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Abstract

Vapor-liquid phase equilibrium —flash— calculations largely contribute to
the total computation time of many process simulations. As a result, pro-
cess simulations, especially dynamic ones, are limited in the amount of detail
that can be included due to simulation time restrictions. In this work, arti-
ficial neural networks were investigated as a potentially faster alternative to
conventional flash calculation methods. The aim of this study is to extend
existing applications of neural networks to fluid phase equilibrium problems
by investigating both phase stability and property predictions. Multiple flash
types are considered. Classification neural networks were used to determine
phase stability, and regression networks were used to make predictions of
thermodynamic properties. In addition to well established flash-types such
as the pressure-temperature (PT ), and pressure-entropy (PS) flashes, neu-
ral networks were used to develop two concept flashes: an entropy-volume
(SV ), and an enthalpy-volume (HV ) flash. All neural networks were trained
on, and compared to, data generated using the PT -flash from the Thermo-
dynamics for Engineering Applications (TEA) property calculator. Training
data was generated for binary water-methanol mixtures over a wide range
of pressures and temperatures. Overall phase classification accuracy scores
of around 97% were achieved. R2 scores of property predictions were in the
general order of 0.95 and higher. The artificial neural networks showed speed
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improvements over TEA of up to 35 times for phase classification, and 15
times for property predictions.

Keywords: Vapor-Liquid Equilibria, Phase Stability, Flash Calculations,
Artificial Neural Networks

1. Introduction

Process simulation is an indispensable tool in the design of process equip-
ment, and investigating the viability of new, or optimizing the performance of
current, process designs [1]. In addition, dynamic process simulation has be-
come especially important for applications such as process control, simulation
of start-up and shut-down behavior, and the analysis of inherently dynamic
systems [2–5]. At the basis of any type of process simulation model are fluid
property calculations [6], which require knowledge on the phase stability of a
fluid. For an unstable mixture, computation of the vapor-liquid equilibrium
compositions is performed; a so-called flash problem [1, 7–9]. Phase stability
is conventionally determined by testing whether a state can be found which
has a lower value of the relevant thermodynamic state function [7, 10–16].
Equilibrium calculation algorithms determine the two-phase compostions by
iteratively solving a system of non-linear equations, or by minimization of a
thermodynamic state function [17–26].

Executing a single flash calculation usually does not require long compu-
tational time, around one tenth of a milisecond for a single calculation — as
was determined in this study. However, when incorporated in a (dynamic)
process simulation, flash calculations are executed a large number of times,
and significantly contribute to the required CPU time, up to 70% in some
cases [27]. This can severely limit the amount of detail that can be consid-
ered within a single simulation. There is therefore an urgent need for faster
alternatives to the conventional methods used for solving flash problems.

Artificial Neural Networks (ANN) are a group of computational methods
that have attracted interest for a multitude of applications [28–34]. ANN are
inspired by the biological networks of neurons found in animal brains, and
are capable of learning complex non-linear relationships or structures within
large sets of data by a process of repeated exposure and adaptation of the
networks inner parameters to the data, referred to as training [35, 36]. One of
the major benefits of ANN is that once it is properly trained, computations
are very fast, as only matrix multiplication and addition is required, and at
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most the execution of an exponential function. Moreover, ANN can process
large numbers of input combinations in parallel [36].

ANN have been used extensively in the field of fluid phase equilibria,
e.g. in the property prediction of hydrocarbons [37–39], refrigerants [40–
44], petroleum fluids [27, 45–47], ionic liquids [48–52], alcohols [53, 54] and
even food [55, 56]. In almost all cases the fluids studied were either pure
compounds or fixed composition mixtures. In addition, ANN have been used
to determine phase stability [27, 57] and vapor/liquid-liquid equilibria [58–
61] of binary systems for a number of mixtures. In these studies, the number
of compositions considered was often limited, and only Refs. [57] and [27]
considered mixtures within the entire range of possible compositions. For a
concise overview of current and future applications of machine learning in
molecular science, the reader is referred to Ref. [62].

In this study, ANN were investigated as a potential alternative to conven-
tional equation of state (EOS) based flash algorithms, including both phase
stability analysis, and equilibrium and property calculations. The focus of
this study was on binary mixtures of water and methanol of variable compo-
sition. The following flash types were considered: the pressure-temperature
PT -flash, the pressure-entropy PS-flash, the entropy-volume SV -flash, and
the enthalpy-volume HV -flash. To the best of our knowledge, the SV and
HV flashes have no well-established implementation of a solution algorithm
yet. The neural networks were trained on example data of binary mixtures
of water and methanol generated using the Thermodynamics for Engineering
Applications (TEA) property calculator [63] of the CAPE-OPEN to CAPE-
OPEN process simulator (COCO) [64].

This manuscript is organized as follows. The next section will briefly cover
the basic principles behind conventional flash calculations, as well as relevant
concepts related to ANN. The subsequent section will outline the approach
used in solving the flash problem, and provide details on the methods used to
train the neural networks. Next, the accuracy scores and speed improvements
will be presented and discussed. Finally, conclusions regarding the current
investigation are provided. The current work shows that the ANN methods
result in considerable speed improvements, while still achieving overall high
predictive accuracy.

3



2. Theory

2.1. Flash Calculations

In general, a complete flash calculation can be divided into three sep-
arate parts: (1) phase stability analysis; (2) equilibrium calculations; and
(3) property calculations. In the first part, equation of state (EOS) [65–67]
or activity coefficient (AC) [68–70] models are used to determine whether
a mixture remains a stable single phase (vapor or liquid), or splits into a
state of vapor-liquid equilibrium [7]. This is done by investigating whether
a two-phase composition exists which has a lower value of the state function
than the single phase starting composition [7, 10–16]. If the system splits
into two phases, the same EOS or AC models are used to calculate the equi-
librium compositions of both phases until both the balance equations (mass,
component, heat) and equilibrium conditions (equal temperature, pressure,
and chemical potential/fugacity) are satisfied [17–26]. Once the equilibrium
compositions are known, the EOS or AC models are used to calculate rel-
evant properties [7–9]. If the stability analysis finds that the mixture is a
stable single phase, the equilibrium calculations can be skipped and EOS or
AC models are directly used to determine the properties. For a comprehen-
sive explanation of the theory behind flash problems, the reader is referred
to Ref. [7].

All fluid property calculations start with a specification of the mixture
composition (ni) as well as the values of two thermodynamic properties,
which (according to Duhem’s theorem [8]) fix the phase of the system, as
well as the values of all other thermodynamic properties. Relevant thermo-
dynamic properties are pressure (P ), volume (V ), temperature (T ), entropy
(S), enthalpy (H), internal energy (U), Gibbs free energy (G), and Helmholtz
free energy (A). The two properties that are specified determine the type of
the flash calculation, and practical algorithms exist for many different flash
types [17, 18, 22, 23, 26, 71].

This work focusses on the application of artificial neural networks to
four different flash types: the PT -, PS-, SV -, and HV -flash. The first two
types have widely established algorithms [17, 18], and the third has a known
algorithm [21], but is rarely implemented. To the best of our knowledge, for
the last type no clearly defined algorithm is available.
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2.2. Artificial Neural Networks

An artificial neural network (ANN) is made up of a network of connected
nodes called neurons. All neurons are divided into mutually exclusive layers.
In the first layer, called the input layer, the inputs to the network are defined.
The last layer, the output layer, returns the output values of the network
corresponding to the specified inputs. All layers in between the input and
output layer are called hidden layers [35, 72]. Figure 1 shows a schematic
representation of a neural network with three input neurons, two output
neurons, and one hidden layer with four hidden neurons.

Each neuron in a network has a certain internal value called its activation.
This value is passed on as a “signal” from one neuron to the next. In most
ANN, every neuron in one layer is directionally connected to every neuron
in the next layer. The neuron receives signals from the neurons in the layer
directly before it, and sends signals to all neurons in the layer directly after
it. Every connection between neuron i in one layer and neuron j in the next
layer has a corresponding weight wij. The value of a weight indicates the
connections “strength” and determines the magnitude of the signal that is
propagated [35, 72]. Weights can be positive, having a stimulating effect, or
negative, having an inhibiting effect.

All signals received by a neuron are added together and an activation
function is applied to determine the value of the activation of the neuron.
An additional term, called a bias (bj), is added to the total signal, which
makes it possible to shift the value of the activation, considerably improving
the modelling capabilities of the network. In mathematical terms, signal
propagation can be expressed as:

Aj = fa(bj +
n∑

i=1

Aiwij) (1)

Here, Aj is the activation of the jth neuron in one layer, bj is the bias term
corresponding to neuron j, Ai is the activation of the ith neuron in the layer
before neuron j, wij is the weight value of the connection between neurons i
and j, n is the total number of neurons in the layer before neuron j, and fa is
the activation function. Often used activation functions include the sigmoid,
tanh, and Rectified Linear Unit functions [35], but many others exist [73, 74].

The most basic type of ANN is the Multi-Layer Perceptron (MLP), the
type pictured in Figure 1, in which every neuron in one layer is forwardly
connected to every neuron in the layer directly after it. The MLP can be
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applied to many types of problems, including classification and regression
[35]. In the case of regression applications, the simple one-layer MLP, with
enough hidden neurons, has been proven to be a universal approximator of
any multi-variate and continuous function [75–77].

Neural networks can learn complex input-output relations of non-linear
problems. This is done in a process called training, in which the weights
and biases of the network are adjusted to accurately represent the relation
between a large number of example inputs and outputs. During training, the
ANN is made to predict outputs based on example inputs, and the predictions
made by the ANN are compared to corresponding correct example outputs.
Based on the difference between the ANN predictions and target values, the
network is given a performance (error) score, called its loss; determined by a
loss function. As the loss is a function of the weights and biases of the ANN,
an optimization algorithm can be used to find new values of the weights
and biases that lead to a decrease of the loss value. After these new values
are found, the weight and biases are updated accordingly, and the scoring-
and-update process is repeated until either a maximum number of iterations
(epochs) is exceeded, or a desired accuracy is achieved. In general, when
more training data is available, a neural network can be trained to a higher
accuracy [35].

3. Methodology

3.1. Solution Approach

The conventional flash problem was approached in a similar vein as it
currently is, replacing all EOS based models and algorithms with ANN. Phase
stability was determined using classification networks, and both equilibrium
calculations and property value predictions were performed using regression
networks. All applications used MLP networks.

The following thermodynamic properties were included in the current
work: pressure (P ), volume (V ), temperature (T ), entropy (S), enthalpy
(H), internal energy (U), Gibbs free energy (G), Helmholtz free energy (A),
and the two-phase liquid composition (xi) and vapor composition (yi). The
two-phase compositions were calculated by first predicting values of the vapor
fraction of each component (βi), defined as:

βi =
nV
i

nL
i

(2)
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Here, ni is the number of moles of component i in [mol], and βi is the vapor
fraction of component i in [mol/mol]. The values of βi were used to calculate
the two-phase compositions xi and yi by the following equations: nV

i = βin
F
i ;

nL
i = nF

i − nV
i ; yi =

nV
i∑c

i=1 n
V
i

; and xi =
nL
i∑c

i=1 n
L
i

. Here, xi is the mole

fraction of component i in the liquid phase in [mol/mol], yi is the mole
fraction of component i in the vapor phase in [mol/mol], c is the total number
of components in the mixture, and V, L, and F are superscripts indicating
the vapor phase, liquid phase, and feed respectively. This method was used
to keep the number of independent variables that had to be predicted to
determine the two-phase compositions to a minimum, as well as to insure
that the mass balance was satisfied.

It was decided to use a different neural network for each property pre-
diction individually, instead of using one network to predict all properties at
once. This approach was used for two main reasons: (1) it allowed for the ad-
dition and removal of properties from the overall algorithm when necessary,
without having to retrain already existing networks; and (2) better insights
on which properties were difficult to train a neural network on could be
gained. As the error score of a network with multiple outputs is determined
by the sum of the error scores of each individual output, a single output that
scores poorly can severely skew the total error score, even when the other
properties score well. This can make it difficult to distinguish between prop-
erties that are easily approximated by a neural network, and properties that
are not.

To avoid discontinuities of property values that may occur across phase
boundary transitions, it was decided to divide the entire range of interest in
three separate regions: the pure vapor region, pure liquid region, and two-
phase vapor-liquid equilibrium region. For every property, a different neural
network was trained for each phase region, and the classification network was
used to determine the appropriate network to employ.

3.2. Data

Data was generated for 101 different compositions (zi) of binary water-
methanol mixtures for 500 temperatures evenly distributed between 273 and
700 K, and 500 pressures logarithmically distributed between 104 and 3·107

Pa, amounting to a total of around 25,250,000 data points. For a small
number of PTz input combinations, the flash algorithm failed to converge
to a solution, so the exact total of data points was 25,249,692; 15,927,634
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points in the vapor region; 8,905,225 in the liquid region; and 416,833 in
the two-phase region. The comparatively low number of data points in the
two-phase region resulted from the small size of the water-methanol PT two-
phase region. This is reflected in Figure 2, which shows a PT phase diagram
that was part of the training data used to train the PT-flash classifier. As
can be seen, the two-phase region (light-green) has a much smaller area than
the pure liquid region (blue) and the pure vapor region (red).

The PT -flash algorithm incorporated in TEA was used to generate all
data points. The algorithm uses a modified version of the Boston and Britt
“inside-out” flash algorithm [20, 78]. The Peng-Robinson (PR) EOS [66]
was used for all calculations (phase stability, equilibrium calculations, and
property calculations). It is important to note that advanced EOSs like PC-
SAFT or CPA are better than PR to model polar systems (e.g., water and
methanol) [7]. The PR EOS was selected here due to its simplicity and
robustness, but the working principle of the ANN method is independent of
the choice of the EOS.

In total 70% of the data was used for training the neural networks, 15%
was used for validation during the training process to prevent overfitting [35],
and 15% was set aside for testing purposes. Before training, all data sets were
scaled to lie in the interval [0, 1] using the following equation:

d′i =
di −max(d)

max(d)−min(d)
(3)

Here, d′i is the scaled value of data point di, the ith entry of data set d. Scaling
was applied to prevent immediate saturation of the activation functions, and
to equalize the scales of the different input properties.

3.3. Neural Network Training

Neural networks were trained using the Keras module for the Python
programming language [79]. All networks were MLP networks with a single
hidden layer. The classification networks were more prone to overfitting,
so were constructed with only 5 hidden neurons. The regression networks
were all constructed with 10 hidden neurons. All networks used the sigmoid
activation function for the hidden layer. The classification networks used
the softmax function as the activation function for the output layer, the
regression networks had no activation function in the output layer (linear
activation).
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For training the classification networks, the output labels corresponding
to each phase region were transformed into one-hot encodings, and trained
using the categorical cross-entropy (CE) loss function [35]:

CE = − 1

n

n∑
i=1

[ti log oi + (1− ti) log (1− oi)] (4)

Here, ti is the target value of data instance i, oi is the value predicted by the
ANN on data instance i, and n is the total number of data instances.

The regression networks were trained using the mean squared error (MSE)
loss function. The MSE is defined as:

MSE =
1

n

n∑
i=1

(ti − oi)2 (5)

For all networks, the Nadam algorithm was used to minimize the loss value
[80]. The total training data set was processed by the training algorithm
in batches of 5000-15000 randomly selected instances. An early-stopping
monitor was implemented which ended the training process if no decrease in
validation error of at least 1·10-6 was achieved for more than 35 epochs. The
maximum number of training epochs was set to 5000.

4. Results and Discussion

4.1. Predictive Accuracy

To score accuracy, new sets of test data were generated using TEA. The
data was generated by randomly selecting PTz combinations within the
range of interest specified in Section 3.2, and determining their phase stabil-
ity and target property values. Randomly generated test instances were used
instead of the original test data set, so that any biases that might have been
introduced by the manner in which the training data was generated would
become apparent. For each phase region, 100,000 points were generated.

The phase classification neural networks were scored based on a binary
percentage accuracy measurement, defined as:

BA =
ncor

n
· 100% (6)

Here, ncor is the number of correct predictions and n is the total number of
predictions made.
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The regression networks were scored based on their mean absolute error
(MAE) and coefficient of deviation (R2), defined as:

MAE =
1

n

n∑
i=1

|ti − oi| (7)

R2 = 1−
∑n−1

i=1 (ti − oi)2∑n−1
i=1 (ti − µtest)2

(8)

Here, ti is the target output value of instance i, oi is the predicted output
value of instance i, and µtest is the mean value of the test data set.

Table 1 shows the binary accuracy scores as percentages for each flash
type. All flash types were scored on each phase region separately, as well on
the total test data of all regions combined. As can be seen, all flash types
show similar results: high accuracy for points in the liquid and vapor regions,
especially for the SV - and HV -flash types, but markedly lower accuracy for
points in the two-phase region, which have a significant impact on the overall
accuracy scores. The lower accuracy scores for the two-phase regions are most
likely due to the fact that less training data was available for the two-phase
region.

Table 2 shows accuracy scores of the PT - PS- and SV -flash for a selection
of properties in each phase region. As can be seen, for the PT -flash, accuracy
scores are quite good in the liquid and vapor regions, with relatively low mean
absolute errors for most properties, and values for the coefficient of deviation
close to 1. Figure 3 shows a correlation plot of the neural network PT -flash
predictions of the Gibbs free energy compared to the target values in the
test data set. In the figure, points whose phase was incorrectly classified by
the classification neural network that preceded the property prediction are
shown as red crosses, the blue circles indicate correctly classified points. As
can be seen, the neural network accurately predicts the target values.

As opposed to the vapor and liquid regions, the two-phase region accuracy
scores are overall much lower. Except for the volume and the Gibbs free
energy, all properties show an increase in the MAE that is in many cases
around an order of magnitude larger than for the liquid or vapor region.
These results can be explained by the fact that the PT two-phase region
shows relatively steep gradients for many properties. These gradients can
make it difficult for a neural network to accurately approximate the training
data. Additionally, the fact that less training data was available for the
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two-phase region also likely contributed to the lower accuracy scores. Table
2 further shows that the accuracy of the vapor fraction of water and liquid
phase mole fraction of water are considerably worse than all other properties.
For the vapor fraction of water this is presumably due to errors in the phase
classification that precedes property value predictions. As the value of the
vapor fraction in the liquid region is always 0, and in the vapor region always
1, a misclassification in the two-phase region will lead to disproportionately
large errors in the value of the vapor fraction. Accuracy scores for the liquid
phase mole fraction of water are worse than the vapor fraction of water for an
additional reason: as the liquid mole fraction is derived from both the water
and methanol vapor fractions, predictive errors in both vapor fractions will
combine to result in even larger errors in the mole fraction. Accuracy scores
of the methanol vapor fraction and liquid mole fraction, as well as vapor mole
fractions showed similar results (data not shown).

The PS-flash shows vapor and liquid region results that are comparable
to the results of the PT -flash, but the PS-flash is much more accurate in the
two-phase region. In particular, the vapor fraction of water shows a much
lower MAE and higher R2 score, likely due to the fact that in the PS two-
phase region, property values do not show the steep gradients they show in
the PT two-phase region. The accuracy of the liquid phase mole fraction
of water is still low, but better than for the PT -flash. Figure 4 shows a
similar plot as Figure 3 in which the neural network PS-flash predictions for
enthalpy are compared to their target values in the test data set. Again, it
can be seen that the neural network has very high predictive performance.

Table 2 likewise shows similar trends in accuracy scores of the SV -flash
as the PT - and PS-flash. However, there is one main difference: pressure
predictions show very large errors, likely due to the large value range of
pressure, and, in the liquid region, due to very steep gradients similar to the
PT two-phase region, but more severe. Figure 5 shows that the high errors
for the two-phase region pressure predictions are almost entirely due to errors
in the preceding phase classification network. As pressure predictions in the
liquid region are highly inaccurate, any point in the two-phase region that is
incorrectly classified as being in the liquid region will contribute significantly
to the total error score of the two-phase region. In fact, when excluding
incorrect phase classifications, the SV -flash two-phase pressure predictions
showed an MAE value of 6.8·104 Pa, compared to a value of 1.8·106 Pa
when incorrect classification are included. Thus, around 96% of of the value
of the MAE in the two-phase region is due to points that were incorrectly

11



classified, mostly as liquid. For comparison, in the vapor region, only 0.01%
of the MAE value can be contributed to incorrect classifications. Most other
properties also show much lower error contributions from misclassification.
For example, Figure 6 compares temperature values predicted using the SV -
flash neural network to their target values. As can be seen, it shows only a
few points that were incorrectly classified.

Results for the HV -flash were not reported as they were almost identical
to the results for the SV -flash, even showing the same difficulty in predicting
values for pressure in the liquid region.

4.2. Execution Time

Algorithm execution times were determined using the time module for the
Python programming language. Using the module, the time just before the
function call to the algorithm and just after the algorithm returned its output
were recorded. The time before execution was subtracted from the time after
execution to determine the total time elapsed. All time measurements were
performed on a MSI GP62 Leopard laptop with a 64-bit Intel R©CoreTM i7-
7700HQ 2.80GHz processor running the Windows 10 OS, and 8.00 GB of
installed ram. All algorithms were executed using the same amount of CPU
space.

Execution times were determined for three cases: the conventional algo-
rithm used by TEA [20], a phase classification neural network only, and a
property prediction neural network that was preceded by the classification
network. As all networks had the same number of neurons and used the same
activation functions, only one property of one flash type was considered.

One of the major advantages of neural networks is that they can process
multiple inputs in parallel, for this reason it was interesting to investigate
how execution time scaled with the total number of flashes to execute. The
number of flashes to execute were: 10, 102, 103, 104, 105, 106, and 107. All
cases were repeated a set number of times; their averages are reported here.

Figure 7 shows a log-log plot of the total average execution time versus
the number of flashes that had to be executed for each of the three cases. As
can be seen, from 104 and onwards, execution time scales roughly linearly
with an increase in the number of flashes to execute for all cases. Below
104 calculations, the execution times of the neural networks stop decreasing
linearly. As a result, at low number of flashes to execute, the neural net-
works show lower, but still significant, speed improvements over TEA. Speed
improvements were determined by dividing the execution time of the TEA
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algorithm by the execution time of the neural network algorithms. At low
numbers of flashes to execute (10-103), speed improvements are around 6-25
times for the classification network only, and 2-10 times for property predic-
tion preceded by phase classification. At higher numbers of flashes to execute
(104-106), the neural networks show even better improvements over TEA, up
to 35 times for classification, and 15 times for property prediction. For the
highest number of flashes to execute (107), improvements reach values of 90
and 35 times, respectively. The speed improvements of 35 and 15 times cor-
respond to percentage decreses of around 97% and 92%, respectively. These
results are comparable to the maximum speedup of 90% achieved by [27]. Al-
though it should be mentioned that the speedup in [27] was measured based
on a decrease in the number of Rachford-Rice iterations, and not explicit
execution time.

The speed improvements are due to two reasons. Firstly, neural networks
do not require any iterative process or the solution to a system of complex
equations, making them relatively simple and fast to execute. Secondly, due
to their architecture, neural networks can execute multiple flash calculations
at once, while the TEA algorithm can only handle one flash at a time. As the
results showed, the classification plus prediction case is considerably slower
than the classification only case. This is mainly due to the fact that two neu-
ral networks had to be executed, as opposed to only one for the classification
only case. In addition, auxiliary functions (scaling, splitting and formatting
arrays, rescaling, etc.) contributed an additional 5-10% to the execution time
of the classification plus prediction case.

5. Conclusion

In this work, an algorithm was developed that uses artificial neural net-
works to replace the complex equations and iterative processes present in
conventional flash algorithms. This leads to faster flash calculations. A total
of four different flash types were considered for binary mixtures of water and
methanol of variable composition: the PT -, PS-, SV -, and HV -flash. The
classic flash problem was divided into two separate problems: one of classi-
fying the phase region (vapor, liquid, or two-phase equilibrium), and one of
predicting property values of the mixture. Phase classification showed over-
all quite high accuracy scores (around 97%), although classification accuracy
of the two-phase region was considerably lower than for the pure liquid and
vapor phase regions. Property predictions showed good accuracy for many
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properties (R2 > 0.95), but again predictions of values in the two-phase re-
gion showed much higher errors. Lower two-phase region accuracy scores
were likely due to less training data being available for points in this region,
and steep property value gradients that occurred for the PT -flash. Further-
more, execution time improvements of up to 35 times for phase classification,
and 15 times for property value predictions were achieved. The results from
this study show that ANN can be used to rapidly and accurately predict
phase stability and values of many different properties in the vapor and liq-
uid regions, but still require improvements when it comes to the accuracy in
the two-phase vapor-liquid equilibrium region. Finally, the results show that
ANN can be used to develop algorithms for unconventional flash types such
as the SV and HV -flash.
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Table 1: Binary accuracy scores of of all flash types considered. Binary accuracy was
defined as the percentage of the total number of predictions that were made that were
correct. Separate accuracy scores are shown for the pure liquid region, pure vapor region,
and two-phase region. The overall score over all phase regions together is also shown.

Binary Accuracy [%]

Flash type Liquid Vapor Two-phase Overall

PT 99.8 99.7 91.0 96.8
PS 99.7 99.7 93.4 97.6
SV 99.9 99.99 91.0 97.0
HV 100.0 99.997 90.1 96.7
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Table 2: Accuracy scores of the PT -, PS-, and SV -flash for pressure (P ), volume (V ),
temperature (T ), entropy (S), enthalpy (H), and Gibbs free energy (G). Results are shown
for the liquid, vapor, and two-phase regions. For the two-phase region, scores for the vapor
fraction of water (βw), and liquid composition of water (xw) are also shown. The accuracy
scores shown are the mean absolute error (MAE) and the coefficient of deviation (R2).

Liquid region

PT -flash PS -flash SV -flash

Property MAE R2 MAE R2 MAE R2

P - - - - 1.6·107 -6.2
V 7.7·10−7 9.790·10−1 6.1·10−7 9.797·10−1 - -
T - - 1.2 9.994·10−1 2.0 9.976·10−1

S 4.0·10−1 9.991·10−1 - - - -
H 2.0·102 9.987·10−1 1.3·102 9.998·10−1 3.6·102 9.986·10−1

G 1.0·102 9.997·10−1 1.3·102 9.995·10−1 2.8·102 9.974·10−1

Vapor region

PT -flash PS -flash SV -flash

Property MAE R2 MAE R2 MAE R2

P - - - - 6.0·105 9.785·10−1

V 2.1·10−5 9.999·10−1 4.4·10−5 9.993·10−1 - -
T - - 3.0 9.944·10−1 9.0·10−1 9.995·10−1

S 4.3·10−1 9.960·10−1 - - - -
H 2.8·102 9.866·10−1 1.3·102 9.983·10−1 2.0·102 9.961·10−1

G 1.5·102 9.986·10−1 1.9·102 9.976·10−1 2.6·102 9.953·10−1

Two-phase region

PT -flash PS -flash SV -flash

Property MAE R2 MAE R2 MAE R2

P - - - - 1.8·106 -2.513
V 2.1·10−5 9.664·10−1 2.6·10−5 9.995·10−1 - -
T - - 1.2 9.972·10−1 2.7 9.732·10−1

S 2.7 9.479·10−1 - - - -
H 1.3·103 9.431·10−1 1.2·102 9.996·10−1 1.4·102 9.989·10−1

G 5.5·101 9.995·10−1 8.8·101 9.987·10−1 2.8·102 9.304·10−1

βw 5.0·10−2 8.821·10−1 1.5·10−2 9.887·10−1 1.6·10−2 9.852·10−1

xw 7.1·10−2 9.823·10−2 3.6·10−2 4.644·10−1 3.0·10−2 5.839·10−1

16



Input
Layer
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Layer

Output
Layer

Figure 1: Schematic representation of a Multi-Layer Perceptron type artificial neural
network [35] with three neurons in the input layer, two neurons in the output layer, and
one hidden layer with four hidden neurons. Every neuron in one layer is connected to all
neurons in the next layer. Information is propagated only in the forwards direction, from
the input layer, through the hidden layer, to the output layer.
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Figure 2: Graphical representation of a part of the phase region data which was generated
in order to train and validate the PT phase classification neural network. The liquid
region is shown in blue, the vapor region in red, and the two-phase region in light-green.
Data is shown for a 50-50 mol% water-methanol mixture. The actual neural network is
trained on 101 such data sets. The data was generated using the PT -flash algorithm from
the Thermodynamics for Engineering Application property calculator [20, 63].
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Figure 3: Target Gibbs free energy (G) values versus predicted Gibbs free energy values for
the PT -flash liquid region. Points that were correctly classified as being in the two-phase
region are shown as blue circles, while incorrectly classified points are shown as red crosses.
As can be seen, the neural network accurately predict the target value (R2 = 0.9997), and
incorrect phase classification contribute little to the algorithms predictive error.
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Figure 4: Target enthalpy (H) values versus predicted enthalpy values for the PS-flash
liquid region. Points that were correctly classified as being in the two-phase region are
shown as blue circles, while incorrectly classified points are shown as red crosses. As can be
seen, the neural network accurately predict the target value (R2 = 0.9998), and incorrect
phase classification contribute little to the algorithms predictive error.
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Figure 5: Target pressure (P ) values versus predicted pressure values for the SV -flash
two-phase region. Points that were correctly classified as being in the two-phase region
are shown as blue circles, while incorrectly classified points are shown as red crosses. The
incorrect classifications make up only around 9% of the total number of predictions made,
however, they contribute to around 96% of the total value of the mean absolute error. In
addition, when only looking at the correctly classified points, the correlation is very good
(R2 = 0.9993), but when taking into account all points, including incorrect classifications,
overall accuracy is much worse (R2 = -2.51).
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Figure 6: Target temperature (T ) values versus predicted temperature values for the SV -
flash vapor region. Points that were correctly classified as being in the two-phase region
are shown as blue circles, while incorrectly classified points are shown as red crosses. As
can be seen, the neural network accurately predict the target value (R2 = 0.9995), and
incorrect phase classification contribute little to the algorithms predictive error.
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Figure 7: Average execution times versus the number of flashes to execute. A comparison
is made between the conventional algorithm from the TEA property calculator [20, 63]
(blue circles), the classification neural network only (orange triangles), and a property
prediction which was preceded by the phase classification network (green squares). All time
measurements were performed on a MSI GP62 Leopard laptop with a 64-bit Intel R©CoreTM

i7-7700HQ 2.80GHz processor running the Windows 10 OS, and 8.00 GB of installed ram.
All algorithms were executed using the same amount of CPU space. Training times were
not included.
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