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A Parametrized Model Predictive Control Approach for Microgrids

Tomás Pippia, Joris Sijs, and Bart De Schutter

Abstract— We propose a parametrized Model Predictive
Control (MPC) approach for optimal operation of microgrids.
The parametrization expresses the control input as a function
of the states, variables, and parameters. In this way, it is
possible to apply an MPC approach by optimizing only the
parameters and not the inputs. Moreover, the value of the
binary control variables in the model is assigned according
to parametrized heuristic rules, thus obtaining a formulation
for the optimization problem that is more scalable compared to
standard approaches in the literature. Furthermore, we propose
a control scheme based on one single controller that uses two
different sampling times and prediction models. By doing so,
we can include both fast and slow dynamics of the system at the
same level. This control approach is applied to an operational
control problem of a microgrid, which includes local loads, local
production units, and local energy storage systems and results
show the effectiveness of the proposed approach.

Index Terms— Model predictive control, Microgrids, Smart
Grids

I. INTRODUCTION
Microgrids are seen as an innovative tool in power

networks that can lead the old power networks towards
new Smart Grids [1]–[3]. Microgrids can offer significant
benefits, e.g. improved reliability, higher power quality by
managing local loads, and increased efficiency due to the
fact that energy produced locally is also locally consumed.
They are also interesting from a control point of view,
since, in order to achieve economic profitability of their
operation, control actions that minimize an economical cost
by optimally managing the power flows inside the microgrid
should be considered.

Some Model Predictive Control (MPC) algorithms have
been proposed for this purpose [4]–[9]. These works consider
microgrids in which local loads and local generators are
present and in some cases the microgrids are even in an
islanded mode [7], [8], i.e. the microgrid is disconnected
from the main grid. Moreover, some of these papers consider
controllers with a hierarchical structure [4]–[7], where a
higher-level controller computes the optimal setpoints for a
lower-level controller, which is in turn responsible for driving
the states and inputs of the system to the desired setpoints.
Since this approach introduces an extra level in the controller
structure, it requires more computational power and amount
of communication. Moreover, different controller devices are
required to implement this solution.
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In this work, we propose a single-level controller that uses
two different models, with different dynamics. One model
including a higher number of states is used for predictions
close to the current sampling time, while another model
with a smaller number of states is used for predictions that
are far in time from the current sampling time. Moreover,
the rate of dynamics of the two models is different. The
benefits of this approach are twofold. In the first place, with
this approach we only need one controller and therefore the
communication required and the amount of controller devices
are reduced. Secondly, by using two different models, we
are able to capture the ‘fast’ dynamics of the system and,
when the system has reached the steady state condition,
we use the other model that can provide a less complex
but still representative model. This is important since the
problem that we consider is computationally complex due to
the presence of binary decision variables.

In order to reduce the computational complexity of the
problem, we consider a parametrized MPC controller, in
which the input law is parametrized according to certain
parameters. Our approach is inspired by [10], where the
parametrized MPC controller was introduced. We define the
control law as a parametrized expression of the parame-
ters, the states, the previously computed inputs, and some
variables. The resulting parametric law for the continuous
control variables is a summation of functions weighted by
the parameters. The functions represent different control
objectives, e.g. to keep the values of some states close to
a given value or to reduce the value of some inputs to
reduce the cost, and the parameters represent the importance
of each objective. Furthermore, we assign the value to the
discrete control variables according to if-then-else rules. The
optimization problem is then carried out over the parameters
and not over the actual inputs. This approach allows us to
increase the scalability of the overall problem, since the
number of optimization variables is considerably reduced.

The microgrid that we consider consists of local produc-
tion units, local loads, and energy storage systems. Moreover,
the microgrid is connected to the main grid, so that energy
can be bought or sold, if necessary. We consider also two
different kinds of energy storage systems, i.e. a battery and
an ultracapacitor. The battery is used to store larger amounts
of energy while the ultracapacitor is used for cases in which
a fast response is needed. Furthermore, the ultracapacitor is
used only in predictions for time instants close to the current
time step, and therefore it is used only in the ‘fast’ model.
The ‘slow’ model includes only the dynamics of the battery.

The main contribution of this article is therefore related
to the development of a parametrized controller for the
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Fig. 1. Microgrid scheme considered in this article. Arrows represent power
flows. The microgrid is connected to the main grid.

optimization of the energy management in a microgrid. By
parametrizing the inputs of the system, we can reduce the
number of optimization variables and thus the computational
complexity of the problem. We also propose a parametriza-
tion of the integer variables in the model to further decrease
the computational complexity. Moreover, by including two
different storage devices and providing two different models,
we are able to increase the flexibility of the system.

The outline of the article is as follows. We describe the
model of the microgrid under control in Section II. In Section
III the main features of standard MPC and our proposed
single-level parametrized MPC controller are explained. In
Section IV we apply our proposed approach to a simulation
of the operation of a microgrid, comparing it to an existing
controller in the literature, and lastly we present some
conclusions in Section V.

Notation: We denote vectors with bold style, e.g. x, P ,
and scalars with non-bold text style. We indicate with R+

the set of positive real numbers, i.e. the set {x ∈ R|x > 0}.

II. MODEL DESCRIPTION
We consider a microgrid, composed of several elements,

e.g. storage units, loads, production units, and its operational
costs. We want to optimize the operational costs of the
microgrid, by implementing a control action on it. The
microgrid that we consider is not in an islanded mode and
can, therefore, exchange energy with the main grid. The
energy that is produced in the microgrid can then be either
used locally, stored in storage systems, or sold to the main
grid. A scheme is shown in Figure 1.

A. Microgrid Description

We consider a model similar to the one presented in [4],
with some modifications and simplifications.

a) Loads: We consider only critical loads, i.e. loads that
must always be satisfied. We denote by Pl the total power
required by the loads.

b) Dynamics of the energy storage systems: The dy-
namics of the Energy Storage Systems (ESSs) are expressed
with a simplified formulation [11] with respect to [4], i.e.

xst(k + 1) =

{
xst(k) + T

ηd,st
Pst(k), Pst(k) < 0

xst(k) + Tηc,stPst(k), Pst(k) ≥ 0
, (1)

where xst(k) indicates the level of energy stored at the ESS
at time step k, ηc,st and ηd,st are the charging and discharging

efficiencies, respectively, Pst(k) is the power exchanged with
the ESS at time step k, and T is the sampling interval of the
discrete-time system. The ESS can only be in one of the
two modes, i.e. charging or discharging, at any time step.
Following the same modeling approach as in [4], we use
a Mixed Logical Dynamical (MLD) model [12] to model
the two different modes of the batteries. We denote by δst
the boolean variable that indicates whether the battery is in
the charging or discharging mode, i.e. δst(k) = 1 ⇐⇒
Pst(k) ≥ 0, and δst(k) = 0 ⇐⇒ Pst(k) < 0. Then we
define a new auxiliary variable zst as zst(k) = δst(k)Pst(k)
and we can write (1) more compactly as

xst(k+1) = xst(k)+T

(
ηc,st −

1

ηd,st

)
zst(k)+

T

ηd,st
Pst(k).

(2)
We consider two ESSs: an ultracapacitor used for fast

response and a battery for storing larger amounts of energy.
c) Generators: We consider two different kinds of

generators, i.e. dispatchable generators, whose output power
can be controlled, and non-dispatchable generators, whose
output power cannot be controlled. Renewable sources are
considered as non-dispatchable and their output is considered
as a known disturbance. We denote the vector of the variables
representing the power produced by the generators by Pp =[
P>dis Pres

]>
, where Pdis =

[
P dis
1 , . . . , P dis

Ngen

]>
indicates

the vector of the variables representing the power produced
by the dispatchable units and Pres denotes the total power
produced by renewable energy sources. Furthermore, P dis

i

denotes the power produced by generator i and Ngen denotes
the total number of generators. Moreover, we use a variable
δoni (k) to indicate whether dispatchable generator i is active
at time step k, i.e. δoni (k) = 1, or not, i.e. δoni (k) = 0.

d) Main grid: The interaction with the main grid is
modeled using again a binary variable δg, which indicates
whether energy is being bought or sold to the main grid. If
Pg is the power exchanged with the main grid, then we have{

δg(k) = 0 ⇐⇒ Pg(k) < 0, (exporting case)

δg(k) = 1 ⇐⇒ Pg(k) ≥ 0, (importing case)
(3)

e) Energy prices: We assume that the prices of electric-
ity are time-varying and that prices for purchase and sale of
electricity are different. We denote with cs and cb the price
for selling and buying electricity to and from the main grid,
respectively. We also consider a fixed tariff cp for producing
electricity with the local dispatchable units.

We can then define a variable Cg as Cg(k) = cs(k)Pg(k),
if δg(k) = 0 and Cg(k) = cb(k)Pg(k), if δg(k) = 1.

Remark 1: The number of storage devices here is kept
limited for simplicity of expression but our approach can
also be applied to systems with a higher number of ESSs.

B. Fast and Slow Model

We consider two different models in this work, namely
a ‘fast’ one and a ‘slow’ one. The ‘fast’ model is used for
predictions that are close to the current sampling time, while
the ‘slow’ one is used for predictions that are farther away
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in time. Moreover, we consider that the ultracapacitor is
available for usage only at time instants close to the current
sampling time, in order to provide a fast response to the
system. Therefore, it is not used in the ‘slow’ model, which
implies that the number of the state components and of input
components in the two models are different, since the ‘slow’
model does not have the dynamics of the ultracapacitor.

In Figure 2 we show the different sampling times and the
time intervals in which each model is used. We denote by Tf
and Ts the sampling interval of the ‘fast’ and ‘slow’ model,
respectively, and we denote by h and k the time steps of the
‘fast’ and ‘slow’ model, respectively. Moreover, we suppose
that from time step Nf,s of the ‘fast’ model we start using
the ‘slow’ model for predictions. Lastly, the step Nf,s of the
‘fast’ model coincides with time step 0 of the ‘slow’ model.

For the fast model, by following (2), the equations are

xf(h+ 1) = xf(h) +Bf
1zf(h) +Bf

2uf(h), (4)

where xf(h) =
[
xf,b(h) xf,uc(h)

]>
, with xf,b and xf,uc

being the storage level of the battery and of the ultraca-
pacitor, respectively, zf is the auxiliary variable for the fast
model, and Bf

1 ∈ R2×2, Bf
2 ∈ R2×mf . We define the input

vector as uf(h) =
[
Pf,b(h) Pf,uc(h)

]>
, uf(h) ∈ Rmf ,

which represents respectively the power exchanged with the
battery and the power exchanged with the ultracapacitor. The
slow model is defined in a similar way, i.e.

xs(k + 1) = xs(k) +Bs
1zs(k) +Bs

2us(k), (5)

where xs(k) = xs,b(k) is the storage level of the battery, zs is
the auxiliary variable for the ‘slow’ model, and Bs

1, B
s
2 ∈ R.

The input vector is defined as us(k) = Ps,b(k) and it
represents the power exchanged with the battery.

By following [4], we can consider the power balance in
the microgrid,

Pf,b(h) =

Ngen∑
i=1

P dis
i (h)+Pres(h)+Pg(h)−Pf,uc(h)−Pl(h),

(6)
∀h ≥ 0, and apply it to (4) to write the expres-
sion of the dynamics of the storages as a function of
Pg, Pl, Pp. Then, by introducing matrices Mu, Mw

and defining uf(h) = Muuf(h) + Mwwf(h), with

uf(h) =
[
P>dis(h) Pg(h) Pf,uc(h) (δon(h))

>
]>

,

wf(h) =
[
Pl(h) Pres(h)

]>
, we can link (4) and (6) as

xf(h+1) = xf(h)+Bf
1zf(h)+Bf

2 (Muuf(h) +Mwwf(h)) .
(7)

A similar expression is obtained for (5).
Since the ‘slow’ model does not have the dynamics or

the inputs related to the ultracapacitor, the number of states
and inputs is different in the two models. Therefore, it is
necessary to define a way to link the two models. We assume
that the ‘fast’ model is used only until the time instant TfNf,s,
i.e. time step Nf,s of the ‘fast’ model and after that the ‘slow’
model is used. We can link the two models as

xs(0) = xf,b(Nf,s), (8)

T� Ts

���s
�p

Fig. 2. Scheme adopted for the time step of the two different models.

which means that we can define a matrix Mf,s =
[
1 0

]
to link the two models as xs(0) = Mf,sxf(Nf,s).

C. Constraints

The dynamics and the power flows are subject to con-
straints. We use an MLD model for the storages and the
power exchanged with the main grid and therefore we
define the constraints as in [4], [12] by defining matrices
E1, E2, E3, E4. Since we have two different models, we
define two different sets of constraints for the two models,
denoted with a superscript ‘f’ and ‘s’ the constraints for
the ‘fast’ and ‘slow’ model, respectively. We can then write
compactly the constraints as

Ef
1δst(k) + Ef

2zf(k) ≤ Ef
3uf(k) + Ef

4. (9)

where δst =
[
δbst δucst

]
and δbst, δ

uc
st are the binary variables

associated with the battery and the ultracapacitor, respec-
tively. A similar equation holds for the ‘slow’ model, where
we replace the matrices Ef

i with matrices Es
i , i ∈ {1, · · · , 4}

and we replace the variables of the ‘fast’ model with the
ones of the ‘slow’ model.

We also define the bounds for the states and the inputs,

P b ≤Pb(h) ≤ P b (10)

P uc ≤Puc(h) ≤ P uc (11)

P g ≤Pg(h) ≤ P g (12)

δoni (h)P dis ≤P dis
i (h) ≤ δoni (h)P dis (13)

xst ≤xst(h) ≤ xst (14)

for i ∈ {1, · · · , Ngen}. The constraints (10)-(14) are used
to model the physical bounds on, respectively, the power
exchanged with the battery, the power exchanged with the
ultracapacitor, the power exchanged with the main grid, the
power produced by the production units, and the level of
charge in the storages. These constraints can be applied to
the quantities of both the ‘slow’ and ‘fast’ model.

III. CONTROLLER SCHEME

A. Standard MPC

MPC is a well-known, established control approach that
has been extensively studied in the last forty years [13], [14].
The control action is computed by solving an online optimal
control problem, using a model of the plant under control
for computing predictions of the future states up to a certain
prediction horizon Np. The optimization problem results in
a sequence of optimal inputs, but only the first of them is
applied to the system. At the next control time step, the
system state is measured and a new optimization problem
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is solved. With this strategy, MPC controllers are able to
handle to a certain extent model mismatches, uncertainties,
and disturbances [13], [14]. Moreover, the MPC strategy
transforms the control problem into an optimization one, and
thus constraints can be included into the control problem.

B. Parametrized MPC

In parametrized MPC (PMPC) [10], the inputs are
parametrized as a function of parameters θ, variables y, and
states x, i.e. u(k) = f(x(k), y(k), θ(k)). The optimization
is then carried out over the parameters, instead of over the
inputs. The advantage of PMPC is that the computational
complexity can be reduced since the number of decision
variables is reduced, if the number of components of θ(k)
is less than the number of components of u(k), or if θ(k) is
taken constant over the prediction window. Moreover, while
in strategies in which the input is blocked the value of the
input remains constant [13], in PMPC the inputs can change
since they depend not only on the parameters but also on the
states or other variables.

Different numbers of parameters can be used in PMPC,
as explained in [10]. For instance, it is possible to allow
the parameters to vary at every time step to increase the
performance, or to block the value of the parameters so
that they cannot vary over the prediction window, yielding a
faster solution. Therefore, the number of parameters acts as
variable that can be tuned and it provides a trade-off between
performance and computational complexity. In this work, we
consider only one set of parameters, i.e. the same parameters
are kept for the whole prediction horizon. In this way, we
are able to reduce the computational complexity, since we
reduce the number of decision variables.

C. Single-level Two-model Controller

We consider a single-level centralized controller that uses
the two different models of the microgrid defined before, i.e.
a ‘fast’ one and a ‘slow’ one, to compute the optimal inputs.
As explained before, the ‘fast’ model is used until time step
Nf,s and thereafter the ‘slow’ model is used.

At time step h̄ the optimization problem is solved until
the time step h̄ + NP − 1. Next, only the first input of the
optimal sequence is applied, and then the problem is solved
again from h̄+Tf until h̄+Tf +NP−1, and so on so forth.
This is the standard approach for MPC controllers.

D. Parametrized Input Laws

The PMPC law of each input is defined as a weighted
sum of functions that depend on the states, on the previous
continuous control inputs, and on some quantities, e.g. price
of electricity. Moreover, we fix the value of the parameters
for the whole prediction horizon, in order to reduce the com-
putational complexity of the problem. The discrete control
inputs are instead assigned according to if-then-else rules.

The continuous components of ūf are parametrized as
3∑
i=1

θi
fi (x(h), w(h), w(h− 1), cs(h), cb(h), ū(h− 1))

fmax
i

,

(15)

where parameters θi and functions fi are different for each
component of ūf . The value fmax

i corresponds to the maxi-
mum of the function fi and it is used to normalize the term
corresponding to the parameter θi. Since the parameters θi
are constant, uf has 3 components, and us has 2 components,
we have in total 15 parameters.

The functions fi depend either on the states or on variables
such as Pl, cs, or cb. The idea behind the design of these
functions is to assign more or less importance to certain
objectives. Following (15), we propose in total 9 different
functions, 3 for each component of uf ; we also denote them
with the superscripts ‘uc’, ‘g’, ‘p’, which denote respectively
the ultracapacitor, the main grid, the produced power. The
functions are defined as follows:

• fuc1 = 0.5 (xuc − xuc) − xuc(h), in order to keep the
value of the storage of the ultracapacitor close to its
medium value, so that the ultracapacitor can react to a
change in power by providing power or absorbing it;

• fuc2 (h) = −Pl(h−1)+Pres(h−1)+
∑Ngen

i=1 P dis
i (h−1),

so that more power is stored in the ultracapacitor if at
the previous time step there was more power produced
than consumed locally, and vice versa;

• fuc3 (h) = −cb(h), to take more power from the ultra-
capacitor when the price for buying electricity is high;

• fg1 (h) = −cb(h), so that less power is bought from the
main grid if the price for buying electricity is high;

• fg2 (h) = −cs(h), in order to sell more electricity to
the main grid if the price for selling electricity is high
(recall (3));

• fg3 (h) = −fuc2 (h), so that more power is bought if at
the previous time step the local consumption was higher
than the local production, and vice versa;

• fp1 (h) = Pl(h), in order to produce more power when
the local demand is high;

• fp2 (h) = cb(h), so that more power is produced locally
when the price for buying electricity is high;

• fp3 (h) = xb − xf,b(h), with the idea that more power
is produced proportionally to the level of charge of the
battery, i.e. more power is produced if there is not too
much ‘reserve power’ in the battery.

The functions fuci , fpi , fgi , i ∈ {1, 2, 3} are used in the
control law associated to the ‘fast’ model, while all the
functions except for the functions fuci are used in the control
law associated to the ‘slow’ model.

Besides functions fuci , fpi , fgi , i ∈ {1, 2, 3}, we also
propose a heuristic assignment of the boolean control vari-
ables δon, δst, and δg in order to reduce the computational
complexity of the control problem. More specifically, we
define a set of if-then-else rules to assign the values 0 or
1 to the boolean values:

• the generators are turned on, i.e. δon(h) = 1, if
Pres(h) < Pl(h), so that the required power can be
provided (at least partially) by the generators;

• power is bought from the main grid, i.e. δg(h) = 1, if
Pres(h) − Pl(h) < −α, where α ∈ R+ is a threshold
that can be defined by the user. The idea here is that
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first we try to satisfy the local loads using the local
production units, but if the power required by the loads
is quite high, then we also allow the controller to buy
energy from the main grid;

• at the same way, we allow the controller to use the
energy stored in the battery, i.e. δb(h) = 0, if Pres(h)−
Pl(h) < −α, since the power balance (6) must be
always satisfied. Energy can be stored in the battery in
the opposite case. Moreover, due to the smaller capacity
of the ultracapacitor with respect to the battery, and
in order to add more flexibility to achieve the power
balance (6), the ultracapacitor is allowed to store energy
when the battery is being drained and vice versa, i.e.
δuc(h) = 1, if Pres(h)− Pl(h) < − α.

The threshold α can be defined by the user with some
insight in the problem. Note that due to the power balance
constraint (6), an upper bound to α must be imposed, which
results in α ≤ NgenP dis. Otherwise, in the worst case
scenario, the power balance (6) cannot be satisfied.

Remark 2: Due to fuc1 , fp3 and to (15), the optimization
problem becomes nonlinear. Since we also parametrize the
integer values, the problem does not have integer variables.
Note that the standard approach for MPC control of MLD
systems in the literature results in a Mixed Integer Linear
Programming (MILP) problem. While for small-sized prob-
lems the MILP approach could be faster, its complexity is
exponential in the number of integer optimization variables
in the worst case [15], [16]. Although our approach results in
a nonlinear programming problem, it will be more scalable,
since it does not suffer the exponential increase complexity
related to the number of binary variables.

E. Cost Function and Optimization Problem

The cost function of the PMPC problem is a sum of the
economical costs related to buying or selling electricity from
or to the main grid, and consuming fuel for producing power
locally. Moreover, since two different models are used, the
cost function consists on the sum of two different terms. The
cost function is then defined as

J(Pdis(h), Cg(h)) =

Nf,s−1∑
j=0

Cg(h+ j) + cp

Ngen∑
i=1

P dis
i (h+ j)


+

Np−1∑
l=0

Cg(h+Nf,s + l) + cp

Ngen∑
i=1

P dis
i (h+Nf,s + l)


(16)

Following (16), we define the optimization problem of the
MPC controller as

min
θ
J(xf(h), xs(k)) (17)

subject to

dynamics (7), (8), constraints (6), (9)− (14),
parametrized input (15)

and xf(h) is initialized to the current state. As standard in
MPC controllers, we compute the optimal parameters θ and
thus the optimal inputs from the current time step h until
time step h + Np − 1. We apply only the first element of
the optimal input sequence and at the next sampling time we
solve problem (17) once again.

IV. SIMULATION

We consider a case study similar to the one in [4]. We
simulate the behavior of a microgrid that has local production
units (both renewable sources and dispatchable generators),
local loads, and two energy storage systems, i.e. a battery
and an ultracapacitor. The values that we consider for the
parameters of the microgrid are: Ngen = 4, xuc = 40 kWh,
xb = 250 kWh, P dis = 120 kW. Moreover, Tf = 5 min,
Ts = 30 min, Nf,s = 6, Np = 24, α = 200. We simulate
the control problem of the microgrid for a simulation time
of 24 h, comparing the results of a centralized MPC MILP
algorithm controller (as presented in [4]) with our proposed
approach. The variable energy prices are shown in Figure 3.

Figure 4 shows the power exchanged in the microgrid both
for our proposed approach and for the MILP approach. Note
that there are some differences in the solutions. During the
peak hours, i.e. from 9 h until 20 h, the two controllers
propose two different solutions: the MILP controller decides
to produce power at the maximum capacity and sell all the
exceeding one to the main grid, while the PMPC controller
produces less power locally and sells less power to the main
grid. Moreover, the usage of the storage devices is slightly
different: the MILP controller drains almost immediately the
power from the ESSs and uses them for mainly for balancing
the power, while the PMPC controller keeps charged the
ultracapacitor for a longer time. This is also depicted in
Figure 5, where we show the evolution of the states xst both
for the MILP and the PMPC.

However, the total cost related to the two controllers is
similar. A comparison is shown in Table I, where PTOT

dis ,
PTOT
g,s , and PTOT

g,b denote respectively the total power pro-
duced, the total power sold to the main grid and the total
power bought from the main grid. It is possible to observe
that the total cost associated to the PMPC controller is
very close the one of the MILP controller, although the
PMPC controller decides to sell less energy and buy more
energy from the main grid, compared to the MILP controller.
Therefore, the two controllers have a comparable perfor-
mance. However, with our proposed approach we get rid
of the integer variables and we parametrize the continuous
control inputs, therefore we can provide a scalable algorithm
compared to the standard MILP approach.

V. CONCLUSIONS

We have presented a parametric MPC approach for the
optimization of the operation of a microgrid. Our controller
is based on a parametrized control law and also assigns the
values to the binary decision variables using parametrized
heuristic rules. This approach increases the scalability of the
control algorithm and reduces its complexity. Simulations
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Fig. 3. Electricity purchase (cb), sale (cs), and production (cp) prices in
the considered simulation.
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Fig. 4. Power flows in the microgrid during the considered simulation,
when the PMPC controller is used (top) and when an MILP controller is
applied (bottom).
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Fig. 5. Stored energy in the storage devices when the PMPC controller is
used (top) and when a MILP controller is applied (bottom).

TABLE I
COMPARISON BETWEEN PMPC AND MILP SIMULATION RESULTS

PTOT
dis PTOT

g,s PTOT
g,b Total cost

PMPC 116440 kW 14210 kW 13312 kW 4294.97 e
MILP 127020 kW 24434 kW 12881 kW 4225.40 e

show that our proposed approach is able to achieve a com-
parable performance with respect to the standard approach
in the literature [4].

Future research includes defining alternative parametric
input functions exploiting the dynamics of the system under
control and performing a thorough comparison between our
approach and the standard one in the literature in terms of
scalability of the two algorithms.
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