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Obstacle avoidance for quadrotors using reinforcement learning
and obstacle-airflow interactions

G.J. van Dam∗ and E. van Kampen†

Delft University of Technology, Delft, 2629 HS, The Netherlands

This research investigates and proposes a new method for obstacle detection and avoidance
on quadrotors, that relies solely onmeasurements from the accelerometer and rotor controllers.
The detection of obstacles is based on the principle that the airflow around a quadrotor changes
when the quadrotor is flying near a surface. A well-known example of this is the ground effect,
an increase in lift force close to a ground surface. Similarly, a change in dynamics occurs when
a quadrotor is flying close to a wall or ceiling. The proposed method uses a reinforcement
learning controller to detect obstacles based on these measurements, and takes action to lead
the quadrotor back to safety. A proof-of-concept of this method is developed by training a
reinforcement learning agent to avoid obstacles beneath a descending quadrotor. This is first
done in a simulated environment, where the influence of hyperparameters, the amount of noise
in the state signal, and the number of training episodes are investigated. The best performing
agent from simulation is evaluated during a flight experiment with the Parrot Bebop 1 drone,
where it is able to prevent the quadrotor from hitting the obstacle in 80% of the episodes.
Furthermore, it is shown that the same level of performance can be achieved, by learning
fully from scratch, in-flight, without prior knowledge or training, during 50 real flight training
episodes. An approach for extending thismethod to the avoidance of walls, ceilings, and smaller
obstacles is discussed. Additionally, it is shown that this method can easily be extended to other
quadrotors.

Nomenclature

α Learning rate
γ Discount rate
δt Temporal-Difference error
ε Exploration rate
θ Pitch angle [rad]
λ Decay-rate for eligibility traces
µ Mean
σ Standard deviation
τext,x, τext,y, τext,z Estimated external torques [Nm]
φ Roll angle [rad]
ωi Rotational speed of rotor i [rad/s]
a Action
Asignal Strength of the signal
b Distance between opposite rotors [m]
c Distance to a surface above [m]
d Distance between adjacent rotors [m]
di,x Distance from rotor i to the x-axis [m]
di,y Distance from rotor i to the y-axis [m]
e Ground effect model bias [N/kg]
Et Eligibility traces
Fdrag,x, Fdrag,y, Fdrag,z Drag forces [N]

Fext,x, Fext,y, Fext,z Estimated external forces [N]
Fi Thrust produced by rotor i [N]
g Standard gravitational acceleration [m/s2]
Isst , Iaat Identity-indicator functions
Ixx, Iyy, Izz Moments of inertia [kg·m2]
Kb Body lift coefficient
kD,x, kD,y, kD,z Drag coefficients [N·s2/m]
ki Rotor gain [N·s2/rad]
li Rotor torque gain [kg·m2/rad]
m Quadrotor mass [kg]
Nepisodes Number of episodes
p, q, r Body rates around x,y and z axes [rad/s]
Q Action-value function
r Reward
Rrotor Rotor radius [m]
s State
Tc Thrust in ceiling effect [N]
Tg Thrust in ground effect [N]
T∞ Thrust in free flight [N]
u, v,w Speed in body x,y and z axes [m/s]
z Distance to a surface below [m]
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I. Introduction

In recent years, Unmanned Aerial Vehicles (UAVs), and quadrotors in specific, have risen in popularity. Their low-cost,
small volume and Vertical Take-Off and Landing (VTOL) capability have driven their application outside of aerial

photography to many new applications, which may range from industrial inspection tasks to disaster response or package
delivery applications [1].

The next step in development is expected to be increasing the level of autonomy for these quadrotors [2]. This could
bring down the cost significantly and allow for larger scale deployments of these solutions. A key remaining challenge
for this, similar to that for other UAV-platforms, is in-flight autonomous object detection and avoidance. Currently,
solutions to this problem are usually either vision-based or range-sensor-based.

Vision-based methods rely on an onboard camera and the use of computer vision algorithms to detect and avoid
obstacles. While this area of investigation and initial applications certainly look promising [3], it is also dependent on
good lighting conditions. Furthermore, the implementation on quadrotors can be limited by the amount of computational
resources available on such a platform.

Range-sensor solutions rely on the addition of some range sensor, like a laser rangefinder or ultrasonic sensor,
for proximity measurement in order to detect obstacles. These solutions can achieve good accuracy and have been
successfully implemented on quadrotors [4]. However, because of the added cost, weight and power usage of such a
sensor, they can decrease flight time and limit their usability to only larger quadrotors.

This research investigates and proposes an alternative method for obstacle avoidance and detection, one that does not
require the addition of any sensors but relies solely on measurements of the accelerometer and rotor controllers, both
present on almost all quadrotors. This new obstacle avoidance method could be used as a stand-alone method for small
quadrotors, thereby removing the need for additional sensors, thus saving cost and weight while increasing flight time.
Alternatively, when being used as an addition to other obstacle avoidance solutions it can increase safety and reliability.

The detection of obstacles is based on the principle that the airflow around a quadrotor changes when the quadrotor
is flying near a surface. A well-known example of this is the so-called ground effect, an increase in lift force close to a
ground surface, an effect also seen in helicopters [5] and fixed-wing aircraft [6]. Similarly, a change in airflow occurs
when a quadrotor is flying close to a wall [7], or ceiling [8]. The proposed method uses a Reinforcement Learning (RL)
controller to detect obstacles based on these effects and take action to lead the quadrotor back to safety.

In this article, the initial development of a proof-of-concept of this low-cost method is described. This proof-of-
concept is limited to the detection of large obstacles underneath a quadrotor, using the so-called ground effect. The
results from this are used to assess and discuss the extension of this method to the avoidance of obstacles above and on
the same level as the quadrotor.

The contribution of this research to the state of the art is twofold. This research offers a distinct addition to both
fields it is part of: obstacle avoidance and reinforcement learning. First of all, this research contributes to the field
of obstacle avoidance by offering an innovative method of obstacle avoidance. Furthermore, this new method is one
that does not require the addition of any sensors, solely relying on the Inertial Measurement Unit (IMU) and RPM
measurements already available in most UAVs.

Secondly, in the field of reinforcement learning, this research adds to the state of the art by its unconventional
placement of the reinforcement learning agent within the control loop. Instead of being in full control, the RL agent is
run in combination with an inner loop flight control following a predetermined flight plan. The UAV will follow the
flight plan during most of the flight, but this can be overridden at any time by an intervention action of the reinforcement
learning agent.

This article is structured as follows. First, a brief background on the obstacle-airflow interactions between a quadrotor
and obstacles, and RL is given in section II. Then, in section III, the method in which obstacle-airflow interactions
are used to detect obstacles is discussed. The reinforcement learning setup is discussed in section IV. The setup and
results of the experiments carried out in simulation are discussed in section V. Similarly, the setup and results of the
flight experiments are discussed in section VI. In section VII the extension of this obstacle avoidance method to walls,
ceilings, and other quadrotors is discussed. The conclusions of this article are presented in section VIII, after which
recommendations for future research are made in section IX.

II. Background
Background information is presented on the obstacle-airflow interactions between a quadrotor and obstacles.

Furthermore, the basics of reinforcement learning, as well as the application for flight control of quadrotors and the
specific reinforcement learning algorithm used for this research, are discussed.
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A. Obstacle-airflow interactions between a quadrotor and obstacles
The dynamics of a quadrotor are greatly dependent on its aerodynamics, most importantly the airflow around the

thrust-producing rotors. This airflow can be influenced by surfaces in proximity to the quadrotors. In the proposed
method, this change in dynamics will effectively function as the source of information used by the reinforcement learning
agent to determine the presence of obstacles. Therefore, it is of key importance that their effect on the quadrotor is
known and can be estimated in flight. Furthermore, training in simulation will require a model of these effects.

1. Obstacles underneath the quadrotor
The influence of a horizontal surface underneath a rotor has been well researched in literature [5, 9]. Most of this

research has been focused on helicopters, but in general, it can be noted that for all rotorcraft operating closely above a
ground surface, the produced thrust increases [10].

To estimate this thrust increase for quadrotors, often the classical model for ground effect in helicopters is used.
This analytical model is derived by Cheeseman and Bennett [5] and shown in Eq. 1. It is based on potential flow theory,
under both the assumption that the helicopter is hovering and the assumption that the rotor can be modeled as a point
source. The method of images is then used to derive the ratio between the thrust produced by a helicopter in ground
effect (Tg) and the thrust out of ground effect (T∞), as a function of the radius of the rotor (Rrotor) and the distance to the
surface underneath (z).

Tg

T∞
=

1
1 − (Rrotor

4z )
2

(1)

Validation using experimental measurements has since shown that the ground effect for a quadrotor is larger than
predicted by this equation [10, 11]. Furthermore, these experiments showed that the influence of the ground effect in
quadcopters was apparent up to heights of 5 times the rotor radius.

A new model, specifically for quadrotors was recently proposed by Sanchez-Cuevas et al. [10]. It was shown to
represent their experimental results more closely than Eq. 1. This model accounts for the presence of multiple rotors by
representing them not as one but as four sources. It assumes a quadrotor hovering above a ground surface with four
co-planar rotors.

Furthermore, this new model accounts for an effect called the fountain effect, an additional increase in lift previously
seen in tandem helicopters [12] and quadcopter experiments [11]. It can best be explained by looking at the CFD
simulation of a simplified quadrotor in ground effect, as shown in Fig. 1. As expected, the wakes from each rotor spread
out to the sides as they near the ground, however in the center area where the two airflows interact with each other a
vortex ring appears. Due to this aerodynamic effect, an upwards force is applied to the body of the quadrotor, leading to
a greater ground effect. This effect is represented in this new model by an empirical body lift coefficient [10].

Fig. 1 CFD simulation of a simplified quadrotor model hovering close to a ground surface plane [10].

2. Obstacles above the quadrotor
Little research has been conducted on the influence of obstacles or surfaces above a quadrotor, the ceiling effect.

The most relevant description and experiments are performed by Sanchez-Cuevas et al. [8]. In this research, the thrust
produced by both a single rotor and a quadcopter, at varying distances to a ceiling surface, were measured and compared.
These measurements were performed on a static test bench.
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In Sanchez-Cuevas et al. [8], the increment in the thrust of a single rotor due to the ceiling effect is approximated by
an analytical function similar to that of the ground effect shown in Eq. 1. The ratio between the thrust in (Tc) and out
of the ceiling effect (T∞) is given by equation 2, where c is the distance to the ceiling, and K1 and K2 are determined
experimentally using ordinary least squares. A model for the increase in thrust for a complete quadcopter is not given,
but it is shown that the relative increase is larger than that for a single rotor.

Tc

T∞
=

1

1 − 1
K1

(
Rrotor
c+K2

)2 (2)

3. Obstacles on the same level as the quadrotor
The influence of large vertical surfaces like walls, on the same level as the quadrotor, has been described by Lee et al.

[13], and Mckinnon [7]. Where the first article focuses only on reference tracking in the aerodynamic effects caused by
such a wall, the second provides actual measurements of the effects caused by a wall. In that research, an Unscented
Kalman Filter (UKF), based on a known model of the UAV, is used to estimate the external forces and torques near
ground and wall surfaces whilst hovering.

These measurements indicate a small external force away from the wall in the horizontal plane. Furthermore, a
small external torque around the pitch and roll axes was noticed. Finally, a small downward external force was measured
in the vertical plane. A clear increase in these three effects can be seen from a distance of 0.35 meter from the wall,
about 3 times the rotor radius of the quadrotor that was used for that particular research.

B. Reinforcement learning
Reinforcement learning is a large and quickly developing field, containing a multitude of learning algorithms and

architectures. In this research, reinforcement learning is used to find an optimal policy for the detection and avoidance
of obstacles underneath a descending quadrotor. In the section below, the principles of RL and their application to flight
control of multirotors is discussed. Furthermore, the method used for this research, Q-learning, is introduced.

1. Principles of reinforcement learning
Reinforcement learning is a computational approach to machine learning where an agent learns to maximize the

cumulative rewards it receives when interacting with an environment. At each timestep t the agent chooses an action at ,
based on the current state st and its policy function, a mapping from state-space to action-space. The environment
responds to this action by transitioning to state st+1 and providing the agent with a numerical reward rt+1, a process
depicted in Fig. 2a.

Environment

Agent

atrt+1

st+1st

rt

(a) The agent-environment interaction in reinforcement
learning.

Environment

at
rt+1

st+1st

rt

Cri c Actor

Value func!on

TD error 

Policy

(b) The actor-critic architecture.

Based on this reward and new state, a reinforcement learning algorithm specifies how the policy should be updated.
The RL method does so with the goal of maximizing the sum of rewards received by the agent.

A special case of reinforcement learning methods are the actor-critic methods, in which the action selection and value
estimation are split into two separate structures. The actor selects the actions and the critic estimates the (action-)value
function and uses this to criticize the actor, as shown in Fig. 2b. This critique signal provided by the critic can be a
scalar and is called the Temporal-Difference (TD) error (δt ). It is used by the actor to adjust its policy.

2. Applying reinforcement learning to flight control of quadrotors
There are multiple examples of reinforcement learning techniques being applied to multirotors, and quadrotors in

specific. Reinforcement learning agents have been used both for full control of a quadrotor [14] and for adjustment of a
conventional controller [15]. Key challenges in applying reinforcement learning to flight control remain the challenge of
safety[16], the challenge of robustness, the challenge of online efficiency[17] and the challenge of sample efficiency.
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3. Q-learning
One often used reinforcement learning method is Q-learning. Q-learning is a model-free, off-policy, Temporal-

Difference method, which has three key implications. First of all, it does not require a model of the environment but
instead learns solely from interacting with the environment. Secondly, the policy it uses to select actions, its behavior
policy, is not necessarily equal to the estimation policy, the policy that is being improved to approach the optimal policy.
Finally, methods of the Temporal-Difference learning class makes use of bootstrapping, using previously estimated
values for the action-value function Qt (s, a) for its new estimate Qt+1(s, a), with the goal of approaching the optimal
action-value function Q∗(s, a).

Q-learning is often combined with eligibility traces, another key reinforcement learning mechanism, to obtain a
more general method that may learn more efficiently. One implementation of this is Watkins’s Q(λ) method [18]. The
update equations for this method, using replacing traces, are given in equations 3 and 4.

The choice for Watkins’s Q(λ) is based on a preliminary investigation where Monte Carlo, SARSA and Q-Learning
methods were tested on a simplified version of the problem at hand. Results of this investigation suggest that Watkin’s
Q(λ) is best suited for problems with this particular setup.

Et (s, a) =

{
min

(
γλEt−1(s, a) + Isst · Iaat , 1

)
if Qt−1(st, at ) = maxa Qt−1(st, a)

Isst · Iaat otherwise.
(3)

Qt+1(s, a) = Qt (s, a) + αδtEt (s, a) for all s,a, with δt = rt+1 + γmax
a

Q(st+1, at+1) −Q(st, at ) (4)

III. Using obstacle-airflow interactions for obstacle detection
The result of the obstacle-airflow interactions on the quadrotor can be estimated by using a simple quadrotor model

to estimate external forces and torques in and around all three axes. A procedure to do so is explained in detail for the
external force in the vertical direction. This estimate is used to create a model for the ground effect, using measurement
data gathered with the same drone that is used for the final flight experiments.

A. Frame of reference & equations of motion
For the purpose of this article, all derivations are performed within the quadrotor body frame and with the assumption

of a rigid body. This right-handed coordinate frame is fixed to the quadrotor at the center of gravity, with the rotor axes
pointing in the vertical z direction, the direction of thrust being negative, and the arms pointing in the x and y directions.
A sketch of a quadrotor, showing this reference frame can be seen in Fig. 3.

z

x
y

φ

(a) Quadrotor near a ground surface.

x

y

1 2

34

(b) Top view of a quadrotor.

z

x

(c) Side view of a quadrotor near a wall.

Fig. 3 Quadrotor body frame of reference.

The translational set of equations of motion for the quadrotor is given in Eq. 5. The gravitational acceleration is
denoted as g, the mass of the quadrotor is m, the body attitude angles in pitch, roll, and yaw are given by θ, φ, ψ, the
drag forces as Fdrag and the thrust produced by each rotor i as Fi . Furthermore, the body speeds in forward, sideways
and vertical direction are given by u, v,w, so the accelerations in the body frame are Ûu, Ûv, Ûw. Finally, p, q and r refer to
the angular rates for pitch, roll, and yaw.
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−mg sin θ + Fdrag,x

mg sin φ cos θ + Fdrag,y

mg cos φ cos θ −
∑

i Fi + Fdrag,z

 = m


Ûu + qw − rv
Ûv + ru − pw
Ûw + pv − qu

 (5)

Assuming symmetry about the x and y axes of the body frame, as well as negligible rate damping, the rotational set
of equations of motion is given by Eq. 6. Here Ûp, Ûq and Ûr, refer to the angular acceleration rates, di,x to the shortest
distance from rotor i to the x-axis and di,y to the shortest distance to the y-axis. The moments of inertia are given as
Ixx, Iyy and Izz . Finally, the torque produced by each rotor is assumed to be a function of rotor speed T(ωi).

F1d1,x − F2d2,x − F3d3,x + F4d4,x

F1d1,y + F2d2,y − F3d3,y − F4d4,y∑
i T(ωi)

 =

Ixx Ûp
Iyy Ûq
Izz Ûr

 +

−Iyyqr + Izzqr
Ixxpr − Izzpr
Izzpq + Iyypq

 (6)

B. Estimating external forces & torques
While the equations of motion given in Eq. 5 and 6 provide a model of the quadrotor in perfect free flight conditions,

without any disturbances, wind or obstacle-airflow interactions, this is not always the situation in reality. To the
contrary, these obstacle-airflow interactions are exactly the subject of interest. Therefore an external force, representing
the difference between reality and the simplified quadrotor model, is added to each of the translational equations
of motion; Fext,x, Fext,y, Fext,z . Similarly an external torque is added to each of the rotational equations of motion:
τext,x, τext,y, τext,z .

Since the external forces and torques represent all unmodelled dynamics, like the influence of obstacle-airflow
interactions, these forces and torques can also be used to identify these dynamics. This can be accomplished by rewriting
the equations of motion and solving for the external force or torque, using the known or approximated states. An example
of this will be given below for the external force in the z-direction, as this force can be caused by obstacle-airflow
interactions with obstacles underneath the quadrotor. The derivation starts with the translational equation of motion in
the z-direction, as shown in Eq. 7.

mg cos(φ) cos(θ) −
∑
i

Fi + Fdrag,z + Fext,z = m( Ûw + pv − qu) (7)

The IMU sensor of the quadrotor consists of a 3-axis accelerometer, providing accelerations, and 3-axis gyroscope,
providing angular rates. The body speeds can either be derived from an external positioning system (like GPS, or
OptiTrack), integration of body accelerations, or a combination of both using sensor fusion.

The onboard accelerometer measures in the body frame, however, it does not just measure Ûw. Instead it is influenced
by the gravity vector, as it measures Û̂w, with Û̂w = Ûw − g cos(φ) cos(θ). So if one substitutes this in Eq. 7 and solves for
Fext,z , the following estimate for the external force in the vertical direction is derived:

Fext,z

m
= Û̂w + pv − qu +

1
m

∑
i

Fi −
1
m

Fdrag,z (8)

Now if the following model for the thrust produced by each rotor is assumed: Fi = kiω2
i [19], this can be rewritten to:

Fext,z

m
= Û̂w + pv − qu︸         ︷︷         ︸

from IMU

+
∑
i

ki
m

ω2
i︸︷︷︸

from motors

−
1
m

Fdrag,z (9)

To estimate ki
m an initialization procedure is conducted when the quadrotor is hovering in free flight, without closeby

obstacles or disturbances. The external force Fext,z and drag Fdrag,z can then assumed to be zero. The equation above
can then be solved for ki

m if either the assumption is made that ki
m is equal for all four rotors, or that the force produced

by each of the four rotors during this initialization procedure is equal.
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ki
m
=
− Û̂w − pv + qu∑

i ω
2
i

assuming equal ki (10)
ki
m
=
− Û̂w − pv + qu

4ω2
i

assuming equal thrust (11)

The drag force can be estimated by performing another experiment in free flight, without closeby obstacles or
disturbances. However, instead of hovering the quadrotor should now move up and down. Using the previously found
values for ki

m , Eq. 9 can be solved for Fdrag,z/m for each measurement point of the experiment. It can be expected that
the drag is of the form |Fdrag,z/m| = kD,zw

2, where the direction of the force is opposite to the speed [20]. A function of
this form can thus be fitted to the experiment data, and solved for kD,z using for example linear least squares, providing
a model for Fdrag,z/m.

Fext,z

m
= Û̂w + pv − qu︸         ︷︷         ︸

from IMU

+
∑
i

ki
m

ω2
i︸︷︷︸

from motors

−Fdrag,z/m , with Fdrag,z/m =

{
−kD,zw

2 if w > 0
kD,zw

2 otherwise
(12)

Similarly, the following equations can be derived to estimate the external forces in x and y direction.

Fext,x

m
= Û̂u + qw − rv︸         ︷︷         ︸

from IMU

−Fdrag,x/m , with Fdrag,x/m =

{
−kD,xu2 if u > 0
kD,xu2 otherwise

(13)

Fext,y

m
= Û̂v + ru − pw︸         ︷︷         ︸

from IMU

−Fdrag,y/m , with Fdrag,y/m =

{
−kD,yv

2 if v > 0
kD,yv

2 otherwise
(14)

Following a similar process, equations can be derived to estimate the external torque around the x, y, z axes. The
resulting estimators are shown in Eq. 15, 16 and 17. To get to these estimators, it is assumed that the angular rates are
relatively small and qr , pr and pq can be considered negligible. Furthermore, these estimators make use of ki

m , this is
the same parameter that is used for estimating the external force in the z-direction.

The moments of inertia around the x and y-axis can be estimated by performing an experiment in free flight, where
the quadrotor performs sequentially a pitch and roll changing maneuver. If the external torques are assumed to be zero,
Eq. 15 and 16 can be solved for Ixx and Iyy .

τext,x

Ixx
= Ûp −

1
Ixx

[ k1

m
ω2

1d1,x −
k2

m
ω2

2d2,x −
k3

m
ω2

3d3,x +
k4

m
ω2

4d4,x
]

(15)

τext,y

Iyy
= Ûq −

1
Iyy

[ k1

m
ω2

1d1,y +
k2

m
ω2

2d2,y −
k3

m
ω2

3d3,y −
k4

m
ω2

4d4,y
]

(16)

To estimate the external force around the z-axis, as shown in Eq. 17 it is assumed that the torque produced by one
rotor can be approximated by T(ωi) ≈ liω2

i [19]. The parameters li
Izz

can be estimated by letting the quadrotor perform
an initialization procedure in free flight, where τext,z is assumed to be zero. If one then either assumes equal li , or equal
torque, Eq. 17 can be rewritten to estimate the torque parameters.

τext,z

Izz
= Ûr +

l1
Izz

ω2
1 −

l2
Izz

ω2
2 +

l3
Izz

ω2
3 −

l4
Izz

ω2
4 (17)

Finally, with respect to the accuracy of the three external torque estimates, it is important to note that angular
acceleration rates are often not provided directly by an IMU. Instead, they might need to be acquired by taking the
derivative of the angular rates, which introduces noticeable noise into the estimation.
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C. Challenges
While the method described above provides estimates of the external forces, they are not perfect estimates. There

are three main challenges for achieving accurate estimates: inaccuracies in the estimated model, noisy measurements
and delays in measurements.

Inaccuracies in the estimated model can be a result of incorrect assumptions, disturbances during initialization or
changing system dynamics (e.g. a difference in mass due to a change in the payload). To cope with this, especially
the latter, the estimation of the rotor gains is performed on board the quadrotor at the start of every flight. This is
fully automated and takes only 2 seconds. In addition to being influenced by the gravity factor, the measured body
accelerations Û̂u, Û̂v, Û̂w are also susceptible to sensor noise and vibrations in the body frame. One common source of such
vibrations are the rotors. In this research, a 4th order Butterworth filter with a cutoff frequency of 3Hz is applied to all
accelerometer and gyroscope measurements in an effort to remove sensor noise and rotor-induced vibrations. This
choice is based on a frequency spectrum analysis and a trade-off between remaining noise and introduced delay.

Finally, delays in the measured states can lead to inaccuracies in the estimations. One of such delays is caused by the
low-pass filter discussed above, which is expected to introduce a 140ms delay [21]. Therefore, the same filter is also
applied to the speed, attitude, and rotor measurements in order to keep the signals synchronized. At a descend speed of
0.3m/s this thus corresponds to a distance of 4.2cm.

D. Model for the external force in the vertical direction when flying close to the ground
In order to train reinforcement learning agents to avoid obstacles underneath the quadrotor, a training environment is

created. To make this environment as realistic as possible, a model of the net vertical force caused by the ground effect
is created. This model is created based on measurements gathered during three separate measurement flights with the
Parrot Bebop 1 drone, the same drone that is used for the flight experiments. In these measurement flights, the quadrotor
descends from 1m height, with constant speed, to 1cm above a large surface of artificial grass. At each timestep, the
external force in z-direction is estimated.

The model for the external force is based on the recently proposed formula for thrust increase in ground effect
provided by Sanchez-Cuevas et al. [10]. In this formula, the increase in thrust near a surface underneath the quadrotor is
not only dependent on the rotor radius Rrotor and distance to the ground z, but also on the distance between adjacent
rotors d, the distance between opposite rotors b and an empirical body lift coefficient Kb . For this research, the model is
extended with a bias e and rewritten to approximate Fext,z/m, as can be seen in Eq. 18.

Fext,z

m
= −g

[ 1

1 − (Rrotor
4z )

2 − R2
rotor(

z√
(d2+4z2)3

) − (
R2
rotor
2 )(

z√
(2d2+4z2)3

) − 2R2
rotor(

z√
(b2+4z2)3

)Kb

− 1
]
+ e (18)

Non-linear least squares, using the Trust Region Reflective (TRF) algorithm and boundaries based on the physical
properties of the quadrotor, is used to fit this function to the measurement data. This results in the following parameters:
R = 0.05m, d = 0.181m, b = 0.253m, Kb = 0.474, e = −0.150. From Fig. 4 it can be seen that this function better
replicates the measurement data than the classical formula from Cheeseman and Bennett [5].

0.0 0.2 0.4 0.6 0.8 1.0
Height above the surface i  m

−3.0

−2.5

−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

F e
xt
,z
/m

 i 
 N
/k
g

Estimated exter al force i  vertical directio  as a fu ctio  of height above the grou d surface

Expected value from classical theory
Fitted fu ctio , Kb=0.47
Measureme t data

Fig. 4 Estimated external force in the vertical direction as a function of height above the ground surface.
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IV. Reinforcement learning setup
In this section, the position of the reinforcement learning agent in the general control scheme are discussed.

Furthermore, the states, actions, and rewards provided to the agent are introduced. Additionally, the initialization
and termination conditions are highlighted. Finally, the exploration strategy, reinforcement learning algorithm, and
hyperparameter are discussed.

A. General control scheme
The general control scheme of both the simulation and real flight experiment is depicted in Fig. 5. As can be seen

from this figure, the RL agent is set up as an actor-critic method, where the actor is only updated after an episode has
ended. The reason for this is practical, on the Parrot Bebop 1 the onboard computational capacity is limited. Therefore it
is expected that the update rate of the RL agent will not be able to keep up with the frequency of the control loop, which
runs at 512Hz. This high frequency is chosen to limit reaction time and give the agent the best chance of preventing
collision with the obstacle underneath.

The state estimator that is indicated in the control scheme is the function that estimates Fext,z/m. In the simulation
experiments, this is estimated using the ground model discussed in section III.D. In the actual flight experiments, it is
estimated based on the actual measured signals using Eq. 12.

Actuator
dynamics

Commanded
Rotor speeds

Flight controller

Action

Flight plan

Intervention?

Descend with 0.3 m/s

State estimatorRL Critic Reward calculator

State

Reward

RL Actor

Quadrotor 
dynamics

Actual
Rotor speeds

Accelerations1/sRates & speeds1/sAttitude & position

EnvironmentAgent

Fig. 5 High-level overview of the control scheme used in the experiments.

B. States & actions
Two states are available to the reinforcement learning agent; the current estimate of Fext,z/m and the action chosen

in the previous timestep at−1. The estimate of external force Fext,z/m is discretized into 9 equally spaced bins, ranging
from -0.2N/kg up to -1.00N/kg. The action in the previous timestep at−1 is provided to the RL agent because the reward
given by the environment depends as much on the previously chosen action as on the external force.

Based on these states, the agent then decides which action to perform. There are three actions available to the agent;
No action (ano-action), save (asave) and hover (ahover). When ano-action is chosen, the quadrotor continues on its original
flight plan for one timestep, thus continuing the 0.3m/s descend. When choosing asave, a short 1-second full-thrust
command is sent to the quadrotor inner control loop. Finally, when choosing ahover, the quadrotor inner control loop is
given the command to hover for 0.5 seconds.

As mentioned above, two of the three potential actions take more than 1 timestep to execute. Hovering will take 256
timesteps and a save 512 timesteps. During this time the reinforcement learning agent is considered frozen, no new
states are provided to the agent, no actions are picked by the agent and neither the action-value function, policy nor
eligibility traces of the agent are updated. Any rewards that the agent might receive during this period are summed and
provided to the agent for processing at the final timestep of the multistep action, together with the new state.

C. Rewards & termination
The goal of the reinforcement learning agent is to prevent the quadrotor from hitting any obstacles underneath. As

such, the largest negative reward is given when the quadrotor comes to close to the obstacle below, as determined by the
termination height ztermination, with height referring to the height above the obstacle. While this is referred to as a crash,
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it must be noted that it is not an actual crash of the quadrotor, instead, the safety controller intervenes, preventing an
actual collision, and leading the quadrotor back to safety. In all experiments, a termination height of 0.05 meter is used.

R(s, a) =

{
−2000 + Ra if z ≤ ztermination

Ra otherwise
(19)

Furthermore, a negative action-based reward Ra is given when the agent intervenes, especially when the intervention
is false. In this case, false is defined as outside of the area from which the ground effect can be measured, which was
estimated to be 0.25 meter, corresponding to 4 times the rotor radius.

Ra(s |a = asave) =

{
−500 if z > 0.25
−50 ∗ 0.25−z

0.25−ztermination
if z ≤ 0.25

, Ra(s |a = ahover) =

{
−100 if z > 0.25
−25 if z ≤ 0.25

(20)

There are three ways in which an episode can end. First of all, when the agent intervenes by performing a save, this
is an episode-ending action. Secondly when the quadrotor comes to close to the surface underneath, as defined by Eq.
19. In either case, the final reward is processed by the agent and the episode ends. If neither of the two happens the
episode automatically ends after 10 seconds.

As can be concluded from these termination conditions, all episodes are finite, therefore it is not an absolute
requirement to have a reward discount factor γ < 1. In the context of obstacle avoidance, it can even be argued that the
negative impact of a collision in the future should not be discounted at all. Therefore, in this reinforcement learning
problem, it is chosen to have γ = 1.0.

D. Exploration & initialization
Initial results with ε-greedy exploration strategies [22] showed that exploration was quite challenging for the RL

agents, the number of state visits was highly skewed towards states with Fext,z/m close to zero. These states typically
correspond to heights out of the ground effect. The states with more negative Fext,z/m, that generally correspond to
heights within the ground effect, were rarely visited by the agents. Further studies showed that the limited exploration of
states close to the ground is inherent to the problem, for which there are two reasons.

First, the save action is episode-ending. As such, any exploration strategy which relies on random actions being
picked runs the risk of ending the episode, and thus stopping further exploration, every time it does so. This is
problematic when it is prone to happen early on in the episode, as it prevents the quadrotor from coming close to the
ground. Therefore, the RL agent will rarely experience those states. An illustration of this can be seen in Fig. 6a.

Secondly, there are a lot of timesteps compared to the number of potential discrete states. This means that during the
descent the agent will often be in the same state for many steps. This is a challenge for exploration because it requires
many subsequent exploratory actions to be taken in order to reach another state. An example of this is depicted in Fig.
6b, where it must be noted that in reality it usually takes way more than three steps to progress from one state to the next.
This reason relates back to the unconventional placement of the RL agent in the control scheme, as running the agent at
a high frequency allows for quick interventions, but leads to this large number of timesteps per discrete state.

Episode

start

-0.9

F
ext,z

/m

-0.2-0.3-0.4-0.5-0.6-0.7-0.8-0.9-1.0

Area of interest
Save

Save

Greedy action Exploratory action

(a) Early ending of an episode due to exploration.

Episode

start

-0.9

F
ext,z

/m

-0.2-0.3-0.4-0.5-0.6-0.7-0.8-0.9-1.0

Area of interest
Save

Save

Greedy action Exploratory action

(b)Multiple consecutive exploratory actions required to go
past a state where the greedy action is save.

Fig. 6 Two typical exploration challenges for this particular reinforcement learning problem. Note: only one
dimension of the policy is shown.

To handle these issues, a combination of three different exploration strategies is implemented; exploring starts,
episode-long exploratory actions, and epsilon-greedy exploration. An example of this strategy is shown in Fig. 7.

First of all, exploring starts are implemented [22]. From the perspective of the simulated or actual quadrotor, each
episode always starts when hovering at 1-meter height, where it is given the command to descend with 0.3m/s. The RL
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Episode

start

-0.9

F
ext,z

/m

-0.2-0.3-0.4-0.5-0.6-0.7-0.8-0.9-1.0

SaveArea of interest
Save

Exploring starts

ε-greedy exploration

Episode-long

exploratory actions

Fig. 7 Implemented threefold exploration strategy.

agent is however not initialized until height zexpl is reached. This exploratory starting height zexpl is randomly taken from
the uniform distribution [0.45, 1.0] before the start of each episode. This part of the exploration strategy encourages the
exploration of the states that typically occur closer to the ground.

Secondly, episode-long exploratory actions are randomly generated before the start of each episode; for each state s
in the state-space there is a chance εepisode that random action a will be taken on every visit of that state, instead of the
greedy action. By doing so, this approach can mitigate the challenge of requiring multiple consecutive exploratory
actions to get to another state.

Finally, the methods above are combined with ε-greedy exploration at each timestep. The chance of picking a
random action, instead of the greedy or episode-long exploratory action for that state, is then given by εstep.

E. Hyperparameters
There are four key hyperparameters that determine the behavior of the RL agent; the learning rate (α), exploration

rate at each step (εstep), episode-long exploration (εepisode) and decay of eligibility traces (λ). The results from the
previously mentioned preliminary investigation suggest that, when using Q-learning, a high, non-decreasing, exploration
rate at each step εstep, a λ between 0.1 and 0.5, and a learning rate α that decreases to a quarter of its initial value during
the first half of the episodes, produce the best-performing agents.

Based on these preliminary results, 216 different combinations of these hyperparameters were selected for further
investigation. Two grid searches were carried out in the simulation environment described below. The results from the
first grid search are used to determine the best set of hyperparameters for training an agent from scratch. The results
from the second grid search are used to determine the set of hyperparameters that are best when a previously trained
agent is placed in a new, slightly different, environment. In each grid search, 2160 agents were trained during 500
training episodes, 10 for each of the 216 different hyperparameter sets.

The sets of hyperparameters that performed the best in these two grid searches are shown in table 1. For both sets, it
is found that the best performance is achieved when εepisode linearly decreases to zero during the first half of the episodes.
The learning rate decreases as well, with the learning rate in episode i given by Eq. 21.

λ εstep α0 εepisode

Initial training 0.1 0.01 0.5 0.5→ 0.0
Continued training 0.1 0.01 0.1 0.01→ 0.0

Table 1 Best hyperparameter sets found for initial and
continued training.

with αi = α0
Nepisodes

Nepisodes + i
(21)

It is important to note here that the found sets of hyperparameters are the local optimum, the best available set from
the 216 analyzed sets of hyperparameters. While these 216 options were selected carefully, based on both literature [23]
and a preliminary investigation, there might exist a better set of hyperparameters globally.

V. Simulation
For the first phase of the experiments, a simulation environment is created that represents the in-flight environment

as much as possible. To this end, the quadrotor inner vertical loop is replicated, the quadrotor dynamics are implemented
and the ground effect is simulated. This simulated environment is then used to train and evaluate multiple agents,
investigate the influence of noise and the number of required training episodes.
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A. Experiment setup
First, the setup of the simulation environment and the experiments conducted within this environment are presented.

1. Creating the simulation environment
The quadrotor dynamics are implemented as described by the equations of motion given in Eq. 5 and 6. A key

addition to this are the actuator dynamics. These provide the relationship between the commanded rotor speed ωcmd,i ,
from the inner control loop to the actual rotor speed ωi . These are simulated using a 2nd order lower-pass Butterworth
filter with a cut-off frequency of 15Hz. This actuator model is based on in-flight measurements from the system
identification experiment described below.

The quadrotor inner vertical control loop is replicated in simulation to better reproduce the behavior of the quadrotor
when it receives a command. This is especially relevant at the start of the episode when the quadrotor is hovering
and receives the 0.3m/s descend command, and during interventions, when it receives a hover (ahover) or save (asave)
command. The replication of the inner loop is based on the control scheme that is provided for the open-source flight
control software ∗. The gains are determined by performing small system identification experiments with the Parrot
Bebop 1 drone, where a step command is given on the vertical reference speed. The same step command is given in the
simulation environment, and the gains are tuned based on the comparison.

The ground effect is simulated using the fitted function, as given in Eq. 18, and shown in Fig. 4. However, as can be
seen from this figure, Fext,z/m is not a perfect estimator of height above the ground. As discussed in section III.C, the
estimate is also influenced by inaccuracies in the estimated model, and noise or delays in measurements. As a result, the
difference between the estimated external force at one timestep and the fitted model cannot be considered white noise.
Instead, the Fext,z/m signal is quite smooth, as can be seen from Fig. 8.

In the simulation, an effort is made to replicate the stochastic deviations from the fitted function, but to keep the
smoothness of the estimated signal. To do so, random normally-distributed noise is generated and filtered using a
2nd order Butterworth low-pass filter with a cutoff frequency of 1.8Hz. The mean (µnoise = 0.055) and standard
deviation (σnoise = 1.392) of this normal distribution are chosen such that the filtered noise distribution replicates the
distribution seen in measurements. This can be confirmed by looking at Fig. 8, as the signals are similar, both in terms
of smoothness and deviation from the fitted function.

A small difference can, however, be seen in the timing of the signal; the Fext,z/m signal measured in flight is delayed
around 140 milliseconds. This difference can be explained by considering the 140ms delay introduced by the 4th order
low-pass filter that is used to filter the in-flight measurements, as discussed in section III.C. While a low-pass filter is
also used in the simulation, only the noise is filtered, not the underlying signal, as such no delay is introduced into the
actual information-carrying signal, explaining the 140ms difference.
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Fig. 8 Comparison of measured and simulated noise in the Fext,z/m state signal.

2. Training agents in simulation
Using the created simulation environment, and the set of hyperparameters for initial training discussed in section

IV.E, 100 agents are trained in the simulation environment. Each agent is trained for 500 episodes, using the exploration
strategy described in section IV.D. Their performance is evaluated during 100 fully greedy evaluation episodes. In these
greedy episodes, there is no exploration and no learning. The comparison of agents is based on the average total reward

∗http://wiki.paparazziuav.org/wiki/Control_Loops#Vertical_loop, as accessed on 23/01/2019
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during these evaluation episodes, a measure of agent performance, and the number of episodes since the agent’s policy
last changed, a measure of the agent’s stability. Based on this comparison the top performing agent is then selected as
the top agent.

3. Investigating the influence of noise on agent performance
As discussed in sections III.C and V.A.1, the external force estimators are not perfect estimators of the distance to

an obstacle underneath. Instead, they are stochastic signals, influenced by both inaccuracies in the estimated external
force, like sensor noise, and external forces not resulting from obstacle-airflow interactions, like gusts. Furthermore, the
amount of stochasticity in comparison to the underlying obstacle-airflow interaction is likely to depend on the quadrotor,
obstacle characteristics and location of the obstacle with respect to the quadrotor. As such, getting an understanding of
the effect of this stochasticity on the performance achievable by the RL agent is of key importance. Especially when
considering the application of this object avoidance technique to other quadrotors or other types of obstacles.

Therefore, an experiment is carried out in which the noise on the Fext,z/m state is varied. The noise is varied from
no noise, so a completely deterministic signal (σnoise = 0), to 10 times as much noise as measured on the Parrot Bebop
1 drone for obstacles underneath (σnoise = 13.92). The ratio between the strength of the signal (Asignal) and the noise
(σnoise) is captured by the Signal to Noise Ratio (SNR), as given in 22 [24]. Since this equation uses the strength of the
signal, it also depends on the distance to the obstacle. In this case, the strength of the signal, Fext,z/m as caused by the
ground effect, at 0.15m distance from the surface is used. This is approximately three times the rotor radius and exactly
halfway between the estimated start of the ground effect area (0.25m), and the termination distance (0.05m).

SNR =
A2
signal

σ2
noise

(22)

For each SNR level, 100 RL agents are trained for 500 episodes, using the hyperparameter set for initial training.
Each agent is then evaluated during 100 fully greedy episodes. Both training and evaluation are carried out in the
simulation environment, with the noise on the Fext,z/m state as defined by the respective SNR levels.

4. Investigating the number of required training episodes
In order to determine the influence of the number of training episodes on the performance of the agents, another

experiment is carried out in simulation. Using the top initial hyperparameter set determined before, 100 agents are
trained for each of the following number of episodes: Nepisodes = {25, 50, 100, 500, 1000}. Evaluation is once again
performed during 100 fully greedy episodes.

The results from this experiment are expected to help determine the feasibility of training an agent fully online
during real flight, as the number of episodes that can be performed in real flight in a practical manner is limited.

B. Results
In the section below the results of the experiments carried out in the simulation environment are discussed.

1. Training agents in simulation
The results of training 100 agents in simulation are shown in Fig. 9. They respectively show the performance of the

agent, as measured by the average total reward (Fig. 9a) and the percentage of episodes resulting in a correct save (Fig.
9b). The number of episodes since the last policy change, as shown in Fig. 9c, is a metric indicating the stability of the
agent.

From these figures, it can be seen that a number of agents exist with similar top performance. Further inspection
shows that the similar performance of these agents is due to the fact that they have converged to a policy that is, for all
practical purposes, equal. From this point forward, this policy shall be referred to as the optimal policy.

Further evaluation of this optimal policy is performed during 10,000 fully greedy evaluation episodes, each with
uniquely random generated noise on the Fext,z/m signal. This results in an average total reward of −86.5 (σ = 32.1).
Furthermore, 96.4% (σ = 2.0) of the episodes result in a correct save.

Of the 100 trained agents, 22% have found this optimal policy after training for 500 episodes. Given the level of
performance achieved by this optimal policy, one could conclude that the RL setup works. Furthermore, 85% of all
trained agents save the quadrotor successfully in ≥80% of the episodes.
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Fig. 9 Performance and stability metrics for the 100 agents trained in simulation.

In addition to providing insight into the performance distribution of agents trained in this environment, this
experiment also set forth to select a top agent. This is the agent that will be used for the experiments in the flight phase.
As further selection from 22 agents with the optimal policy based on performance is not evident, selection among these
agents is based on the perceived stability of the agent.

HoverNo-action Save Unexplored

Fig. 10 Policy of the selected top agent, including
the key interevention state.

The convergence of the selected top agent can be seen in
Fig. 11. Furthermore, the final policy of this top agent can be
seen in Fig. 10. For clarity, only the policy for states visited
more than 10 times during the 500 training episodes are shown.

Indicated in the policy is the key intervention state (circled),
the first intervention that the RL agent is likely to encounter
when descending towards an obstacle underneath. Accounting
for discretization, this part of the policy thus says: perform
a save when: −0.65N/kg < Fext,z/m ≤ −0.55N/kg and the
previous action is ano−action.

From this experiment, the following conclusions can be
drawn. First of all, in the simulation environment, there is one
clear optimal policy, achieving high performance both in terms
of average total reward (-86.5) and percentage of episodes resulting in a correct save (96.4%). Secondly, 85% of all the
trained agents are able to save the quadrotor successfully in ≥80% of the episodes. Thirdly, only a small percentage of
the agents (22%) converges to the optimal solution.
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Fig. 11 Convergence of the selected top agent, as seen from the mean Q value and policy changes.

2. The influence of noise on agent performance
To investigate the effect of noise in the force and torque estimations, an experiment is conducted where 100 RL

agents are trained with 26 different levels of noise added to the Fext,z/m state signal. The results of these experiments
are shown in Fig. 12 and Fig. 13. These figures respectively show the influence of the noise on the average total reward
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and the percentage of episodes resulting in a correct save. They do so as a function of the SNR level, which is taken at
0.15m distance to the obstacle underneath.

The expected rewards for three key agent behaviors are also shown in these figures. First of all, the line at -2000
indicates the expected reward for a crash. This would be the performance of an agent that always performs ano−action.
The only way in which an agent could achieve a performance worse than this would be if it performed hovering actions
but still crashed every episode. Secondly, the line at -500 indicates the expected reward for a policy that always performs
a save at the start of every episode, the always-save policy. Since the quadrotor would not yet be in the ground effect,
this would always result in a false save. As such, this is the level of performance that can be achieved regardless of the
noise. Finally, the line at -50 indicates the expected reward for an agent that is able to correctly save the quadrotor in
every episode, but do so at the last minute, so when z − ztermination is close to zero. Any agents with a performance
better than this are thus able to save the quadrotor almost every episode and do it farther away from the obstacle.

The following observations can be made from these figures. Below -9dB, almost all agents have an average reward
of -500 and 0% save rate, suggesting that they are unable to detect the presence of an obstacle underneath and thus
converge to an always-save policy. Between -9dB and -1dB, the performance of all agents is actually worse compared to
the always-save policy. This suggests that it is possible to detect obstacles, but that the reliability of doing so is lacking,
resulting in some saves, but mostly crashes. Between -1dB and 2dB there are some top agents that are able to achieve a
performance better than always-save. However, the stochasticity of the signal makes it difficult for the algorithm to find
these better performing policies. Beyond 6dB almost all agents find a policy better than the always-save policy, their
policies resulting in a correct save in ≥70% of the episodes.

Furthermore, the distribution of the agents’ performances becomes smaller. Between a SNR of 12dB and 26dB, all
trained agents are able to perform a correct save in almost every episode. Improvement is found in performing a save at
larger distances to the obstacle underneath. Beyond 26dB, the performance is constant. Almost all agents are able to
save the quadrotor far away from the obstacle in all episodes.

From these results, it can be concluded that using the current setup, a SNR ≥-1dB is required to outperform a trivial
always-save policy and a SNR ≥2dB for most agents to do so. Beyond 6dB most agents are able to perform the obstacle
avoidance task quite well, performing a correct save in ≥70% of the episodes.
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Fig. 12 Influence of noise on agent performance, as measured by the rewards.
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Fig. 13 Influence of noise on agent performance, as measured by the percentage of episodes resulting in a save.
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3. The number of required training episodes
The results of the experiment to determine the number of required training episodes are shown in Fig. 14. Two key

observations can be made. First of all, the performance of agents trained for 100 episodes is similar to those trained for
500 episodes or more. Secondly, while the mean performance of agents trained for 25 and 50 episodes is lower, in both
cases there are still some agents which manage to learn the optimal policy. After training for only 50 episodes, 25% of
the agents have learned the optimal policy. Considering the stochasticity involved in both the exploration and the state
signal, this can be considered similar to the percentage of agents that have learned the optimal policy after training for
100 episodes (19%) and 500 episodes (22%).

It can thus be concluded that training for 100 episodes is sufficient when the purpose is to achieve the best performance
for each of the trained agents. However, if one is only concerned with finding one agent with the optimal policy, it can
be more efficient to train agents for only 25 or 50 episodes.

25 episodes 50 episodes 100 episodes 500 episodes 1000 episodes
Number of training episodes

−103

−102

Av
er
ag

e 
to
ta
l r
ew

ar
d 
in
 e
va

lu
at
io
n

Influence of number of training episodes on agent performance

Optimal
Agents

Fig. 14 Boxplot showing the influence of the number of training episodes on agent performance.

VI. Real flight
In the second phase, experiments are carried out in real flight, using a Parrot Bebop 1 quadrotor. First, the hardware

and software setup that is developed for these experiments is discussed. Then the setups of three experiments that are
carried out in real flight are presented; the evaluation of the top agent trained in simulation, continuing training of this
top agent, and the training of an agent from scratch.

A. Experiment setup
First, the hardware and software setup, as well as the experiments carried out using this setup, are discussed.

1. Hardware and software setup

Fig. 15 Parrot Bebop 1 quadrotor
[25].

The quadrotor being used for the flight experiments is the Parrot Bebop
1 quadrotor shown in Fig. 15. This relatively inexpensive drone features
4 outrunner, brushless, motors, driving 4 rotors with a radius of 6.4cm. For
the measurement of accelerations and angular rates, the Bebop relies on the
MPU 6050 chip, which contains a 3-axis gyroscope and 3-axis accelerometer
[26]. All flight experiments are carried out with the protection bumpers
attached. With these bumpers, the drone weighs 420 grams.

All experiments are carried out in the Cyberzoo of Delft University of
Technology. This test area for ground robots and aerial vehicles spans 10m x 10m and is 7m high. It is equipped with
the Optitrack: Motive Tracker optical tracking system, consisting of 24 cameras, enabling high precision positioning.
This system provides the current position of the quadrotor, with 0.5cm accuracy at 120Hz, as GPS coordinates, via a
wired connection to a laptop that functions as a ground station.
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Onboard the quadrotor runs version 5.13 of the open source autopilot software Paparazzi. † The Paparazzi software
suite also contains software for the ground station. The ground station is an Elitebook 8570w laptop. Communication
between the quadrotor and ground station, including the position as provided by Optitrack, is done over Wi-fi.

Paparazzi is a modular platform on which additional functionality can be easily be added by creating custom modules.
For the purpose of this experiment, such a custom Paparazzi module has been developed. This module is written in C
and performs the following functions in-flight:

• State estimator: estimating Fext,z/m based on Eq. 12, using the filtered accelerations, motor speeds, rotational
rates, body speeds, and thrust model. To enable this, the state estimator is also responsible for conducting a
2-second initialization procedure at the start of each flight. During this procedure the gains for the thrust model
(ki/m) are estimated, using Eq. 10. For the drag coefficient a constant value of kD,z = 0.271N · s2/m is used.

• Reinforcement learning actor: at every step of the episode, this actor is presented with the reward and the state
(consisting of the estimated Fext,z/m and the previous action), based on which the actor will select one of the
three actions (no-action, hover or save). It does so, based on its exploration strategy and the policy it determines at
the start of each episode. When the action is to intervene (ahover or asave), this action is passed to the Paparazzi
inner vertical control loop as a command. When the chosen action is ano-action, the inner vertical control loop will
follow the flight plan, which in all of the conducted experiments commands it to descend with 0.3m/s.

• Safety controller: if the quadrotor comes to close to the obstacle underneath z < ztermination, the safety controller
will end the episode and send the quadrotor back to its start point of 1 meter above the obstacle. This part of the
module thus has access to the height above the obstacle, as provided by the Optitrack system. This information is
however not shared with the RL actor or critic, except through the rewards they receive.

• Data logger: storing all relevant variables for later analysis, including measured accelerations, speeds, motor
speeds, estimated Fext,z/m and chosen actions. All these variables are written to a .csv file every timestep.

Other than the custom module, the quadrotor uses only existing Paparazzi modules models for its flight control. For
stabilization in the horizontal plane, usage is made of the Incremental Nonlinear Dynamic Inversion (INDI) module
[27]. For speed and positional control, the Paparazzi default inner vertical and horizontal control loops are used. It must
be noted however that the HOVER_KD gain for the vertical loop has been increased from 100 to 600, in order to ensure
closer tracking of the desired descent speed. This is required to maintain constant descent speed when nearing the
obstacle underneath, as the ground effect tends to reduce the descent speed. Furthermore, the importance of thrust
control with respect to the roll and pitch axes was increased from 10 : 1000 to 100 : 1000. The complete control scheme
for the flight experiments can be found in appendix A.

The reinforcement learning critic was custom developed for these particular experiments and runs on the ground
station laptop. It was developed in Python and uses the codebase that was originally developed for the simulation
experiments. At the end of every episode, the critic retrieves the data log file of that episode from the quadrotor over
FTP. For each step in this episode, Watkin’s Q(λ) algorithm is then used to calculate the change in action-value function
(Q), based on the state, selected action, and resulting reward. To do so, the critic needs to distinguish between greedy
actions and exploratory actions. The exploratory actions being either episode-long exploratory actions or an exploratory
action taken at one specific timestep by the ε–greedy exploration. The critic uses this distinction to reset the eligibility
traces when needed. After processing every step in the episode, the result is sent to the quadrotor over the Ivy bus, a
text-based (ASCII) Publish-Subscribe protocol that communicates over the local Wi-Fi network.

2. Evaluation of the top agent trained in simulation
The first experiment carried out in real flight is the evaluation of the top agent trained in simulation. The purpose of

this experiment is twofold. First of all, it serves to validate that the simulation environment is a reasonably accurate
representation of the real flight environment. This can then be used to argue that results from experiments carried out in
simulation, like the influence of hyperparameters, noise and number of training episodes, hold for real flight as well.
Secondly, it provides a first performance assessment in terms of the obstacle avoidance capability of this novel method.

In the experiment, for each of the evaluation episodes, the Bebop 1 quadrotor is commanded to descend from 1m
height with 0.3m/s. Onboard the quadrotor runs the top RL agent trained in simulation. All episodes are carried
out as fully greedy evaluation episodes, so no exploring starts, no exploration and no learning by the agent, just the
evaluation of the found policy. Twenty evaluation episodes are carried out, using the artificial grass surface of the TU
Delft CyberZoo as the obstacle underneath.

†http://wiki.paparazziuav.org/wiki/Main_Page, as accessed on 02/04/2019
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3. Continuing training in real flight
Secondly, an experiment is carried out where training of the top agent from the simulation experiment is continued

in real flight. This is done during 100 training episodes, using the same exploration strategy as used in the simulations,
and the hyperparameters found to be best for helping an agent adjust to a slightly different environment. After training,
the agent is once again evaluated during 20 fully greedy evaluation episodes. In all flights, the artificial grass surface
functions as the obstacle underneath.

4. Training from scratch in real flight
Finally, using the knowledge gained during previous experiments, an experiment is conducted where multiple RL

agents are trained fully from scratch, during a real flight. Training is conducted during 50 episodes, using the same
exploration strategy as used in the simulations, and the hyperparameters found to be best for the initial training of agents.
Evaluation is performed during 20 fully greedy evaluation episodes. In these flights the artificial grass surface functions
as the obstacle underneath, however, if this yields promising results, an additional evaluation is performed using an
alternative obstacle, a 75cm x 53cm x 17.5cm box placed underneath the quadrotor.

This experiment serves to determine whether a RL agent can be trained fully in flight to avoid obstacles underneath
it, using the obstacle-airflow interactions caused by this obstacle. If this is indeed possible, it shows the potential for the
extension of this method to other quadrotors, or other types of obstacles, without requiring simulation environments or
models of the obstacle-airflow interaction.

B. Results
Using the hardware and software setup described in section VI.A.1, several experiments are carried out in real flight,

using the Parrot Bebop 1 quadrotor. First, the top agent from the simulation phase is evaluated in flight. Secondly, an
experiment is conducted in which training of the previously found top agent is continued in flight. Finally, an experiment
is conducted where multiple agents are trained during real flight, without any prior knowledge of the environment.

1. Evaluation of the agent trained in simulation
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Fig. 16 Evaluation results of the
agent trained in simulation.

Of the 20 in-flight evaluation episodes, the top RL agent trained in simulation
is able to perform a correct save in 80%. As can be seen from Fig. 16, 5% of
episodes result in a false save and 15% in a crash. This results in an average reward
of −350. When comparing this to the performance of this agent in simulation;
with an average reward of -86.5 (σ = 32.1), and 96.4% (σ = 2.0) of episodes
ending in a correct save; it is clear that the performance in real flight is significantly
worse. Based on these results, it is estimated to be around 20% worse.

An explanation for this difference in performance could be the 140ms delay
in the Fext,z/m signal, introduced by the low-pass Butterworth filter, discussed
in section III.C. As this delay is present in real flight, but not in the simulation,
obstacles are expected to be detected slightly later in real flight, potentially leading
to worse performance.

While the results above provide the first assessment of the obstacle avoidance
capability of this new method, there is a second goal of the experiment; validating
that the simulation environment is an accurate representation of the real flight
environment. There are two key observations that are especially relevant to this. First of all, the observation that
the agent is able to perform well in the real flight environment, while only having being trained in the simulation
environment. This suggests that a good performance in simulation corresponds to a good performance in real flight.
Secondly, the exact level of performance achieved by this policy in the simulation environment is different from the
performance in real flight.

While the first observation speaks to validate the simulation model, the second raises the question of whether the
optimal policy found in simulation is also the optimal policy in real flight. To answer this question, and further validate
the simulation environment, this is investigated in the next two flight experiments. This is done by seeing if an even
better policy can be found by continuing training of the top agent in real flight, or training a new agent from scratch in
real flight.
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2. Continuing training in real flight

HoverNo-action Save Unexplored

Fig. 17 Alternative policy found after continuing
training online.

To check if the performance of the top agent can be further
improved, training is continued in flight for 100 episodes, using
the previously determined set of hyperparameters deemed best
for adjusting to a slightly different environment. Due to the
stochasticity involved, both in the exploration and in the Fext,z/m
signal, this experiment is conducted five times.

In all five training runs it can be seen that the agent exper-
imented with different policies. After the 100 training episodes,
4 of the 5 agents have converged to the same policy they started
with, the top policy from the simulations. The other agent has
ended up with the policy shown in Fig. 17. Accounting for
discretization this policy says: perform a save when: −0.75N/kg < Fext,z/m ≤ −0.65N/kg and the previous action was
ano-action. Compared to the optimal policy found in simulation, the RL agent thus intervenes later, at a more negative
Fext,z/m.

To test whether this policy is better than the initial policy, it is evaluated during 20 fully greedy episodes. The
performance is clearly worse. Only 5% of the episodes results in a correct save, 95% result in a crash. This also becomes
clear from the average total reward, which is -1902.

This result thus supports the hypothesis that the optimal policy found in simulation, is the optimal policy in real
flight as well. Furthermore, this implies that the performance shown in Fig. 16, performing a correct save in 80% of the
episodes, is the best achievable performance within the current setup.

3. Learning from scratch in real flight
Since the simulation experiments show that even after training for only 50 episodes, some RL agents have found the

optimal policy, an attempt can be made to train a RL agent fully from scratch, during a real flight. Of the 5 agents
trained in real flight, one has converged to a policy with the top performance, as can be seen from the evaluation results
shown in Fig. 18. During the 20 evaluation episodes, this agent correctly performed a save 16 times (80%), crashed 2
times (10%) an performed a false save 2 times (10%).
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Evaluation performance of the 5 agents trained from scratch

False Save
Crash
Correct Save

Fig. 18 Evaluation performance of the 5 agents trained from scratch in flight.
Further inspection of this particular agent shows that its policy, as shown in Fig. 19b, is very similar to the optimal

policy found in simulation. Both have the same key intervention, a save when −0.65N/kg < Fext,z/m ≤ −0.55N/kg and
the previous action is ano-action. It can thus be argued that for practical purposes this policy is equal to the optimal one
found in simulation. As such, this speaks for validation of the simulation environment.

This agent is also evaluated using a 75cm x 53cm x 17.5cm box as the obstacle underneath, instead of the artificial
grass surface. During the 20 fully greedy evaluation episodes, this results in the agent performing a correct save 15
times (75%) and a crash 5 times (5%).

From a practical perspective, it takes 15 minutes to train a single agent and evaluation takes another 7 minutes. This
includes the flight time for the 50 episodes, the initialization procedures and the replacement of batteries (3x). If enough
batteries are available, training 5 agents sequentially could thus be conducted in less than 2 hours. This is important
when considering the extension of this method to other quadrotors, or other types of obstacles.

Overall, it can thus be concluded from this experiment that it is possible to successfully train an agent fully in flight,
in only 50 episodes to detect and avoid obstacles underneath a descending quadrotor. Upon approaching an obstacle, a
detect-and-avoid accuracy of at least 80% can be achieved by a reinforcement learning agent with the optimal policy.
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(a) Convergence of the third agent trained from scratch.
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(b) Policy of the third agent trained from scratch.

Fig. 19 Convergence and policy of the third agent trained from scratch.

There is however no guarantee that every agent that is trained will always converge to this optimal policy. Results
from simulation and real flight suggest that only 20-25% of agents will converge to the optimal policy. Therefore, it is
recommended to train multiple agents, evaluate them and select the best.

VII. Extension to other types of obstacles and other quadrotors
While the results discussed above look promising, they of course only demonstrate the obstacle avoidance capability

for one specific drone, the Parrot Bebop 1, and only for large obstacles underneath the quadrotor. To assess the potential
of this method as a general method of obstacle avoidance, the extension to other quadrotors and other types of obstacles
must be considered.

A. Extension to other obstacles
When considering the extension of this method to other obstacles, one could consider extending it to detect large

obstacles above, like a ceiling, obstacles on the same level, like a wall, or to smaller or otherwise different obstacles. The
feasibility of using this method to detect walls and ceiling surfaces will depend on the strength of the effects caused by
these surfaces and the amount of noise and other disturbances present in the estimated forces and torques. For the Parrot
Bebop 1, an initial estimate of the SNR of the effects caused by the ceiling and wall is made as part of this research.

A large surface above the quadrotor, e.g. a ceiling, is known to cause an external force in the vertical direction [8].
The effect can be estimated using the measurement data from Sanchez-Cuevas et al. [8]. Adjusting for the different rotor
radius, a first estimate of the external force caused by the ceiling would be Fext,z/m ≈ −0.32N/kg. If similar noise as
seen in the presence of obstacles underneath is then assumed, this results in a SNR of 8.63dB. Since this is larger than
the SNR seen for obstacles underneath, it implies that these obstacles are easier to detect. One must, however, note that
the force, in this case, is pulling the quadrotor towards the surface above, in contrast to pushing the quadrotor away from
a surface underneath. As such, the intervention action might be more difficult or require a sooner intervention, thereby
perhaps reducing the performance.

To estimate the feasibility of detecting large vertical surfaces on the same level, like walls, an experiment is conducted
using the Parrot Bebop 1 drone. In this experiment, a 1m wide, 2.05m high screen is placed inside the CyberZoo.
The quadrotor then hovers at a height of 1.5 meter at varying distances from the wall, ranging from 1-meter to up to
1-centimeter distance. The measurement data is used to construct plots similar to Fig. 4, showing the estimated forces
and torques versus the distance to the wall.

The clearest influence of the wall can be seen in the torque around the y-axis, the effect is however relatively small
compared to the noise. An initial analysis estimates the SNR to be -4.15dB. For such a SNR it is not expected that
agents will able to find a policy that results in correct saves, as can be seen from Fig. 20.

It must, however, be noted however that this is only an initial analysis. It is expected that by analyzing the effects in
more detail, using better sensors, or using more than 1 external force or torque as a state, the performance might be
further improved. Furthermore, the performance could also be improved by using some of the other recommendations
discussed in section IX.

The extension to smaller or otherwise different types of obstacles is something that might be done incrementally.
As mentioned in the results, the RL agent trained in this research is already able to detect a large box. By continuing
training with smaller obstacles underneath, perhaps in combination with refining the used discretization, the detection
limits can be found and improved.

20

D
ow

nl
oa

de
d 

by
 T

U
 D

E
L

FT
 o

n 
Ja

nu
ar

y 
8,

 2
02

0 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/6
.2

02
0-

22
49

 



−10 0 10 20 30
Signal-to-noise Ratio of external force estimate at 0.15 meter from an obstacle underneath, in dB

0

20

40

60

80

100
%

 o
f c

or
re

ct
 sa

ve
s i

n 
ev

al
ua

tio
n Influence of noise on agent performance

Mean performance
Bebop 1, obstacle underneath (e.g. ground): SNR=6.33dB
Bebop 1, obstacle above (e.g. ceiling): SNR=8.63dB
Bebop 1, obstacle on the same level (e.g. wall): SNR=-4.15dB
5%-95% performance distribution

Fig. 20 Estimated Signal-to-Noise ratios and resulting performance, for the detection of walls, ceiling and
ground surfaces.

Overall, the following conclusions can be drawn with respect to the extension of this method to other obstacles. The
extension of this obstacle avoidance method to the detection of surfaces above the quadrotor, e.g. ceilings, is expected to
achieve a similar or even better performance as for surfaces underneath. The extension to surfaces on the same level as
the quadrotor, e.g. walls, is expected to require some significant improvements to the SNR of the estimated forces and
torques, or to the usage thereof, before a similar performance can be reached. The extension to smaller or otherwise
different types of obstacles requires further research, and possibly a more dense discretization of the states.

B. Extension to other quadrotors
Finally, the extension to other quadrotors. The whole method has been set up such that it requires little prior

knowledge of the quadrotor. For example, no assumptions are made about the mass of the quadrotor and the moments
of inertia are calculated in flight. Furthermore, the rotor gains ki/m are automatically estimated during initialization
procedures. The following steps are suggested to implement this obstacle avoidance method on another quadrotor:

1) Perform an experiment where the quadrotor first moves up and down without any nearby obstacles and then
descends to 5cm above a ground surface three times. Use the gathered measurement data to estimate the drag
coefficient as discussed in section III.B, and if need be, adjust the discretization bounds for the estimated external
forces and/or torques.

2) Train multiple agents in flight, using a large horizontal surface as the obstacle underneath. Suggested is to train
at least 5 agents for 50 episodes, using the hyperparameters discussed in section IV.E.

3) Evaluate all agents during a number of evaluation episodes, at least 20 is suggested, and pick the best agent for
implementation.

While following these steps should provide a good basis, there is no guarantee on the performance of the optimal
obstacle avoidance policy. This will especially depend on the ratio between noise and obstacle-airflow interaction effects
within the state signal, the SNR, as discussed in section V.B.2.

To demonstrate the extension of this method to other quadrotors, an experiment is performed using the Parrot
Bebop 2 drone. This successor to the Bebop 1 has a larger frame, larger rotors (Rrotor = 7.5cm) and new motors [28].
Furthermore, in the experiment the Bebop 2 is flown without the bumpers, thereby potentially altering the airflow, and
thus the obstacle-airflow interactions. Other than this, the setup is as described in section VI.A.4. Two RL agents are
then trained to avoid obstacles underneath this quadrotor. After 50 training episodes, one of the agents has already
learned a policy with similar performance as was achieved on the Parrot Bebop 1 drone. In the 40 fully greedy evaluation
episodes it is able to perform a correct save in 80% of the episodes, 2.5% resulted in a crash and 17.5% in a false save.
It can thus be concluded that the obstacle avoidance method can be extended to other quadrotors in only a few steps.

VIII. Conclusion
In this research, a first step in the development of a novel obstacle avoidance method for quadrotors is taken. A

reinforcement learning agent is successfully trained to detect and avoid obstacles underneath a descending quadrotor.
To accomplish this, a simple quadrotor model is introduced and used to estimate external forces and torques around

all three axes. Measurement flights with a Parrot Bebop 1 quadrotor are performed in order to model one of these
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estimators, the external force in the vertical direction (Fext,z/m) as a function of distance to the ground. These models
are used to create a simulation environment in which RL agents can be trained. This simulation environment represents
the actual flight environment as much as possible, replicating not only the quadrotor equations of motion but also its
inner loop flight control. Furthermore, the states (Fext,z and the previous action), actions (ano-action, ahover and asave),
and rewards of the environment are defined. In this environment, several experiments are then performed in simulation.
These are performed using the Watkin’s Q(λ) reinforcement learning algorithm, a custom threefold exploration strategy,
and hyperparameters determined during an extensive grid search.

From these results, it can be concluded that the estimated external force in the vertical direction is a good indicator
for the presence of large surfaces underneath. Furthermore, a reinforcement learning agent can be trained to use this
estimated external force to detect and avoid obstacles underneath. However, due to the stochastic nature of the problem,
not all agents will find the optimal policy. Multiple agents should thus be trained to ensure an optimal solution is found.

The best agent trained in simulation is evaluated in real flight, during an experiment with the Parrot Bebop 1, running
the Paparazzi open-source flight software, inside the Delft University of Technology CyberZoo. The results show that
the agent is able to save the quadrotor from hitting the obstacle underneath in 80% of the episodes. An attempt is made
to further improve this performance by continuing training online, but this yields no further improvement, suggesting
that the optimal policy found in simulation is also the optimal policy in real flight.

Finally, it is shown that it is possible to train an agent fully from scratch during a real flight. This is accomplished by
training 5 agents during 50 episodes each, without prior knowledge or training in simulation. Of these 5 agents, one
found the optimal policy, confirming the conclusion that multiple agents should be trained in order to ensure that the
optimal policy is found. Since this did not require any simulation beforehand, it suggests that a RL agent can be trained
to avoid other types of obstacles or obstacles on another quadrotor in real flight in a similar fashion.

For the extension of this method to other quadrotors, a procedure is presented. Furthermore, this extension is
demonstrated using the Parrot Bebop 2 drone. Showing that similar performance can be achieved on another quadrotor
in only a few short steps, without requiring any specific quadrotor model or simulation.

Furthermore, an approach for extending this method to the avoidance of walls, ceilings, and smaller obstacles is
discussed and the expected performance when doing so on the Parrot Bebop 1 is assessed. For surfaces above the
quadrotor, e.g. ceilings, the method is expected to achieve a similar or even better performance as for surfaces underneath.
The extension to surfaces on the same level as the quadrotor, e.g. walls, is expected to require some improvements to the
SNR of the estimated forces and torques, or to the usage thereof, before a similar performance can be achieved.

Overall, it can be concluded that it is possible to use reinforcement learning and obstacle-airflow interactions for the
detection and avoidance of large obstacles underneath a Parrot Bebop 1 quadrotor. Furthermore, it is expected that this
method can be extended to other quadrotors, as well as to large obstacles or surfaces above the quadrotor.

IX. Recommendations for future research
While initial success for this new obstacle avoidance method is shown, there are many points on which the method

can be improved. First of all, this method can be extended to other quadrotors, or other types of obstacles, e.g. walls,
ceilings, or smaller obstacles, as discussed in section VII.

Secondly, the estimations of the external forces and torques might be improved, thereby increasing the signal-to-noise
ratios, the effect of which is shown in Fig. 21a. This could be done by improving the estimator, reducing noise or
correcting for other disturbances. Improving the estimator could be accomplished by using more accurate models for
the produced thrust, drag or quadrotor dynamics. Reducing the noise in the estimator could be achieved by using
better sensors, improved filtering, or by reducing latencies in the underlying measurements. Finally, there can be other
effects, like wind, turbulence or the airflow of other aerial vehicles, causing external forces and torques on the quadrotor.
Methods might be developed by which they can be identified and corrected. In the case of wind and turbulence, a
correction might reduce false positives or false negatives, improving the performance of the obstacle avoidance method.
In the case of other aerial vehicles, identification might extend the applicability to dynamic obstacle avoidance.

Finally, the way the estimated external forces and torques are being used might be improved. This could lead to a
better optimal policy, the expected effect of which is shown in Fig. 21b, a better distribution of performance among
trained agents, as shown in Fig. 21c or a combination of the two. Two ways in which this might be accomplished are;
the combination of multiple estimators and improvements to the reinforcement learning setup. For obstacle-airflow
interactions expected to result in more than one external force or torque, e.g. those caused by a wall, providing multiple
estimators as a state to the RL agent could improve performance. Another way the proposed method might be improved
is by improving the reinforcement learning setup. Of the many ways in which this could potentially be accomplished,
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Fig. 21 Potential influence of proposed improvements on agent performance.

two interesting potential improvements can already be recommended for future research. First, the representation of the
action-value might be improved; either by increasing the discretization density, or using another function approximator
such as a Support Vector Machine (SVM) or a neural network. Secondly, the reward structure of the current setup
might be improved, for example by providing a positive reward for a correct save, with a larger distance to the obstacle
resulting in a larger positive reward. Initial experiments suggest that this can increase the percentage of the agents
finding the optimal policy in 50 episodes, from 20-25% to 40%.

To conclude, future research could both improve upon the current obstacle avoidance capabilities of this low-cost
method, and extend the method to other quadrotors and types of obstacles. Thereby increasing the potential of this
method as a primary obstacle avoidance method for small quadrotors, or as a secondary obstacle detection method for
larger quadrotors.
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A. Appendix: Setup flight experiments
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Fig. 22 Extended control scheme for the flight experiments
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