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Abstract. A novel grid generation algorithm for periodic unstructured grid around two-
dimensional highly-staggered turbine cascades, including multiply connected blade geome-
tries, is presented. The idea is to generate the mesh in a transformed space in which the
periodic boundaries are coincident and internal to the computational domain so that no
special treatment along these curves is required. The mesh in the transformed u-v space
is computed by means of a front-advancing/Delaunay technique and the resulting grid is
transformed back into the x-y space of physical variables after introducing a suitable cut,
which translates to periodic boundaries in the x-y plane. The cut is not arbitrary and it is
automatically managed by the algorithm. The proposed transformation is conformal and
therefore no elements are distorted in the process. In this way, the prescribed element size
and mesh quality are easily attained and the uniqueness of the periodic nodes is guaranteed
by the fact that they are indeed coincident in the space u-v. Numerical simulations of a
VKI LS-89 turbine blade are presented to support the present approach.

1 INTRODUCTION

Computational Fluid Dynamics (CFD) codes are currently used to study the internal
flow in many turbomachinery applications, including three-dimensional simulations of
stator-rotor interaction, the study of blade cooling and the design of the geometry of the
blade itself, see e.g [7]. State of the art CFD codes include turbulence modeling and also
the possibility of relaxing the ideal gas hypothesis to study the internal flow of non-ideal
or so-called real gases [5, 7, 2, 3].

A main issue in turbomachinery simulations is that of mesh generation, which is often
complicated by the non simple geometry of the blade, possibly including the internal duct
system for blade cooling, and by the need of introducing suitable periodic boundaries
to reduce the computational effort. In particular, for highly-staggered two-dimensional
turbine cascades, the determination of the (fictitious) periodic boundary is not a trivial
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Figure 1: Left: exemplary turbine cascade configuration in two-spatial dimensions (stator). The blades
are separated by a constant pitch. Right: equivalent computational domain, bounded by the inflow, the
outflow and the periodic boundaries.

task. In fact, if the periodic boundaries are chosen to be straight lines aligned with the
axial coordinate, then the intersections of these lines with the blade geometry are to be
computed explicitly and their determination requires the blade geometry to be described
by a continuous function. Alternatively, a cutting curve that does not intersect the blade
can be drawn. The latter is usually a complicated task, in that, depending on the blade
geometry and the pitch, the periodic boundary can be a highly curved line (2D) or surface
(3D).

Grid generation around turbine cascade can be obtained by resorting to both struc-
tured and unstructured grid generation approaches. However, structured periodic grids
around turbine cascades are usually characterized by high skewness in the case of highly
staggered cascades [10]. The quality of unstructured grids can be improved by resorting
to multiple-zone mesh generation techniques [6]. In this case, a smooth transition of the
element size across fictitious boundaries internal to the domain is to explicitly imposed.
Instead, if non periodic structured grids are used, a suitable interpolation technique is to
be introduced at the solver level to treat the periodic boundary condition correctly. Alter-
natively, unstructured grids have been used [6, 7, 10] in the computation of compressible
flows around highly staggered cascades, including hybrid grids made of both tetrahedron
and prisms clustered in the boundary layer region for viscous flow computations [6]. The
main advantage of unstructured grids is related to the high flexibility and grid quality
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around virtually any geometry. In this case, periodic nodes are then usually obtained by
duplicating the boundary nodes on periodic boundaries, since the connectivity between
the boundary nodes and the internal ones is not required to satisfy the topological con-
straints that are typical to structured grids. However, the simple operation of copying
periodic boundary nodes does not guarantees the fulfillment of the constraints on the ele-
ment size or the element quality [10]. Moreover, an arbitrary cut of the periodic geometry
is to be introduced explicitly, an operation that is not easy to automate in the case of
highly staggered cascades.

In the present paper, a novel algorithm for unstructured grid generation around highly-
staggered turbine cascades is presented and applied to two-dimensional geometries. A de-
scription of the proposed approach is given in section 2. In section 3, numerical results for
the VKI LS-89 turbine blade are computed and compared to available experimental data.
Final remarks and comments are given in section 4, where the possibility of extending the
present approach to three-dimensional geometries is also discussed.

2 PERIODIC GRID GENERATION

In figure 1 (left), an exemplary two-dimensional turbine cascade configuration is shown,
together with the lines indicating the inflow and outflow boundaries of the computational
domain. The turbine blades are separated by a constant pitch and therefore the com-
putational geometry can be simplified by introducing suitable periodic boundaries as in
figure 1 (right). The computational domain is therefore bounded by the two portion of the
inflow and outflow boundaries with length b (pitch) and by the two periodic boundaries
with length a.

In the present section, the proposed grid generation procedure to discretize the com-
putational domain is described. In particular, the coordinate transformation from the
physical space x-y to a suitable u-v space is first introduced to “cancel out” periodic
boundaries (section 2.1). Afterward, a front-advancing/Delaunay code is used to gener-
ate the grid in the u-v space; the prescribed element size at the domain boundaries and at
specified internal points is translated from the x-y representation and enforced during the
grid generation process. The grid is transformed back into the x-y plane after introducing
a suitable cut, which translates to periodic boundaries in the x-y space. Examples on
single- and multiply-connected geometries are also given (section 2.2).

2.1 Geometry transformation

A suitable coordinate transformation is now introduced to simplify the task of generat-
ing the computational mesh inside the domain shown in figure 1 (right). The new spatial
coordinates u and v in the transformed space are related to the physical coordinates x-y
by the following definitions

{

u(x, y) = r(x) cos θ(y)

v(x, y) = r(x) sin θ(y)
(1)
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Figure 2: Transformation from the physical space of x-y coordinates (left) into the u-v space (right)
where the grid is generated. The inflow and outflow boundaries are transformed into the inner and outer
circles, respectively. The periodic boundaries AB and DC collapses into a single line in the u-v plane
which is internal to the domain itself, namely, they don’t represent anymore a portion of the domain
boundaries.

where r and θ are the radial and angular coordinate, respectively, of a polar coordinate
system in the u-v plane, see figure 2 (right), which are arbitrary assumed here to depend
on the x and y coordinate only, respectively.

The functions r = r(x) and θ = θ(y) are now determined to guarantee that the above
transformation is conformal and therefore the standard (isotropic) Delaunay triangulation
technique can be used in the transformed space as well. In other words, we’re looking for
a transformation which changes the size of the triangles but not their shape, namely, the
angles formed by the edges of each triangle. The Jacobian of the transformation is easily
computed from (1) as follows

J(r, θ) =

(

r′ cos θ −rθ′ sin θ
r′ sin θ rθ′ cos θ

)

(2)

where r′ and θ′ are the first order derivatives of the functions r and θ, respectively. To
guarantee that transformation (1) is conformal, the metric M = JTJ in the transformed
space should be such that M = RTλ2R, or J = λ R, where λ is a scalar quantity and R
is an orthogonal matrix, namely, RT = R−1. By noticing that the matrix

R(θ) =

(

cos θ − sin θ
sin θ cos θ

)

is indeed orthogonal, representing in fact a rotation in the two-dimensional space, the co-
ordinate transformation (1) is conformal provided that r′(x) = r(x)θ′(y) = λ, cf. relation
(2) which immediately gives λ = λ(x) and θ′(y) = k, or

{

r(x) = ek(x−x0)

θ(y) = k(y − y0)
(3)
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where the value of the constant k is obtained by applying the condition θ(y1) = 2π and
hence

k =
2π

y1 − y0

=
2π

b

The result of the above coordinate transformation is shown in figure 2 (right). The
ABCD quadrilater, in which the boundary AD and BC correspond to the inflow and
outflow boundaries of figure 1, are transformed into two coaxial circles. The inner circle,
with radius r0 = 1, corresponds to the inflow boundary whereas the outer one, with radius

r1 = ek(x1−x0) = e2πa/b, (4)

is the outflow boundary. Points A and D and points C and D are coincident in the
u-v space and therefore the periodic boundaries collapse into a single segment which is
internal to the computational domain. Therefore, in the transformed space u-v, periodic
boundaries are no longer boundaries of the computational domain and do not require any
special treatment as far the grid generation procedure is concerned, as detailed in the
following section.

2.2 Grid generation

The generation of the computational grid in the u-v domain is now detailed. The grid is
generated by means of the advanced-front/Delaunay technique of Rebay [8], which allows
for generating grids made of isotropic triangular elements. The user is required to provide
the domain geometry and to specify the size h of the elements along the boundary curves
and at selected points internal to the computational domain.

The prescribed value of the element size is therefore first translated from the physical
space x-y into the transformed space u-v by multiplying the local element size hx,y by the
determinant of the Jacobian (2) of the transformation, namely,

hu,v = [det J(x, y)] hx,y = λ(x) hx,y = kek(x−x0) hx,y, (5)

where hu,v is the required element size in the u-v plane. The resulting triangulation in the
u-v space for the geometry in figure 2 is shown in figure 3 (left), which corresponds to a
grid of made of triangles with uniform size hx,y = const. in the x-y space (figure 3, right).
Note that an uniform mesh size in the x-y space translates into a nonuniform mesh size
in the transformed space, in accordance with the amplification factor in relation (5).

A suitable cut along the grid is to be introduced before transforming the grid from
the u-v space, where the geometry is periodic with respect to the θ variable (with period
equal to 2π), to the physical one, where the cut will represent the periodic boundaries.
The desired cutting line is easily obtained as a sequence in, n = 1, · · · , Nc of grid nodes
connected by the edges of the triangles composing the mesh. Along the inner circle
corresponding to the inflow boundary in the x-y space, the starting node i1 is chosen as
that closest to the θ = ±π line. From a given node in−1, node in is found by selecting the
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Figure 3: Grid generation around the ABCD box of figure 2. The cutting line separates element on the
θ = ±π line, starting from the inflow boundary (inner circle) and moving towards the outflow one (outer
circle).
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Figure 4: Left: computational grid around the VKI LS-89 blade in the u-v transformed space. Right:
enlarged view of the region around the inflow (not visible) and the blade. As the cutting line hits the
blade boundary, it continues along the blade itself until a point with θ = ±π is reached. From there, it
“leaves” the blade to move towards the outflow boundary.
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Figure 5: Computational grid around the VKI LS-89 blade in the physical space x-y.

node closest to the θ = ±π line among those belonging to the bubble of elements of node
in−1, namely, to the set of elements sharing node in−1. The process is repeated until the
outer circle, namely, the outflow boundary, is reached, see figure 3 (left).

If internal geometries are present, such as for example the blade geometry in figures
4 and 5, the above procedure is followed until the cutting line (possibly) intersects an
internal boundary. If this is the case, the cutting line follows the internal geometry until
the cutting line intersects the θ = ±π line again. Starting from the grid node closest to
the next intersection of the boundary with the θ = ±π line, internal (domain) nodes are
considered again according to the procedure detailed above, until either the outer bound-
ary or an internal geometry is reached, see figure 4. Multiple intersections may possibly
occur, depending on the pitch of the configuration and on the blade size. Such a situation
is sketched in figure 6, where a highly staggered configuration is considered. The geometry
in figure 6 has been also used to investigate the performances of the present method with
respect to multiply-connected internal geometries, as it is the case for example of turbine
blade including a cooling system. Note that the geometry of the cooling lines represented
in figure 6 is quite unrealistic and it has been used here only to assess the grid quality.

3 VKI LS-89 TURBINE CASCADE

Numerical results of the inviscid flow around a VKI-LS89 cascade configuration are now
presented to support the proposed grid generation technique. The flowfield Mach number
and pressure isolines are shown in figures 7 and 8 for two exemplary cases taken from [1],
together with a comparison of the numerical results with the isentropic Mach number Ms

distribution computed from the experimental data. Under the assumption of polytropic—
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Figure 6: Grid generation in the u-v space (top) and corresponding grid in the physical space (bottom)
for a multiply-connected blade geometry. The plots on the right are enlargements of the grid near the
leading edge.
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Test Number M2,s P t
1 [bar] T1 [K] P2 [bar] P2/P

t
1

MUR43 0.84 1.435 420 0.840 0.630
MUR49 1.02 1.608 420 0.750 0.516

Table 1: Test cases MUR43 and MUR49 for the VKI-LS89 blade from [1]. The subscripts 1 and 2 indicate
inflow and outflow conditions, respectively.
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Figure 7: Numerical results for the MUR43 test case in [1]. Mach isolines (left), pressure isolines (center)
and isentropic Mach number at measurement station along the blade (right).
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Figure 8: Numerical results for the MUR49 test case in [1]. Mach isolines (left), pressure isolines (center)
and isentropic Mach number at measurement station along the blade (right).
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a gas with constant specific heat at constant temperature—ideal gas considered here, the
isentropic Mach number is computed from the value of the pressure at each measurement
station as follows

Ms(P, P t) =

√

√

√

√

2

γ − 1

[

(

P t

P

)
γ−1

γ

− 1

]

, (6)

where γ is the ratio of the specific heat at constant pressure and volume, respectively,
(γ = 1.4 for air), P t is the total pressure and P is the measured pressure. The two cases
considered here, labeled MUR43 and MUR49 in [1], are characterized as in table 1.

Numerical results are found to agree fairly well to the experimental data in both the
considered cases. All computations have been performed on an unstructured grid made of
4009 nodes (7564 triangles) using the real-gas solver zFlow [3] under the polytropic ideal
gas model. zFlow is an unstructured grid solver based on the node-pair data structure
of Selmin [9] for the finite volume and finite element method that has been develop to
study real gas flows in turbomachinery application using state-of-the-art thermodynamic
models. Boundary conditions at periodic boundaries have been enforced by allowing
for the number of degrees of freedom to differ from that of boundary nodes. A grid
node lying on the top boundary is associated to the corresponding node on the bottom
boundary by linking the two nodes to one and the same degree of freedom or nodal
unknown. In this way, no periodic boundary conditions are to be imposed explicitly.
The pressure boundary condition at the outflow has been imposed according to the non-
reflecting strategy proposed by Giles, see e.g. [4], in which only the pressure average value
is prescribed. This boundary condition treatment greatly reduces spurious reflections at
the outflow boundary which, for a supersonic flow with shock waves crossing the outflow
boundary such as that depicted in figure 8, would seriously pollute the solution.

4 CONCLUSIONS

A novel approach to periodic unstructured grid generation around highly-staggered tur-
bine cascade has been presented and applied to exemplary geometries for turbomachinery
applications in two-spatial dimensions, including multiply-connected geometry such as
those describing blade cooling systems. The grid is generated in a suitable transformed
space in which periodic boundaries are in fact internal to the domain and therefore do not
require any special treatment. The proposed metric transformation is conformal and hence
an existing isotropic unstructured grid generation software can be used in the transformed
space of u-v variables, without the need of introducing an anisotropic metric. A suitable
cut in the u-v space in automatically constructed before transforming the grid back into
the physical space, which translates to the two required periodic boundaries. The grid
generation scheme proved successfully in all cases resulting in high-quality unstructured
grid for turbomachinery computations. Two standard test cases for the compressible flow
around the VKI LS-89 blade have been simulated and a fairly good agreement has been
found with the experimental data, thus proving the consistency of the proposed approach.

10



A. Guardone and S. Rebay

Further work in ongoing to extend the proposed technique to hybrid two-dimensional
grids including both triangles and quadrilaters for viscous flows computations and to
three-dimensional grids. Preliminary studies on the three-dimensional case pointed out
two main difficulties. First of all a suitable conformal transformation in three space
dimensions has not yet been found. Moreover, even with such a transformation at hand,
the metric amplification factor in (5) can be very large, thus leading to large differences
in the element sizes in the u-v plane, a situation that can possibly conflict with the use of
infinite accuracy algebra—an almost mandatory requirement for Delaunay grid generation
in three spatial dimensions.
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