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Abstract
Due to the global energy crisis, there is a growing need to make industrial processes more efficient and
clean. One such method is to use effective and renewable working fluids in power and refrigeration
cycles. Research in this field during the past decade has placed supercritical CO2 (SCO2) in the fore-
front due to its non-ideal properties and abundance in nature but, to fully understand their heat transfer
properties, insight into boundary layer flow and hydrodynamic instabilities are crucial. Experimental se-
tups such as closed loop wind tunnel contraction facilities are needed which provide a laminar steady
flow to take boundary layer measurements. However, using a contraction causes various problems
such as formation of secondary flows like boundary layer separation, Gortler vortices, cross-flows and
non-uniformity’s. In this study a novel 1D contraction shape with curvature on only one side is pro-
posed. This will completely eliminate the risk of Gortler vortices on the bottom plate and make it a
suitable candidate for boundary layer experiments. Nevertheless, the risk of the other secondary flows
and Gortler vortices on the top wall disturbing this laminar flow remains. Hence, the present research
aims to optimise this 1D contraction to reduce the risk of such secondary flows and analyse the growth
of Gortler vortices on the top wall using numerical simulations.

Steady state laminar simulations were performed to optimise the design of the 1D wind tunnel contrac-
tion. Optimum contraction and settling chamber lengths were found by identifying the risk of flow sepa-
ration and boundary condition effects respectively. For the optimisation of the contraction wall shape, a
family of transformed fifth order polynomial curves with varying inflection point distances were selected.
To identify the curve with least risk of boundary layer separation and lowest flow non-uniformity, a multi-
objective optimisation procedure was implemented. The procedure found that a curve with inflection
point of 101mm downstream of contraction inlet gives the best performance.

To analyse the effect of Gortler vortices on outlet uniformity, unsteady laminar simulations were per-
formed on the contraction by forcing sinusoidal perturbations of different wavenumbers. This study
found that perturbations form symmetrical steady steam-wise Gortler vortices in the contraction. The
most unstable wavenumber was found to be 𝜆=83.33 𝑚−1 which formed secondary vortices of high
vorticity. However it was also seen that for all wavenumbers, the vortices lose energy as they exit
the contraction and do not affect the bottom boundary layer. Further, the effects of a side-wall on the
formation of Gortler vortices were also investigated. The results showed that the Gortler vortex closest
to the wall is absorbed into high vorticity corner vortices, while those close to the centre-line develop
into steady Gortler vortices. No effect on the centre-line velocity profile was seen due to the vortices
making the 1D contraction suitable for boundary layer experiments. Finally, it was also seen that the
1D contraction shape produces asymmetrical Gortler vortices due to alternative perturbation methods
such as random inlet perturbations.

v





Nomenclature
𝛿1 Displacement Thickness

�̇� Mass Flow Rate (Kg/s)

Γ Circulation (m2/𝑠)
𝜆 Wavelength (m)

𝜇 Dynamic Viscosity (Pa-s)

𝜈 Kinematic Viscosity (m2/𝑠)
𝜔 Angular Frequency (1/s)

𝜌 Density (Kg/m3)
𝜎 Standard Deviation

𝜏 Shear Stress (Pa)

𝜃 Momentum Thickness

𝐶𝑝𝑒 Pressure Coefficient Minimum

𝐶𝑝𝑖 Pressure Coefficient Maximum

𝑓 Brassard Transformation Parameter

𝐺 Gortler number

ℎ Contraction Height (m)

𝐻𝑖 Contraction Inlet Height (m)

𝐻𝑜 Contraction Outlet Height (m)

𝐿𝑐 Contraction Length (m)

𝑀𝑎 Mach Number

𝑅 Radius of Curvature (m)

𝑅𝑒 Reynold’s Number

𝑡 Time (s)

𝑈∞ Free-stream Velocity (m/s)

𝑈𝜏 Friction Velocity (m/s)

𝑈𝑏 Bulk Velocity (m)

𝑈𝑖𝑛𝑙𝑒𝑡 Mean Velocity Settling Chamber Inlet

𝑤 Contraction Width (m)

𝑥 Stream-wise Coordinate (m)

𝑦 Wall Normal Coordinate (m)

𝑧 Span-wise Coordinate (m)
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1
Introduction

1.1. Background
Climate change has become one of the greatest problems faced by humankind in the 21𝑠𝑡 century.
The exploitation of natural non-renewable resources such as fossil fuels have caused widespread pol-
lution leading to global warming. It is predicted by Stocker et al 2013 [1] that if current trends continue
without immediate greenhouse gas mitigation efforts, by the year 2030 the average global temperature
rise could be as high as 2𝑜C for certain countries . Hence there is an urgent need to move towards
renewable energy and more efficient systems.

Industrialisation has been identified as one of the leading causes for climate change. It is impera-
tive that industries across the world update and innovate their current processes before irreversible
damage is caused. This has lead to has growing research on innovative techniques to improve the
efficiency and environmental impact of industrial processes. One such innovation has been in the field
of novel working fluids for power cycles such as supercritical carbon dioxide (SCO2) to replace conven-
tional fluids . It has been found by Ahn et al 2015 [2] that SCO2 power cycles give a higher efficiency
for mild turbine inlet temperatures when compared to other systems . This is because they require
lower compressor work input due to their novel real gas properties near the critical point. They are also
more compact and have a higher power density than conventional systems due to high pressures and
densities. SCO2 is also a non-toxic, non-flammable, non-carcinogenic and thermodynamically stable
alternative. It has a low critical temperature and a relatively low critical pressure. These properties
make SCO2 a forerunner of the working fluids of the future.

However, the use of SCO2 in power cycles has its challenges due to the the non-ideal behaviour
of SCO2 near the Widom line, where large gradients of density and viscosity are seen on heating. This
behaviour can also cause changes to the hydrodynamic stability of the fluid as shown by Ren and Pec-
nik 2019 [3]. Understanding the intricacies of these instabilities and their possible transition to turbulent
flow is of great importance since they can affect the overall heat transfer and efficiency of the system.

To investigate these instabilities in SCO2 experimentally, a low speed wind tunnel facility for boundary
layer measurements is currently under construction in the Process and Energy lab in TU Delft. This
setup will consist of a vertical natural convection loop to drive the flow, and heat transfer measurements
will be taken in a test section to understand the transition of the boundary layer. As shown in Fig. 1.1,
the main parts of the contraction include two differentially heated vertical legs, a settling chamber ,
screens, honeycombs, a contraction, a diffuser and a test section. This wind tunnel facility does not
contain a leading edge in the test section to generate a growing boundary layer due to size and space
restrictions in high pressure system. Hence the boundary layer measurements will be taken on the
bottom wall of the test section channel itself.

1
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Figure 1.1: Contraction and test section Connected to Natural Convection Loop

One major challenge in the construction of such a facility is in the design of the contraction section.
The instability experiments will be possible only if a laminar flow is achieved at the inlet of the test
section. Due to the curvature, presence of edges and varying cross section, contractions are inher-
ently prone to various secondary flows such as boundary layer separation, edge flows and cross flows.
Additionally, due to the low kinematic viscosity of SCO2, they have high Reynolds numbers even in
low-speed wind tunnels. This causes a risk of curvature induced instabilities to form in the contraction
called Gortler vortices. Using a conventional 2D or 3D wind tunnel as show Fig.1.2 and Fig. 1.3 can
lead to a formation of these vortices on the top and bottom walls which would render the experimental
setup invalid.

Figure 1.2: 2D Contraction Figure 1.3: 3D Contraction

To circumvent the problem of Gortler vortices on the bottom boundary layer, this thesis proposes a
novel 1D contraction as shown in Fig. 1.4.However the problem of other secondary flows in the contrac-
tion and Gortler vortices on the top boundary layer still exist. Hence,this research will aim to optimise
this contraction and show through numerical simulations that the proposed geometry is successful in
producing a laminar boundary layer on the bottom wall as per the requirement of the experimental fa-
cility.
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Figure 1.4: 1D Contraction

As this contraction type has not been used previously for boundary layer measurements, a com-
prehensive literature study will be performed to understand the numerical methods, optimisation tech-
niques and perturbation analysis that can be used to understand the flow through this 1D contraction.

The present study will aim to answer the following broad research questions:

1. What is the optimum contraction length and settling chamber length for this experimental setup?

2. Which wall curvature function and inflection point distance gives the best performance for a 1D
contraction?

3. Is the flow through the contraction stable and steady after the addition of perturbations?

4. What wavenumber of the perturbation is most unstable?

5. Do the Gortler vortices effect the bottom boundary layer on which heat transfer boundary mea-
surements are to be take?

1.2. Literature Review

This section contains a literature review of the research relevant to the wind tunnel contractions, sec-
ondary flows in contractions, contractions optimisation and the Gortler instability. The section will be
divided into three subsections, the first will give e brief introduction to wind tunnel facilities, the sec-
ond will detail the optimisation and secondary flows in a wind tunnel contraction, while the second will
discuss existing literature on the Gortler instability and vortices.

1.2.1. Wind tunnel facilities

A wind tunnel facility is a setup used for blowing fluids through a test section for the replication of
aerodynamics and flow phenomena. They can be constructed in a wide range of sizes depending on
their purpose of application, from large wind tunnels for aeronautical studies, to smaller wind tunnel in
academic laboratories. They can be categorised into two main types depending on the velocity of the
fluid flow in the system, low speed wind tunnels where the Mach number Ma<0.3 and high speed wind
tunnels where Ma>0.3.

Wind tunnels can also be categorised on the setup of the circuit used to transport the fluid. A closed
wind tunnel consists of a closed loop of fluid that is recirculated inside the system, while an open loop
takes ambient air which it drives through the tunnel. An example of a wind tunnel with its main parts
named is shown in Fig 1.5.
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Figure 1.5: Main Components of a Wind Tunnel Facility

A short description of the main components of a wind tunnel facility shown in Fig 1.5 are given below.

(a) Settling Chamber- This is the channel before the contraction that houses the various turbulence
reduction devices such as honeycombs and screens. The honeycomb structures are long hexagonal
tubular structures that reduce lateral turbulence and swirl in the flow 1989 [4]. The screens also reduce
turbulence by removing all lengths scales larger than the mesh size of the screen. These structures
might add some small scale turbulence to the system, however these scales are dissipated much faster
in the mean flow.

(b) Test Section- This is the channel in which the required measurements are taken. The wind tun-
nel facility design should be such that the flow entering the test section should be as uniform and
laminar a flow as possible.

(c) Diffuser- The diffuser is used for the purposes of pressure recovery in the setup. This is done
to decrease dynamic pressure to ensure that the pressure losses in the screens and honeycombs are
kept to a minimum. There is also a risk of boundary layer separation in the contraction, however addi-
tional screens can reduce this risk as shown by Bell and Mehta 1989 [4].

(d) The wind tunnel contraction is described in section 1.1. The contraction is susceptible to vari-
ous secondary flows such as boundary layer separation, cross flows and edge flows. Hence its design
is crucial to the functioning of the wind tunnel facility. The following subsections will go deeper into
existing literature on contraction design.

1.2.2. Secondary Flows and Optimisation
A wind tunnel contraction is a channel of varying cross section. For low speed flows (Ma<0.1) , the
contraction follows the principle of conservation of mass for a channel flow. As the section decreases
in the stream-wise direction, the flow is accelerated to ensure that the same amount of mass leaves
the contraction. The contraction has multiple uses in a wind tunnel facility which are detailed below.

(a) Reduce turbulence levels in the fluid flow by decreasing the fluctuating velocities as a fraction of
the mean flow velocity ( in the stream-wise direction).

(b) Reduce boundary layer thickness at the entrance of test section.

However there is still a risk of various secondary flows that can form in the contraction. Secondary
flows are all those flows that cause deviations from uniform laminar stream-wise velocity. These flows
affect the flow uniformity at the contraction outlet which renders it unsuitable for its experimental applica-
tions. In this subsection a review of these secondary flows and the optimisation and design techniques
found in literature are summarised.
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Boundary Layer Separation

The contraction consists of a concave section and a convex section which are joined together at an
inflection point. These curvatures inherently lead to to the formation of adverse pressure gradients near
the inlet and outlet of the contraction. Adverse pressure gradients occur when there is an increase in
the static pressure of the fluid in the stream-wise direction. As the fluid flows through the contraction
on average the velocity increases, however near the wall local curvature effects dominate the flow.
These lead to a minima of velocity to occur within the contraction at the inlet. Similarly a maxima of
velocity occurs within the outlet. This non-monotonous increase in velocity leads to pressure gradients
in the contraction. This behaviour was also analytically identified by Tsien 1949 [5] and Cohen et al
1962[6] where they found that for a finite length contraction it was impossible to avoid the presence
of adverse pressure gradients. Rouse and Hassan 1949 [7] experimentally confirmed the presence of
these adverse gradients in contractions.

Adverse pressure gradients in a a boundary layer where the momentum is low can lead to flow stop-
page or reversal. This flow reversal characterised by the velocity gradient 𝑑𝑢𝑑𝑦 going from positive, to
zero to negative. Flow reversal can lead to a phenomenon known as boundary layer separation which
is characterised by sudden thickening and unsteadiness of the boundary layer. Fig. 1.6 shows bound-
ary layer separation flow reversal over a curved airfoil surface.

Figure 1.6: Boundary Layer separation over Airfoil by Sturm et al 2012 [8]

Boundary layer separation is of greater importance in relation to laminar boundary layers. This is be-
cause, unlike turbulent flows where high momentum fluid is transferred to the boundary layer, laminar
flows have a well defined low momentum region that is susceptible to flow reversal. This boundary
layer separation can cause unsteadiness effects in the flow which can disturb the laminar boundary
layer required in low speed wind tunnels. Hence there has been widespread research on contraction
design to reduce the risk of boundary layer separation.

One of the first analytical results on separation criteria for laminar and turbulent boundary layers was
proposed by Stratford 1954 and 1959 [9] [10]. This result is widely used as an estimate to predict
boundary layer separation in contraction design and related the pressure gradients in the contraction
to the Reynold’s number(Re). Stratford’s criteria was used by Thomas Morel to design axi-symmetric
1975 [11] and 1977 [12] 2D contractions. In this method the maximum and minimum coefficient of
pressure values (𝐶𝑝𝑖 and 𝐶𝑝𝑒) were set by Morel before hand so as to satisfy the Stratfords criteria. He
used this method to prepare design charts for different values of contraction ratio (𝐶𝑅 = 𝐻𝑖/𝐻𝑜) and
contraction length 𝐿𝑐.

The contraction length was seen to play a big role in the risk of boundary layer separation. Bell and
Mehta 1988 [13] investigated the risk of boundary layer separation due to variation of the contraction
length . They found that on increasing the contraction length the risk of separation at the inlet is re-
duced. However beyond a certain critical length, separation occurs at the outlet of the contraction.
There results are shown in Fig.1.7.
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Figure 1.7: Contraction length vs non-uniformity showing boundary layer detachment at the two ends [13]

The effect of contraction length on boundary layer separation was also investigated by Mikhail and
Rainbird 1978 [14] in their paper on the design of axi-symmetric contractions. They argued that bound-
ary layer separation at the outlet is far more likely to occur in laminar flows than turbulent flows. Hence
its importance in the design of the contraction should be relative to the flow type.

Another factor that greatly effects the the risk of boundary layer separation is the wall shape of the
contraction. The earliest wall shapes used for contraction design had very little design procedure in-
volved. Many contractions were built with ”by- eye” estimates and hand drawings. Analytical work by
Tsien 1943 [5] and Cohen 1962 [6] provided estimates of separation free wall shapes, however these
solutions were for ideal infinitely long contractions which were of little practical use. Morel in his design
for axisymmetric 1975 [11] and 2D contractions 1977 [12] used a matched cubic polynomial shape as
shown in Fig. 1.8.

Figure 1.8: Matched Cubic Polynomial T.Morel 1975 [11]

He found that that this shape gave adequately low pressure maxima and minima in the contraction for
a low contraction length. Morel also varied the inflection point distance of this curve 𝑥𝑚 to generate a
family of curves with different matching point values. It was seen that the more downstream the inflec-
tion point, the lower is the pressure maxima at the inlet and higher is the pressure minima at the outlet.
Hence the region of greater separation risk changed with the inflection point.

Bell and Mehta 1988 [13] compared the matched cubic to a third, fifth and seventh order polynomial
shape . They found that the fifth order polynomial gave the best performance with no separation and
a lower boundary layer Reynolds number at the outlet. The fifth order polynomial has its inflection
point at the centre of the contraction length. To generate a family of curves with varying inflection point
distance, Brassard and Ferchichi 2005 [15] derived an analytical transformation of the Bell fifth order
shape. The transformation equation is given by equation:
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ℎ = [−𝜂 [1 − (𝐻𝑜𝐻𝑖
)
1
𝑓
] + 1]

𝑓

(1.1)

Where 𝜂 is given by:

𝜂 = 10𝜉5 − 15𝜉4 + 6𝜉3 (1.2)

Here a value of the Brassard parameter 𝑓<1 moves the inflection point downstream of the centre while
a value of 𝑓>1 pushes it upstream. At 𝑓=1 the original Bell and Mehta polynomial is obtained. Fig. 1.9
shows the different wall shapes produced with varying parameter 𝑓.

Figure 1.9: Plot Dimensionless x distance 𝑥/𝐿𝑐 vs height (mm) of wall shapes with varying parameter 𝑓

A comparison of wall shapes with different fixed 𝑓 values was made by Doolan 2007 [16] for 2D contrac-
tions. He used the existence of separation, outlet boundary layer Reynolds number and flow uniformity
at the outlet to gauge the performance of the curves. He found that an 𝑓 value close to 1 would be
ideal for the contraction with a low risk of separation.

Another curve that was proposed by Sargison and Rossi 2004 [17] for low speed wind tunnels was
the sixth order polynomial curve. This is a 7 parameter whose inflection point distance can be selected
to generate the required curve. They saw that for the least risk of separation, the best performing curve
is one which has its inflection point distance as downstream as possible while maintaining a mono-
tonically decreasing wall contour. The sixth order curve also allows for control of the inlet and outlet
curvature which can be set by the designer. However the wall contour without any inlet and outlet
curvatures was found to perform the best.

Cross-Flows

Cross-flows are secondary flows in the fluid that are perpendicular to the direction of the stream-wise
flow. Cross-flows are generated due to three-dimensional effects which cause curvatures in the stream-
lines. Curvatures cause span-wise pressure gradients to form which lead to the cross-flows. A cross-
flow on a streamline is shown in Fig 1.10.
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Figure 1.10: Cross flow on swept wing Dagenhart 1999 [18]

Cross-flows can cause unwanted thickening of the boundary layer and flow separation in the contrac-
tion. Yao 1991 [19] was the first to study cross-flows in the context of wind tunnel contractions . He found
that the cross-flow was a strong function of contraction length. A larger contraction length reduced the
risk of cross-flows. He also observed that cross-flows could be avoided by using a 2 dimensional or
axi-symmetric contraction.

Mehta 1979 [20] in his PHD thesis found that any cross-flows caused by corner effects in 2D con-
tractions remain localised and do not effect the centreline velocity of the test section.

Boundary Layer Thickness

When viscous fluids flow over a surface, a thin layer of fluid with large velocity gradients is formed
over the surface due to the no-slip condition at the fluid-wall interface, called the velocity boundary
layer. The velocity in this region goes from zero at the wall to free-stream velocity of the initial flow.
This concept was first theorised by Ludwig Prandtl in his ground breaking paper in 1904 [21]. This
discovery simplified the analysis of flows over objects to a large extent since two distinct regions of flow
could be identified, a free-stream flow which could be solved with inviscid analysis, and the boundary
layer , which is solved including viscous effects. Fig. 1.11, shows a developing boundary layer.

Figure 1.11: Boundary Layer Growth Seyyedi et al 2019 [22]

Boundary layer thickness can be defined in multiple methods. If defined as a mass flow deficit, the
boundary layer thickness is called displacement thickness 𝛿1(𝑥). Here it is taken to be that distance
from the wall that a hypothetical fluid of freestream would have, to equal the mass flow rate of the true
flow. This is shown in Fig. 1.12.
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Figure 1.12: Displacement Thickness Schlichting 2015 [23]

For a laminar boundary layer obtained using the Blasius solution 𝛿1(𝑥) is given by:

𝛿1(𝑥) = 1.7208√
𝜈𝑥
𝑢0

(1.3)

A similar definition can bemade for themomentum flow rate and it is known as themomentum thickness
given by 𝜃 or 𝛿2(𝑥). This is shown in Fig. 1.13.

Figure 1.13: Momentum Thickness Hafeez 2020 [24]

For a laminar Blasius boundary layer the momentum thickness can be approximated by:

𝛿2(𝑥) = 0.664√
𝜈𝑥
𝑢0

(1.4)

To have a velocity profile of maximum possible uniformity at the end of the contraction, the bound-
ary layer thickness at the outlet has to be at a minimum. Research on contraction design aims to keep
the boundary layer Reynolds number considering displacement thickness (𝑅𝑒𝛿1) at a minimum for the
contraction. Bell and Mehta 1988 [13] used this criterion to determine the best performing wall shape,
where they found that the fifth order polynomial gave a minimum.

Non-uniformity at Outlet

The non-uniformity of the flow at the outlet of the contraction is its deviation form a channel flow. The
non-uniformity occurs because the contraction causes streamlines to curve in the test section which
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leads to a velocity overshoot at the top of the outlet. This causes an imbalance between the velocity field
at the top of the outlet with respect to the bottom , causing a non-uniform profile. Different researchers
have used different methods to define the non-uniformity at the outlet. Morel in his design for axi-
symmetric and 2D contractions defined the non-uniformity of the velocity field as 𝑢2 = (𝑉 − 𝑈𝑒)/𝑈∞.
Another method of defining the non-uniformity of the velocity at the exit plane was used by Bell and
Mehta 1988 [13] who took the standard deviation of the velocity profile. A similar approach of using
section velocity profile to gauge non-uniformity was used by Fang et al 2001 [25]. They quantified the
non-uniformity as a ration of the maximum velocity deviation to the mean velocity.

Watmuff 1986 [26] qualitatively gauged the upstream and downstream distances from the contrac-
tion inlet and outlet within which non-uniformity’s would be strong. This was done by looking at the
pressure iso-contours linked with the contraction and their influence outside the contraction.

Optimisation

Optimisation is a mathematical process by which the best possible output is obtained by choosing
an optimum value of input parameters. Optimising generally involves the maximising or minimising of
an objective function subject to some equality or inequality criterion. Wind tunnel contractions can be
optimised to identify which shape configuration leads to least risk of different secondary flows explained
in the previous subsections.

Most research on contraction design has focused on comparison of results obtained by simulating
different wall shapes such as Doolan 2007 [16] and Bell and Mehta [13]. Only a few papers have been
found that use true optimisation methods to obtain the best performing wall shape. Leifsson and Koziel
2015 [27] used a surrogate based optimisation (SBO) techniques that optimises a Bezier curve with
five control points. The optimisation technique uses a low fidelity solver that is then compared with a
high fidelity solver and experimental data to check for accuracy. The objective function to be minimised
was the flow uniformity at the outlet of the contraction. The results from the SBO were successful in
providing a wall shape with non-uniformity below acceptable levels.

Doolan and Morgans 2007 [28] built an optimisation software tool that numerically determines the best
third order Bezier curve for given constraints. The constraints to be minimised were the boundary layer
Reynolds’s number at outlet, the flow non-uniformity and the risk of separation in the contraction. They
used three different optimisation techniques to analyse there robustness, efficiency and accuracy of
solution, Sequential Quadratic Programming (SQP), DIRECT and Efficient Global Optimization (EGO).
They found that EGO was the most robust system and always produced acceptable solutions as long
as the initial random sampled data was large enough.

1.2.3. Gortler Vortices in the contraction

Vortices

Vortices are a fluid flow phenomenon where there exists a rotating motion of the fluid around a cen-
treline. Vortices can be found in a wide range of natural and industrial application, ranging from large
scale cyclones to vortex tubes. Fig. 1.14 shows a vortex formed due to an aircrafts wing, known as
a wing-tip vortex. The intensity of a vortex is quantified by a parameter known as the vorticity. The
vorticity 𝜔 is a vector field that is derived from the velocity field by taking the curl, 𝜔 = ∇ x 𝑢.

Vortices can be formed in several different ways depending on the flow phenomenon. One such mech-
anism is a centrifugal inviscid instability that occurs in shear flow over a concave surface. Taylor in his
paper on revolving fluids was the first to describe this instability 1917 [29]. He noticed that, in fluid flow
between revolving cylinder, beyond a certain angular velocity, stream-wise vortices are formed. He
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Figure 1.14: Wing-tip vortex due to aircraft wing

showed that the sufficient condition for the formation of these vortices was a decrease in the circulation
(Γ) in the radial direction. However this condition is only a necessary condition for the instability and
the presence of viscosity at low Reynold’s could also stabilise the flow. This was shown by Taylor in
his famous experimental work on concentric rotating cylinders 1923 [30].He showed that until a certain
velocity limit a Coutte flow was maintained in the cylinders after which the instabilities, now known as
Taylor vortices are formed. These vortices are shown in Fig. 1.15.

Figure 1.15: Taylor Vortices Between Two Cylinders Childs 2011 [31]

In a similar instability to Taylor vortices, Dean 1928 [32] found that fully developed flow in curved chan-
nels or pipes also produced stream-wise steady vortices, now known as Dean vortices. These are
vortices that have open streamline unlike the Taylor vortices which are closed. The instability occurs
in the bulk of the fluid in a channel or pipe that leads to momentum transfer in the span-wise direction.
Dean vortices in a pipe are shown in Fig. 1.16.

A third kind of centrifugal instability that exists is the Gortler vortex, which occurs in curved boundary
layer flows. In his paper on boundary layer flow on concave surfaces, Gortler found a generalisation
of Rayleigh’s inflection point criterion 1880 [34] showing that an inviscid centrifugal instability can form
when there is a sign change of :

𝑑2𝑈
𝑑𝑦2 +

1
𝑅
𝑑𝑈
𝑑𝑦 (1.5)

In the limit of a flat plate where 𝑅− > ∞, this criterion reduces to Rayleigh’s criterion as shown by

Gortler 1940 [35]. Gortler further found that this centrifugal instability was seen to be stabilising for
two-dimensional disturbances, however three dimensional perturbations were successful in triggering
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Figure 1.16: Dean vortices formation in a curved pipe Kalpakli 2012 [33]

the instability. He defined a non-dimensional parameter, now known as the Gortler number, to predict
the onset of these vortices. The Gortler number is given by:

𝐺 = 𝑈𝑒𝜃
𝜈 (𝜃𝑅)

1/2
. (1.6)

The Gortler vortices are in the form of stream-wise counter-rotating vortices formed in the boundary
layer of the flow. The counter-rotation forms alternating regions of up-wash and down-wash, where
fluid is transported away from and to the boundary layer respectively. This momentum transfer leads
to a change in the boundary layer thickness in the span-wise direction, with the boundary layer becom-
ing thinner in regions of down-wash and thicker in regions of up-wash. The change in boundary layer
thickness also leads to changes in parameters such as the wall shear stress distribution with region of
down-wash having high wall shear stress and regions of up-wash having low wall shear stress. The
vortices along with the stream-wise velocity profile on a concave flat plate are shown in Fig. 1.17.

Figure 1.17: Gortler vortices on a concave surface Floryan 1991 [36]
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Linear stability analysis has been used to understand the growth of Gortler vortices on curved sur-
faces surfaces due to infinitesimal disturbances. A locally parallel approximation was used by Floryan
and Saric 1982 [37] to plot a 2-dimensional neutral stability curve between Gortler number 𝐺 and non-
dimensional wavenumber 𝛽 for weakly concave surfaces. However the neutral stability curve is valid
only for low 𝐺 value, very large 𝛽 and only plots the regions of steady vortical disturbances. The analy-
sis showed that G=0.46 or more would lead to these steady stable vortices in a Blasius boundary layer.
Saric 1994 [38] also noted that for weak curvatures that produce stream-wise vortex growth of less than
O(1), the Gortler instability can be be discerned from the boundary layer growth. The neutral stability
curve is shown in Fig. 1.19

Figure 1.18: Gortler vortices on a concave surface Floryan 1991 [36]

It is seen from the neutral stability curve that there exists a certain cutoff wavelength of 𝜆𝑐 = 44.29 be-
low which the disturbances are only attenuated. A maximum amplification contour can also be defined
at every value of 𝛽 as shown in the figure.

The methods used for linear instability however were deemed to be inaccurate since they assumed
a separation of variable in the derivation which made the flow independent of the stream-wise coordi-
nate Mendez 2020 [39]. This lead to the plotting of inaccurate neutral stability curves.
Floryan and Saric 1982 [37] also noted the large discrepancies obtained between different linear stabil-
ity and experimental results. This was attributed to the sensitivity of the neutral curve on the geometry
of the flow. They stated that the curvature of the streamlines played a large role in determining which
wavelengths are amplified in the flow.

Hall 1983 [40] was the first to find a solution to this problem where he numerically integrated the the
flow equations. He concluded that the parallel flow approximations were erroneous since the ordinary
differential equation approximations could not effectively capture the decay of vortices at the edge of
the boundary layer. This inaccuracy lead to artificial spreading of the neutral curve for higher wave-
lengths. Hall also concluded that a single critical Gortler number to define flow transition does not exists
like parallel flows since the Gortler problem by its nature depends highly on the receptivity mechanism
of the disturbances.

Recently, further advances were made on unsteady disturbances by Boiko et al 2017 [41], who de-
scribed a three dimensional neutral stability surface. They plotted 𝐺 and 𝛽 alongwith the non-dimensional
frequency parameter 𝐹. It was also shown that the formulating the receptivity problem to solve only
the most unstable modes was more accurate than using different methods like the local approach that
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solves only for a specific range of 𝐺.

Experimental Studies

Apart from the fundamental research on the formation of Gortler vortices , there has been a surge
in the experimental research on this instability in the past few decades. This is due to the fact that
several industrial facilities use components with curved surfaces which leads to a risk of Gortler vor-
tices. Even though Gortler vortices are steady vortices in a laminar flow, they can lead to secondary
instabilities which can cause a transition of the flow from laminar to turbulence. This turbulence can
cause changes in mixing and heat transfer of the process. This makes it even more important to fully
understand the formation of Gortler vortices and its effect on different curved geometries.

Experiments to analyse the Gortler instability have been performed for a wide range of geometries
for different speeds, from sub-sonic flow to super-sonic flow. The three main geometries used in liter-
ature are purely curved concave surfaces , curved surfaces with a flat plate and compression ramps.
Different methods have been used by researchers to trigger the perturbations. To produce steady
perturbations roughness elements are used with a constant span-wise wavelength. If unsteady pertur-
bations are to be produced, a blowing and suction mechanism can be used where the fluid is injected
into or sucked out of the boundary layer.

Various experiments have been performed to study the formation of Gortler vortices. The most com-
mon methods of experiments performed are the visualisation methods by Gregory and Waker 1956
[42], Beckwith and Holley 1981 [43] and the probe method Swearingen and Blackwelder 1987 [44] and
Winoto et al 2005 [45]. Most experiments are performed on concave channels or plates of constant
curvature.

Flow visualisation involves the addition of a dye or particles to the flow to observe time averaged flow
structures. It is the oldest method of deriving valuable qualitative information from the Gortler instabil-
ity. Ito 1987 [46] studied the two dimensional characteristics of the Gortler vortices using visualisation
techniques by introducing stream-wise smoke tracers on a uniform concave flat plate. The idea was
that when vortices form the up-wash created would cause the smoke stream lines to converge. He
found that the vortices evolve spatially and have a convective nature in the stream-wise direction. The
vortices however evolve very slowly and no visual change is seen until a Gortler number of G=10.1.The
Gortler vortices formed were also seen to be steady vortices.

More recently Huang et al 2021 [47] performed visualisation experiments on a hypersonic concave
surface. This experiment had the added ability of visualising the vortex formation in three dimensions,
in comparison to the planar view of previous experiments. This was performed using CO2-enhanced
filtered Rayleigh scattering flow visualization. Roughness elements with a constant span-wise wave-
length were used for for the initial perturbations. They visualised flow structures such as three dimen-
sional waves, low speed streaks, mushroom structures and hairpin vortices in the flow. They found that
the three dimensional wave initially formed secondary instabilities which then leads to flow transition
and turbulence further downstream. This flow transition is shown in Fig. 1.19.

Figure 1.19: Formation of streaks and subsequent breakdown to turbulence in Rayleigh scattering experiment 2021 [47]

Though visualisation experiments give a qualitative understanding of the formation of Gortler vortices,
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to develop a full understanding of this instability quantitative measurements are required. Tani [48] in
1962 was the first to perform these quantitative experiments. He used a pitot tube to analyse Gortler
vortices in an incompressible flow on a concave surface . The experiments were performed at sub-
sonic speeds and tested on both laminar and turbulent boundary layer. The fluctuations of velocity and
span-wise wavelengths obtained from the experiments corroborated the previous theory that had been
developed on this instability.

Further improvements were made in this field by using hot wire anemometer setups that can provide
better accuracy for both subsonic and supersonic flows.

Mitsudharmadi et al 2005 [49] performed hot wire experiments on a concave surface at subsonic speeds
using free-stream perturbations. They were able to confirm the presence of the sinuous and varicose
secondary instabilities in the flow. They stated that the presence of inflectional velocity profiles in
the boundary layer marked the onset of the secondary instability. This inflectional profile is shown in
Fig. 1.20 in comparison to the undeformed Blasius boundary layer.

Figure 1.20: Inflectional velocity profiles generated due to up-wash regions 2005 [49]

It was seen that the formation of mushroom like structures indicate the formation of the secondary in-

stability.

Numerical Studies

As computer technology progressed and newer more accurate numerical methods were developed,
research on numerical simulations of Gortler vortices increased. Numerical simulations for Gortler
vortices have been restricted mostly to direct numerical simulations (DNS) studies where the Navier
Stokes (NS) equations are solved without the use of any turbulence model. This is because Gortler
instability can lead to flow transition and subsequent turbulence, and only DNS can capture these lower
scales . Since all the scales present in the flow are resolved, the DNS provides the best description of
the fluid flow. However, this comes at extremely high computational costs which restricts this type of
study to relatively simple geometries. It is also restricted to relatively low Reynolds numbers since the
range of scales to be resolved grows with O(𝑅𝑒0.75).

Different methods have been used for the perturbation of the boundary layer to trigger the Gortler
vortices. They include perturbation by adding roughness elements to the surface by Mendez et al 2018
[50], Schrader et al 2011 [51], freestream turbulence Ducoin et al 2016 [52] and free stream vortical
structures Schrader et al 2011 [51]. Like the experiments, the roughness elements produce steady
vortices while the other perturbation methods produce unsteady vortices.
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Two types of DNS studies have been used in literature, temporal DNS and spatial DNS. The tem-
poral DNS employs a locally parallel approximation that evolves the flow in time. Temporal DNS has
been found to be ineffective in predicting the spatial evolving nature of the Gortler instability. This was
seen in the temporal DNS studies of Liu and Domaradski 1993 [53] where they did not find their results
comparable to experimental studies.

The first spatial DNS was performed by Schrader et al 2011 [51] on a concave surface using roughness
elements and freestream inlet turbulence to trigger the instability. They found that all three perturba-
tions were successful in generating high amplitude Gortler vortices. The freestream turbulence that
contains a number of wavelengths is seen to trigger the single wavelength that is the most unstable
wavelength. However the Gortler vortices formed are seen to be asymmetrical due to the superimpo-
sition of multiple wavelengths with more stability. Further research on DNS using roughness elements
was also performed by Mendez et al 2018 [50] who completely resolved the laminar to turbulent tran-
sition that occurred due to Gortler vortices of a fixed span-wise wavelength. The linear and non-linear
growth regions of the flow were also identified. They also found that using roughness elements of larger
amplitude caused the transition area to move upstream. The fixed wavelength Gortler vortices at G=12
are shown in Fig. 1.22.

Free-stream turbulence was also investiagted by several authors as perturbations after Schrader’ initial
work. Sharma and Ducoin 2018 [54] investigated the Gortler instability by adding random freestream
turbulence to the flow. They used free-stream turbulence intensities of 1% and 0.1%. It was found
that the turbulence intensity at the inlet of the concave surface effects the downstream distance of flow
transition. For a higher turbulence intensity of 1% the transition occurs closer to the inlet. Fig. 1.21
shows the comparison of transition for the two stream-wise velocities. Ducoin et al 2017 [55] studied
the effect of inlet turbulence on concave surfaces in Savonius turbine blades. They found that Gortler
vortices are also triggered on turbine blades, a factor that hadn’t been previously taken into consid-
eration when analysing blade performance. As Gortler vortices of several wavelengths are triggered
due to the random turbulence, the competing wavelengths at low Re can cause the flow to maintain its
laminar nature as mushroom structures before transition

The DNS simulations give a lot of information of the flow transition and vortex formation, however
as stated before there application is restricted to simpler geometries. Alternative methods such as
Unsteady Reynold’s Averaged Navier Stokes (URANS) were seen to give Coefficient of friction (𝐶𝑓)
values 50% less than the DNS by Ducoin et al 2017 [55] and hence were deemed as inaccurate for the
Gortler flow.

Large eddy simulations have been seen as a computationally cheaper method to study the Gortler vor-
tices. Research has been performed on more complex geometries using LES. Lopes et al 2006 [56]
studied a turbulent flow through an S-shaped duct using LES. They found that the concave surfaces
were more susceptible to the formation of Gortler vortices than convex. The Gortler vortices were re-
solved by taking an average of the stream-wise velocity and streaks were seen to from on the concave
wall. The vortices were seen to affect the Reynold’s stress and turbulent kinetic energy production in
the duct.

Tseng and Ferziger 2004 [57] performed an LES of a turbulent flow over a wavy surface. On performing
a steady flow analysis they found that the flow forms Gortler vortices by periodic vortex connection and
separation process.
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Figure 1.21: Non-dimensional Stream-wise Velocity contours on a XZ plane showing the formation of streaks and transition to
Turbulence 2018 [54]

Figure 1.22: Non-dimensional Stream-wise Velocity contours on a XZ plane showing the formation of streaks and transition to
Turbulence 2018 [50]

1.2.4. Literature Summary

From the literature review discussed above, it is clear that most research on contraction design is fo-
cused on the optimisation of 2D, 3D and axisymmetric contractions. Most research on laminar flows
in contractions focuses on the risk of boundary layer separation since it can be a leading cause for
unsteadiness of the flow. Flow uniformity and boundary layer thickness are also parameters that need
to be minimised at the outlet of the contraction. It is seen that the wall shape plays a crucial role in de-
termining the values of these parameters. Different wall shapes have been used in literature like cubic
polynomial, fifth order polynomial and sixth order polynomials. Higher order polynomial wall shapes
are seen to have a better performance for flow separation and outlet 𝑅𝑒𝛿1. It is also seen that the in-
flection point of the wall shape has a big effect on the overall performance of the wall shape. However
no contraction design studies performed on 1D contractions are found in the literature review. Most re-
search focuses on performing a simple quantitative comparison of different wall shapes, however there
only a few papers that perform a full optimisation of the wall shape performance. Also no optimisation
study has been found that find the best performing inflection point value of the widely used fifth order
polynomial wall shape, which defines the scope of this thesis.

Literature on Gortler vortices is divided into linear stability analysis, experimental and numerical analy-
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sis. In linear stability analysis it was found that all the initial literature was identifying the critical Gortler
number by plotting neutral stability curves. However it was seen in later research that as receptivity and
initial disturbance type plays a large role in determining the stability, no critical Gortler number could be
found. Experimental studies have been focused on visualisation methods and probing methods. While
visualisation methods give a very good understanding of the qualitative growth of the, probe methods
like pitot tubes and hot wire experiments give quantitative details that are seen to agree with the theo-
retical results. Most numerical studies performed on Gortler vortices are DNS with a few LES for more
complex geometries. The DNS studies use various receptivity mechanisms such as wall roughness el-
ements or freestream turbulence. All of these methods were seen to be successful in triggering Gortler
vortices. However most of the research is focused on purely concave walls with constant wall curvature
and there is no literature found on analysing the effect of Gortler vortices on the walls of wind tunnel
contraction for the use in instability experiments where a concave wall is followed by a convex wall.Also,
since the formation of Gortler vortices is highly dependent on the curvature of the streamlines in the
stream-wise direction, the novel 1D contraction is expected to have a unique behaviour to instabilities,
which defines the scope of the thesis.

1.3. Thesis Objectives
This thesis has two main research objectives that are detailed below.

1.3.1. Research Objective 1

Optimise geometry of novel 1D contraction to minimise the risk of secondary flows.

Three important parameters will be optimised in this study, the contraction length, the length of the
settling chamber and the shape of the contraction wall curve. An optimum contraction and settling
chamber length will be found using results from steady state simulations. Methods from Bell and Mehta
1988 [13] and Watmuff 1986 [26] will be implemented where the lengths will be varied to ensure min-
imum separation, minimum boundary layer thickness and a solution independent of boundaries. Fifth
and sixth order polynomial wall shapes will be simulated and the curve with most optimal inflection point
distance will be chosen by performing a multi-objective optimisation procedure of flow parameters.

1.3.2. Research Objective 2

Analyse the the formation of Gortler instabilities in the 1D contraction and their stability and
effect on the bottom boundary layer.

To analyse the formation of Gortler vortices on the top boundary layer , perturbations will be added
to the mean flow upstream of the contraction inlet similar to experimental studies by Peer Hossaini
1988 [58]and DNS studies by Mendez et al 2018 [39] and Schrader et al [51] using Ansys Fluent. The
formation of Gortler vortices will be analysed for different span-wise wavenumbers to identify the most
unstable wavenumber. The effects of the Gortler vortices on wall shear will also be analysed to find
correlation with visualisation experiments such as Huang 2021 [59]. The stability of these vortices and
their influence on the bottom boundary layer will be analysed.

1.4. Scope of Study and Chapter Overview
The scope of this thesis study is limited to the optimisation and perturbation analysis of incompressible
constant property flows through the proposed novel 1D contraction geometry to understand its suitabil-
ity for boundary layer measurement experiments. Heat transfer effect and buoyancy effects will not be
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included in the study as they do not apply to the practical problem studied and have negligible effect
on the simulation. An overview of the chapters in this report is presented below.

• Chapter 2 details the geometry, governing equations and computational methodology used to
run the different steady and unsteady simulations performed in this study. The chapter ends with
a summary of all the simulations performed along with the domain used, boundary conditions and
mesh type.

• Chapter 3 discusses the results obtained from steady state simulations on the 1D contraction.
Optimum lengths of the settling chamber and contraction are found and a multi-objective method
to optimise a transformed fifth order wall shape to find the best performing inflection point is
described.

• Chapter 4 discusses the unsteady simulations performed on the 1D contraction. Simulations
without and with perturbations are detailed and the formation of Gortler vortices and their evolution
through the contraction are discussed.

• Chapter 5 gives a conclusion of the methodology and results obtained in the previous chapter. It
ends with recommendations for future research on this topic.





2
Methodology

For this study an optimisation of the shape of a 1D wind tunnel contraction is performed. The opti-
misation is done by utilising data parameters obtained by running steady state simulations on a few
selected curves from the family of curves of wall contours. The contraction length, upstream channel
length and contraction shape are optimised using this procedure. After the shape is selected, this wall
shape is numerically tested for the formation of curvature induced instabilities called Gortler vortices.
Both unsteady laminar viscous perturbation analysis and Large Eddy Simulations (LES) are performed
in the contraction to see if the the vortices formed on the top wall of the contraction affect the boundary
layer on the bottom wall where heat transfer measurements are to be taken. All the simulations are
performed by using the commercial CFD solver Ansys Fluent 2019 R3. The numerical methodology
used for both the unsteady and steady state simulations is described in this chapter.

In this chapter the geometry and computational domain, meshing methodology, boundary condi-
tions, governing equations and computational methodology are described for the steady state simula-
tions (used for shape optimisation) and unsteady simulations (for Gortler vortices).

2.1. Physical Domain and Geometry

The geometry to be optimised is based on an experimental setup currently being built for heat transfer
boundary layer measurement to understand the hydrodynamic instabilities of SCO2. Since high pres-
sure systems are under size and safety restrictions, a flat plate cannot be used to act as a leading edge
to form a developing boundary layer. The measurements are thus taken on the developing wall bound-
ary layers of the test section . Hence, the history of the flow in previous sections like the contraction
have a large influence on the measurements to be performed.

Further, the geometry proposed for this experimental setup is a novel one-dimensional wind tunnel
contraction in which the only contracted dimension is the y-direction size. This ensures that there is no
possibility of instabilities being induced due to curvature on the bottom surface, as it can now be made
completely flat. The wind tunnel contraction, settling chamber and test section are shown together in
Fig. 2.1.

In the present study, steady and unsteady simulations will be performed on the contraction geom-
etry. Results from the steady state simulations will be used for optimisation of the contraction shape,
while results from unsteady simulations will be used to analyse formation of Gortler vortices. The dif-
ferent simulations performed are summarised below.

21
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Figure 2.1: 1-D contraction Geometry

List of Simulations Performed

1. Steady State Laminar Viscous Simulation.

2. Unsteady Laminar Simulation with Sinusoidal Perturbation (Excluding Side Walls).

3. Unsteady Laminar Simulation with Sinusoidal Perturbation (Including Side Walls).

4. Large Eddy Simulation with Random Inlet Turbulent perturbations.

Additionally, an unsteady simulation will be performed without adding perturbations will be per-
formed to support the findings of experimental results like Boiko et al 2010 [60], which show that
external forced perturbations are required to produce symmetric Gortler vortices. This is detailed in
subsection 2.3.1.

In the geometry shown in Fig. 2.1, practical considerations have been made to fix the size of some
of the dimensions involved in the construction. One important factor to be considered is that the total
volume of the geometry cannot exceed a total of 1000cc (1 litre) due to safety considerations arising
from the very high pressures involved in supercritical CO2 (>73.8bar). This adds additional constraints
to the size of the setup. The dimensions that have been fixed for this optimisation are indicated in
tabular form in Table 2.1

Table 2.1: Fixed Dimensions in Optimisation

Fixed Dimension Size
Test Section Length 𝐿𝑡 100 mm

Contraction Inlet Height 𝐻𝑖 60 mm
Contraction Outlet Height 𝐻𝑜 10 mm

Width of Setup𝑊 50 mm

The remaining dimensions and shape that are varied and optimised in the present study include the
settling chamber length, the contraction length and the wall shape contour of the contraction. These
are detailed in section 2.2.
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2.2. Steady State Analysis
Steady state simulations will be performed on the 3D geometry in which the following three dimensions
are varied.

2.2.1. Settling Chamber Length

The settling chamber to the contraction, also known as the settling chamber, is present upstream of
the contraction. The settling chamber houses various turbulence reducing devices such as screens
and honeycombs. Hence it needs to be long enough for the solution to be physically accurate. It also
should be long enough so that the solution is independent of the inlet boundary conditions. The bound-
ary condition interference is qualitatively identified by looking at the pressure contours near the inlet.

However if the settling chamber is too long, it increases the boundary layer thickness at the inlet of
the contraction and also increases the size of the computational domain. Hence, an optimum length
must be found to satisfy all these considerations. Watmuff’s 1986 [26] method of identifying the extent
of upstream non-uniformity effects will be used to find this optimum value.

2.2.2. Contraction Length

The length of the contraction also needs to be minimised for reducing space occupied and minimise
boundary layer thickness at contraction outlet. However when the contraction length is decreased,
adverse pressure gradients at the inlet and outlet also increase, which leads to higher risk of boundary
layer separation as shown by Morel 1975 [11] and Bell and Mehta 1988 [13]. Hence, an optimum length
of the contraction needs to be found at which the risk of separation is minimised.

To find this length, the contraction length is varied keeping all other dimensions constant and parame-
ters at design conditions. The contraction length is gradually increased to determine the critical length
beyond which no flow reversals are seen. The wall shear stress in the x-direction is used to quantita-
tively identify any spots of flow reversal within the contraction. A value of x wall shear stress less than
zero is identified to be a region of flow reversal.

2.2.3. Contraction Wall Shape

Higher order polynomial wall shapes will be analysed as they have been found to have a better perfor-
mance as seen in research by Bell and Mehta 1988 [13]. Two main families of curves will be simulated
namely, the fifth order polynomial and sixth order polynomial functions.

An optimal contraction wall shape contour will be found by using the Brassard transformation 2005
[15] of the fifth order Bell and Mehta polynomial 1988 [13]. In this transformed polynomial, the inflec-
tion point distance from contraction inlet can be varied by changing the value of a control parameter
”𝑓”. By varying 𝑓 a whole family of curves can be generated all having different inflection point values.
An optimum value of this parameter f will be found using a multi-objective function optimisation tech-
nique. The data needed for this optimisation is also generated by running steady state laminar viscous
simulations.The wall height ℎ from the x-axis of the transformed fifth order polynomial as a function of
non-dimensional x-distance 𝜉 and parameter 𝑓 is given by equation 2.3.

ℎ = [−𝜂 [1 − (𝐻𝑜𝐻𝑖
)
1
𝑓
] + 1]

𝑓

(2.1)
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Where 𝜂 is given by:

𝜂 = 10𝜉5 − 15𝜉4 + 6𝜉3 (2.2)
The details of this optimisation are further explained in section 2.2.5.

The 6th order Sargison wall shape 2004 [17] was found to under-perform in comparison to the 5th
order Bell and Mehta polynomial in preliminary results, hence it was not pursued further for unsteady
analysis. The results have been documented in Appendix B.

Further, unsteady perturbed flow analysis will be done on this optimised contraction shape to study
the evolution of Gortler vortices. This analysis will have two approaches: a laminar viscous model with
sinusoidal perturbations and a Large Eddy Simulation (LES) with a specified inlet isotropic turbulence
level. These methods are further detailed in section 2.3

2.2.4. Flow Parameters Analysed to Find Wall Shape Performance
To estimate how well a wall shape performs in a simulation, various flow parameters will be analysed.
Four flow parameters will be discussed in this study, the the critical boundary layer Reynold’s number at
the contraction inlet, the non-uniformity at the outlet, the pressure gradient at the outlet of the contraction
and the Boundary layer Reynolds number at the outlet. All the values calculated will be at the centre-line
of the contraction. A brief description of these parameters is given below.
1. Critical Boundary Layer Reynold’s (𝑅𝑒𝛿1𝑐𝑟) at Inlet: Boundary layer separation in the contrac-

tion occurs due to the presence of adverse pressure gradients. From Bell and Mehta’s 1988 [13]
study on low speed wind tunnel contractions it is seen that the risk of separation depends on the
magnitude of adverse pressure gradients formed and the boundary layer thickness. Hence the
boundary layer thickness at the inlet of the contraction plays a crucial role in determining the risk
of flow separation at inlet. As varying the Reynold’s number changes the boundary layer thick-
ness at the inlet, it can be used as a method to gauge the risk of separation. Above a certain
value of critical boundary layer Reynold’s number, flow reversal occurs and the contraction is no
longer suitable for experiments. The critical Reynold’s number can be found by varying either the
fluid properties or the mass flow through the contraction. In this study the mass flow will be varied
as it is much simpler to perform. In this way critical Reynolds’s values will be found for different
wall shapes.

The boundary layer Reynolds number considering displacement thickness 𝛿1 is given by,

𝑅𝑒𝛿1 =
𝜌𝑢𝛿1
𝜇 (2.3)

Where,

𝛿1 = ∫
𝐻𝑖

0
(1 − 𝑢

𝑈𝑏
)𝑑𝑥 (2.4)

The bulk velocity 𝑈𝑏 is defined as,

𝑈𝑏 =
1
𝐻𝑖 ∫

𝐻𝑖

0
𝑢𝑑𝑦 (2.5)
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2. Flow Non-Uniformity at Outlet: The flow non-uniformity at the outlet of the channel will also be
determined to analyse contraction performance. Researchers such as Morel 1975 [11] and Fang
et al 2001 [25] used the velocity profile deviation from channel flow to quantify the non-uniformity
at the outlet. However the presence of boundary layers that grow downstream of the contraction
makes it more complex to quantify the decrease of non-uniformity downstream of the channel.
An alternative method of using the vertical pressure profile will be used in this study which does
away with the need to quantify the non-uniformity of boundary layers. A standard deviation of the
pressure profile will be used to quantify the non-uniformity.

The standard deviation is given by:

𝜎𝑃 = √
Σ𝑁𝑖=1(𝑃𝑖 − 𝑃𝑎𝑣𝑔)2

𝑁 (2.6)

Where N is the number of data points on the vertical line. A relation between 𝜎𝑃 and param-
eter 𝑓 will then be found for the optimisation.

As the non-uniformity depends on the curvature of the contraction at the outlet, non-uniformity
values will be found for different wall shapes.

3. Adverse Pressure Gradients at Outlet: As the outlet of the contraction also has a risk of bound-
ary layer separation as shown by Bell and Mehta 1988 [13], the value of adverse pressure gradi-
ents at the outlet will be calculated for different wall shapes. This will be done by calculating the
pressure gradient dp/dx along the wall at the outlet and identifying the regions where dp/dx>0.

4. Boundary Layer Reynolds’s number Outlet: The boundary layer Reynold’s number at the
outlet is the last parameter that will be calculated. Bell and Mehta 1988 [13] optimised a low
speed contraction to have a minimum 𝑅𝑒𝛿1𝑜𝑢𝑡. This will also be calculated using displacement
thickness similar to the critical Reynold’s at the inlet. 𝑅𝑒𝛿1𝑜𝑢𝑡 will then be found for all different
curves to be simulated.

2.2.5. Optimisation Method

The optimisation is performed for the two objective functions using amulti-objective optimisationmethod
in the 5 steps shown below.

1. Data will be extracted from steady state laminar simulations performed on the different contraction
shapes. Four different parameters will be analysed to gauge the performance of the contraction
as described in section 2.2.4. Their values as a function of Brassard parameter 𝑓 will be plotted.

2. Next, to include only competing parameters into the contraction, two of the most important pa-
rameters will be chosen out of the four parameters. Using MATLAB’s curve fitting software the
two selected parameters will curve fit.

3. Since we have one input parameter that we need to optimise and two output parameters that need
to be minimised, a Multi-objective/Pareto optimisation technique will be used to find the optimal
𝑓 value. A scalarization based multi-objective technique will be used called the weighted sum
method. A brief description of the method is given below.
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Weighted Sum method

In this method both the objective functions (say 𝐹1 and 𝐹2) will be aggregated to form one single
objective function( say F) that needs to be minimised, with two weights that add up to 1 (say 𝑤1
and 𝑤2). Additional constraints are also put on the bounds of 𝑓, 𝑤1 and 𝑤2.

𝑀𝑖𝑛𝑖𝑚𝑖𝑠𝑒 − − − 𝐹 = 𝑤1𝐹1(𝑓) + 𝑤2𝐹2(𝑓) (2.7)

Subject to,

𝑤1 +𝑤2 = 1 (2.8)

𝑂 ≤ 𝑤1 ≤ 1 (2.9)

𝑂 ≤ 𝑤2 ≤ 1 (2.10)

𝑂.5 ≤ 𝑓 ≤ 1.5 (2.11)

4. Once the Pareto front is generated, the most optimal point will be chosen to be that Pareto point
that is closest in distance to the to the ideal minimum point which is at the origin.

5. The value of parameter 𝑓 at this minimum point will then be chosen as the optimum transformed
fifth order polynomial for the wall shape of the experimental setup.

2.3. Unsteady Analysis

Unsteady simulations are performed on the computational domains to understand if they have steady
state solutions on adding perturbations. Reference simulations will be performed without perturbations
to understand the steady state solutions of the system.

2.3.1. No Perturbations

An unsteady simulation is performed without any added perturbations to the flow field at the inlet. This
simulation is performed for two main reasons:

• To assess whether the unsteady simulation converges to the steady state solution given sufficient
computational time.

• To act as a reference state flow field to compare results with perturbed simulations performed as
detailed in subsection 2.3.2

To check for convergence to steady state, several parameters of the flow such as contraction outlet
velocity profiles, contraction outlet uniformity and contraction inlet boundary Reynold’s numbers will be
compared.

2.3.2. Perturbations Introduced to Flow Field

To analyse the flows stability in the curved contraction section, perturbations will be added through the
inlet boundary conditions detailed in section 2.4.

Two different perturbation methods will be used for the simulations in this study. For the laminar vis-
cous simulation, sinusoidal perturbations will be introduced to the velocity inlet on the top wall in the
negative y-direction. This is done because to trigger Gortler vortices it is seen that perturbations need
to be in the radial direction of the wall curvature as shown in Mendez et al 2020 [39]. Further, these
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sinusoidal perturbations are given wavelengths in the span-wise direction since experimental results
like Boiko et al 2010 [60] show that such perturbations are successful in triggering the Gortler instability.
The perturbation equation is shown in equation 2.12.

𝑈𝑝𝑒𝑟𝑡𝑢𝑟𝑏𝑎𝑡𝑖𝑜𝑛 = 0.001𝑠𝑖𝑛(𝜔𝑧) (2.12)

The value of angular frequency 𝜔 will be varied to generate perturbations of different wave-numbers
in the top boundary layer. The second perturbation method that will be used to trigger Görtler vortices
will be random isotropic turbulence at the inlet of the contraction. These turbulence are specified as a
percentage of the mean velocity of the flow. This perturbation method has been seen to trigger Görtler
vortices in DNS studies such as Schrader et 2011 [51].

2.4. Boundary Conditions and Computational Domain
Boundary value problems involve the solving of differential equations on a closed finite domain along
with added constraints which are prescribed on the edge of the domain called the boundary curve. Since
CFD simulations generally involve solving governing equations on a finite computational domain, they
are inherently boundary value problems. These boundary conditions can be defined in several different
ways depending on the geometry, flow and physics of the given problem.

2.4.1. Boundary Conditions

The boundary conditions used in the simulations performed in the present study are briefly described
below.

• Pressure inlet and outlet: A pressure inlet or outlet is specified depending on the simulation
performed. The pressure at the boundary is specified as a gauge pressure of 𝑃𝑔=0 for all the
simulations carried out in this study. The condition specifies a constant pressure at that bound-
ary surface and the Bernoulli equation is then used to calculate the velocity components on that
surface.

For the LES, to analyse the formation of instabilities in the contraction due to turbulence in the
boundary layer, an isotropic random turbulence level is specified at the pressure inlet as dis-
cussed in section 2.3.2.

• Mass-flow/ Velocity inlet and outlet: The mass flow and velocity boundary conditions are used
to specify the mass flow values or velocity vectors respectively at the boundary of the domain.
Since the simulations in the present study are incompressible with a constant density ( 𝜌 = con-
stant), both the mass-flow and velocity boundary conditions are equivalent and can be used in-
terchangeably.

For the laminar perturbed simulations, sinusoidal perturbations are prescribed through the ve-
locity inlet in the wall normal direction -y direction. The perturbations are prescribed as specified
in section 2.3.2. The mass-flow rate, velocity and properties of SCO2 are shown in Table. 2.2.

• Symmetry Boundary Condition: The symmetry boundary condition is a boundary condition
used to mirror symmetrical computational domains. The surface selected for the symmetry de-
fines the plane about which the domain is mirrored. Using a symmetry boundary condition helps
in greatly decreasing the total computational time and memory required for a CFD simulation.

For the geometry in this study for simulation 1 and simulation 3, a central YZ plane at x=25mm is
taken to be the symmetry plane. However one constraint of using this boundary condition is that
there should be no flow variable fluxes across this plane from one half of the domain to the other.
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Table 2.2: System parameters at Design Conditions

Parameter Value
Mass Flow Rate �̇� 0.05 𝐾𝑔/𝑠
Velocity 𝑈𝑖𝑛𝑙𝑒𝑡 0.02371𝑚/𝑠
Density 𝜌@ (90Mpa, 306K) 702.85𝑘𝑔/𝑚3
Dynamic Viscosity 𝜇 @ (90Mpa, 306K) 56.306𝜇𝑃𝑎 − 𝑠

• Periodic Boundary Condition: A periodic boundary condition is used when the flow field in
the computational domain demonstrates cyclic periodic patterns. One cycle of the domain in the
direction of periodicity can be simulated with periodic planes on either side as shown in Fig. 2.2.
These periodic planes, unlike symmetry planes allow the variation of flow variable fluxes across
the boundary.

Figure 2.2: Top View Of Contraction: Periodic Boundaries on either side of Contraction

• No Slip Boundary Condition: The no slip condition is a boundary condition in viscous fluids that
imposes a zero velocity on a wall/surface. Due to the fluids viscosity, fluid molecules close to the
wall adhere to the surface. This boundary condition plays an important role in the development
of boundary layers within the domain.

2.4.2. Computational Domain

The various boundary conditions discussed in the previous subsection are enforced on a part of the
true geometric physical domain that is used for the simulation called the computational domain. The
computational domain greatly reduces the size of the true domain by utilising symmetries and repeating
structures inherent in the geometry. This helps in drastically reducing the memory requirements and
increasing the speed of calculation.

In this study, different computational domains are used for different simulations. A summary of the
type of domain used for the different simulations are performed is given in Table 2.3.
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Table 2.3: Summary of Domain type for each simulation

Simulation Type Domain Used Shown in Figure
Steady Laminar Domain 1 Fig. 2.3

Unsteady Laminar (No Side Wall) Domain 2 Fig. 2.4
Unsteady Laminar (With Side Wall) Domain 3 Fig. 2.6

Large Eddy Simulation Domain 2 Fig. 2.4

Figure 2.3: Domain-1 (25mm)

Figure 2.4: Domain-2 (12mm)
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Figure 2.5: Domain-3 (25mm)

Domain Initialisation: For the simulations to have a faster convergence, the flow field variables
need to be given a good guess for an initial value. This is done by using the hybrid initialisation method
in Fluent[61]. In this method the Laplace equation is solved iteratively to generate the initial velocity
and pressure values of the flow field.

Where the Laplace equation is given by :

∇2𝜙 = 0 (2.13)

and velocity is related to the potential by
𝑣 = −∇𝜙 (2.14)

The Laplace equation is solved for 10 consecutive iterations which develops an initial field that is
closer to the true flow than assigning random constant values to the domain.

In the LES simulation, results from a laminar steady state simulation are used to initialise the flow
field for faster convergence.

2.5. Computational Mesh

Mesh generation is the process of dividing a continuous geometric domain into a finite set of nodes
at which important parameters and values can be calculated. The nodes approximate locally the be-
haviour of the flow in the domain, thereby providing an accurate representation of the total flow.

Meshes can be generated into two main types:

• Structured Mesh : Structured meshing is a meshing technique in which uniformity is maintained
in the mesh elements shape and an implicit connectivity is created between adjacent elements.
For simpler geometries structured meshes are easier to mesh, take up lesser memory and also
help decrease solving time. Structured meshes also demonstrate lower false diffusion since the
mesh elements are aligned in the direction of the flow[61]. However for complex geometries it is
not always possible to generate a structured mesh, especially in regions of very high curvature
and intricate geometry.

• Unstructured mesh : Unstructured meshing is a meshing technique in which mesh elements are
not uniform in shape and connectivity data needs to be saved for each node to completely define
the relation between adjacent nodes. Though computationally and memory wise more intensive,
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unstructured meshes are suitable for very complex geometries. However they are susceptible to
numerical diffusion which can lead to non-physical solutions [61].

Both structured Kao 2017 [62] and unstructured meshing Sargison 2004 [17] meshing techniques have
been used in previous studies. For the computational domain in this study a fully structured mesh is
generated to avoid numerical diffusion and have faster computational times. The mesh was created in
the Fluent meshing software is used for the simulations of the wind tunnel contraction. An edge sizing is
performed on every dimension of the geometry and the behaviour of the sizing is kept on ”hard”, which
means the mesh conforms to the sizing specified. For domain 1 the mesh is biased in the span-wise
and wall normal directions while for domain 2 it is highly biased only in the wall normal direction.

Edge sizing is varied depending on the section of the physical domain meshed. In the stream-wise
direction the settling chamber, contraction and test section have 60, 300 and 60 elements respectively.
In the wall normal direction 60 elements are used and the biasing of the elements depends on the
simulation performed. In the span-wise direction for steady state simulations on the large domain 60
elements are used. For unsteady simulations 60 elements are used even though the domain is half
the size to fully resolve any vortical structures formed.

For simulations 2,3 and 4 where perturbations are introduced, additional care is taken to maintain the
wall y+ at a low value to fully capture the effects of the boundary layer development and instabilities.
The wall y+ is defined in the equations below.

𝑦+ = 𝑈𝜏 ∗ 𝑦
𝜈 (2.15)

where the friction velocity 𝑈𝜏 can be written in terms of the wall shear stress and is given by:

𝑈𝜏 =
𝜏
𝜌 (2.16)

Using these results, the first cell length 𝑦 can be calculated by taking an appropriate y+ value de-
pending on the simulation performed. For simulations 2 and 3 where a laminar viscous simulations is
performed with sinusoidal perturbations, a y+ of around 10 is used. For simulation 4 where an LES is
performed using inlet turbulence levels, a y+ of around 1 is maintained.

Examples of the meshes generated using the above methods are shown in Fig. 2.6 and Fig. 2.7. The
final meshes used for the simulations are generated after a mesh independence study which is added
in Appendix A.

Figure 2.6: Side-View-Shows Bias in Wall Normal and stream-wise direction
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Figure 2.7: Isometric View of Contraction

2.6. Governing Equations: Incompressible Navier Stokes Equations

The governing equations of fluid flow are known as the Navier Stokes (NS). These are a set of par-
tial differential equations that mathematically describe the flow of viscous Newtonian fluids. They are
fundamental expressions of conservation of mass and momentum for a fluid and include terms for rate
of change, advection, viscous forces, pressure gradients and body forces. For fluid flow at low Mach
numbers( Ma< 0.3) compressibility effects can be neglected and the NS equations in three dimensions
can be written in their incompressible form in Einstein notation as follows.

𝜕𝑢𝑖
𝜕𝑥𝑖

= 0 (2.17)

𝜌 (𝜕𝑢𝑖𝜕𝑡 +
𝜕𝑢𝑖𝑢𝑗
𝜕𝑥𝑗

) = − 𝜕𝑝𝜕𝑥𝑖
+ 𝜇𝜕

2𝑢𝑖
𝜕2𝑥𝑗

+ 𝜌𝑔𝑖 (2.18)

Here the density 𝜌 and viscosity 𝜇 are taken to be constants.

For the steady state laminar viscous solver where the flow variables are considered to be indepen-
dent of time, the time derivative term in the NS equations vanishes.

In this study, the energy equation is not solved as there is no heat exchange in the domain.

2.6.1. Numerical Techniques

In this subsection the numerical methods used to solve the governing equations will be discussed.

Discretisation Technique: Finite Volume Method

The finite volume method (FVM) is a technique of solving systems of partial differential equations by
integrating over cell volumes to convert the equations into a system of linear algebraic equations. It is
a highly versatile method and can be used to solve the governing equations over any mesh shape. In
Ansys Fluent the different flow variables are stored at the centroid of the cells. The flow variables are
then assumed to vary linearly across the volume of the cell. Each term is integrated individually to form
a matrix set of linear algebraic equations which are then solved iteratively for the pressure and velocity
field.
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Solver and Pressure velocity coupling

Since the flow is incompressible and fluid densities are taken as a constant in this study, a pressure
based solver is used. A coupled approach is used to solve the equations in which equations 2.1-2.4
are solved simultaneously after rewriting the continuity equation in the form of a Poisson equation for
finding the pressure field.

The coupling used for the simulations is the SIMPLEC pressure velocity coupling method. The SIM-
PLEC method was chosen as it is seen to perform well for incompressible flows and has a slight com-
putational time advantage to the SIMPLE algorithm 1984 [63].

Spatial discretisation

For finding gradients the least square cell based method is used which is computationally less expen-
sive than othermethods with similar accuracy as theGreen-Gauss node basedmethod. Formomentum
and pressure discretisation, a second order upwind scheme is used as it has lower false diffusion and
higher accuracy than first order schemes[61].

Temporal discretisation

For the discretisation of the unsteady term in the NS equations a second order implicit time scheme
is used for higher accuracy. For Simulation 4 where an LES is performed and the smaller scales are
resolved by using a turbulence model a bounded second order implicit solver is used. This is because
bounding the flow variables can lead to better convergence and a lower risk of unwanted oscillations
in the flow while modelling the smaller scales.

Sub-grid Model (for LES)

Since large eddy simulations only resolve the larger vortices in the flow field and filter out the finer
scales, a sub-grid turbulence model is required to model these scales. For this study the Wall Adaptive
Local Eddy viscosity (WALE) model is used as it is seen to give good results for wall bounded [61] and
transitional flows in Bertolini 2021 [64].

2.7. Simulation Overview

The following section gives a tabular summary of the different simulations performed , their boundary
conditions and domain.

1. Steady State Laminar Simulations
Setting Description Described in section

Inlet Boundary Pressure Inlet 2.4.1 Pressure In-/Outlets
Outlet Boundary Massflow Outlet 2.4.1 Massflow In-/Outlets

Mesh Structured Mesh 2.5Mesh
Domain and Side Boundaries Domain 1, Symmetry B.C. 2.4.2 Steady Domain

Table 2.4: Steady State Laminar Simulations Details
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2: Transient Laminar Simulations (Without Side Walls)
Setting Description Described in section

Inlet Boundary Massflow inlet 2.4.1 Massflow In-/Outlets
Outlet Boundary Pressure Outlet 2.4.1 Pressure In-/Outlets

Mesh Structured Mesh 2.5 Mesh
Domain and Side Boundaries Domain 2, Symmetry B.C. 2.4.2 Unsteady Domain

Table 2.5: Transient Laminar Simulations (Without Side Walls) Details

3: Unsteady Laminar Simulations (With Side Walls)
Setting Description Described in section

Inlet Boundary Massflow Inlet 2.4.1 Massflow In-/Outlets
Outlet Boundary Pressure Outlet 2.4.1 Pressure In-/Outlets

Mesh Structured Mesh 2.5 Mesh
Domain and Side Boundaries Domain 2, Periodic B.C. 2.4.2 Unsteady Domain

Table 2.6: Unsteady Laminar Simulations (With Side Walls) Details

4: Large Eddy Simulation
Setting Description Described in section

Inlet Boundary Massflow Inlet 2.4.1 Massflow In-/Outlets
Outlet Boundary Pressure Outlet 2.4.1 Pressure In-/Outlets

Mesh Structured Mesh 2.5 Mesh
Domain and Side Boundaries Domain 2, Periodic B.C. 2.4.2 Unsteady Domain

Table 2.7: Large Eddy Simulation Details

2.7.1. Chapter Summary

This chapter details the computational methodology of the simulations performed. It first details the the
physical domain and geometry that is to be simulated and gives a list of simulations that are performed.
After this the methodology of the steady state and unsteady analysis are detailed along with the bound-
ary conditions used. Next the computation domains used for the simulations are shown, along with the
governing equations and numerical methods used to solve them. Finally a tabular summary of the
different simulations is given.
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Results and Discussion- Shape

Optimisation

In this chapter, the results obtained from steady state simulations that are used for optimisation of the
2D contraction shape will be presented and discussed in detail.

3.1. Contraction Length

Steady state simulations are performed and the contraction length is varied keeping all other dimen-
sions constant.The un-transformed fifth order polynomial wall shape is taken for the wall contour. A
mass flow rate of 0.05kg/s is maintained in the contraction which is the experimental design flow rate
of the setup. A poly-line is drawn on the centreline symmetry along the wall of the entire geometry as
shown in Fig. 3.1. Pressure gradients in the stream-wise direction are calculated on this poly-line as
shown in Fig. 3.2.

Figure 3.1: Poly-line along Centre line symmetry of Geometry -
Marked in Red

Figure 3.2: X-Distance vs X- Pressure Gradient
along Poly-line

It is seen in Fig. 3.2 that there exists one distinct region of adverse pressure gradient in the con-
traction near the inlet. This adverse gradient is seen to occur within the contraction. Similar results are
seen for 2D contractions by Morel 1975 [11] where adverse pressure gradients are formed within the
contraction inlet. This is attributed to the velocity minima occurring within the contraction inlet instead
of the at the inlet due to local curvature effects dominating overall flow acceleration.

35
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The maximum of this adverse pressure gradient is found to occur at a distance of 3.5mm downstream
of the inlet of the contraction. This is shown in in a zoomed in view in Fig. 3.3

Figure 3.3: X-Distance vs X-Pressure Gradient Plot- Zoomed in View

It is seen that depending on the length of the contraction in the geometry, there might exist flow re-
versal zones caused by adverse pressure gradients. These regions are identified by seeing where the
x-direction wall shear stress is less than zero. Results show that flow reversal due to adverse pressure
gradients can either be confined only to the edge along the side wall as seen in Fig. 3.4, or can also
occur on the top wall just within the contraction as shown in Fig. 3.5. Separation of flow on the concave
surface has been noted by several authors such as Morel 1975 [11] and Bell and Mehta 1988 [13] and
occurs due to the presence of adverse pressure gradients in the contraction. Secondary flows like flow
separation due to sharp corner have also been noted in experimental studies such as Johl et al 2004
[65].

Figure 3.4: X-Wall Shear 175mm contraction Figure 3.5: X-Wall Shear 165mm contraction

Beyond a certain length of contraction the separation region along the top wall disappears and only
the reverse flow region along the edge of the side wall remains.The contraction length and the region
of flow reversal are shown in tabular form in Table. 3.1.

From Table. 3.1 it is clear that there exists some maximum contraction length beyond which no reversal
takes place on the top wall of the contraction inlet. This length is found to be 175mm for the current
geometry. It is also interesting to note that no boundary layer separation is seen at the exit for any of
the different contraction lengths simulated even though adverse pressure gradients are found at the
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Table 3.1: Presence of Flow Reversal at Different Contraction Lengths

Contraction Length (mm) Flow Reversal
Inlet Top Wall Inlet Side Edge

160 Yes Yes
160 Yes Yes
165 Yes Yes
170 Yes Yes
175 No Yes
200 No Yes

outlet. This behaviour was also described by Bradshaw 1973 [66] who stated that convex surfaces are
stabilising and hence have a lower risk of boundary layer separation that concave surfaces. Similar
behaviour was found by Madhusudan et al 1994 [67] in a a boundary layer study on an S- blade con-
sisting of consecutive concave and convex section.

The flow reversal seen in Fig. 3.5 can cause boundary layer separation and unsteadiness in the con-
traction which can disturb the laminar flow at the outlet and render the setup unsuitable for boundary
layer experiments. Bell and Mehta’s 1988 study of low speed wind tunnels [13] also concluded that
there exists some optimum contraction length to prevent risk of separation at inlet. However, they also
found that increasing the length over that optimum might lead to separation at the contraction outlet
which would also disturb the laminar flow. This flow reversal at the outlet however was not found in
any of the different contraction lengths simulated in this study.

Mehta 1979 [20] in his work on two dimensional blower tunnel design showed that for edge and cross
flows in a contraction remain localised to the edge and do not disturb the flow through the centre of the
contraction. Additionally the use of corner fillets to stop the merger of two different boundary layers at
the edge has been shown to reduce the formation of such secondary flows in a study by Johl et al 2004
[65].

From analysing the above results, it was decided that a contraction length of 175mm would be ideal
for the experimental setup since this would minimise the risk of flow reversal and boundary layer sep-
aration. This length will be used for all further simulations in the thesis study.

3.2. Settling Chamber Length

Steady state simulations are performed for different settling chamber lengths to find the shortest length
that is unaffected by the boundary conditions. The settling chamber also needs to be large enough to
house various turbulence reducing components such as the the screens and honeycomb channels.

Different inlet lengths were simulated ranging from 50mm to 160mm. It was found that boundary con-
ditions for settling chamber lengths above 60mm do not interfere with the flow simulations. This was
determined by analysing the isobars connected to the contraction similar to the paper by Watmuff 1986
[26].
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Figure 3.6: Pressure contours Inlet length 60mm
Figure 3.7: Pressure contours Inlet length

80mm

For the simulation with 60mm settling chamber length it can be seen from Fig. 3.6 that the pressure
contours are disturbed by the boundary layer, hence affecting the flow field downstream. However in
Fig. 3.7 for the 80mm case the isobars are not influenced by the boundary conditions.

As the experimental setup also requires having extra space for placing screens and honeycombs in
the settling chamber, an settling chamber of 100mm is proposed for the experimental setup. However
for further simulations, for the unsteady cases since the settling chamber length does not make a dif-
ference to the Gortler vortex analysis and to decrease computational time an settling chamber length
of 80mm is used.

3.3. Contraction Wall Shape Optimisation

Once the contraction length and settling chamber length are fixed, the wall contour shape of the con-
traction is optimised. In this subsection the results obtained in optimising the Brassard transformed
fifth order polynomial are shown. First the qualitative effect of changing wall shape on flow conditions
is discussed, after which a multi-objective optimisation is performed to select the best performing wall
shape.

3.3.1. Qualitative effect of Changing Wall Shapes

Critical Reynolds Number Boundary Layer (Inlet) It is found that for a given wall shape, there exists

a critical value of the boundary layer Reynold’s number after which flow reversals occur. This criti-
cal Reynolds (𝑅𝑒𝛿1𝑐𝑟) was found to be a function of the Brassard Parameter 𝑓 used to generate wall
shapes. The mass-flow rate through the contraction was varied to obtain a varying Reynolds’s number
in the boundary layer at the contraction inlet to find 𝑅𝑒𝛿1𝑐𝑟 . The 𝑅𝑒𝛿1𝑐𝑟 was evaluated for different
pressure and temperature (physical properties) values and it was found to be independent of these
properties.

The value of 𝑅𝑒𝛿1𝑐𝑟 is plotted for five different parameter 𝑓 values. It is seen that as the value of
parameter f decreases the 𝑅𝑒𝛿1𝑐𝑟 at the inlet of the contraction also decreases.These points are then
curve fitted using a power function in 𝑓 in the form of 𝐹1 = 𝑎𝑓𝑏+𝑐, where a= 478.9, b= -2.524, c= 471.8
are constants that develop the best curve fit for this given data-set. The data points of 𝑅𝑒𝛿1𝑐𝑟 and the
curve fitted function are shown together in Fig. 3.8.
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Figure 3.8: Plot Parameter 𝑓 vs 𝑅𝑒𝛿1𝑐𝑟

Pressure Non-Uniformity

Another effect seen on varying the wall shape of the contraction was that the non-uniformity of the flow
field at the outlet also changed. This non-uniformity is quantified by taking the standard It was found that
the standard deviation (𝜎𝑝) is also a function of the parameter 𝑓. As 𝑓 is increased the non-uniformity
at the outlet of the contraction decreases.

The values of 𝜎𝑝 is found at five distinct values of 𝑓 These values are then curve fitted using a fourth
order polynomial function given by 𝐹 = 𝑎𝑓𝑏 + 𝑐 , where a=0.008624, b=-2.715and c=0.01352 which is
found to give a good fit. The five data points of 𝜎𝑝 along with the curve fitted function are shown in Fig.
3.9.

Figure 3.9: Plot Parameter 𝑓 vs 𝜎𝑝

It is also seen that this non-uniformity at the contraction outlet rapidly decreases as the fluid flows
downstream in the test section. This can be seen when the two pressure lines are compared as shown
in Fig. 3.10 and Fig. 3.11.
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Figure 3.10: Vertical Pressure Line at Outlet X=0.175m Figure 3.11: Vertical Pressure Line 75mm Downstream of
Outlet X=0.25m

This property of the pressure line to increase in uniformity as the flow moves through the test sec-
tion gives us a good estimate as to where the influence of the contraction ends and a uniform channel
flow boundary layer develops. The value of non-uniformity through the test section for a few randomly
selected values of parameter 𝑓 is given in Fig. 3.13.

Figure 3.12: Plot X-distance vs Pressure Deviation 𝜎𝑝 for different 𝑓 values

From Fig. 3.13 we can see that after a distance of 12mm downstream of contraction inlet, all pres-
sure deviations collapse on each other. This decay found to be exponential in nature and a curve fit
equation was found to approximate this behaviour. This equation is given below.

𝐹(𝑓, 𝑥) = (3.81 ∗ 1022)𝑒(−(−9.12𝑓2+26.24𝑓+301.6)𝑥) (3.1)

This exponential behaviour is also observed by Morel 1977 [12] where the non-uniformity plots of
10 different nozzles collapsed on each other. Morel estimated the rate of non-uniformity decay as
𝑒𝑥𝑝(−2𝜋𝑥/𝐻𝑜).
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Adverse Pressure Gradients Outlet

It is also seen that a change in wall shape changes the magnitude of pressure gradients at the con-
traction outlet. This can be seen in Fig. 3.13, where a curve with a higher 𝑓 value tends to have lower
pressure gradients and vice versa. This is expected since as 𝑓 increases the curvature of the convex
wall shape decreases.

Figure 3.13: Pressure Gradients in X- Direction for Different f values

From Fig. 3.13 it is also evident that the maximum value of these gradients fall within the contrac-
tion. On average the maxima is located around 2-3mm upstream of the outlet. This behaviour is also
seen in Morel’s study on 2D 1977 and axisymmetric contractions 1975 [12][11].

At the simulated mass flow rate of 0.05kg/s, it was found that only certain 𝑓 values produce adverse
pressure gradients. Fig. 3.14 demonstrates this trend and shows the departure from a negative to a
positive pressure gradient.

Figure 3.14: Plot Parameter 𝑓 vs Maximum Pressure Gradient

Outlet boundary layer Reynold’s number

It is seen that the Reynold’s number of the bottom plate boundary layer (𝑅𝑒𝛿1𝑜𝑢𝑡) at the contraction
outlet also varies with the parameter 𝑓. The boundary layer at the bottom is analysed as this is where
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the heat transfer experiments are to be conducted. The 𝑅𝑒𝛿1𝑜𝑢𝑡 is evaluated 14mm downstream of the
outlet since nearer to the outlet regions of decreasing boundary layers are encountered due to curva-
ture induced non-uniformity’s. The variation follows a logarithmic relation as shown in Fig. 3.15, where
increasing the value of parameter 𝑓 increases 𝑅𝑒𝛿1𝑜𝑢𝑡.

Figure 3.15: Reynolds boundary layer 𝑅𝑒𝛿1𝑜𝑢𝑡 Outlet

According to linear stability analysis, a flat plate boundary layer 𝑅𝑒𝛿1 of 520 is the critical value re-
quired for instabilities to be triggered. It is seen that even 14mm downstream of the outlet the values of
𝑅𝑒𝛿1 are less than 520. This makes it acceptable for the boundary layer experiments to be conducted
in the test section.

Choosing Parameters to Optimise

Four parameters have been discussed that are effected by changing parameter 𝑓 however all the
parameters are not seen to be equally important. The adverse pressure gradients at the outlet are not
seen to cause any separation at the contraction outlet even at very high mass flow rates. Also the
𝑅𝑒𝛿1 at the outlet is seen to be well below the value required to conduct instability experiments. Hence
these two parameters are not considered in the optimisation procedure. The parameters chosen for
optimisation,𝑅𝑒𝛿1𝑐𝑟 and 𝜎𝑝 are named as Objective functions F1 and F2 respectively.

3.3.2. Multi-objective Optimisation

To perform the multi-objective optimisation the objective space of the problem is first plotted between
functions 𝐹1 and 𝐹2 are first normalised and then plotted against each other. This objective space is
shown in Fig. 3.16 and consist of all possible solutions of the optimisation problem.

The objective space is a curve since there is only one input parameter to the problem which is the
parameter 𝑓.

Next the Pareto optimal points are found on this objective space using the weighted sum method
method. From the results in Fig. 3.17 is evident that the weighted sum method is successful in finding
all the Pareto optimal points in the entire objective domain. Hence it is deemed a suitable method of
optimisation.

To find the best performing 𝑓 value from all the Pareto optimal the minimal distance from the ideal
point (0,0) which is a pseudo-point of highest 𝑅𝑒𝛿1𝑐𝑟 and 𝜎𝑝. These distances d1...dn are visualised in
Fig. 4.7, where n is the number of Pareto optimal point.
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Figure 3.16: Objective Space 𝐹1 vs 𝐹2

Figure 3.17: Optimal Points- Weighted Sum Method

Figure 3.18: Distance From Ideal Point (0,0)
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These distance are plotted versus 𝑓 in Fig. 4.8 and the minimum point indicated is chosen to be the
most optimum 𝑓 value for the wall shape of the contraction.

The results from the optimisation indicate that the best performing shape has an optimised value

Figure 3.19: Plot Parameter 𝑓 vs Minimum Distance from Ideal Point (0,0)

of 𝑓 = 0.65. This means that a wall shape with an inflection point downstream of the centreline has a
overall better performance that a wall shape with the inflection point at the centre. This validates the
use of Brassard’s transformation 2005 [15] over Bell and Mehta’s 1988 [13] fifth order polynomial with
𝑓 = 1. A wall shape with 𝑓 = 0.65 has an inflection point that is pushed downstream by 27.5mm.

The optimisation results show good agreement with past research done on contraction design. Re-
search shows that when higher order polynomial wall shapes are used having an inflection point down-
stream of the centreline, it helps reduce the risk of separation as seen in Sargison 2004 [17] and
Lakshman 2018 [68].

Taking practical considerations into account the experimental setup was ,manufactured using a rounded
off 𝑓 value of 0.7. This wall shape was then used for the unsteady simulations. The wall shape and its
inflection point distance are shown in Fig. 3.20.

Figure 3.20: f=0.7 Contraction shape and Inflection Point Distance used for experiments
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Chapter Summary

This chapter details the results obtained from the steady state simulations and optimisation of the con-
traction shape. Firstly the procedure to find the optimum contraction length and settling chamber length
are given. After this the effects of changing wall shape on different flow parameters are detailed. Next
two of the most important parameters are chosen and used to perform a multi-objective optimisation to
obtain the best wall shape.





4
Results and Discussion- Unsteady

Simulations
This chapter details and discusses the results obtained from the unsteady simulations performed on
the wind tunnel contraction. Firstly results from unsteady laminar viscous simulations without any per-
turbations are compared with steady state results. After which results from unsteady laminar viscous
simulations with and without side-walls with the addition of sinusoidal perturbations are analysed for in-
stabilities. Finally results from LES are detailed with perturbations in the form of random inlet turbulence
levels.

4.1. Unsteady (Without Perturbations)
An unsteady simulation without perturbations is performed to analyse if the flow is stable in the absence
of any forced disturbances. This steady state solution will also act as a reference state for the pertur-
bation analysis in the following sections. This is done by comparing the unsteady simulation results
with the results from steady state simulations at experimental conditions of 0.05kg/s mass flow rate.
As domain 2 (without side walls) and domain 3 (with side walls) have different steady states due to
wall effects, both the domains are compared independently. The velocity contours and profile, 𝜎𝑝 and
x-vorticity plots will be analysed for the comparison.

4.1.1. Domain-2

The x-velocity contours are plotted on a yz plane at x=0.175 at the contraction outlet. It is seen that the
steady and unsteady plots of these contours converge to the same solution.

Figure 4.1: X-Velocity Contour Unsteady- Domain-2 Figure 4.2: X-Velocity Contour Steady - Domain-2
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The x-velocity profile and pressure non-uniformity 𝜎𝑝 at the contraction outlet are plotted and de-
tailed Fig. 4.3,Fig. 4.4 and Table. 4.1. The figures shows that the velocity profiles collapse onto each
other and the value of 𝜎𝑝 are nearly the same. These further confirm the convergence of the steady
and unsteady simulations for Domain-2.

Figure 4.3: Unsteady vs Steady Velocity Profile Outlet
Comparison - Domain 2 Figure 4.4: Velocity Profile - Zoomed in View

Table 4.1: Comparison of Steady and Unsteady Flow Parameters- Domain 2

Simulation Type 𝜎𝑝
Steady State 0.0349
Unsteady 0.0351

4.1.2. Domain-3

For domain 3 the x-vorticity contours are plotted on a yz plane at x=0.175 at the contraction outlet as
shown in Fig 4.5 and Fig. 4.6. It is seen that the steady and unsteady simulations converge to produce

Figure 4.5: X-Vorticity Contour Steady- Domain 3

Figure 4.6: X-Vorticity Contour Unsteady- Domain 3
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nearly identical vorticity fields. The steady state solution of the vorticity field seems to form 3 distinct
vortices near the side wall: a large elongated counterclockwise vortex that spreads from from the top
to bottom wall, a small clockwise vortex on the bottom wall and a small clockwise vortex on the top
wall. These vortices remain confined to the side wall and do not cause flows that effect the centre-line
velocity of the channel. The formation of similar corner vortices has also been observed by Lastra et
al 2013 [69] in their experimental study on the design of wind tunnel contractions.

The centre-line x-velocity profiles and non-uniformity 𝜎𝑝 are also plotted and detailed.

Figure 4.7: Unsteady vs Steady Simulation Velocity Profile
Outlet Comparison: Domain 3 Figure 4.8: Velocity Profile - Zoomed in View

It can be seen from Fig. 4.7 and Fig. 4.8 that the velocity profiles of both the cases collapse on each
other. Further from Table 4.2 it can be seen that the 𝜎𝑝 is nearly identical which further confirms the
convergence.

Table 4.2: Pressure Profile Non-Uniformity Comparison of Steady and Unsteady Simulations

Simulation Type 𝜎𝑝
Steady State 0.0357
Unsteady 0.0356

The above results detail the steady state solutions of the systems which will be used as reference
states for the perturbation analysis in the following sections. Further x-velocity monitors were added
inside the contraction to check for velocity unsteadiness and the results showed constant values. The
results also show that without an external forcing source, no curvature instabilities like Gortler vortices
form on the top wall of the contraction. This shows that there is a need for forced perturbations to exist
in the flow field. This result is supported by experimental and DNS research on Gortler vortices where
the instability is triggered by forced perturbations as seen by Boiko et al 2010 [60] and Sharma and
Ducoin 2018 [54].

4.2. Unsteady Laminar With Perturbations (Without Side Walls)

In this section results from transient laminar simulations by forcing sinusoidal perturbations in the
boundary layer are detailed and discussed. Perturbations with six different wavenumbers 𝜆 = 83.33,
166.66, 250, 333.33, 416.66 and 500 will be analysed to see their effect on boundary layer instabilities
in the contraction. The simulations are run for a flow time of 40 seconds and performed on domain 2.
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4.2.1. Perturbation Wave-number = 83.33𝑚−1 (1 Sine Wave)

In this subsection the results on forcing perturbations of wavenumber 83.33 are detailed.

Initial Perturbation Velocity Field

The perturbation is introduced 54mm upstream of the contraction inlet on the top boundary layer. A
wavenumber of 83.33𝑚−1 produces a velocity perturbation in the negative y-direction in the form of 1
sine wave. This is shown as a x-velocity contour plot in the YZ-plane at x=-54mm in Fig. 4.9.

Figure 4.9: X-Velocity Contour Plot of Initial Perturbation on YZ-Plane at X=-54mm

Instability Evolution in Contraction

To visualise the growth of the Gortler instability in the contraction, several YZ-plane cross sections are
taken along the length of the contraction as shown in Fig. 4.10.The planes are generated from the inlet
of the contraction at x=0m to the outlet at x=0.175m.

Figure 4.10: YZ planes at different x distances to visualise vortex growth

The x-velocity contours of the top boundary layer are plotted on these parallel planes to analyse the
growth of Gortler vortices as shown in Fig. 4.11.
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Figure 4.11: Growth of Gortler Instability shown by x-velocity contour plot from x=0 to x=0.175

From Fig. 4.11 it is evident that the perturbation grows due to the curvature of the contraction. It is seen
that the instability causes an elongation of the trough of the sine wave which leads to a thickening of
the boundary layer. Initially a spike like structure is seen at a downstream distance of around x=0.04m,
after which a mushroom like structure is formed. Both these structures were also found in experimental
results by Peerhossaini and Wesfreid 1988 [58].

The mushroom structure consists of counter-rotating vortices that transport low momentum fluid from
the boundary layer to the bulk flow and high momentum fluid to the boundary layer. This growth and
mushroom structure is also seen in experimental studies like Benmalek 1993 [70], Ito 1980 [71] and
DNS by Mendez et al 2018 [50], Souza et al 2004 [72] results on perturbed boundary layers on concave
walls. Fig 4.12 shows a comparison between experimental, DNS and transient laminar results from the
present work. The similarity of the mushroom structure is seen in the comparison.

Figure 4.12: (a) Experimental Benmalek 1993 [70] (b) DNS Mendez et al 2018 [50] (c) Present work comparison on mushroom
structure in Gortler Instability.

To analyse if the vortices formed due to the instability become increasingly unstable as they exit the
contraction, the stream-wise direction vorticity contours are plotted as shown in Fig. 4.13.

From Fig. 4.13 it is seen that the induced perturbation initially gains energy in the concave section
of the contraction, which results in higher vorticity. However, near the outlet the vortex becomes stable
and begins to lose energy. It is also seen that secondary instabilities arise around 0.04m downstream
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Figure 4.13: Growth of Gortler Instability shown by x-vorticity contour plot from x=0 to x=0.175

of the contraction inlet. The secondary instability consists of a second pair of steady counter-rotating
vortices that are formed from the initial perturbation. These vortices do not generate further instabilities
and slowly start losing energy at the end of the contraction.

The secondary vortices formed remain close to the top boundary layer and do not migrate downwards.
This formation of secondary vortices is also described in DNS studies by Ren and Fu 2015 [73] for
high speed boundary layers on concave walls. A comparison of the secondary instabilities is shown in
Fig. 4.14 and Fig. 4.15.

Figure 4.14: Secondary Instability in DNS by Ren and Fu 2015
[73]

Figure 4.15: Secondary instability formed within contraction in
present study

To further analyse at which specific point in the contraction the secondary vortices start losing energy,
iso-surfaces of stream-wise vorticity +8.0 1/s and -8.0 1/s are generated and shown in Fig. 4.16. The
thickness of the iso-surface shows how the vorticity varies with the stream-wise coordinate. It is seen
that the maximum vorticity occurs at a distance of 0.153m downstream of the inlet. The maximum
values were found to be +11.5 1/s and and -11.5 1/s. The vorticity maximums were found to be in the
secondary vortices. It is seen that as the vortex moves further downstream towards the inlet it loses
more energy as shown by the tapering of the iso-surface.
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Figure 4.16: Iso-surface of Maximum values of Clockwise (Blue) and Counter- Clockwise Vorticity (Red)

4.2.2. Perturbation Wave-number= 166.66𝑚−1 (2 Sine Waves)

In this subsection the results on forcing perturbations of waveneumber 166.66𝑚−1 are detailed.

Initial Perturbation Velocity Field

The perturbation is introduced 54mm upstream of the contraction inlet on the top boundary layer. A
wavenumber of 166.66𝑚−1 produces a velocity perturbation in the negative y-direction in the form of 2
distinct sine wave. This is shown as a x-velocity contour plot in the YZ-plane at x=-54mm in Fig. 4.17.

Figure 4.17: X-Velocity Contour Plot of Initial Perturbation on YZ-Plane at X=-54mm

Instability Evolution in Contraction

The growth of the instability is visualised as described in Fig. 4.10 of section 4.2.1. The contours of the
x-velocity of the top boundary layer are plotted on these planes in Fig. 4.18 to visualise the evolution
of the flow in the contraction.

It is seen that as the perturbation enters the contraction inlet, both the troughs of the sine wave begin
elongate to form two distinct Gortler vortices. The characteristic mushroom structure of the vortex as
shown in Fig 4.12 is seen at a distance 80mm downstream of the contraction inlet. The vortex structure
grows rapidly in the concave half of the section while in the convex section the vortex structure seems
to diminish and gets elongated in the decreasing boundary layer. To further investigate the formation
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Figure 4.18: Growth of Gortler Instability shown by x-velocity contour plot from x=0 to x=0.175

of the vortices, the x-vorticity contours are plotted as shown in Fig. 4.19.

Figure 4.19: Growth of Gortler Instability shown by x-vorticity contour plot from x=0 to x=0.175

From the figure it is evident that a pair of secondary instability vortices are also formed for wavenum-
ber 166.66𝑚−1 . These secondary vortices initially gain energy in the concave section of the contraction
while losing energy and fading away at the outlet of the contraction. The primary vortices also show
a similar behaviour. To quantify the extent of increase and decrease of x-vorticity in the contraction,
iso-surfaces are generated of the x- vorticity +5.5 1/s and -5.5 1/s Fig. 4.20.

Figure 4.20: Iso-surface of Maximum values of Clockwise (Blue) and Counter- Clockwise Vorticity (Red)
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The maximum vorticity value was found to be +7.5 1/s and -7.5 1/s at a distance of 0.53m down-
stream of the inlet. The vorticity maximums are seen to be from the primary vortices that are generated
due to the initial perturbation. After the maximum is reached the vortices quickly start losing energy
as the flow moves downstream towards the contraction outlet as seen from the tapering of the iso-
surfaces..

4.2.3. Perturbation Wave-number= 250𝑚−1 (3 Sine Waves)

In this subsection the results on forcing perturbations of waveneumber 250𝑚−1 are detailed.

Initial Perturbation Velocity Field

The perturbation is introduced 54mm upstream of the contraction inlet on the top boundary layer. A
wavenumber of 250𝑚−1 produces a velocity perturbation in the negative y-direction in the form of 3
distinct sine wave. This is shown as a x-velocity contour plot in the YZ-plane at x=-54mm in Fig. 4.21.

Figure 4.21: X-Velocity Contour Plot of Initial Perturbation on YZ-Plane at X=-54mm

Instability Evolution in Contraction

To understand the growth of the Gortler vortices in the contraction the x-velocity contours are plotted
at different yz planes as described in Fig. 4.10 of section 4.2.1.

Figure 4.22: Growth of Gortler Instability shown by x-velocity contour plot from x=0 to x=0.175

Fig. 4.22 that the instability initially grows in the concave section but then begins to lose energy in
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the concave section. The mushroom structure typical of Gortler vortices is not fully developed for this
wavenumber which indicates that only a weak secondary instability is formed within the contraction.

To further analyse the formation of a weak secondary instability, the x-vorticity is plotted in the con-
traction. This is shown in Fig. 4.23.

Figure 4.23: Growth of Gortler Instability shown by x-vorticity contour plot from x=0 to x=0.175

The vorticity contours also show that that the secondary vortices are very weak when compared to the
primary vortices and hence are not efficient in transporting momentum to and from the boundary layer.
As the flow develops in the contraction both the primary and secondary vortices lose energy and die out.

To find the maximum vorticity in the contraction iso-surfaces of the vorticity maxima are plotted. The
maximum vorticity values are +6.5 1/s and -6.5 1/s and occur at a distance 0.099m downstream of
the contraction inlet. This is shown in Fig. 4.29 where the iso-surfaces have maximum thickness. The
maximum is seen to occur in the primary vortices after which the vortices lose energy as seen in the
figure.

Figure 4.24: Iso-surface of Maximum values of Clockwise (Blue) and Counter- Clockwise Vorticity (Red)

4.2.4. Higher Wave-numbers

Three higher wavenumber perturbations were were also simulated in the contraction, 𝜆 = 333.33𝑚−1
(4 sine waves), 416.66𝑚−1 (5 sine waves) and 500𝑚−1 (6 sine waves). It was found that none of these
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wavenumber produce any secondary instabilities in the contraction. All the primary vortices lose energy
and fade away by the time they reach the end of the contraction. Hence their results are excluded in
this study.

4.2.5. Comparison of Different Perturbations

All the wavenumbers were to seen to form steady Gortler vortices in the contraction to varying degrees.
The most unstable wavenumber was found to be 𝜆 = = 83.33𝑚−1 ( 1 sine wave) which formed sec-
ondary vortices with higher vorticity. This wavenumber is also seen to be the most unstable from linear
stability analysis [74] and is used to perturb flows in DNS studies such as Mendez et al [39]. This was
also the only wave number to produce x-vorticity maxima in the secondary vortices, while all the others
produced maxima on their primary vortices. However for all wavenumbers simulated it was seen that
both primary and secondary vortices begin to lose energy and dissipate.

A lower wavenumber produced a higher maximum vorticity in the contraction. The downstream dis-
tance of the maxima also varies with wavenumber. For a lower wave number of 𝜆= 83.33𝑚−1, since the
secondary vortices dominate the instability, the maximum is reached downstream of the inflection point
at a distance of 0.153m from contraction inlet. For wavenumbers 𝜆= 166.66𝑚−1 and 250, the primary
vortices dominate the flow. As the primary vortices gain energy earlier in the contraction, the maxima
of the vortices are reached at a distance of 0.053m and 0.099m respectively. For all the wavenumbers
simulated the maximum x-vorticity only remains for around 20mm before its starts dissipating.

4.2.6. Secondary Instabilities and Inflectional Velocity Profiles

The formation of secondary instabilities only occurs for lower numbers of 𝜆= 83.33𝑚−1, 166.66 and
250 and is confirmed by plotting the stream-wise velocity profiles taken in the wall normal direction.
It is seen that for these wavenumbers, in the up-wash region generated by the vortices, an inflection
point is created in the velocity profile within the boundary layer. The velocity profile at different stream-
wise coordinates for the most unstable wavenumber x=83.33 is plotted in the contraction and shown
in Fig.4.25- 4.28.

It is observed that the inflection point is formed at around x=0.030 and vanishes at around x=0.160.
This is in conjunction with the x- vorticity plots in Fig. 4.13 which shows that the presence of an inflec-
tional point in the boundary layer is the necessary condition for formation of secondary instabilities. This
is also confirmed by experimental evidence by studies such as Mitsudharmadi et al 2005 [49] where
inflectional profiles were seen to mark the onset of secondary instabilities.

A similar formation of inflection points was observed for 𝜆= 166.66 and 250 perturbations. However
higher than this no inflectional velocity profiles were found which is aligned with the x-vorticity results
for these wavenumbers.

4.2.7. Effects of Gortler Vortices on Wall Shear in Contraction

The formation of the Gortler vortices in the contraction is seen to change the wall shear stress distri-
bution on the top wall. Fig. 4.29 shows the contours of x-wall shear stress distribution on the top wall.
The figure shows alternating streaks formed by periodic regions of high and low wall shear stress. A
wavenumber of 333𝑚−1 is chosen to demonstrate this phenomenon.
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Figure 4.25: X-Velocity Profile Showing Initialisation of
Inflection Point formation at x=0.030m in upwash region

Figure 4.26: X-Velocity Profile Showing Inflection Point at
x=0.060m in upwash region

Figure 4.27: X-Velocity Profile Showing Inflection Point at
x=0.060m in upwash region

Figure 4.28: X-Velocity Profile Showing Inflection Point
Vanishing at x=0.160m in upwash region

Figure 4.29: Streak formation in X-Wall Shear Stress Distribution on Top Wall of Contraction

These streaks are also observed in experimental research on the formation of Gortler vortices on curved
surfaces such as experimental work by Huang 2021 [59]. The formation of these streaks can be at-
tributed to the generation of up-wash and down-wash areas induced by the counter-rotating vortices as
shown in Fig. 4.30. High momentum fluid moving towards a boundary layer causes it to become thinner
thus increasing wall shear stresses in that region. The opposite effect is seen when low momentum
fluid moves away from the boundary layer.

The change in periodic distribution of wall shear stress as the Gortler vortices move through the con-
traction is shown in Fig. 4.31. The figure shows that the amplitude of sinusoidal x-wall shear stress
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Figure 4.30: Upwash and Downwash generated by Gortler Vortices

Figure 4.31: Evolution of Periodic X Wall Shear Stress Distribution as Flow Evolves in Contraction

increases as the vortices grow. The mean of the wave also increases with x distance since the flow is
accelerated in the contraction leading to decrease in boundary layer thickness.

4.3. Unsteady Laminar With Perturbations (With Side Walls)

In section 2.4.2 the domain simulated (Fig 2.4) has periodic boundaries on either side in the span-wise
direction. However since the experimental setup consists of a walled setup, perturbation analysis was
also performed on a walled domain (Fig 2.6) to analyse if perturbations destabilize the system from its
steady state solution.. In section 2.4.2 it was also seen that the most unstable wavenumber with the
highest vorticity is 𝜆 = 83.33 𝑚−1. Hence, this wavenumber is used to analyse the wall effects.

The x-velocity contours are plotted in Fig 4.32 to see the growth of the instability in the contraction.

From the x-velocity contours it is seen that the two waves in the contraction evolve very differently.
The wave does not evolve into a Gortler vortex but instead merges into the boundary layer on the side
wall. However the wave near the centre of the contraction continuous to grow independent of the wall
effects and forms a steady Gortler vortex.

To visualise if the perturbation destabilises the solution from its steady state the x-vorticity contours
at the contraction outlet are compared with the steady state solution obtained in subsection 4.1.2.

It is seen from the x-vorticity contours that the Gortler vortices do not destabilise the flow field from



60 4. Results and Discussion- Unsteady Simulations

Figure 4.32: Growth of Gortler Instability shown by x-velocity contour plot from x=0 to x=0.175

Figure 4.33: Unsteady Solution: X- Vorticity without Perturbations at Contraction Outlet
x=0.175

Figure 4.34: Unsteady Solution: X- Vorticity with additional Gortler Vortices at
Contraction Outlet x=0.175

its steady state solution but a new steady state solution is formed (Fig. 4.34) which is superimposition
of the steady state solution in Fig 4.33 with steady Gortler vortices. The strong corner vortices remain
in their original steady state and are not affected by the weak Gortler vortex that is absorbed.

The centre-line velocity needs to be unaffected by the perturbations. Hence to see if there is any



4.3. Unsteady Laminar With Perturbations (With Side Walls) 61

flow towards the centre-line due to the addition of perturbations, the z-velocity is plotted at the contrac-
tion outlet x=0.175m in Fig 4.35.

Figure 4.35: Z-Velocity Contours to Show Extent of Contraction outlet affected by Corner and Gortler Vortices

From the figure it is seen that the width of the channel is more than sufficient to ensure that the centre-
line velocity remains undisturbed due to the presence of vortices in the contraction.The centre-line
velocity of the un-perturbed and perturbed channel are shown in Fig 4.36 and 4.37 to show that they
are identical.

Figure 4.36: Unperturbed Simulation Centre-Line X- Velocity vs
Y-Coordinate at X=0.175

Figure 4.37: Perturbed Simulation Centre-Line X- Velocity vs
Y-Coordinate at X=0.175 with Gortler Vortices

This shows that the centre-line boundary layer where the experiments need to be performed is remains
steady and undisturbed by the Gortler vortices formed in the contraction. Hence this validates the novel
1D contraction shape and deems it suitable for use for heat transfer boundary layer measurements to
analyse hydrodynamic instabilities in SCO2.
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4.4. Alternative Perturbation method: Random Inlet Turbulence
In section 4.2 and 4.3 the perturbations used to trigger Gortler vortices were in the form of sinusoidal
waves with fixed wave-numbers in the span-wise direction. However experimental research such as
Bippes and Deyhle [75] has shown that free-stream turbulence also easily excites Gortler vortices in
wind tunnels. To test if these vortices are triggered in the 1D contraction concave-convex geometry
, an LES simulation is performed using an inlet turbulence level of 5%. The x-velocity and x-vorticity
contours are plotted in the YZ plane and shown in Fig 4.38.

Figure 4.38: X-Velocity Contour Show Unsteady Gortler Vortices at X=0.060 due to inlet turbulence of 5%

The figure shows that the inlet turbulence levels are able to trigger unsteady Gortler vortices in
the contraction. Since the random turbulence consists of a number of wavenumbers superimposed
onto each other, the vortices formed do not have a fixed wavelength in the span-wise direction and
are asymmetric. This results is also seen in DNS simulations by Schrader et al [51] where the Gortler
vortices formed on a concave surface are not symmetric as shown in Fig 4.39.

Figure 4.39: Asymmetric Gortler Vortices seen in DNS results of Schrader et al.[51]

Similar to the sinusoidal perturbation, the Gortler vortices formed in the contraction due to inlet tur-
bulence are damped and lose energy as they leave the contraction. It has been shown by Hall [76]
that steady perturbations have higher amplitudes that unsteady perturbation. However since the flow
through the contraction is laminar and the turbulent flow through the contraction is un-physical, using
inlet turbulence to trigger perturbations is not investigated further.

Chapter Summary

This chapter details the unsteady simulations performed on the contraction. Firstly the results from
unsteady simulations without perturbations are detailed to act a a reference steady state case. Next,
results from unsteady simulations adding sinusoidal perturbations of varying wavenumber are shown.
The stability of the different wavelengths are compared and their effects on the wall shear of the con-
traction are given. Finally an alternative method of perturbation using inlet random turbulence is given.



5
Conclusion

This chapter summarises the results obtained from the simulations in this study. The future scope of
this field and recommendations for further research are proposed.

5.1. Summary

A detailed literature review was conducted on contraction optimisation methods to reduce secondary
flows and formation of Gortler vortices in the contraction. It was seen that existing research focuses on
general wall shape comparison studies of 2D and 3D contractions but very little research was found on
optimisation procedures. The literature on the formation of Gortler vortices is mostly restricted to strictly
concave surfaces on which DNS studies have been conducted. Moreover, no studies were found in
the field of perturbation simulations in concave-convex contractions.

The present study aimed to overcome this research gap by:

• optimising the geometry of a novel 1D contraction using a multi-objective optimisation to reduce
secondary flows such as boundary layer separation and flow non-uniformity’s.

• simulating the formation and stability of Gortler vortices in the top boundary layer of the 1D con-
traction using forced perturbations.

To achieve these research objectives, a computational methodology consisting of physical domain
geometry, steady state analysis procedure, optimisation methods, unsteady analysis, boundary condi-
tions, computational domain and mesh, governing equations and numerical methods was used for the
numerical simulations.

The key findings of this study are as follows:

For the contraction optimisation, the steady state laminar simulations showed that adverse pressure
gradients can occur within the contraction. Qualitatively these pressure gradients match the experi-
mental and numerical data in literature on 2D contractions where the maximum of the adverse pressure
gradients occur just within the contraction, both at the inlet and outlet. These adverse gradients were
seen to cause flow reversals only at the inlet of the contraction. This reversal could either occur at the
edge of the side wall or on the concave wall face. A contraction length of 175mm was found to have
no flow reversals and to be the optimum length for this 1D contraction geometry. The length of the
settling chamber was selected to be 80mm since this length was found to be sufficient in ensuring the
absence of any boundary interference from the contraction and a minimum boundary layer thickness
at contraction inlet.

63
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Next, to optimise the wall shape of the geometry, a multi-objective optimisation procedure was used
to find the best performing inflection point value given by Brassard parameter 𝑓. It was found that
various flow parameters such as contraction critical inlet boundary layer Reynold’s number 𝑅𝑒𝛿1𝑐𝑟, exit
flow non-uniformity 𝜎𝑝, outlet pressure gradients dp/dx and outlet boundary layer 𝑅𝑒𝛿1𝑜𝑢𝑡 are functions
of 𝑓. Since 𝑅𝑒𝛿1𝑐𝑟 and 𝜎𝑝 were deemed to be the most important for contraction design, they were
used as objective functions in the optimisation procedure. A normalised objective space of these two
parameters was plotted. The best performing 𝑓 value was taken by measuring the distance of every
Pareto optimal point from the ideal point (0,0) which had the highest 𝑅𝑒𝛿1𝑐𝑟 and lowest 𝜎𝑝. This optimal
point was found to be f=0.65. A rounded value of f=0.7 was was selected for the construction of the
experimental setup whose inflection point value is around 101mm.

Unsteady simulations on this f=0.7 shape contraction without perturbations showed that there were
no fluctuations in the contraction and that the solution converged to the steady state case. Hence, this
was taken to be the reference state for the perturbation analysis simulations. Sinusoidal perturbations
of varying wavenumbers were added to the unsteady laminar simulation of varying wavenumbers from
𝜆= 83.33𝑚−1 to 500𝑚−1 by blowing and suction of the boundary layer before the contraction. This
perturbation was successful in triggering the Gortler vortices and coherent structures such as spike
formation and mushroom structures were observed. This was qualitatively found to be similar to both
experimental and DNS results. It was found that 𝜆= 83.33𝑚−1 case is the most unstable wavenumber
and produces the highest vorticity in the contraction. It also produces strong secondary vortices that
dominate the primary vortices.The vorticity maximum was seen to occur in the secondary vortices for
this wavenumber but occurred in the primary vortices for all other wavenumbers. The stream-wise
coordinate of the vorticity maximum was also was seen to vary with the perturbation wavenumber. It
was observed that the secondary instabilities were triggered due to inflectional velocity profiles in the
boundary layer as seen in experimental studies.

The Gortler vortices were also found to affect the wall shear stress in the contraction. It was seen
that Gortler streaks are formed within the contraction on plotting the x-wall shear distribution. These
streaks are seen in experimental and DNS studies. The amplitude of the shear variation is seen to
rise as the Gortler vortices evolve downstream of the inlet. Sinusoidal perturbations were also added
to Domain-3 to analyse the effect of side walls on the formation of Gortler vortices. This analysis was
done only for the most unstable 𝜆=83.33 wavenumber. It was seen that the Gortler vortices closest
to the wall were absorbed into the corner vortices of the steady state case and lost all their energy.
The Gortler vortex near the centre line was unaffected by the wall effects and evolved similar to the
domain-2 case forming a steady Gortler vortex. It was found that a new steady state was reached
which was a superposition of the steady state corner vortices along with the added Gortler vortex near
the centre-line. The vortices did not affect the centreline velocity of the bottom boundary and hence
the novel 1D contraction was suitable for the boundary layer instability experiments.

Lastly, an alternative method of perturbation using inlet random turbulence intensity perturbation was
analysed to see if they are successful in triggering Gortler vortices. It was seen that at an inlet tur-
bulence level of 5%, Gortler vortices were successfully triggered in concave-convex curvature of the
1D contraction. The Gortler vortices formed were not symmetrical and displayed a random behaviour
which is also seen in DNS simulations. This was attributed to several wave-lengths being triggered
from the initial perturbation.

5.2. Recommendations and Scope for Future Research

The design and perturbation analysis of contractions is a complex subject and hence there are many
more different ideas and research directions that can be taken. Some of these possible future research
ideas are listed below.

• The number of variables optimised plays a large role in the complexity of the optimisation prob-
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lem. In this study only one input variable is optimised, being the parameter 𝑓 which defines the
inflection point distance. Further research can be done to also include additional parameters into
the optimisation such as inlet curvature , outlet curvature and contraction ratio, to understand if
they have positive or negative effects on the performance of the contraction.

• Another research focus could also be to write a computer program that implements an integrated
CFD solver along with the multi-objective optimisation technique. Such a solver could automat-
ically find the best wall shape one the code is run. This method is however not possible when
commercial solvers like Fluent are used for the simulations of more complex geometries.

• For further understanding the formation and risk of Gortler vortices, more analysis can be done
by simulating additional wavenumbers to develop a better understanding of the neutral stability
curve for this geometry.

• The effect of other secondary flows like buoyancy also need to be understood better in the design
of the experimental setup. Buoyancy due to heat exchange can lead to a destabilisation of a
laminar developing Blasius boundary layer in SCO2 due to the large gradients in densities near
theWidom line. This can effect the transition of the boundary layer by TSwaves. DNS simulations
could be performed to further understand this affect.

• Numerical simulations could also be performed on the bottom flat wall by adding perturbations to
the growing boundary layer to analyse other instability mechanisms such as T-S waves.
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A.1. Mesh Independence study

A mesh independence study is performed for Domain -1 which is the larger domain used for the steady
state analysis. The mesh independence is performed for four different mesh sizes. The parameters
used for confirmingmesh convergence are themean velocity of the flow at the contraction outlet and the
velocity profile at the contraction outlet. The results of the mesh independence study are shown below.
Table A.1 shows that after an element number of 1.5 million the mean velocity at the contraction outlet

Table A.1: Summary of Domain type for each simulation

. Mesh Number No. of elements Mean Velocity (m/s)
Mesh 1 416010 0.130065
Mesh 2 750010 0.125725
Mesh 3 1512010 0.125245
Mesh 4 3206260 0.125266

converges and the solution becomes independent of the mesh. This can also be seen in a graphical
view by plotting number of elements with mean mesh velocity as shown in Fig. A.1.

Figure A.1: Number of Elements in Mesh vs Mean Velocity Plot to Show Mesh Independence

Hence from the independence study it is decided that mesh 3, with 1.5 million elements is suitable for
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the simulations.
For domain-2 and and domain-3 on which unsteady laminar and LES are performed the same basic

mesh is used with extra refinement near the wall to full capture the effects. This refining is done by
fixing the wall y-plus to a certain value required to fully capture the flow in the boundary layer. For the
unsteady laminar simulations y+ 5 and for the LES y+ 10.
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B.1. Sixth Order Polynomial Shape
The sixth order Sargison [17] polynomial wall shape is also simulated using a steady laminar method
to compare with the fifth order transformed polynomial shape. The chosen sixth order shape has its
inflection point as downstream as possible while also maintaining a monotonic decrease of the con-
traction height. This comes to an inflection point distance of 𝑥𝑚=105m. This was found to be the best
performing sixth order curve shape by Sargison and Rossi. The wall shape is shown in Fig. B.1.

Figure B.1: Number of Elements in Mesh vs Mean Velocity Plot to Show Mesh Independence

Steady state laminar simulations were performed on the sixth order contraction and its 𝑅𝑒𝛿1𝑐𝑟 was

determined. These results are compared to the fifth order polynomial f=0.5 and f=0.7 which have
comparable inflection point distances of 𝑥𝑚=0.101m and 𝑥𝑚=0.119m. The comparison is shown in Ta-
ble B.1.

Table B.1: Perfromance Comparsion of 6th order to 5th Order Polynomial

Wall Shape Type 𝑋𝑚(𝑚) 𝑅𝑒𝛿1𝑐𝑟
6th Order 0.105 650

5th Order f=0.7 0.101 1060
5th Order f=0.5 0.119 2000
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This data shows that due to its relatively low 𝑅𝑒𝛿1𝑐𝑟 indicates a higher risk of flow reversal and separa-
tion in the contraction. Hence it is not included in the contraction optimisation procedure.



Bibliography
[1] T. Stocker, D. Qin, G. Plattner, et al., “Contribution of working group i to the fifth assessment

report of the intergovernmental panel on climate change,” Climate change, vol. 5, pp. 1–1552,
2013.

[2] Y. Ahn, S. J. Bae, M. Kim, et al., “Review of supercritical co2 power cycle technology and cur-
rent status of research and development,” Nuclear engineering and technology, vol. 47, no. 6,
pp. 647–661, 2015.

[3] J. Ren, O. Marxen, and R. Pecnik, “Boundary-layer stability of supercritical fluids in the vicinity
of the widom line,” Journal of Fluid Mechanics, vol. 871, pp. 831–864, 2019.

[4] J. H. Bell and R. D. Mehta, “Design and calibration of the mixing layer and wind tunnel,” Tech.
Rep., 1989.

[5] H.-S. Tsien, “On the design of the contraction cone for a wind tunnel,” Journal of the aeronautical
sciences, vol. 10, no. 2, pp. 68–70, 1943.

[6] M. Cohen and N. Ritchie, “Low-speed three-dimensional contraction design,” The Aeronautical
Journal, vol. 66, no. 616, pp. 231–236, 1962.

[7] H. Rouse, “Cavitation-free inlets and contractions,” Mech. Eng., vol. 71, pp. 213–216, 1949.
[8] H. Sturm, G. Dumstorff, P. Busche, D.Westermann, andW. Lang, “Boundary layer separation and

reattachment detection on airfoils by thermal flow sensors,” Sensors, vol. 12, no. 11, pp. 14 292–
14306, 2012.

[9] B. S. Stratford and G. Gadd, “Flow in the laminar boundary layer near separation,” 1954.
[10] B. Stratford, “The prediction of separation of the turbulent boundary layer,” Journal of fluid me-

chanics, vol. 5, no. 1, pp. 1–16, 1959.
[11] T. Morel, “Comprehensive design of axisymmetric wind tunnel contractions,” 1975.
[12] T. Morel, “Design of two-dimensional wind tunnel contractions,” 1977.
[13] J. H. Bell and R. D. Mehta, “Contraction design for small low-speed wind tunnels,” Tech. Rep.,

1988.
[14] W. Mikhail, “Rainbird,” optimum design of wind tunnel contractions,” in 10th Aerodynamic Testing

Conference, 1978.
[15] D. Brassard and M. Ferchichi, “Transformation of a polynomial for a contraction wall profile,” J.

Fluids Eng., vol. 127, no. 1, pp. 183–185, 2005.
[16] C. J. Doolan, “Numerical evaluation of contemporary low-speed wind tunnel contraction designs,”

2007.
[17] J. Sargison, G. Walker, and R. Rossi, “Design and calibration of a wind tunnel with a two dimen-

sional contraction,” 2004.
[18] J. Dagenhart and W. S. Saric, “Crossflow stability and transition experiments in swept-wing flow,”

Tech. Rep., 1999.
[19] Y.-x. Su, “Flow analysis and design of three-dimensional wind tunnel contractions,” AIAA journal,

vol. 29, no. 11, pp. 1912–1920, 1991.
[20] R. D. Mehta, “Aspects of the design and performance of blower tunnel components,” Ph.D. dis-

sertation, University of London, 1979.
[21] L. Prandtl, “Über flussigkeitsbewegung bei sehr kleiner reibung,” Verhandl. III, Internat. Math.-

Kong., Heidelberg, Teubner, Leipzig, 1904, pp. 484–491, 1904.

71



72 Bibliography

[22] S. Seyyedi, A. Dogonchi, M. Hashemi-Tilehnoee, and D. Ganji, “Improved velocity and temper-
ature profiles for integral solution in the laminar boundary layer flow on a semi-infinite flat plate,”
Heat Transfer—Asian Research, vol. 48, no. 1, pp. 182–215, 2019.

[23] H. Schlichting and K. Gersten, Boundary layer theory. Springer, 2015.
[24] H. Y. Hafeez and C. E. Ndikilar, “Boundary layer equations in fluid dynamics,” in Applications of

Heat, Mass and Fluid Boundary Layers, Elsevier, 2020, pp. 67–94.
[25] F.-M. Fang, J. Chen, and Y. Hong, “Experimental and analytical evaluation of flow in a square-

to-square wind tunnel contraction,” Journal of Wind Engineering and Industrial Aerodynamics,
vol. 89, no. 3-4, pp. 247–262, 2001.

[26] J.Watmuff, “Design of a new contraction for the arl (aeronautical research laboratories) low speed
wind tunnel,” AERONAUTICAL RESEARCH LABS MELBOURNE (AUSTRALIA), Tech. Rep.,
1986.

[27] L. Leifsson and S. Koziel, “Simulation-driven design of low-speed wind tunnel contraction,” Jour-
nal of Computational Science, vol. 7, pp. 1–12, 2015.

[28] C. Doolan and R. Morgans, “Numerical evaluation and optimization of low speed wind tunnel
contractions,” in 18th AIAA Computational Fluid Dynamics Conference, 2007, p. 3827.

[29] L. Rayleigh, “On the dynamics of revolving fluids,” Proceedings of the Royal Society of London.
Series A, Containing Papers of a Mathematical and Physical Character, vol. 93, no. 648, pp. 148–
154, 1917.

[30] G. Taylor, “��, stabilityofaviscousliquidcontainedbetweentworotatingcylinders, phil,” Transi. Roy.
Soc. Lond. A, vol. 223, pp. 289–343, 1923.

[31] P. R. Childs, “Chapter 6 - rotating cylinders, annuli, and spheres,” in Rotating Flow, P. R. Childs,
Ed., Oxford: Butterworth-Heinemann, 2011, pp. 177–247, ISBN: 978-0-12-382098-3. DOI: https:
//doi.org/10.1016/B978-0-12-382098-3.00006-8. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/B9780123820983000068.

[32] W. R. Dean, “Fluid motion in a curved channel,” Proceedings of the Royal Society of London. Se-
ries A, Containing Papers of a Mathematical and Physical Character, vol. 121, no. 787, pp. 402–
420, 1928.

[33] A. Kalpakli, R. Örlü, and P. H. Alfredsson, “Dean vortices in turbulent flows: Rocking or rolling?”
Journal of visualization, vol. 15, no. 1, pp. 37–38, 2012.

[34] L. Rayleigh, “On the stability, or instability, of certain fluid motions,” Proc. London Math. Soc.,
vol. 9, pp. 57–70, 1880.

[35] H. Görtler, “Über den einfluß der wandkrümmung auf die entstehung der turbulenz,” ZAMM-
Journal of AppliedMathematics andMechanics/Zeitschrift für AngewandteMathematik undMechanik,
vol. 20, no. 3, pp. 138–147, 1940.

[36] J. Floryan, “On the görtler instability of boundary layers,”Progress in Aerospace Sciences, vol. 28,
no. 3, pp. 235–271, 1991.

[37] J. M. Floryan and W. S. Saric, “Stability of gortler vortices in boundary layers,” AIAA journal,
vol. 20, no. 3, pp. 316–324, 1982.

[38] W. S. Saric et al., “Gortler vortices,” Annual Review of Fluid Mechanics, vol. 26, no. 1, pp. 379–
409, 1994.

[39] M. Méndez, M. S. Shadloo, and A. Hadjadj, “Heat-transfer analysis of a transitional boundary
layer over a concave surface with görtler vortices by means of direct numerical simulations,”
Physics of Fluids, vol. 32, no. 7, p. 074 111, 2020.

[40] P. Hall, “The linear development of görtler vortices in growing boundary layers,” Journal of Fluid
Mechanics, vol. 130, pp. 41–58, 1983.

[41] A. Boiko, A. Ivanov, Y. S. Kachanov, D. Mischenko, and Y. M. Nechepurenko, “Excitation of un-
steady görtler vortices by localized surface nonuniformities,” Theoretical and Computational Fluid
Dynamics, vol. 31, no. 1, pp. 67–88, 2017.

https://doi.org/https://doi.org/10.1016/B978-0-12-382098-3.00006-8
https://doi.org/https://doi.org/10.1016/B978-0-12-382098-3.00006-8
https://www.sciencedirect.com/science/article/pii/B9780123820983000068
https://www.sciencedirect.com/science/article/pii/B9780123820983000068


Bibliography 73

[42] N. Gregory andW.Walker, The effect on transition of isolated surface excrescences in the bound-
ary layer. Citeseer, 1956.

[43] I. E. Beckwith and B. B. Holley, “Gortler vortices and transition in wall boundary layers of two
mach 5 nozzles,” Tech. Rep., 1981.

[44] J. D. Swearingen and R. F. Blackwelder, “The growth and breakdown of streamwise vortices in
the presence of a wall,” Journal of Fluid Mechanics, vol. 182, pp. 255–290, 1987.

[45] S. Winoto, H. Mitsudharmadi, and D. A. Shah, “Visualizing görtler vortices,” Journal of Visualiza-
tion, vol. 8, no. 4, pp. 315–322, 2005.

[46] A. Ito, “Visualization of boundary layer transition along a concave wall,” Flow Visualization IV,
pp. 339–344, 1987.

[47] G. Huang, W. Si, and C. Lee, “Inner structures of görtler streaks,” Physics of Fluids, vol. 33, no. 3,
p. 034 116, 2021.

[48] I. Tani, “Production of longitudinal vortices in the boundary layer along a concave wall,” Journal
of Geophysical Research, vol. 67, no. 8, pp. 3075–3080, 1962.

[49] H. Mitsudharmadi, S. Winoto, and D. Shah, “Secondary instability in forced wavelength görtler
vortices,” Physics of Fluids, vol. 17, no. 7, p. 074 104, 2005.

[50] M. Méndez, M. S. Shadloo, A. Hadjadj, and A. Ducoin, “Boundary layer transition over a concave
surface caused by centrifugal instabilities,” Computers & Fluids, vol. 171, pp. 135–153, 2018.

[51] L.-U. Schrader, L. Brandt, and T. A. Zaki, “Receptivity, instability and breakdown of görtler flow,”
Journal of fluid mechanics, vol. 682, pp. 362–396, 2011.

[52] A. Ducoin, S. Roy, and M. Safdari Shadloo, “Direct numerical simulation of nonlinear secondary
instabilities on the pressure side of a savonius style wind turbine,” in Fluids Engineering Division
Summer Meeting, American Society of Mechanical Engineers, vol. 50282, 2016, V01AT08A004.

[53] W. Liu and J. A. Domaradzki, “Direct numerical simulation of transition to turbulence in görtler
flow,” Journal of Fluid Mechanics, vol. 246, pp. 267–299, 1993.

[54] S. Sharma and A. Ducoin, “Direct numerical simulation of the effect of inlet isotropic turbulence
on centrifugal instabilities over a curved wall,” Computers & Fluids, vol. 174, pp. 1–13, 2018.

[55] A. Ducoin, M. S. Shadloo, and S. Roy, “Direct numerical simulation of flow instabilities over savo-
nius style wind turbine blades,” Renewable energy, vol. 105, pp. 374–385, 2017.

[56] A. S. Lopes, U. Piomelli, and J. Palma, “Large-eddy simulation of the flow in an s-duct,” Journal
of Turbulence, no. 7, N11, 2006.

[57] Y.-H. Tseng and J. H. Ferziger, “Large-eddy simulation of turbulent wavy boundary flow—illustration
of vortex dynamics,” Journal of turbulence, vol. 5, no. 1, p. 034, 2004.

[58] H. Peerhossaini and J. Wesfreid, “Experimental study of the taylor-görtler instability,” in Propa-
gation in systems far from equilibrium, Springer, 1988, pp. 399–412.

[59] G. Huang, “Interactions between görtler vortices and the second mode in hypersonic boundary
layer,” Physics of Fluids, vol. 33, no. 11, p. 111 701, 2021.

[60] A. Boiko, A. Ivanov, Y. S. Kachanov, and D. Mischenko, “Steady and unsteady görtler boundary-
layer instability on concave wall,” European Journal of Mechanics-B/Fluids, vol. 29, no. 2, pp. 61–
83, 2010.

[61] “A. inc, “ansys fluent 18.2 user’s manual,” 2017.,”
[62] Y.-H. Kao, Z.-W. Jiang, and S.-C. Fang, “A computational simulation study of fluid mechanics of

low-speed wind tunnel contractions,” Fluids, vol. 2, no. 2, p. 23, 2017.
[63] J. P. Van Doormaal and G. D. Raithby, “Enhancements of the simple method for predicting in-

compressible fluid flows,” Numerical heat transfer, vol. 7, no. 2, pp. 147–163, 1984.
[64] E. Bertolini, P. Pieringer, and W. Sanz, “Effect of different subgrid-scale models and inflow tur-

bulence conditions on the boundary layer transition in a transonic linear turbine cascade,” Inter-
national Journal of Turbomachinery, Propulsion and Power, vol. 6, no. 3, p. 35, 2021.



74 Bibliography

[65] G. Johl, M. Passmore, and P. Render, “Design methodology and performance of an indraft wind
tunnel,” The aeronautical journal, vol. 108, no. 1087, pp. 465–473, 2004.

[66] P. Bradshaw, “Effects of streamline curvature on turbulent flow.,” ADVISORYGROUPFORAEROSPACE
RESEARCH and DEVELOPMENT PARIS (FRANCE), Tech. Rep., 1973.

[67] R. Madhusudn, P. A. Narayana, V. Balabaskaran, and E. Tulapurkara, “Boundary layer studies
over an s-blade,” Fluid Dynamics Research, vol. 14, no. 5, p. 241, 1994.

[68] R. Lakshman and R. Basak, “Analysis of transformed fifth order polynomial curve for the con-
traction of wind tunnel by using openfoam,” in IOP conference series: materials science and
engineering, IOP Publishing, vol. 377, 2018, p. 012 048.

[69] M. R. Lastra, J. M. F. Oro, M. G. Vega, E. B. Marigorta, and C. S. Morros, “Novel design and
experimental validation of a contraction nozzle for aerodynamic measurements in a subsonic
wind tunnel,” Journal of Wind Engineering and Industrial Aerodynamics, vol. 118, pp. 35–43,
2013.

[70] A. Benmalek, Nonlinear development of Görtler vortices over variable curvature walls. Arizona
State University, 1993.

[71] A. Ito, “The generation and breakdown of longitudinal vortices along a concave wall,” J. Japan
Soc. Aero. Space Sci, vol. 28, pp. 327–333, 1980.

[72] L. De Souza, M. de Mendonça, M. De Medeiros, and M. Kloker, “Seeding of görtler vortices
through a suction and blowing strip,” Journal of the Brazilian Society of Mechanical Sciences
and Engineering, vol. 26, pp. 269–279, 2004.

[73] J. Ren and S. Fu, “Secondary instabilities of görtler vortices in high-speed boundary layer flows,”
Journal of Fluid Mechanics, vol. 781, pp. 388–421, 2015.

[74] J. M. Floryan andW. S. Saric, “Wavelength selection and growth of görtler vortices,” AIAA journal,
vol. 22, no. 11, pp. 1529–1538, 1984.

[75] H. Bippes and H. Deyhle, “The receptivity problem in boundary layers with streamwise vortex
disturbances,” Zeitschrift fur Flugwissenschaften und Weltraumforschung, vol. 16, no. 1, pp. 34–
41, 1992.

[76] P. Hall, “Taylor-gortler vortices in fully developed or boundary layer flows,” in Springer-Verlag
London Ltd. Proceedings, 1982, pp. 341–344.


	coverpage.pdf
	TUD_Report__4___Copy_10__Copy_new (2).pdf
	Introduction
	Background
	Literature Review
	Wind tunnel facilities
	Secondary Flows and Optimisation
	Gortler Vortices in the contraction
	Literature Summary

	Thesis Objectives
	Research Objective 1
	Research Objective 2

	Scope of Study and Chapter Overview

	Methodology
	Physical Domain and Geometry
	Steady State Analysis
	Settling Chamber Length
	Contraction Length
	Contraction Wall Shape
	Flow Parameters Analysed to Find Wall Shape Performance
	Optimisation Method

	Unsteady Analysis
	No Perturbations
	Perturbations Introduced to Flow Field

	Boundary Conditions and Computational Domain
	Boundary Conditions
	Computational Domain

	Computational Mesh 
	Governing Equations: Incompressible Navier Stokes Equations
	Numerical Techniques

	Simulation Overview
	Chapter Summary


	Results and Discussion- Shape Optimisation
	Contraction Length
	Settling Chamber Length
	Contraction Wall Shape Optimisation
	Qualitative effect of Changing Wall Shapes
	Multi-objective Optimisation


	Results and Discussion- Unsteady Simulations
	Unsteady (Without Perturbations) 
	Domain-2
	Domain-3

	Unsteady Laminar With Perturbations (Without Side Walls)
	Perturbation Wave-number = 83.33m-1 (1 Sine Wave)
	Perturbation Wave-number= 166.66m-1 (2 Sine Waves)
	Perturbation Wave-number= 250m-1 (3 Sine Waves)
	Higher Wave-numbers
	Comparison of Different Perturbations
	Secondary Instabilities and Inflectional Velocity Profiles
	Effects of Gortler Vortices on Wall Shear in Contraction

	Unsteady Laminar With Perturbations (With Side Walls)
	Alternative Perturbation method: Random Inlet Turbulence 

	Conclusion
	Summary
	Recommendations and Scope for Future Research

	Appendix
	Mesh Independence study

	Appendix
	Sixth Order Polynomial Shape





