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DPFT: Dual Perspective Fusion Transformer for
Camera-Radar-Based Object Detection

Felix Fent

Abstract—The perception of autonomous vehicles has to be effi-
cient, robust, and cost-effective. However, cameras are not robust
against severe weather conditions, lidar sensors are expensive, and
the performance of radar-based perception is still inferior to the
others. Camera-radar fusion methods have been proposed to ad-
dress this issue, but these are constrained by the typical sparsity of
radar point clouds and often designed for radars without elevation
information. We propose a novel camera-radar fusion approach
called Dual Perspective Fusion Transformer (DPFT), designed to
overcome these limitations. Our method leverages lower-level radar
data (the radar cube) instead of the processed point clouds to
preserve as much information as possible and employs projections
in both the camera and ground planes to effectively use radars with
elevation information and simplify the fusion with camera data. As
a result, DPFT has demonstrated state-of-the-art performance on
the K-Radar dataset while showing remarkable robustness against
adverse weather conditions and maintaining a low inference time.

Index Terms—Perception, object detection, sensor fusion, radar,
camera, autonomous driving.

I. INTRODUCTION

UTONOMOUS driving is a promising technology that has
A the potential to increase safety on public roads and provide
mobility to people for whom it was previously not accessible.
However, leveraging this technology requires autonomous ve-
hicles to operate safely within a multitude of different environ-
mental conditions. These conditions include everyday driving
situations such as nighttime driving or driving under severe
weather conditions, but also critical situations where the au-
tonomous vehicle (AV) has to react quickly or maintain general
functionality after a sensor failure.
The perception of most autonomous driving systems is based
on either camera or light detection and ranging (lidar) sensors.
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Fig. 1. Tllustration of the dual perspective fusion procedure. The 4D radar cube
is projected onto a front and bird’s eye view to create a parallel and perpendicular
perspective to the camera image. This simplifies the camera-radar fusion and
maintains the complementary sensor features. Object features are queried from
these perspectives via an attention mechanism and used to regress 3D detections.

While camera sensors are cost-effective, they depend on ambient
light and do not provide depth information [1]. In contrast, lidar
sensors provide accurate measurements of the surroundings but
come at a high cost. More importantly, neither camera nor lidar
sensors are robust against severe weather conditions like rain,
fog, or snow [2]. On the other hand, radio detection and ranging
(radar) sensors are cost-effective and robust against challenging
environmental conditions but do not yet provide comparable
object detection qualities as lidar or camera-based perception
methods due to their low spatial resolution and high noise
level [3].

A potential solution to overcome the limitations of individ-
ual sensor technologies is the combination of multiple sensor
modalities, also referred to as sensor fusion. Nevertheless, sensor
fusion remains challenging due to inherent differences between
the camera and radar sensors, such as the perceived dimension-
ality (2D vs. 3D), data representation (point cloud vs. grid), and
sensor resolution [4].

In this paper, we propose a novel camera and radar sensors
fusion method to provide a robust, performant, yet cost-effective
method for 3D object detection. While camera-radar fusion has
been done before [4], previous methods mostly rely on radar
point cloud data, thus suffering from a sparse data representa-
tion and facing the challenge of combining images with point
clouds. On the other hand, fusion approaches that utilize raw
radar data solely rely on radar data in a bird’s eye view (BEV)
representation. Therefore, they are fusing data from the image
plane with data from a perpendicular BEV plane on one side
and discarding the advantages of modern 4D radar sensors on
the other.

© 2024 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see
https://creativecommons.org/licenses/by/4.0/
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Our proposed method overcomes these limitations by fusing
camera data with raw radar cube data to mitigate the differences
in sensor resolution and benefit from a structured grid represen-
tation for both sensor modalities. However, directly consuming
the raw radar cube would be unfeasible due to its high demand for
computational resources. Therefore, we developed a projection
method that reduces the 4D radar cube to two 2D grids while
maintaining important features and providing a low sensitivity
to input noise. As a result, the proposed fusion architecture
utilizes radar data from both a BEV and a front-view perspective
as shown in Fig. 1. With this dual perspective approach, we
create a corresponding data source to the image plane to support
camera-radar fusion and incorporate data from the BEV plane
to exploit all radar dimensions. All three data inputs are then
fed through a ResNet feature extractor and subsequent Feature
Pyramid Network (FPN) neck before they are combined in the
fusion module. However, our method does not require a com-
bined feature space but queries 3D objects directly from these
individual perspectives, thus preventing the loss of information
caused by a uniform feature space or raw data fusion [5]. To
enable this, we introduce a modified deformable attention [6]
mechanism that allows both cartesian and spherical reference
point projection to realize a modality-agnostic sensor fusion.

In summary, our main contributions are three-fold:

® We propose an efficient sensor fusion approach that
projects the radar cube onto two perspectives, thus sim-
plifying the camera-radar fusion, avoiding the limitations
of sparse radar point clouds, and leveraging the advantages
of 4D radar sensors.

e We are the first to fuse 4D radar cube data with image data
by proposing a novel fusion method that does not rely on
a common BEV representation to fuse camera and radar
data.

e Experiments show that our method achieves state-of-the-
art results in severe weather conditions on the challenging
K-Radar dataset thus offering greater robustness and lower
inference times than previous methods.

II. RELATED WORK

The proposed method combines the complementary features
of camera and radar sensors to create a robust, performant,
and cost-effective method for 3D object detection. However, to
understand the motivation behind the proposed Dual Perspective
Fusion Transformer (DPFT), it is important to understand the
concepts and limitations of unimodal object detection methods
and available datasets.

A. Camera-Radar Datasets

While there are many datasets within the autonomous driving
domain, most of them do not include radar sensor data [4].
The nuScenes [7] dataset only provides 3D radar point clouds
and has been criticized for its limited radar data quality [8],
[9]. The RadarScenes [9] dataset provides higher-quality radar
data but only on a point cloud level and does not provide
object annotations. Both the View-of-Delft [10] as well as the
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TJ4DRadSet [11] datasets provide 4D radar data and corre-
sponding bounding boxes but do not include raw radar data. The
CARRADA [12], RADIATE [13], and CRUW [14] datasets are
one of the few proving cube-level radar data but are limited to
3D radar data and do not provide 3D object annotations. The
RADIal [15] dataset provides raw 4D radar data but originally
only included 2D bounding box annotations. Even if 3D an-
notations were recently added by Liu et al. [3], the RADIal
dataset does not support the retrieval of 4D radar cube data,
has a limited extent, and does not include data within severe
weather conditions, which is one of the main motivations for
radar applications. For these reasons, the K-Radar [16] dataset
is the only suitable dataset for our experiments. The dataset itself
includes raw (cube-level) radar data from a 4D radar sensor as
well as the data from two lidar sensors, 4 stereo cameras, one
GNSS, and two IMU units. In addition, it provides 3D annotated
bounding boxes for 34994 frames sampled from 58 different
driving scenes and is split into 49.9% train and 50.1% test data.

B. Camera-Based 3D Object Detection

Camera-based monocular 3D object detection methods can be
divided into three major categories: data lifting, feature lifting,
and result lifting methods [17], [18].

Data lifting methods directly lift 2D camera data into 3D
space to detect objects within it [17]. Out of those, pseudo-lidar
methods [19] are most commonly used to transform camera
images into 3D point clouds. Besides that, learning-based ap-
proaches [20] can be used for data lifting, and even most feature
lifting methods [21], [22] can directly be applied to image data.

Feature lifting methods first extract 2D image features, which
are then lifted into 3D space to serve as the basis for the
prediction of 3D objects [17]. Within this category, there are two
dominant lifting strategies: one “pushes” (splatting) the features
from 2D into 3D space [21] and the other “pulls” (sampling) the
3D features from the 2D space [22].

Result lifting methods are characterized by the fact that they
first estimate the properties of the objects in the 2D image plane
and then lift the 2D detections into 3D space [17]. Inspired
by the taxonomy used within the field of 2D object detection,
these methods can be further divided into one-stage and two-
stage detectors. One-stage detectors regress 3D objects directly
from 2D image features and are typically characterized by fast
inference speeds. Representative methods of this category are
anchor-based detectors [23] or anchor-free models like [24].
Two-stage detectors first generate region proposals before they
refine those proposals to predict 3D objects [17]. Methods
from this category can use either geometric priors [25], [26]
or model-based priors [27].

Even if different strategies have been developed over the
years, the biggest challenge for camera-based 3D object de-
tection remains the lifting from 2D to 3D space due to the
inability of camera sensors to directly measure depth informa-
tion [1]. Furthermore, camera sensors are susceptible to illumi-
nation changes and severe weather conditions [1], limiting their
robustness in field applications.
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C. Radar-Based 3D Object Detection

Radar sensors, in contrast to cameras, are robust against severe
weather conditions [2] and are able to measure not only depth
information but also intensities and relative velocities via the
Doppler effect. This is due to the fact that radar sensors perceive
their environment by actively emitting radio wave signals and
analyzing their responses [4]. However, this analysis requires
multiple processing steps, which is why radar-based 3D object
detection methods are categorized by the data level they are op-
erating on [3]. The first category of methods operates directly on
the raw analog-to-digital converted (ADC) radio wave signals.
These ADC signals are then converted from the temporal to
the spatial domain using a Discrete Fast Fourier Transformation
(DFFT). The resulting data representation is a discrete but dense
radar cube and the basis for the second type of detection methods.
Finally, this data can be further reduced by only considering data
points with high response values, leading to a spare point cloud
representation and the input to the third (and most common) type
of methods [4].

Methods operating on the raw ADC signals are rare due to
limited data availability, high memory requirements, and the
abstract data format. Even if Yang et al. [28] achieved promising
results on the RADIal [15] dataset, Liu et al. [3] showed that
ADC data has no advantages over radar cube data. Thus, the
benefits of replacing the DFFT with a neural network remain
questionable.

Detection methods utilizing cube-level radar data can be
subdivided into those using 2D, 3D, or 4D radar data. Methods
utilizing 2D radar data use either range-azimuth (RA) [29], [30],
[31] or range-doppler (RD) [32], [33] measurements, while 3D
methods either use multiple 2D projections [34], [35] or the
whole range-azimuth-doppler (RAD) cube [36], [37]. However,
none of the above mentioned methods are used for 3D, but only
2D object detection, and neither of those utilizes the elevation
information of modern 4D (3+1D) radar sensors.

Methods relying on radar point clouds are the most common
type of detectors and can be further divided into grid, graph,
and point-based methods. Grid-based methods [38], [39], [40],
[41] discretize the point cloud space to derive a regular grid
from the sparse point cloud. Graph-based methods [42], [43],
[44] create connections (edges) between the points (vertices)
to utilize graph neural networks (GNNs) for object detection
tasks. Lastly, point-based methods [45], [46], [47], [48], [49]
use specialized network architectures to directly detect objects
within the sparse irregular radar point clouds.

Generally, radar-based object detection methods are robust
against severe weather conditions but do not yet achieve compet-
itive performance values. This is mainly due to the radar’s lower
spatial resolution, higher noise level, and limited capability to
capture semantic information.

D. Camera-Radar Fusion for 3D Object Detection

The complementary sensor characteristics of camera and
radar sensors make them promising candidates for sensor fu-
sion applications. These fusion methods can be divided into
data-level, object-level, and feature-level fusion methods.
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Data-level fusion aims to directly combine the raw data from
both sensor modalities. Following this approach, Nobis et al. [50]
was the first to propose a camera-radar fusion model that
projected the radar points into the camera image and used a
hierarchical fusion strategy to regress objects from it. On the
other side, Bansal et al. [51] projected the semantic information
of the camera image onto the radar point cloud (similar to
PointPainting [52]) and detected objects within the enriched
radar data. Nevertheless, data-level fusion is associated with a
high loss of information due to the differences in sensor reso-
lution [5] and challenging due to different data representations
and dimensionalities.

Object-level fusion addresses these challenges by using
two separate networks for both modalities independently and
only combining their detection outputs. Using this technique,
Jha et al. [53] fused 2D objects from a camera and radar branch,
while Dong et al. [54] combined an object-level with a data-level
fusion approach to detect 3D objects on a proprietary dataset.
Mostrecently, Zhang et al. [55] fused the outputs of aradar-based
method [37] with the detections of a camera-lidar fusion method
and achieved state-of-the-art results on the K-Radar dataset [16].
However, their method, solely relying on camera and lidar
data, outperformed the radar fusion method only slightly, thus
showing that the capabilities of object-level fusion are limited.
This is because object-level fusion exclusively depends on the
final detection outputs, neglecting any intermediate features [4].
As a result, the final detection quality relies heavily on the
performance of the individual modules and does not fully utilize
complementary sensor features [4].

Feature-level fusion aims to combine the advantages of both
methods by first extracting features from each modality sepa-
rately, fusing them at an intermediate level, and finally predicting
objects based on their combined feature space. Therefore, it
allows to address individual sensor aspects and benefits from
a combination of their unique properties. However, finding
a suitable feature space to combine both modalities remains
challenging. Besides early attempts to combine region proposals
from camera and radar branches [56], [57], [58] or feature-level
fusion on the image plane [59], [60], most recent methods focus
on a bird’s eye view (BEV) feature representation.

Using a BEV feature representation, Harley et al. [22] pro-
posed a method to combine rasterized (‘“voxelized”) radar point
cloud data with camera data and outperformed their camera
baseline on the nuScenes [7] dataset. Similarly, Zhou et al. [61]
fused rasterized and temporally encoded radar point cloud data
with image data in the BEV space and reported an increased
detection quality. However, both methods utilize only 3D radar
data, not considering modern 4D radar sensors. Addressing this
issue, both Xiong et al. [62] as well as Zheng et al. [63] proposed
amethod to fuse camera and 4D radar point cloud datain a BEV
space. While achieving good results on the TJ4DRadSet [11]
and View-of-Delft [10] dataset, these methods solely rely on
radar point cloud data. However, radar point cloud data is not
only difficult to fuse due to its irregular, sparse data structure
but also contains significantly less information, which is lost
during signal processing and adverse to accurate environment
perception [64].
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Fig. 2.

The DPFT model overview shows the essential steps to fuse camera data with raw 4D radar data and retrieve objects from it. First (1), the data of the

4D radar cube is projected onto the range-azimuth (RA) and azimuth-elevation (AE) plane. Second (2), the two radar perspectives and the camera data are fed
through individual ResNet backbones to extract essential features from them. In the (3) step, Feature Pyramid Networks (FPN) are used to align the dimensions of
the multi-level feature maps. To fuse the features of the different perspectives, a set of query points is initialized in 3D space in the (4) step and projected onto the
different perspectives in the (5) step. After that, the features hit by the projection points are fused in the associated query points, using deformable attention (6). A
classification and regression head is used in (7) to retrieve bounding boxes from the queried features. Finally, the regressed bounding box positions are used as new
query points in step (8) and their features are updated (9) in an iterative process to refine the bounding box proposals.

To prevent this loss of information, Liu et al. [3] proposed
a method to fuse raw radar data with camera image data,
similar to our approach. However, their method relies on an
intermediate BEV representation, which increases the demand
on computational resources and limits their ability to encode
various 3D structures [65]. Moreover, their method does not
utilize the elevation information of modern 4D radar sensors,
but solely relies on radar data in the range-azimuth (BEV) plane.
To overcome these limitations, we propose a novel method that
does not require a uniform feature representation and exploits
all radar dimensions.

III. METHODOLOGY

The Dual Perspective Fusion Transformer (DPFT) is designed
to address the main challenges of multimodal sensor fusion,
which are caused by the differences in the perceived dimen-
sionality, data representations, and sensor resolutions. First, it
utilizes raw cube-level radar data to preserve as much informa-
tion as possible and lower the resolution differences between
camera and radar data. Second, cube-level radar data is given in
astructured grid representation, thus avoiding the fusion of point
cloud and image data. Third, two projections are created from
the 4D radar cube. One parallel to the image plane to support the
fusion between camera and radar and another perpendicular to it
to preserve the complementary radar information. Besides that,
the model design aims to achieve a low inference time and is
designed with no interdependencies between the two modalities
such that the overall model remains operational even if one
sensor modality fails. However, to achieve that, multiple steps
are required, which are shown in Fig. 2 and explained in the
following.

A. Data Preparation

The input data itself poses the greatest challenge for multi-
modal sensor fusion due to the differences in data resolution

and dimensionality. Camera sensors capture the environment as
a projection onto the 2D image plane, while radar sensors typi-
cally capture measurements in the range-azimuth (BEV) plane.
Broadly speaking, these two perception planes are perpendicular
to one another, which makes them difficult to fuse due to their
small intersection. To counteract this, our method is built on
4D radar data with three spatial dimensions and one Doppler
dimension. This allows us to create a physical relationship
between the two data sources. However, working with 4D data
is not ideal for two reasons. First, lifting camera data into 3D
space is challenging due to the missing depth information, and
second, processing high dimensional data has a high demand
on computational resources. Resolving this dilemma, the radar
data is projected onto the range-azimuth plane as well as the
azimuth-elevation plane. This way, we can create a complemen-
tary data source to the camera data while reducing the data size
and creating a physical relationship between the image and the
BEV plane to regress 3D objects.

To address the challenges associated with diverging data
formats and sensor resolutions, our method is based on raw
(cube-level) radar data. Usually, radar data is given as an irreg-
ular, sparse point cloud with a few hundred points per sample,
while camera data is represented in a structured grid format with
millions of pixels. Not only is it difficult to fuse these two data
formats, but a fusion is also associated with a high loss of infor-
mation or computational overhead [5]. Furthermore, radar point
clouds are the results of a multistage signal processing chain
(explained in Section II) during which a lot of information is lost
and which deteriorates perception performance [3]. Therefore,
our method utilizes raw (cube-level) radar data, avoiding the
loss of information, creating a uniform data representation, and
lowering the differences in data resolution.

Following this idea, the 4D radar cube is projected onto the
range-azimuth (RA) and azimuth-elevation (AE) plane. How-
ever, to avoid the loss of important information and minimize
the sensitivity to input noise, the design of the projection
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(dimensional reduction) follows a three-step process. First, a set
of 30 initial radar features was defined that were proven to be
significant to radar-based perception by previous studies [66],
[67]. Secondly, a model was trained on all 30 radar features
before the weights of the first model layer were analyzed to
determine the importance of individual features to the converged
model. Lastly, a sensitivity analysis was conducted where noise
was added to individual input features and the changes in the
output were monitored to determine the sensitivity of the model
toinput noise. As aresult, the maximum, median, and variance of
the amplitude and Doppler values were chosen to be extracted
during the radar data projection. In addition, the first and last
three cells of the radar cube are cut off to avoid DFFT artifacts
in the AE projection. Besides that, the image data is rescaled to
an input height of 512pixels using bilinear interpolation to lower
the demand on computational resources.

B. Feature Extraction

The multimodal input data is fed to consecutive backbone
and neck models to deduce expressive features for the desired
detection task. Every input is fed to an individual backbone
model resulting in three parallel backbones. The purpose of
the backbone networks is the extraction of expressive, higher-
dimensional features for the subsequent sensor fusion and is
chosen to be a ResNet [68] architecture. Since the standard
ResNet implementation resizes the inputs to a height of 256,
the resulting feature maps of all inputs have similar spatial
dimensions. In addition, multi-scale feature maps are extracted
from intermediate backbone layers (to detect objects at different
scales) and skip connections are used to directly pass the input
data to the neck models [69]. More specifically, a ResNet-101
is used for the camera data and a ResNet-50 for both radar data
inputs. The larger image backbone is chosen because of the
higher image data resolution compared to the radar data. All
backbones have been pre-trained on the ImageNet database [70]
and a single 1x1 convolution layer is added in front of the
radar backbones to make them compatible with the six feature
dimensions of the radar data.

The neck models are responsible for feature alignment and
ensuring homogeneous feature dimensions. They align the fea-
ture dimensions of the multi-scale feature maps and the sensor
raw data, which is required for the subsequent sensor fusion. In
addition, it also exchanges information between the four feature
maps (from three backbone models and the raw input data). For
this purpose, a Feature Pyramid Network [71] with an output
feature dimension of 16 is used.

C. Sensor Fusion

Our sensor fusion model allows the direct querying of fused
features from the individual inputs and the retrieval of objects
from them. Therefore, a combined intermediate feature space
is not required. To achieve this, multi-head deformable atten-
tion [6] is used, which was originally developed for camera-
based object detection. This method projects reference points
onto camera images to query features from the surrounding
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pixels. Therefore, this method allows to attend to a fixed num-
ber of keys in an image (or feature map), regardless of their
spatial size. While this projection was originally designed for a
pinhole camera model, we introduce a spherical reference point
projection to utilize it for low-level radar data.

Our resulting fusion module consists of five distinct steps.
First, the reference points are initialized as a set of 400 evenly
distributed 3D points in a polar space with feature values sam-
pled from a uniform distribution and cover the entire field of
view (FoV) of the sensor. Next, the reference points are fed
to a self-attention layer to allow the exchange of information
between queries, which becomes important during the iterative
refinement. After that, the reference points are projected onto
the camera and the dual radar perspectives in the third step.
Based on these projections, deformable cross-attention is used to
query features from the (positional encoded) multi-level feature
maps. In the last step, the queried features are passed through
a feed-forward network (FFN) before they are combined in a
max pooling layer. Besides that, each of the attention and FFN
layers includes dropout, addition, and normalization layers. With
this approach, multiple sensors from different modalities can be
fused as long as a projection of the query points onto the sensor
feature maps exists.

D. Object Detection

The detection head predicts object bounding boxes based on
the fused query features and is separated from the fusion module
to allow for multi-task applications. Following [6], [72], [73], we
use an interactive output refinement process where the predicted
bounding box centers and the previous query features are used
for another three attention cycles. As a result, we get object
bounding boxes represented by their 3D center point (x,y, 2),
size (I, w, h), heading angle 6, and class label. The detection
head design follows the example of other sparse detectors [72],
[73] and consists of three consecutive linear layers. However,
DPFT uses a specific activation function for each bounding
box component. The center point prediction utilizes an identity
function due to its unrestricted value range, the bounding box
size uses a ReLu [74] activation function, and the heading angle
is predicted by a hyperbolic tangent function. This is due to the
fact that the heading angle is not predicted directly but rather
split into its sin @ and cos # components, since it is shown that
the model training benefits from a continuous output space [75].
The class label is predicted by a sigmoid activation function and
chosen to be the maximum across all classes.

E. Model Training

The model training uses a set-to-set loss with a one-to-one
matching as introduced by DETR [76]. The loss function itself
is composed of a focal loss [77] for classification and an L1
regression loss for all bounding box components [72]. The loss
weights for these two terms are set to one such that the final loss
function can be written as:

L= ACclass + »Cbox- (1)
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TABLE I
3D OBJECT DETECTION RESULTS FOR THE TEST DATA OF THE K-RADAR DATASET REVISION V1.0

. . Light Heavy Total
Method Modality Norm. Overcast Fog Rain Sleet Snow Snow mAP
RTNH [16] R 49.9 56.7 52.8 42.0 41.5 50.6 44.5 474
Voxel-RCNN [80] L 81.8 69.6 48.8 47.1 46.9 54.8 37.2 46.4
CasA [81] L 82.2 65.6 444 53.7 449 62.7 36.9 50.9
TED-S [82] L 74.3 68.8 45.7 53.6 44.8 63.4 36.7 51.0
VPFNet [83] C+L 81.2 76.3 46.3 53.7 44.9 63.1 36.9 52.2
TED-M [82] C+L 77.2 69.7 474 54.3 452 64.3 36.8 52.3
MixedFusion [55] C+L 84.5 76.6 53.3 55.3 49.6 68.7 449 55.1
EchoFusion [3] C+R 51.5 65.4 55.0 43.2 14.2 53.4 40.2 47.4
DPFT (ours) C+R 55.7 59.4 63.1 49.0 51.6 50.5 50.5 56.1

TABLE II

The optimization scheme uses an AdamW [78] optimizer
with a learning rate of 1 x 10~* and a constant learning rate
throughout the training. All models are trained with a batch size
of 4 and a maximum of 200 epochs (~72 h).

IV. RESULTS

All reported results are achieved on the K-Radar [16] test set
and are in line with the official evaluation scheme, which is based
on the KITTI [79] protocol. For comparability, the benchmark
results of Table I were obtained on the original version (revision
v1.0) of the dataset, while all other results were achieved on the
revised version (revision v2.0) of the dataset, which is preferred
since it includes corrected object heights and previously missing
object labels. For development purposes, we split the train data
into 80% train and 20% validation data, the test set remains
unmodified.

Since the published version of EchoFusion [3] was only
evaluated on the first 20 scenes of the K-Radar dataset, limited to
a field of view (FoV) of £20° (instead of +50°) and did not use
the official evaluation script, we retrained the EchoFusion [3]
model on the full dataset and evaluated it in accordance with the
official evaluation scheme. All other results are in line with the
literature.

The results of Table I show that our Dual Perspective Fu-
sion Transformer achieves state-of-the-art performance on the
challenging K-Radar dataset. The DPFT model achieves a mean
average precision (mAP) value of 56.1% at an intersection over
union (IoU) threshold of 0.3 for 3D bounding box detection
across all scene types. To account for any non-deterministic
training behavior, the model is trained multiple times with dif-
ferent random seeds, such that 56.1% represents the mean across
three runs with a standard deviation of 1.1%. Our proposed
camera-radar fusion model outperforms both the radar-only
RTNH [16] baseline model as well as the recently proposed
EchoFusion [3] camera-radar fusion. In comparison to state-of-
the-art lidar or camera-lidar fusion models, it shows a signifi-
cantly lower performance in normal conditions but outperforms
them in particularly difficult weather conditions like fog, sleet,
or heavy snow. This is most likely due to the radar’s lower
spatial resolution but higher robustness against environmental
influences.

3D OBJECT DETECTION RESULTS FOR DIFFERENT INPUT MODALITIES ON THE
TEST DATA OF THE K-RADAR DATASET REVISION v2.0

C RAE RRA R C+ RRA C+R
mAP 89 44 350 362 48.5 50.5

The subscripts AE and RA describe the usage of just a single input perspective,
namely azimuth-elevation or range-azimuth.

C+RAE
11.1

The comparison of different sensor modalities, as shown
in Table II, provides evidence for the effectiveness of our
sensor fusion approach. It can be shown that the detection
quality of the sensor fusion method exceeds even the com-
bined performance of the individual sensor modalities, thus
highlighting the effective use of the complementary sensor
features. While the camera-only (C) configuration is similar
to DETR3D [72] it struggles with the multitude of severe
weather scenarios, the small backbone size, and the inability
to utilize multi-view camera images. The results for the fu-
sion of camera data with radar data from the range-azimuth
(RA) plane in comparison to the fusion with data from the
azimuth-elevation (AE) plane demonstrate the importance of the
different perception planes for 3D object detection. However, the
results with both radar perspectives, in comparison to only one
perspective, suggest that the correspondence of the radar data
and the camera data in the image plane, in combination with
the physical relationship between the two radar perspectives,
supports the fusion of the two sensor modalities. This shows
the importance of the complementary information from the RA
perception plane on one side and the benefits of the additional
AE plane for the association between camera and radar on the
other.

A. Robustness

The experimental results show the robustness of the DPFT
model in two aspects: robustness against severe weather con-
ditions and robustness against sensor failure. The robustness
against severe weather conditions can be seen in Fig. 3 and
shown by comparing the model performance under normal
(norm.) conditions with the performance under different weather
conditions of the K-Radar [16] dataset. As shown in Table I,
the highest performance decrease for the DPFT model can be
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Fig. 3. Exemplary results of the model performance under night, rain, snow,
and backlight conditions. The ground truth is shown in blue and the model
prediction in orange.

TABLE III
RESULTS WITH SIMULATED SENSOR FAILURE ON THE TEST SET OF THE
K-RADAR DATASET REVISION V2.0

Trained Tested mAP MAPpre-trained mMAPgropout
C C 8.9 - -

R R 36.2 - -

C+R C 1.1 0.0 9.2

C+R R 11.1 12.8 37.5
C+R C+R 50.5 51.4 38.3

observed for the sleet condition, where a decrease of 6.8%
can be measured in comparison to the normal condition. In
comparison to that, the performance of the MixedFusion [55]
model decreased by 41.3% and the performance of EchoFu-
sion [3] decreased by 76.3%. In general, our proposed DPFT
method shows an average performance difference of —2.5%
between the normal and all other conditions. In comparison,
the RTNH [16], MixedFusion [55], and EchoFusion [3] models
show a decrease of —3.8%, —31.3%, and —12.8%, respectively.
The analysis of the average and maximum decrease suggests
that models that are considering radar data are less affected by
varying weather conditions than those that are not consider-
ing radar data. Ultimately, it can be shown that our proposed
DPFT model shows high robustness against server weather
conditions and is equally robust as the radar-only RTNH [16]
method. However, the unimodal RTNH [16] model performance
is significantly lower and it cannot deal with a sensor modality
failure.

The robustness of our method against sensor failure is
achieved by a model design without interdependencies between
the different modalities. While this prevents a complete failure
of the model if a single sensor modality fails during runtime,
the model performance still drops significantly, as shown in
Table III. To counteract this, we used the pre-trained weights
of the camera and radar-only models as initialization [84], but
could not observe any significant changes. Besides that, we
trained the model with modality dropout [85] and were able
to improve the performance for the sensor failure cases, but
observed a significant decrease under nominal conditions, which
is in contrast to [85], [86].
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Fig. 4. Performance loss due to the ablation of individual model components

on the test data of the K-Radar dataset revision v2.0.

B. Complexity

Our model is designed for real-world applications, which is
why inference time and memory consumption measurements
are conducted. All tests are executed on a dedicated benchmark
sever equipped with an NVIDIA V100 GPU and isolated in a
containerized environment. The DeepSpeed [87] framework is
used for reliable and accurate measurements.

The proposed DPFT model achieves an inference time of
87 =1 ms, which is lower than the 100 ms cycle time of the radar
sensor. This is important to be able to process every sensor image
and not have to drop any. In comparison, MixedFusion [55], and
EchoFusion [3] have an inference time of 143 ms, and 348 ms,
respectively. Therefore, our DPFT model achieves the lowest
inference time among all tested methods.

The overall model complexity is mainly driven by the back-
bone selection, while the memory consumption is mainly caused
by the input image size, as shown in Table IV. The baseline
implementation of or DPFT model requires 4.0 GiB of GPU
memory during inference and has a measured computational
complexity of 0.16 TFLOPs. In comparison, EchoFusion [3]
requires 3.5 GiB of GPU memory, but has a computational
complexity of 1.52 TFLOPs, explaining its higher inference
time. This comparison shows the computational efficiency of
our proposed method even without any runtime optimization like
TensorRT. Moreover, the modular design of our implementation
allows the usage of different backbones and input image sizes.
Asshown in Table IV, altering these parameters can significantly
decrease the computational complexity but influence the model
performance. As a consequence, these parameters have to be
chosen in accordance with the desired application.

C. Ablation Study

The results of the ablation study show the contribution of the
individual model components on the overall detection perfor-
mance and are shown in Fig. 4. It can be seen that the ablation
of the backbones causes the greatest performance decreases,
whereas the contribution of the skiplinks is not significant.
Besides that, the iterative refinement process and the usage of
multi-level feature maps have a significant effect on the detec-
tion performance. Moreover, in consideration of the conducted
experiments on the input data modalities (Table II) and the
analysis of different backbones (Table IV), the results suggest
that the sensor fusion is the most important factor for the model
performance.
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TABLE IV
PERFORMANCE AND COMPLEXITY FOR DIFFERENT BACKBONES AND INPUT IMAGE RESOLUTIONS

ResNet101 ResNet50 ResNet34 720px 512px 256px
mAP in % 50.5 49.8 47.2 50.5 50.5 45.4
Inference time in ms 87 69 64 94 87 81
Complexity in TFLOPs 0.16 0.09 0.08 0.30 0.16 0.04

Fig. 5. Visualization of the dataset’s sensor miscalibration (left) and two
failure cases of the model. One shows a missing detection of a crossing object
(center) and the other shows false negatives for partially occluded objects (right).
The ground truth is shown in blue and the model prediction in orange.

D. Discussion

While our model achieved state-of-the-art results in the con-
ducted experiments, there are certain limitations to it. Firstly,
it outperforms lidar and camera-lidar fusion methods only in
severe weather conditions while showing a significantly lower
performance in normal conditions. Secondly, the model has
difficulties detecting objects that are moving tangential to the
ego vehicle’s direction of travel and correctly predicting their
heading angle, as shown in Fig. 5. This is probably caused by
the fact that crossing objects are heavily underrepresented in
the dataset on the one side and the inability of the radar sensor
to measure tangential velocities on the other. Furthermore, it
struggles to detect or differentiate between multiple objects that
are behind each other or close to each other, which can be seen in
Fig. 5. We believe that this is due to the partial occlusion and the
limited resolution of the radar sensor in the azimuth-elevation
plane. Last but not least, the generalization capability of the
model could only be tested within the scope of the K-Radar [16]
dataset. Since the K-Radar [16] dataset is the only dataset that
provides raw 4D radar data for different weather conditions and
the only large-scale dataset with radar cube data in general,
the transferability of the model to different datasets is yet to
be shown. Nevertheless, comparable model architectures [3]
that only rely on 3D radar data show promising generalization
results, which is a first indicator for the transferability of these
model types.

Despite being the only dataset with 4D radar cube data,
the K-Radar [16] dataset shows some labeling inconsistencies
(especially between the sedan and bus or truck classes) even
within the revision v2.0. In addition, the test set is sampled from

the same driving sequences and contains similar scenarios to
the train set, which limits the ability to test the generalizability
of models, even if the test split is formally independent. Fur-
thermore, we observed a misalignment between the camera and
lidar frame, as shown in Fig. 5, which is important because the
labels are created on the lidar data, and which is why Echo-
Fusion [3] used their own calibration. However, a recalibration
of the sensors is difficult and would limit the comparability to
previous methods, which is why we used the official calibration.
Nevertheless, further investigations would be needed to quantify
the model’s sensitivity to miscalibrations. Last but not least, the
calculation of the total mAP metric in the official evaluation
scheme could be misleading since it is calculated as the weighted
average of the individual categories weighted by the number of
ground truth objects. In general, the usage of the KITTI [79]
evaluation protocol could be questioned due to the problem of
average precision distortion [88] and since recent studies show
that other metrics, like the nuScenes detection score (NDS),
correlate better with the fulfillment of the autonomous driving
task [89].

V. CONCLUSION

We proposed a novel method to fuse camera and cube-
level radar data to achieve a performant, robust, yet cost-
effective method for 3D object detection. We are the first to
fuse raw 4D radar data with camera data and demonstrate
the importance of the different input perspectives. Our pro-
posed DPFT method achieves state-of-the-art results in the
challenging environmental conditions of the K-Radar dataset.
Experimental results show that our proposed method is ro-
bust against severe weather conditions and is able to main-
tain general functionality even after a sensor failure. Finally,
we provided a comprehensive analysis of the computational
complexity of our method and were able to show that our
method has the fastest inference time among all tested fusion
methods.

Despite the great potential of camera and radar fusion for 3D
object detection, new research questions emerge from this work.
While we proposed a novel dual perspective fusion approach,
the general question of how to utilize the high dimensional
radar data most efficiently remains open for research. Moreover,
balancing the performance of different sensor modalities within
a fusion method to exploit the input data most effectively and
avoid significant performance losses during the event of a sensor
failure remains challenging. Even if we used different methods
to counteract the performance degradation after a sensor failure,
further research is needed to mitigate this effect. Moreover,
sensor-specific challenges like target separation in the radar do-
main or depth estimation in the camera domain remain open for
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Exemplary results of the model performance under night, rain, and snow conditions. The camera data is shown in the center, the radar range-azimuth

(RA) data at the bottom, and the radar azimuth-elevation (AE) data at the top. The ground truth is shown in blue and the model prediction in orange.

research. Beyond that, temporal information could be considered
to increase the performance and a different detection head could
be used to realize an instance-free detection method in future
work.

APPENDIX A
ADDITIONAL RESULT DETAILS

The appendix presents additional details on the results on
the K-Radar [16] dataset. Following Section IV, the results of
Table V were obtained on the original version (revision v1.0) of

the dataset, while all other additional results are based on the
revised version (revision v2.0) of the dataset.

The results of Table V show decreasing mAP values with
increasing IoU thresholds for all tested methods and both the
3D and the BEV object detection tasks. It is worth mentioning
that the results of the DPFT method, listed in Table V, are the
mean values of three independent model trainings to mitigate the
effects of any non-deterministic training behavior. It can be seen
that our proposed method outperforms all previous radar- and
camera-radar-based methods for 3D object detection at all loU
thresholds and performs on par with the RTNH [16] method for
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TABLE V
OBJECT DETECTION RESULTS FOR THE K-RADAR TEST SET REVISION V1.0

3D mAP BEV mAP
Method Modality AP@0.3 AP@0.5 AP@0.7 AP@0.3 AP@0.5 AP@0.7
RTNH [16] R 47.4 15.6 0.5 58.4 43.2 11.5
EchoFusion [3] C+R 474 28.1 6.4 48.9 39.7 25.7
DPFT (ours) C+R 56.1 37.0 8.0 57.5 48.5 26.3
TABLE VI

3D OBJECT DETECTION RESULTS FOR DIFFERENT DETECTION RANGES

Modality Total 0-10m 10-30m  30-50m  50-72m

C 8.9 27.3 15.5 4.7 3.4

R 36.2 355 42.7 37.1 252

C+R 50.5 44.8 54.6 534 353
TABLE VII

3D OBJECT DETECTION RESULTS FOR DIFFERENT DAYTIMES

Modality Day Night Total
C 9.8 3.0 8.9

R 36.9 29.1 36.2
C+R 52.7 39.8 50.5

BEV detections at a low IoU threshold. However, our proposed
method archives higher mAP values for BEV detection at higher
IoU thresholds.

The experimental results of Table VI show the performance
of our DPFT model for different sensor modalities and detection
range bins. It can be seen that the general performance of the
model decreases with increasing range. This is especially true for
the camera-only model, which shows a significant performance
decrease with increasing detection range. The observed behavior
is probably caused by the inability of the camera sensor to
measure depth information and its decreasing spatial resolu-
tion with increasing distance. In contrast, the radar-only model
shows a lower performance for the range between 0—10 m and
achieves the highest performance in a range between 10-30 m,
with a decreasing performance over increasing distance. This
phenomenon is probably caused by the higher noise level of the
radar in close range and the decreasing spatial resolution with
increasing distance. The performance of the camera-radar fusion
model shows a similar behavior to the radar-based model, but
a higher performance overall and seems to be less affected by
increasing distance. We believe that this is a result of the already
discussed sensor properties and the distribution of objects in the
dataset that contains the most objects in a range of 20-40 m and
the least for distances greater than 60 m [16].

APPENDIX B
ADDITIONAL DETAILS ON ROBUSTNESS

In addition to the differentiation into different weather con-
ditions, the K-Radar dataset allows the separate determination
of the performance values for day and night conditions. The
results of Table VII show that all configurations of the DPFT
model perform better under daytime conditions than nighttime
conditions. Nevertheless, the performance of the camera-only

model is affected the most, while the radar-only model shows the
smallest decrease of all tested configurations. This is probably
because camera sensors are dependent on ambient light, while
radar sensors are active sensors and, therefore, independent from
external sources. However, the general tendency could also be
explained by the data distribution of the K-Radar dataset, which
consists of 63% daytime scenes, which results in an imbalanced
training and test set [16].

The analysis of individual models shows that the camera-
based model fails if the camera lens is covered by raindrops or
sleet (as shown in 6), which only gets worse in night-time condi-
tions. However, these problems cloud be avoided by a different
camera positioning or cleaning mechanism. The radar-based
performance seems to be less affected by environmental con-
ditions but more dependent on the number of available training
samples. Nevertheless, target separation remains challenging in
dense traffic or city scenarios.

APPENDIX C
ADDITIONAL DETAILS ON COMPLEXITIY

In this section, we provide more detailed results on the model
complexity analysis discussed in Section IV. The appended
Table VIII is an extension of Table IV and includes additional
metrics on the computational complexity of the different model
configurations as well as the memory requirements based on
the model parameters. In general, it provides evidence for the
claim that a larger backbone size and higher input resolution lead
to a higher model performance but an increased computational
complexity.

In addition, the model has been tested with different num-
bers of query points to analyze the effects of different query
point resolutions on the model performance and computational
complexity. The results for 100, 400, and 900 query points
show that an increased query point resolution leads only to a
marginal increase in computational complexity of 156, 156,
and 157 GFLOPs, but a larger impact on the memory con-
sumption. In contrast, the best model performance seems to
be achieved with 400 query points, whereas a query point
resolution of 100 and 900 leads to a result of 47.8% and
44.5% mAP, respectively. During model development, quadratic
and exponentially distributed query point initializations in both
cartesian and polar coordinates as well as a learnable query point
initialization were also tested with no significant performance
increases. Besides that, Table IX provides inference time mea-
surements on different hardware accelerators, using the same
method as described in Section IV and demonstrates that signif-
icantly lower inference times can be achieved on more modern
GPUs.
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TABLE VIII

4939

PERFORMANCE AND COMPLEXITY FOR DIFFERENT BACKBONES AND INPUT IMAGE RESOLUTIONS

ResNet101 ResNet50 ResNet34 720px 512px 256px
mAP in % 50.5 49.8 47.2 50.5 50.5 454
Time in ms 87 69 64 94 87 81
FLOPs in 10° 156 86 75 302 156 44
MACs in 10° 78 43 37 150 78 22
Parameters in 106 90 66 44 90 90 90
TABLE IX [14] Y. Wang, G. Wang, H.-M. Hsu, H. Liu, and J.-N. Hwang, “Rethinking of

INFERENCE TIME ON DIFFERENT NVIDIA GPU UNITS

3090 4090 V100 A40 A100
Time in ms 74%1.2 32+0.4 87+1.2 52+1.0 41%0.1
APPENDIX D
EXAMPLES

Fig. 6 shows the model predictions and ground truth data
plotted onto the camera images and the associated radar data
in the range-azimuth (RA) and azimuth-elevation (AE) planes
under different environmental conditions.
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