationally intensive and exact inference is intractable [21].
Supervised NILM techniques assume that ground truth appliance
level data is available to train and develop appliance models prior
to performing disaggregation [3, 16]. Hart’s Combinatorial Opti-
mization (CO) algorithm identifies step changes in the aggregate
electricity consumption and matches themwith appliance signature
database to learn the states of the appliance [16]. These algorithms
require extensive training on appliance level data tomodel the states
accurately. To reduce the computation complexity, recent energy
disaggregation algorithms utilize additional data such as occupancy
information to disaggregate energy in the household [22].

In this work, we propose ModCO algorithm that extends the
simple CO algorithm to eliminate appliance modeling and to reduce
the computational complexity. Our semi-supervised algorithm runs
on a low-cost embedded system such as Raspberry Pi to provide
real-time disaggregated information.

User monitoring. User occupancy detection is a crucial ele-
ment in developing user-centric energy management services [23].
Several direct and indirect approaches have been proposed in the
literature to derive user occupancy information [24, 25]. Direct ap-
proaches employ low cost sensors such as passive infrared (PIR),
reed switches, RFID tags to determine occupancy information [24].
Even though these approaches are cost-effective, installing and
maintaining these sensors in a household is intrusive and cumber-
some. Furthermore, these techniques do not distinguish between
different occupants, if the occupants have similar characteristics.
Indirect occupancy monitoring approaches employ WiFi or Blue-
tooth (BT) fingerprinting using smartphones to derive room level
occupancy [25]. In this work, we use the existing infrastructure
like WiFi access points (AP) deployed in the household, along with
smartphones to derive the current location of the occupants. We
employ simple classification techniques that run locally on smart-
phones to model and train the data collected from the WiFi scans.

Motivated by the large scale penetration of smartwatches and
their increasing sensing capabilities, we employ them to derive user
activities in the household. Smartwatches provide an opportunity
to identify precisely the micro-activities performed by the occupant
such as opening microwave door, opening the refrigerator door,
and switching on/off an appliance.

Unlike existing activity monitoring techniques that require addi-
tional sensors carried by occupants, we argue that sensors present
in the smartwatch are sufficient to determine micro-activities. More-
over, with both WiFi and BT radios available on a smartwatch, one
can use them for indoor localization too.

Personalized energy monitoring. Lack of per-occupant en-
ergy footprint has resulted in even splitting of energy costs and
negligent energy usage in shared spaces [12]. Table. 1 provides a
concise overview of state-of-the-art techniques proposed for energy
apportioning. Hay et al. [14] investigate energy apportioning in an
office building. They propose static and dynamic policies to appor-
tion shared energy usage. However, these policies assign energy
evenly by determining the number of people inside the building.
Moreover, they used manual logs and user annotations to determine
the occupancy.

In residential settings, Lee et al. [15] propose a personalized en-
ergy auditor to apportion energy with the help of smartphones and
doorway sensors. They classified the appliances into “personal" and
“shared". The policy for apportioning assigns the personal appliance
usage to that individual, whereas the shared appliance usage was
evenly split across all occupants present in the room. Moreover,
the setup and installation of doorway sensors are cumbersome and
intrusive. Furthermore, user characteristics (height of occupants)
and appliance level metering was considered during apportioning.

Cheng et al. [18] present a model to determine the association
between human activities and observed energy consumption. They
use additional sensors such as LED and light sensors to determine
user movements and location.

Saha et al. [19] propose mechanisms to combine smartphone
data with electricity data for accurate activity detection and energy
apportioning. They use WiFi based localization to determine the

318



MMSys’18, June 12–15, 2018, Amsterdam, Netherlands A. Nambi et al.

location of occupants and collect audio samples from the micro-
phone continuously to determine which appliance is being used.
The proposed models require extensive data collection and training
for each appliance, hindering the applicability of the work in other
households.

Ranjan et al. [20] map energy apportioning to a fixture assign-
ment problem to determine per-occupant energy usage. Fixture
assignment is done by determining the unambiguous assignments
and then learning usage patterns. However, they use custom made
RFID anklet and RFID antennas for indoor location tracking and
deploy sensors for each appliance to find the energy usage.

In [32] authors propose a complete system to apportion the en-
ergy usage in commercial buildings. Appliance energy consumption
is obtained from the building management system and user location
is obtained using WiFi/BLE localization. Energy apportioning is
mainly based on the location, i.e., assign the total energy consumed
based on the time spent in the corresponding room. While this
approach is relevant in commercial buildings where each occupant
uses his/her own room, in shared spaces, multiple occupants can re-
main in the same room. Thus one has to determine which occupant
in the room used the appliance. PEAT overcomes this by determin-
ing the micro-activities performed by the user to determine the
occupant who used the appliance.

Most of the solutions proposed until now require additional
sensor deployment for either appliance monitoring or occupancy
detection. Moreover, they are usually centralized. PEAT extends the
state-of-the-art techniques by overcoming the above-mentioned
issues. We also demonstrate the effectiveness and applicability of
our system in two settings, viz., student housing and residential
household. Furthermore, our system can be easily replicated in any
other setting with minimal user intervention. To the best of our
knowledge, we are the first to validate energy apportioning across
multiple settings.

3 PEAT
Considering the limitations of the state-of-the-art solutions, we pro-
pose an energy apportioning toolkit that integrates smartphones,
smartwatches, and smart meter data with minimal user interven-
tion to derive real-time per-occupant energy footprint. Fig. 2 shows
the system overview of PEAT. The toolkit consists of four ma-
jor components: (i) Appliance monitoring, (ii) User monitoring, (iii)
Appliance-User modeling and (iv) Online evaluation. We describe
each component in detail below.

3.1 Appliance monitoring
Appliance monitoring component with the help of NILM algorithm
determines the state of each appliance. A change in state of an
appliance from “OFF” to “ON" is considered as an event trigger.
Event triggers represent the appliances, which are currently being
used by the occupants in the households. We first provide a brief
description of the CO algorithm for energy disaggregation [16]
and then propose a modified CO (ModCO) algorithm to be used in
PEAT.
Combinatorial Optimization(CO): Let ŷ(n)t be the estimated en-
ergy consumed and y(n)t be the actual energy demand of each ap-
pliance n at time t . yt represents the aggregate energy reading of

Modified CO Appliance States
Smart meter

Location Feature 
Extraction

Activity Feature 
Extraction

Location Model Activity Model

Associations
(appliance a -> user a, time t)

Online 
EvaluationAppliance-User Modeling

Location Monitoring Activity Monitoring

Appliance Monitoring

ON Event 
Trigger

OFF Event 
Trigger

Heuristics 

User b
User a

User c

Energy 
Apportioning

User Monitoring

Figure 2: System overview of PEAT.

the household. The actual state of an appliance is represented by
x
(n)
t ∈ Z ≥ 0 and x̂ (n)t represents estimated state of the appliance
by the disaggregation algorithm. CO finds the optimal combination
of appliance states, which minimizes the difference between the
sum of power of predicted appliances and the observed aggregate
power. It is given by,

x̂
(n)
t = argmin

x̂ (n)
t

�����yt −
N∑
n=1

ŷ
(n)
t

����� (1)

where N is the set of all appliances in the household and t is the
current time period. The predicted energy consumption of an ap-
pliance ŷ(n)t is then mapped to the closest appliance state x (n)t . This
approach requires models of appliances, which includes complete
power consumption details for each state of the appliance. This is
further used during inference step to predict the current state of
the appliance.

The CO algorithm has several drawbacks. Firstly, the optimiza-
tion problem resembles subset sum problem and is NP-complete.
Furthermore, the computational complexity in CO increases expo-
nentially with the number of appliances. Secondly, this algorithm
does not differentiate between appliances with similar power con-
sumption and appliances with similar states. Thirdly, this algorithm
assumes all the appliances in the households are monitored and
assigned some portion of energy to appliances even if they are not
currently used, thus resulting in low disaggregation accuracy.

Modified CO (ModCO):
Our modified CO algorithm improves the original CO in three
aspects, (i) ensures the effect of small fluctuations in aggregate
power is minimal and preserves consistency in consecutive state
estimations; (ii) eliminates the need of appliance level modeling
by employing a crowd-sourced power consumption database, and
(iii) reduces the computational complexity associated with deter-
mining the state combinations. We employ a crowd-sourced generic
appliance model from the power consumption database. For exam-
ple, the power consumption database2, standby power database3

2The Power consumption database. [Online] http://www.tpcdb.com/
3Standby power. [Online] http://standby.lbl.gov/summary-table.html
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and Oksolar database4 provides crowd-sourced information onmax-
imum and idle power for a wide range of loads indexed by type,
manufacturer, and model number. Furthermore, our modified CO
algorithm requires knowing the number of appliances and their
location in the household. This metadata information is collected
once during the deployment and, except a few appliances like a
vacuum cleaner, the location of the appliances is generally static.

In the original CO, the algorithm tries to find the set of appliances
at each time interval, which is closest to the current aggregated
energy consumption. This may result in a different set of appliances
being used in each consecutive interval. Hence, it is necessary to
preserve consistency in selecting appliances during consecutive
state estimations. We define priority combination – that is the set of
appliances which are assumed to be currently running. This infor-
mation can be retrieved from the last iteration of NILM algorithm.
In each interval, ModCO first evaluates the priority combination to
check whether the sum of all appliances in the priority combination
matches the current aggregated value. If the difference between the
sum of priority combination and the aggregated energy is within
a threshold δ , then the current priority combination is retained as
the predicted set.

Our algorithm evaluates the expression to determine whether
the current priority combination of appliances are still valid or

not, [|yt −
K∑
n=1

ŷ
(n)
t | ≤ δ], where K is the set of appliances present

in the priority combination and δ is the variation threshold. The
variation threshold parameter minimizes the effect of small fluctua-
tions in aggregate power. Since these fluctuations vary for different
appliances based on their power rating, the δ value needs to be
adaptive. However, when the difference between current priority
combination and aggregate consumption is greater than δ , we find
the new state combination of appliances that match the aggregated
energy consumption.

This work distinguishes the appliances in the household into
three categories: (i) Personal appliances: Personal laptop, hair dryer,
smartphones, etc. (ii) Shared appliances: Television (TV), kitchen
utilities, boiler, microwave, etc. (iii) Baseline appliances: appliances
that are always ON – modems, routers, refrigerator, etc.

3.2 User Monitoring
User monitoring component is activated upon the reception of an
event trigger from appliance monitoring component. User monitor-
ing determines the current location and activities performed by all
the occupants. Smartphones are used for indoor room level local-
ization and smartwatches are used for micro-activity recognition.
Location monitoring
This work focuses on smartphones/watches to determine indoor lo-
cation of occupants due to the following reasons: (i) smartphone/watch
is personally associated and carried by a user, (ii) change in sen-
sor information such as accelerometer can be used to detect user
movements and (iii) localization techniques can use WiFi and/or
Bluetooth radios to identify user location. The event trigger from
the appliancemonitoring component initiates the data collection for
indoor localization. The data stream includes a scan of visible WiFi
access points (APs) and their Received Signal Strength (RSS) along

4OKSOLAR. [Online] http://www.oksolar.com/technical/consumption.html

with the timestamp. The list of APs indicates the access points from
the neighboring houses. To save battery and also to derive accurate
location, a scan is performed only upon the detection of a user
movement (i.e., change in accelerometer data or step detection).

3.2.1 Naïve Bayesian classifier for localization. Classification
techniques such as Bayesian, Support Vector Machines, K-nearest
neighbor and decision trees, have been proposed in the literature to
derive room level occupancy using RSS information. Our localiza-
tion algorithm is based on Bayesian classification technique5 and
has two phases viz., training and testing phase. During the training
phase, data is collected at each room to build a classifier model. This
phase is also called the fingerprinting stage, where data from WiFi
scans are used to learn the available APs and their RSS at different
locations.
Feature extraction: The collected data fromWiFi scan is then used to
derive features for the classifier model. Feature vectors are derived
by using multiple scans performed. In this work, we use four WiFi
scans to derive feature vectors such as max, min, mean, standard
deviation of the signal strength for each available AP. Feature vector
l for k access points is represented as,

lt =< r ssmax
t (1), r ssmin

t (1), r ssmean
t (1), r ssstdt (1), ...,

r ssmax
t (k ), r ssmin

t (k ), r ssmean
t (k ), r ssstdt (k) >

(2)

Building classifier model: Feature vectors obtained are provided
as input to the classifier algorithm to derive the class labels. The
classifier model generates a probability distribution function (PDF),
which is further used in testing phase to determine the class label
(room location).
Activity monitoring
Wearable devices provide an opportunity to identify precisely
the micro-activities performed by the occupant such as opening
microwave door, opening the refrigerator door, using a laptop,
switching on/off an appliance. Smartwatch of an occupant is used
to determine the activity performed. The different sensors used
for acquiring relevant activity information include an accelerome-
ter, gyroscope, magnetometer, tilt, rotation and linear acceleration.
The activity feature vector, a, includes data from both time and
frequency domain. Features considered are mean, standard devia-
tion, variance from x ,y, z axes along with magnitude, fundamental
frequency, zero crossing and step counter.

The event trigger initiates the data collection for activity moni-
toring. Similar to location monitoring, the activity monitoring also
has training and testing phase. During the training phase, multiple
samples of activity feature are collected for each micro-activity. The
activity feature vectors are then used by the classifier to model and
determine the class label associated with each activity feature. The
class label indicates the micro-activity performed by the occupant.
In the testing phase, each activity feature is evaluated by the ac-
tivity model to determine the micro-activity performed. Location
and activity monitoring determine where the occupant is and what
activities are performed by the occupant when an event trigger is
received.

5Note that other classification techniques can also be used to derive location
information.
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3.3 Appliance-User Modeling
The appliance-user modeling studies the user association with the
appliance. The objective of the appliance-user modeling is to deter-
mine the occupants that are currently associated with the appliance
being used. If the current appliance being used is personal, then
it can be assigned to the relevant user. However, as seen in Fig. 1
some appliances are shared by all the occupants at different time
periods (e.g., Microwave) and some appliances are used by all the
occupants at the same time period (e.g., TV). Hence it is important
to not just determine where the occupant currently is but also to
determine the activities performed by the occupant. PEAT utilizes
location and activity information to determine the user association
with the appliance.

To study the association between the appliances and users we
first determine the event type. PEAT distinguishes the event trig-
gers from appliance monitoring into two viz., (i) unambiguous
events and (ii) ambiguous events. Unambiguous events are those
when there is a total certainty that a single occupant is using the
appliance. These events occur when there is only one occupant in
the household at that time or when a personal appliance is used. By
filtering the occupants who are outside the household, the model
determines the occupant currently using the appliance. Unambigu-
ous events can help to determine characteristics of occupants such
as, which appliances are used by only one occupant at an instance?
Which appliances are commonly used by a specific occupant? Fur-
thermore, for an ambiguous event there is more than one occupant
associated with the usage of an appliance. This is typically the case
in multi-occupant households, where cooking, watching TV, and
using lights are usually group activities.

In the case of an ambiguous event, PEAT first determines the lo-
cation of the occupant by evaluating the location feature vector. All
the occupants whose predicted location is different from the loca-
tion where the appliance event occurred are discarded. Furthermore,
for all occupants who are in the same location as the appliance is
used, the system identifies the occupants who are associated with
a smartwatch. The activity information from these occupants is
evaluated to identify the micro-activities performed. The model
determines if the activity performed resembles the activity related
to the appliance usage and associates the occupant accordingly.
For example, if the activity of an occupant inferred is “opening
microwave door" and the appliance event is from microwave, then
PEAT assigns the usage of the microwave to that occupant. Energy
is apportioned with a high certainty to the occupant whose activity
matches with that of the appliance being used. Note that, not all
users in the household may have a smartwatch/phone. Hence, there
could be an ambiguous event that is not being resolved. Most of the
energy apportioning systems, hitherto, divide evenly the energy
consumption if they cannot resolve the ambiguous events. To this
end, PEAT utilizes several heuristics that relies on historical data
of the occupant’s association with the appliances.
(i) Number of times used (H1) assigns higher association probability
to the occupant who has used the appliance more number of times.
(ii) Recently used (H2) assigns higher association probability to the
occupant who recently used the appliance.

(iii) Average usage duration (H3) assigns higher association prob-
ability to the occupant whose average appliance usage duration
matches the current appliance usage duration.

These heuristics are used to determine the percentage of en-
ergy that needs to be distributed among the occupants when an
ambiguous event is not resolved. For example, if the appliance
used is in a Bedroom, H1 assigns a higher probability to the user
of that bedroom. Similarly, if the appliance used is Refrigerator,
then H2 assigns a higher probability to the occupant who recently
used. This is generally the case in the kitchen. If an Occupant-A
watches TV for approximately an hour and Occupant-B watches
TV generally for 30m, then the heuristic H3 assigns a higher prob-
ability to Occupant-A when the current TV usage exceeds 30m.
Characteristics such as a number of times an appliance is used, its
average usage duration, are learned over time by analyzing the
energy consumption pattern and location information of occupants.
Finally, after applying all the heuristics, the event is assigned to a
single occupant or group of occupants who are more likely to have
used the appliance. If the association probability to one or more
occupants has similar values, then the event is assigned to all those
occupants and the energy is equally apportioned. The association
probabilities and usage characteristics of occupants are stored in
Raspberry Pi for deriving per-occupant statistics and to adapt the
heuristics over time.

3.4 Online Evaluation
This component evaluates the energy to be apportioned to each
occupant in the household in real-time. The evaluation starts when
the “OFF" event trigger is obtained from the appliance. The event
is then classified to be either ambiguous or unambiguous based on
the location information and appliance under consideration. PEAT
then evaluates the location and activity information obtained from
the user monitoring component. The location accuracy may be in-
accurate in some scenarios due to misclassification or the user may
not have carried his/her phone. To overcome this PEAT applies a
simple location correction mechanism. From the metadata collected,
we know the location of each appliance in the household. If there
is only one occupant and his location is other than the location of
the appliance being used, we then use the appliance location as
the corrected location. This corrected location information is then
used by the appliance-user modeling component. The association
probability derived from the appliance-user modeling is used to
apportion the energy among occupants. This information is fur-
ther sent to all the occupants with individual and shared energy
consumption details.

4 EXPERIMENTAL SETUP
4.1 Deployment details
To evaluate PEAT in real-world, the complete system was deployed
in two multi-occupant settings viz., student housing and a residen-
tial household. The student house is a two-bedroom apartment with
four locations viz., Kitchen, Living room, Bedroom 1 and Bedroom
2 as illustrated in Fig. 3(a). All locations apart from the bedrooms
are shared by the occupants. The appliances include microwave,
refrigerator, grill, coffee machine, laptops and television (TV). Three
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Figure 3: Floor plan of student housing and residential
household.

occupants were present in the student house during our experimen-
tation.

The residential household contains 12 appliances spread across
5 rooms as shown in Fig. 3(b). Two occupants were present in the
household during our experimentation.

4.2 Sensing infrastructure and data collection
Our deployment consists of several sensors measuring electricity,
occupancy and activities of occupants. The sensors were carefully
installed to avoid any inconvenience to the occupants.
Electricity monitoring: We used off-the-shelf sensors to monitor
energy consumption at 1Hz sampling frequency.

(i) Mains level: We installed a smart electricity meter from Lan-
dis+Gyr E350 to measure the aggregate energy consumption in-
formation. The data from the smart meter was retrieved using
Plugwise Smile6.

(ii) Appliance level: We used smart plugs from Plugwise circle7
to collect appliance level energy consumption data.
The plugs communicate via Zigbee protocol by forming a mesh
network. We use an open source library python-plugwise to query
the data from the plugs at 1Hz frequency. A Raspberry Pi was
deployed locally to generate periodic queries and to store the data.
Occupancy monitoring: In our deployment, we scan for visible
WiFi access points using smartphone/smartwatch of occupants for
indoor localization. Furthermore, the smartphones carried by the
occupants included: Samsung Galaxy III, Nexus 7 and LG Nexus 5.
An Android application was developed to scan WiFi APs upon re-
ception of an event. This data is further used by the online classifier
on the phone to determine the indoor room level location.
Activity monitoring: Smartwatches like Samsung galaxy gear 2
and Moto 360 was used to determine the micro-activities performed.

6Smile:https://www.plugwise.com/smile-p1
7Circle:https://www.plugwise.com/circle

Table 2: Metadata: association of appliance and location.

Student housing Residential household

Appliance ID Location Appliance Location
Microwave E1 Kitchen TV Living Room
Laptop E2 Bedroom 1 Fan Room 1
Refrigerator E3 Bedroom 1 Laptop Living Room
Refrigerator E4 Bedroom 2 Microwave Store room
Laptop E5 Bedroom 1 Oven Room 2
TV E6 Living Room Toaster Room 2
Grill E7 Kitchen Central heating Kitchen
Coffee Machine E8 Kitchen Living room outlets Living Room

Blender Kitchen
Washing machine Kitchen
Cooker Kitchen
Refrigerator Store Room

Sensors such as accelerometer, gyroscope, magnetometer, tilt, rota-
tion, and linear acceleration were used for activity recognition.
Household metadata: PEAT utilizes the list of appliances and
its location in the household as the metadata. This is a one-time
activity and can be obtained during the setup. Table. 2 shows the
association of the appliance and location in both the settings.
Ground Truth: To validate the results from PEAT, the ground
truth about the use of an appliance is required. Hence, we deployed
NFC tags to collect this information. Each tag is pre-programmed
with the appliance name and location. Upon the initialization of an
NFC tag [36], an event is logged into the system with the occupant
ID. We use this information only for comparing the results derived
from PEAT.

4.3 System architecture
The system architecture consists of several clients (occupants’ de-
vices) communicating with a server (local raspberry PI). Server-side
includes a Raspberry PI with WiFi connectivity that acts as the
local server in each household. Raspberry PI receives the energy
consumption data from the smart meter. In our setup, we used Plug-
wise Smile-P1 to retrieve the data from the smart meter and send
it to the Raspberry PI via WiFi. Raspberry PI runs the proposed
ModCO energy disaggregation algorithm to derive fine-grained ap-
pliance usage information. Upon detection of appliance ON event,
Raspberry PI sends out a push notification (trigger) to all the clients
(occupants devices i.e., smartphones/watches) to start scanning (i)
WiFi RSSI samples for indoor localization on smartphones and (ii)
data collection of inertial sensors on smartwatches of users. Further,
when an appliance OFF event is detected, Raspberry PI sends out
another push notification to stop the data collection at the client
devices. On the client-side, an application is developed for smart-
phones and watches of users. There could be multiple occupants
in a household and hence during the initial phase each occupant
is assigned a unique ID along with their devices. To save energy
on the client devices, we do not start data collection until a trigger
is received from the local server. Upon reception of the trigger on
smartphones, the application starts scanning for WiFi RSSI signals
and then sends out a notification to the smartwatch associated
for collecting activity related information. Further, when an OFF
event trigger is received, the application utilizes an online version
of Bayesian classification to derive the room level occupancy and
the micro-activity performed.

Further, Raspberry PI receives the inferred location and micro-
activity performed for the ON-OFF event of each appliance. This
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information is used to develop an appliance-user modeling and
for apportioning energy to individual occupants. The proposed
system architecture is distributed, wherein, localization and activ-
ity recognition is performed on smartphones/smartwatches, and
energy disaggregation and apportioning are performed on the Rasp-
berry PI. Note that all the devices, Plugwise Smile-P1, Raspberry
PI, and smartphones, are connected to the same access point in the
household.
5 EVALUATION
We evaluated each component of the toolkit extensively in both
student housing and residential household. Appliance monitoring
component was evaluated with both original CO and the proposed
modified CO. We evaluated location and activity feature vectors
across three online classifiers viz., Decision trees (J48) [29], Naïve
Bayesian (NB) [31] and K-Nearest Neighbors (KNN) [30]. Finally,
we studied the trade-off between energy apportioning accuracy and
the number of devices (smartphones/smartwatches). The following
methods were employed to derive energy apportioning accuracy:
M1: One user with the smartwatch, all other users with the smart-
phones and with heuristics H1, H2 and H3.
M2: No smartwatch, all users with the smartphones andwith heuris-
tics H1, H2 and H3.
M3: All users with the smartwatches, smartphones and with heuris-
tics H1, H2 and H3.
M4: One user with a smartwatch, all other users with the smart-
phones and no heuristics.
M5: No smartwatch, all users with the smartphones and no heuris-
tics.
Metrics: Several accuracy metrics are considered here to evaluate
the components of the toolkit. Different metrics considered for
appliance monitoring are given below.

Fraction of total energy assigned correctly (FTE): It mea-
sures the fraction of energy correctly assigned to an appliance and
is one of the common accuracymetrics for NILM algorithms [10, 21].
It is defined as,
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∑
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where n ∈ {1, ..,N }, N is the total number of appliances, t ∈
{1, ..,T } and T is the total time period considered.

Total disaggregation error (Te ): Total disaggregation error is
the difference between the total energy consumed by all the appli-
ances and the actual energy consumed by the appliances, normal-
ized by the total energy consumed. It is given by,
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∑
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t |
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(4)

Number of appliances identified correctly (Ja ): Jaccard sim-
ilarity coefficient is used to measure the similarity between the
predicted set of appliances (Jpa ) and the actual set of appliances (Jaa )
used over a period of time. Ja measures the percentage of appliances
correctly identified by the disaggregation algorithm. It is given by,

Ja =
| Jpa ∩ J aa |
| Jpa ∪ J aa |

(5)

Number of appliance states identified correctly (Js ): It mea-
sures the similarity between the predicted set of appliance states
(Jps ) and the actual set of appliance states (Jas ). It is given by,

Js =
| Jps ∩ J as |
| Jps ∪ J as |

(6)

We now describe the set of metrics used to evaluate the classifier
models obtained for location and activity.

Precision: It is the ratio of number of correctly identified in-
stances over total number of identified instances. Let tp and fp
indicate the true positives and false positives respectively and pre-
cision is defined as,

precision =
tp

tp + fp
(7)

Recall: It is the ratio of number of correctly identified instances
over total number of instances. It is given by,

r ecall =
tp

tp + fn
, (8)

where fn represents the number of false negatives.
F1 Score: It is a measure of accuracy and is defined as the har-

monic mean of precision and recall.

F1 = 2. precision · r ecall
precision + r ecall

(9)

Energy apportioning accuracy (Ea ): Energy apportioning accu-
racy is the ratio of estimated energy utilized by an occupant and
the actual energy utilized by that occupant. It measures the total
percentage of energy correctly apportioned to an occupant and is
given by,

Ea =
(
Estimated energy per occupant
Actual energy per occupant

)
× 100 (10)

6 RESULTS
In this section, we present our experimental results in determining
state change of an appliance, room level occupancy, and activities
performed by the occupants. Furthermore, we show the energy
apportioning accuracy across different real-world multi-occupant
settings and its trade-off with respect to the number of devices
used.

6.1 Appliance detection accuracy
PEAT employs modified CO to determine the state of the appliances
in real-time. Accurate energy disaggregation is a critical component
for unambiguous energy apportioning. To ensure a fair comparison,
both original andModCO utilize the same appliance model from the
crowd-sourced database as described in Section 3.1. Furthermore,
comparison with other NILM algorithms (FHMM [9]) requires addi-
tional training such as prior probability and state transition matrix.
Hence we restrict the comparison of proposed ModCO with the
original CO algorithm.

Fig. 4 shows the disaggregation performance of CO and modified
CO across four accuracy metrics in the residential household. We
used over 2 months of aggregated energy consumption data of the
household. FTE, Ja and Js can vary between 0 and 1, andTe can take
any non-negative value. ModCO assigns (FTE) more than 85% of
the aggregate energy accurately. Furthermore, around 75% of state
changes (Js ) are estimated correctly as compared to 35% by original
CO. Similarly, when a student housing was considered 90% of total
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Figure 4: Disaggregation performance of CO and modified
CO in residential household.
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Figure 5: Original and disaggregated energy profile of refrig-
erator using CO and modified CO.

energywas accurately assigned and 87% of the states were identified
correctly. The increase in FTE and appliance detection in student
housing compared to the residential household is mainly due to the
reduced number of appliances considered. In both the settings, Te
in modified CO is much lower than original CO, indicating better
disaggregation performance.

In general, the improvement in disaggregation accuracy for
ModCO is due to the fact that the predicted set of appliances does
not vary significantly for consecutive time periods. Fig. 5 shows
the estimated energy by original CO and modified CO as compared
to the ground truth. It can be clearly seen that during consecutive
predictions, CO is very sensitive to changes in aggregated energy
consumption leading to the selection of the wrong state. However,
ModCO overcomes this with the help of the priority combination
and the δ parameter. Moreover, this results in significant reduction
of associated computational complexity. Our ModCO takes approx-
imately 0.12 s and 0.05 s to determine the state of the appliances in
the residential household and student housing, respectively.

6.2 Indoor location accuracy
An Android application was installed on smartphones to scan for
visible WiFi APs when an event trigger is received. Feature vectors
were computed as described in Section 3.2. During our experimen-
tation, we considered two approaches for building the classifier
model viz., supervised and unsupervised.

Supervised method requires a training phase where RSS values
at each location are collected and labeled. During the testing phase,

each feature vector is evaluated with the classifier model obtained
in the training stage to derive the class label (room level location).
Unsupervised method does not know the class labels a priori and
learns the label of the location based on occupancy and the appli-
ance metadata. For example, when only one occupant is present
in the household and if the appliance trigger was from “Coffee
Machine" then the location of the appliance (i.e., Kitchen) can be
obtained from Table. 2. Consequently, the algorithm learns this
label and assigns it to the current location of the occupant. Further-
more, this iterative approach continues until all the class labels are
determined. However, this method has several drawbacks such as
works when only one user is present in the household and a longer
delay in developing accurate location models. Recently, several al-
gorithms such as Zee [27] and EchoTag [28] employ crowd-sourced
data collection to eliminate the tedious training phase. These ap-
proaches could be also used in PEAT. To show the effectiveness of
PEAT, we use a standard online classification model.

Training data: We developed an Android app to collect WiFi
information in each room and assign a label. The user collected
WiFi fingerprinting data for each room once every two hours. WiFi
fingerprinting data was collected over a period of 3 weeks, which
was then used to build the classification model.

We employed Naïve Bayesian (NB) classifier model [31] to derive
class labels for each new feature vector obtained. Fig. 6(a) shows
the precision and recall for each location in the student housing.
High values of precision and recall at each location indicate the
good performance of the classifier model. Moreover, F1 score of 84%
was achieved for room level localization using NB. Furthermore,
we compared the classification results with two other well-known
classifiers viz., J48 [29] (Decision trees) and KNN [30] with 10-fold
stratified cross validation. Fig. 6(c) shows that NB performs much
better than J48 and KNN, with KNN having the least classification
accuracy. Finally, F1 score of 78% was achieved using NB for room
level localization in the residential household. NB does not over-fit
the data as compared to J48 and KNN. Moreover, NB outperforms
J48 and KNN even with partial data collected from occupantsŠ
smartphones.

6.3 Activity detection accuracy
In this work we considered six micro-activities viz., (i) microwave
usage (A1), (ii) laptop usage (A2), (iii) refrigerator usage (A3), (iv) TV
usage (A4), (v) grill usage (A5) and (vi) coffee machine usage (A6).
When there is an “ON" event from appliance monitoring, activity
information is collected from occupants using the smartwatch as
described in Section 3.2.

Training data: Each micro-activity was performed by the user
wearing a smart watch. We collected around 40-50 instances of
labelled data for eachmicro-activity. The ground truth was collected
by manually annotation and using NFC tags.

In the training phase, each activity is labeled and the features in
both time and frequency domain are collected. Through exhaustive
experiments, we found that 6 s of samples at 100Hz sampling fre-
quency as optimal to detect the activities accurately. Note that a
large sampling duration may include additional information, which
may not be relevant and having a small sampling duration may
not capture the relevant features of an activity. Hence, identifying
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Figure 6: Evaluation of user monitoring component in student housing.

Table 3: Percentage of energy correctly apportioned for dif-
ferent methods in student housing.

Methods M1 M2 M3 M4 M5

Energy apportioning accuracy 92.6 90.7 95.4 87.1 80.6

the right sampling duration is crucial in determining the micro-
activities performed.

Similar to location monitoring we evaluated the activity feature
vector across three classifiers (see Fig. 6(c)). NB has a classification
accuracy of 95% where as J48 and KNN have around 87.5% and 90%,
respectively. Fig. 6(b) shows the precision and recall for each micro-
activity. It can be seen that the precision of all the activities are
higher than 85% and the overall accuracy of identifying the activities
is around 95%. Even though the activities A1 and A3 are quite
similar, the classifier was still able to identify them correctly. This
is attributed to the correct identification of the sampling duration.

Furthermore, we conducted several experiments to understand
the effectiveness of the location and activity features with respect
to appliance detection. The accuracy of detecting an appliance us-
age with either location or activity features is shown in Fig. 6(d).
x-axis indicates the various appliances in the student housing (see
Table. 2) and y-axis represents the appliance detection accuracy.
In general, the activity features can determine the associated ap-
pliances more accurately than location features. This is due to the
identification of micro-activities using the smartwatches. It can
be seen that for some appliances such as Refrigerator and Grill,
location features have higher accuracy than activity features. This
is attributed to the placement of appliances in different rooms and
their distinctive consumption profile. Moreover, for both location
and activity information, the average accuracy of identifying the
associated appliance is around 82%. This information can also be
used with ModCO to improve the accuracy of appliance detection.

6.4 Energy apportioning accuracy
We considered over 2 months of data to evaluate PEAT in both
student housing and residential household. All the occupants were
equipped with their personal smartphone and smartwatch. Further-
more, the proposed toolkit can also be applied to other shared spaces
such as office environments. Note that the level of apportioning
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Figure 7: Energy apportioned correctly for each occupant in
the residential household.

required in these spaces varies. In student housing and residen-
tial household, PEAT apportions energy of shared and personal
appliances. The baseline appliances such as refrigerator, routers,
air conditioning and central heating are not apportioned to indi-
vidual occupant. Moreover, the toolkit can be extended to support
apportioning of baseline appliances with additional training and
micro-activity recognition (e.g., open the refrigerator door and
take/keep items).

To study the efficacy of PEAT, we evaluated energy apportioning
accuracy for varying number of devices as mentioned in Section 5.
Table. 3 shows the total percentage of energy correctly apportioned
for a week in student housing with varying number of user devices.
When there is one occupant with smartwatch and other occupants
have only their smartphones i.e., methodM1 with heuristics, PEAT
achieves around 92% apportioning accuracy per-occupant. This
accuracy reduces to 87% when no heuristics are considered i.e.,
M4. Furthermore, when all the occupants have only their smart-
phone but no smartwatches, PEAT still achieves 90.7% accuracy
with heuristics (M2) and it is 80% when no heuristics are applied
(M5). Finally, if all the occupants had both smartphone and smart-
watch, then the energy apportioning accuracy achieved by PEAT is
around 95% (M3). Clearly, having more user devices increase the
apportioning accuracy.

We now illustrate the energy apportioning accuracy for the
methodM1 among all occupants on the per-appliance basis. Table. 4
shows appliance level energy that was correctly apportioned to all
the occupants in the student housing. It can be seen that when an
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Table 4: Percentage of energy correctly apportioned for each
appliance among all the occupants.

Appliance ID E1 E2 E3 E4 E5 E6 E7 E8

Apportioning 66.6 100.0 88.9 88.9 100.0 88.9 80.7 77.8
accuracy

event was associated with a personal appliance such as Laptops,
the apportioning accuracy was 100%. However, with the shared
appliances the apportioning accuracy reduces to 80% on average.
The average energy apportioning accuracy for all the appliances is
close to 90% and per-occupant average apportioning accuracy was
around 92% in the student housing.

Fig. 7 shows the energy apportioned to each occupant across
appliances in the residential setting when only smartphones were
used (M2). PEAT achieves on average 87% apportioning accuracy
for all occupants when only location information was used in a
residential household. The apportioning accuracy increases to 92%
when all the occupants in the household have their smartphones and
smartwatches. Furthermore, for baseline appliance “refrigerator" an
apportioning accuracy of 88.9% is obtained for both the occupants.

6.5 Discussions
In this section, we first highlight the design challenges solved in
PEAT and then discuss some of the limitations with possible solu-
tions to overcome it.
(i) Apportioning:Weproposed a novel modeling of appliance-user
relationship to determinewhich occupant usedwhich appliance and
where in the household. We presented three heuristics to further
enhance the apportioning accuracy during ambiguous events.
(ii) Scalability: We presented a distributed system architecture
with the local embedded server (Raspberry PI) for processing and
storage of data in the household. Energy disaggregation, localiza-
tion, and activity monitoring run on different occupant’s devices.
The local server determines when to trigger various devices in the
household to start and stop data collection, making the system
efficient and robust.
(iii) Real-time: We presented our ModCO disaggregation algo-
rithm that runs on an embedded device in real-time. Further, a
standard Bayesian classification algorithm was implemented on
occupants’ smartphones to determine user location/activity in real-
time. Energy apportioning algorithm runs on the local server and
provides real-time usage details to each occupant.
(iv) End-to-end system deployment:We extensively evaluated
PEAT in two multi-occupant settings with varying number of
occupant devices. PEAT system setup is non-intrusive, privacy-
preserving, easily configurable and deployable.

While PEAT takes the first few steps towards effective user-level
energy disaggregation, there are some limitations:
(i) Resolution of apportioning: The level of apportioning may
vary depending on the environment, for example, in residential
settings it may be more useful to apportion top energy consuming
appliances than all household appliances. In shared spaces such
as student housing, shared appliance usage such as TV, washing
machine, microwave, and oven needs to be apportioned to raise

awareness among occupants. In PEAT, users can select appliances
for which energy needs to be apportioned to individual occupants
during the initial setup.
(ii) HVAC apportioning: HVAC usage is the primary energy
guzzler in households. Hitherto, HVAC consumption was equally
shared among all occupants. PEAT with the help of energy disag-
gregation can identify when HVAC was turned on/off and using
location monitoring can determine when and where each occupant
are in the household. PEAT attributes the HVAC consumption to
the users depending on the time they spent in the household. How-
ever, this works only for centralized HVAC systems and currently,
there is no way to determine individual room HVAC consumption
without any additional sensors.
(iii) Shared appliances: PEAT with the help of activity and lo-
cation monitoring can determine which occupant is using the ap-
pliance when multiple occupants are in the same location. However,
when an occupant is not carrying his device (smartphone/smartwatch)
the event cannot be resolved to an occupant accurately. While we
propose three heuristics to apportion energy in such cases, further
enhancement of appliance-user modeling is required for accurate
apportioning.
(iv) Moveable appliances: PEAT requires location of appliances
known a priori. Hence it cannot accurately apportion energy usage
of moveable appliances such as hair dryer when there are multiple
occupants present in the room.
(v) Localization and activity monitoring algorithms: PEAT
achieves 90% apportioning accuracy by using standard classification
algorithms. We believe PEAT can be more effective and robust by in-
corporating other crowd-sourced training free algorithms [27, 28].
(vi) Dependency on training data: PEAT is designed as a su-
pervised system where training data related to micro-activities,
fingerprinting WiFi signals for localization and household appli-
ance details are collected apriori. This restricts the usage of PEAT
on an entirely new household. However, recent algorithms for ac-
tivity recognition [33–35] and localization [27, 28] overcome the
bottleneck of training data. Since the design of PEAT is modular,
researchers can use the newer models to reduce training effort and
improve accuracy.
(vii) Deployment challenges: As PEAT relies on appliance us-
age, localization and micro-activities data from all the occupants,
collecting and modeling such data from different sources is a chal-
lenging task. One key challenge is how to collect ground truth
information? - To this end, we deployed NFC tags to detect appli-
ance usage and video cameras to localize occupants and determine
their activities. Further, we manually annotated this data to derive
ground truth. Another challenge was to deploy appliance-level en-
ergy monitoring sensors and NFC tags in a non-intrusive way so
that the occupant behavior is unaltered. Recently there have been
open datasets [37, 38] that collect smartphone/smartwatch data
from multiple occupants in diverse situations. PEAT can ingest this
data for robust modeling of user activities and location.

7 CONCLUSIONS AND FUTUREWORK
We proposed a novel Personalized Energy Apportioning Toolkit
(PEAT) to accurately apportion energy amongst occupants in shared
spaces. Inferring energy footprints of occupants with minimal user
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intervention and no additional sensor deployment is a challeng-
ing task. We showed that PEAT can accurately determine which
occupant performed what activity and where in the household. Fur-
thermore, it combines online techniques with minimal training
for accurate energy apportioning. We proposed several accuracy
metrics to study the performance of each component of PEAT. We
specifically deployed the system in two multi-occupant settings –
viz., a student housing and a residential household – to evaluate
PEAT in the real-world settings. With only the location information,
energy apportioning accuracy of 87% and 92% was achieved for
all the occupants in the residential household and student hous-
ing, respectively. The apportioning accuracy increases to 92% and
95% when both location and activity information was available in
the residential household and student housing. We demonstrated
that PEAT is highly scalable and privacy-preserving since privacy-
sensitive data of occupants are stored and processed locally at the
households.

Next we envisage following three directions: (i) extending the
toolkit to support data from other publicly available datasets for
energy apportioning to increase the performance; (ii) using person-
alized energy consumption information to enhance existing energy
management systems; and (iii) extending PEAT to other shared
resources such as, gas and water in shared spaces.
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