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Abstract

This thesis improves sharing of code and reproducibility (S&R) in research
for massive open online courses (MOOCs). Reproducibility is recreating an
experiment by a different researcher. Science in general struggles with repro-
ducibility. MOOC experiments often contain useful code that could be used by
other researchers, but that code is oftentimes not shared with others. To improve
S&R in MOOC research, this thesis first identifies the challenges MOOC sci-
entists encounter when trying to share code and when making their experiments
reproducible. Then, user interviews are performed to further understand MOOC
research and to better understand the challenges identified earlier. A conceptual
experimental workflow is designed and implemented in the form of a workbench.
The workbench is then evaluated.

The identified challenges based on literature with regards to S&R are: (1)
Difficulty in selecting the right tools, (2) lack of a standardized workflow that en-
ables reprodubility and (3) manual work required to enable reproducibility with-
out a clear incentive to perform that work. From the user interviews, researchers
indicate experiencing these same challenges. Based on these challenges, I pro-
pose an experimental workflow that focuses on making research reproducible
and on sharing code. This workflow is implemented in the form of a work-
bench, where researchers can create and manage their MOOC experiments. This
workbench allows for sharing code between researchers and is evaluated using
a real-world data science task by three actual large-scale learning analytics re-
searchers and a visiting volunteer researcher. The evaluation finds that the work-
bench needs more work to be suitable for actual MOOC research use and that
more researcher education is needed to improve sharing and reproducibility in
MOOC research.
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Chapter 1

Introduction

1.1 Context and motivation

MOOC:s, also known as massive open online courses, have become a very popular
learning platform for many students around the world since 2011 when Stanford Uni-
versity launched three online courses for free!. A MOOC is an online course that is
accessible via the web where anyone can participate [22]. Their goal is to provide
education at a university-grade level for free. Millions of students follow a variety of
MOOCs? and MOOCs have the advantage over traditional college since students can
set their own pace, by for example rewinding or fast-forwarding the lecture for a topic
that is harder or easier for the student to understand [39]. MOOCs also have some
drawbacks: They predominately reach already privileged learners?, most MOOCs are
not accredited, and if they are, it is often not recognized [29] and student assessment
is sometimes difficult when a large number of MOOC students are enrolled [29].

The large-scale and online nature of MOOCs provide ample research opportu-
nities*. Research into MOOCs can help the science of learning by providing new
large-scale experiments and new sources of data [38]. Students from many different
educational backgrounds and all parts of the world are following MOOCs. This allows
for statistically valid research, as the population is so diverse. The first generation of
MOOC research was mainly concerned with case studies and the educational theory
behind MOOC:s [13]. The sudden influx of MOOC:s led to a huge amount of data being
generated that can provide insight into student behavior and can provide better support
to students [13].

One of the domains in MOOC research is Learning Analytics and Knowledge
(LAK). The term Learning Analytics is used ‘for studies aimed at understanding and
supporting the behavior of learners based on large datasets’ [13]. The focus of this
thesis is on learning analytics researchers.

Many computer scientists from different research fields struggle with making their
source code available and creating reproducible experiments. For example, in a study

Uhttp://www.nytimes.com/2012/07/18/education/top-universities-test-the-online-appeal-of-free.html

Zhttps://twitter.com/edXOnline/status/631844606964035588

3http://www.chronicle.com/blogs/wiredcampus/moocs-are-reaching-only-privileged-learners-
survey-finds/48567

“http://conference.oeconsortium.org/2015/presentation/mooc-research-what-can-we-do-with-big-
data/



1.2 Objective of this research Introduction

done by the University of Arizona, less than half of the software created in research
papers could be successfully built or installed [30], others reported similar difficulties
[4].

The focus of this thesis is to improve the reproducibility of a MOOC experiment.
Reproducing an experiment means duplicating it, either by the same researcher or
by someone else with either the same or a different dataset. This thesis focuses on
reproducing an experiment by a different researcher with a different dataset and uses
the following definition of an experiment: ‘A scientific procedure undertaken to make a
discovery, test a hypothesis, or demonstrate a known fact’>. Furthermore, for a MOOC
experiment, this thesis only considers experiments that use programming to achieve
their result. This means that, for example, a thought experiment is not in the scope of
this thesis.

To enable reproducibility of computer science experiments, a lot of manual work is
required. Due to a lack of resources and/or incentives of modern research, that work is
not always performed [28]. Another difficulty for enabling reproducibility is selecting
the appropriate tools to help reproducibility. For example, choosing a version control
system and choosing testing, documentation and package management libraries. Fur-
thermore, the lack of a standard workflow on what tasks should be accomplished to
enable reproducibility is an issue. These are tasks such as defining dependencies in a
standard manner, writing documentation and how to organize the source code.

Another part of reproducibility is the ability to share reusable parts of code of an
experiment. If more code is shared and reused among MOQOC researchers, creating
an experiment might be easier. The definition of reuse is the use of existing software
components to construct new systems [36], in this case to construct new experiments.
Re-usable code means more eyes looking at the code, which will lead to more stable
code and a more efficient experiment creation process, which might improve MOOC
research as a whole. Sharing reusable parts of an experiment also helps reproducibility,
as existing, tested, peer-reviewed code is used in the creation of an experiment. It
ensures the code runs in different computing environments.

1.2 Objective of this research

This research will help improve the ability to share and reproduce experiments of
MOOC research by building a workbench targeted for large-scale learning analytics
researchers. The purpose of this workbench is that it allows researchers to share more
easily reusable parts of their experiment and reproduce theirs and others experiments.
Before such a workbench can be created, it is first necessary to understand what sharing
and reproducibility exactly means for MOOC researchers and how MOOC researchers
are currently performing their experiments.

The main goal of this research is to improve and understand reproducibility in
MOOC research through a literature review, user interviews with a representative
group of large-scale learning analytics researchers and through the creation of a work-
bench.

Shttps://en.oxforddictionaries.com/definition/experiment
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1.3 Steps and questions

The research questions for this thesis are as follows:

1. What are the (software) requirements for learning analytics researchers to enable
reproducibility and sharing of reusable parts of their experiments?

2. Having defined the requirements, how does a good experimental workflow de-
sign look like?

3. How can the designed workflow be implemented with modern day web engi-
neering practices?

4. Having implemented the design, does the implemented solution achieve its re-
quirements defined by RQ1?

1.4 Approach and outline

The first research question is approached by doing a literature study on MOOCs and
MOOOC research. This literature study looks at current reproducibility issues in science
in general and specifically for MOOC research. It also looks at current approaches
being employed to increase reproducibility of experiments. The end result of this
literature study is a list of challenges that, when tackled, are likely to improve the
reproducibility of experiments in general. This literature study is the subject of Chapter
2.

These challenges serve as input for Chapter 3, where again the first research ques-
tion is under consideration. This time, user interviews are performed to further identify
any new challenges and gain more insight into how MOOC experiments are currently
performed.

The second research question, designing the experimental workflow, is answered
by considering the input of the answer to the first question, so based on the require-
ments. Here, a conceptual design of the experimental workflow is proposed. This
chapter also studies other workflows in other domains, which are studied for inspira-
tion and to base off the design of a solution to this problem. This design is the subject
of the fourth chapter.

In the fifth chapter, the conceptual design is implemented, by means of a use case
at the Delft University of Technology. This chapter also studies modern engineering
approaches for inspiration. The end result is the implementation of the workbench.

Finally, the fourth research question is considered in Chapter 6. Since the imple-
mentation is now complete, it is imperative to investigate if the workbench has the
desired properties and find out if it realizes the desired goals. The outcome of this
chapter is an analysis regarding the performance of the workbench as well as conclu-
sion about that usage. In this evaluation, researchers perform real-world tasks in the
workbench.






Chapter 2

Literature study

This chapter helps find the (software) requirements of learning analytics researchers
for sharing and reproducing experiments, the first research question, based on litera-
ture. In the first sections of this chapter literature on MOOCs and MOOC research is
discussed, to gain a better understanding of what MOOC research exactly is. The next
section will review literature with regards to sharing and reproducibility in computer
science and in MOOC research.

2.1 MOOCs

The purpose of this section is to give background information on MOOCsSs, on how
MOOOC:s are used and on what characterizes MOOC:s. Since this thesis tries to improve
sharing and reproducibility of MOOC research, it is useful to gain some background
information and insight of MOOC:s.

A MOOC is short for ‘massive open online course’. It is an online course where
an unlimited number of people can take part and that is openly accessible via the web.
They require on the part of the students some self-motivation, because learning can
happen anywhere in the world, so also outside of the classroom [20]. MOOCs do
not require students to complete the course or to have an academic qualification [20].
Although many students take advantage of a MOOC, the completion rate of a MOOC
is only about 15 percent of those who enroll®. This does not have to be an issue though,
considering that different people have different objectives for MOOCs, which might
not include completing it.

Usually, tens of thousands student enroll in a MOOC. However, the ‘massive’
characteristic is not about numbers, but about scalability. A MOOC can in principle
scale infinitely. The second characteristic is that a MOOC is open. This means that
anyone can take part in a MOOC. No pre-requisite required. The third characteristic
is that MOOC:s are online and final characteristic is that a MOOC is a course. This
means all the open educational resources are organized as a course.

MOOCs are designed based on two philosophies, namely xXMOOCs or cMOOCs
[42]. xMOOC:s are based on a traditional university course. This is the most popular
format for a MOOC course and is used on platforms such as Udacity, Coursera and
edX. The cMOOCs, where the ¢ stands for connectivist, involve a group of people

Shttp://www.katyjordan.com/MOOCproject.html
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learning together. There is no individual instructor in a cMOOQOC: They often include
blogs, learning communities and social media with learning content and promote in-
teraction. In a cMOOC every student is also considered a teacher.

2.2 MOOC research

The purpose of this section is to find out what MOOC research is, which domains in
MOOC research exist and where this kind of research is headed. This helps to provide
more insight into the MOOC workbench and also ensures that the MOOC workbench
is tailored towards the specific needs of MOOC researchers.

2.2.1 What is MOOC research?

While the first MOOCs appeared in 2011 [31], papers on what we now call MOOCs
began to appear in 2008 [25] and gained much interest from the academic commu-
nity since. MOOC research is dominated by the education, engineering and computer
science disciplines [46]. According to the literature review of Veletsianos et al. 23.1
percent of their literature corpus consisted of research done by a computer scientist
[46]. Only the education discipline has a larger percentage, with 32.8 percent of the
studies in their corpus done by someone from that discipline.

There are gaps in several areas of MOOC research, due to several reasons [5]. Data
protection concerns are one of the reasons. These are concerns regarding personally
identifiable information and ownership of the data. Other hurdles are a tendency to
hoard data which results in less data sharing and ethical hurdles for qualitative research
[5].

Research on MOOC:s is done on a variation of topics. Topics include student expe-
riences, cost, performance metrics and learner analytics, MOOC policy and alternative
MOOC formats. In general, however, according to Eichhorn et al. there are three uni-
versal MOOC research objectives: use of MOOCs, impact of MOOCs and MOOQOCs
and teaching and learning [14].

The ‘Use of MOOCSs’ research category is concerned with who is using the MOOC:s.
Research in this category can consist, for example, of a survey to find out more about a
MOOC audience. This also helps to understand informal learning. Based on a survey
from the University of California performed in Coursera for 4,200 MOOC students,
most of the MOOC population are not students enrolled in a college [14]. They often
have a full-time job. Another research category is impact of MOOCsSs, which is con-
cerned with policies, and MOOCs and teaching and learning, which for example looks
at learning pathways, to see how students are learning [14]

Learning Analytics and Knowledge (LAK) and Educational Data Mining (EDM)
are closely related to MOOC research. LAK is described as ‘the measurement, col-
lection, analysis and reporting of data about learners and their contexts, for purposes
of understanding and optimising learning and the environments in which it occurs’
[43]. The other domain is Educational Data Mining which is data mining within an
educational context.

Commonly used methods of analysis in learning analytics are prediction, cluster-
ing, relationship mining, distillation of data for human judgment and discovery with
models [1]. Both LAK and EDM areas are related to each other. One paper even calls
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for researchers of both disciplines to work and communicate more with each other
[43].

2.2.2 Where is MOOC research headed?

There are many new frontiers for MOOC research. Eichhorn et al. identify three: [14]
1. changing faculty instructional approaches;
2. educational technology development and use of data science in education;
3. understanding diversity from MOOC:s.

The second challenge is especially interesting, as it is focused on computer sci-
ence. According to Eichhorn, MOOCs produce very large datasets and it is difficult
to use these datasets to their full potential. This is because of the lacking data science
methods which are required to analyze these datasets [14].

2.2.3 Conclusion

It is clear there are many new challenges for MOOC research. Based on literature, I
can conclude that a number of these challenges are especially important to learning
analytics researchers, namely new developments in educational technologies, the use
of data science in education and improvements in sharing data. For these and other
challenges to be addressed more effectively, MOOC science being done going forward
would benefit from more focus on reproducible research and research where it is easier
to share reusable parts of an experiment and the sharing of data.

2.3 Sharing and reproducibility in computer science

Reproducibility is the duplication of an experiment performed by the same or different
researchers. There are several levels of reproducibility in computer science defined by
different researchers. One definition states that reproducibility of a computer science
publication can consist of four levels, namely: Publication only, publication plus code,
publication plus code and data, publication plus linked executable code and data [34].

The Association for Computing Machinery, or ACM, a large society for computer
science, is working on improving reproducibility in computer science research. One of
the improvements they introduced are badges with different levels, such as the Artifacts
Available badge which is given when the artifacts of the paper are made available’.
These badges might work as an incentive to produce more reproducible work.

The ACM calls for the set up of an infrastructure that consists of, among other
things, standards, guidelines and best practices for reproducibility of published re-
search®. Specifically, ACM notes that sharing of artifacts should be encouraged. As of
July 2015, it was too early to be prescriptive with regards to specific best practices and
thus no challenges or best practices are identified by the ACM.

7https://www.acm.org/publications/policies/artifact-review-badging
8https://www.acm.org/data-software-reproducibility
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In a study done in 2014 by FitzJohn et al. [16], a certain research question was
asked which required some data analysis. Besides finding an answer to that question,
the goal of the research was also to find out what it takes to make the data analysis of
this research reproducible. In a blog post, the authors describe their challenges while
performing the tasks involved with enabling reproducibility °.

The main challenges and tools to enable reproducibility are, according to FitzJohn
et al. functions with long-running calculations that are poorly documented, the au-
tomated caching of dependencies, version control for archiving purposes, automated
checking of the code via continuous integration and documenting dependencies. The
authors note that adhering to these principles requires a lot of manual work and that
new tools are needed.

One approach for reproducible research comes in the form of containers by us-
ing Docker, which makes it easier to share executable code and data, independent of
the underlying system. Boettiger [3] uses the containerized technology of Docker to
make research done with R more reproducbile. The author identifies four technical
challenges that hinder reproducibility. The first is dependency hell, where the exact
dependency of a program is often unclear and can lead to different results even on
the same computational platform [3]. The second is imprecise documentation, such as
missing instructions to install and run the code. Even small gaps in the documenta-
tion can be major barriers [3], especially for novices in the field. Other problems with
documentation are that the required parameters are not well enough specified.

The third issue is code rot. Because software is updated often, with added features,
deprecated code or changed behavior, this can effect the results of the experiment [3].
The fourth and final identified technical problem are the barriers that exist towards
adoption and reuse in existing solutions [3]. What this means, is that it is difficult
for researchers to set up an environment in which they can easily optimize their code
for reproducibility and sharing. Existing solutions are for example virtual machines,
workflow software, continuous integration and other best practices from software de-
velopment. These tools have extensive manuals before they can be used effectively
[3].

The author solves this problem with containers by using Docker. In the container
the researcher can store their dependencies, frozen in time. Using Dockerfiles, the
problem with imprecise documentation is solved, because Dockerfiles provide an easy
to write scripting language that describes all the steps needed to set up and run the con-
tainer. Code rot is prevented by allowing researchers to use specific versions of their
dependencies and the saving of the binary of that dependency. Only the fourth prob-
lem, the adoption barrier, is something that is not immediately solved with containers,
as it is up to the researchers to use this tool.

Collberg et al. have given several recommendations to improve repeatability in
computer systems research [37]. Repeatability differs from reproducibility in that re-
peatability is performing the exact same experiment twice under the same circum-
stances, either by the same or by a different researcher. That includes using the same
dataset.

They investigate reasons why code cannot be shared and find versioning problems,
the programmer left, bad backup practices and more. The main concerns regarding

http://ropensci.org/blog/2014/06/09/reproducibility/
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enabling reproducibility and repeatability are that it is difficult to accomplish. Collberg
et al. find researchers that tried to improve repeatability in their department, by, for
example, creating a web site for uploading research artifacts, but failed due to lack of
usage. The authors make several proposals to increase repeatability, such as creating
a permanent email address, backing up code, using version controls system, create a
project website, plan for longevity and plan for repeatable releases.

2.3.1 moocRP

Pardos et al. build a MOOC workbench called moocRP [32]. The authors identify that
earlier work still has some problem areas. One such problem area is ‘the duplication of
analytics work across platforms, institutions and individual instructors and their TAs’.
The other is that replication of data intensive research results are difficult, due to logis-
tical challenges. Meanwhile, the learning analytics community has the ability to help
these institutions finding out what is actionable from their data and how instructors
and students can take advantage of it. The goal of moocRP is to enable institutions to
easily share data with the learning analytics community, that can then analyze the data
and re-share the result with the institutions.

moocRP seems to be meant for the general MOOC community, which means not
only researchers but also course designers and course instructors. As such, it focuses
on ease of use and data visualization. It also has many out-of-the-box analytics mod-
ules, written by the moocRP developers and the MOOC community. These modules
have the purpose to provide the MOOC instructor with insights in the MOOC itself.

moocRP has analytics modules that are finished, complete and provide direct in-
sight into a MOOC. However, MOOC research in computer science is more concerned
with the development of such a module, to, for example, see if some way of data
science provides new insights.

2.3.2 Conclusion: Challenges for reproducibility

In conclusion, based on the issues described earlier with regards to sharing and repro-
ducibility, I can conclude that the following high level challenges exist for sharing and
reproducibility in computer science in general based on literature:

o Difficulty in selecting and using tools that enable reproducible research.

e Lack of a workflow on what tasks should be accomplished to enable repro-
ducibility.

e Manual work required by researchers to enable reproducibility, with a lack of
resources or incentives to perform that work.

Apart from those issues for CS in general, specifically for MOOC research I am
able to identify the following challenge:

e Issues with sharing data: Too large data sets and concerns regarding data pro-
tection, among other things.






Chapter 3

Requirements analysis

The purpose of this chapter is to answer the first research question: ‘What are the
(software) requirements for learning analytics researchers to enable reproducibility and
sharing of reusable parts of their experiments?’. The previous chapter accomplished
that based on literature, this chapter approaches this research question by conducting
user interviews.

3.1 User interviews

The purpose of the user interviews is to investigate how researchers are currently de-
signing, building, sharing and reproducing experiments. For this purpose, MOOC
researchers at the Web Information Systems (WIS) department of the University of
Technology Delft (TU Delft) were interviewed. The TU Delft serves as a use case
for this thesis and, as this research community is doing cutting-edge MOOC research
[11] [6] [10] [7], they can be considered a representative group of people for the larger
research community.
The goals of these user interviews are to find out:

o to what degree the identified challenges with regards to sharing and reproducibil-
ity in the previous chapter apply to the MOOC research community at WIS;

e how researchers are currently creating experiments (which methods, tools, ap-
proaches);

e what steps are already being taken to ensure reproducibility of the experiments
created;

e how researchers are currently reproducing experiments and the problems expe-
rienced with reproducing an experiment;

e how researchers are currently sharing experiments and code, why they are shar-
ing and the problems experienced with sharing.

3.1.1 User interviews set-up

The user interviews are semi-structured with a mix of closed and open-ended ques-
tions. The advantage of this type of interview is that it elicits the foreseen information,

11
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12

but also has enough flexibility to allow unexpected information to surface [41]. The
interviews were done individually.

The questions are formulated and the interviews conducted based on the best prac-
tices of M. Patton regarding qualitative evaluation and research methods [33], such
as avoiding asking ‘why’ questions, only asking one question at a time, avoid asking
leading questions, recording the interview and using an interview guide.

Each interview used a user interview guide. This guide contained the questions, as
well as a short introduction, and some topics to be mentioned, if not already touched
upon. At the start of the interview, a short description of the thesis project was
given. Answers given by the interviewees remain anonymous. Each interview has
been recorded and was transcribed afterwards, to make analysis of the qualitative data
easier.

3.1.2 Conducting the interviews and results

In total I interviewed four people with the following roles at the time the interviews
were conducted:

e interviewee 1 (I1): PhD candidate in large-scale learning analytics;

e interviewee 2 (I2): Master of Science student at WIS with the thesis topic on
cheating in MOOC:s;

e interviewee 3 (I3): PhD candidate in large-scale learning analytics;

e interviewee 4 (I4): PhD candidate in large-scale learning analytics.

The complete list of questions and summarized answers are given in appendix A.

Background information

The researchers are most active in the domains of LAK and EDM. Research topics
include learning transfer, detecting multiple accounts cheating in MOOC:s, designing
interventions in MOOC:s, finding out how student personalities affect MOOC learning
and more. One of the interviewed researchers, 14, does not have a Computer Science
background.

How are researchers currently creating experiments (which methods, tools,
approaches)

There is no single approach with regards to how researchers are currently creating
experiments. Often, it happens that previous work is used to start a new experiment.

If an experiment is based on previous work, it holds that code from previous work
is often still applicable to the new work. Code is then carried over from one exper-
iment to another, which happens quite often. This means that code from previous
experiments is used in a new experiment and is modified to fit some new purpose.
What kind of code is reused, varies. Sometimes, old code from data analysis work is
reused in an experiment. For example, interviewee I3 states:

...1 just use that code to build a big giant database, which can deal with
data from every MOOC. So, every time if I need that experiment or a new
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MOOC, I just dump that data into the database. So, you can just regard it
like very frequently.

In terms of programming languages, researchers 11, 12 and I3 use Python to de-
velop their experiments. Researcher 14 uses R.

Issues experienced with reusing own code are present. It happens that researchers
no longer know what the code does or how it should be used. For example, researcher
I1:

...sometimes when I go back [to previous written code, auth.] 1 find that
even though I have some comment on that, I still need a lot of time to
remind myself to think about what I am trying to do in that code.

Researcher 13, when asked about difficulties understanding code, notes:
Yes, yes, issues like this happen a lot.
Researcher 14 does not have issues with reusing code:

...since I have only been writing code for over a year now, it is not so far
back I do not remember; so once I revisit my own code, I can pretty much
get it.

Researcher 12 does not have experience with reusing their own code.

In general, it can be said that MOOC research largely consists of two phases: a data
gathering phase and a data analysis phase. In the data analysis phase, an important part
is visualizing the data. In terms of tools, all researchers indicate that they use special
data visualization tools for Python or R.

One of the researchers indicated the use of Jupyter '°. This tool allows the writing
of Python scripts in the form of a notebook, with parts of text explaining what the code
does, followed by parts of code. The researcher indicates that this kind of workflow
helps the understanding of the code, both for themselves and for other researchers.
When asked about limitations, researcher I1 notes that code written in Jupyter cannot
be used in other Python scripts and instead copies the code from Jupyter.

Which actions are already being taken to ensure reproducibility of experiments

Researcher 13 mentions that sometimes a deadline approaches and the focus is mainly
placed on completing the project, instead of focusing on ensuring the code is able to
be understood and run by others:

Honestly, I haven’t thought about this, sometimes when the deadline is
approaching, you are just... I quickly finish it.

With regards to dependencies, researchers have no specific or default way of man-
aging them, as indicated by researcher I1. Researchers install their Python depen-
dencies system-wide and do not record version numbers. Researcher 11, for example,
notes:

Ohttp://jupyter.org
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For my own work, I put all of the dependencies, libraries in the Python
library of my computer.

Researcher 14 uses R, where it is possible to install dependencies directly from the
script:

When you run my code, what happens is, in my code I would include the
installation and the loading of those libraries.

Although three of the four of the researchers are familiar with a version control
system such as git, use of it is limited. For example, researcher 12 notes with regards
to pushing and pulling daily or weekly:

I just do [commit code with git, auth.]... not regularly, it just seems like, it
is not a good habit, I think.

Researcher 13 uses the version control system only as a back-up system:

1 just use it like a place to store the code, in case my laptop is stolen by
somebody else.

Researcher 11 only commits and pushes code they consider to be complete and
instead makes private backups, and notes:

After I think, okay, it’s a version, this looks like complete work, sometimes
I will update it on GitHub.

The researcher indicates this to be a personal preference.

Written documentation by researchers comes in the form of source code com-
ments. A README file is sometimes written when the experiment is going to be
made public.

No testing is being done, apart from running the code until the code works, as
indicated by all the researchers. Researcher 11:

1 do not use specific testing tools or specific code for testing this part.

Instead, they are familiar with the dataset, are able to extract minimum and maximum
values and can recognize strange results. They also check the logic behind their algo-
rithm, and if it works as designed. Researcher I1 further notes:

Actually, we do not spend a lot of time on the verification and on the unit
tests. So, it’s not a good habit, but I know that, it’s that I am already
Sfamiliar with this way to check the code, so that is why I do not use that.

Sometimes testing is difficult or impossible, due to the lack of a testing or training
set. Researcher 12:

I only have user logs from MOOCs created by TU Delft, I do not have
something like, in machine learning you maybe have a training set or a
tester set, something to verify it. (...) It is impossible in my master thesis.

14
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Researchers occasionally publish their source code on GitHub or on the Open Sci-
ence Framework (OSF). Before they make their source code public, researcher I3 fo-
cuses on making the code more readable and erases any sensitive information such
as passwords embedded in the source code. Researcher 11 writes a README before
public release, containing dependency information, what the code does and how to run
the code and some source code comments. For publication on the OSF, a manuscript
was published in advance that outlined how the data was going to be analyzed. Re-
searcher 14 follows the steps of the OSF to publish source code. Researcher 12 has not
made source code available to the public yet, but plans on releasing it on GitHub after
graduation.

When asked about how MOOC research could be made more reproducible, re-
searchers mostly mention that they need a set of common tools. Researcher 11 states
that code should be made more reusable in general, but that researchers only some-
times account for re-usability of their experiment:

I think for the most of the PhD students, if your topic is not focusing on the
reusable part, maybe you would like to make your code run correctly and
make sure that you can run the whole program fast and then get a result
and then maybe you run to another topic, and this code is just there.

How are researchers currently reproducing experiments and what problems do
they experience when reproducing experiments

Researchers do not have much experience reproducing experiments from other re-
searchers. Only researcher 12 has experience reproducing other people’s work. In gen-
eral, there are no pre-defined steps on how to approach the reproduction of a MOOC
experiment and the researchers solve the challenges involved with reproducing an ex-
periment as they appear.

Researcher 14 is working with another university to run their experiments in other
MOOCs:

...maybe within a couple of years (...) we will have policies in place for
reproducing other people’s studies and MOOC:s in TU Delft MOOCs. But
for now, it is figuring out as we go, making sure all parties involved are
happy and everything is ethically sound.

Issues experienced with reproducing others work are the reluctance of researchers
cooperating. Sharing happened via email and was required to be bidirectional, mean-
ing the other party also wanted to receive source code. The researcher then prepared
the source code for release, by adding a README file.

The main problems experienced with reproducing seem to be that often there is no
source code present in a publication. Researcher 12:

On the basis of my experience, about the academic publication in MOOC:,
I rarely see some people paste the code or the link to the code on their
publication.

When asked about how MOOC reproducibility could be improved, researcher 12
said:

15
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1 think open source is of course a good choice.

Also, researcher 12 found issues with differing data formats and the quality of the
source code, or lack thereof.

How researchers are currently sharing experiments and code, why they are
sharing and the problems they experience with sharing

Researchers share via different ways, sometimes via email, sometimes via a private
Dropbox shares and sometimes via GitHub. Sharing code among researchers does
not happen often. When it does happen, it usually means that the received code has
to be rewritten because it is not well enough documented, does not fit the data or is
unreadable.

The sharing problem is multifaceted. On the one hand, researchers are not aware
of the existence of common MOOC tools, because no central ‘marketplace’ exists
where they can find these tools. Another issue is that when they do find the code, it
lacks documentation, is not readable or is of insufficient quality. In the stories from
researchers, it has happened that code from other researchers ended up not being used
because of one of these reasons. Another problem is that researchers move from one
project to another and do not consider finding reusable parts in their experiment and
publishing them publicly.

One other suggestion is that MOOC code should be independent of the data. Re-
searcher 12:

I mean, your code is an implementation of the algorithm, and your al-
gorithm should not focus on any special data. The reason why I cannot
reproduce the author’s code is because the data format is quite awkward
from my perspective. So, you should pay attention to the code and to the
design of the algorithm at the same time.

When code is shared between researchers, experiences are not always positive.
Researcher 13, regarding their experience using code from another university:

Inaccurate and their code was not complete. And usually you need to
spend a lot of time to figure it out. Like a week or two.

Researcher 13 argues that documentation is a big problem when reusing code from
others, as well as code quality. Researcher 11 also has negative experiences regarding
documentation in the two occasions code was shared:

1 think the documentation of them, both of them was not really good.

3.2 Takeaways and conclusions

The envisioned workbench fulfills two purposes: Improving reproducibility for MOOC
experiments and enabling code reuse among researchers.

For improving reproducibility, based on literature and the user interviews, the fol-
lowing takeaways and conclusion can be drawn:
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3.2.1 How are researchers currently creating experiments (which
methods, tools, approaches)

No standard workflow or approach exists for the creation of an experiment. The
MOOC workbench should create such a standard workflow. This standard experi-
mental workflow should ensure reproducibility of research.

3.2.2 Which actions are already being taken to ensure reproducibility of
experiments

Not much steps are being taken to ensure reproducibility of the created experiments
by researchers. As identified in the literature, reproducible computer science research
means the use of some dependency management system that ensures code can be run
in the future, a version control system so that the evolution of the code can be tracked
and extensive documentation so it is clear what the code does.

As is clear from the interviews, researchers have no standard way of defining
dependencies. Researchers do not write extensive documentation for their experi-
ments. Documentation is limited to writing source code comments and the occasional
README file. Also, researchers are not performing formal testing or verification of
their experiments, do not use version control frequently and find source code some-
times to be difficult to understand.

The issue of reproducible research seems to go beyond tools. Researchers are
sometimes aware of their lack of attention to reproducible research or of their bad habit
with the use of these systems. Sometimes, a deadline is approaching and thus the focus
is put on the end result instead of other aspects, such as reproducibility. This issue
was also identified in the previous chapter, namely that researchers lack incentives to
perform the work to improve reproducibility. In order to improve reproducibility, the
workbench should help to shift the focus of the experimental process more towards
reproducibility.

Thus, merely providing these tools for easier dependency management and others,
might not be enough, as they can then still be ignored when a deadline is approaching.
A workbench should make it visible how reproducible an experiment is to try and
change this behavior.

3.2.3 How are researchers currently reproducing experiments and what
problems do they experience when reproducing experiments

In general, experience with reproducing experiments by other researchers are limited.
Issues encountered when an experiment is being reproduced are the lack of source
code in publications and the lack of documentation and quality of the source code.

3.2.4 How are researchers currently sharing experiments and code, why
they are sharing and the problems they experience with sharing

Code is shared via different mediums, such as via email, Dropbox, GitHub or via a
personal project page of the author. The researchers are sharing code or using shared
code because they need a common piece of functionality. Issues experienced with
sharing are lack of documentation or inaccurate documentation or lack of code quality.

17
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Researchers are focused on the end-result and then immediately move on to the
next experiment. They do not consider or do not have the possibility, due to a lack of
tools or lack of time, to review the code and find reusable parts, extract those parts and
put them in a separate tool for everyone to use.

3.3 Requirements

Based on these takeaways and conclusions, the following requirements can be estab-
lished.

The MOOC workbench:

e should give insight into how reproducible each experiment is;

e should give useful actions on how to improve reproducibility of an experiment;

e should be a MOOC tool marketplace, where researchers can add, find, use, run
and install common MOOC tools and functions;

e should facilitate dependency management;

e should facilitate version control;

e should facilitate writing documentation throughout the experiment;
e should make it easier to test and verify source code;

e should enable researchers to easily share and publish experiments;
e should support the different phases of MOOC research;

e could facilitate the separation of the code from the data.



Chapter 4

Experimental workflow design

This chapter will study other relevant systems, such as scientific workflow systems, to
give a proper basis for the conceptual design of the workbench. This chapter defines
the key properties of a good design for experimental workflows for MOOC researchers
and gives the proposal for the conceptual design of the experimental workflow that the
MOOC workbench should support.

4.1 Scientific workflow systems

A scientific workflow system enables the composition and execution of complex analy-
sis, often run on distributed resources [12]. These workflows often consist of directed
graphs where nodes represent computation and the edges of the nodes represent the
flow of data. Scientific workflow systems have the advantage of improving repro-
ducibility, because a workflow created in such a system can easily be understood and
re-executed by others. The main focus of scientific workflow systems seems to be the
natural sciences, but this is expanding towards other domains. [24] gives examples of
domains where scientific workflow systems are used, namely astronomy, biology and
computational engineering, but also oceanography, seismology and neuroscience. Of
the workflow systems identified in [2], most are built for natural sciences.

Many scientific workflow systems exist and the purpose of this section is to study
these systems and understand how they work. Examples of scientific workflow systems
are Kepler!!, Triana'?> and JS4Cloud .

Most scientific workflow systems provide abstractions for computational constructs
and data by providing a graphical user interface or a domain specific language that al-
low researchers to create an experiment by dragging and dropping components. For
example, Triana uses units and cables and Kepler actors in combination with directors
[8].

I believe that to abstract away from the core competency of computer scientists
seems counter-intuitive. These kind of graphical user interfaces in a workflow system
seem to be mostly useful for domain-expert analysts and high-level users [26].

Uhttps://kepler-project.org/
2http://www.trianacode.org
13 [26]
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As such, I believe the traditional scientific workflow system might not be appli-
cable to this problem domain. Converting existing pieces of code to such a scientific
workflow systems requires lots of effort by the researchers and I believe the kind of
‘visual programming’ offered by scientific workflow systems might be too limiting for
computer scientists.

I believe the main problem right now though is that the domains for which most
of these systems are created, are domains where computer scientists work to support
this domain, for example bioinformatics or geoinformatics. The computer scientists
can then work actively to maintain these systems and add modules, while other, less
technical researchers, use the systems for their experiments. In MOOC research, this
is not the case as computer scientists themselves are performing experiments, instead
of providing support similar as is done in other domains where scientific workflow
systems exist.

Only once a number of these modules have been created by researchers, I believe
it starts to make sense to think about a workflow system. Instead, it makes more sense
to first lay the groundwork for such a system that might be used in the future and be
more suitable for non-computer scientists.

A system that might support this kind of groundwork is YesWorkflow, that allows
adding useful annotations to visualize the workflow of experiments [27]. It allows
researchers to annotate their source code by using simple commands to recover work-
flow information. These annotations represent program blocks, ports or channels. By
adding these annotations, YesWorkflow can automatically generate a visualization of
the workflow. Users can then click on nodes in the graph and see the corresponding
code blocks. For future work, I believe this system might be useful for the workbench,
but it should be studied better before a decision is made to integrate it.

4.2 Reproducibility enhancing systems

Reproducibility enhancing systems are not complete experimental workflows, but of-
ten are meant to be used after the creation of an experiment to improve the repro-
ducibility of created experiments. It is useful to discuss these kinds of systems and see
how they might fit into the experimental workflow of MOOC researchers.

4.2.1 RunMyCode

RunMyCode'* is an international academic project that provides a computational in-
frastructure allowing authors to publish code and data related to their papers [44]. It
was founded by economics and statistics professors and its main purpose is to improve
research-reproducibility for the computational sciences. RunMyCode allows users to
execute the uploaded code in the cloud. The uptake of RunMyCode is not very high.
In November 2014, 82 papers have used the website to upload their code and data. Of
those 82, none are from computer science departments.

The authors of [44] believe that research reproducibility can greatly be improved
by opening data and code to the public. RunMyCode works by allowing the creators
of the experiment to create a website, which serves as the public information page for

Yhttp://www.runmycode.org/
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the experiment. This process consists of six steps, namely providing information about
the experiment and publication, describing the source code, such as input of the data
and preview the page to make sure that everything is in order.

Researchers can then upload their code and data, if they wish. Others are then
able to download the code and/or run it in the cloud. RunMyCode supports C++,
Fortran, MatLab, R and RATS. After the code is added and some standard checks are
performed, the results are automatically summarized in a PDF file and the website
enters the validation stage.

In this stage, the authors and coders validate the created website. After that, an
editorial team from RunMyCode checks whether the created website complies with
the editorial policy of the website. What this editorial review exactly entails, is left
unspecified. Finally, a technical validation of the code is done, focusing on robustness,
security and CPU requirements.

This section considers the approach of RunMyCode because it tackles one aspect
identified in both literature and the requirements analysis, namely that of making code
and data more publicly available. In terms of experimental workflow, it has little to of-
fer, because RunMyCode only requires the researchers to perform certain actions, such
as uploading the code, after their experiment is complete. During the development and
design of the experiment, it does not require any actions of the researcher.

4.2.2 SHARE

Another system comparable to RunMyCode is SHARE, described by Gorp et al. [45].
SHARE is a platform where authors can share virtual machines. These VMs contain
all the code and data required to run the experiment. They even contain the original
paper. Using a virtual machine to enable reproducibility is an interesting concept,
because it solves many of the earlier described problems, such as dependency issues
and system compatibility.

However, virtual machines also have some downsides, such as the limited life-span
of a virtual machine, the use of a proprietary platform and security [37]. Also, virtual
machines are not very suitable for large-scale use, because even small Linux virtual
machines take up at least one gigabyte and cannot be run on every platform.

4.2.3 Open Science Framework

One of the researchers interviewed during the requirements analysis used the Open
Science Framework (OSF)!>. OSF is a project set up by the Center for Open Science
and aims to enable and improve collaboration in science research.

The OSF allows researchers to upload data and code and maintain a wiki. For each
file, version control is used and it is possible to review earlier versions. Researchers
can divide projects into components. OSF describes components as ‘sub-projects that
help you organize different parts of your research’ '°. Each component has their own
privacy settings, contributors, wiki, add-ons and files. OSF offers support for several
add-ons, such as Amazon S3, GitHub, Dropbox and Google Drive.

Bhttps://ost.io/
19http://help.osf.io/m/gettingstarted/1/481998-creating-components
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OSF offers researchers the possibility to cite work on the platform by creating a
unique ID. Each file, project and component already has a unique URL that can be used
to cite the work. Researchers can also obtain a DOI, or a digital object identifier, which
is an identifier that can be used by others to reference the work on OSF. Researchers
are given insight into how often each file of the project is downloaded and how often
the project’s page is visited.

Other researchers are given the option to fork a project, which enables reuse '”.

4.2.4 Conclusion

The problem with RunMyCode, OSF and SHARE seem to be that they allow re-
searchers to more easily publish their code and data, but they do not do anything to
help improve the quality of the code and data, which is what seems to be required to
improve reproducibility. RunMyCode addresses these problems more, though, than
SHARE, because if the code is able to run in the cloud, then it can also be ran by other
researchers, but it does not improve other aspects of the code, such as documentation
or testing standards. Also, for MOOC research, code can often not be rerun by others,
because of the lack of data, a problem that these systems do not address. Furthermore,
both do not contain a marketplace for researchers to exchange common pieces of code.
Researchers can only fork complete experiments.

SHARE, OSF and RunMyCode are not complete experimental workflows, but only
work after the creation of the experiment. Instead, based on the challenges required
for reproducible research, I think it is required to change the complete workflow of a
researcher, something that these systems do not address.

4.3 Other tools and considerations

4.3.1 Literate programming

Literate programming is a form of programming where the natural language is the cen-
tral point [19]. The documentation contains chunks of code and is written in such a
way that it follows the ‘human thought process rather than the usual flow of a program’
[19]. Literate programming can benefit reproducibility, because of the fact that it fol-
lows human thought, as such these kinds of tools are very useful to use for researchers.

4.3.2 Kknitr

knitr [50] is an example of a literate programming tool. It is an R package that im-
proves reproducible research as it allows researchers to write their scripts directly into
LaTeX or Markdown. When the script is then run, either a HTML or PDF page is
generated, complete with the script, results and graphical results embedded in the doc-
ument as a whole. knitr can also format code to optimize readability. There are several
libraries like knitr for R, but knitr has the advantage that it is easy to use for beginners
because of the support for Markdown. LaTeX typically has a steep learning curve for
beginners, which does not hold for Markdown [50].

https://osf.io/4znzp/wiki/Measuring%20impact%20using%20the % 200SF/
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4.3.3 Jupyter (IPython Notebook)

Perez et al. have looked into IPython, nowadays called Jupyter, a system for interac-
tive scientific computing and present properties of a good interactive computing envi-
ronment [35] for this purpose. The first property is access to all of the session state.
IPython remembers the session state of all previous runs. Another property is a control
system, which IPython provides and is designed to improve Python in an interactive
shell. For example, using this control system it is possible to activate logging. Another
property is access to the operating system, which allows for reading data and loading
other programs, as well as dynamic introspection.

IPython refers to the shell and IPython Notebook refers to the web-based applica-
tion that connects the IPython shell to a user-friendly front-end. The notebook was de-
veloped in 2011 and revolves around two ideas, namely an open protocol that controls
the computational engine and an open format that records the interactions between
user and the computational engine [28]. IPython started out as a project specifically
for Python, but it evolved into Jupyter, that contains the language-agnostic aspects of
the notebook system [28]. IPython Notebook is a system that ‘provides an end-to-end
environment for the creation of reproducible research’. It does so by capturing any
computational session and adding version control, re-execution and conversion into
other outputs. Useful is that notebooks can easily be shared, either in their native form
or in HTML, LaTeX or PDF. Drawbacks of Jupyter are that extra work is required
to import notebooks into generic Python files, since Jupyter Notebooks are not plain
Python. Furthermore, using Jupyter with a version control system like git offers diffi-
culties, since Jupyter files can contain binary data. The workbench should first support
Python, since that is the main language the interviewed researchers use. Only then
is it possible to support Jupyter, since Jupyter notebooks can contain Python source
code. This makes it more suitable to look at in future work. Also, not all researchers
might be inclined to use Jupyter instead of plain Python. In the interviews, only one
researcher indicated using it.

4.4 Software engineering practices

The lack of proper software engineering practices in MOOC research might hurt re-
producibility and reuse of experiments. Scientific researchers think that software en-
gineering practices could increase their ability to develop quality software [18]. As
a result, I believe it to be important that the workbench seeks to improve and enable
these practices more among scientific developers.

4.4.1 Testing

The testing of MOOC experiments is limited to identifying if the program returns
the correct results. This is not very different from how most scientific software is
created [18]. Given reasons for this kind of testing are lack of management support
and applications that are not large or complex enough to test [18]. Many studies agree
that scientific software developers can benefit from testing.

As described by one of the researchers during the user interviewers, testing is of-
ten impossible, due to the lack of an oracle to verify the results against. Overcoming
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this problem is difficult. In one survey, a total of twelve techniques are proposed to
overcome oracle problems, such as using a pseudo oracle, using solutions obtained an-
alytically, using results obtained experimentally and using simplified data to determine
the correctness of the algorithm [21]. Other feasible options are using assertion based
checking and automated clone checking. The latter is useful for when an issue is fixed
in one place, but not in the other.

The workbench should provide testing tools and leave it up to the researcher to
find the best way to overcome the oracle problem, if that is applicable to their research.
Integrating testing in the experimental workflow is difficult, as everyone has their own
preference when to write tests, either before or after writing code. I want the entry
barrier of the workbench to be as low as possible, because if researchers use only a
fraction of the tools instead of not using the workbench at all, then the former helps
reproducibility more. For this reason, it is best to leave it up to the researcher to decide
which testing approach they want to use and only provide some testing tools to get
started. I made the choice not to integrate a specific testing phase in the experimental
workflow, but instead the workbench will monitor the code coverage percentage of
tests.

Enabling and encouraging researchers to write tests has two advantages: First, they
test their software for faults, which helps improve the code quality and improve the
accuracy of their results and second: To perform unit tests, a common form of testing,
they have to find or create units to actually test. These are units of functionality and
by creating these units, they might be creating reusable pieces of code that could be
suitable for use by other researchers.

4.4.2 Documentation

Another issue identified during the user interviews and in literature is the lack of doc-
umentation in scientific research software. Some argue that documentation is needed
to guarantee software quality [18]. The workbench should increase and improve the
amount and quality of written documentation, by adding tools to easier write and gen-
erate documentation and by encouraging researchers to actually write the documenta-
tion.

Software documentation is an artifact with the purpose of communicating infor-
mation about the software to which it belongs [51]. It comes in different forms, such
as a manual for the use of the software, technical documentation for the design of the
software or source code comments. In a literature review by Zhi et al. [51] several
papers with regards to documentation of software are reviewed. In total, more than
twenty-five papers introduce techniques for improving the quality of documentation,
thirteen papers introduce tools and seven papers introduce models for documentation.

Overall, the survey of Zhi et al. finds that the most important attributes of high-
quality documentation are completeness, consistency and accessibility. After those,
other important factors with regards to documentation are the format and the up-to-
dateness.

In order to help researchers to write documentation, a documentation generation
system could be used [28]. A system specifically designed for Python is Sphinx '8.

8http://www.sphinx-doc.org/en/stable/
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It does require some specific syntax since it uses reStructuredText, but the syntax is
straightforward. Documentation generation systems work by adding documentation
to the source code, for example the type of function and what it returns. Sphinx can
automatically extract that documentation and format it. Sphinx allows to define a
custom document structure, so it can contain all the documentation at once, including
a README, installation instructions and code examples.

If the documentation is to be simple and if not thousands of lines of source code
are written, it could be considered to just use Markdown to write documentation [28],
in wiki style, a la GitHub.

Documentation should be used to document the purpose and design of the soft-
ware, instead of the internal mechanics of it [48]. Also, Wilson et al. recommend to
embed the documentation inside the source code, so that researchers are more likely
to change the documentation when the code changes [48].

With regards to the experimental workflow, I believe it to be best that researchers
continuously write documentation.

4.4.3 Reusability

One of the goals of the workbench is to increase reusability of code. In order to
increase the reusability of code written by researchers, several approaches exist [23].
An important one is to create and maintain a central library of software that can be
reused. Another one is to use code reviews, but that is quite difficult in this setting
where researchers often work individually. Code reviews do seem to have signifcant
benefits, as knowledge and good practices are spread throughout the department [48].
Wilson et al. recommend to use code reviews before they are merged.

Researchers should avoid copying and pasting code and instead modularize their
code [48]. Copying and pasting code has the risk of increasing bugs and errors, because
the same issue may have to be fixed multiple times throughout the project.

In order to facilitate modularization of code and thus reuse, the experimental work-
flow will consist of phases that try to separate the steps involved with MOOC research
as much as possible, with the hopes that researchers separate their code naturally and
implicitly create a workflow with different modules.

4.4.4 Version control

The use of a version control system has been widely accepted to be essential for good
reproducibility. Up until now, what it exactly means to use version control properly
has not been discussed. Visser et al. describe their best practices for version control.
Specifically, they recommend to ‘commit specifically and regularly’ [47]. They also
advise to link the commits in the issue tracker. It is also recommended to integrate
code into the main branch regularly. These best practices are mostly only applica-
ble to teams, however. The workbench could monitor the use of version control by
researchers and offer suggestions regarding its use.

4.4.5 Infrastructure

The infrastructure of an experiment consists of running tests, building the code and
generating the reports, which can save researchers a lot of time and improve produc-

25



4.4 Software engineering practices Experimental workflow design

26

tivity and enable collaboration [28]. For small projects, researchers often do not see
the value of investing time and effort into learning and setting up an infrastructure to
perform these tasks [28]. Some of these aspects are already discussed separately, such
as testing and version control.

Continuous integration (CI) is an important aspect of infrastructure. This is only
possible once the code is on a hosted version control repository and only useful if
some tests are written. The CI system can then automatically run these tests after
every commit. Setting up a CI can be quite time-consuming, although for example
Travis CI in combination with GitHub can very quickly be set-up. The workbench
should provide a CI system, which helps to continuously remind the researchers to test
and to ensure the code is still working.

4.4.6 Metrics

All the problems and solutions discussed so far rely upon the researchers to use them
and adhere to them. That is easier said then done in the real world. Only if researchers
make the decision to adhere to these principles and improve their habits can repro-
ducibility be improved [28]. To improve the development process of scientific soft-
ware, the use of metrics should be considered for the workbench, as these are often
used to improve the software development process [15]. These metrics could be used
throughout the experiment and help researchers to make the right decisions with re-
gards to reproducibility during the development process.

Researchers are rewarded for their experiments and results, not for the repro-
ducibility of their work [28], although that is slowly changinglg. To make an ever-
lasting impact on the reproducibility of experiments, I believe it is important to give
insight into the reproducibility of an experiment. These metrics could be used to set
a standard of quality that is expected of an experiment with regards to reproducibility.
However, drawing conclusions from metrics should be done cautiously, as they never
tell the whole story, so they should be considered one part of the solution.

For most of the aspects discussed so far, a metric could be devised. For example,
to measure effective use of version control, the workbench could measure the commit
frequency. For testing, many metrics can be devised, such as number of tests or code
coverage. For documentation, the coverage of source code could be measured.

Plosch et al. developed an automated quality defect detection program for doc-
umentation [9]. This program scans for many defects in documentation. It applies
some of the following documentation quality rules: naming conventions, deeply nested
sections, duplication detection, empty section detection, incomplete documents, long
sentence detection, ultra large document detection, spelling errors, storage structure
and more. The researchers test their program and conclude that for 75 percent of the
documentation rules the system is suitable. A similar system could be used in the
workbench to improve the quality of the documentation of MOOC experiments and
tools.

Wingkvist et al. also developed a metric to try and measure the quality of software
documentation [49]. Specifically, they use two metrics to determine the quality of
documentation, namely documentation duplication and test coverage. The coverage

http://cacm.acm.org/magazines/2016/10/207757-incentivizing-reproducibility/fulltext
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of tests is measured by asking subjects to find information for a specific task. Such
a test is successful if the subject finds the information in time. Researchers measure
the amount of documentation needed to be read before the useful information can be
found. Wingkvist et al. apply these metrics to two real-world tests and conclude that
the metrics are useful, as they identified quality issues.

4.5 Key workflow properties

Based on all these systems, workflows and approaches, I am now able to define the
key properties of the experimental workflow for researchers.

Lightweight

The important property of the workflow is that it is lightweight. While it is possible
to simply build a complete scientific workflow system and let the users come, other
systems have shown that that is not always the case. Based on the user interviews,
researchers are currently writing code that is not very suitable for reuse by others, so
in order to achieve that the workflow system actually contains useful modules, that has
to be changed first.

The workflow system integrated in the MOOC workbench should be very simple.
It should enable researchers to select the modules they want to use during their experi-
ment and then install them in their version control repository. Then, the researchers are
free to use the modules in a way that they see fit. This gives them a lot of freedom to
construct their own scientific workflow. Once many modules are present, researchers
without a computer science background can also easily run experiments.

The end-goal of the workbench is to be able to support experiments that only con-
sist of modules created by other researchers, without ever having to write any code,
but that won’t happen anytime soon. This initial set-up gives researchers the freedom
to add own logic and add functions that are missing. It is then the workbench’s job to
help them create new reusable pieces of code from their experiments.

Change behavior

Although all the problems listed can be solved technically, there are also social prob-
lems at play, namely ingrained habits and the pressure from the incentive models of
modern research [28]. An important property is thus that the workbench try and ad-
dress these social problems.

Promote literate programming

Another key property is that a good experimental workflow uses literate programming
tools, such as Jupyter or knitr, which greatly increase the amount of documentation and
understanding of code. The workbench should promote literate programming during
those phases where it makes sense, for example in the data analysis phase.
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Be flexible

Based on the user interviews, the proposed experimental workflow should be flexible
and accommodate different ways of working. A researcher should be able to add,
remove and re-order phases from the workflow, as they see fit. The workbench should
only provide a default, suggested workflow.

Provide time for reflection and optimization

In order to increase reusability, it is important for researchers to take a moment and
reflect upon the code of the previous phase and look for parts that might be useful
for other researchers. Also, this phase could be used to take some time and optimize
the code. Wilson et al. in their best practices for scientific computing advise to only
optimize the software after it works correctly [48].

4.6 Design proposal

I believe that the MOOC workbench should support the following experimental work-
flow steps. By separating these phases of MOOC research, code is better separated and
can more easily be modularized. The researcher is free to order the steps and remove
or add extra steps of the same type as they see fit. The importance of these steps or
phases is that code is separated and that it is clear what the purpose is of each step
within the experiment.

1. Data gathering

The first phase is the data gathering phase. During this phase, the MOOC workbench
will make the least assumptions, as this phase often differs from researcher to re-
searcher. In this step, the researcher writes code to gather the data, for example by
writing some MOOC specific code, and filter and clean the data, as often times some
unnecessary or erroneous values will be present in the data.

2. Data schema

During the data schema phase, the researcher creates a data schema from their gathered
data. The MOOC workbench should provide additional tools and libraries to make
this step as easy as possible. I believe such a data schema can improve reproducibility
significantly. Oftentimes, data is not present, with a data schema other researchers can
verify if their data is compatible with the experiment at hand.

3. Feature extraction

During this step, a researcher writes code to extract data features from the dataset.

4. Data analysis

During the data analysis phase, researchers create for example models from the ex-
tracted data features. Ideally, the workbench recommends and integrates a literate
programming tool.
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5. Publication phase

In the publication phase, the researcher has the option to publish the experiment in the
workbench, so that other researchers can access the experiment in the workbench.

4.6.1 During each step

Many of the discussed software engineering practices are implicitly part of this experi-
mental workflow. These kinds of tasks should be done continuously during each phase.
It is then not useful to formally add these to the experimental workflow by reserving a
specific phase for them.

4.6.2 Post-step tasks

After each phase has been completed by the researcher, the workbench compiles a re-
port of the work done in that step and prompts the researcher to review the source code
and find code that could be extracted and changed into a module. Also, the workbench
should provide an overview of the metrics of the past step and offer suggestions for
improvement, so that researchers know how to improve their work.

4.6.3 Example experiment

To show how the workbench can help with reproducibility for a MOOC experiment,
this section presents a hypothetical example experiment that is created and managed
with the workbench. As an example, say that I want to create a MOOC experiment
to design an intervention before a student drops out, with my hypothesis that students
are likely to drop-out when their answers have negative language in them. For this
purpose, I create an experiment in the workbench named Drop-out detection. The
workbench initializes the experiment. I then choose my experimental steps: In this
case all the steps, and I proceed to set-up my experiment locally.

1. Data gathering

Once I have set-up my experiment locally, which means I have set-up an environment
of tools that support reproducibility, as well as my source files, I can get to work. I
start with gathering data. For this, [ need to create and gather a dataset. I write a script
to gather data in some MOOC in Coursera and test it. Luckily, with the static code
analysis tool from the workbench, I can easily see that my code contained an incorrect
condition and fix it. I also find a package written by my colleague that already did
some other Drop-out experiment in Coursera and uses the relevant APIs, so I install
that package in my experiment and use some of the functions in that package to easily
gather the data I need. Afterwards, I let that code run for one MOOC period and I have
a CSV file for my data.
With the data, it turns out some values and rows are erroneous, so with the make_dataset

script I load the input data file, clean it and calculate some extra values that I need for
the next step.
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2. Data schema

Now that I have the data file that I can use, I create a data schema. Using the file
provided in the boilerplate code, with a single command I have a representation of the
used data schema and I can commit this to my repository.

3. Feature extraction

Next, I can move on to the feature extraction step. Using some machine learning
magic, I extract from the dataset the features that I want to use and find important.
Using the provided boilerplate code, I see that testing is very easy and I write a number
of tests to test the feature extraction functions. It turns out I also want to use the NLTK
toolkit for Python, so in the dependency tab of my experiment I add this as a package,
together with the version I use in my experiment.

At the same time [ am doing my experiment, it turns out my colleague also wants
to do another experiment on Drop-out detection. Luckily, since I have written docu-
mentation in my source code, the workbench has published my documentation already
on GitHub, so the colleagues can see if my code is relevant and useful. It turns out it
is, so once I am done with my code for feature extraction, I create a package of it with
just a few clicks for the other researcher to use.

4. Data analysis

Next, I move on to the analysis step. In this step, I model the extracted features and
try to see if my hypothesis holds. In this step, I find a relevant package recommended
by the workbench that I can use. When I complete this step, I see on the score card of
my experiment in the workbench that a lot of functions and classes are not covered by
my documentation. So I return to the source code and review the functions and classes
and add the relevant documentation, such as input parameters, return values and what
the purpose is of the functions. I then review the new score card and the workbench
now shows all green, so I can continue.

5. Publication phase

I then complete my experiment by visualizing the results and by publishing it in the
workbench. Publishing it in the workbench means that a unique URL and page is
generated for my experiment, that is accessible for all researchers. The page shows all
the experiment steps used in the experiment, together with the dependencies and the
data schema. It also contains a link to the zipped source code on GitHub, so that others
can easily download my code.

Reproducibility

Suppose that another researcher wants to reproduce my experiment. This is much
simpler than if the workbench was not used. Since I have published my experiment in
the workbench, another researcher can easily download and access the correct version
of my source code, review the documentation, see which packages I have used and
see my data schema. Because of the boilerplate code, my source code organization is
predictable and another researcher does not have to spend long hours looking which
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file does what, since the file organization is well-documented and chances are they use
the same boilerplate code as me.

Furthermore, even though I cannot send the other researcher my data directly, be-
cause of data protection concerns, they can use the data schema to verify if their data
is valid for my experiment. Using the available tooling, researchers can easily verify
if their data adheres to my data schema and can know how to change their own data
set. Also, since I have defined all the dependencies of my experiment, they have no
trouble running my experiment. With a single command, the researcher reproducing
my work also reproduces the environment in which I did this work, with the same de-
pendencies present and with a single command the researcher verifies if everything is
set-up correctly, by running all the tests present in the experiment, so they can get to
work quickly.
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Chapter 5

Implementation

This chapter describes the implementation phase of the MOOC workbench, how the
requirements were translated into workbench features and the workbench system ar-
chitecture. Also, this chapter answers the research question: ‘How can the designed
workflow be implemented with modern day web engineering practices?’.

5.1 Web engineering

Modern web engineering approaches are often agile, meaning they work in short
sprints, value working code over documentation and strive to add value to the product.
However, since this project is done individually, properly applying an agile method is
difficult, since they are mainly meant for teams. To overcome this, the implementation
uses a modified/lightweight version of Scrum, with only the parts that make sense in
a single-person project, namely maintaining a project backlog, working in sprints and
planning and reviewing for the next sprints.

5.1.1 Design goals

The workbench is meant to augment the experiments of researchers with useful tools
and boilerplate code. One of the design goals of the workbench is that the technology
used to accomplish this, should be open technology already in use today, to prevent
reinventing the wheel with a subpar solution and to prevent lock-in into the workbench.
The latter is especially important: Researchers should not be tied to the workbench.
They should be able to move effortlessly to a workbench-less environment if they
wish and still be able to use all services that were provided by the workbench, albeit
manually.

Another important consideration is longevity. The used technologies in the work-
bench should be supported for at least a number of years to make sure that it does not
require a lot of maintenance and rewrites.

Furthermore, the key properties from section 4.5 should be taken into considera-
tion, namely: Lightweight, change behavior, promote literate programming, be flexible
and provide time for reflection and optimization, while at the same time accomplishing
the requirements from section 3.3.
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5.2 Architecture

To show the architecture of the workbench, [40] advises for complex systems to di-
vide the architectural descriptions into the following views: Context view, functional
view, information view, concurrency view, development view, deployment view and
operational view.

5.2.1 Context View

The context view is useful for understanding the relationships, dependencies and in-
teractions of the workbench and the environment in which it operates [40].

External entities

External entities are important to understand the context in which the workbench op-
erates. These can be systems, organizations or persons with which the workbench
operates [40]. I have identified the following external entities:

Researchers The main users of the workbench are the researchers. Based on the
user interviews with the researchers, they have a varying level of technical knowledge.
Researchers interact with the workbench to perform their data science experiments,
create and find packages from experiments, find and share package resources and pub-
lish their experiment.

GitHub Another important external entity that the workbench interacts with is
GitHub?. GitHub is a service for hosted git repositories. The workbench interacts
with GitHub to create new repositories for researchers and to push, commit and view
files. To interact with GitHub, the workbench makes use of the GitHub REST API
v32l,

Travis CI Travis CI?? is the continuous integration system with which the work-
bench interacts. This CI system is used for the experiments of researchers, to automat-
ically start builds when a researchers commits code and run the tests. The workbench
can retrieve the build status and the last build log. For interaction, the Travis CI API is
used.

Coveralls.io Coveralls> is used to give insight into the code coverage measure-
ments of experiments. The workbench interacts with Coveralls via HTTP post and
get requests and retrieves the code coverage percentages. Coveralls is dependent upon
Travis CI, as Travis performs the actual code coverage measurements, since that is
where the tests are run, and submits the report to Coveralls.

PyPi The workbench interacts with PyPi** to retrieve the latest version of external
packages. PyPi is responsible for providing version updates to the workbench.

Cookiecutter template creators The workbench is dependent upon Cookiecutter
templates that are hosted externally in GitHub and are used for initialization of experi-
ments. Anyone can create these templates, but only workbench administrators can add

2Onttps://github.com
2Ihttps://developer.github.com/v3/
22https://travis-ci.org
Zhttps://coveralls.io
24https://pypi.python.org/pypi
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Figure 5.1: Informal context view diagram showing the external entities of the work-
bench. Researchers are the main users of the workbench, Cookiecutter templates are
used for experiment initialization and PyPi, Travis CI, GitHub and Coveralls are ex-
ternal services used by the workbench.
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them to the workbench. If the workbench cannot access these templates, for example
if they are made private or GitHub is down, researchers will be unable to create new
experiments with those templates.

The workbench does not have any external interfaces. See figure 5.1 for a diagram
of the context view.

5.2.2 Functional View

The architecture of the workbench has several constraints due to the used framework.
For the workbench, I chose to use the Django framework. Django is a structured
Python web framework with a built-in Object Relational Mapping system that allows
for creating a database through Python. Another advantage is that [ am already familiar
with Django and Python. Django has a strict system for dividing code. A Django
website is divided into a number of apps. Each app provides a single set of cohesive
functionality that should be usable on its own. Specifically, a Django app consists of
a description of the database models, the view functions, long-running tasks using the
Python asynchronous distributed task queue Celery>>, util and helper functions, forms,
urls and mixins, if applicable.

Next, the functionality of the most important apps will be discussed. The other
Django apps can be found in appendix D.2.1. To read more about the used technologies
in the workbench, see appendix D.1.

Cookiecutter manager

The Cookiecutter manager manages the Cookiecutter templates and functionality to
provide the researchers with boilerplate code. Using this app, it is possible to define a

Zhttp://www.celeryproject.org/
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Cookiecutter template. The library Cookiecutter?® is used to create project templates
and initialize them with pre-defined variables.

The templates can either be used for an experiment or a package. The work-
bench contains by default four Cookiecutter templates: one for a Python experiment 2’
(forked), one for an R experiment 28 (new), one for a Python package 2 (forked) and
one for an R package 3° (forked). These templates are hosted in GitHub repositories
and some of them are based on existing templates.

For example, the Python data science template used in the workbench is forked
from the Driven Data data science template®'. This template was specifically designed
for data science. The steps earlier presented in this thesis, with regards to data gath-
ering, data filtering and more, matched quite well with the Driven Data data science
template. To prevent confusion, the naming was synchronized between the steps in
the workbench and the steps in the data science template by renaming the steps in the
workbench.

The forked version of the Python data science template was expanded with the
schema step, the step in which researchers create their data schema. Other changes
included small changes to the Makefile with the addition of documentation and config-
uration changes in the documentation generation, namely to include the autodocument
and coverage extensions.

This set-up of using Cookiecutter templates allows for easy extension in the future
with other templates. Suppose that the department becomes unhappy with the current
data science templates. They can then very easily set-up a new GitHub repository,
push a new template and add this into the workbench with very minimal effort. To
add a template to the workbench, the workbench needs to know the location of the
documentation folder and the experiment steps have to be mapped to the locations in
the new template, both very easy and trivial tasks possible in the admin section of the
workbench. They then supply the GitHub URL of the new Cookiecutter template and
are done. Then, researchers can select this new template during the creation of their
experiment.

Dataschema manager

The Dataschema manager is responsible for the JSON table schemas used in exper-
iments. The functionality of this app is to manage the data schemas created by re-
searchers.

JsonTableSchema is one of the few libraries that seem to satisfy the requirements of
the workbench. JsonTableSchema is a standard for describing a CSV table in the JSON
format3?. This is a standard created by Frictionless data, which is supported by Google
and the Alfred P. Sloan Foundation. The advantage of using JsonTableSchema is that a
single standard is used for specifically tabular data, with extensive tooling available for

26https://cookiecutter.readthedocs.io/en/latest/

2T https://github.com/MOOCworkbench/cookiecutter-data-science
Z8ttps://github.com/MOOCworkbench/cookiecutter-r-datascience
https://github.com/MOOCworkbench/cookiecutter-pipproject
3Onttps://github.com/MOOCworkbench/cookiecutter-r-package

31 https://drivendata.github.io/cookiecutter-data-science/
32http://rictionlessdata.io/guides/json-table-schema/
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a large number of programming language and even tools, such as Python, JavaScript
and pandas. The disadvantage is that the tooling provided for the JsonTableSchema
is in the early development stages and that the standard is still very new. During this
sprint, the tooling still was in the alpha phase of development and does not currently
support an R version, but this is planned for the future. Nevertheless, I have found it
usable and found the advantages outweigh the current disadvantages, especially since
the development of these tools proceeds very quickly.

The Dataschema manager app uses a third-party library called tableschema-py that
translates and interprets pushed JSON schemas by researchers. If a researcher pushes
a JsonTableSchema in their experiment, this manager parses that file and converts it to
a user-friendly front-end view in the workbench. In this view, researchers can easily
edit their data schema and make sure that it is correct. Changes made to the data
schema are then converted to a new schema and committed and pushed to the GitHub
repository of the experiment.

Docs manager

The Docs manager is used for documentation management for experiments and pack-
ages. The main feature of the Docs manager is to automatically generate the Sphinx
documentation for Python projects and to publish this documentation to GitHub. Nor-
mally, publishing documentation to GitHub is a labor-intensive task, which requires
the set up of a separate empty branch, build the documentation, move the generated
HTML files to this branch and commit the changes. The workbench automates this
work and requires zero effort on the user side to publish the documentation. Sphinx, a
Python tool to generate documentation, contains a coverage module that automatically
checks for functions and classes not documented yet. The workbench can read the
results of this coverage check and uses the results in the quality manager, for example
suggest the user to write more documentation.

Experiments manager

The experiments manager is the most important Django app of the workbench and
contains the views and tasks for experiment management, such as experiment creation.

Experiment creation steps See the state diagram 5.2 for a visual overview. When
a researcher creates an experiment (1 in the figure), they first connect with GitHub.
Once that process is complete and the workbench is authorized to create experiments,
they arrive at the experiment creation page and can enter an experiment title and a
project description (2). They can also choose which data science template they want to
use for their experiment. By default they can choose between a Python and an R data
science template. Once they have chosen the template, the experiment is created by a
worker (3). This means a new GitHub repository is initialized with the boilerplate code
for their chosen language. During this process status updates are sent to the researcher.
After experiment creation, the workbench redirects them to the page where they can
select the experiment steps (4) and once complete to the get started page (5), with steps
on how to get to work on their experiment.

Experiment detail index On the experiment detail page, researchers can track the
progress of their experiment. On this page, they see the experiment steps they have

37



5.2 Architecture Implementation

38

Figure 5.2: State diagram of creating an experiment
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selected. Each step maps to a folder in the experiment. For example, the data step
is located in the folder src/data in the experiment. The same holds for the features,
modelling and visualization steps. In the file list on the experiment detail page, for
each file they see the static code analysis results and the percentage of code covered.

Git manager

The Git manager is responsible for handling git operations within experiments, for
example cloning a repository and pulling and pushing changes when many files are
changed. It uses the library GitPython to help with common git functions. The Git-
Manager also contains the LanguageHelper classes. These classes enable support for
multiple programming languages within experiments, by providing an abstraction for
common experiment functions, such as installing a dependency, running static code
analysis and generating documentation. The LanguageHelper implements these func-
tions for Python and R. Each experiment has their own LanguageHelper, containing a
set of default functions defined by the interface, so that the other apps do not have to
worry about language-specific functionality. For more on how multiple programming
languages are supported, see section D.2.1.

Marketplace

The Marketplace app in Django helps with package sharing and package creation. The
workbench has two types of packages: External and internal packages.

External packages are meant as information resources for the researchers, for ex-
ample pandas or numpy. The point of adding such a package to the workbench is
that the workbench automatically tracks new versions of the package from PyPi and
that researchers can share information about the package in the workbench. Also,
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researchers can share Package resources with each other. On the detail page of an ex-
ternal package, they can create a new resource. This is a useful information sharing
tool. For example, they can use Package resources to share information on how to use
a package, how to use some new functions of a package and more.

Internal packages are meant for code to be shared with other researchers. They can
be created as a stand-alone, empty package, where-in a researcher can add whatever
they want or they can be created in the context of an experiment step. In the context
of an experiment step, when the researcher has completed a step, the workbench gives
them the option to create a package. If they choose to do this, the workbench auto-
matically extracts and filters the code from this step and creates a new package from
it. This means the user has to do very little work with regards to boilerplate and actual
knowledge of creating a package.

The git history of the extracted files of the experiment step are kept and transferred
to the package repository, which is useful for the original author, as they can still go
back to earlier versions of the code, as well as for others to try and understand the
reasoning behind changes. After creating a package, the researcher is expected to
perform a number of tasks before they publish the package. Only after publishing the
package is it visible for others and can it be installed. The tasks to be performed consist
of writing a guide on getting started with the package, ensure that all the dependencies
are defined and by making sure the package works or optimize the code. See figure
5.5 for a walkthrough of publishing a package.

For R, publishing is not required. R has the ability to install packages in the right
format directly from GitHub, so a special server is not necessary. The workbench
generates a special DESCRIPTION file which is required before a package can be
installed.

On the package detail page, the researcher has the ability to add a new package
version. After they have made some changes, they are expected to create a new ver-
sion of their package. This entails entering a new version number and a changelog.
Once they save their new package version, the workbench for both Python and R au-
tomatically updates the required files. Upon creating a new version, the workbench
creates a GitHub release and a git tag, so that the new version is not only published
within the workbench, but also on their GitHub repository, which prevents workbench
lock-in.

Quality manager

The Quality manager is responsible for the dashboard, which shows the status of vari-
ous aspects in the experiment.

The workbench performs the following measurements. Each measurements im-
plements an interface of three methods: init, measure and save_and_get_results. The
second one is to perform the actual measurement and the third one is to save the result
to the database.

CI Measurement This measurement checks to see if a Continuous Integration tool
is used for the experiment and if researchers pay at least some attention to the build
results. This measurement checks if Travis is enabled for the experiment and if so,
it retrieves the last build status and saves it. If at least in the last five measurements
a build succeeded, the workbench considers this as the researcher paying attention to
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CI and it returns a High result. If they have all failed, we make the assumption the
user hasn’t really paid attention to the builds and it is time to do that, so we return the
Medium result to notify the researcher of this. Else, if Travis is disabled, we return
Low.

Docs Measurement The Docs measurement checks to see if automatic documen-
tation generation is enabled and checks how many functions and classes are covered.
First, the workbench checks if documentation is enabled. If that is the case, a cover-
age check is performed. This requires the re-generation of the documentation with the
coverage check. The SphinxHelper takes care of the underlying details and returns, if
successful, the amount of uncovered functions and classes. A High result is returned if
both are 0, so if there are no undocumented functions and classes. If there are less then
10, the measurement returns Medium, else Low. The workbench also returns Low if
automatic documentation generation is disabled. The Docs Measurement is only ap-
plicable to Python, not to R, as that does not have a suitable automatic documentation
generation tool in the workbench.

Pylint Measurement The goal of the Pylint measurement is to ensure that re-
searchers write bug-free code that follows coding conventions. The Pylint measure-
ment works by reviewing the results from the latest static code analysis. Only if a
scan is successfully completed, this measurement returns a result. If errors are found
during static code analysis, a Low result is returned by this measurement. If there are
warnings, but no errors, a Medium result is returned. If only other issues exist, less
than 30, a High result is returned.

Requirements Measurement The goal of the Requirements measurement is to
ensure that researchers have defined all their dependencies for their experiment, which
ensures that other researchers can easily run their experiments. To determine whether
the researcher has defined all the requirements, the workbench uses the Continuous
Integration tool by retrieving and scanning the last log. If the log contains an Im-
portError or a ModuleNotFoundError, this most likely means that some package is
used that is not defined in the dependency list. If this is the case, this measurement
returns a Low result, else High. This measurement works for both Python and R.

Test Measurement The goal of the Test measurement is to ensure that researchers
achieve high code coverage for their experiments. For the Test Measurement, the work-
bench retrieves the code coverage measurement from Coveralls. If the code coverage
is lower than 50 percent, this measurement returns a Low result. If it is lower than 80
percent, a Medium result is given, else a High result is returned. If code coverage is
disabled in its entirety, a Low result is returned.

VCS Measurement The goal of the Version Control System measurement is to
improve the amount of commits of code by a researcher using a version control sys-
tem. In this case, the workbench uses GitHub webhooks to store commits of the re-
searcher. This measurement retrieves the commits for the researcher. If a researcher
commits twice a day for the last three days, this measurement return a High result. If a
researcher commits less than twice a day, this measurement returns a Medium result.

5.2.3 Information View

The information view describes "how the system stores, manipulates, manages and
distributes information" [40].
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Information storage

The information the workbench stores is contained in a relational database, specifically
SQLite. SQLite fits the requirements of the workbench and has the advantage of being
zero-configuration, severless and is contained in a single file. It should be noted that
the Git manager sometimes stores a GitHub token on the file system. This is required
so the workbench can perform push and pull operations for a large amount of files
and folders. This token is stored in the .gi#/ folder in the remote-url variable of the
experiment at hand. System actions are written to the log files. Which log files the
workbench uses and which log levels are written to these files can be reviewed in the
file MOOCworkbench/settings.py.

Information management

To manage and manipulate the information present in the workbench, the workbench
uses an ORM system. ORM is an Object Relational Mapping, as the name implies it
maps objects to relational databases. The workbench uses the default Django ORM.
No manual SQL is written to prevent errors and security issues. Models are stored in
each Django app in the file models.py. When a model is changed, the Django ORM is
used to generate SQL and execute the SQL statements to reflect these model changes
in the database.

Information quality

To maintain the quality and validity of the information present in the database, transac-
tions are used when multiple objects are dependent upon each other, whenever possi-
ble. Also, during experiment creation, if an experiment cannot be initialized, the entire
operation is rolled-back. The experiment database object is deleted. By overriding the
experiment model delete function, the workbench also removes automatically all the
attached models.

5.2.4 Concurrency View

The workbench contains some concurrency. For some tasks, the workbench needs a
copy of the experiment git repository present on the local file system. This is required
for tasks such as generating documentation and performing static code analysis. It
is important that these tasks do not interfere with each other. This concurrency is
removed in its entirety wherever possible, by performing tasks sequentially. For ex-
ample, the tasks that run when a git push via the webhook is received, are performed
sequentially, which does have the downside of taking longer. However, that does not
completely exclude concurrency, since the researcher is given the option to manually
refresh the data or since the edge case that multiple webhooks might be delivered at
once for the same repository. Researchers could start that task at the same time as
the webhook. To prevent concurrency issues completely, the component responsible
for providing the local copy of the git repository provides each task with their own
local copy. This means that multiple copies of the same git repository can exist on
the file system. To make this possible, a random key is generated that is used as the
folder name in which the git repository is cloned. The component requesting the local
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copy receives the file path to that git repo, with the random folder name. This prevents
interference between tasks.

5.2.5 Development View

The Development view is concerned with the architecture of the software development
process, such as testing, the tools used and module and codeline organization [40].

With regards to codeline organization, the Django defaults are used and followed.
For how a Django project is built, see the Django docs*3.

For testing, the Mock framework is used where appropriate. Sometimes, access is
needed to GitHub and other APIs which require a valid token. It is possible to either
locally place the token in an .env file in the workbench directory or use the build server
to run the tests. Travis CI contains an environment variable GITHUB_TOKEN with a
valid GitHub token that can be used for testing interactions with the GitHub and other
APIs.

For day to day development, GitHub is used. Large features or refactoring work
happens on its own branch. In general, it holds that the master branch always contains
a shipping version of the workbench. Other tools that are used during development
are Travis CI to provide Continuous integration functionality, since running the entire
test suites takes about five minutes, Coveralls for code coverage measurements and re-
quires.io to monitor how up to date the project dependencies are and review if security
issues exist in the used dependencies. Code coverage is currently at 81 percent and fu-
ture commits are expected not to reduce this percentage, as advised as a best practice
by [17].

5.2.6 Deployment View

The deployment view is concerned with the environment in which the system will run
and what is required to run the system [40].

Runtime platform

The workbench can be deployed directly on a operating system, in which case the
workbench is recommended to run on Ubuntu 16.04 LTS with Python 3.5/3.6. It is
also possible to use Docker for deployment. The workbench repository contains a
docker-compose and Dockerfile to automatically configure the Docker instances. Us-
ing Docker is the recommended way to run the workbench. For specific deployment
instructions, see the workbench manual®*.

5.2.7 Operational View

The operational view is concerned with how the system will operate, administered and
supported while running in production [40].

At least one user is expected to be the administrator of the system. In the admin-
istration section of the workbench, reachable via /admin, the following changes can

3Bhttps://docs.djangoproject.com/en/1.11/intro/tutorial01/#creating-a-project
3 https://moocworkbench.github.io/MOOCworkbench/deployment.html
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be made: Change the experiment steps (name, description, add and remove steps),
add, change and remove Cookiecutter templates, manage default texts of the work-
bench and modify the text of the quality checks. Please note that the title of the quality
checks should not be modified.

Upgrading the workbench is simple and consists of replacing the Docker contain-
ers with the new version and migrating the database.

For back-ups, it is necessary to back-up the file db.sqlite3 regularly. That is the
only file that needs to be backed-up, the rest of in the workbench folder can be ignored.

During its use, the workbench logs to several log files in its directory. These can
be used to check the status of the workbench and see what is going wrong.

5.3 Functionality

This section outlines the main features of the workbench, why these features were
implemented the way they were implemented and the design choices made.

5.3.1 Experiment management

Researchers can create and manage their MOOC experiments in the workbench.

The experiment detail page is where researchers track their progress of their exper-
iments. Work in an experiment always takes place within the context of an experiment
step. The experiment detail page has a section for all the steps, with the active step
being expanded and showing information for that step.

Adding this extra context is useful for a number of reasons. First, the workbench
can show more accurate information. For example, each experiment step is tied to a
folder in the boilerplate code. In the experiment step, the workbench shows the files
for that step, which are the files the researcher is currently working on. Also, the
workbench links directly to the correct documentation written by the researcher in that
step, so they can track what they have written so far. The workbench then only scans
those files for static code analysis and documentation, which makes it more efficient
and accurate. Furthermore, the workbench can recommend specific useful packages
from the packages section in the workbench per experiment step.

Researchers can click on a file in the experiment detail page and view the contents
of that file. If a static code analysis scan was completed, they immediately see the
results of that scan embedded in this file.

Once a researcher has completed a step, which means they have written all the code
necessary to implement that step of their experiment, they click the button Complete
and go to next step. The workbench shows a report score card for the aspects Docu-
mentation, Testing, Continuous Integration, Code coverage, Static code analysis and
Dependencies. When researchers click Continue, the workbench shows the option to
create a package from the code in this experiment step, to share with other researchers.

The experiment detail page consists of several tabs with specific functionality that
will be outlined now.

Dashboard On the Dashboard, researchers can review the results of the aspects
that the workbench checks for their experiment and take action to improve, if neces-
sary. On the Dashboard, researchers can see the following aspects:
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Figure 5.3: Experiment detail page
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e Static code analysis The results from the most recent static code analysis scan
of their code.

e Dependencies Whether or not all the dependencies are defined within their ex-
periment.

e Documentation Track the amount of uncovered functions and classes in their
code and the status of automatic documentation generation.

e Version control Track the amount they have committed their code.

e Continuous integration See the status of the continuous integration tool, for
example if builds are passing and the last log of a build.

e Code coverage The status of the code coverage tool and an indication of the
amount of code covered by tests.

Dependencies On the Dependencies tab, researchers can manage the dependencies
of their experiment. Here they can define other external and internal packages that they
used in their experiment and change existing dependencies. Upon saving the changes,
the workbench starts a task to write the changes to GitHub.

Schema On the Schema tab, researchers can manage the data schema for their ex-
periment. The data schema describes the schema of the data used in the experiment, so
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Figure 5.4: Creating an experiment in the workbench (shortened)
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for each column in the data several properties are defined, such as the data type, data
format, a description of the data and more. Researchers can create their schema via
two ways: They can either define it manually here in the workbench or they can use
the boilerplate code to generate a data schema from their data. If they commit that data
schema, the workbench parses the file and shows it in the front-end in an editable for-
mat. If a researcher adds manually all the fields, the workbench automatically converts
the schema and commits it to their GitHub repository.

5.3.2 Boilerplate code

The boilerplate code serves multiple purposes and sits at the core of the workbench.
The boilerplate code:

o sets a standard for writing and reading data with a default directory and read/write
methods;

e defines an entry-point for the code;

e creates a test scaffolding;

e creates documentation scaffolding;

e defines a way for defining dependencies;

e creates config files for CI and code coverage systems.

By default, four Cookiecutter templates are present. One for Python data science,
one for R data science, one for a Python package and one for an R package.

Python data science template The main template is the Python data science tem-
plate. For this template, the workbench builds upon existing work. The Driven data
data science template was forked and modified for this purpose.

The following boilerplate code was already present in the template and are consid-
ered advantages: src/data The src/data folder contains a file make_dataset.py which
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uses a library named Click®. Click is useful because it is possible to easily add
command-line arguments to Python functions. For example, for the make_dataset
function in this file two command-line arguments have to be set: input_filepath and
output_filepath. This means you can call this script as follows: python3 make_dataschema.py
input_filepath=/path/to/input/data output_filepath=/output/file instead of hardcoding

the used files in the code directly.

Makefile The Cookiecutter data science template contains a Makefile to automate
common tasks, such as setting up an experiment environment, which entails creating a
virtual environment and installing the dependencies, running the tests and more.

Default sane folders The boilerplate code contains default sane folders, such as a
src/ folder, but also folders for output such as data/ and models/.

The following additions were made to the existing data science template: Test
scaffolding To improve reproducibility of experiments, researchers need to test. As
such, the workbench adds test scaffolding to the data science template. By default,
five tests are provided that call the existing functions and assert whether they return
True. Using these tests, researchers can see how easy it is to write a simple test. I also
mended the Makefile to include a test_run command so that researchers can easily run
all the tests.

CI and Coveralls configuration The new data science template provides zero-
configuration Travis and Coveralls set-up. This means each repository created by the
workbench is ready to be used by Travis. For Travis, the build configuration automat-
ically runs the tests and submits them to Coveralls for code coverage results.

Documentation improvements While the original template already contained a
docs/ folder and a Sphinx configuration, the workbench improves this configuration
through autodoc, which takes Python docstrings that researchers have written in the
source files and automatically places them in neatly created HTML files. The work-
bench then publishes those HTML files automatically on GitHub. One issue arose
with Click, as Click uses decorators in Python, which Sphinx does not handle properly.
Luckily, the library sphinx-click solves this problem.

Data schema The workbench also adds a data schema and data schema tooling.
Researchers can run a Python script in the same manner like the make_dataset file,
providing the file path to their dataset, after which the make_schema file automatically
creates the JSON table schema file. There is one limitation with this tooling. It is in
the early stages. During development this tooling still was in the alpha phase. One of
the issues that arose, was that submitting large files for creating a data schema takes
an extremely long time. Clear instructions are added that instruct researchers to slice
their data sets to maximum of 100 lines.

Packages

The Packages section in the workbench allows researchers to both create packages
from their own code as well as add external packages.

Creating a new package For creating a package, I want researchers to consider
at each experiment step sharing code with others, so it should be integrated into the
workflow and feel natural to sharing code.

3Shttp://click.pocoo.org/5/
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Figure 5.5: Walkthrough of publishing a package
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Package: mynewdatapackage

Publishing package

To accomplish this, researchers are invited to share their code each time they com-
plete an experiment step. Once this process is complete, researchers are redirected to
the Internal package dashboard. Here they can change aspects of their package, such
as a description and the title, and enable some workbench services for their packages,
such as automatic documentation generation and continuous integration.

Package detail page Just like the experiment detail page, a detail page exists for a
package. This page consists of the following tabs and elements.

Index The index of the package detail page shows the description of the package,
some package information and the README file of the GitHub repository, which
offers a starting point for this package.

Resources The resources tab is used for viewing Package resources. A Package
resource is a piece of information about a package. For example, it can be a guide on
getting started with the package, a URL to a useful blog post about the package and
more. Package resources can be added by anyone and are written using Markdown.

Versions On the versions tab, researchers can view the version history of this pack-
age and the changelog for each version. For the owner of the internal package, they
can publish a new version on this page, by entering a new version number and the
changelog.

Dependencies On the dependencies tab, researchers can add the packages that
their package depends on.

Dashboard On the dashboard tab, researchers can manage their package settings
and publish their package.

Publishing a package Before a package is visible on the workbench and it can be
installed by others, researchers have to publish their experiment package. They can do
this on the Dashboard by clicking Publish My Package. See figure 5.5 for the steps in
publishing a package. The workbench then offers a final checklist. Before publishing
a package, researchers are encouraged to write a getting started guide as a Package
resource, to make sure that the package works and to define all the dependencies of
their package. Once they click Publish, other researchers can visit the Package detail
page and install the package from the PyPi server, if it is a Python package.
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Figure 5.6: Walkthrough of creating a new package
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Finding and installing packages

Researchers can find and install packages on the workbench in the Packages section.
On the index page, they see new internal and external packages recently published.
If they want to install a package in their own experiment, researchers visit a package
detail page and click Package Options / Install package. Researchers can choose from
a drop-down which experiment they want to install the package to. Once selected,
the workbench adds this package as a dependency to their project and starts a task to
update the GitHub repository with the changes. They then pull the git changes and
update their experiment environment so that the package is installed.

Suggesting packages

On the experiment detail page, for each step researchers can view recommended pack-
ages. These recommendations are provided by researchers that have recommended
that package for that category. They can recommend a package on the package detail
page by clicking the Recommend button.

5.4 Requirements validation

This section outlines how the requirements were translated into functionality of the
workbench and why these functionalities meet the requirements set. Each subsection
is one of the requirements defined in Chapter 3.

5.4.1 should give insight into how reproducible each experiment is

e Experiment divided into steps, the steps of research this thesis earlier defined.

e Researchers can use the experiment page to track the progress with regards to
these steps.

e After completing a step, they are presented with a score card of how they did
during that step.

5.4.2 should give useful actions on how to improve reproducibility of an
experiment

e During their work, researchers can visit the Dashboard tab and see how they are
doing with regards to testing, committing and writing documentation.

e The dashboard gives actions and messages on how to improve these aspects.

5.4.3 should be a MOOC tool marketplace

e The workbench contains a Package section where researchers can add packages.

They can add external packages that they’ve commonly use in their experiments.

The workbench tracks PyPi versions of a package.

When the researchers complete a step and move on to the next, before they move
on they are invited to contribute that code in the form of an internal package.
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5.4.4 should facilitate dependency management

e The workbench facilities dependency management through a web interface where
researchers can enter which packages they have used and which version.

5.4.5 should facilitate version control

e The workbench facilitates version control through a graph on the Dashboard
page and through the action messages delivered by the workbench.

5.4.6 should facilitate writing documentation throughout the
experiment

e The workbench automatically enables document generation for Python projects.

e The workbench tracks documentation coverage and notifies the researcher through
action messages or the report score card if they have undocumented classes or
functions.

5.4.7 should make it easier to test and verify source code

e The workbench provides boilerplate code for testing.

5.4.8 should enable researchers to easily share and publish experiments

e The workbench contains the packages functionality and allows for publication
of an experiment in the workbench.

5.4.9 should support the different phases of MOOC research

e An experiment is divided into a number of steps, defined in an earlier chapter.

5.4.10 could facilitate the separation of the code from the data

e The workbench uses JSONTableSchema for researchers to easily define their
data schema used in the experiments.

5.5 Conclusion

This chapter has shown how the requirement from the previous chapter, together with
the key properties and experiment workflow, were translated into a functional work-
bench. This chapter has given an architectural description using the various views suit-
able for such a description and described the main functionalities of the workbench.
See appendix D.4 for a discussion on how the agile development process took place
with the iterations and evolutions involved.

The research question to be answered in this chapter is: ‘How can the designed
workflow be implemented with modern day web engineering practices?’. This chapter
answers this question by showing these modern day web engineering practices: A
version control system was used, together with iterative programming, a continuous
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integration tool for continuous insight into code quality, a modern web framework
with reusing a lot of existing tools, together with a set-up that separates long-running
tasks from the web server in their own worker, making the workbench scalable and
user-friendly. The result of this chapter is the implemented workbench.
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Chapter 6

Evaluation

This chapter will evaluate the design and implementation of the MOOC workbench.
This chapter answers the research question ‘Having implemented the design, does the
implemented solution achieve its requirements defined by RQ17’.

6.1 User testing

To validate if the workbench meets the requirements set in the earlier chapters, a user
test is performed. The three PhD researchers working on large-scale learning analyt-
ics from the user interviews in Chapter 3 together with one visiting researcher from
Estonia, use the system to perform a real-world data science task.

6.1.1 Goals

The goal of this user test is to determine the extent to which the goals and requirements
from the earlier chapter are met. I consider the goals and requirements of the work-
bench to be met when researchers can accomplish their own research goals using the
workbench, while using the functionalities outlined in the previous section, without
too much interference or change in their workflow, and when the artefacts they created
show that they have used these services. For example, are they writing tests, defining
data schemas and defining dependencies. I also use feedback given by the researchers
to find out what they like and do not like about the system.

6.1.2 Experimental design

The participants in the user test performed a data science task from Kaggle.com. Kag-
gle is a well-known, large and popular site where data science challenges are posted. It
features a wide variety of real-world data science problems, each with a data set and an
explanation of possible research goals. Since the goal of the evaluation is to simulate
real-world data science tasks in this user test, Kaggle is very suitable.

Beforehand, two different data science tasks were selected. I have selected two
data science tasks so that the tasks can be evenly divided among the group. During the
first session, two researchers work on one dataset and two on the other. They are asked
to create a package with their code. During the second session, the two data sets are
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swapped so that the code sharing feature of the workbench can be tested. This allows
for evaluating the effectiveness with and without sharing code.

These two data science tasks were saved and compressed in a ZIP file, contain-
ing the dataset and the assignment in txt format. Specifically, the following two data
science tasks were chosen:

e Task A: Crowdedness at the Campus Gym?>® with the goal to predict how crowded
the gym will be in the future and figure out the important features that determine
crowdedness.

e Task B: IMDB 5000 Movie Data set’’ with the goal to predict the greatness of
a movie without relying on critics and to find if a correlation exists between the
number of human faces in the movie poster with the movie rating

I have selected these data sets on their perceived difficulty. The sessions are rela-
tively short so I needed a data set that can be understood easily and one that is not
too complicated, as well as selecting datasets and goals that are similar, for example
two classification problems, as to improve the chance that code can be shared among
researchers. See figure 6.1 for an overview of the experimental design of this user test.

Extracting the data from the session was done using two ways: At the end of
each session, a debriefing group interview was taken and I gathered specific logs and
data from the workbench. Each session was scheduled for two hours from 13:00 until
15:00 hours. The next two sections describe in detail how the two sessions progressed
and what happened during them, such as how the sessions were set-up exactly, which
activities were performed and the goals for each session.

First session

For the first session, the four researchers were in the same room together with the
writer of this thesis.

Initially, a short presentation was given, which can be reviewed in appendix B.
This presentation consists of 11 slides and took less than 10 minutes. The presentation
explained a number of things: It explains what the workbench is, so that the researchers
know what to expect when they use the workbench.

It also explains the goals that of the evaluation session today, namely them per-
forming a real-world data science task using the workbench with the purpose of eval-
uating the workbench and testing the code sharing feature of the workbench. For code
sharing, the researchers are asked to create at least one package from one of their data
science task experiment steps. For example, create a package from the feature extrac-
tion part of their experiment, or the modelling part of their experiment, and publish
this in the workbench.

Finally, the presentation contains a workbench introduction, introducing the exper-
iment steps, the detail page and the dashboard, which are the most important aspects
of the workbench that also might be the most overwhelming. The introduction was
intentionally kept short without introducing all the features, because the workbench

3onttps://www.kaggle.com/nsrose7224/crowdedness-at-the-campus-gym
3https://www.kaggle.com/deepmatrix/imdb-5000-movie-dataset
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Figure 6.1: An overview of the experimental design of this user test.
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already has a tour of its features and I wanted to know how usable the workbench is to
new users. Explaining all the features in detail influences these results.

After this short presentation, the researchers were sent their data science task via
Slack Appendix with a README fileC. Two researchers received task A and two
received task B. They then created an account on the workbench and started using
it like they would in the real world, namely creating a new experiment, using the
boilerplate code to work on their experiment and use the features of the workbench.

Because of the small setting in which this test took place, all the researchers were
asked to use Python for their experiments, even though the system also supports R.
This ensures that for the second session code can be shared among researchers.

Second session

The goal of the second session is to test the code sharing feature of the workbench,
using it within their experiment and accessing package documentation. The two data
science tasks are swapped between researchers and they are asked to complete this
new task. The main difference between this session and the previous one is that this
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Figure 6.2: A timeline overview for the first session.
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time they are asked to use at least one package from another researcher in their own
experiment. This way the researchers experience using code from someone else within
the workbench and can evaluate that part effectively. Also, this set-up with two tasks
ensures that researchers can compare whether code sharing helped them achieve their
data science task.

For the second session, the set-up is the same as the first session, except now no
presentation is given.

During the experiment

During the experiment, the researchers were asked not to talk to each other about the
experiment. Instead, a dedicated communications channel was set up on Slack*® on
which the researchers could ask questions regarding the workbench. I have made this
decision so that an accurate log exists of the reaction of the researchers when they first
use the workbench. This way it is immediately clear what they did not understand and
with which aspects they struggled. It eliminates the need to make notes during the
sessions, notes that could be incomplete or inaccurate.

In the results section of this chapter, these chat logs are analyzed, to show what
questions they had and which aspects of the workbench they discussed and how. The
chat logs and their timestamps will be compared with the timestamped workbench
logs, so that I can see which actions lead to which questions.

Evaluation

The workbench is evaluated using semi-structured interviews with the researchers, us-
ing the log files and using the artifacts created by the researchers.

Interview After all the researchers of the user test have finished their data science
experiment and published at least one package, a short group interview is performed
in the room with the researchers. The purpose of this interview is to determine how
disruptive they have found the workbench to their normal workflow, to understand if

3Bhttps://moocworkbenchusertest.slack.com
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and how they use the services provided by the workbench and to understand whether
they find the code sharing feature of the workbench an improvement over how they
normally share code.

This interview consists of the following questions:

What were your experiences getting started with the workbench?

During your work, did you review the actions given on the Dashboard in the
workbench, and if so, what did you think of these actions? (if unclear: Actions
regarding CI integration, VCS use, documentation and static code analysis)

Did you make some changes in your experiments based on these actions? If so,
what did you change?

session 1 only: What were your experiences when creating a package from your
own experiment?

session 2 only: What were your experiences when using a package in your ex-
periment from another researcher? (Ask if not mentioned: Were all the depen-
dencies present, was it clear how to use and install the package?)

Did you use the Packages section in the workbench for finding resources or other
external packages?

What were your experiences when using the Packages section in the workbench?

Did you use any of the provided services of the workbench, such as defining
dependencies and a data schema, and if so, how did you use them?

What were your experiences with these services provided by the workbench?
What were your experiences with publishing an experiment in the workbench?

Compared to how you normally work, how disruptive do you find the workbench
to your workflow?

What aspect or aspects of the workbench did you find most disruptive to your
workflow?

Do you have any other comments or feedback on the workbench?

The same questions will be asked in both sessions, apart from the indicated ques-

tions.

Logs and database During the experiment, user logs are captured within the sys-
tem, outlining the system state and the user actions. Afterwards, the database used in
this experiment is copied and analyzed locally, so that I can determine to what extent
the features in the workbench were used. The logs are used to determine the following:

How much time did the researchers spend on each experiment step?

Did the time spent on each step vary between researchers (with the same dataset)?
Did the time spent on each step change when researchers used a package?

How long did it take for researchers after joining to git commit for the first time?
How much time did the researchers spend on the dashboard?

How often did they check the Dashboard with their experiment status?
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e When were they most likely to visit the dashboard?
e How long did it take from package creation to researchers publishing it?

e How long did it take from installing a package to committing code using that
package in their experiment?

e How long did it take for researchers after arriving at the schema step to commit-
ting a data schema?

e Did they use the workbench to define dependencies?
e Did they use the workbench to check and/or modify their data schema?

e Did they complete all the steps of their experiment, as they defined for their
experiment?

Artefacts | also take a look at the final artefacts produced by the researchers, in the
form of their GitHub repository and code, of both their experiments and their produced
packages, to see how they used the new boilerplate code and if, and to what extent,
they adopted new practices introduced by the workbench. Some questions that will
be answered here are for example: Did the researchers use the boilerplate code as
intended? and: How much changes did researchers make in their code and comments
between creating and publishing a package?

These three methods combined should give a complete picture to be able to deter-
mine if the requirements of the system were met or not.

6.1.3 Results

The first user test took place with four participants. For this test, version 1.0 rcl ¥
was used of the workbench, in conjunction with version 1.0 of the boilerplate code
template* for the data science part and the version 1.0 of the boilerplate code template
for a Python pip package *!. For an overview of how the user test was executed, see
figure 6.4.

First session

The first session started at 13:00 hours with all the participants in the same room.

Even though the participants were asked to ask questions using the Slack commu-
nications channel, this did not happen. The Slack channel is empty. This is likely due
to the nature of the set-up: They are all together in one room and this made it much
simpler to ask questions directly rather then type them. What might have also played
a role are the number of problems experienced while working.

All participants were not able to use the workbench to its full potential and had
trouble getting started. Two were unable to complete the data science task. Each
researcher opted to use all the experiment steps available in their experiment. This
means their research consists of the following experiment steps: Data, Schema, Fea-
ture, Modeling, Visualization. Researcher A ignored the steps and created a Jupyter

https://github.com/MOOCworkbench/MOOCworkbench/releases/tag/1.0-rc1
4Ohttps://github.com/MOOCworkbench/cookiecutter-data-science/releases/tag/1.0
4 https://github.com/MOOCworkbench/cookiecutter-pipproject/releases/tag/1.0
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Figure 6.4: The execution of the user test.
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notebook performing the data task completely at once. Afterwards they placed the
Python file in the correct experiment step folder of the boilerplate code. This user did
create a package. Researcher B performed the data science task, but did not complete
the task. They did go through all the experiment steps and created a package from
the Feature extraction step. Researcher C was unable to use the boilerplate code, due
to a technical issue, and did not start the data science task or commit any code. As
a result, they skipped the Data and Schema experiment step and started working on
the Feature step. Researcher D made it until the Schema step and did commit a data
schema. They tried to start the data science task, but never committed any code, due
to being unfamiliar with Python.

As a result of what happened in the first session, I decided to cancel the second
session with code sharing, as they would be unable to do that and no extra informa-
tion or feedback would have been gathered. As a result, the code sharing part of the
workbench was not evaluated.

Getting started with the workbench was difficult, as it requires some preliminary
software that was not present on the computers of the participants. Python 3 and
git were not present on most systems, for example. Once they installed and set-up
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this software, which took for researchers B and D 10 minutes and for C and A 30
minutes, there was a lack of understanding of the workbench. The presentation did
not mention this aspect, as the workbench itself contains the necessary commands to
set-up a suitable environment. Unfortunately, the researchers had a false start, as due
to a bug they were not automatically redirected to the GitHub sign-in page *>. Once
they signed up, they were able to create an experiment.

Most issues during the evaluation arose due to system differences and software
set-up issues. There were some issues getting Python packages like virtualenv en
dotenv working on the laptops of researchers, which impeded their ability set-up the
experiment environment. Eventually, three out of four got it working. These issues
were resolved within 20-30 minutes.

The main issue that arose during working on the experiment was that the work-
bench introduced too many new concepts for the researchers and they did not know
where to begin. The new concepts for them are the boilerplate code, specifically its
structure, as well as virtual environments, continuous integration, static code analysis,
defining dependencies and defining a data schema.

The first session ended at 15:00 hours.

Debriefing interview

The debriefing interview took place at the end of the first session. It was performed
with all the four researchers present as a group interview. The total interview time was
15 minutes. This interview was recorded.

Some of the questions were skipped due to the developments and difficulties of the
user test.

What were your experiences getting started with the workbench? The re-
searchers had issues getting started with their data science task using the workbench.
Researcher A notes:

Yeah, getting started was difficult. It took a long time.

They found the steps to get started on their experiment difficult and found the experi-
ment steps vague. Researcher B says:

I think more specific instructions would be helpful. (...) I have no idea
what the database schema is used for. So for some steps, like, briefly state
the purpose behind this step, which would be helpful I think.

There were some technical issues, either in the workbench or on their own laptop.
Researcher D:

1 literally lost track because I didn’t have anything necessary available on
my laptop. So, for me, it just failed.

During your work, did you review the actions given on the Dashboard in the
workbench, and if so, what did you think of these actions? (if unclear: Actions
regarding CI integration, VCS use, documentation and static code analysis) Two
researchers did not check the dashboard and had no feedback on the actions given

https://github.com/MOOCworkbench/MOOCworkbench/issues/79
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by the dashboard. Researcher A did review the dashboard and they found that the
dashboard provided too much information. Researcher C also checked the dashboard:

I noticed a lot of messages, but I did not got the point of these.

One researcher suggested that the dashboard should be visible at all times and that
they did not find it at the beginning of their experiment.

Did you make some changes in your experiments based on these actions? If
so, what did you change? The researchers did not make any changes based on the
actions given in the dashboard.

What were your experiences when creating a package from your own exper-
iment? Researcher B encountered a technical issue during the creation of a package
for the first time **. The second time it did work correctly.

Did you use any of the provided services of the workbench, such as defining
dependencies and a data schema, and if so, how did you use them? The researchers
used the provided services by the workbench only very limited, most likely because
they were focused on getting their experiment to work, so no answer was provided
here. Researcher B did like the way a data schema was created:

That part is good I think. It is clear.

What were your experiences with these services provided by the workbench?
As the researchers used the provided service only very limited, they were unable to
provide feedback with regard to their experiences for the services.

What were your experiences with publishing an experiment in the workbench?
The researchers did not have enough time to publish an experiment.

Compared to how you normally work, how disruptive do you find the work-
bench to your workflow? The researchers found the steps overall to fit to their ex-
periment workflow in general, but two participants found that during each experiment
step, they did not really know what to do and found insufficient explanation of what
was expected of them during each step. Researcher C notes:

I do not think there is enough explanation to each step.

Do you have any other comments or feedback on the workbench? Researcher
A notes that:

It was a lot of... we had to do a lot of stuff I did not understand, just
because we have to, and that is the best thing I can do to describe it.

Also:

...maybe I haven’t done a project big enough, to need something like this,
but I don’t understand why you can’t just use GitHub for all this. Like,
what does this offer what GitHub doesn’t?.

Researcher A also did not like that the workbench asked for access to their private
GitHub repositories.

Another point of feedback was that one researcher had encountered a bug with
creating a data schema, where it multiplied the fields** and they asked for the option

Bhttps://github.com/MOOCworkbench/MOOCworkbench/issues/81
#https://github.com/MOOCworkbench/MOOCworkbench/issues/80
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to re-order the fields. The introduction tour of the main features of the workbench that
researchers receive when they first sign-up, was skipped by at least one researcher.
Researcher A found that it contained too many details and clicked through without
reading all the information provided:

That [the initial tour, auth.] was so, that was really like, detailed and I
don’t know, there’s no context, I was just pressing Next.. next.. next to get
to the interface.

Results from Logs & database

The following are the results from the logs, the database and the created artefacts of
the researchers.

How much time did the researchers spend on each experiment step? After the
first session, it was clear that the experiment steps for their data science task might be
too broad to be applicable to this test. For example, they did not have to gather data.
Some did create a data schema and then they went to the Feature or the Modelling step
and did all the work at once. They did not do the final Visualisation step to visualise
their data.

Time it took for researchers after joining to git commit for the first time Only
researcher C did not commit any code or a data schema. Researcher A committed
code after 58 minutes. Researcher B committed their code in a little over 21 minutes.
Researcher C never made a git commit. Researcher D took 1 hour and 15 minutes
before a git commit was made.

Amount of time the researchers spent on the dashboard Researcher B never
visited the dashboard. Researcher A, C and D spent between 1 minute and 1 minute
and 45 seconds on the dashboard. On average, researchers spent 67 seconds on the
dashboard.

Amount of times the researchers checked the Dashboard with their experi-
ment status They did not check the dashboard often. Researcher A did this three
times, researcher C and D one time and the researcher B never.

When they were most likely to visit the dashboard Researchers visited the
dashboard either after just creating an experiment, looking around. No other pattern
emerges.

Amount of time it took from package creation to researchers publishing it
While the researchers did not publish a package, two researchers were able to create
a package. After completing their step, they were able to create the package and split
their code. They did not publish their packages.

Defined dependencies The researchers did not require any extra dependencies be-
yond the ones already present in the boilerplate code, so they did not use the workbench
to define any dependencies.

Checked and/or modified their data schema Two researchers used the work-
bench to add their data schema and add this to their experiment.

Completed all the steps of their experiment, as they defined for their exper-
iment set-up The researchers did not complete all the steps of their experiment as
defined.
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6.1.4 Improvements

The workbench itself could benefit from a number of improvements, based on feed-
back provided during the workbench:

Show what is optional

The researchers had problems getting started. These problems can be avoided, as they
are optional. The problematic steps are setting up a virtual environment, running the
initial tests and testing if the environment is set-up correctly. In order to ease the set-up
process, I have added some text is to show that these steps are optional®.

Unclear what to do during each step

Researchers provided feedback that often they did not know what to do during each
step and that the explanation in each step is not enough. Currently, in each experi-
ment step a one sentence explanation is provided of what the purpose is of this step.
Clearly, this sentence is not enough, as it does not describe accurately what it is the
researcher is expected to do. The text for the steps Schema and Modelling could be
improved. This text can easily be changed in the future, as it is an editable text in the
administration section of the workbench and is meant to be optimized and changed by
the workbench administrators. While not all descriptions were as clear as they could
be, some were. Why researchers then did not know what to do in most of the steps,
is unknown. Possible explanations can be that they were too overwhelmed and did
not get the grander picture or that they overlooked the text. To improve the situation
overall, a link in the step to the user documentation of this step is added*® so that the
researchers can take a step back and review the documentation.

Lightweight template

The boilerplate templates from Cookiecutter can take some time getting used to. For
example, the one used in the user test contains eighteen folders total. They do, how-
ever, offer several advantages. First, when everyone has the same experiment set-up,
this leads to more consistency and means that other researchers can easily understand
and use experiments created with this template. Also, the boilerplate code contains test
scaffolding to get started with testing, a README file, a dependencies file and doc-
umentation. For more on the Cookiecutter templates and all their advantages, please
review section 5.3.2. For researchers, it was difficult to use the provided boilerplate
code, most likely because they did not have time to review all the code and what the
purpose was of each part. This is understandable and might be solved through more
education. These templates are specifically designed by Driven Data for data science,
but it is a lot to learn. Sometimes, researchers want to perform a shorter experiment
without a heavy template. For this purpose, a lightweight template could be added
with the bare minimum to get started: just the step folders and some configuration
files, as opposed to the large amount of folders present in the current templates. This
reduces the number of packages that have to be installed and lessens the burden on the

Shttps://github.com/MOOCworkbench/MOOCworkbench/issues/82
4Ohttps://github.com/MOOCworkbench/MOOCworkbench/issues/83
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researcher, but it also means that researchers have more freedom in their experiment
set-up, which means less consistency between experiments and less reproducibility of
the experiment overall.

Dashboard not checked

During the experiment, the dashboard was not checked often. One researcher sug-
gested to always show the dashboard. Always showing the dashboard does not seem
like a good idea, as then researchers no longer see their experiment progress. Further-
more, on the experiment progress page, researchers can already view some important
information coming from the dashboard, namely the static code analysis results and
the code coverage percentage. In a future version, more work could be performed to
design a page that combines both more information from the dashboard together with
the experiment progress page. In this version, this is not feasible.

Dashboard provides too much information

One point of feedback is that the dashboard provides too much information. This
point of feedback cannot be addressed in this thesis, because information should not
be randomly removed and this feedback was only provided by one researcher, as such
this point is currently left untouched.

High first git commit time

The first participant was able to commit code in about 20 minutes. This seems like
a high amount time for new users to get started, considering the small data science
task. It should be noted that this value can be explained by the fact that the first step,
Data, was not needed for the participants, as they already had a ready to use dataset.
This meant they immediately turned to step two, creating a data schema, which took
some time figuring out. Decreasing this time should be made a priority. A high first
git commit time means researchers need a lot of time to get started. That might mean
the workbench runs more risk that researchers completely give up on it. To further
decrease this time, a lightweight data template can help.

Too many concepts

Another issue that emerged during the test is that there are a large amount of concepts
that the researchers have to know about, such as continuous integration, static code
analysis, how to define dependencies, the libraries used within the boilerplate code
such as Click and the data schema tooling. During the relative short test session this
can become a large impediment. More documentation is now provided that explains
why these concepts are useful and how to use these concepts and tools can be used.
At the beginning of the evaluation, a short presentation was given to introduce why
the workbench exists and what its main functionalities are. Some researchers did not
get the point of the workbench after the presentation and its use. It is difficult to explain
all the functionalities and the uses of the workbench in such a short session. The
evaluation would have benefited from a longer presentation, but this wasn’t possible
due to time constraints (with the 10-minute initial presentation, we barely finished
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on time). Also, the workbench itself could introduce these concepts better, as some
researchers skipped the introduction tutorial since it contained too many details. This
issue can best be fixed through separate user tutorials and sessions.

General technical issues

During the set-up, quite a few technical issues emerged, mostly present on the laptops
of of the participants. For one participant, some of the packages would not install due
to some unexplained reason. There was not enough time to troubleshoot these issues.
In order to prevent these kinds of issues for a future evaluation, I recommend to let the
participants ahead of time create and set up an experiment environment. Optionally,
a pre-experiment session could be set-up so that researchers have enough time to set
up an experiment environment with the right tools, but this does require a substantive
commitment from the participants that might not be available. This was not done here
because it was expected that the workbench and the provided boilerplate code was
well-tested, since it is based on an existing data science template, was easy to use
and that the workbench provided adequate instructions on how to use the boilerplate
code. As such, such a session was deemed unnecessary initially. I also assumed that
the participants were all familiar with and used Python 3 for their experiments, which
turned out not to be the case.

Small task

While the data task was suitable for this evaluation, as at least some were able to com-
plete it, the problem with this task is that the workbench is not designed for these
small experiments and does not work well for them. It works better for larger experi-
ments. For a small task, you might already be done after one git commit, which means
the workbench was never able to provide you with feedback on the dashboard. In the
real-world, researchers will work on experiments multiple days, during which they can
check the dashboard and do have the information available to improve their experiment
and workflow.

Gather more information about participants

This evaluation made some assumptions about the participants. They were expected
to be somewhat technical and familiar with one programming language and program-
ming version. During the test, it became clear that this was not to be the case for all
participants. That immediately resulted in problems for two of the participants, as the
evaluation hinged upon everyone using one programming language with the next day
sharing code with each other. That could not be done when one researchers used on
language and another used another language, because this is not very practical and this
workflow is currently unsupported by the workbench.

6.2 Conclusion

During the evaluation, useful feedback was provided that can be used to improve the
workbench. While the user test itself was not very successful, as many researchers

65



6.2 Conclusion Evaluation

66

had issues getting started and not all researchers completed the data science task, the
feedback gathered can be used to improve the workbench.

The goal of this evaluation was as follows: I consider the goals and requirements
of the workbench to be met when researchers can...

e accomplish their own research goals using the workbench: Some researchers
were able to complete their data science tasks using the experiment. Not all
though, partly due to reasons unrelated to the workbench, namely client-side
software issues and unfamiliarity with the used programming language.

e while using the functionalities outlined in the previous section: The adoption
of the workbench functionality was quite low and should be improved.

e without too much interference or change in their workflow: Researchers
found the experiment steps overall to fit to their workflow.

¢ and when the artefacts they created show that they have used these services.
For example, are they writing tests, defining data schemas and defining de-
pendencies: The artefacts show that they did not use these services. No tests
were written, some data schemas were defined and no dependencies were de-
fined.

o I also use feedback given by the researchers to find out what they like and
do not like about the system: Useful feedback was provided by the researchers
to improve the workbench.

The larger issue at play here is that the workbench introduces many new concepts
that have to be adopted by the researchers. This is a difficult task and is part user
education and part the workbench task. The workbench makes many of these concepts
optional, for example, so that at the start they do not have to use these tools which
makes adoption easier, as it can be done step by step.

The main feedback that can be drawn from this user test is that there either should
be a ‘workbench light’ or much more documentation and information. On both aspects,
work is done to improve this, by providing a lightweight template and extended end-
user documentation. Also, for the future, I recommended to educate researchers on
why these aspects are important so that they see the point of the tools offered by the
workbench, as it was clear that the point did not come across.

As is clear from the experimental design and the actual performed sessions as
well as the conclusion, the evaluation did not go as planned. Overall, with regards
to the complete process of this thesis and its different phases, a balance had to be
struck between the implementation phase and the evaluation phase. At some point the
project has to be ended, because there are time limits. On the one hand, you want
to have enough implementation time, in order to be able to actually build something
that solves the problem at hand and being able to evaluate it. On the order hand, you
want to have enough time for a rigorous evaluation. In this case, the balance between
the implementation phase and the evaluation phase might have been missing and more
weight was placed on the implementation phase.

This resulted in the fact that there was too little time to do more in the evaluation
and to prevent some of the issues that were present and might have been avoided with
more preparation. For example, to set up a pre-session for a softer introduction to the
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workbench, and doing interviews with the participants of this user test to determine
their skill and knowledge level. I also might have been able to educate users more with
regards to the purpose and use of the workbench.

At the start of this chapter, the research question was asked: ‘Having implemented
the design, does the implemented solution achieve its requirements defined by RQ17’.
Based on this evaluation, I cannot answer this question. The user-test is designed to
evaluate the extent to which the requirements are met. According to this user test,
there is room for improvement to meet the requirements of the workbench, because
researchers had much difficulty using the system to the fullest extent. With regards
to reproducibility, the fact that researchers were able to create a data schema is an
improvement over the existing way experiments are created. However, to make a more
everlasting impact on the reproducibility of experiments created by the researchers,
much more adoption of the workbench features is required.
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Chapter 7

Conclusions and Future Work

This chapter gives an overview of the project’s conclusions, contributions and future
work.

The objective of this research is to improve the ability of researchers to share and
reproduce experiments of MOOC research by building a workbench targeted for large-
scale learning-analytics researchers.

To accomplish this goal, this thesis first looks at relevant literature to determine
what MOOCs are, what MOOC research is and where MOOC research is headed.
Based on this, it is clear new challenges for MOOC research exist, namely the use
of data science in education and improvements in sharing data. Then, the issues with
sharing and reproducibility in Computer Science in general are studied. Here, this
thesis finds that challenges exist in difficulty in selecting and using tools that enable
reproducible research, lack of a workflow on what tasks should be accomplished to
enable reproducibility and the manual work required by researchers to enable repro-
ducibility, with a lack of resources or incentives to perform that work. Also, specific
to MOOC research is a struggle with regards to sharing data, with large data sets and
concerns regarding data protection.

After the literature review, this thesis turns its attention to the Web Information
Systems department of the University of Technology Delft, that serves as a use case
for this thesis. This is a representative group of people for the larger research com-
munity, considering the cutting-edge research performed at this department regarding
large-scale learning analytics. To better understand how researchers are currently de-
signing, building, sharing and reproducing experiments, a set of user interviews are de-
signed and performed. Based on the interviews, this thesis concludes that no standard
workflow or approach exists for creating an experiment, not many steps are taken to
ensure reproducibility of experiments created by researchers, researchers have limited
experience with reproducing experiments created by others and code sharing happens
via different mediums with issues encountered such as lack of code quality or missing
documentation. The result of the user interviews and literature is a set of requirements
for a possible workbench.

This thesis then focuses on the conceptual design of an experimental workflow.
It studies other workflow systems and ‘reproducibility enhancing systems’. Based on
these systems, the thesis presents the key properties that the experimental workflow
should adhere to, together with the actual experimental workflow. Key properties are
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that it should be lightweight, change behavior, promote literate programming, be flexi-
ble and provide time for reflection and optimization. In the design proposal, this thesis
presents the steps the experimental workflow should consist of.

After the conceptual design, I have implemented a solution that promotes this
workflow. This is done in the form of a workbench, where researchers can create
and manage their experiments. The workbench checks for several aspects known to
improve reproducibility of experiments, such as defining dependencies, performing
static code analysis and applying software engineering principles in general to exper-
iments. An important part of the workbench is sharing code. The workbench imple-
ments this by asking researchers to share their code whenever they complete a step in
the experimental workflow. With a few clicks, researchers can create a package and
publish it in the workbench, making it easily installable by other researchers.

In the final chapter, this thesis designs an evaluation to determine the extent to
which the implemented workbench fulfills its requirements. The evaluation consists
of two session and simulates real-world data science work. Researchers are asked to
solve these data science problems by using the workbench and share code. In the
second session, researchers perform a different task, but then use shared code from the
previous session, so that I can identify if the means of sharing code promoted by the
workbench is efficient. Based on the evaluation, I can determine that the workbench
does not fulfills its requirements fully. The evaluation did not succeed: Only one
session was executed, since researchers had many problems getting started with the
workbench. Issues arose especially during the phase of setting up their experiment
and researchers did not fully understand the purpose of the workbench. However,
much useful feedback was gathered from the evaluation and improvements were made
to the workbench.

Based on the evaluation, it is impossible to consider the workbench a success.
While some researchers were successful in using the workbench, to share code and
create a data schema, more work is needed to educate researchers on the functions
and need of the workbench and future work is needed to make the workbench more
suitable for researchers that have less technical knowledge.

7.1 Contributions
The main contributions of this thesis are:

o A literature study of MOOCs and MOOC research and sharing and reproducibil-
ity in Computer Science and MOOC research, together with challenges identi-
fied from literature regarding these aspects.

e A user interview set-up to determine and solicit requirements for sharing and
reproducibility in MOOC research.

e A set of requirements where a solution that wants to improve sharing and repro-
ducibility in MOOC research should focus on.

e A key properties and a conceptual design of an experimental workflow for MOOC
researchers and that wants to improve sharing and reproducibility in MOOC re-
search.



Conclusions and Future Work 7.2 Future work

e An architectural overview of the implemented solution.

e A workbench designed to meet the set of requirements identified earlier and
implemented according to modern web engineering practices.

e An evaluation designed to simulate the real-world data science tasks in order
to determine the extent to which a solution designed to improve sharing and
reproducibility for MOOC research achieves the set of requirements identified
earlier.

7.2 Future work

For future work, the evaluation shows that the workbench needs to be simpler. While
the concepts introduced are useful for these experiments, as shown by literature, ef-
fectively applying them is a difficult task. The workbench succeeds in doing this up
to a certain point, namely for the more advanced users that were able to use some of
the functions, most of them do not have the technical knowledge required for using
these functions. As such, for future work the goal should be to make the workbench
as lightweight and user-friendly to use as possible.

Ideally, the workbench is tested using an actual large-scale learning analytics ex-
periment for the evaluation. This way the need for simulating a real-world data science
task is eliminated. In that case, it is sure that the workbench is tested in the real-world
and furthermore it can be tested continuously that way.

The goal of this thesis is to improve sharing and reproducibility of MOOC science.
Initially, the idea of this thesis was to create a workflow system, comparable to sys-
tems that are often seen in natural sciences and economics, where it is possible to drag
and drop modules to perform some computation. This workbench should be seen as a
first step towards that goal. If the workbench achieves improving code sharing and im-
proves the reproducibility of experiments, then a next version of the workbench could
start the work towards that goal. When some packages are present in the workbench,
that are peer-reviewed and well-tested, a workflow system can naturally be introduced
in the workbench that allows for quick experimentation in learning-analytics problems.

Also, for future work the workbench could address literate programming tools by
integrating support for them and provide better means for visualizing results. Ideally,
this is combined with the workflow system, so that a single environment is provided
where researchers can import existing shared packages and write their Jupyter note-
books directly in the browser for prototyping purposes.

Another consideration might be to use metrics with gamification. This was not
addressed in this thesis, as it is first more important to find the right metrics that re-
searchers find useful and apply them. Once these metrics have been found, then a
gamification system might be devised.

Another addition could be to introduce code reviews. An example workflow for
this could be as follows: For each experiment, this experiment is done with another
researcher in the same department that knows the goal and status of the experiment.
After each experiment step is completed, the other researcher can perform a code re-
view and offer suggestions and improvements to the source code. Code reviews are a
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useful tool to maintain a coding standard, plus they have the advantage that researchers
work together more and thus can share more knowledge and code.

Finally, the literature survey found some systems that were meant to improve the
reproducibility in some way, shape or form, but also failed to get researchers excited
and had disappointing usage numbers. This was taken into account in this thesis, but
it should be seen as a warning, also for future work. What could help is, as a start,
an improved computer science curriculum with more focus on software engineering
practices, which might create more awareness and in turn more interest in a solution
such as the workbench and possibly in other reproducibility enhancing systems.

7.3 Source code

The workbench that is created in this thesis is available on GitHub*” and released under
the MIT license.

4Thttps://github.com/MOOCworkbench/MOOCworkbench
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Appendix A

User interview questions &
summarized answers

background information

What kind of research do you do? Often researchers are involved with LAK and
EDM domains. Some are also working in Learning at scale, Behavior analytics and
sometimes also some data mining, data science and web science.

What are some of the topics you research? Topics range from designing inter-
ventions of students to detecting how students are cheating in MOOCs. Also, research
is being done to try and measure the attention of students via the webcam. With regards
to behavior, research is being done on how students personality affects their MOOC
performance, as well as trying to help students get immediate benefits by teaching
them tasks and finding freelance tasks for them.

how researchers are currently creating experiments (which methods, tools,
approaches)

How do you get started on an experiment? Each new experiment is based off of
previous work, according to one researcher. Each new finding, each study and each
experiment leads to more questions. Usually, researchers design an experiment in such
a way as to address what is not known yet. A MOOC experiment usually consists of
two parts, namely an experimental part or data-gathering phase, and an analysis part,
but this can depend upon the type of experiment being performed.

Do you base your experiment of existing work, do you start from scratch or
does it vary? Overall, researchers base their work often off of existing work, whether
it is their own work or other people’s work. At the very least, researchers usually find
some parts of their earlier experiments that can later be reused. In terms of code, the
parts that can be reused are usually translating the raw data logs into a database and
the data analysis part.

What programming language(s) do you use during the experiment? Most re-
searchers use a combination of Python and R. In terms of versions, both Python 2 and
Python 3 are used, but the current trend is moving towards Python 3. Sometimes, for
the implementation phase, JavaScript is used, as well as SQL.

What tools do you use during the experiment to help with the development?
A large part of the useful libraries used throughout the experiment happens during the
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analysis phase. An important part is data visualization, for that part a lot of popular
libraries are used. One of the researchers, even though they usually program in Python,
specifically for this purpose uses R.

One of the researchers prefers to use Jupyter notebook. The researcher finds that
Jupyter enables them to write some code and explain what the code does, what inputs
are expected and what outputs are generated.

Another important tool is a machine learning toolkit, used for clustering and clas-
sification, as well as the database that is used, namely MySQL.

What factors were involved in choosing these tools? One researchers chooses
libraries based on popularity. Other reasons mentioned by researchers are familiarity
by colleagues and that the tool helps to improve readability of the code.

What are your experiences with these tools? In general, R tools are very well
documented.

The experiences with Jupyter are generally positive. It allows to write code section
by section with clear documentation. A limitation of Jupyter is that code written in the
notebook cannot easily be important into other Python files. Instead, researchers often
copy from notebooks into their own experiments, because this cannot be done directly.

MySQL was chosen because of familiarity, as well as that researchers like that it
can be updated easily.

How often do you reuse code from your own experiments on average? Al-
though oftentimes an experiment is started from scratch, it happens often that some
code is carried over between experiments. For the analysis part, one researcher men-
tions that almost always code is carried over from one experiment to another. This is
because the analysis part is almost always the same, as often the same statistical tests
are being run, with only small variations.

Other researchers also indicate that carrying over code from one experiment to
another happens quite often. The main parts that are carried over are about data trans-
lation, translating the raw data logs of a MOOC into a database.

What is your experience with reusing your own code? Researchers encounter
difficulties when reusing their own code, such as that they no longer know the way the
code has to be used or do not understand it because it was written quite some time ago.

what steps are already being taken to ensure reproducibility of the experiments
created

How do you account for reproducibility in your experiments? For one paper, a
researcher published a manuscript in advance. outlining what they were going to do in
terms of the analysis to be run, as well as the data that was going to be used.

In general, during the development of an experiment, researchers do not seem to
consider reproducibility very much. One of the reasons mentioned is, for example,
when a deadline is approaching, the focus of the project is the completion of it, not
so much making sure the research is reproducible. Oftentimes though, if the code
is released to the public, certain actions are taken, such as making the code more
readable and adding a README document. Also, actions are being taken to create
some common tools, such as extracting daily logs and placing them in the database,
making sure the code can be used by other researchers.
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One researcher has published a manuscript in advance of an experiment. This
manuscript outlines all the analysis that were going to run. Also, work is being done to-
gether with other universities to apply an existing experimental design to other courses.

Another researcher uses Jupyter, which helps to improve the reproducibility of an
experiment, as this kind of workflow enables them to write extensive documentation
for each section of code.

How do you manage the dependencies within an experiment? In R it is possible
to define within the script which libraries to install, so that is a form of dependency
management directly within the code that is used by researchers.

Most researchers directly install their dependencies system-wide into their ma-
chine. They do not use virtual environments. Although they do write down the re-
quired dependencies, this usually only happens when an experiment is made public,
although also not every time. Also, no versions are recorded of dependencies.

What kind of documentation do you write for your experiment? All of the
researchers write source code comments, as well as usually a README file contain-
ing what the project does, how to use it, which dependencies are used and what it is
designed for.

When do you write your documentation? The source code comments are usually
written during the development phase of the experiment, the README is only done
afterwards, but not always, only if the code will be released publicly.

Do you use a version control system, e.g. git? The use of version control systems
is limited by researchers. One of the researchers does not use it, others use it sparingly.

How do you use the version control system? One researcher only pushes code
when they consider their project to be complete. Another uses it a bit more often,
whenever they consider their source code to be complete, they commit and push their
changes, and one other only uses it as a back-up, for example when the laptop is
destroyed or stolen. Branching and tagging is not used.

How do you test your source code? All of the researchers run their code with the
data set until the desired result is achieved. No formal testing is being done to verify
the correctness of the source code, although it should be noted that this is sometimes
not possible, because of the lack of a training set.

After the experiment is finished, how do you make the source code available
to others? One of the researchers uses the Open Science Framework. This is a place
where researchers can upload their code and data, to make it openly available to others.
The advantage of the OSF is that it requires little to no extra work for the researcher
and that it is public for all.

Other researchers publish their source code on GitHub. One researchers mentions
that they link directly to the GitHub source code in their paper, to publish a version of
the code that works.

What kind of actions do you perform to prepare the source code for public
release? For using OSF and to make an experiment available to others, almost no
actions are required, apart from uploading the code.

For GitHub, in order to prepare the source code for public release, some passwords
and/or sensitive information has to be scrubbed. Also, some of the researchers focus
on making the code more readable, more efficient and more concise before making it
public on GitHub.
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After the experiment is finished, how do you make the data set available to
others? One of the researchers also uses the Open Science Framework for this goal,
as this also allows for the data set to be uploaded.

However, the EdX data set cannot be made public, as this violates the privacy
policy of EdX, so usually the data set is not made public.

How could the reproducibility of MOOC experiments be improved? An im-
portant part to improving the reproducibility of MOOC research, mentioned by almost
all researchers, is data. Many improvements can be made towards writing high-quality
functions to translate the raw data into a database. This means specifically that this
code is easily accessible by all and well-documented. Another issue with regards to
the data, is that the collected data within a MOOC differs from university to univer-
sity. The code written to analyze these data is very sensitive to changes, which makes
reproducing research hard.

Another issue is documentation. One researcher mentions that others often use dif-
ferent strategies or approaches or methods, and feels that the documentation in projects
is lacking, at the very least a complete README document should be present.

One researcher mentions that papers of MOOC research almost always do not
contain links to the source code and suggests that more experiments should be open
source.

Also, even though efforts have been made in prior literature, even mentioned in
this thesis, in the form of MOOCdb, here also issues exist. MOOCdb is a conceptual
schema and does not contain an actual implementation. Universities are free to imple-
ment it as they see fit. The TU Delft, for example, has added some database fields and
disregarded others.

Another improvement that can be made is the use of more reusable code. In a lot
of experiments, the same code can be used again, for example to extract the scores of
learners, or the time spent on videos in a MOOC, but this code is not shared or reused
among researchers.

Another point that is part of how reproducibility can be improved, is that re-
searchers do not know of the existence of useful functions, as there is no centralized
database containing MOOC experiments and functions.

Also, researchers in general do not seem to focus on making code reusable, be-
cause they simply focus on making sure the code runs correctly, making sure the entire
program runs fast and correctly, retrieve the results and then move on. There is no
phase during the experiment to look back at the experiment and assess the work done,
to look at the code and think: this might be useful in the future for me or for others.

how researchers are currently reproducing experiments and the problems
experienced with reproducing

What are your experiences with reproducing a MOOC research experiment? Re-
producing an experiment from beginning to finish has not happened yet for a lot of
researchers.

One of the researchers has reproduced an experiment. Their experience was mixed.
First of all, the relevant papers contained no source code, only an approach. The re-
searcher used this approach to write the code needed to execute it. The results were
quite different, though, so the researcher decided to contact the original authors to
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request the source code. They were reluctant to provide source code, and set the con-
dition that sharing of code should be bi-directional, as well as that they wish to be
co-authors of any papers published using that source code. As such, both parties send
each other source code of their experiments. The sent source code, in the end, how-
ever, could not be used directly, because of differences in the data format, among other
things. The researcher notes that the sent source code is quite different from the origi-
nal paper.

What are the steps involved with reproducing a MOOC experiment? There
are no pre-defined steps for reproducing a MOOC experiment.

An example of some of the steps involved with reproducing a MOOC experiments,
are the following. First, the procedure between the two researchers would have to be
made clear, explaining what they are going to do, understanding their expectation and
their experiment in detail. Depending if they require expert knowledge, the researcher
would agree to participating in reproducing an experiment. The next step would be
to read some documentation. Once it is clear what is going on in the experiment, the
experiment will be reproduced step by step.

What could be improved upon the steps involved on reproducing a MOOC ex-
periment? Suggesting ways to improve the reproduction of a MOOC experiment was
found difficult by many researchers, as they have little to no experience reproducing
experiments.

In general, the reproducibility of MOOC research as a whole should be improved.
So, for example, one researcher mentions that a common toolkit could help. This
toolkit could process specific data. Another suggestion is the increased use of visual-
ization tools, which allows to better get a sense of what is in the data.

how researchers are currently sharing experiments and code, why they are
sharing and the problems experienced with sharing

How often do you reuse code of other researchers? Reusing code from other re-
searchers happens rarely. For one researcher, this has happened once or twice during
their MOOC research life. Another researcher has reused code only once from other
researchers, the same for the third one. Code is also reused from Stack Overflow, but
only to solve a specific problem.

What are your experiences when reusing code from other researchers? The
experiences are mixed. For two researchers, the code they received ended up not being
used in the end. For another researcher, they made a selection of two libraries for a
specific function. In one library, it was difficult to extract the functions needed to be
used in their own experiment, as this library also performed other functions and was
part of a larger whole. The second library, on the other hand, was made specifically
for reuse among researchers.

Another researcher mentions that the biggest issue with sharing code is readability
and the lack of documentation. This researcher also used some code from an external
university, and ended up in the end not using the code. The researcher was unable to
run the code and decided to write it by themselves.

How do you acquire the code or experiment from other researchers? Sharing
either happens via GitHub, a personal project page of the author or via email.
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What is your opinion of the current sharing process? The current way of shar-
ing is for researchers sufficient.
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Workbench Acceptence Experiment

Index  Dashboard  ReadMe  Dependencies  Schema Settings
The final Workbench Acceptence Experiment

Progress

andpackages.

Step 1: Data (completed)

Step 2: Feature extraction

Step3: Schema
Step4: Modelling

Step 5: Visualization

View your project on GitHub



Short workbench intro Short workbench intro

Step2: Feature extraction

Ind E i It: ‘Workbench A t B i it
Cleaning and filtering the data to prepare it for analysis neec Bpsriments - erBEReR Areepines Breermen

Read the docs

Read the docs for this step

Workbench Acceptence Experiment

Files in this step Index  Dashboard ~ ReadMe  Dependencies  Schema  Settings

Fle/Folder name. Static code analysis Code coverage

== Dashboard
Jp— Cxzrm i
i T — The MOOC workbench scans the progress of your experiment regularly.

It checks your results from Cl, your dependencies, your tests and more.

Recommended packages in this step

Refresh

Refresh this data

« There aren't anyrecommended packages yet Check back ater!

s 5
TUDelft TUDelft

One more thing...

« ..for questions or comments about the workbench, please use Slack

« the chat log helps me with my thesis, as it provides a detailed log of
confusion/reactions/etc.

« for other questions, ask me

« fortoday:
«  please evaluate the workbench
« using a real-world data set performing an actual small data science task
« ..and are asked to create a package of your code using the workbench
«  two different data science tasks
« schedule:

— 13:10 start with data science task

— 14:45end

—  14:45 debrief interview

5
TUDelft .




Appendix C

Dataset readmes provided during
user test

This readme was provided for the dataset IMDB movies and is an exact copy of the
description and goal of the task at Kaggle.com.

C.1 IMDB movie dataset

The readme below was taken at 28th of May from Kaggle.com 8,

C.1.1 Background

How can we tell the greatness of a movie before it is released in cinema?

This question puzzled me for a long time since there is no universal way to claim
the goodness of movies. Many people rely on critics to gauge the quality of a film,
while others use their instincts. But it takes the time to obtain a reasonable amount of
critics review after a movie is released. And human instinct sometimes is unreliable.

C.1.2 Question

Given that thousands of movies were produced each year, is there a better way for us
to tell the greatness of movie without relying on critics or our own instincts? Will the
number of human faces in movie poster correlate with the movie rating? Method

To answer this question, I scraped 5000+ movies from IMDB website using a
Python library called "scrapy".

The scraping process took 2 hours to finish. In the end, I was able to obtain all
needed 28 variables for 5043 movies and 4906 posters (998MB), spanning across 100
years in 66 countries. There are 2399 unique director names, and thousands of ac-
tors/actresses. Below are the 28 variables:

"movie_title" "color
"director_name" "director_facebook_likes
"actor_2_name" "actor_2_facebook_likes

nn nn nn

"gross" "genres" "num_voted_users

"nn nn

movie_facebook_likes" "duration"
""actor_3_facebook likes"
actor_1_facebook_likes"

num_critic_for_reviews
""actor_3_name
actor_1_name" "

nn

Bhttps://www.kaggle.com/deepmatrix/imdb-5000-movie-dataset

cast_total_facebook_likes" "facenumber_in_poster"
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non non

"plot_keywords" "movie_imdb_link" "num_user_for_reviews" "language
"content_rating" "budget" "title_year" "imdb_score" "aspect_ratio"
To answer question 2, I applied the human face detection algorithm on all the

posters using python library called dlib, and extracted the number of faces in posters.

country"

nn

C.1.3 Blog and Github codes

See here for more details about the scraping steps, the EDA, and the predictions :
https://blog.nycdatascience.com/student-works/machine-learning/movie-rating-prediction/
Github page: https://github.com/sundeepblue/movie_rating_prediction

C.1.4 Important notes

This dataset is by no means to be a comprehensive scraping of all attributes relating
to movies. It stemmed from one of my project built from scratch and finished in
around one week. So please do not be surprised if you find something is off. This
dataset is a proof of concept. It can be used for experimental and learning purpose to
get hands dirty on web scraping, basic EDA, and learning algorithms in R or Python.
For comprehensive movie analysis and accurate movie ratings prediction, 28 attributes
from 5000 movies might not be enough. A decent dataset could contain hundreds of
attributes from 50K or more movies, and requires tons of feature engineering.

There are around 800 "0"s in the "gross" attribute. This was either caused by (a)
no gross number was found in certain movie page, or (b) the response returned by
scrapy http request returned nothing in short period of time. So please make your own
judgement when analyzing on this attribute.

There are around 908 directors whose "director_facebook_likes" attribute are O.
If somebody did analysis on "directory_facebook_like" attribute, there could be some
off, and say, the top10, or top50 directors could be inaccurate. Thanks for pointing this
out by user Kryslor. This is interesting, since the code I used to scrape everybody’s
facebook like were identical. See function parse_facebook_likes_number(). It was
hard to directly scrape this data from IMDB website (due to dynamic embedded div
frame), so I had to use a hacky way by directly sending request to facebook website
(see line 38 of this file). Perhaps for some directors, facebook did not respond with
reasonable result within short timespan (< 0.25 second) and returned "None" in Python
(translated to 0 in my code). For those Os, you might want to treat them as "missing
value" when using certain machine learning algorithms.

Thanks to user "Quinton", who found a bug in the dataset on 11/23/2016: (Novem-
ber 23, 2016 at 12:08 am) We actually used your IMDB dataset for an Advanced Data
Mining class at Rockhurst University in Kansas City, MO. We love the data set and
we really appreciate the time it took to create the it. However, we believe we found
a small flaw in the data. Not all of the IMDB movie budget numbers are in US dol-
lars, for example, the South Korean movie "The Host" has its budget numbers in S.
Korean Won (Korean currency). But there is no data in the dataset that tells you the
currency. The existance of foreign currencies skews the budget data for foreign films
particularly for currencies with extreme exchange rates when compared to USD. For
instance, many could assume the data set shows "The Host" cost $12 billion to make
when it truthfully cost only 12 billion Won, but the dataset doesn’t make the distinc-
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tion. It is not just an issue with Korean movies we found Turkish and Japanese movies
with the same issue. Quinton was right. When I parsed the currency, I didn’t take
the Korean currency into consideration. Therefore please be cautious if you analyze
the currency related attributes for non US dollar currencies. The fix is actually quite
simple in the corresponding python code.

Please be mindful that, analyzing currency related attributes, such as "gross" or
"budget”, is actually more complicated than it seems. For a really thorough and ac-
curate analysis (EDA or prediction), we may want to do some feature engineering on
those attributes in a systematic way. For example, one US dollar in 1920 is different
from that of 2010. So we need to take inflation factors across years into consideration,
and normalize all US dollars into one basis (a certain year). So do all other currencies
(British pound, Chinese RMB Yuan, etc). If you also consider exchange rate between
two different currencies and wanted to convert everything into dollars, things become
tricker, because even those rates also varies over time. $1 equals RMBS8.4 in 2000 but
RMB6.8 in 2015.

C.2 Gym crowdedness dataset

The readme below was taken at 28th of May from Kaggle.com *°.

C.2.1 Background

When is my university campus gym least crowded, so I know when to work out? We
measured how many people were in this gym once every 10 minutes over the last year.
We want to be able to predict how crowded the gym will be in the future.

C.2.2 Goals

Given a time of day (and maybe some other features, including weather), predict how
crowded the gym will be. Figure out which features are actually important, which are
redundant, and what features could be added to make the predictions more accurate.
Data

The dataset consists of 26,000 people counts (about every 10 minutes) over the
last year. In addition, I gathered extra info including weather and semester-specific
information that might affect how crowded it is. The label is the number of people,
which I’d like to predict given some subset of the features.

Label:

Number of people

Features:

e date (string; datetime of data)
e timestamp (int; number of seconds since beginning of day)

e day_of_week (int; 0 [monday] - 6 [sunday])

Phttps://www.kaggle.com/nsrose7224/crowdedness-at-the-campus-gym

91



C.2 Gym crowdedness dataset Dataset readmes provided during user test

e is_weekend (int; 0 or 1) [boolean, if 1, it’s either saturday or sunday, otherwise
0]

e is_holiday (int; O or 1) [boolean, if 1 it’s a federal holiday, O otherwise] temper-
ature (float; degrees fahrenheit)

e is_start_of semester (int; 0 or 1) [boolean, if 1 it’s the beginning of a school
semester, O otherwise]

e month (int; 1 [jan] - 12 [dec])

e hour (int; 0 - 23)

C.2.3 Acknowledgements

This data was collected with the consent of the university and the gym in question.
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Appendix D

Implementation

This appendix contains extra content for chapter 5 Implementation.

D.1 Used technologies

The underlying framework of the workbench is Django®. This is a modern Web
framework for Python that is very mature. The version used is 1.11, which is a long-
term release and has support for critical fixes until 2020. Django contains an object-
relation manager, which is quite powerful and it removes the need to write manual
SQL with all the security issues possibly involved. Django is ‘secure by default’,
which means it offers CSRF protections by default, SQL injection prevention through
parameterised queries used in their ORM and it protects against XSS attacks by auto-
matically escaping variables.

The workbench’s features often result into long-running I/O tasks or POST tasks
where it is dependent upon another web service. To prevent blocking and a negative
user experiences, long-running tasks are run inside a set of Celery workers. Celery is
an open source asynchronous task queue’!. It uses a distributed messaging system and
allows for adding an arbitrary number of workers, which are immediately available to
perform tasks. Blocking tasks in the workbench are for example experiment creation.

Another used technology in the workbench is a library called Cookiecutter. To
solve the boilerplate code problem, Cookiecutter is very useful, as it is specifically
designed to solve this problem. Cookiecutter takes a template, some user input with
for example the project name, project description and author and automatically fills the
template with that information. This template is meant for any project, for example a
data science project, which is then immediately ready to be used.

The workbench contains a Dockerfile so that it can easily be deployed using Docker,
since it does require some extra technologies. For Celery, the workbench needs Re-
dis and you need to ensure at least one Celery worker is always running, but more
depending upon the number of users. For communication between client and server,
the workbench uses websockets with django-channels®?. This allows the workbench
to push messages from the server to the client. The workbench uses this to send status

SOhttps://www.djangoproject.com
Sthttp://www.celeryproject.org/
52https://channels.readthedocs.io/en/stable/
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updates with regards to experiment creation, for example. This set-up uses Daphne’>,
a Django http server, together with a number of workers for handling the web requests.

Furthermore, the workbench contains a PyPi-server using the pypi-server pack-
age>*, to be used for sharing code. This pypi-server also needs to be running con-
stantly.

For the front-end, things are kept as simple as possible. Sometimes jQuery is
used to perform AJAX calls to the back-end, but only there where it makes sense to
improve the user experience, otherwise generic HTML and CSS is used. In terms of
front-end framework, Bootstrap 3 is used. While maybe not the most exciting choice
in 2017, it is stable and complete and provides all the necessary functionality. Other JS
libraries include intro.js>> to provide the user with a first-time tour of their experiment,
highlight.js to provide code highlighting and chartjs to plot a graph of the number of
commits of the user on the dashboard.

To manage these JS dependencies, Bower is used, which unfortunately become
end-of-life during this thesis. However, this is not considered to be a major pain point,
since all the JS versions and libraries are still widely available.

During development, GitHub was used for version control management, together
with pip to manage the Python dependencies. Travis CI provided continuous integra-
tion by running the test suite after every commit, while using Coveralls to measure
code coverage and using Landscape.io to provide continuous static code analysis. Un-
fortunately, at the end of the thesis, Landscape halted static code analysis for open-
source projects because it could not handle the traffic, so Pylint was run manually.

D.2 Implementation

D.2.1 Functional view
Build manager

The build manager is responsible for managing builds of the experiments. For this
task, it uses Travis CI. To communicate with Travis CI, the Python library TravisPy>%
is used, which provides useful abstractions for the API for example to run a build,
retrieve the last log of a build and to enable builds for an experiment with limited
user intervention. The build manager is limited with its functionality, because Travis
already provides most of the required functionality. For example, the workbench does
not check in real-time whether builds failed or succeeded, since Travis already sends
an email to users if their build has failed. Also, I simply display the Travis CI build
badge of the repository for the researcher indicating whether builds fail or pass on
the dashboard. To use TravisPy within the workbench, a special class is created that
imports TravisPy and calls it appropriately, the TravisCiHelper. It provides functions
to enable and disable travis for a certain repository, to trigger a build and more. This
way the rest of the build manager does not have to worry about the TravisPy code and,
in the future, it is easy to swap out the TravisCiHelper to use or add another build tool.

33 https://github.com/django/daphne
54https://pypi.python.org/pypi/pypiserver
3Shttp://introjs.com/
Onttps://travispy.readthedocs.io/en/stable/
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Coverage manager

The coverage manager is responsible for providing code coverage results for the exper-
iment of the researchers. For this purpose, it integrates with Coveralls. For Coveralls,
a web API exists, but no Python library exists, so I manually perform the web requests
to get the desired information from Coveralls. This information includes code cov-
erage results per file and the total amount of coverage. To interact with coveralls, a
helper class is used.

Docs manager

The Docs manager is very lightweight. The actual documentation generation happens
in a shell script, that only receives the location of the cloned experiment on the server,
which is a temporary folder. This is necessary because in order to build the docu-
mentation of an experiment, the dependencies of this experiment have to be satisfied.
To avoid conflicts with the workbench, the workbench uses a separate environment in
which to create a new virtual environment, install the dependencies and then generate
the documentation.

Pylint manager

The Pylint manager is not they most accurate name for this Django app, as it also runs
rlint for R scripts. This app does not contain any views, but it does contain several
models to store the results from static code analysis. For each static code analysis
result, the workbench stores the type of message from pylint, the line number and the
relevant file, as well as the message. This result is connected to the entire scan object,
which has a datetime to log when the scan was performed. This is useful, so that the
static code analysis results can be shown in the front-end, when the researcher views a
file we can show directly in the file the static code analysis results.

To perform the static code analysis for Python, the scan is only performed within
the experiment step folder, so that only the active files, currently under development,
are scanned and taken into account. A shell script is used to initialize the virtual
environment of the experiment just like with the docs and the correct folder is passed
as an argument to scan. The results of the Pylint scan are placed in a *.json file, which
is after the scan is done parsed by the workbench and processed to a database object.

For R, a Python package importr is used. That way R scripts can be called directly
from within Python. To scan an R file, we first install the package lintr from CRAN
and scan the main module file and save the results.

Requirements manager

The requirements manager is a Django app that helps researchers manage their de-
pendencies in both their experiments and their created packages. This app contains a
model requirement, that is connected to an experiment. A requirement consists of a
version number and a package name.

On the front-end, researchers can access the tab Dependencies and add, edit or
delete a dependency. The views for this are managed through this app. When re-
searchers are done editing, a task is started to update the dependencies in the GitHub
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repository. For example, for a Python experiment, the Requirements manager gen-
erates a new dependency text file and commits this file to the repository, so that the
changes are directly reflected in their GitHub repository and no other work is required.
Inversely, when a researcher changes their dependency file locally, the workbench au-
tomatically parses this file, deletes the existing dependencies and adds the new depen-
dencies, so that the information in the workbench is always up-to-date.

One specific design problem that had to be solved is that both the workbench and
the actual dependency file in the repository have to be in sync. It is undesirable if
a researcher can make some changes in the workbench, but those changes are never
synced to the workbench. At the same time, the workbench also should not ‘spam’ the
repository. You want to aggregate changes and commit them at once. However, if you
wait too long, you risk going ‘out of sync’ and if you do it too fast, you risk that the
workbench commits often which clutters the git log.

To solve this problem, the Dependency tab uses an edit mode. Before a researcher
can make changes to the dependencies, they have to click the Edit button. Only then
do the icons appear to make changes to dependencies, such as editing, deleting and
adding. Once they are done, they can click the button Save Changes and Commit to
GitHub. While the database changes are already saved, when pressing this button the
task is started to update the dependencies in the GitHub repository.

User manager

The user manager contains functionalities for managing user and profile related tasks.
This app is also responsible for the index page of the workbench.

The index contains an Activity feed. This Activity feed provides updates of actions
within the workbench, with the purpose of improving awareness of researchers for
the actions of their colleagues, in the hope that they themselves are more likely to
contribute as well. In the Activity feed, actions such as publishing a package, adding a
new package version, adding a package resource, publishing an experiment and more
are added.

Initially, I looked at libraries providing existing functionality. One such library is
django-activity-stream’’. However, during development no stable version was avail-
able that was compatible with the used Django version. The library was integrated
and evaluated, but a lack of documentation and customization of the activity messages
made it unsuitable.

Instead, a simple solution was added: For the index, I gather the five most recent
objects for a number of relevant models, combine this list and sort by the created date.
Each object has a method get_activity_message with returns a user-friendly activity
feed message.

SphinxHelper

The SphinxHelper is responsible for generating documentation of experiments. Sphinx
is language-dependent, meaning it only works for Python. Currently, the workbench
has no alternative for R. The SphinxHelper uses the GitHelper to clone the reposi-
tory and then run the Sphinx command in the docs folder. To find the folder where

5Thttps://github.com/justquick/django-activity-stream
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the documentation field, it uses the experiment.template field. For each Cookiecutter
template, the documentation folder has to be provided. Also, before the workbench
can generate any documentation, a virtualenv has to be created and all the package
dependencies have to be installed. Once Sphinx is done, the workbench moves the
built HTML files into their own folder and into the gh-pages branch, which enables
publishing the documentation on GitHub.io and makes them automatically visible and
easily accessible.

GitHubHelper

The GitHubHelper provides an abstraction for interacting with GitHub. This helper
uses the library PyGithub. The GitHubHelper contains methods for retrieving the
GitHub username, creating a new GitHub repository, viewing a file, committing a
single file, fetching commits, creating a new GitHub release and adding a new file. To
access all these functions, the user initially signs in with GitHub in the workbench.
The workbench then retrieves a social token, that is stored in the database. When the
user accesses a function requiring GitHub integration, the GitHubHelper is instantiated
with this token so they can perform all the actions in the workbench.

GitHelper

The GitHelper is a helper for commonly used git commands. It uses a package Git-
Python to interact with the Git program through Python. The GitHelper is necessary
for more git related tasks locally on the file system. For example, for performing static
code analysis the workbench needs an up-to-date version of the repository locally on
the file system. The GitHelper can do that: Clone the repository and return the location
of the folder of the repository.

GitHub webhooks

The workbench has to stay up-to-date with the actions performed in the GitHub repos-
itory. To achieve this, upon experiment creation the workbench adds a GitHub web-
hook to the created repository. Using this webhook, every time the researcher pushes
to the repository, the workbench receives a POST with the details of the commit. Upon
receiving a commit, the workbench starts a number of tasks. First, it starts a task to up-
date the data schema and update the dependencies, in case the user has changed either.
After those, it starts a complete quality check, meaning all the quality measurements
from the Quality Manager are run to ensure that the dashboard is always up to date.

R & Python support

To enable support for multiple programming languages, the workbench uses the class
LanguageHelper. This LanguageHelper contains an interface with common functions
for each programming language. An experiment has a property Language, which refers
in the current version to either Python or R. An experiment also contains a function
to return the relevant LanguageHelper, through a dictionary that contains as key the
programming language and as value a non-instantiated LanguageHelper. When this
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Figure D.1: UML diagram of Cookiecutter manager

function is called, the correct language is inserted in the dictionary at runtime and the
right LanguageHelper is returned.

When some task is run, for example if we want to update the requirements of an
experiment, this task can retrieve the correct LanguageHelper and instantiate it. The
task then calls the function to update the requirements in the relevant LanguageHelper.
The LanguageHelper contains all the specific language-dependent code for updating a
dependency, so that the task itself does not have to worry about which programming
language is used in the experiment.

D.2.2 Information view
Information structure

For the Cookiecutter manager, see figure D.1. When the administrator wants to add
a new Cookiecutter template, the following information is required: A foreign key to
a Language object, for example Python or R, the docs_src_location, the folder where
the documentation is stored, the location, the GitHub URL to the template, meant_for
which can be either an experiment or package and a name for the template.

For the Dataschema manager, see figure D.2. A data schema consists of a name
and has a OneToMany relation to DataSchemaField. A DataSchemaField consists of
a datatype, a description, name, a primary key and a title. A DataSchemafFeld has a
OneToManyRelation to DataSchemaConstraints.

For the Experiments manager, see figure D.3. To store an experiment, the work-
bench needs the following information: A title, description and a language. The ex-
periment model inherits from BasePackage, as both share a the language property to
indicate which programming language the experiment supports. The experiment con-
tains foreign keys to a docs, pylint, schema and travis instance. Furthermore, the
experiment model contains the owner and a git_repo foreign key, if the repository has
been initialized, and a completed boolean. unique_id and publish_url_zip are used
at the end. When a researcher publishes their experiment, a unique id is generated
and the GitHub release zip URL is stored, for the read-only experiment page, if they
choose to publish their experiment in the workbench. An experiment contains a One-
ToManyField to ChosenExperimentSteps. At experiment creation time, researchers
have to select their experiment steps. For an experiment step, the workbench stores
the order of that step, when the step was started, if and when the step was completed
and if the step is currently active. The location property is a file path to a folder in the
Git repository, where the files of this step reside. The main_module is the main file
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Figure D.2: UML diagram of Dataschema manager
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Figure D.3: UML diagram of Experiments manager
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of this step, pre-defined in the Cookiecutter template to experiment step mapping. A
ChosenExperimentStep has a foreign key to an ExperimentStep, which are the steps
that can be chosen and can be changed in the workbench.

For the Git manager, see figure D.4. A GitRepository is connected to an experiment
and stores the github_url, so that the workbench knows the location of the GitHub
repositories. A GitHub repository has a OneToMany field to a Commit. A Commit
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Figure D.4: UML diagram of Git manager
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Figure D.5: UML diagram of Marketplace
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is created upon receiving a GitHub webhook and stores the number of additions and
deletions in that commit, the commit message, the timestamp and the SHA hash.

For the Marketplace app, see figure D.5. The Package model stores the category,
language, owner and description, as well as when the package was created, the name
of the package and when the package was last modified. Two models inherit from
this model: ExternalPackage and InternalPackage. ExternalPackage adds the fields
project_page, which is the source of this external package. InteralPackage adds for-
eign keys to docs, git_repo and travis instances, as well as a foreign key to the template
used to initialize this package. A package has many PackageResources and PackageV-
ersions.

The following models are present in the Quality manager. An ExperimentMeasure
model defines the measurements that the workbench will check. For example, docu-
mentation is a measurement, which checks the docs coverage. An experiment mesaure
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Figure D.6: UML diagram of Build manager
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Figure D.7: UML diagram of Coverage manager
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Figure D.8: UML diagram of Docs manager
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Figure D.9: UML diagram of Pylint manager
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Figure D.10: UML diagram of Quality manager

Requirement
<TimeStampedhfodel>

C] AutoFiakd
package ForeignKey (package_ptr)
croated AutoCreatecField

moaiied AvtoL astModiiedFiald
package_name  CharFid

warsion CharFik

/ &w (requirement)

TImpﬂdMﬂd ol
creal mu AutoCraatedFik [ 1ntemaiakage |
modifed  AutoLasthlodifedFiek

Figure D.12: UML diagram of User manager
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consists of a name, a description and three messages, a message for a low, medium
and high score. Each scan can have three results: high, medium or low. High means a
good quality, low means low quality.

When an actual experiment is scanned, an ExperimentMeasureResult model is cre-
ated. This model contains a foreign key to the experiment step that was scanned, to
the ExperimentMeasure to define which measurement was performed, as well as a re-
sult consisting of low, medium or high. An ExperimentMeasureResult also optionally
contains a raw value, for example the number of classes and functions left uncovered
by documentation. A raw result consists of a key and value in the form of a character
field, so the model is free to store whatever type they want.

D.2.3 Deployment view
Third-party software requirements

In case the software is run on bare metal, the workbench needs the following services to
be available: Redis, R, Python3, Python3-pip, and git. To make the actual workbench
website available, nginx or Apache can be used.

Hardware and software requirements

The workbench needs to be deployed on a system with at least 1 GB of memory, due
to the number of services required. In case of Docker deployment, at least 2 GB of
memory is recommended, together with at least 3 GB of available disk space.
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D.2.4 Operational view

I recommend to set a cron job to empty the github_repositories/ folder every 24 hours.
In case a task fails, a GitHub folder might not be cleaned up by the workbench. Every-
thing in github_repositories can be considered as temporary files and are not pertinent
to the functioning of the system.

During operation, at some point the system might grow and that might lead to long
wait times before tasks are be completed. Administrators can monitor the Celery tasks
using Celery Flower, reachable at http://host:5555. From this environment, tasks that
are stuck can be killed. If Celery Flower indicates that tasks suffer from long wait
times, we recommend to deploy extra Celery workers, possibly on different hosts. We
refer to the Celery 4 documentation on how to do this.

D.3 Functionality

D.3.1 Creating a new experiment

Researchers will first interact with the workbench by creating a new experiment. They
do this at the start of their experiment work.

Prior to creating an experiment, researchers have to sign in to GitHub using the
workbench. They are automatically redirected upon creating a new experiment. The
workbench asks for permission for all public and private repositories. That way the
workbench can still be used when a researchers makes a repository private.

Walkthrough In the workbench, researchers enter a title for their experiment, as
well as a short description, and choose which Cookiecutter template they want to ini-
tialize their experiment with. Next, the actual experiment is created. This means a
GitHub repository in their account is created, the Cookiecutter template is initialized
and committed to their repository. For a graphical overview of experiment creation,
see figure D.13.

Researchers can add an existing GitHub repository as experiment in the work-
bench. To accomplish this, they have to enter the GitHub repository name as the title
of their experiment. The workbench recognizes a GitHub repository already exists,
skips the Cookiecutter initialization and immediately moves on towards the next step
of the experiment creation process.

After experiment creation is complete, the wizard continues and researchers select
which steps they expect to use during their experimental process, consisting of the
renamed steps outlined in the previous chapter. They are free to add, remove and
reorder these steps, but have to select at least one.

On the final step, researchers can set up Continuous integration and code coverage
measurements, by signing into Travis CI and Coveralls.io, and set-up their experiment
locally so they can get to work.

Setting up the experiment locally consists of the following steps: cloning the git
repository, installing the packages present in the Cookiecutter template, running the
default tests. Optionally, researchers set up a virtual environment.
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Figure D.13: Walkthrough of creating a new experiment
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D.4 Implementation phases

The implementation development process used an agile approach towards developing.
The characteristics of an agile approach are that the work is being done in sprints of 2
to 4 weeks. This development process consisted of the following sprints:

o Initial phase

Marketplace & Initial setup
Sharing & Dashboard

e UX & Data Schema
Packages & R

e Beta-ready

For each development phase, beforehand I determined which requirements would be
addressed in that phase. Those were then translated into tasks in the form of GitHub
issues to track the progress of the sprint as a whole. At the beginning of each sprint, I
first started with creating the necessary database models. Then, the actual work took
place implementing the functionality. At the end of the sprint, two or more days were
used to verify and validate the features.

In the next few sections, this chapter outlines each development sprint individually,
show what work was done and what the sprint focused on, which requirements were
addressed in each sprint, how these requirements were translated into functionality of
the workbench, why the choices were made and how the chosen way to address these
requirements fits with the larger design goals of the workbench.

Initial phase

During the initial phase, development on the workbench was restarted and I took some
time to orientate upon the work ahead. In this phase, the foundation was laid for the fu-
ture work, by selecting a web framework for both the back-end and the front-end. For
more regarding this choice, review the section D.1. Also, I set-up the main develop-
ment infrastructure and selected the development tools that would be used during the
development phase. In this phase, I also started work for the following requirements:

should support the different phases of MOOC research Early designs were
created for the experiment detail page, showing the experiment steps and the total
progress of the steps.

Should be a MOOC tool marketplace, where researchers can add, find, use,
run and install common MQOOC tools and functions Let researchers create external
MOOC packages and start work on the Marketplace index where researchers can view
already created external packages.

Marketplace & Initial setup

During this sprint, the work was mainly focused on the set-up experience of researchers,
such as creating an experiment, the main experiment page and getting started with the
Packages section of the workbench. Functional requirements addressed in this sprint,
are:
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Should facilitate version control Measure the frequency of version control use:
In this sprint, I used the GitHub API to retrieve the last three weeks of commits and
calculate the median and mean of these commits. In a later sprint, I determined this
did not adequately meet this requirement and it was changed.

Should facilitate writing documentation throughout experiment Track whether
or not documentation is present in GitHub with Sphinx: In the initial sprint, the boiler-
plate code was integrated in the workbench. To accomplish this requirement, I added
Sphinx to the boilerplate code and used the extension sphinx-coverage to retrieve a list
of undocumented functions and classes. Sphinx is specifically meant for Python and
it fits nicely with the design-goal to prevent workbench lock-in, since you can use the
default Python way of writing docstrings directly into the source code. Sphinx extracts
these and builds them into a complete static HTML website.

However, choosing Sphinx has a down-side, as this means researchers have to use
reStructredText. That is a trade-off that had to be made with regards to the mark-up
language. Ideally, Markdown is used for documentation, since it is much easier to use
and write and I expect researchers to be more familiar with this mark-up language.
On the one hand, you have Sphinx with reStructured Text, with the pros of being
able to write your docstrings directly into the source code, on the other hand there is
Markdown, which would allow researchers to more easily write extra documentation.

I made the decision to use Sphinx with reStructedText, knowingly researchers
might struggle getting started with this mark-up language and be off put with writ-
ing extra documentation. This choice was made because: (1) encouraging researchers
to write docstrings directly into the source means they can most accurately describe
their source code (2) the extra documentation of research is often already provided in
the form of papers (3) if they want to write extra documentation using markdown, they
can still do so using GitHub README / wiki. Also, Sphinx is very popular among
Python developers in general and has wide support.

Should facilitate dependency management Allow researcher to define require-
ments within their experiment: Created the relevant dependency models in the database
and allow the researcher to define their own dependencies through the workbench.

Parse requirements.txt file: Defining dependencies is a two-way street and can be
done both in the repository and in the workbench. To support defining dependencies
in the repositories, the requirements.txt file needs to be parsed in the workbench.

Boilerplate code: Provided default way of defining dependencies. I made the
choice to use the requirements.txt file for Python, as this is the default way in Python
to specify dependencies and it is a nice fit for this context, as it allows for freezing
all the dependencies and their versions and this approach can be extended with own
packages.

Should give insight into how reproducible each experiment is Track previous
progress: For each quality measurement, such as measuring version control and mea-
suring the amount of undocumented functions, the workbench supports storing raw
values, so that measurements can retrieve previous raw measurements and use historic
data in the decision.

Should give useful actions on how to improve reproducibility of an experi-
ment One overview page for the entire experiment (Dashboard): In this sprint, work
was started with the addition of a dashboard page that showed an overview of all the
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measurements the workbench performed. Up and until now that was only shown in the
experiment detail page.

Initially, code coverage measurement did not exist, instead the workbench mea-
sured the amount of new tests written, as due to the oracle problem researchers would
probably never achieve high code coverage and might be discouraged to put efforts
into tests. By rewarding them when they wrote new tests, I hoped to at least achieve
that they thought about tests and work from there.

Other features added in this sprint consisted of a wiki using an existing package,
as well as the start of designing and creating the boilerplate code. During this sprint,
this design focused on providing researchers with a requirements file, a starting file,
test scaffolding and a default folder structure, which created for each experiment step
a different folder with default files, as well as signing in with GitHub through django-
allauth3®,

Sharing & Dashboard

The Sharing and Dashboard sprint focused on creating an internal package based on
code from the experiments and ways of sharing code.

Should be a MOOC tool marketplace, where researchers can add, find, use,
run and install common MOQOC tools and functions With this sprint, I started the
work on code sharing within the workbench. Before I began designing this function-
ality, it was clear that it needed to fit with the workflow of the experiment steps. It
seemed like the best time to let researchers create a package is when they have just
completed an experiment step. That is the point where they have just written the code,
so they still know what the purpose of the code is and if it might be suitable to be shared
with others. As such, upon completing an experiment step, the workbench prompts the
researcher with the option to create a new package from the experiment step they have
just completed. If they choose to do so, they are redirected to the package creation
page.

When a researcher wants to share their code from an experiment step, the work-
bench creates a Pip package of their code. Pip stands for "Pip install Packages" and is
a package manager for Python. It is was chosen for the workbench because it is the
standard package manager for Python. Since Python 3.4, pip is installed by default.
Furthermore, using pip is very simple. To install a package, a researcher only has to
run the following command: pip install <package-name>. For more about package
creation, see the section 5.3.2.

Other work done with regards to packages is to give the researcher the ability to
update their package. Whenever they have committed some code, they can create a
new package version by providing a version number and a changelog. The workbench
handles creating a new version and creates a new GitHub release.

Also, to prevent workbench lock-in, for each new package created, the workbench
creates a new GitHub repository for the user with the package code.

Creating and publishing a package are two different steps: Just because a pack-
age is created does not mean it is ready for publishing. The workbench expects the
researcher to write some documentation of their experiment and to define the required
dependencies.

38 https://github.com/pennersr/django-allauth
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An earlier chapter identified code sharing as being a separate step in the total ex-
periment step workflow. This approach, where find and reuse is a part of every step, is
preferred, since it fits more naturally into the experiment workflow and it sits closer to
when researchers have written their code.

Should give useful actions on how to improve reproducibility of an experiment
I also decided to change the code coverage and only use the code coverage measure-
ment, as this is the default way of using code coverage and think it should be possible
for researchers to achieve sufficiently high code coverage.

UX & Data Schema

This sprint focused on improving the overall user experience and adds a way for re-
searchers to define their data schema. This sprint also improved the boilerplate code
templates.

The initial approach of providing boilerplate code had too many downsides, as
was determined during testing. The old approach was a completely custom solution,
which interferes with the design goal of preventing to reinvent the wheel. Also, since
the template was not public, it interfered with the design goal of preventing work-
bench lock-in. As such, with the changes learned from the initial version, I looked for
improvements in this regard.

These improvements were found in the form of Cookiecutter>®. This is a Python
library that allows for creating boilerplate code using a template. Creating a template
is very easy and this library allows for saving templates in a GitHub repository, making
them easily accessible to others.

Supporting Cookiecutter means I don’t reinvent the wheel on two counts: (1) not
much custom code is needed to provide templating functions for the workbench, since
itis a Python library that the workbench can import directly and (2) using Cookiecutter
allows for using all the other created Cookiecutter templates, of which there are plenty,
so that whoever uses the workbench has the possibility to add another or their own
templates and are not limited to the ones provided by the workbench.

Should give useful actions on how to improve reproducibility of an experi-
ment In this sprint it became clear that researchers can ‘evade’ the Dashboard and
completely miss the actions given there. To improve this situation, the workbench
adds a report score card. When a researcher wants to move on to the next experiment
step, the workbench first redirects them towards this report score card, showing how
they have done with regards to documentation, static code analysis and more in this
step, showing code-colored panels for each step, so that they can see how they have
done (red - not good, yellow - room for improvement and green is good).

Should facilitate the creation of a data schema of an experiment To facilitate
the creation of a data schema of an experiment, several approaches were considered.

One approach that was initially considered, was very drastic: namely completely
deprecating the use of CSV files and using SQL. However, this approach was dismissed
because of the impact it would have on researchers, the interference with used libraries
such as pandas and the limited advantages provided by such an approach, other than
having a perfect data schema in the form of a SQL table description.

https://github.com/audreyr/cookiecutter
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A different and more suitable approach came in the form of JsonTableSchema.
This is one of the few libraries that seems to satisfy the requirements of the workbench.

Packages & R

This sprint focused on packages in the workbench, namely publishing them and in-
stalling them, and support for the R programming language.

For packages, this sprint focuses on publishing a package and making sure that
packages can be installed by others. Because the workbench uses Pip packages for
Python, which means the workbench can use the library PyPi server to serve these
packages, so that they can easily installed by others. Publishing a package is then
limited to publishing it on the PyPi server, which is very easy.

Initially, the idea was that the workbench should be a complete tool for information
exchange. To accomplish this, the workbench integrated a third-party wiki solution.
This package had to be removed because of instability in combination with other used
library functions. No suitable replacement was found, partly due to the used version
of the web framework, which was still relatively new during the months of develop-
ment. This Django version was heavily preferred however, due to it being a long-term
version.

Furthermore, in this sprint a first time guided tour was added to show the user the
main functionalities of the workbench.

Also, in this sprint the workbench changed some default settings and automati-
cally enables all the workbench services whenever possible, so for example automatic
documentation generation, static code analysis and more.

During the user interviews, it was clear not all the researchers used Python to create
their experiments. Because of this, the workbench has to provide the same services for
the R programming language. This posed several challenges in this sprint: (1) all of
the functions so far were all created specifically for Python, (2) for all the functions
so far R alternatives needed to be found and they needed to be integrated into the
workbench. One might argue that it would have been better to initially design the
workbench in such a way as to immediately support several programming languages,
but I disagree: Because of the initial prototypes with Python, using it, I learned a lot
of lessons of what is possible and what works, lessons that can be applied to R.

To achieve this, some code had to be refactored. An interface was created that has
all the methods specific for a programming language, such as adding a dependency
and generating documentation. These were implemented for both Python and R.

For R, I have made the following choices: For Package management, Packrat
used. Packrat is specifically meant for making research using R more reproducible.
It supports easily defining dependencies and supports shipping R experiments with all
the dependencies present. It also features a similar system like virtualenv in Python,
where dependencies are only installed locally in a project instead of system-wide. The
disadvantage of Packrat is that it is a third-party library and not natively supported by
R. For dependencies, the workbench is for R and Python feature equivalent.

For documentation, no R alternative is present. I could not find a library suitable
for this context. A possible solution had to fulfill the following requirements: (1) writ-
ing documentation directly into R source files and (2) extracting this documentation

60 is

Ohttps://rstudio.github.io/packrat/
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and building HTML pages from them and (3) showing which functions and statements
are not covered with documentation. One serious contender was roxygen2®'. How-
ever, such a library only works for packages. If the workbench were to use such a
solution, this meant that the R boilerplate template had to be redesigned in such a way
that every experiment step of the R template became a package. Such a set-up inter-
feres too much with the workflow of researchers, due to the large number of folders and
boilerplate code required, because that meant the R template contained five packages
by default. That was unacceptable and thus I abandoned this library.

Being unable to find a suitable library for R makes sense, since R is often used for
short scripts that are supposed to be self-documenting. Most document tools we have
found, support creating a paper directly from an R script, but that is unsuitable for the
workbench, since it does not document the actual source code and thus does not help
with code sharing.

For testing, the template provides R boilerplate testing code. For Continuous In-
tegration with R, the Cookiecutter template has a configuration for Travis CI that au-
tomatically installs all the R dependencies and runs the tests. For code coverage, this
is not supported in R due to technical difficulties: Travis did not submit the R code
coverage measurements to Coveralls, but this might work in a future version. Due to
the use of Cookiecutter, creating and adding an R template to the workbench was very
easy. For R packages, the workbench supports the same features as Python, meaning
researchers can create packages from an experiment step. The workbench creates all
the boilerplate code for an R package. To serve packages, I made the choice to use the
R feature of being able to install packages directly from GitHub, since this does not
require any extra work on the server-side. For the data schema, JsonTableSchema’s R
version is not ready yet. In a future version, as a temporary work-around a short Python
file might be added that creates the data schema or better yet, tooling is built on the
workbench website itself, so that the data schema step becomes language-independent.

Beta-ready

The final sprint was focused on getting all the features of the workbench into such
a shape that they were ready to use and test by researchers. As a single developer,
you have to balance testing and adding value to the workbench, but since you are
alone, testing and finding bugs is difficult since you know how to use the workbench.
Thinking outside the box for testing is difficult and a different skill then engineering.

During this sprint, the workbench was tested extensively, also by another person
and I have also made sure the relevant logs for the user test for the evaluation phase
are present. At the end of the sprint, the test suite of the workbench achieved a code
coverage of 81 percent.

61 https://cran.r-project.org/web/packages/roxygen2/vignettes/roxygen2.html

111



	Preface
	Contents
	List of Figures
	Introduction
	Context and motivation
	Objective of this research
	Steps and questions
	Approach and outline

	Literature study
	MOOCs
	MOOC research
	Sharing and reproducibility in computer science

	Requirements analysis
	User interviews
	Takeaways and conclusions
	Requirements

	Experimental workflow design
	Scientific workflow systems
	Reproducibility enhancing systems
	Other tools and considerations
	Software engineering practices
	Key workflow properties
	Design proposal

	Implementation
	Web engineering
	Architecture
	Functionality
	Requirements validation
	Conclusion

	Evaluation
	User testing
	Conclusion

	Conclusions and Future Work
	Contributions
	Future work
	Source code

	Bibliography
	User interview questions & summarized answers
	User test presentation
	Dataset readmes provided during user test
	IMDB movie dataset
	Gym crowdedness dataset

	Implementation
	Used technologies
	Implementation
	Functionality
	Implementation phases


